
genkantor.pas

November 27, 2017

Contents

1 genkantor 1

2 ComputeTotalsEtc 7

3 marginalgain 8

4 mainSoilProducedBy 8

5 findScoop 9

1 genkantor

What follows is a program written in Vector Pascal. The text in roman font that
follows are comments. The program code is generally in san-serif font, and the
whole, is in the literate programming output format generated by the compiler.

program genKantor ;

* The programme has as its objective to generalise the algorithm of Kantorovich
that he first presents in the context of excavators working on soils of different
types, so that it will work for a general plan optimisation for the whole economy
by his method of resolving multipliers. It starts out from the data provided in
an i/o Table. In the table the norms for for different production techniques are
shown in italics. In this context a norm means the expected output per year of
the technique. In the case of Kantorovich’s original algorithm the norms were
represented as a matrix of outputs of different soils and machines. In an input
output table a technique is conventionally represented by a column (Leontief
notation) or a row (Sraffa notation) of a matrix.

1

We can convert the Kantorovich table

105 107 64
56 66 38
56 83 53

Where each row corresponds to a soil type and each column to an excavator
into an extended Sraffa format as

105 0 0 −1 0 0
107 0 0 0 −1 0
64 0 0 0 0 −1
0 56 0 −1 0 0
0 66 0 0 −1 0
0 38 0 0 0 −1
0 0 56 −1 0 0
0 0 83 0 −1 0
0 0 53 0 0 −1

where the first 3 columns correspond to the outputs of different soils and the
next 3 to the outputs of excavators. The outputs of excavators are negative
since a given process uses up an excavator.

The objective was given, by Kantorovich in a final column of his table, in our
format we would have a row vector of final outputs, and a second row vector of
resources available at the start of the period.

To copy Kantorovich target of 20000 meters of soil for each type of soil we would
have a target row vector

20000 20000 20000 0 0 0

And an initial resource vector of

2

0 0 0 1 1 1

indicating we have 1 machine of each type. Following the columns of the norms
Kantorovich gives the optimal allocation of machine times to activities to min-
imise overall time taken to do the digging. The program will reproduce this
result by applying his method of resolving multipliers or objectively determined
valuations. We first introduce our domain of discourse : the types of soil, the
types of machine and the units of measurement we are using.

type
soil = (I ,II ,III);
excavator = (A ,B ,C);
units =(hr , meter);

Now we introduce the dimensions in which volume, time and norms are specified.
For instance norms are real numbers denoting cubic meter per hour. The word
pow in what follows means raised to the power, and * is the multiplication
operator.

type
volume = real of meter pow 3;
duration = real of hr ;
norm = real of meter pow 3 * hr pow -1;

const
hour : duration =1.0;
cubicmeter : volume =1.0;
epsilon =0.001;

The production norms for the machines working on each kind of soil and targets
for soil to be moved are copied from Kantrovichs Table 5 and stored in an
appropriate matrix called norms, and a vector called targets.

const
norms : array [soil ,excavator] of norm =
((105, 107, 64),
(56, 66,38),
(56, 83, 53));
identity: array [soil ,soil] of real =
((1, 0, 0),
(0, 1, 0),
(0, 0, 1));
target : volume = 20000 ;

3

We now introduce the variables of the problem: a matrix x which will encode
the time each machine spends on each type of soil; L, a vector of objectively de-
termined valuations of different soils. The standardised output of each machine
for each soil type is obtained by applying resolving multipliers to the soil types.

var
x: array [soil ,excavator] of duration ;
Let dx ∈ duration;

resolving multipliers L : array [soil] of real ;
standardisedoutput: array [excavator ,soil] of norm ;
outputs : array [soil] of norm ;
totals: array [soil] of volume ;
Let ok ∈ boolean;
Let greatestsoil, leastsoil, deltam ∈ volume;
Let best ∈ norm;
Let e, Scoop ∈ excavator;
Let s, least, m, j ∈ soil;
Let λ, f ∈ real;
Let count ∈ integer;
equated: array [soil] of real ;

procedure ComputeTotalsEtc ; (see Section 2)
function marginalgain (s :soil ; d :excavator):volume ; (see Section 3)
function mainSoilProducedBy (e :excavator):soil ; (see Section 4)

function findScoop (var s :soil):excavator ; (see Section 5)

Kantorovich algorithm begin
initialise multipliers L← 1;

ok← false;
count← 0;
f← 0.3;

Iterate the following steps until we have a satisfactory answer.

while not ok do
begin

default assumption x← 0 × hour ;

Use the L to get a standardised performance for each machine.

standardisedoutput← (norms × L T)T ;

For each machine find the soil for which it has the best performance

4

for e← A to C do
begin

find the best performance of the machine on any soil

outputs← standardisedoutpute;
best← \max outputs ;

set each machine to work on the soil it is best at

for s← I to III do
if standardisedoutpute,s = best then xs,e← hour ;

end ;
totals←

∑
(norms × x) ;

greatestsoil← \max totals ;
leastsoil← \min totals ;
if leastsoil ≤ 0.0 × cubicmeter then
begin

check if any soil has a zero output and raise its value if it has

for s← I to III do
if totalss < greatestsoil then

end
else ok← true;

end ;
count← 0;

At this point our estimate of the resolving multipliers is accurate enough to
ensure that some of each soil is now being moved, but we have not yet met the
requirement that the same amount of each soil must be moved. We now try to
get a more precise estimate of the resolving multipliers and in the process we
adjust the amounts of each soil being moved. It is important to note at this
point that any further adjustments must come by de-specialising some of the
excavators so that they move more than one soil type. The resolving multipliers
have until now been used to weight the outputs of different soil types in order
to assign each digger to the soil it is best suited to. If a machine is no longer
specialised, that is if it moves more than one soil, then the weights must be
such that it is no longer best at one particular soil type. The multipliers must
be set so that the marginal weighted output of the excavator on any of the soils
on which it is employed are the same. Thus if a machine k is employed on two
soils i, j then standardisedoutput[k,j]=standarisedoutput[k,i].

5

In turn this implies that for any machine that is employed to move two soils the
ratio of the resolving multipliers must be the inverse of the ratio of the norms.

The algorithm will work soil a time bringing ever more soil outputs into equality.
We define the set of soils whose outputs has been brought into equality as the
equated set.

For those soils in the equated set, the resolving multipliers of the soils will have
been corrected so that for any machine moving more than one soil they stand
in inverse ratio to that digger’s norms.

computeTotalsEtc;
repeat

Find which machine non in the equated set is 2nd best at producing this soil
under current resolving multipliers. Call this machine Scoop.

Scoop← findScoop (least);

m← mainSoilProducedBy (Scoop);

Adjust the resolving multiplier ratio between Scoops soil and the least produced
soil to ratio of Scoops norms.

Lm← Lleast×normsleast,scoop

normsm,scoop
;

It is now necessary to reduce the ouput of scoop on scoops soil and increase it on
the least produced soil. It is necessary to compute how much to reduce scoops
soil by. The resolving multipliers give us substitution ratios between different
soil outputs. Suppose that we want to reduce output of soil m by one unit and
increase the output of soil j, the increase in j we get is

∆j =
Lm
Lj

. If we want to reduce the output of i and we have two other soils j, k which we
want to increase equally then we have

∆k = ∆j

6

where ∆x means change in x and

−∆mLm = ∆kLk + ∆jLj = ∆k(Lj + Lk)

. Thus

∆m = −∆k
Lj + Lk
Lm

Let Cm, Cj , Ck be the current outputs of each soil; given that Cj = Ck we have
to chose the ∆s so that

Cm + ∆m = Cj + ∆j = Ck + ∆k

It follows that

Cm −∆k
Lj + Lk
Lm

= Ck + ∆k

and

Cm − Ck = ∆k
Lj + Lk
Lm

+ ∆k = ∆k(1 +
Lj + Lk
Lm

)

so

∆j =
Cm − Cj

1 +
Lj+Lk

Lm

We next compute the reduction to be made in soil m from the formula

∆m = −∆k
Lj + Lk
Lm

substitiuting we get

∆m = − Cm − Cj
1 +

Lj+Lk

Lm

(
Lj + Lk
Lm

)

Translating this to the variables used in the program we have:

j← least;

λ← L.equated
Lm

;

deltam← (−1)×λ×(totalsm−totalsj)

1+λ
;

Note that in the line above we are generalising the term Lj +Lk to an aribtrary
number of multipliers (1 or 2 in this program) by computing the inner product
between the equated vector and the multipliers. This works because the equated
vector has a 1 for all soils in the equated set. We now compute the change in
duration that Scoop spends on its best soil (dx) by scaling deltam by Scoops
norm for soil m.

dx← deltam
normsm,Scoop

;
xm,Scoop← xm,Scoop + dx ;

7

reallocate this time to Scoops best soil in the equated set which we will now call
j

best← normsI,Scoop × 0;

j← I ;

for s← I to III do
if normss,Scoop × equateds > best then

begin
best← normss,Scoop;

j← s;
end ;

xj,Scoop← xj,Scoop - dx ;

computeTotalsEtc;
count← count + 1;

until ((
∑

equated) = 3) ∨ (count > 10);
writeln(‘answer arrived at after ’ , count, ‘ trys’);

writeln(‘ allocation ’ , x×target/totalsI

hour);

Kantorovich algorithm end .

2 ComputeTotalsEtc

procedure ComputeTotalsEtc ;

Work out how much is being produced, which soil is being produced least and
which soils outputs are equals to this,

var
d : array [soil] of real ;

begin
totals←

∑
(norms × x) ;

leastsoil← \min totals ;

Find the soil that is least produced.

for s← I to III do
if totalss = leastsoil then least← s;

Find the ones on the plan ray

d← totals−leastsoil
cubicmeter ;

equated←
{

1.0 if (d < ε) ∧ (d > - ε)
0.0 otherwise

;

end ;

8

3 marginalgain

function marginalgain (s :soil ; d :excavator):volume ;

This computes the marginal gain, under the weighting imposed by the current
resolving multipliers, of a small shift of the digger d’s time to the specified soil
type s. We compute the effect of multiplying all current time allocations to 1−ε
whilst increasing the allocation of time to soil s by ε. The assumption here is
that for now each machine has only one hour to allocate.

const
epsilon =0.001;

var
Let currentoutput ∈ volume;

marginal gain begin
currentoutput←

∑
xd × norms

ι0,d ;
marginalgain← ((ε × hour) × normss,d) - ε × currentoutput;

end ;

4 mainSoilProducedBy

function mainSoilProducedBy (e :excavator):soil ;

This determines which soil excavator e produces the most of.

var
Let v ∈ volume;
Let j, s ∈ soil;

begin
v← 0 × cubicmeter ;
s← i ;
for j← I to III do
begin

if v < normsj,e × xj,e then

begin
v← normsj,e × xj,e;

s← j ;
end ;

end ;
mainSoilProducedBy← s;

end ;

5 findScoop

function findScoop (var s :soil):excavator ;

9

Find which machine not currently fully commited is best at producing this soil.
Call this machine Scoop.

var
Let gain ∈ volume;
Let j, m ∈ soil;
Let d, Scoop ∈ excavator;

find Scoop begin
Scoop← A;
gain← (- maxint) × cubicmeter ;

for d← A to C do
for j← I to III do

if equatedj > 0 then

begin
m← mainsoilproducedby (d);
if marginalgain (j, d) > gain then
begin

if equatedm < 1 then
begin

gain← marginalgain (j, d);
Scoop← d ;
s← j ;

end ;
end ;

end ;
findScoop← Scoop;

end ;

10

