
objectiveValuation.pas

March 9, 2018

Contents

1 objectivevaluation 3

2 Purpose 4

3 Comand line interface 4
3.1 iotable . 4
3.2 planray . 5
3.3 reseourcevec . 5
3.4 results . 5

4 rf 7

5 kantor 7

6 IndexedMethod 12

7 kantorovichMethod 15

8 findfirstinput 16

9 claimHeapSpace 17

10 freeheapspace 17

11 marginalgain 17

12 mpp 18

13 mostProductiveTechniqueFor 19

14 ComputeTotalsEtc 19

15 somePositiveTargetsStillZero 21

16 numpostargets 21

17 renormaliseMultipliers 21

18 LowerNonEquatedMultipliers 21

1

19 LowerNonEquatedIntensities 22

20 getavailability 22

21 RedistributeResources 22

22 rescaleall 24

23 PaulsOptimiser 24

24 KantorovichsOptimiser 24

25 findScoop 27

26 csvfilereader 28

27 Introduction 28
27.1 Background . 28
27.2 CSV File Format . 29

27.2.1 CSV File Structure . 29

28 CSV File Rules 31
28.1 File Size . 31
28.2 CSV Records . 31

29 CSV Record Rules 31
29.1 CSV Field Column Rules . 31
29.2 Header Record Rules . 32

30 getdatamatrix 33

31 recursedown 33

32 recurse 33

33 getcolheaders 34

34 recurse 34

35 getrowheaders 35

36 recurse 35

37 colcount 35

38 getcell 36

39 removetrailingnull 36

40 onlynulls 36

41 rowcount 37

2

42 isint 37

43 printcsv 37

44 parsecsvfile 38

45 thetoken 39

46 peek 39

47 isoneof 39

48 nextsymbol 39

49 have 39

50 haveoneof 40

51 initialise 40

52 resolvealpha 40

53 resolvedigits 41

54 resolvetoken 41

55 markbegin 42

56 markend 42

57 setalpha 42

58 emptyfield 42

59 parsebarefield 43

60 parsedelimitedfield 43

61 appendcurrentchar 43

62 parsefield 44

63 parserecord 44

64 parseheader 44

65 parsewholefile 44

1 objectivevaluation

program objectiveValuation ;
uses kantor ,csvfilereader ;

3

2 Purpose

The programme applies the Objective Valuation technique of the Soviet No-
belist Kantorovich to data from input output tables. Kantorovich derived a
set of numbers, which he termed Objectively Determined Valuations, from a
combination of

1. the technology available

2. the objectives of the socialist plan

3. the available stock of material resources

This programme can potentially be used in studies of the comparative efficiency
of labour values, prices of production or Kantorovich valuations in economic
planning.

3 Comand line interface

Usage : objectiveValuation iotable.csv planray.csv resourcevec.csv

> result.csv

The files should be laid out with a first line and first column made up of text
fields labeling the rows and columns. All other cells should be numeric. Discus-
sion of matrix sizes in what follows refers exclusively to the rectangular subarray
of numeric values.

3.1 iotable

The first file, the iotable one, should contain an N by M io table in standard
column form, with a column corresponding to an industry so that cell at row
i col j contains the amount of output from the ith industry used by the jth
industry.

The last line must contain the outputs of each industry.

4

3.2 planray

This contains the target level of gross outputs in the next period to be obtained
using the technology of the iotable. In line with Kantorovich practice this
corresponds to a ray in N-1 dimensional space along which the outputs are
supplied in fixed proportions. This is also sometimes called a Leontief demand
function. The format, excluding headers, is a 1 by N-1 matrix, or N-1 element
row vector. For a typical io table this implies that even though labour is not a
produced input it should appear as a zero output target in the plan.

Headers should correspond to the column headers of the IO table.

3.3 reseourcevec

This is a N-1 row vector of available resources, the headers should correspond
to the row titles of the IO table.

3.4 results

The output is a 2 by M matrix in csv format. The two rows encode the intensity
with which each column technology in the IO table must be operated and the
objective valuations associated with each output.

type
pmat =ˆ matrix ;

channel = record
p : pcsv ;
r ;

m : ↑ matrix ;
end ;

procedure rf (var ch :channel ;param :integer); (see Section 4)
var

Let iot, rv, pr, results ∈ channel;
Let tech ∈ ˆtechnologytable;
Let odvs ∈ ˆODVvec;
Let X ∈ ˆintensityvec;

5

Let target, startingresource ∈ ˆresourcevec;
Let outputs ∈ ˆresourcevec;
Let i, j ∈ integer;

begin
rf (iot, 1);
rf (pr, 2);
rf (rv, 3);

omit last row and allow for
the base of 2nd dim of tech-
niques to be 0

new (tech ,iot .m ˆ .cols ,iot .m ˆ .rows -2);

tech↑← 0;

for i← 1 to tech↑.ω do
begin

for j← agriculture to tech↑.amusements do
begin

inputs go in transposed with
minus sign tech↑[i, src, j]← - iot.m↑[j + 1, i] ;

end ;
outputs from last row of io
matrix

tech↑[i, dest, i - 1]← iot.m↑[iot.m↑.rows, i];

end ;

new (target ,pr .m ˆ .cols -1);
target↑← pr.m↑[1, 1 + ι0];
new (startingresource ,rv .m ˆ .cols -1);

there is to be an odv for each
resource

new (odvs ,rv .m ˆ .cols -1);
there is an intensity for each
production technique, thus 1
for each column in the io ta-
ble

new (X ,iot .m ˆ .cols);

startingresource↑← rv.m↑[1, 1 + ι0];
optimiser← pauls;
kantorovichMethod (tech ˆ ,target ˆ ,
startingresource ˆ ,
odvs ˆ , X ˆ);

for i← 1 to iot.m↑.cols do
write (‘,’ ,iot .c ˆ [i]ˆ .textual ˆ);

writeln;
write(‘output’);
for i← 1 to iot.m↑.cols do

write (‘,’ ,x ˆ [i]* iot .m ˆ [iot .m ˆ .rows ,i]:1:4);
writeln;
write(‘odv’);
for i← 1 to iot.m↑.cols do

write (‘,’ ,odvs ˆ [i -1]:1:4);
writeln;

6

end .

4 rf

procedure rf (var ch :channel ;param :integer);

Read in one of the file parameters and extract the data from it

begin

with ch do
begin

p← parsecsvfile (paramstr (param));
if p = nil then
begin

writeln(‘error opening or parsing file ’ , paramstr (param));
halt (2);

end
else ;
r← getrowheaders (p);
c← getcolheaders (p);
m← getdatamatrix (p);

end ;
end ;

5 kantor

What follows is a library written in Vector Pascal. The text in roman font that
follows are comments. The program code is generally in san-serif font, and the
whole, is in the literate programming output format generated by the compiler.

unit Kantor ;

* The library provides a procedure which generalises the algorithm of Kan-
torovich that he first presented in the context of excavators working on soils of
different types, so that it will work for a general plan optimisation for the whole
economy by his method of resolving multipliers. It starts out from the data
provided in an i/o Table. In the table the techniques for for different production
techniques are shown in italics. In this context a technique means the expected
output per year of the technique. In the case of Kantorovich’s original algorithm

7

the techniques were represented as a matrix of outputs of different soils and ma-
chines. In an input output table a technique is conventionally represented by a
column (Leontief notation) or a row (Sraffa notation) of a matrix.

We can convert the Kantorovich table

105 107 64
56 66 38
56 83 53

Where each row corresponds to a soil type and each column to an excavator
into an extended Sraffa format as

105 0 0 −1 0 0
107 0 0 0 −1 0
64 0 0 0 0 −1
0 56 0 −1 0 0
0 66 0 0 −1 0
0 38 0 0 0 −1
0 0 56 −1 0 0
0 0 83 0 −1 0
0 0 53 0 0 −1

where the first 3 columns correspond to the outputs of different soils and the
next 3 to the outputs of excavators. The outputs of excavators are negative
since a given process uses up an excavator.

In practice we split this into two distinct tables one the dest table which lists
the outputs and the other the src table which lists the inputs. Thus:

dest
105 0 0 0 0 0
107 0 0 0 0 0
64 0 0 0 0 0
0 56 0 0 0 0
0 66 0 0 0 0
0 38 0 0 0 0
0 0 56 0 0 0
0 0 83 0 0 0
0 0 53 0 0 0

8

src
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

Why reorganise like this?

Because the general economic planning problem involves the production and
consumption of many of the same goods. Energy is both used and produced,
for example. It is thus convenient to show the inputs and outputs in two different
tables.

The pair composed of a destination row and the corresponding src row we term
a technique.

In principle we could have a problem with joint production, but for now we are
sticking to the simpler single product per technique problem. Thus each row of
the destination column contains only one non zero element.

The objective was given, by Kantorovich in a final column of his table, in our
format we would have row vector of resources available at the start of the period.

Kantorovich’s algorithm demanded equal quantities of all outputs which is not
the general case. We keep the Kantorovich approach within this library, which
means that the units of measurement of all inputs must be scaled in order to
result in an output that is the same, in these units of measurement, for all
products.

9

Thus if we wanted to produce 2 cubic meters of soil type 1 relative to every
cubic meter of soil type 2 and 3 we use 2 cubic meter as the standard unit for
1.

We handle this by dividing the appropriate column of the technology matrix
by 2 and similarly scaling any corresponding entries for the available resources.
More generally, given a targets vector we divide all other row vectors in the
problem by this.

20000 20000 20000 0 0 0

And an initial resource vector of

0 0 0 1 1 1

indicating we have 1 machine of each type.

My first step in developing the programme in this new format was to take the
programme that I had previously published in Intervention, and to reformulate
it in this more general form. The aim is to check that given the new data format
the algorithm still gives the same answers as Kantorovich. Following on from
that we can provide a more general version that will work on arbitrary sized
input output tables.

Following the columns of the techniques Kantorovich gives the optimal alloca-
tion of machine times to activities to minimise overall time taken to do the
digging. The program will reproduce this result by applying his method of re-
solving multipliers or objectively determined valuations. We first introduce our
domain of discourse resources, techniques and units of usage and output. We
simply number the resources 0 to 5 with resources in this case including soil and
machines.

interface
const

alpha =1;
epsilon =0.001;

first entry in US IO table is
agriculture agriculture =0;

10

dest =0;
src =1;
growthconst =0.1;
annealrate =0.99;

type
optimizer =(kantorovichs ,pauls);
flow = dest ..src ;
resource = integer ;
units =real ;
intensity = real ;

Kantorovich’s Objectively
Determined Valuations

ODV = real ;

technique = integer ;
last entry of US IO table is
amusements

resourcevec(amusements:resource) = array [agriculture ..amusements] of units ;

A technology is defined as a flow of src inputs to a flow of dest outputs, with
each flow being a vector.

technologytable(omega,amusements:integer) = array [alpha .. omega ,dest ..src ,agricul-
ture .. amusements] of units ;
ODVvec =resourcevec ;

intensityvec =vector ;
volume =real ;

var
Let growthfactor ∈ real;
Let optimiser ∈ optimizer;

procedure kantorovichMethod (var techniques :technologytable ; var target ,startingresource :resourcevec ; var L :ODVvec ; var X :intensityvec); (see Section 7)

The method must be supplied with a technology table and a vector of targets
and available resources. It outputs a vector of resolving multipliers L and an
vector of technique intensities X which specify how much each technique will be
used.

implementation

type
productionIndex (omega:integer)= array [alpha .. omega] of resource ;
pproductionIndex = ˆ productionIndex ;

procedure IndexedMethod (var produces :productionindex ;var techniques :technologytable ; var targets ,startingresource ,L :ODVvec ; var X :intensityvec); (see Section 6)

11

procedure kantorovichMethod (var techniques :technologytable ; var target ,startingresource ,L :ODVvec ; var X :intensityvec); (see Section 7)

unit initialisation begin
growthfactor← growthconst;
optimiser← kantorovichs;

unit kantor end .

6 IndexedMethod
procedure IndexedMethod (var produces :productionindex ;var techniques :technologytable ;
var targets ,startingresource ,L :ODVvec ; var X :intensityvec);

The indexed method is a nested procedure which will work using an index of
what each technique produces. Many techniques may produce same output.

The algorithm manipulates a vector x which will encode the time for which
each technique is operated, this corresponds in Kantorovich’s case to the time a
given type of machine spends on a given soil. Later it may have a more general
impliation. Next L, a vector of objectively determined valuations of resources1.

The standardised output of each technique is obtained by applying resolving
multipliers to the outputs types it produces.

type
outputmatrix(omega,amusements:integer) = array [alpha .. omega ,agriculture .. amuse-
ments] of units ;

var
Let targetintensity ∈ real;
Let achievableintensities ∈ ˆresourcevec;
Let dx ∈ intensity;
Let standardisedoutput ∈ ˆ outputmatrix;
Let available ∈ r̂esourcevec;
Let outputs ∈ ı̂ntensityvec;
Let totals ∈ ôdvvec;
Let ok ∈ boolean;
Let greatestProducedOutput, leastProducedOutput, deltam ∈ real;

1Presumably Kantorovich labels his multipliers L because of their similarity to Lagrangian
multipliers

12

Let best ∈ real;
e , e2 ,Scoop ,

first input resource Let A ∈ resource;
Let r, s, j ∈ resource;

Output weighted by L Let weightedTotalOutput ∈ real;
Let λ, f, t ∈ real;
Let least, m, jt, st ∈ technique;
Let count, k ∈ integer;
Let equated ∈ ôdvvec;

function findfirstinput :resource ; (see Section 8)

procedure claimHeapSpace ; (see Section 9)
procedure freeheapspace ; (see Section 10)

function marginalgain (s :technique ; d :resource):volume ; (see Section 11)

function mpp (s :technique ; d :resource):volume ; (see Section 12)

function mostProductiveTechniqueFor (e :resource):technique ; (see Section 13)

procedure ComputeTotalsEtc ; (see Section 14)

function somePositiveTargetsStillZero :boolean ; (see Section 15)
function numpostargets :integer ; (see Section 16)
procedure renormaliseMultipliers ; (see Section 17)
procedure LowerNonEquatedMultipliers ; (see Section 18)
procedure LowerNonEquatedIntensities ; (see Section 19)
procedure getavailability ; (see Section 20)
procedure RedistributeResources ; (see Section 21)
procedure rescaleall ; (see Section 22)

procedure PaulsOptimiser ; (see Section 23)

procedure KantorovichsOptimiser ; (see Section 24)
var

Let av ∈ real;
Kantorovich algorithm begin

claimHeapSpace;

initialise multipliers L← 1;
ok← false;
count← 0;
f← 0.3;

Iterate the following steps until we have a satisfactory answer.

while not ok do
begin

13

available↑← startingresource;
default assumption x← 0;

redistributeResources;
totals↑← 0;

Compute the total output of each product in value terms

for k← α to techniques.ω do
totals↑[producesk]← totals↑[producesk] + (techniquesk,dest,producesk

) × xk × Lproducesk
;

greatestProducedOutput← \max totals↑ ;
leastProducedOutput← \min totals↑ ;
if somePositivetargetsStillZero then
begin

check if any resource has a zero output and raise its value if it has

for s← agriculture to techniques.amusements do
s iterates over outputs if targetss > 0 then

if totals↑[s] ≤ 0 then L [s]:=L [s]*(1.0+growthfactor *(random and 7)/8 +
growthfactor);

renormaliseMultipliers;

end
else ok← true;
count← count + 1;
{writeln(X,L/L[0],count);}
growthfactor← growthfactor × annealrate;
if count > techniques.omega × 10000 then
begin

writeln(‘after ’ , count, ‘ trys could not find initial resolving multipliers’);
halt (999);

end ;
end ;
{writeln(’initial multipliers found after ’,count,’ trys’);

writeln(L);}
count← 0;

At this point our estimate of the resolving multipliers is accurate enough to en-
sure that some of each output is now being produced, but we have not yet met
the requirement that the targer amount of each output must be produced. We
now try to get a more precise estimate of the resolving multipliers and in the pro-
cess we adjust the amounts of each output being made. It is important to note
at this point that any further adjustments must come by de-specialising some of
the inputs so that they are used more than one output type. The resolving mul-
tipliers have until now been used to weight the outputs of different types in order
to assign each input to the output it is best suited to. If an input is no longer
specialised, that is if it produces more than one routput, then the weights must
be such that it is no longer best at one particular output type. The multipliers

14

must be set so that the marginal weighted output of the resource on any of the
outputs on which it is employed are the same. Thus if a machine k is employed
on two resources i, j then standardisedoutput[k,j]=standarisedoutput[k,i].

In turn this implies that for any machine that is employed to make two resources
the ratio of the resolving multipliers must be the inverse of the ratio of the
techniques.

The algorithm will work output a time bringing ever more outputs into equality
with their targets. We define the set of resources whose outputs has been
brought into equality with target as the equated set.

For those outputs in the equated set, the resolving multipliers of the outputs
will have been corrected so that for any machine moving more than one resource
they stand in inverse ratio to that machine’s productivity.

growthfactor← growthconst;
computeTotalsEtc;
repeat

case optimiser of
kantorovichs : KantorovichsOptimiser ;
pauls : PaulsOptimiser ;

end ;
computeTotalsEtc;
count← count + 1;

until ((
∑

equated↑) = numpostargets) ∨ (count > (500)) ∨ (growthfactor < ε);
{ writeln(’second pass terminated after ’, count);}
rescaleall ;
freeHeapSpace;

Indexed method end ;

7 kantorovichMethod
procedure kantorovichMethod (var techniques :technologytable ; var target ,startingresource
,L :ODVvec ; var X :intensityvec);
var

15

Let index ∈ ˆproductionindex;
Let t ∈ technique;
Let r ∈ resource;
Let targets ∈ ˆodvvec;

Kantorovich method begin
new (index , techniques . omega);

growthfactor← growthconst;
new (targets ,techniques .amusements);

targets ↑ ←
{

0.0 if target = 0.0
target/target0 otherwise

;

for t← α to techniques.ω do
for r← agriculture to techniques.amusements do

if techniquest,dest,r > 0 then index↑[t]← r ;

prescale by targets

techniques←
{

techniques/targets ↑ if target 6= 0
techniques otherwise

;

startingresource←
{

startingresource/targets ↑ if target 6= 0
startingresource otherwise

;

indexedMethod (index↑, techniques, targets↑, startingresource, L, X);

return scale of the input data to its original value

techniques←
{

techniques× targets ↑ if target 6= 0
techniques otherwise

;

startingresource←
{

startingresource× targets ↑ if target 6= 0
startingresource otherwise

;

dispose (index);
dispose (targets);

Kantorovich method end ;

8 findfirstinput

function findfirstinput :resource ;
var

Let t ∈ technique;
Let r, f ∈ resource;

begin
f← techniques.amusements;
for t← α to techniques.ω do

for r← f downto 0 do
if techniquest,src,r > 0 then f← r ;

findfirstinput← f

16

Find first input end ;

9 claimHeapSpace

procedure claimHeapSpace ;
var

Let maxtechnique, maxresource ∈ integer;
claimHeapSpace; begin

maxtechnique← techniques.ω;
maxresource← techniques.amusements;
new (achievableintensities ,maxresource);
new (standardisedoutput ,maxtechnique ,maxresource);
new (available ,startingresource .amusements);
new (outputs ,maxtechnique);
new (totals ,maxresource);
new (equated ,maxresource);
A← findfirstinput;

claimHeapSpace end ;

10 freeheapspace

procedure freeheapspace ;
begin

dispose (achievableintensities);
dispose (standardisedoutput);
dispose (available);
dispose (outputs);
dispose (totals);
dispose (equated);

end ;

11 marginalgain

function marginalgain (s :technique ; d :resource):volume ;

This computes the marginal gain, of a small shift of the resource d time to the
specified technique type s. We compute the effect of multiplying all current time
allocations to 1− ε whilst increasing the allocation of time to resource s by ε.

var
Let currentoutput, currentuse, shift, marginalIncreaseinS ∈ real;
Let valueofincrease, valueofloss ∈ real;
Let t ∈ technique;

17

marginal gain begin

check if technique s uses resource d

if techniquess,src,d = 0 then

begin
marginalgain← - maxint ;

end
else
begin

get total current use of resource d

current use is negative ! currentuse←
∑

x × techniques
ι0,src,d ;

shift will be negative too shift← ε × currentuse;
marginal increase will be
+ve, since we divide by a
negative

marginalIncreaseInS← shift×techniquess,dest,producess

techniquess,src,d

;

valueofincrease← marginalIncreaseInS × Lproducess
;

we next have to work out the total value of output currently produced in all
sectors by d

valueofloss← 0;
for t← α to techniques.ω do

if it uses d if techniquest,src,d 6= 0 then
valueofloss← valueofloss + techniquest,dest,producest

× xt × ε × Lproducest
;

marginalgain← valueofincrease - valueofloss

end
marginalgain end ;

12 mpp

function mpp (s :technique ; d :resource):volume ;

This computes the marginal physical product or the output of s with respect to
input d

mpp begin

18

check if technique s uses resource d

if techniquess,src,d = 0 then

begin
mpp← - maxint ;

end
else
begin

mpp← techniquess,dest,producess

techniquess,src,d

;

end
mpp end ;

13 mostProductiveTechniqueFor

function mostProductiveTechniqueFor (e :resource):technique ;

This determines within which technique resource e produces the most of. under
current valuations.

var
Let v ∈ volume;
Let j, s ∈ technique;

begin
v← 0.0;
s← α;

for j← α to techniques.ω do
it uses this input if techniquesj,src,e < 0 then

begin

if v <
Lproducesj

×techniquesj,dest,producesj
×xj

−techniquesj,src,e

then

begin

v←
Lproducesj

×techniquesj,dest,producesj
×xj

−techniquesj,src,e

;

s← j ;
end ;

end ;

mostProductiveTechniqueFor← s;
mostProductiveTechniqueFor end ;

14 ComputeTotalsEtc

procedure ComputeTotalsEtc ;

19

Work out how much is being produced, which resource is being produced least
and which resources outputs are equals to this,

var
Let i, j ∈ integer;
Let least ∈ real;

begin
totals↑← 0;
for i← α to techniques.ω do
begin

totals↑[producesi]← totals↑[producesi] + (techniquesi,dest,producesi
) × xi;

end ;

totals now has a vector of how much of each resource is produced at the end
relative to the target

weightedTotalOutput← L.totals↑;
leastProducedOutput← \min (totals↑) ;

Find the resource that is least produced or most in shortage

for s← agriculture to techniques.amusements do
if (totals↑[s]) = leastProducedOutput then least← s;

Find the ones on the plan ray

equated↑← 0;
least← maxint;
for i← agriculture to techniques.amusements do

if targetsi > 0 then
if totals↑[i] < least then least← totals↑[i];

for i← agriculture to techniques.amusements do
if targets1 > 0 then

if (totals↑[i] - least) < ε then equated↑[i]← 1;

equated↑← ord(((totals↑ - least) < ε) ∧ ((totals↑ - least) > - ε));
{writeln(’t’,totals)̂;
writeln(’e’,equated)̂;writeln(’x’,x);

writeln(’least’,least);

{write(’press return’);readln;{}

end ;

20

15 somePositiveTargetsStillZero

function somePositiveTargetsStillZero :boolean ;

returns true if some products which should have positive output are still zero

begin
somePositiveTargetsStillZero← \ or ((totals↑ ≤ 0) ∧ (targets > 0)) ;

end ;

16 numpostargets

function numpostargets :integer ;
begin
end ;

17 renormaliseMultipliers

procedure renormaliseMultipliers ;

In order to prevent uncontrolled growth or shrinkage in multipliers, express
them with respect to their own average.

var
Let av ∈ real;

begin

find the average av←
∑ L

1+techniques.amusements ;

renormalise L L← L
av ;

end ;

18 LowerNonEquatedMultipliers

procedure LowerNonEquatedMultipliers ;
begin

those in the equated set are
unchanged by this others are
reduced

L← L × (equated↑ × growthfactor + 1 - growthfactor);

renormaliseMultipliers;
end ;

21

19 LowerNonEquatedIntensities

procedure LowerNonEquatedIntensities ;
begin

X← X × (equated↑[produces] × growthfactor + 1 - growthfactor);
end ;

20 getavailability

procedure getavailability ;
var

Let i ∈ integer;
begin

available↑← startingresource;
for i← α to techniques.omega do

available↑← available↑ + techniquesi,src × X i ;

end ;

21 RedistributeResources

procedure RedistributeResources ;

move the free resources to the place where they are most valuable

begin

Use the L to get a standardised performance for each process.

standardisedoutput↑← (techniques
ι0,dest × L);

getavailability ;

For each input find the technique for which it has the best performance

for e← agriculture to techniques.amusements do
test it is an input if available↑[e] > 0 then

begin

find the best performance of the input on any technique

22

outputs↑← 0;
try every technique for s← α to techniques. ω do
which uses resource e if techniquess,src,e < 0 then

begin
t← 0;
for r← agriculture to techniques.amusements do

t← t + standardisedoutput↑[s, r];
outputs↑[s]← t;

end ;
best← \max outputs↑ ;

allocate each resource to the technique it is best at

for s← α to techniques. ω do
if outputs↑[s] = best then
begin

set this technique to have an intensity sufficient to use 50 percent of the resource
e that is available subject to the availability of the other resources technique s
needs. The achievable intensities specifies how much more output this technique
could produce subject to the constraint of each type of resource’s availability.
Thus it is indexed by the available resource types.

achievableintensities ˆ :=if techniques [s ,src]=0.0 then maxreal
else - available↑ / (techniquess,src) ;

targetintensity← 0.5 × \min achievableintensities↑ ;

We find the lowest of the intensities that can be achieved with remaining re-
sources.

add it into x xs← xs + targetintensity ;

update the available resources , we add the source weighted by intensity, note
that these numbers will be negative and will reduce availability

available↑← available↑ + (targetintensity × techniquess,src) ;

end ;

end ;

end ;

23

22 rescaleall

procedure rescaleall ;
(* this, having found the best ratio of intensities, scales them all to the

limit of the available resources by finding which is the rate limiting resource *)

var
Let usage ∈ ˆresourcevec;
Let lowestsurplus ∈ real;

begin
getavailability ;
new (usage ,techniques .amusements);
usage↑← startingresource - available↑;
lowestsurplus← \min (startingresource

usage ↑) ;

X← X × lowestsurplus;
dispose (usage);

end ;

23 PaulsOptimiser

procedure PaulsOptimiser ;
(* ! this is an alternative algorithmic step for finding the optimal resolving

multipliers

once an initial set has been found.

Its basic steps are:

\begin{enumerate}
\item Lower the resolving multipliers of the non equated outputs relative to the

equated ones.
\item Lower the intensities (X) of all processes producing non equated outputs.

\item Redistribute the free resources to the processes whose outputs are in the

equated set.
\end{enumerate}
*)

begin

LowerNonEquatedMultipliers;
LowerNonEquatedIntensities;
RedistributeResources;
rescaleall ;
growthfactor← growthfactor × annealrate;

end ;

24 KantorovichsOptimiser

procedure KantorovichsOptimiser ;

24

This optimising step is called repeatedly once an initial set of resolving multi-
pliers has been found. It is the one originally proposed by Kantorovich himself.

function findScoop (var s :technique):resource ; (see Section 25)
begin

Find which input is 2nd best at producing output least in the non equated set
under current resolving multipliers. Call this input Scoop. The parameter least
is an output of the function call.

Scoop← findScoop (least);
m← mostProductiveTechniqueFor (Scoop);

Adjust the resolving multiplier ratio between Scoops resource and the least
produced resource to ratio of Scoops techniques.

Lproducesm
← Lproducesleast

×mpp(least,scoop)

mpp(m,scoop) ;

It is now necessary to reduce the ouput of scoop on scoops output and increase
it on the least produced output. It is necessary to compute how much to reduce
scoops resource by. The resolving multipliers give us substitution ratios between
different resource outputs. Suppose that we want to reduce output of resource
m by one unit and increase the output of resource j, the increase in j we get is

∆j =
Lm
Lj

. If we want to reduce the output of i and we have two other resources j, k
which we want to increase equally then we have

∆k = ∆j

where ∆x means change in x and

−∆mLm = ∆kLk + ∆jLj = ∆k(Lj + Lk)

. Thus

∆m = −∆k
Lj + Lk
Lm

Let Cm, Cj , Ck be the current outputs of each resource; given that Cj = Ck we
have to chose the ∆s so that

Cm + ∆m = Cj + ∆j = Ck + ∆k

It follows that

Cm −∆k
Lj + Lk
Lm

= Ck + ∆k

25

and

Cm − Ck = ∆k
Lj + Lk
Lm

+ ∆k = ∆k(1 +
Lj + Lk
Lm

)

so

∆j =
Cm − Cj

1 +
Lj+Lk

Lm

We next compute the reduction to be made in resource m from the formula

∆m = −∆k
Lj + Lk
Lm

substitiuting we get

∆m = − Cm − Cj
1 +

Lj+Lk

Lm

(
Lj + Lk
Lm

)

Translating this to the variables used in the program we have:

j← producesleast;

λ← L.(equated↑)
Lproducesm

;

we have used the cross product with the equated set, represented as a vector of
0 or 1 to sum over the equated set.

deltam← (−1)×λ×(totals↑[producesm]−totals↑[j])
1+λ

;

Note that in the line above we are generalising the term Lj +Lk to an aribtrary
number of multipliers (1 or 2 in this program) by computing the inner product
between the equated vector and the multipliers. This works because the equated
vector has a 1 for all resources in the equated set. We now compute the change
in intensity that Scoop spends on its best resource (dx) by scaling deltam by
Scoops technique output for resource m.

dx← deltam
−mpp(m,scoop) ;

reallocate this time to Scoops best resource in the equated set which we will
now call j

best← - maxint ;
jt← α;

for st← α to techniques.ω do

26

if mpp (st, scoop) × equated↑[producesst] > best then
begin

best← mpp (st, scoop);
jt← st;

end ;

xm← xm + dx ;
xjt← xjt - dx ;

end ;

25 findScoop

function findScoop (var s :technique):resource ;

search all outputs which are not yet reaching target to find a pair of input
and output = produces[s] where shifting input time to producing that output
would produce the best result. Return the input as the function result and the
technique to use in the parameter s

var
Let gain ∈ volume;
Let m ∈ resource;
Let j, t ∈ technique;
Let d, Scoop ∈ resource;

find Scoop begin
Scoop← A;
m← 0;
gain← - maxint ;
s← α;

for d← agriculture to techniques.amusements do
begin

if startingresourced > 0 then
begin

that is to say we iterate over all goods used as inputs

m stands for Main output of
d

m← producesmostProductiveTechniqueFor(d)
;

for j← α to techniques.ω do
if equated↑[producesj] > 0 then

find a technique j, whose output is doing ok that potentially could have resource
reallocated to make d

27

begin
if marginalgain (j, d) > gain then
begin

if this is the best marginal gain so far, record the technique j and the input d

if equated↑[m] < 1 then
begin

gain← marginalgain (j, d);
{ writeln(’gain’,gain,’,j’,j,’,d’,d,’,m’,m);}
Scoop← d ;
s← j ;

end ;
end ;

end ;
end ;

end ;
{writeln(’best gain’,gain,’,s=’,s,’,scoop=’,scoop,’,best output from scoop’,m);}
findScoop← Scoop;

end ;

26 csvfilereader

unit csvfilereader ;

This parses csv files meeting the official UK standard for such files The following
text is imported from that definition at https://www.ofgem.gov.uk/sites/default/files/docs/2013/01/csvfileformatspecification.pdf

27 Introduction

27.1 Background

The comma separated values (CSV) format is a widely used text file format
often used to exchange data between applications. It contains multiple records
(one per line), and each field is delimited by a comma.

28

27.2 CSV File Format

The primary function of CSV file is to separate each field values by comma
separated and transport text - based data to one or more target application. A
source application is one which creates or appends to a CSV file and a target
application is one which reads a CSV file

27.2.1 CSV File Structure

The CSV file structure use following two notations

FS (Field Separator) i.e. comma separated

FD (Field Delimiter) i.e. Always use a double - quote.

Each line feed in CSV file represents one record and each line is terminated
by any valid NL (New line i.e. Carriage Return (CR) ASCII (13) and Line
Feed (LF) ASCII (10)) feed. Each record contains one or more fields and the
fields are separated by the FS character (i.e. Comma) A field is a string of text
characters which will be delimited by the FD character (i.e. double - quote (”))
Any field may be quoted (with double quotes).

Fields containing a line - break, double - quote, and/or commas should be
quoted. (If they are not, the file will likely be impossible to process correctly).

The FS ch aracter (i.e. comma) may appear in a FD delimited field and in this
case it is not treated as the field separator. If a field’s value contains one or more
commas, double - quotes, CR or LF characters, then it MUST be delimited by
a pair of double - quotes (AS CII 0x22).

29

DO NOT apply double - quote protection where it is not required as applying
double quotes on every field or on empty field would takes more file space If a
field requires Excel protection, its value MUST be prefixed with a single tilde
character .

See example below:

FS =,

FD =”

Data Record:

Test1,Test2,,"Test3,Test4","Test5 ""Test6"" Test7","Test8,""",",Test9"

Indicat es the following four fields

Test1 5 characters
Test2 5 characters

0 characters
Test3,Test4 11 characters
Test5 "Test6" Test7 20 characters
Test8," 8 characters
,Test9 6 characters

30

28 CSV File Rules

• The file type extension MUST be set to .CSV

• The character set used by data contained in the file MUST be an 8 - bit
(UTF - 8).

• No binary data should be transported in CSV file.

• A CSV file MUST contain at least one record.

• No limit to the number of data records

• The End of Record m ust be set to CR +LF (i.e. Carriage Return and
Line Feed)

• Do not use whitespaces in the file name

• The EOR marker MUST NOT be taken as being part of the CSV record

• EOF (End of File) character indicates a logical EOF (SUB - ASCII 0x1A)
and not the physical en d .

• A logical EOF marker cannot be double - quote protected.

• Any record appears after the EOF will be ignored

28.1 File Size

Maximum csv file size should be 30 MB.

28.2 CSV Records

A CSV record consists of two elements, a data record followed by an end - of -
record marker (EOR). The EOR is a data record delivery marker and does not
form part of the data delivered by the record

29 CSV Record Rules

Pls. note this rule applies to every CSV record including the last record in the
file.

29.1 CSV Field Column Rules

• Each recor d within the same CSV file MUST contain the same num-
ber of field columns . The header record describes how many fields the
application should expect to process.

• Field columns MUST be separated from each other by a single separation
character

• A field column MUST NOT have leading or trailing whitespace

31

29.2 Header Record Rules

A header record allows the Ofgem IT systems to guard against the potential
issues such as missing column or additional column that are not in scope

• The header record MUST be the first recor d in the file.

• A CSV file MUST contain one header record only .

• Header labels MUST NOT be blank.

• Use single word only

• Do not use spaces (Use if words needs to be separated)

interface
const

textlen =80;
type

pcsv =ˆ csvcell ;
celltype =(linestart ,numeric ,alpha);
textfield =textline ;

csvcell = record
right : pcsv ;
case tag : celltype of

linestart : (down : pcsv);
numeric : (number : real);
α : (textual : pstring);

end ;

headervec (max :integer) =array [1..max]of pcsv ;
pheadervec = ↑ headervec ;

procedure printcsv (var f :text ;p :pcsv); (see Section ??)
function parsecsvfile (name :textline):pcsv ; (see Section ??)
function rowcount (p :pcsv):integer ; (see Section ??)
function getdatamatrix (p :pcsv):ˆ matrix ; (see Section 30)
function getcell (p :pcsv ;row ,col :integer):pcsv ; (see Section ??)
function getrowheaders (p :pcsv):ˆ headervec ; (see Section ??)
function getcolheaders (p :pcsv):ˆ headervec ; (see Section ??)
function colcount (p :pcsv):integer ; (see Section ??)

returns nil for file that can not be opened, otherwise returns pointer to tree of
csvcells.

implementation

field delimitor const
FD = 34;

field separator FS = 44;
record separator RS = 10;

32

EOI = $1a;
CR = 13;

type
token = (FDsym);
tokenset = set of token ;

var
categorisor: array [byte] of token;

function getdatamatrix (p :pcsv):ˆ matrix ; (see Section 30)

30 getdatamatrix

function getdatamatrix (p :pcsv):ˆ matrix ;

extract the column headers as a vector of strings

var
m : ↑ matrix ;

procedure recursedown (j :integer ;q :pcsv); (see Section 31)

31 recursedown

procedure recursedown (j :integer ;q :pcsv);
procedure recurse (i :integer ;q :pcsv); (see Section 32)

32 recurse

procedure recurse (i :integer ;q :pcsv);
begin

if q 6= nil then
begin

if i ≥ 1 then
begin

if q↑.tag = numeric then
m↑[j, i]← q↑.number

else m↑[j, i]← 0.0
end ;
recurse (i + 1, q↑.right);

end
;

end ;

begin

33

if q 6= nil then
begin

recurse (0, q↑.right);
recursedown (j + 1, q↑.down);

end
end ;
begin

if p = nil then getdatamatrix← nil

else
begin

new (m ,rowcount (p)-1,colcount (p)-1);
recursedown (1, p↑.down);
getdatamatrix← m;

end ;
end ;
function getcolheaders (p :pcsv):ˆ headervec ; (see Section 33)

33 getcolheaders

function getcolheaders (p :pcsv):ˆ headervec ;

extract the column headers

var
M;
h : ↑ headervec ;

procedure recurse (i :integer ;q :pcsv); (see Section 34)

34 recurse

procedure recurse (i :integer ;q :pcsv);
begin

if q 6= nil then
begin

if i ≥ 1 then h↑[i]← q;
recurse (i + 1, q↑.right);

end
end ;
begin

if p = nil then getcolheaders← nil

else
begin

34

new (h ,colcount (p)-1);
recurse (0, p↑.right);
getcolheaders← h;

end ;
end ;
function getrowheaders (p :pcsv):ˆ headervec ; (see Section 35)

35 getrowheaders

function getrowheaders (p :pcsv):ˆ headervec ;

extract the rows headers

var
M;
h : ↑ headervec ;

procedure recurse (i :integer ;q :pcsv); (see Section 36)

36 recurse

procedure recurse (i :integer ;q :pcsv);
begin

if q 6= nil then
begin

h↑[i]← q↑.right;
recurse (i + 1, q↑.down);

end
end ;
begin

if p = nil then getrowheaders← nil

else
begin

new (h ,rowcount (p)-1);
recurse (1, p↑.down);
getrowheaders← h;

end ;
end ;
function colcount (p :pcsv):integer ; (see Section 37)

37 colcount

function colcount (p :pcsv):integer ;

35

return the number of columns in the spreadsheet

begin
if p = nil then colcount← 0

else
case p↑.tag of

linestart : colcount← colcount (p↑.right);

end
end ;
function getcell (p :pcsv ;row ,col :integer):pcsv ; (see Section 38)

38 getcell

function getcell (p :pcsv ;row ,col :integer):pcsv ;

return the cell at position row,col in the spredsheet

begin
if p = nil then getcell← nil

else if row = 1 then
begin

else if col = 1 then getcell← p

end
end ;

procedure removetrailingnull (var p :pcsv); (see Section 39)

39 removetrailingnull

procedure removetrailingnull (var p :pcsv);
function onlynulls (q :pcsv):boolean ; (see Section 40)

40 onlynulls

function onlynulls (q :pcsv):boolean ;
begin

if q = nil then onlynulls← false false

else
if q↑.tag = α then
begin

end
else onlynulls← false false

end ;

36

begin
if p 6= nil then

case p↑.tag of

linestart :
or ((p ˆ .down =nil)and onlynulls (p ˆ .right)) then p :=nil
else removetrailingnull (p↑.down);

end
end ;
function rowcount (p :pcsv):integer ; (see Section 41)

41 rowcount

function rowcount (p :pcsv):integer ;
begin

if p = nil then rowcount← 0

else
case p↑.tag of

linestart : rowcount← 1 + rowcount (p↑.down);

numeric← 1
end

end ;
function isint (r :real):boolean ; (see Section 42)

42 isint

function isint (r :real):boolean ;
var

i : integer ;
begin

i← round(r);
isint← (i × 1.0) = r

end ;
procedure printcsv (var f :text ;p :pcsv); (see Section 43)

43 printcsv

procedure printcsv (var f :text ;p :pcsv);
begin

if p 6= nil then
with p↑ do
begin

if tag = linestart then
begin

printcsv (f, right);
if down 6= nil then

37

begin
writeln(f);
printcsv (f, down);

end ;

end
else

if tag = numeric then
begin

else write(f, number : 1 : 6);
if right 6= nil then
begin

write (f , ‘,’);

end

end
else

if tag = α then
begin

if textual 6= nil then write(f, ‘”’ , textual↑, ‘”’) else write(f, ‘nil’);
if right 6= nil then
begin

write (f , ‘,’);

end

end
end

end ;
function parsecsvfile (name :textfield):pcsv ; (see Section 44)

44 parsecsvfile

function parsecsvfile (name :textfield):pcsv ;
const

megabyte = 1024 × 1024;
maxbuf = 30 × megabyte;

type
bytebuf = array [1..maxbuf] of byte ;

var
f : fileptr ;
bp : ↑ bytebuf ;
fs;
tokstart;
firstfield ;

function thetoken :token ; (see Section 45)

38

45 thetoken

function thetoken :token ;
begin

if currentchar ≤ fs then
thetoken← categorisorbp↑[currentchar]

else thetoken← EOFsym
end ;
function peek (c :token):boolean ; (see Section 46)

46 peek

function peek (c :token):boolean ;

matches current char against the token c returns true if it matches.

begin
peek← c = thetoken

end ;
function isoneof (s :tokenset):boolean ; (see Section 47)

47 isoneof

function isoneof (s :tokenset):boolean ;
begin

isoneof← thetoken ∈ s
end ;
procedure nextsymbol ; (see Section 48)

48 nextsymbol

procedure nextsymbol ;
begin

if currentchar ≤ fs then currentchar← currentchar + 1
end ;
function have (c :token):boolean ; (see Section 49)

49 have

function have (c :token):boolean ;
begin

if peek (c) then

39

begin
nextsymbol ;
have← true;

end
else

have← false;
end ;
function haveoneof (c :tokenset):boolean ; (see Section 50)

50 haveoneof

function haveoneof (c :tokenset):boolean ;
begin

if isoneof (c) then
begin

nextsymbol ;
haveoneof← true;

end
else

haveoneof← false;
end ;

procedure initialise ; (see Section 51)

51 initialise

procedure initialise ;
begin

firstfield← nil ;
lastfield← nil ;
firstrecord← nil ;

end ;
procedure resolvealpha ; (see Section 52)

52 resolvealpha

procedure resolvealpha ;
var

i ;
begin

with lastfield↑ do
begin

tag← α;

40

new (textual);
textual↑← ‘’ ;
l← tokend min(tokstart + textlen - 1) ;
{ copy field to string}
for i← tokstart to l - 1 do
begin

textual↑← textual↑ + chr(bp↑[i]) ;
end ;

end ;
end ;

procedure resolvedigits ; (see Section 53)

53 resolvedigits

procedure resolvedigits ;
var

i ;
s : string ;

begin
with lastfield↑ do
begin

tag← numeric ;
new (textual);
s← ‘’ ;
l← tokend min(tokstart + textlen - 1) ;
{ copy field to a string }
for i← tokstart to l do
begin

s← s + chr(bp↑[i]);
end ;

convert to binary val (s, number, l);
end ;

end ;
procedure resolvetoken ; (see Section 54)

54 resolvetoken

procedure resolvetoken ;
begin

if chr(bp↑[tokstart]) in [‘0’ .. ‘9’] then resolvedigits
else resolvealpha

end ;

procedure markbegin ; (see Section 55)

41

55 markbegin

mark start of a field procedure markbegin ;
begin

tokstart← currentchar ;
new (lastfield ˆ .right);
lastfield← lastfield↑.right;
lastfield↑.right← nil ;

end ;
procedure markend ; (see Section 56)

56 markend

marks the end of a field procedure markend ;
begin

tokend← currentchar ;
resolvetoken;

end ;
procedure setalpha (s :textfield); (see Section 57)

57 setalpha

procedure setalpha (s :textfield);
begin

lastfield↑.tag← α;
new (lastfield ˆ .textual);
lastfield↑.textual↑← s;

end ;
procedure emptyfield ; (see Section 58)

58 emptyfield

procedure emptyfield ;
begin

markbegin;
setalpha (‘’);

end ;

procedure parsebarefield ; (see Section 59)

42

59 parsebarefield

procedure parsebarefield ;
begin

if isoneof ([RSsym, EOFsym, FSsym]) then emptyfield
else begin begin

markbegin;
skip over the field while haveoneof ([any, space]) do ;

markend ;
end ;

end ;
procedure parsedelimitedfield ; (see Section 60)

60 parsedelimitedfield

procedure parsedelimitedfield ;

parses a field nested between ” chars converting escape chars as it goes

var
s : textfield ;
i : integer ;
continue : boolean;

procedure appendcurrentchar ; (see Section 61)

61 appendcurrentchar

procedure appendcurrentchar ;
begin

s← s + chr(bp↑[currentchar]);
nextsymbol ;

end ;
begin

markbegin;
s← ‘’ ;
continue← true;
repeat

while isoneof ([FSsym..any]) do
begin

appendcurrentchar ;
end ;

eat what may be closing
quotes have (FDsym);

continue← peek (FDsym) ∧ (length (s) < textlen);
if continue then appendcurrentchar ;

until (not continue);

43

setalpha (s);
end ;
procedure parsefield ; (see Section 62)

62 parsefield

procedure parsefield ;
begin

if have (FDsym) then parsedelimitedfield
else parsebarefield

end ;
procedure parserecord ; (see Section 63)

63 parserecord

procedure parserecord ;
begin

parsefield ;
while have (FSsym) do parsefield ;

end ;
procedure parseheader ; (see Section 64)

64 parseheader

procedure parseheader ;
begin

{ claim heap space for start of first line }
new (firstrecord);
lastfield← firstrecord ;
firstfield← firstrecord ;
with firstrecord↑ do
begin

tag← linestart;
down← nil ;
right← nil ;

end ;
parserecord ;

end ;
procedure parsewholefile ; (see Section 65)

65 parsewholefile

procedure parsewholefile ;

44

begin
parseheader ;

while have (RSsym) do
begin

{ claim heap space for the start of the new line }
new (firstfield ˆ .down);
firstfield← firstfield↑.down;
lastfield← firstfield ;
with firstfield↑ do
begin

tag← linestart;
down← nil ;
right← nil ;

end ;
parserecord ;

end ;
end ;
begin

initialise;
the default case of failure parsecsvfile← nil ;

assign (f, name);
open file for reading reset (f);
ioresult =0 if opened ok if ioresult = 0 then

begin
fs← filesize (f);

if fs < maxbuf then
begin

new (bp);
blockread (f, bp↑[1], fs, rc);

if rc = fs then
begin

currentchar← 1;

We now have the csv file in memory - parse it

parsewholefile;
removetrailingnull (firstrecord);
parsecsvfile← firstrecord ;

end ;
dispose (bp);
close (f);

end ;
end ;

end ;
begin

categorisor← any ;

45

categorisorFD← FDsym;
categorisorFS← FSsym;
categorisorRS← RSsym;
categorisorEOI← EOFsym;
categorisorord(‘ ’)

← space;

categorisorCR← space;

{writeln(’fs=’,fs,’fd=’,fd,’rs=’,rs);
writeln(categorisor);}

end .

46

