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Preface

There has been very impressive progress in elementary particle physics
during the last half a century. Literally thousands of particles have been
discovered. Their physical properties have been measured by ingenious
experiments, the inter-relationships between the different particles have
been systematized in terms of fundamental interactions, and efforts have
been made to understand them in terms of cleverly constructed theories.
This field has attracted some of the most able scientists and their cre-
ativity has been recognized by the award of many Nobel Prizes for the
discoveries in this field. Many good books have been written in the field,
some of which serve as text books. However, there is no readily available
handbook for the physicists (working in other areas of physics, and who
are nonexperts in this field), from which they may obtain quickly the
gist of some idea or jargon, explained in more than lay terms. It is with
the intention of providing this service that this handbook has been writ-
ten. It contains explanations in sufficient detail, including theoretical
formulations, which will provide understanding and significance of the
concepts in this field.

The field of particle physics is a vast one, and to do proper justice to
this field, many volumes will have to be written. That would be a very
ambitious project. Our aim is a modest one. This is not a book from
which one can learn particle physics and certainly not one for experts in
the field. Its targets are the nonspecialists. What we have attempted,
is to provide the essential information in a handbook of limited size,
restricted to fewer than five hundred pages. The three chapters of the
book are devoted to brief descriptions of (1) a historical overview of de-
velopments in particle physics as a whole, (2) the historical development
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of accelerators to reach high energies, and (3) the historical develop-
ment of multi-purpose detectors for making experimental observations
in particle physics. These are followed by a Glossary, explaining items
of interest in particle physics (including its peculiar jargons), arranged
in alphabetical order for ease of retrieval, and addressed to the general
body of scientists with relevant mathematical and technical training. It
is hoped that it can serve as a source of information on particle physics,
not only to the general body of physicists, but also to graduate students
in particle physics, who want to get to the heart of the matter quickly,
without wading through large amounts of material in text books on the
subject. It is hoped that it will also serve as a handy reference for oth-
ers. The level of presentation is at an advanced stage, assuming basic
knowledge of quantum mechanics and relativity, as is available in most
graduate curricula. The items in the Glossary are fairly self-contained
with cross references to other material of a similar nature in other parts
of the Glossary. Some items are repeated under different headings, in-
tending to bring out different perspectives in the topics. For those in-
terested in more details than are provided in this handbook, references
to other sources are provided liberally, throughout the Glossary. An
effort has been made to include as many of the significant key words
and jargon as possible, which are currently in use in particle physics. It
is hoped that there are no glaring omissions. With the realization that
developments in astrophysics and cosmology have a significant bearing
on particle physics and vice versa, some sections are devoted to these
topics and included in the Glossary.
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Natural Units

In this book we have used units in which h̄ (Planck’s constant divided
by 2π) and c (the velocity of light) are both unity (h̄ = c = 1). Such a
system of units has been called Natural Units. If the value of the product
h̄c is worked out, it has the value 197.3 MeV fermi, where 1 fermi =
10−13 cm. In this sytem, energy and momentum have dimensions of
inverse length, and length and time have the same dimensions:

Energy = momentum = Length−1 = Time−1.

The mass of a particle, m, stands for mc2, and is given in MeV. Thus, the
mass of the electron is 9.1×10−28 g, or 0.511 MeV, or 1/(3.86×10−11 cm).

Angular momentum is measured in units of h̄, and in these units, it is
dimensionless. The fine structure constant α = e2/(4π) is dimensionless
and has the value (1/137.04). The Fermi weak interaction constant
GF has the dimension of GeV−2 (or length2) and has the value GF =
1.166 × 10−5 GeV−2. The unit of cross section is the barn and equals
10−24 cm2.

Occasionally, where necessary, constants such as Planck’s constant
and the velocity of light are explicitly indicated. In most of the book,
however, the natural units are used.
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CHAPTER 1

Historical Overview

The search for the elementary constituents of all matter has occupied
generations of human beings since the speculations of the early Greek
philosophers and other philosophers from different parts of the world.
Customarily, Democritus is associated with the hypothesis that all ele-
ments are made up of minute constituents called atoms. Yet real progress
in the field started being made only in the sixteenth century. The for-
mulation of the laws of motion by Galileo and Newton paved the way for
a quantitative study of the motions of particles endowed with an inertial
property called mass. Experiments were developed to test how well the
hypotheses in the formulation of the laws of motion fared. The “scien-
tific era” in which science develops by progress in theory and experiment
may be said to have its origin then.

The first steps in understanding the properties of gases in terms
of the mechanical motions of the constituents of the gas as material
particles was undertaken by Daniel Bernoulli in the early part of the
eighteenth century (1738). This date may be said to mark the origin
of the kinetic theory of gases. However, significant progress in under-
standing the structure of matter came from studies in chemistry. James
Dalton, very early in the nineteenth century (1803), took the atomic hy-
pothesis a number of steps further in understanding, both qualitatively
and quantitatively, many of the observed facts in chemistry. This was
the period in which the table of atomic weights of elements was first
constructed. In the same century, other major achievements were the
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discovery of Avogadro’s law (1811) and the formulation of laws of elec-
trolysis (1833) from experimental studies by Faraday. Also, in the later
part of the century, Mendeleev, a Russian chemist, found that when the
elements were arranged according to their atomic weights, their chemical
properties showed a periodic behavior; the chart containing this finding
goes under the name of the Periodic Table of Elements. These studies
established the atomic hypothesis on a firmer footing. In spite of these
achievements, there was considerable scepticism in accepting the fact of
atoms as real constituents of matter until the early twentieth century.

The impressive progress in chemistry, although achieved on the basis
of the atomic hypothesis, did not depend on the detailed properties of
atoms, such as their mass, size, or shape. Knowledge of these further
properties of atoms had to await studies in the electrical discharges in
gases undertaken toward the end of the nineteenth century and in the
beginning of the twentieth century. These studies had two aspects to
them. On the one hand, one could study what happens to atoms of
gases when they are subjected to electrical discharges through them,
that is, study whether the atoms break up, and if so, what the products
of the breakup are. On the other hand, one could study the properties
of the light emitted from the atoms in the discharge. Both these types
of studies developed in parallel. The former studies led eventually to
unraveling the properties of the products of the breakup of atoms in
the electrical discharge, in particular the electron. The latter studies
spawned the development of optical spectroscopy as a tool for the study
of atomic structure. The turn of the century was also the period when
quantum concepts were introduced by Planck (1900) to understand the
thermodynamics of radiation. Discoveries of X-rays by Röntgen in 1895
and of natural radioactivity by Becquerel in 1896 were other elements
which played a substantial role in leading to our understanding of the
structure of atoms.

Electron Discovered (1897)

In studying the discharge of electricity through gases, J. J. Thomson,
Crookes, and others studied cathode rays and, from the deflections they
suffered in electric and magnetic fields, established that charged parti-
cles of both signs existed in the discharge. From their motions in the
fields they obtained information on the ratio of charge to mass for these
particles. They found that many of the negatively charged particles had
small masses compared to the atomic mass, while the positively charged
particles, called ions, had masses of the size of atomic masses. The neg-
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atively charged particles having masses much less than atomic masses
were given the name electrons. This was the first elementary particle to
be discovered (1897).

Photon—Quantum of Radiation (1905)

Based on Planck’s idea of the quantum, Einstein in 1905 extended it fur-
ther and assumed that light exists as quanta (called photons), with the
energy of a quantum being given by hν, where, h is the constant intro-
duced by Planck, and ν the frequency of the light. This led to a complete
understanding of the features observed experimentally by Hertz, Lenard,
and Millikan on the phenomenon of photoelectric emission of electrons
from metals. Thus was born the second elementary particle, the photon,
in 1905.

Natural Radioactivity

The nature of the radioactive emanations discovered by Becquerel was
clarified soon after their discovery. It was established that they con-
sisted of three components, called α, β, and γ radiation. Rutherford
and collaborators made a detailed study of the α and β emanations.
They measured the penetrating power of these emanations in materials.
It was found that the α emanations were absorbed in a few centimeters
of air, while the β emanations were absorbed in an aluminum foil about
one millimeter thick. By a variety of means, it was established that the
α emanations consisted of positive doubly charged helium ions (1903),
while the β emanations had negative electric charge. Comparison of the
absorption of cathode ray electrons and of the β emanations in thin foils
showed that it was possible to identify them as the same. It was thus
established that β emanations consist of electrons. The γ emanations
were found not to be affected by electric or magnetic fields and, hence,
were electrically neutral. By studying the penetration properties of the
γ emanations through materials, for example, lead, and comparing with
the penetration properties of X-rays through the same material, it was
established that these two could be the same. Definitive understanding
that γ emanations are electromagnetic radiation of high energy came
later. Marie Curie, and Rutherford and collaborators, found that in ra-
dioactive transmutations, the chemical identities of the atoms changed
with time. Thus, in α emission, a substance changes its chemical nature
and ends up as a substance with chemical properties two units down in
the periodic table of elements.
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Thomson Model of Atom

On the basis of all these phenomena, it was concluded that electrons
formed an integral part of all matter. Because matter on the whole is
electrically neutral, in an atomic view of matter, each atom must be
electrically neutral. Thus, the view emerged that an atom is a neutral
combination of a positive charge compensated by the negative charge
of the electrons. Having settled this, one had to know the size of the
atoms and how much mass the positive and negative charge compo-
nents contributed to the mass of the atom. From studies in chemistry
and other fields, it was generally concluded at this time that the size of
atoms must be about 10−8 cm. Also, the periodic table of atomic ele-
ments existed. Based on these ideas and on the periodic table, Thomson
proposed a model in which an atom consists of a uniformly positively
charged sphere of radius 10−8 cm in which was distributed an equal
negative charge in the form of electrons.

Rutherford Model of Atom

The model proposed by Thomson had to be abandoned in 1911 as it
could not explain the large angle scattering (almost backward scattering)
of α particles by atoms observed by Geiger and Marsden, associates of
Rutherford. The Thomson model predicted an extremely small amount
of backward scattering, in disagreement with observations. The observed
data on the α scattering were well accommodated in a model of the atom
that Rutherford proposed, in which the atom has a massive positively
charged nucleus of radius about 10−13 cm, carrying the bulk of the mass
of the atom, surrounded by electrons moving in orbits whose radii are
of the order of 10−8 cm.

Measurement of Electron Charge by Millikan, X-ray
Diffraction, Isotopes

The charge on the electron was measured by Millikan in 1911 using an
ingenious method. Combining this with Thomson’s measurement of the
charge to mass ratio for the electron, the mass of the electron could
be determined. It was found to be much smaller than the mass of the
lightest atoms, confirming earlier indications to the same. The discov-
ery that X-rays could be diffracted was made by von Laue in 1912, and
very soon after that, Moseley introduced the concept of atomic number
Z to classify elements. Thus every element had an atomic number and
atomic weight associated with it. Developments of mass spectrographs
by Aston in England and Dempster, Bainbridge, and Nier in USA, mea-
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sured atomic masses more and more accurately. These measurements
showed that chemical species came with different masses, called isotopes,
and these masses were very nearly integral. In Rutherford’s model, the
atomic number Z was interpreted as the number of units of positive
charge carried by the nucleus, the unit of charge having the same mag-
nitude as that carried by the electron. The neutral atom will have Z
electrons revolving around a nucleus with atomic number Z.

Bohr Model of the Atom and the Beginnings of
Quantum Mechanics

In 1913, based on Rutherford’s ideas, Bohr produced the theory for the
structure of the simplest of atoms, namely hydrogen, an atom with a
nucleus of Z = 1, around which one electron revolves. In doing this,
he showed that application of classical physics to this system poses an
immediate problem. Classical electromagnetism predicts that acceler-
ated charges radiate energy in the form of electromagnetic radiation.
Since the electron in the Rutherford model revolves around the nucleus,
it is undergoing acceleration and, hence, must radiate. If the electron
radiates away its energy, it will spiral in to the nucleus in short order.
He abandoned classical physics to discuss the motion and introduced his
now-famous quantum condition on the electron’s orbital angular mo-
mentum to describe the motion. With that he was able to describe the
quantized energy levels of the hydrogen atom and the spectrum it would
exhibit. The results were in extremely good agreement with measure-
ments from the experimental spectra of atomic hydrogen. This provided
the starting point for many remarkable developments in atomic physics
and, subsequently, in the late 1920’s, led to the formulation of quantum
mechanics by Heisenberg, Schrödinger, de Broglie, Born, Dirac, Pauli,
and others. Quantum mechanics was rapidly developed and applied to
problems of atomic structure, emission and absorption of radiation by
atoms, etc. Quantum statistics dealing with assemblies of identical par-
ticles were developed.

Chemistry, Nuclear Physics as Separate Disciplines

At about this time, studies of the structure of matter started recognizing
two distinct areas. Chemical reactions between atoms of elements, lead-
ing to formation of compounds etc., involved only the electrons, with
no changes to the nuclei of the atoms, and energy changes of the order
of a few electron-volts (eV). Then there were the radioactive transfor-
mations in which, the nucleus itself underwent a change, leading to a
different chemical element, and the energy change was a million times
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larger (MeV). A clear distinction emerged between studies in these two
areas, the former could be classified as chemistry and the latter as nuclear
physics. The study of the nucleus and the exploration of its constituents
became the goal of these latter studies.

Proton Discovered (1919)

Among the first nuclear physics experiments performed, mention must
be made of the work of Rutherford in 1919. Using a natural radioac-
tive source to provide energetic α particles, he broke up nitrogen nuclei
and showed that hydrogen nuclei were produced as a result of the bom-
bardment. The name given to the hydrogen nucleus was proton. This
represents the third elementary particle to be discovered.

Studies of many nuclear disintegrations revealed the existence of pro-
tons as products. Thus, one could envisage a model of the nucleus of an
atom of atomic weight A to be made up of A protons and A − Z elec-
trons, which would give the nucleus a charge +Z. However, there are
problems with this model. Quantum mechanical considerations showed
that if electrons were confined inside a region of size 10−13 cm, their
kinetic energies would increase to the point where they would not stay
bound inside such a nucleus. An alternative model for the composition
had to be found.

Need for Neutral Component in the Nucleus

Around 1920, Rutherford drew attention to an important conclusion
from all the work on the scattering of alpha particles by various elements.
If the element had an atomic weight A, these experiments showed that
the nucleus carried a charge Ze, with Z = A/2, where e is the funda-
mental unit of charge. The numbers of extra nuclear electrons in the
atoms were also determined to be very close to Z = A/2 from studies of
Thomson scattering of X-rays from atoms. If the positive charge on the
nucleus is due to A/2 protons, then the question arises as to what holds
these together against their electrical repulsion. Further, the nucleus
with Z = A/2 protons would only account for half the atomic mass.
These facts could be reconciled if there were another component in the
nucleus, which is electrically neutral and contributes the rest of the mass
of the nucleus. This was the first strongest hint for the existence of neu-
trons, which were found somewhat later. In this same work, Rutherford
also suggested that the atomic number, or the equivalent nuclear charge,
is the more natural variable in terms of which to classify the periodic
table of elements rather than the atomic weight.
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Strong Interactions as Distinct from Electromagnetic

In 1921, Chadwick and Bieler, studying the scattering of α particles
in hydrogen, found that the characteristics they were observing in the
scattering could not be accounted for solely in terms of the Coulomb
interactions between the alpha particle and the proton in hydrogen. This
was the first evidence for the strong nuclear force as distinct from the
electromagnetic force.

Intrinsic Angular Momentum—Electron Spin
Introduced

By 1925 much experimental work on atomic spectra had been carried out
and compared with Bohr’s theory. Among other problems, one feature
observed in the spectra was a fine structure in the spectral lines. It was
found that many spectral lines, which were predicted in Bohr’s theory
to be single lines, were actually closely spaced doublets. The solution
for this problem came from two sources. First, Pauli suggested in 1924
that the electron in the atom was described, in addition to the quantum
numbers of Bohr’s theory, by another quantum number which could take
on two possible values. Goudsmit and Uhlenbeck, in 1925, went a step
further than Pauli, and suggested that this observed fine structure could
be accommodated in Bohr’s theory, if the electron carried, in addition to
the orbital angular momentum, an intrinsic angular momentum, called
spin. For the spin they proposed a two-valued variable, which could ori-
ent itself either parallel or antiparallel to the orbital angular momentum
vector. If there were a small energy difference between the states corre-
sponding to these orientations, this would explain the observed doublet
fine structure. Thus, the notion that an elementary particle could carry
an intrinsic angular momentum, called spin, was introduced for the first
time. The spin attributed to the electron was 1/2. The unit for angular
momentum is h̄, where h̄ is Planck’s constant h divided by 2π.

Proton Spin Determined

Closely associated with the spin is a magnetic moment for the particle.
The magnetic moment vector is oriented in the same direction as the spin
vector for particles of positive charge, while it is opposite to the spin for
particles of negative charge. Thus, in addition to the charge interaction
between particles, there will also be an interaction between the magnetic
moments, if the particles have spin. If the nucleus has spin, the magnetic
moment associated with it will interact with the magnetic moment of
the electron due to its orbital motion and spin angular momentum. Such
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an interaction would give rise to further fine structure of spectral lines,
called hyperfine structure. Measurements of hyperfine structure will give
information on the spin that the nucleus of an atom carries. Through
such measurements, Dennison attributed spin 1/2 to the proton in 1927.

Dirac’s Theory of the Electron

The relativistic equation for the electron was discovered by Dirac in
1928. In searching for an equation, he demanded that if the spatial
derivatives appeared to first order, then time derivative also must appear
only to first order to satisfy the demands of special relativity. These
requirements necessitated the introduction of a wave function with four
components. He found further that solutions of the equation exist for
positive as well as negative energies. For nonrelativistic energies, he
found that the wave function with four components reduces to one with
only two nonzero components, providing a natural basis for the spin.
He calculated the spin magnetic moment of the electron and the energy
levels of the electron in the Coulomb field of a nucleus. He also developed
the quantum field theory for the emission and absorption of radiation.

Events Leading to the Discovery of the Neutron

Getting back to the constituents of the nucleus, we have already given
arguments why a model involving protons and electrons is not viable.
Additional arguments against a proton-electron structure come from
quantum mechanical considerations of an assembly of identical particles
(1926), called the spin-statistics theorem. Particles of integral spin are
described by wave functions which are symmetric under the interchange
of any two particles (Bose-Einstein statistics), and those of half-odd inte-
gral spin are described by wave functions which are antisymmetric under
the interchange of any two particles (Fermi-Dirac statistics). Consider
the nucleus of nitrogen. It has atomic number Z = 7, and mass number
A = 14. In the proton-electron model, it would have 14 protons and
7 electrons, a total of 21 spin one-half particles. This would make the
nucleus of nitrogen have half-odd integral spin and, hence, obey Fermi-
Dirac statistics. Experiments on the molecular spectrum of homonuclear
N2 molecule showed that the nitrogen nucleus must obey Bose-Einstein
statistics; in other words, it must have integral spin. Thus again, the
proton-electron model for the nucleus fails. The resolution of the situa-
tion came with the discovery of the neutron by Chadwick in 1931.

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 9

✐

✐

✐

✐

✐

✐

✐

✐

Chadwick’s Discovery of the Neutron

Experiments, in 1930 and 1931, by Bothe and by the Curies, in which
beryllium was bombarded by alpha particles from a natural radioactive
source, revealed that a radiation was emitted having a high penetrating
power. They measured the ionization produced by this radiation in an
ionization chamber with a thin window. When they placed a hydrogen
containing substance in front of the thin window, they found the ioniza-
tion increased. It appeared that protons were ejected by this radiation
from the hydrogen into the chamber. Their suggested explanation was
that protons were being ejected by a Compton-like process in the hy-
drogenous material, and they estimated the energy of the gamma ray
quanta around 50 MeV. Chadwick, in 1931, repeated the experiment
and found that radiation ejects particles, not only from hydrogen, but
also from a whole host of other materials. The protons from hydro-
gen appeared to have maximum velocities of one tenth the velocity of
light. With other materials, the ionization released in the chamber ap-
peared to be due to recoil atoms. He showed, by detailed analysis of the
data including all the recoils, that the beryllium radiation could not be
gamma rays. He could make sense of the data if he assumed that the
beryllium radiation consisted of neutral particles of protonic mass. He
coined the name neutron to describe this particle. This was the fourth
elementary particle, after the electron, photon, and the proton, to be
discovered. In 1932, a picture of the nucleus emerged in which protons
and neutrons were its constituents. In the proton-neutron model, the
nitrogen nucleus would consist of 7 protons and 7 neutrons, for a total of
14 spin-half particles, so that the spin of the nitrogen nucleus would be
an integer and it would obey Bose-Einstein statistics. The conflict with
the molecular spectra observations would be removed. The concept of
an isotope where a chemical element characterized by its atomic number
Z but different atomic masses specified by A could now be understood
in terms of different neutron numbers N , with Z +N = A.

Photon Spin Determined (1931)

The direct determination of the photon spin was carried out in a little-
known experiment by Raman and Bhagavantham using the then newly
discovered Raman effect. By applying energy and angular momentum
conservation in their observations of the scattering of photons by rotating
molecules, they established that the photon spin is 1.

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 10

✐

✐

✐

✐

✐

✐

✐

✐

Nuclear Magnetic Moments Measured; Neutron
Spin

In 1939, under the leadership of Rabi, a new method, called themolecular-
beam resonance method, was developed to carry out precision magnetic
moment measurements. In this method, the nuclear magnetic moment
is obtained by measuring the Larmor precession frequency in a uniform
magnetic field. Molecules, like HD and D2 (D, deuterium, being the iso-
tope of hydrogen with A = 2), are mostly in states having zero rotational
angular momentum at normal temperatures. The magnetic moments of
the proton and the deuteron (deuterium nucleus) were determined us-
ing this technique, and the values found were in very good agreement
with those obtained using hyperfine structure measurements. A nonva-
nishing value for the deuteron magnetic moment means that the nuclear
spin of the deuteron is nonzero. This implies that the neutron has a
nonzero spin. If a spin (1/2) was attributed to the neutron, just as for
the proton, this measurement indicates that the spin of the neutron is
aligned parallel to the proton spin in the deuteron. The results of the
measurements were consistent with this assumption. The neutron spin
was hereafter taken to be 1/2 on the basis of these measurements.

Electron Spin from Dirac’s Theory and Antiparticles

A remarkable achievement of Dirac’s relativistic theory of the electron is
that the spin of the electron comes out of the theory automatically. The
equation had solutions of negative total energy. Dirac had the brilliant
insight to interpret these solutions as antiparticles to the electron. This
prediction of the antiparticle meant that there must exist in nature, par-
ticles of exactly the same mass as the electron, but opposite in charge.
Such antiparticles are called positrons. He showed further that in an
electron-positron collision, they would annihilate and produce gamma
rays. Conversely, gamma rays could materialize into electron-positron
pairs in the presence of matter. The extraordinary prediction of the ex-
istence of the positron by Dirac was experimentally verified by Anderson
in 1932 while studying cosmic rays.

Discovery of Cosmic Radiation and the Positron

In a series of investigations which started in 1912, Hess showed that
the earth was bombarded by extremely energetic particles coming from
outer space. This was done by sending ionization chambers mounted on
balloons and launched into high altitudes. A number of other workers,
in other parts of the world, joined in investigating the nature of these
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radiations. This field came to be known as studies of cosmic rays. Many
surprising results have turned up in these investigations, some of which
continue even to the present days. Anderson set up a cloud-chamber
at mountain top altitudes and took photographs of cosmic ray events
(1932). It was in one of these photographs that he obtained clear evi-
dence of electron-positron production in cosmic rays.

Postulate of the Neutrino

Ever since the early days of discovery of β radioactivity, a number of
people were involved with further investigations of the properties of the
β particles. It was discovered that β particles of both signs (electrons
and positrons) are emitted in β decays. Early crude measurements of
β− energy, by absorbing them in thin foils, showed them to be electrons.
The measurements of energy of β particles were continually improved
by the construction of magnetic spectrometers and other methods. At
the same time, progress was being made in more precise measurements
of atomic masses using mass spectrographs. It was established from a
number of such measurements that, although the nucleus undergoing
the β transformation was in a definite state and the product nucleus
was also in a definite state, the emitted β particle had a continuous
distribution of energies. Measurements showed that the energies of the
β particles continuously ranged from very low energies to a maximum
energy Emax, (the end-point energy of the β spectrum), where Emax
is equal to the energy difference between the parent nuclear and the
product nuclear states. These observations were very puzzling because
it seemed to imply lack of energy conservation in this process.

Not willing to abandon conservation of energy, Pauli, in 1930, came
up with the idea that possibly a neutral invisible particle is emitted
along with the β particle. He suggested that the two particles together
share the energy difference between the initial and the product nucleus
consistent with conservation of energy and momentum. If such a neutral
particle did indeed exist, its mass, as deduced from the energy distribu-
tion of the β particles at the end point, showed that it was consistent
with being zero within experimental errors. It was thus assumed that it
was a particle of zero rest mass. The name neutrino has been given to
this particle. Because the nuclear states are also characterized by defi-
nite values of angular momentum, the neutrino along with the β particle
must serve to conserve angular momentum. In terms of the angular mo-
menta involved, measurements showed that, either both the initial and
product nuclei had integral angular momenta, or both had half-odd in-
tegral angular momenta, never otherwise. This is only possible if the
β particle and the neutrino together carry off integral units of angular
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momenta. Because the electron has an intrinsic spin (1/2), the neutrino
too must possess a half-odd integral spin, that is, it must obey Fermi-
Dirac statistics, like the electron. For definiteness and simplicity, it was
postulated to have a spin (1/2) just like the electron.

The neutrino eluded direct observation for a long time after Pauli’s
suggestion; persistent efforts, however, led to a direct observation of its
properties by the use of some remarkable methods. Currently, some
seventy years later, the question of whether the neutrinos have a mass
is still a matter of vigorous experimental investigation involving many
different techniques.

Field Theory of β Decay

Very soon after Pauli’s suggestion, Fermi constructed a quantitative the-
ory of β decay (1934). This was based on field theory. It was patterned
after the theory of emission of radiation from an excited atom. He gave
quantitative expressions for the mean lifetime for β decay, and also the
expression for the continuous energy distribution of the β particles for
comparison with experimental data. This theory served as a back bone
for a lot of further experimental and theoretical work in many of the
following years.

One feature of the theory of radiation from atoms is that parity is
conserved in the electromagnetic interactions responsible for the emis-
sion of radiation. The theory of β decay invoked a new form of in-
teraction, called weak interaction, information about which had to be
gathered form studies on β decays. It was tacitly assumed that the
weak interaction, like electromagnetic interactions, conserved parity. A
big surprise was in store when it was found in 1957 that parity is not
conserved in β decays.

Yukawa’s Prediction of Mesons

Another significant development in theory occurred in 1935. Yukawa
attempted to find a field theory of the nuclear force patterned after
the theory Fermi had developed for β decay. In the theory of Fermi, the
basic transformation taking a neutron into a proton involves the emission
of the electron-neutrino pair with a certain assumed coupling. Using
the virtual emission and absorption of electron-neutrino pair between
the neutron and proton, Yukawa tried to generate the strong nuclear
force between the proton and the neutron in the nucleus. He found
the strength of the β decay coupling to be too weak to generate the
strong nuclear force. He thus put forward another idea, namely, that
the transformation of the neutron into a proton involves emission of
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another new particle with a new coupling. He generated the neutron-
proton interaction via the virtual emission and absorption of this new
particle between them. He could adjust the strength of the new coupling
so that he could obtain the strength of the nuclear force of the right
magnitude. To fit the short range nature of the nuclear force, he realized
that this new particle cannot be massless, for it was known that exchange
of massless photons gives rise to the long range Coulomb force. He
introduced a mass for the new particle and fitted its value to obtain
the right range of the nuclear force, about 10−13 cm. He needed about
300 electron masses to achieve this. Here was a new prediction on the
existence of particles of mass intermediate between the electron and the
proton. Such particles were later found in nature and are called mesons.

Nuclear Physics Developments (1930–1950); Isotopic
Spin

In order to induce nuclear transmutations artificially, and enlarge on
what was learned about nuclear transformations from natural radioac-
tivity, it was necessary to accelerate particles to energies in the millions
of electron volts range. The period between the late 1920’s and early
1950’s saw the construction of a number of accelerators. The Cockcroft
and Walton generator, the Van de Graaff accelerator, the cyclotron, the
betatron, the synchrotron, and the linear accelerator were all developed
during this period and used in the exploration of nuclear transforma-
tions. Many radioactive isotopes were artificially produced for uses in
biology, chemistry, medicine, etc. Systematic investigations of energy
states of nuclei, determination of the quantum numbers relevant to these
states, selection rules for transitions between states, etc. were the fo-
cus of attention. Enormous progress was made, including developments
in using nuclear fission reactions for generation of energy. We do not
go into this subject, and the many fascinating developments that took
place, because that is not the primary focus of this book. However, be-
fore we leave this topic, we should mention one specific feature of the
strong interactions revealed by the studies in nuclear physics, which has
an impact on particle physics. It has been found that the specifically
strong interaction between a pair of protons is the same as that between
two neutrons and that between a neutron and a proton; it is a state-
ment of the charge independence of nuclear forces. This experimental
finding is very well expressed in terms of a new symmetry called isotopic
spin symmetry, suggested by Heisenberg in 1932. The neutron and the
proton are close in mass and both have spin 1

2 . In the limit when this
mass difference is ignored, they can be considered as two substates of
one particle called the nucleon. If the nucleon, in addition to its spin an-
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gular momentum (1/2), is endowed with a new property called isotopic
spin with a value (1/2), the proton and the neutron can be considered
as the nucleon with “up” and “down” isotopic spin projections along
some axis in the isotopic spin space. The charge independence of nu-
clear forces becomes the statement that the nuclear forces are invariant
under rotations in the isotopic spin space. The isotopic spin concept
and its extensions have proved to be key concepts in classifying and
understanding the behavior of many other newly discovered elementary
particles.

Muon discovered

Since the discovery of cosmic rays, they were the only source of very
high energy particles coming to the earth from outer space. Evidence
for the existence of a number of new particles, the first of them being
the positron, came from studies in cosmic rays. In 1937, Neddermeyer
and Anderson were the first to point out the existence of particles of
mass in the range between the electron and the proton masses. They
observed these in their studies of cosmic rays with a counter controlled
cloud chamber. Confirmation of these observations came from the work
of Street and Stevenson, also in 1937. They estimated the mass of these
particles to be in the range of about 200 hundred electron masses, and
that the particles had a charge equal in magnitude to that of the electron.
These particles were observed to come in both positive and negative
charge states. The name mesotron, which later was shortened to meson,
was given to such particles. Rossi, in 1939, was the first to report that
these mesons were short-lived. He produced a first estimate of their
mean lifetime. Williams and Roberts, in 1940, were the first to observe
the decay of the meson into an electron and suggested a mean lifetime of
10−6 s for such decays. A more precise measurement of the mean lifetime
was reported by Rossi and Nereson in 1942 as 2.15± 0.07 microseconds.

At first it was thought that these particles were the ones predicted
by Yukawa in 1935. Closer examination of the interaction properties of
this particle with matter showed that it was too weak to generate the
strength required for the strong nuclear force. For a while, this caused
confusion in the field. The situation was clarified by the suggestion
from Marshak and Bethe that possibly two mesons are involved here,
only one of which might give the nuclear force according to the Yukawa
formulation. The situation was completely resolved with the discovery
of the π meson somewhat later. The weakly interacting particle came
to be known as the µ meson or muon.
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Lamb Shift, g − 2 measurements

Two crucial experiments were performed to put the Dirac theory of the
electron to more stringent tests. One of the experiments, performed by
Lamb, focused attention on one of the predictions of Dirac’s equation
applied to the hydrogen atom—the exact degeneracy of the 2S1/2 and
the 2P1/2 levels. If the two levels are not degenerate, it must be possible
to induce transitions between them and measure the energy difference.
The 2S1/2 state is a metastable state and such atoms can be detected
by their ability to eject electrons from a metal target. The 2S1/2 to
2P1/2 transition was induced with microwaves of the right frequency,
and the decrease in the population of 2S1/2 state was measured from
the decrease in the ejected electron current. It was found from these
measurements that the 2S1/2 state was higher than the 2P1/2 state by
an energy difference corresponding to a frequency of about 1051 MHz.

The other experiment, performed by Kusch and Foley, was to check
the other prediction of Dirac theory, namely, that the gyromagnetic ra-
tio g is 2. They set out to measure the difference of g from 2, using
the atomic beam resonance technique, by measuring the frequencies as-
sociated with Zeeman splittings of energy levels in two different atomic
states in a constant magnetic field. From these measurements their re-
sult for g was 2.00244± 0.00006, the difference being about +0.00244.

Field Theories—Quantization and QED

Soon after the formulation of quantum mechanics, the Schrödinger equa-
tion was applied successfully to solve a number of problems. It could
not be used in problems where the particles became relativistic. Gen-
eralization of the Schrödinger equation was necessary to apply in the
relativistic case. In answer to this quest, the Klein-Gordon equation
was the first one to be written down. It represented a natural rela-
tivistic generalization of the Schrödinger equation. It describes particles
of spin zero. In this equation, consistent with special relativity, space
derivatives of second order and time derivative of second order appear
on an equal footing. Because of this, the expression for the probability
density, which in Schrödinger theory was positive definite, is not positive
definite in the Klein-Gordon theory. This leads to difficulties with the
physical interpretation of the theory. This started Dirac on a search for
an equation which would lead to positive definite probability densities.
It resulted in his discovery of the relativistic equation for the electron.
Particles described by the Dirac equation were shown to have intrinsic
spin of 12 .
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Both the Klein-Gordon and Dirac equations, taken as equations for
the wave function of a particle, still suffer from problems. They possess
solutions for both positive and negative energies. While the solutions
for positive energies can be naturally interpreted as the wave function of
the particle, the solutions for negative energies do not have any simple
physical interpretation. For the electrons, Dirac made use of the Pauli
exclusion principle and assumed that all the negative energy states are
completely filled and that only deviations from the completely filled state
would have observable consequences. A hole created in the negative
energy sea by exciting one of the particles to positive energy would
appear as a particle of positive charge and mass equal to the mass of the
electron. The hole manifests as the antiparticle to the electron. Such a
reinterpretation is not available for the Klein-Gordon theory as there is
no exclusion principle operating in this case.

The way to get around this problem is not to interpret these equa-
tions as the equations for the wave function of a single particle, but as
the equations for field functions, which when quantized give the particles
and the antiparticles of the field. For any free field, a relativistically in-
variant Lagrangian is chosen so that the Euler-Lagrange equations give
the equations of motion of the field, for example, the Klein-Gordon or the
Dirac equations. Procedures of Lagrangian mechanics were followed to
construct the canonical conjugate to the field function (the canonical mo-
mentum), and then the Hamiltonian and other quantities. Quantization
was carried out by introducing commutation relations between the field
and its canonical conjugate. In carrying out these procedures, one car-
ries out a Fourier mode expansion of the field function and its canonical
conjugate. The Fourier expansion contains both positive and negative
frequency components. The expansion coefficients which are ordinary
numbers in a classical field theory become operators for quantization,
called annihilation, and creation operators for particles and antiparti-
cles. The creation operators operate on the vacuum state (defined as a
state with no particles or antiparticles) and create, one, 2, . . . , n particles
or antiparticles. When the expression for the Hamiltonian was worked
out, it was found to be possible to write its eigenvalues as a sum over all
the modes of the product of the number of particles in that mode, multi-
plied by the energy eigenvalue of that mode, and another similar sum for
the antiparticles. A further subtlety was encountered here. Fields which
give rise to particles having half-odd integral spin, have to be quantized
with anticommutation relations between creation and annihilation op-
erators, while the fields which give rise to particles of integral spin have
to be quantized with commutation relations between them. Otherwise
one does not get a positive definite Hamiltonian or a positive definite
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occupation number. The quanta of the field were called fermions and
bosons, respectively. An immediate consequence of the anticommutation
relation in the fermion case is that the occupation number in a state can
take on only the values 0 or 1, which is a statement of the Pauli exclusion
principle.

The procedure outlined above for free fields, was extended to fields
with interactions between them. However, the resulting field equations
form a coupled set, and no general method has been found to solve
the coupled set, except in some special cases. In the case when the
interaction between fields is weak, the coupled set has been solved by
developing a covariant perturbation theory. This has been done in the
case of electrons interacting with the electromagnetic field. The resulting
theory is called quantum electrodynamics (QED).

In the case of QED, the coupling between the fields can be expressed
in terms of a dimensionless coupling constant, the fine structure con-
stant, which has the value of approximately 1/137. Perturbation theory
gives an expansion of the solution in terms involving powers of this num-
ber and hence might be expected to give a reasonably good answer with
a finite number of terms. In higher orders of perturbation theory, the
contributions depend on some integrals which are divergent. Covariant
methods by which to separate the infinities and extract the finite parts in
an unambiguous manner (called renormalization) exercised many a mind
during the 1940’s. Tomonaga, Schwinger, and Feynman developed these
methods independently and applied them successfully to the calculation
of the anomalous magnetic moment of the electron and many other pro-
cesses. Bethe used the theory and calculated the Lamb shift in hydrogen
and showed it to be remarkably close to the experimental value. The
agreement between theory and experiment for many quantities is truly
remarkable.

These developments have served as a model for developing field the-
ories for other fundamental interactions. The Yukawa model for the
interaction of nucleons and mesons was explored more thoroughly. As
a model for nuclear interactions, the size of the dimensionless coupling
constant needed was of the order of 15. Application of perturbation
theory was out of the question in this case. Theorists turned their at-
tention to finding suitable methods to deal with strong interactions in
field theory. To this day, a half century later, despite better understand-
ing of some of the problems and the development of a field theory of
strong interactions called quantum chromodynamics (QCD), the calcu-
lation of bound state energy spectrum of strongly interacting particles
is still largely unsolved.
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Pion Discovered (1947)

Using the photographic nuclear emulsion method exposed to cosmic rays
at high altitudes, Lattes, Occhialini, and Powell showed that cosmic
rays contain charged particles of mass intermediate between those of
the electron and the proton, subsequently called mesons. They showed
that some of these particles interact with nuclei of the emulsion and
disintegrate them, producing a residue of heavy particles. They also
had other examples in which the initial meson slows down in its passage
through the emulsion and decays into another meson. These two types
of events were interpreted as one in which a π− meson interacts with a
nucleus and produces a disintegration, and the other in which the decay
of a π into a muon plus a neutral particle occurs. Thus, it is shown that
two mesons are present, one of which interacts strongly with nuclear
particles. The particle that Yukawa proposed could be identified with the
π meson also called pion. The flux of such particles in cosmic rays was
not enough to measure the masses and other properties accurately. More
precise measurements had to await the construction of higher energy
accelerators in the laboratory to produce these particles in abundance
and study their properties.

V Particles

Continuing studies of cosmic rays with counter controlled cloud cham-
bers, Rochester and Butler in 1947, pointed to the existence of some
new particles which left V-shaped forked tracks in the cloud chamber
pictures. They were found to be rather rare. In about 5000 photographs
of various events taken in 1500 hours of operation, only two photographs
showed these V-shaped events. A few years earlier, Leprince-Ringuet
had reported an event which suggested a new particle with mass about
990 times the mass of the electron. Further evidence for V particles in
cloud chamber observations came from observation of 34 V events in a
sample of 11,000 events, reported by Seriff and colleagues in 1950. The
V-shaped events were interpreted as arising from the decay of a parent
neutral particle into a pair of charged particles, which left V-shaped
tracks in the chamber. From this sample, they made an estimate of the
lifetime of the neutral particle and came up with a figure of 3× 10−10 s.
They also reported on the nature of the decay products.

Pions Produced in the Laboratory (1949)

A 184′′ cyclotron, based on the principle of phase stability, was com-
pleted in the campus of the University of California at Berkeley in 1947.
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It was a frequency modulated synchrocyclotron with the capability of
producing beams of 180 MeV deuteron and 400 MeV alpha particles.

Using a 380 MeV alpha particle beam incident on a carbon target, a
team which included Lattes produced π+ mesons (positive pions) in the
laboratory for the first time in 1949 and detected them by the nuclear
emulsion method. The characteristic decays of π+ mesons in the emul-
sion, resembling what had been seen by Lattes, Occhialini, and Powell
in cosmic rays, were found. They also reported producing one positive
meson for every four negative mesons in a target of carbon (1/16′′) thick.

In 1950, using a synchrotron with 330 MeV gamma-rays incident
on various targets, hydrogen, beryllium, and carbon, Steinberger and
colleagues reported finding that multiple gamma-rays are emitted. By
studying the angular correlations of the produced gamma-rays, they
showed that they come in pairs from the decay of a neutral meson. An
estimate of the cross section for the production of these neutral mesons
showed that it is similar to that for charged mesons. The cross sections
in hydrogen and the cross section per nucleon in beryllium and carbon
were found to be comparable. The meson they found was the neutral
counterpart π0 of the charged π mesons.

The neutral π meson was also found in cosmic rays through the
study of the spectrum of gamma-rays in the atmosphere at a height
of 70,000 feet using the nuclear emulsion technique. The spectrum seen
was consistent with their being produced by the decay of neutral mesons.
They estimated the mass of the neutral mesons to be (290± 20)me and
their lifetime to be less than 5× 10−14 s.

Pion Properties Determined (1951)

Soon after their production in the laboratory, the masses of the charged
and neutral π mesons (hereafter also called pions) were determined. At-
tention turned to determining the intrinsic spin and parity of the pions.
The spin of the π+ was determined by using the principle of detailed
balance in the reactions π++ d ↔ p+ p. These experiments determined
the spin of the π+ to be zero. Experiments on the capture of π− mesons
in deuterium led to final states which had 2 neutrons in some 70% of the
cases, and 2 neutrons plus a photon in about 30% of the cases. These
measurements, along with some theoretical input, led to the determi-
nation of the intrinsic parity of the π− to be odd. Combined with the
information of spin zero for π+ and the measured near equality of the
masses of the π− and π+, there was a strong suggestion that they were
different charge states of the same particle. It is reasonable to attribute
negative parity to both of them. Since the neutral pion also was observed
to have a mass close to those of the charged pions, all three charge states
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were grouped into a pseudoscalar isotopic spin 1 multiplet. Subsequent
work over the years has amply verified these assignments to be correct.

Nature of V Particles Clarified: Λ0 and K0

Considerably more work accumulated much more data on the V particles
and led to further understanding of these particles by 1951. The data on
measurements of the momenta of the secondary particles together with
ionization measurements enabled them to discriminate between protons
and mesons. From the data it became clear that there were two kinds of
V particles. One kind had decay products, a proton, and negative pion,
and another kind decayed into oppositely charged pions. Measurements
of the mass of the former type gave a value of 2203±12 electron masses,
and of the latter type around 796 ± 27 electron masses. What they
observed was what we now call Λ0 hyperon and K0 meson.

Charged Hyperons

In 1953 nuclear emulsion studies of cosmic rays revealed the existence of
new unstable charged particles with a mass larger than the proton. They
looked like charged varieties of the Λ0 hyperon. They were observed to
decay into fast charged pions of either sign or into a slow proton. The
observations were interpreted as two alternative decay modes of one
particle, which decays to a neutron plus π± mesons or into a proton
plus π0 meson. Cloud chamber studies also found the decays to the
proton plus π0 final state. These observed particles are what we now
call the Σ± hyperon.

V Particles, Hyperons, New Particles, Produced in
the Laboratory

The frequency of occurrence of new particles in cosmic rays was such
that it was not possible to obtain an accurate measure of their prop-
erties, such as mass, lifetime, spin, and parity. To study them better
under controlled conditions, they would have to be produced in the lab-
oratory. The energy reach of the Berkeley 184′′ synchrocyclotron was
not sufficient to produce these heavy particles. Simply increasing the
size of accelerators in order to reach even higher energies did not seem
like an economically efficient option. It would require so much more iron
for the magnets and a corresponding increase in costs. Fortunately, the
invention of the strong focusing principle for accelerators by Courant,
Livingston, and Snyder in 1952 made the access to much higher energies
possible at only modest increase in costs.
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A succession of increasing energy accelerators was produced in the
mid 1950’s. These machines helped to establish in a quantitative way the
mass spectra and other properties of elementary particles, some of which
were already known from cosmic rays. The Cosmotron operated in 1953
at the Brookhaven National Laboratory and produced protons of 2.2
GeV energy. The Berkeley Bevatron, a proton synchrotron, accelerating
protons to 6.2 GeV, and the Alternating Gradient Proton Synchrotron
at the Brookhaven National Laboratory, accelerating protons to 30 GeV
energy, were in full operation from the mid 1950’s to the late 1960’s and
produced many results. The development of electron linear accelerators
started in the mid 1930’s and picked up pace in the 1950’s. By 1955, the
first 1 GeV electron linear accelerator was functioning at the Stanford
Linear Accelerator Center. Before it reached the full energy in 1955, it
was functioning at lower energies in the few years prior. The detectors
for particles ranged from cloud chambers to diffusion chambers, bubble
chambers, scintillation counters, nuclear emulsions, spark chambers, and
Cherenkov counters.

The first particles to be studied with these newer machines were
the V particles. The properties of the Λ0 hyperon and of the K0 were
more precisely determined. The charged counterparts of the neutral K
particle were also found as well as the charged Σ hyperons and their
neutral counterpart. Two further hyperons, the Ξ− and Ξ0, were found
at a mass higher than that of the Σ hyperons. The properties of the ∆
resonances seen in pion nucleon scattering, some of which were found
at lower energy cyclotrons, were further clarified and extended at the
newer machines. The antiproton and the antineutron were discovered
at the Bevatron machine around 1956. A whole host of new mesons
were found in the 1960’s. In the early to mid 1950’s, a large number of
mesons and baryons had been found and studied; the situation called
for the classification and understanding of the observed particle spectra.

Associated Production of New Particles

From the observed decay lifetime of the Λ0 hyperon into p + π−, one
can obtain a value for the strength of the Λpπ coupling. If the same
interaction is responsible for the production of the Λ0 by π−p collisions,
we can calculate the cross section for the production of Λ0. The cross
section for production turns out to be ten orders of magnitude smaller
than what is observed. From this we must conclude that the decay inter-
action and the interaction responsible for production must be different;
the production proceeds via strong interactions, while the decay occurs
due to weak interactions. Similar conclusions are arrived at for the other
hyperons also—strong production and weak decay.
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To explain this paradox, Pais introduced the concept of associated
production. According to this concept, these new particles can only be
produced in pairs, while in decay, only one of the new particles appears in
the reaction. Examples of strong reactions which produce these particles
in pairs are: π− + p → Λ0 +K0; π− + p → Λ0 +K+ + π−; p + p →
Λ0+p+K+; p+p → Σ++p+K0. No single K production without the
associated Σ or Λ has been observed. There is a further problem with
the Ξ hyperons: it is observed that Ξ− → Λ0+π− is a weak decay, which
would be understandable if the Ξ were in the same family as the nucleon.
If that were the case, Ξ− → N + π− (where N is a nucleon) should be
a decay which proceeds via strong interactions. This decay mode for
the Ξ has been looked for and has never been seen. Clearly something
more was needed. Gell-Mann and Nishijima supplied the solution by
introducing the quantum number called strangeness.

Gell-Mann, Nishijima Scheme

Gell-Mann, and independently Nishijima, in 1954–1955, tried to extend
the concept of isotopic spin to the new particles. In doing so, another
quantum number called strangeness had to be introduced. Using this,
they gave a generalization of the expression relating the charge Q (in
units of |e|) to the isotopic spin, which will include all the new particles
and be in accord with all the observations. The formula they gave was

Q = I3 +
B + S

2
,

where I3 is the projection of isotopic spin on the “3” axis, and B is
the baryon number: 1 for all particles which ultimately decay into the
nucleon and 0 for all the mesons. The number S, the strangeness, is
0 for the nucleon and the pion, and is different from 0 for all the new
particles. The members of the various multiplets are:

Baryons (B=1)

S = −2, I = 1/2, Ξ0(I3 = 1/2), Ξ0(I3 = −1/2),

S = −1, I = 1, Σ+(I3 = 1), Σ0(I3 = 0), Σ−(I3 = −1),
S = −1, I = 0, Λ0(I3 = 0),

S = 0, I = 1/2, p(I3 = 1/2), n(I3 = −1/2).
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Mesons (B=0)

S = +1, I = 1/2, K+(I3 = 1/2), K0(I3 = −1/2),
S = 0, I = 1, π+(I3 = +1), π0(I3 = 0), π−(I3 = −1),
S = −1, I = 1/2, K̄0(I3 = 1/2), K−(I3 = −1/2).

In this classification scheme, the K mesons are not members of an iso-
topic spin 1 multiplet. They are put in two isotopic spin 1/2 doublets,
where K̄0,K− are the antiparticles of K0,K+. There are two distinct
neutral K particles, unlike the case of the π0, which is its own antipar-
ticle.

With these assignments, it has been verified that all processes, which
occur through strong interactions, conserve strangeness, while in weak
decay interactions strangeness is not conserved. It is observed that a
strangeness change of 2 units occurs with much less probability than a
strangeness change of 1 unit. Thus the charged Σ’s and Λ’s decay to
the nucleon state with the weak interaction rate, while the decay of the
Ξ’s to the nucleon state has not been seen. This classification scheme,
which came about in 1954–1955, was the precursor to the SU3 symmetry
scheme to be proposed later by Gell-Mann and Ne’eman in 1961.

Yang-Mills Field Theory (1954)

In 1954, Yang and Mills constructed a field theory in which global iso-
topic spin invariance was made into a local one. The demand for invari-
ance under local isotopic spin transformations necessitates the introduc-
tion of gauge fields. These fields have come to be known as Yang-Mills
gauge fields. At the time this theory was introduced, it was considered
an interesting theoretical exercise, and beyond that it did not have any
impact. Nearly two decades later it became a very important ingredient
in unifying electromagnetism and weak interactions, and in describing
strong interactions.

The Tau-Theta Puzzle

Another significant finding emerged from the more accurate determi-
nation of the properties of the K mesons. Some of these mesons were
observed to decay into two pions (called the Θ meson), while others de-
cay into three pions (called the τ meson). When the masses and the
lifetimes were not accurately known, these two particles were considered
different. After it was found that the masses and lifetimes were the same
within experimental error, it became clear that it would have to be an
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extraordinary coincidence if two different particles were involved. With
improved analysis using a special plot suggested by Dalitz, spin and par-
ity analyses could be done on the decay data. The analyses indicated
that the spins of these particles were zero, and the parity would have to
be even for the Θ particle with the two pion decay mode and odd for
the τ particle with the three pion decay mode. If Θ and τ are one and
the same particle, say K, parity would have to be violated in the weak
decay of the K. This opened up the question of parity conservation in
weak interactions, in particular, those responsible for β decays.

Parity Violation Observed (1957)

Lee and Yang made a thorough analysis of parity violation and proposed
an experiment to test whether parity was conserved in β decay. In 1957,
Wu and collaborators performed the experiment and found that parity
was indeed violated in nuclear β decay. A number of other experiments
established that the slow decays of many elementary particles involved
the same interaction as in nuclear β decay. Parity violation in the weak
decays of many other baryons and mesons was established.

CP Conservation (1957)

Charge conjugation (C) and parity operation (P ) are discrete symme-
tries of field theories. The operation C changes particles into antiparti-
cles, and parity operation involves changing a right-handed coordinate
system into a left-handed one by a reflection through the origin. Sym-
metry under the C operation implies that no change would occur if we
replaced all the particles by their corresponding antiparticles. Symmetry
under P operation implies that there is no preference of left-handed over
right-handed coordinate systems in their description. In an analysis of
many weak decays, it was found that along with loss of parity symmetry,
charge conjugation symmetry is also not valid.

In the case where the weak decay has neutrino as one of its products,
it is easy to see how this might come about. Assuming the neutrino has
zero mass, its spin gets aligned in or opposite to its direction of mo-
tion. The alignment is determined by the eigenvalues of an operator
called helicity; if it is left-handed (spin aligned antiparallel to the mo-
mentum), helicity has the eigenvalue −1, while if it is right-handed (spin
aligned parallel to the momentum), the eigenvalue is +1. An experiment
designed to measure the helicity of the neutrino was performed by Gold-
haber, Grodzins, and Sunyar in 1958. It determined the helicity of the
neutrino to be −1, that is, left-handed. There is no right-handed neu-
trino, which is a violation of reflection symmetry (parity). If we carry
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out a charge conjugation operation on the neutrino, we get an antineu-
trino, but its left-handed nature is unchanged. The charge conjugation
operation gives us a left-handed antineutrino. If such a particle exists
in nature, we would conclude that C symmetry holds. Lee, Oehme, and
Yang, and independently Landau, pointed out, from theoretical consid-
erations, the possibility that P and C may each be violated, but the
combined symmetry operation (CP ) may still be a good symmetry. In
the case of the neutrinos, this would imply that only left-handed neutri-
nos and right-handed antineutrinos exist in nature. Pais and Treiman
suggested that studying neutral K-meson decays would be a good test
of CP conservation.

Neutral K Mesons and CP Violation

Gell-Mann and Pais made the following interesting observations on the
neutral K mesons. The K0 and K̄0 carry different values of strangeness
at their production by strong interactions. They undergo decay by weak
interactions, and both K0 and K̄0 can undergo decay into two charged
pions. Thus when weak interactions are included, these states mix. If
CP is conserved, we can form linear combinations of K0 and K̄0 states,
one of which is even under CP , and the other is odd under CP . Let us
call the CP even stateK0

1 and the CP odd stateK0
2 . If CP conservation

holds for the decay, K0
1 will decay into two pions, while the other, K0

2 ,
will decay into three pions which are not in a symmetrical state. The two
body final state is favored by phase space and hence K0

1 has a shorter
lifetime compared to K0

2 . The consequence of this is that, if one starts
with a pure beam of K0, the K0

1 part of this beam will decay rapidly into
two pions near where the K0 was produced, while the decays of the K0

2

part will occur quite a bit farther away. These components have actually
been found experimentally, the short lifetime being about 10−10 s, and
the long lifetime being about 10−8 s.

The situation is more subtle than described above. Subsequent work
by Fitch and Cronin in 1964 found that CP is not exactly conserved;
there is a small amount of violation. This means that the short- and
long-lived components are not quite CP eigenstates but contain a mix-
ture with a small amount of the opposite CP eigenstate. The short-lived
object decays mainly into two pions while the long-lived object decays
mainly, but not entirely, into three pions. The discovery that the long-
lived object, which should only decay into three pions if CP is conserved,
actually has a small two pion decay mode, too, shows that CP is not
conserved.
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SU3 Symmetry

In the period between 1955 and 1965 a large number of new particles
were produced with the Brookhaven AGS proton machine, the Berkeley
Bevatron, and some other machines. This included the discovery of
new baryon resonances and a number of new mesons. On the baryon
side, states which seemed like excited states of the Λ, the Σ, and the
Ξ hyperons were found. On the meson side, a number of mesons which
seemed to have a spin 1, and also some further pseudoscalalar mesons,
were found.

Theorists were looking for symmetry schemes which could lead to an
understanding of the mass spectrum of these particles. Fermi and Yang,
already in 1949, had introduced an important idea that the pion might
be a composite, built as a bound state of a nucleon and an antinucleon.
Taking this notion a step further, Sakata, in Japan, tried an extension
of the isotopic spin scheme in which, in addition to the proton and the
neutron, the strange particle Λ was introduced as a basic entity, all three
forming a triplet. He introduced their antiparticles (antitriplet) as well.
He envisaged a unitary symmetry (SU3), an extension of the isotopic spin
symmetry, in which the triplet of particles transformed into one another.
He tried to build all the non-strange and strange mesons and baryons
as bound states with the triplet (and the antitriplet) as constituents.
The model met with moderate success; it was able to accommodate the
pseudoscalar mesons as combinations of the triplet and the antitriplet,
but failed rather badly when it came to the baryons, which had to be
built out of two triplets and one antitriplet. For the baryons, he found
many more states than were being seen experimentally.

Gell-Mann, and independently Ne’eman, in 1961, proposed that the
octet representation of SU3 be used to accommodate the mesons and
the baryons. This avenue of approach met with considerably more suc-
cess, for both the mesons and the baryons. Subsequently, in 1964, Gell-
Mann, and independently Zweig, proposed the constituent quark model,
according to which constituents were introduced which belonged to the
fundamental triplet representation of SU3, the baryons being built out
of combinations of three triplets, while the mesons would be built out
of triplet-antitriplet combinations. The constituent particles were called
quarks by Gell-Mann, and aces by Zweig. The name quark has since
come to be universally accepted by the community. Since three quarks
make up a baryon, each quark has to carry a baryon number of 1/3 and
be a fermion. (For simplicity, spin 1/2 was assumed for the quark.) Fur-
ther, to get all the baryon charges right, the quarks had to be assigned
fractional charges Q|e| (in units of the fundamental charge |e|), where
one quark [now called the up (u) quark] had to be assigned Q = +2/3,
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and the other quarks, [now called down (d) and strange (s)] had to be as-
signed Q = −1/3 each. The strange quark was also assigned strangeness
of −1. One of the consequences of the SU3 model is the prediction
that a baryon with strangeness −3 (bound state of three s quarks) must
exist. This particle, called the Ω− was found in experiments in 1964
and provided a remarkable confirmation of the correctness of the SU3
picture. An intriguing feature of the model is that, despite its enor-
mous successes, quarks have never been found as free particles in nature
in spite of many active searches for them. These failures to find quarks
raised the question as to whether they were real constituents of hadrons,
a question which was only answered somewhat later by studies in the
deep-inelastic scattering of high energy electrons on nucleons.

Other Theoretical Developments (1950–1970)

The theory of QED developed by Feynman, Schwinger, and Tomon-
aga was used extensively to calculate higher-order corrections to vari-
ous processes and confronted with experiments with amazing success.
Renormalization procedures in this theory led to the formulation of the
invariance of physical quantities under change of the renormalization
scale. The renormalization group equations express such invariance re-
quirements in a succinct manner. These and other developments showed
that the perturbative solution of QED was enormously successful and
could serve as a model for treating other interactions. The field theory of
weak interactions was a case in hand. Schwinger proposed in 1957 that
weak interactions may be mediated by the exchange of massive interme-
diate vector bosons. For processes involving small momentum transfers,
the interaction is characterized by an effective dimensionful coupling
constant (the Fermi coupling), which is much smaller in value than the
fine structure constant involved in QED. Still the theory involving mas-
sive charged intermediate bosons proved to be non-renormalizable. The
non-renormalizability was traced to the fact that the effective coupling
constant in weak interactions is a dimensionful one, in contrast to the di-
mensionless coupling constant of QED. A search for a field theory which
would unify electromagnetism and weak interactions was started.

The Yukawa model of the interaction of π mesons with nucleons de-
scribed by a field theory with pseudoscalar interactions has a coupling
constant which is dimensionless. It, just like QED, is renormalizable
in a perturbative treatment. In its application to nucleon-nucleon in-
teractions or pion-nucleon scattering, the value of the coupling constant
needed to fit the data is very large, making perturbative treatment mean-
ingless.
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A non-perturbative treatment of the pion-nucleon scattering prob-
lem was attempted by Dyson and collaborators at Cornell University in
1952, using an approximation known as Tamm-Dancoff approximation.
In this method the amplitude for the one meson - one nucleon state is
approximated by letting it couple only to a very few neighboring states,
so that an integral equation for the amplitude can be derived. To the
lowest order, the kernel of the integral equation involves only the lowest
power of the coupling constant. The integral equation was solved by nu-
merical methods without expanding in powers of the coupling constant,
and phase-shifts for the scattering of pions on nucleons were derived. It
was an interesting feature of this method that, in the isotopic spin 3/2
and total angular momentum 3/2 of the pion-nucleon system, the phase
shift for the state indicated a resonance behavior at an energy corre-
sponding to exciting the ∆++ isobar. Unfortunately, the theory was not
covariant. It was further found by Dyson that a consistent scheme for
renormalization does not exist, thus leading to an abandonment of this
approach.

Other approaches to treating strong interactions using local quan-
tum field theory were under development in the early 1950’s. In 1953,
Gell-Mann, Goldberger, and Thirring derived dispersion relations for
the forward scattering of pions on nucleons by imposing causality con-
ditions on the commutators of field operators. In 1954, Yang and Mills
investigated, as mentioned earlier, the consequences of demanding that
isotopic spin invariance be a local gauge invariance. They showed that
this necessitates the introduction of gauge fields in the problem, now
known as Yang-Mills fields. The work on dispersion relations was de-
veloped further by Bogolyubov and collaborators in the Soviet Union
in 1956. They derived dispersion relations in field theory for the pion-
nucleon scattering amplitude in the general case. The formulation of an
axiomatic field theory framework for the S-matrix was initiated in 1955.
Mandelstamm proposed a representation for the scattering amplitude in
1958 and derived dispersion relation in two variables, the energy and the
angle of scattering.

The S-matrix theory of strong interactions was actively developed
by Chew and collaborators in this period, deriving a number of interest-
ing results. A new method for performing the sum over partial waves
to obtain the scattering amplitude in potential scattering was put for-
ward by Regge in 1959. This involved the introduction of poles in the
complex angular momentum plane, now called Regge poles. Chew and
collaborators, in 1962, investigated the consequences of proposing that
all baryons and mesons are Regge poles which move in the complex an-
gular momentum plane as a function of the energy. The paths on which
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the poles move are called Regge trajectories. They are characterized
by a set of internal quantum numbers, parity, baryon number, isotopic
spin, strangeness, etc., and interpolate between physical values of spin J
for mesons and J − 1

2 for baryons. Properties of the Regge trajectories
are further dictated by the requirements of analyticity and unitarity of
the S-matrix. The Regge trajectories are straight lines when plotted on
the (J,M2) plane, where J is the spin of the particle and M its mass.
They argued that the high energy behavior of the amplitude for some
reaction is dictated by the presence of Regge poles in what is called a
crossed channel reaction. Regge trajectories were useful in providing in-
formation on the asymptotic properties of scattering amplitudes. They
conjectured that the experimentally observed fact of total cross sections
(for a number of processes) approaching a constant limit implies the ex-
istence of a Regge pole with vacuum quantum numbers—the so-called
Pomeron trajectory. Other Regge trajectories lay below the Pomeron
trajectory. A prediction of the theory was that the forward diffraction
peak must shrink with increase in energy. This was clearly observed in
the experimental data.

The year 1961 saw the emergence of Goldstone’s theorem: If a global
symmetry of the Lagrangian for some system is spontaneously broken,
then there must necessarily appear massless bosons, now called Gold-
stone bosons. This theorem has since played a very important role in
particle physics. Another notable work in that year was the recogni-
tion by Salam and Ward that demanding local gauge invariance would
be a good way to construct quantum field theories of interacting fields.
Glashow, in the same year, suggested using the gauge group SU2 × U1
for the interaction of leptons, which would require a neutral weak gauge
boson in addition to the charged weak gauge bosons and the photon. In
1964, an example of a field theory with spontaneous breaking of gauge
symmetry, giving rise, not to a massless Goldstone boson, but to massive
vector bosons, was constructed by a number of people: Higgs, Brout, and
Englert, and Guralnik, Hagen, and Kibble. This mechanism has since
been called the Higgs mechanism for the generation of masses of vec-
tor bosons. It was also the year in which Salam and Ward proposed
a Lagrangian for synthesizing electromagnetism and weak interactions,
and produced some crude estimate for the mass of the quanta which
mediate weak interaction. Weinberg, and independently Salam, in 1967,
put forward a field theory, based on the gauge group SU2 × U1, for the
unification of electromagnetic and weak interactions. This theory used
the mechanism for the spontaneous breaking of gauge symmetry to gen-
erate masses for the weak gauge bosons, charged as well as neutral. The
charged weak gauge boson was predicted to have a mass around 80 GeV,
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and the neutral weak gauge boson a mass about 90 GeV, while the pho-
ton was left massless. It also predicted that the neutral weak gauge
boson should have an interaction comparable to that of the charged
weak gauge bosons. It was hoped that such a theory with spontaneous
symmetry breaking would be renormalizable.

CP violation in the neutral K-meson system was observed by Chris-
tenson et al. in 1964. Wolfenstein put forward the super-weak the-
ory of CP violation in neutral K mesons. The need for an additional
quantum number (now called color) carried by quarks was pointed out
by Bogolyubov et al., in 1965, in an attempt to resolve conflict with
Fermi statistics for the ground state baryons. In 1966, in analogy to
the electromagnetic interactions being mediated by vector photons be-
tween charged particles, Nambu proposed that strong interactions be-
tween quarks may be mediated by massless vector fields whose quanta
are now called gluons. This may be said to be the beginnings of quantum
chromodynamics (QCD). Also in 1966, Han and Nambu proposed the
three triplet quark model of hadrons, each triplet being distinguished by
a new quantum number, which we now refer to as color. The emergence
of a connection between CP violation and the baryon asymmetry of the
universe occurred in 1967. It was also in 1967 that, a generalization
of the Higgs mechanism of mass generation for the Yang-Mills type of
gauge field theories was given by Higgs and Kibble; Faddeev and Popov
in the Soviet Union solved some of the difficulties in the formulation of
Feynman rules for Yang-Mills type gauge field theories by introducing a
special method, now referred to as the Faddeev-Popov method.

In the late 1960’s, the S-matrix theory of strong interactions led to
a new model for hadrons. Hadrons were pictured as different modes
of vibration of relativistic string. This period may be said to be the
origin of string theories. From that period until the early 1980’s, various
theoretical aspects of the picture were clarified; from the point of view
of application to hadrons, however, not many results can be seen. In
1984 some of the major hurdles in the theory were overcome and string
theory started blooming again. It is at present one of the hottest topics
in theoretical and mathematical physics.

Other Developments in Experimental Techniques
(1950–1990)

Synchrotrons based on the phase stability principle were constructed.
The construction of particle accelerators based on the strong focusing
principle were also undertaken. The Cosmotron at Brookhaven National
Laboratory, the Bevatron at Berkeley, the AGS proton synchrotron at
Brookhaven National Laboratory, are some of the examples of acceler-
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ators in the U.S. which contributed a lot to the experimental data on
particle physics of this period. The first GeV electron linear acceler-
ator was completed at Stanford Linear Accelerator Center (SLAC) in
1955 and provided, in its earlier stages of development, data on the
electromagnetic structure of nuclei, and later on, through deep inelastic
scattering studies, provided information on the structure of the nucleon
itself.

The European physicists, who had remarkable achievements to their
credit during the first half of the twentieth century, had their work badly
interrupted due to the second world war. Many leading personages mi-
grated to the U.S. The post-war rebuilding of science in Europe started
around 1950. Despite the hoary traditions of many of the institutions,
no single European country by itself could spearhead this renaissance.
The creation of a European laboratory, by a consortium of European
nations, in the form of “Conseil Européen pour la Recherche Nucléaire”,
now commonly referred to as CERN, occurred in this period. One of the
aims of CERN was to provide high energy accelerators for physicists in
Europe to do front-line research in high energy physics. Since its incep-
tion, CERN has played a leading role in developing colliding beam ma-
chines and associated detectors for particle physics experiments. These
efforts have contributed a great deal toward our understanding of the
ultimate structure of matter.

Hand in hand with the development of accelerators in the U.S. and
Europe, detector developments made significant progress. Solid as well
as liquid scintillation counters were developed. Use of photomultiplier
tubes to view the scintillations went together with the developments of
scintillation counters. Semi-conductor detectors were developed. Spark
chambers which could track particles were invented. Proportional coun-
ters were developed and were useful in neutron detection. Bubble cham-
bers were invented in 1953, and dominated the scene for over two decades
in obtaining evidence for the existence of new particles and new phe-
nomena. Flash tube chambers came on the scene in 1955. Cherenkov
detectors, based on the radiation emitted by charged particles in matter
traveling at a velocity greater than the velocity of light in the medium,
were developed and used successfully in the discovery of the antiproton
in 1956. Invention of the multiwire proportional chamber in 1968 re-
presented a major step in accurately detecting and measuring particle
properties. They could be used as particle track detectors and had the
further capability of measuring energy loss. With small spacing of the
sense wires, they were good in experiments where the data rates were
high. Drift chambers were soon to follow on the heels of the development
of multiwire proportional chambers.
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A realistic proposal to explore high energy processes by colliding one
beam of particles against another was put forward for the first time
in 1956. The advantage of such a method lies in the fact that all the
energy in the beams is available for new particle production, although
the rate of occurrence of processes is not as high as in beams colliding
with fixed targets. Considerable developments have occurred since the
idea was initially put forward; ingenious methods, called beam cooling
methods, to increase the intensities in the colliding beams have been in-
vented. Colliding beam accelerators are simply called colliders and the
intensity in these machines is characterized by a quantity called lumi-
nosity of the collider. Colliders of electrons on positrons have been in
operation since the early machines started operation at Frascati, Italy
in 1961. Since then a number of e−e+ colliders at steadily increas-
ing energies and luminosities have been constructed and have produced
clean results in different parts of the world. In this connection, men-
tion must also be made of the establishment in Hamburg, Germany of
the DESY (Deutches Elektronen-Synchrotron) laboratory, which has de-
veloped electron-positron colliders and also the electron-proton collider
named HERA (Hadron-Electron Ring Accelerator).

Electrons and positrons have been found to be structureless points up
to the highest energies explored. Colliders involving them are preferred
to those involving hadrons as one does not need to be concerned with the
effects of the structure of the beam particles on the new phenomena being
explored. The first of these was the Intersecting Storage Ring Collider
(ISR) for protons operating at CERN in 1971, involving two 31 GeV
proton beams. Since then, other proton-proton (and proton-antiproton)
colliders or electron-proton colliders have been proposed and put into
operation in Europe and the USA, starting in the 1980’s and continuing
well on into the present century.

Detectors having cylindrical geometry to surround the collision points
of the beams in colliders have been developed. Cylindrical proportional
and drift chambers are deployed in such experiments as central detectors.
Provision of high magnetic fields for the measurement of momentum of
particles is an important element in the design of detectors. The trend
has been toward assembling multipurpose detectors which are combina-
tions of a number of component detectors, each component acquiring
data on specific properties of the particles originating at the collision
point, all at one time. Studies at LEP in CERN, and at SLC in Stan-
ford, have been done with a number of multipurpose detectors. The
data obtained from these experiments have significantly advanced our
understanding of elementary particles and their interactions.
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Direct Observation of Neutrinos (1956)

Going back to the mid 1950’s, Reines and Cowan, in 1956, succeeded in
detecting free antineutrinos for the first time. The source of antineutri-
nos was a nuclear fission reactor. These were incident on a large target
containing a liquid scintillator rich in hydrogen and induced the reac-
tion ν̄e + p → e+ + n. The occurrence of this reaction was confirmed by
the detection of the gamma pulse from the annihilation of the positron,
followed by a delayed gamma pulse from the capture of the neutron on
the proton in the target, the delay time being the (known) slowing down
time of the neutron prior to its capture.

Neutrinos of Different Flavor (1957)

In 1957, Nishijima pointed out the need for a new property characterizing
massless neutrinos. The decay of the muon into an electron with no
associated neutrinos (for example, µ → e + γ) has been searched for
and not found. This transformation would be forbidden if the muon
and the electron carried different lepton numbers, and these numbers
were required to be separately conserved. Since muon-decay to electron
plus two neutrinos is observed, the two neutrinos cannot be identical;
one neutrino must carry off electron lepton number and the other must
carry off muon lepton number, such that each type of lepton number can
be conserved in the decay. The electron and its neutrino form a family
and the muon and its neutrino form a second family. These families are
said to carry electron flavor and muon flavor, respectively.

Experimental Discovery of Neutrinos of Different
Flavor (1963)

The existence of a muon neutrino distinct from the electron neutrino
was experimentally established by Lederman, Schwartz, and Steinberger
in 1963, using neutrinos from pion and kaon decays. These neutrinos
produced only muons through interaction with nuclei of a target, and
no electrons were produced.

Quark-Lepton Symmetry and Charm Quark
Proposal (1964)

Two lepton families, the electron and its associated neutrino and the
muon and its associated neutrino, were established by 1964. On the
quarks side, however, only three quarks were known: the u, d, and s
quarks, of which the first two were considered as members of one family
with isotopic spin 1/2. Bjorken and Glashow, on the basis of lepton-
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quark symmetry argued, that the s quark belonged to a second quark
family, the other member of the family yet to be found. They called the
missing member of the second family, the charm quark (c). This quark
was not found until much later.

Bjorken Scaling and Its Experimental Discovery
(1969)

Experimental studies of the deep inelastic scattering of electrons on nu-
cleons were in progress at the Stanford Linear Accelerator Center. The
data were analyzed in terms of two structure functions associated with
the nucleon. These structure functions are in general functions of two
variables: (1) q2, the square of the four-momentum transferred, and
(2) ν, the energy transferred to the nucleon by the incident electron.
Both these variables take on large values in the domain of deep inelastic
scattering. Bjorken, through arguments on the behavior of the com-
mutators of two currents at almost equal time at infinite momentum,
came to the conclusion that the structure functions will depend only
on the ratio (ν/q2) in the limit that ν → ∞ and q2 → ∞. This is
referred to as Bjorken scaling. Precisely such a scaling was found by
Friedman, Kendall, and Taylor from their experiments on deep inelastic
electron-nucleon scattering at SLAC in 1969.

Parton Model (1969)

Feynman put forward a model of the structure of the proton which could
explain the observed Bjorken scaling. He considered the proton to be
made up of partons, each parton carrying a fraction x of the momentum
of the proton. At extremely high incident electron energies and momen-
tum transfers, the time duration of the interaction of the electron with
a parton is so much shorter than the time duration of interaction of
partons among themselves that the partons can be considered as struc-
tureless and free. The scattering cross section of the electron on the pro-
ton can be obtained by summing the cross sections for electron-parton
scattering and integrating over all the parton momenta with a parton
momentum distribution function in the proton. From the kinematics of
the electron-parton collision, it can be easily shown that x = Q2/(2Mν),
where Q2 = −q2, andM is the mass of the proton. The parton distribu-
tion functions, which are functions of x, completely determine the cross
section for the deep inelastic electron-proton scattering. Feynman’s x
is clearly the same as the Bjorken scaling variable except for some con-
stant factors. Since the proton is known to contain quarks, the partons
may be identified with quarks. The deep inelastic scattering process is
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determined by the quark distribution functions. For given Q2, small
x corresponds to large energy transfers ν, and the quark distribution
function for small x gives a high resolution view of the proton. Quarks
which have x � 1/3 correspond to the quarks (valence quarks) of the
constituent quark model of the proton and provide a low resolution view
of the proton.

Renormalization of Yang-Mills Field Theory (1971)

In 1971 three remarkable pieces of work were completed by ’t Hooft, and
by ’t Hooft and Veltman, which have had enormous impact on the fur-
ther development of the field of particle physics. In one paper, ’t Hooft
gave a rigorous proof of the fact that Yang-Mills field theories are renor-
malizable. In another paper, ’t Hooft proved that Yang-Mills field theo-
ries with spontaneously broken gauge symmetry are also renormalizable.
In a third paper by ’t Hooft and Veltman, a new method, dimensional
regularization, was given for the regularization of gauge field theories.
Earlier, in 1967, Weinberg had already proposed a Lagrangian for elec-
troweak synthesis based on SU2×U1 gauge group and used the mechan-
ism of spontaneous breaking of gauge symmetry to generate masses for
the (weak) gauge bosons. With ’t Hooft’s proof on the renormalizabil-
ity of Yang-Mills theories with spontaneously broken gauge symmetry,
it followed that the field theory containing electroweak synthesis was
renormalizable. Thus as far as the calculation of higher order processes
were concerned, the electroweak field theory was on a par with QED,
and higher order processes could be calculated, just as in QED, without
ambiguities. Of course, in the electroweak theory, many more parame-
ters appear (for example, masses of the fermions and gauge bosons), for
which experimental input is necessary, than is the case for QED.

Experiments Find Weak Neutral Current Effects
(1973)

One of the consequences of electroweak unification was the prediction of
the neutral counterpart Z0 of the charged weak gauge bosons W± with
comparable couplings to fermions. This would mean that there must
exist neutral current weak processes which occur at rates comparable
to those of the charged current weak processes. In particular, if the
charged current reaction, νµ + nucleus → µ− + X occurs, in which a
muon and hadrons are produced in the final state, there must also occur
the neutral current process νµ + nucleus → νµ +X. The neutrino will
not be seen, and the signature for a neutral current process will be the
appearance of hadrons alone in the final state. Exactly such events were
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seen in the Gargamelle bubble chamber exposed to the neutrino beam
at CERN. Events corresponding to the elastic scattering ν̄µe− → ν̄µe

−

were also observed. These experiments showed that neutral current ef-
fects were indeed being observed. To get a quantitative measure of
the effects, more sensitive experiments were planned. Experimenters
at SLAC measured the parity-violating asymmetry in the scattering of
polarized electrons off a deuteron target. This involves measuring the
difference between the deep-inelastic scattering cross sections for right-
and left-handed electrons on deuterons eR,Ld → eX. A good measure-
ment of this asymmetry yielded an accurate value for the weak mixing
angle.

Yang-Mills Theories and Asymptotic Freedom
(1973)

Investigations by Gross and Wilczek, and by Politzer, on Yang-Mills
gauge field theories revealed the existence of a very interesting prop-
erty of these theories. The interaction between particles mediated by
the gauge fields vanishes as the distance between the particles tends to
zero (or the square of the four-momentum transfer between the parti-
cles tends to infinity). Since the particles behave as free particles in
the asymptotically high energy region, this behavior came to be called
Asymptotic Freedom. This feature provides a natural explanation for
the parton model of hadrons and hence for Bjorken scaling.

QCD Formulated (1973)

Fritzsch, Gell-Mann, and Leutwyler formulated a Yang-Mills gauge field
theory in which local invariance under color transformations was de-
manded. This necessitates the introduction of color gauge fields. In a
theory with three quark colors, there is an octet of massless colored glu-
ons. Gross and Wilczek showed that the exchange of the colored gluons
between colored quarks gives rise to an interaction which will have the
property of asymptotic freedom. If the gauge symmetry is not broken,
they pointed out that the theory has severe infrared singularities which
will prevent the occurrence of non-singlet color states. Thus it was pro-
posed that observed hadrons are color singlets. Colored objects would be
infinitely massive and will not be found in nature. This theory encom-
passes all the observed facts, Bjorken scaling, parton model, and quarks
as partons with color. This theory, called quantum chromodynamics
(QCD) is considered as the fundamental theory of strong interactions.
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Standard Model Formulated (1973–1974)

Around this period, the ideas put forward earlier by Weinberg and
Salam, and by Glashow, on electroweak unification gradually led to the
formulation of the so-called standard model. The model Lagrangian is
based on the gauge group SU2 × U1. The left-handed fermions form
(weak) SU2 doublets, while the right-handed fermions are in SU2 sin-
glets. Of the four original gauge fields, three acquire masses by the
spontaneous breaking of gauge symmetry, via the Higgs mechanism,
and become the massive W+, W−, and Z0 bosons. One of the orig-
inal gauge bosons, which is left massless, is identified with the photon.
The fermions of the theory are the leptons and quarks. The theory would
have triangle anomalies unless the fermions in the theory had appropri-
ate hypercharges such that all the anomalies cancel among themselves.
The hypercharge assignments are such that cancellation of anomalies
does indeed take place. Thus, the electroweak theory is renormalizable.
The fact that the quarks carry color is irrelevant for the electroweak
sector; in summing over the colors, one gets only a numerical factor for
the number of colors.

The quarks also have strong interactions. For dealing with this part,
use was made of the Lagrangian for QCD which was available from the
work of Fritzsch, Gell-Mann, and Leutwyler; and Gross and Wilczek;
and Politzer. Since QCD is also renormalizable, adding it to the elec-
troweak theory produced a renormalizable gauge field theory which is
capable of dealing with electroweak and strong interactions. This is
the standard model. Calculations of strong interaction corrections to
electroweak theory, called QCD corrections, are feasible in the realm of
high energies where the strong interaction effects are small, due to the
asymptotic freedom of QCD, and perturbation theory can be used. The
time was ripe for mounting experiments to test the predictions of the
standard model.

Discovery of Charm Quark; Hidden Charm (1974)

Ting’s group at the Brookhaven (AGS) proton synchrotron studying
the reaction p+Be → e+e− +X and Richter’s group at SLAC studying
e+e− → hadrons, e+e−, µ+µ− simultaneously reported the finding of
a very sharp peak in the produced e+e− spectrum corresponding to a
mass of 3.1 GeV. This particle was given the name J/ψ. Detailed studies
of this particle have revealed that it is a vector meson. In terms of the
quark picture, it was identified as a 1S bound state of charm quark and
its antiparticle (cc̄ bound state) with no net charm (hence called hidden
charm). Based on this interpretation, an estimate of the mass of the
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charm quark around 1 GeV–1.6 GeV could be made. Following the initial
discovery of the cc̄ bound state, excited states, 2S, 3S, etc., of the system
were also discovered. The bound system has been called Charmonium.
The charm quark together with the strange quark completed the second
generation of quarks after the (u, d) of the first generation.

Charm Hadrons Found (1975–1977)

According to the constituent quark model, charm hadrons, which are
bound states of charm quark with u, d, or s quarks (or antiquarks),
must exist. Σ++c , a (uuc) combination, and Λ+c , a (udc) combination,
were both found to exist in 1975. The D mesons—D+, (cd̄); D0, (cū);
D−, (c̄d)—were all found in 1976. These mesons are the analogs of the
K mesons of the first generation of quarks. Evidence of mesons, which
may be called strange-charm mesons, were also found soon after this
time. D+s (cs̄ combination) and D−

s (c̄s combination) were found in
1977. Evidence for a charm antibaryon Λ̄−

c , (ūd̄c̄) was also found in
1976.

Tau Lepton Found (1975)

At SLAC SPEAR e+e− ring, Perl and associates found events in e+e−

annihilation, where the final products were e±µ∓+missing energy, with
no other associated charged particles or photons. Most of these events
were found at a center of mass energy of about 4 GeV. The missing
energy and the missing momentum in these events indicated that at
least two additional particles were produced. Perl proposed that these
events can be explained if a pair of heavy leptons were produced with
the lepton mass in the range 1.6 GeV to 2 GeV, one lepton decaying to
electron and two neutrinos and the other decaying into muon and two
neutrinos. The new heavy lepton was given the name of τ lepton and
is a member of a third family of leptons. It, and its associated neutrino
ντ , carry a tau lepton number and form the third generation family.

Discovery the of Bottom/Beauty Quark; Hidden
Bottom/Beauty (1977)

The study of the reaction in which 400 GeV protons were incident on a
nucleus leading to a final state in which a pair of muons of opposite sign
along with some hadronic debris was produced revealed the existence of
a strong and narrow peak in the signal corresponding to a mass of the
µ+µ− system of 9.5 GeV. This strong enhancement at a dimuon mass of
9.5 GeV was attributed to a new particle called Upsilon (1S), [Υ(1S)].
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The process observed was interpreted as p + nucleus → Υ(1S) + X,
Υ(1S) → µ+µ−. It was proposed that this new particle was the bound
state of yet another quark, called the bottom or beauty quark b, and its
antiparticle b̄. The Υ(1S) is a bb̄ bound state analogous to J/ψ which is
a cc̄ bound state, and just as charm is hidden in J/ψ, bottom (or beauty)
is hidden in Υ meson. Very shortly after this, the existence of Υ(1S) was
confirmed by the PLUTO collaboration in e+e− DORIS collider ring at
DESY. From a measurement of the electron decay width of Υ, a charge
assignment of (−1/3)|e| for the bottom (beauty) quark was found to
be preferred. Thus, the bottom member of the third family of quarks
was found. Further work discovered other features of this hadron. An
estimate of the mass of the b quark is found from the interpretation
of Υ(1S) as a bound state of bb̄ and is between 4.1 GeV and 4.4 GeV.
Higher excited states, (2S), (3S), etc., have been found here as for the
charmonium system and are called the bottomonium in this case.

The standard model requires that there must exist the “top” member
of this family with charge +2/3|e| to pair off with the bottom quark so
that anomalies in electroweak theory can cancel. To complete this new
family, the “top” member remained to be found if the standard model
is to be proven right.

Efforts at Grand Unification

The electroweak model unifies electromagnetism and weak interactions
by starting from a larger symmetry group than U1. The question nat-
urally arose as to whether there were any larger symmetry groups in
which all three interactions—the strong, the electromagentic, and the
weak—could be unified. The question was answered in the affirmative
by a number of people. In 1974, Georgi and Glashow put forward SU5
as the gauge group. At some large energy scale denoted by M , they
assumed that the symmetry is SU5. At this scale there is only one cou-
pling; the couplings, g3 of SU3, g2 of SU2, and g1 of U1, are all equal. As
the energy is lowered, these couplings change (or run) according to the
renormalization group equations, which makes them look different. Es-
timation of the unification mass scale puts it at about 1016 GeV. Other
efforts were by Pati and Salam (1973) and others who worked on SO(10).
The general problem of embedding the Standard Model group in a larger
grand unifying group was studied by Gell-Mann, Ramond, and Slansky
in 1978.

One consequence of these grand unification models is the prediction
that the proton will not be a stable particle and will decay, violating
baryon number. The lifetime for proton decay could be calculated in
these unification models and was of the order of 1029 to 1033 years,
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depending upon which grand unified symmetry group was considered.
These ideas spawned a number of experiments in different parts of the
world looking for proton decay. Because of the expected extreme rarity
of proton decay events, detectors looking for such events are very large
and are usually constructed deep underground to cut down the effects
of cosmic rays.

Supersymmetry

A new kind of symmetry operation, which generalizes the space-time
symmetries of quantum field theories and transforms bosons into fermions
and vice versa, was discovered in the early 1970’s. Until that time, all
the symmetry transformations left bosons as bosons and fermions as
fermions.

One of the reasons for the interest in supersymmetry stems from the
attempt to unify all forces in nature including gravity, which naturally
occurs at the scale of the Planck mass 1019 GeV. The scale of electroweak
physics, on the other hand, is set by the vacuum expectation value of the
Higgs field which is about 250 GeV. The vast ratio in these scales, some
seventeen orders of magnitude, was considered a “hierarchy” problem.

In the electroweak theory, it was found that the Higgs particle gets
renormalization contributions to its mass which are such that the mass
ultimately reaches the unification mass value. In other words, the low
mass scale of Higgs mechanism is not stable with respect to radiative
corrections. One natural way to keep the low mass scale stable is to
introduce supersymmetry. The radiative corrections get contributions
from both bosonic and fermionic intermediate loops of particles and
these would cancel if there were exact supersymmetry.

But supersymmetry is not exact. Otherwise, nature would have ex-
hibited degeneracy between bosonic particles and fermionic particles; for
example, there are no spin zero particles having the mass of the electron,
the muon, the proton, etc. Hence, it must be a broken symmetry, and
the question of interest is the scale at which supersymmetry breaking
occurs. This scale must be related to the electroweak scale of 250 GeV
so that the large hierarchy in mass scales from the W ’s and Z’s to the
Planck mass scale can be understood. Supersymmetric theories with
these low energy characteristics have been constructed which, besides
providing stability to the low mass scale, predict the existence of su-
persymmetric partners to all the known particles at mass values which
can be looked for at currently existing accelerators or at future proposed
facilities. So far searches for the supersymmetric particles have turned
up nothing. If, in future searches, evidence for supersymmetry is found,
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it could point the way for the unification of all the fundamental forces
including gravity.

Weak Neutral Currents (1978)

The earlier indication of the existence of weak neutral currents was con-
firmed in a very beautiful and imaginative experiment performed at
SLAC. A signal for the existence of weak neutral currents is that par-
ity violation will occur. One can calculate how much parity-violating
asymmetry should be expected in the inelastic scattering of longitudi-
nally polarized electrons from hydrogen and deuterium. The experiment
measured exactly this quantity in deuterium and found a value in ex-
cellent agreement with theoretical expectations. This established the
existence of weak neutral current of the right magnitude and character-
istics beyond any doubt.

Another place where neutral currents will have an effect is in atomic
transitions. The electron circulating around the atomic nucleus has, in
addition to the electromagnetic interaction with the nuclear charge, a
weak interaction due to the virtual exchange of the neutral weak boson.
This latter interaction is parity violating and the atoms in a medium
should exhibit small optical activity. If plane polarized light is passed
through the medium, the optically active atoms will rotate the plane of
polarization of the light. The expected rotation angle is very small be-
cause the neutral current effect is so small. The experiments are difficult
to perform and the early experiments were inconclusive. With improve-
ments in techniques, optical rotation of the plane of polarization of the
expected amount was observed. This again confirmed the existence of
weak neutral currents.

Evidence for Gluons (1979)

The experimental analysis of e+e− annihilation into hadrons reveals the
hadrons as a jet of particles, back to back, coming off from the annihila-
tion vertex. The interpretation given is that the annihilation produces
a quark-antiquark pair, which, as they separate, subsequently material-
ize into color neutral hadrons by picking off quarks or antiquarks from
the vacuum. It is these color neutral hadrons that are seen, in the ex-
periments, as thin jets of hadrons. The jets go in opposite directions
because, in the e+e− collider, the annihilation occurs with the center of
mass of the annihilating pair at rest. If QCD is to describe quark inter-
actions through the virtual exchange of colored gluons, one should be
able to see the gluons coming from the annihilation vertex also. Thus
in addition to back to back jets of hadrons, one should see three jets
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of hadrons produced with zero total momentum for the jets. Three
jet events were indeed observed at the DESY-PETRA electron-positron
collider in 1979. The data were completely consistent with a picture
in which quark-antiquark pairs are accompanied by hard non-collinear
gluons.

Gluon Spin Determined (1980)

In e+e− annihilations into three jet events, the angular correlations be-
tween the axes of the three jets have behaviors which depend upon the
spin of the gluon. The expected angular correlations assuming spin 0 or
spin 1 for the gluon can be worked out assuming QCD. Experimental
data were found to favor the scenario in which the gluon was attributed
spin 1, and disfavored spin 0. Thus gluon, like the photon, carries spin 1.

Hadrons with b Quarks Found (1981)

Based on the fact that mesons and baryons containing the charm quark
were found a few years earlier, it was reasonable to expect that mesons
and baryons containing b-quarks should also be found at higher energies.
Indeed, mesons containing b-quarks, were found in 1981 at the Cornell
e+e− storage ring with the CLEO detector. In a center of mass en-
ergy range of 10.4 GeV to 10.6 GeV, corresponding to the Υ(4S) state,
the experimenters observed a good enhancement of single electrons pro-
duced from the annihilation vertex. They interpreted these electrons as
coming from the following sequence. First, Υ(4S) is produced from the
annihilation which, if it is above the threshold for bb̄ production, pro-
duces b and b̄. These pick up quarks (or antiquarks) from the vacuum
and become new mesons, B and B̄. Each B meson, decays into a lower
mass state X plus an electron and a neutrino: B → e+ ν +X.

If the interpretation given above is correct, the B meson should also
decay according to: B → µ + ν + X. Thus, one should observe single
muon signals also, just like the single electron signals. If the B̄ meson
also decays into a muon, one can expect to see a signal of two muons,
one from the decay of the B and the other from the decay of the B̄. All
such signals were seen confirming the correctness of the interpretation
and thus the existence of the B meson.

In the same year, evidence for a baryon containing the b-quark was
found at the CERN ISR pp collider. This was a heavy baryon whose
mass was measured to be 5.4 GeV, electrically neutral, and decayed into
a proton, D0, and π−. It was found to be produced in association with
another hadron which decayed semi-leptonically into a positron. The in-
terpretation which fit the observation involved an associated production

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 43

✐

✐

✐

✐

✐

✐

✐

✐

of “bottom (beauty)” states in pp interactions. The observed baryon
fitted into the quark composition (udb), which could be called a Λ0b .

Discovery of W± and Z0 (1983)

The discovery of the W and Z bosons was a long time in coming al-
though there were many indirect indications for their existence. They
were found in the Spp̄S collider at CERN by UA1 and UA2 collabora-
tions. They looked for events with large transverse energy electrons and
events with large missing transverse energy. These events pointed to the
existence of a particle of mass about 80 GeV with a two-body decay.
The interpretation that fit the data best was as follows: pp̄ → W±X,
W± → e±νe. The mass of about 80 GeV is very nearly the same as
predicted for the weak vector boson mass in the theory of electroweak
unification. It is thus clear that these experiments found the charged
weak bosons.

In the same year, the UA1 collaboration reported on observation
of electron-positron pairs, which appear to have originated from the
decay of a particle of mass about 95 GeV. Observation of an event with
µ+µ− pair also pointed to its origin from the decay of a particle of
mass about 95 GeV. These observations are consistent with the process
pp̄ → Z0 +X, Z0 → e+e−, µ+µ−. UA2 collaboration also found events
leading to electron-positron pairs which could have originated from the
decay of a particle into e+e− or into e+e−γ. The mass deduced from a
study of four of these events was about 92 GeV. The mass values for the
observed particle suggest that it is the neutral weak gauge boson of the
electroweak model.

With these discoveries, the standard electroweak model was placed
on a firm footing. By 1986, the properties of the weak gauge bosons
were more precisely determined, and no deviations were found from the
predictions of the standard model. However, high precision quantitative
tests of the standard model could not be done as the experimental data
were limited in their precision. Such tests came from the Large Electron
Positron (LEP) collider at CERN, and from SLC at SLAC, which started
operating a few years later.

High Energy e+e− Experiments at LEP and SLC

High precision tests of the standard electroweak model had to await the
construction and operation of the Large Electron Positron (LEP) collider
at CERN. The Stanford Linear Collider (SLC), which was completed in
1989 and had polarization capabilities in the beams, was a unique device
with which to carry out precision tests of the standard model.
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The LEP collider is in the form of a circular ring of 27 km circum-
ference inside which a vacuum pipe contains counter-rotating bunches
of high energy electrons and positrons. These bunches are arranged to
collide and annihilate at four collision points. In the first phase, LEP1
(1989–1995), the energy in each beam was enough to produce the Z0 and
sweep through the peak. The high luminosity of the beams enabled the
production of millions of Z0’s, and a detailed quantitative study of their
properties could be undertaken. At each of the four collision points,
highly sophisticated multipurpose detectors surrounded them to catch
all the products formed in the annihilations. These detectors have the
capability of making a precise determination of the identity of the parti-
cles produced, their momenta, and other properties. The four detectors
are called ALEPH, DELPHI, L3, and OPAL. They are huge, arranged
in the form of cylinders surrounding the beam pipe, typically weighing
several thousands of tons, and occupying a volume of roughly (12 m)3.
Typically, experiments mounted at each detector are run by collabora-
tions of several hundred physicists and engineers from many universities
and national laboratories spread all over the world. Details regarding
these detectors will be found listed in a later section.

The SLC is an outcome of extensive upgrade of the two-mile long lin-
ear accelerator that was functioning previously at SLAC. The upgrades
involved raising the energy of the electrons and positrons to 50 GeV,
facilities to reduce the beam size to small dimensions, sets of magnets
for transporting the separate electron and positron beams in opposite
directions from the linear accelerator, and bringing them to a collision
point. The electron and positron beams were in pulses of thirty per
second with each pulse containing about 1010 particles. An elaborate
system was put in place to focus the colliding bunches to an incredible
size no larger than four microns by four microns. SLC started func-
tioning in 1989. In 1992 a new source for producing polarized beams of
very high intensity was added so that polarized beams of electrons and
positrons could be produced and made to collide to produce Z0’s.

The detector used initially with SLC was an upgrade of the Mark
II detector, used earlier at the SPEAR and PEP rings. In 1991 the
upgraded Mark II was replaced by a complete detector system specially
constructed for use with SLC, the SLC Large Detector (SLD).

The four CERN LEP experiments ALEPH, DELPHI, L3, and OPAL,
and the SLC at SLAC with the SLD detector have all produced data
of great precision. Quantitative high-precision tests of the standard
electroweak model have been carried out, and extensive searches for
hints of new physics have been made. The most significant results may
be summarized as follows:
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• All experiments have measured the line shape of the Z0 resonance.
This gives an accurate measure of the mass of Z0 and its width.
Since the various ways in which this particle can decay contribute
to its width, the number of lepton families that exist in nature
can be determined from an accurate measurement of the width of
the Z0. All experiments have concluded that the number of such
lepton families is just three.

• All LEP experiments have verified a property called universality;
this is a property which says that the particles in the three families
all behave in the same way with respect to the weak interactions.
In other words, the only differences between the electron, muon,
and tau are their masses; their weak interactions are universal.
One of the big questions, for which there is no answer, is why these
particles behave in such identical fashion despite the fact that they
have such widely different masses. This property of universality is
also shared by the three quark families.

• In the standard electroweak model, the mechanism for generating
masses for the gauge bosons as well as for the fermions is the
Higgs mechanism. The Higgs scalar particle is predicted to exist,
and the search for it has been one of the chief occupations of all
the experiments. Unfortunately, the mass of the Higgs particle
is not known, even approximately, so searches have to be made
in all regions of masses. Despite intensive searches, none of the
LEP experiments see a signal for the Higgs particle in the range
of masses accessible to them. The experiments have put a lower
limit on the mass of the Higgs particle. This limit, which is about
100 GeV with data from LEP1, has been pushed up to about
114 GeV with data from LEP2.

• With LEP2 upgrade of the energies of the electron and positron
beams, production of W -boson pairs has been possible. Accurate
measurements of the masses of the W ’s and their various decay
channels have been completed.

• Searches for supersymmetric particles in the minimal supersym-
metric extension of the standard model have been carried out. No
supersymmetric particles have yet been found.

• SLD at SLC had the additional feature that it could collect data
on Z0 with polarized beams. Due to the polarization, there is
expected to be a left-right asymmetry at the position of the Z0
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resonance. The left-right asymmetry, ALR, is defined as the dif-
ference σL− σR divided by the sum σL+ σR, where σL(σR) is the
cross section for an incident left-(right-)handed incident electron.
This asymmetry has been measured very precisely at SLD, with
the uncertainties due to systematic effects mostly canceling. The
asymmetry is extremely sensitive to the electroweak mixing angle
parameter of the standard model, sin2 θW . Precise measurement
of the left-right asymmetry has enabled them to determine the
world’s best value for this parameter. The result derived for this
parameter has significant implications for the value of the Higgs
mass.

• At the time of this writing, the ALEPH experiment has reported
seeing a very slight excess of events which could be interpreted as
a possible signal for a Higgs particle at a mass close to 115 GeV.
DELPHI experiment has also reported finding something similar.
LEP was scheduled to be shut down in the end of September 2000
to make way for the LHC. Due to the developments in regard to
the Higgs particle, the authorities at CERN have acceded to a
request from the ALEPH collaboration to extend the running of
LEP at the highest energy until at least early November, so that
all four experiments could accumulate more data. No clear signal
for the Higgs particle at this mass value has been seen.

Discovery of the Top Quark (1995)

After many years of searching for the top quark (which is a member of
the third quark family and a partner with b-quark), it was finally discov-
ered in 1995 by the CDF and D0 collaborations working at the Tevatron
in Fermilab. The top was produced in proton-antiproton collisions at a
center of mass energy of 1.8 TeV, at an incredibly high mass value of
175 GeV! Since the initial discovery, there have been further confirma-
tions of the existence of this quark, and measurements of its properties
indicate that it is indeed the t-quark of the standard model, the partner
to the b-quark. Without the t-quark, the standard model would be in
trouble, because anomaly cancellation would not be complete and the
standard model would not be renormalizable. Finding it, and measuring
its mass, has pegged one of the important parameters of the standard
model. This knowledge is of great help in further searches for the Higgs
particle.
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More on Neutrinos

In 1955, at about the same time Cowan and Reines were attempting to
detect antineutrinos from Savannah and Hanford nuclear reactors, R.
Davies pioneered a radiochemical method for detecting neutrinos.

He based his experiment on an idea Pontecorvo had put forward in
1948 in an unpublished report from Chalk River, Canada. In it Pon-
tecorvo had suggested detecting, by radiochemical extraction, 37Ar iso-
tope produced by the reaction 37Cl(ν̄, e−) 37Ar. It was already known
that 37Ar decays by electron capture, with a 34-day half-life, to 37Cl.
Thus the reverse reaction, 37Cl(ν, e−) 37Ar, must occur. Davies argued
that, if the neutrinos emitted in 37Ar electron capture are identical to the
antineutrinos coming from reactors, then the reaction 37Cl(ν̄, e−) 37Ar
should also readily occur. He decided to look for it by irradiating drums,
one containing 200 liters and another 3900 liters of carbon tetrachloride,
with antineutrinos coming from outside the reactor shield. He removed
any argon that would have been produced by flushing the system with
helium gas, and counted them. From these measurements he could only
place an upper limit of 2× 10−42 cm2/atom for the cross section of an-
tineutrinos coming from the reactor. This upper limit was too big com-
pared to theoretical expectations and no conclusions could be drawn
regarding the identity of neutrinos and antineutrinos from this measure-
ment. Cosmic rays produced a background 37Ar activity in the tanks
(through 37Cl(p, n) 37Ar), which prevented Davies from exploring lower
values of the cross section.

Still, he continued further to see if he could make the method sensi-
tive enough to detect neutrinos from other sources, in particular, neutri-
nos coming from the sun. He performed an experiment with the 3900-
liter tank buried under 19 feet of earth. With this overlay, cosmic ray
nucleonic component should be reduced by a factor of one thousand
and he could be sensitive to the much lower cross sections of interest.
The neutrinos from the pp reaction chain in the sun have a maximum
energy of 0.420 MeV, lower than the threshold of 0.816 MeV for the
37Cl(ν, e−) 37Ar reaction. Thus, this method could not detect the pp neu-
trinos but could see the higher energy neutrinos coming from the carbon-
nitrogen cycle. An estimate of the flux of neutrinos from pp in the sun
was 6 × 1010 neutrinos/(cm2 s). From his initial measurements, Davies
could only place an upper limit for this flux at 1014 neutrinos/(cm2 s).

Two things became clear from these studies. First, the radiochemical
method for detecting neutrinos is feasible; its sensitivity, however, has to
be increased, and cosmic ray and other background effects would have
to be reduced. Second, a better understanding of the energy generation
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processes in the sun and better estimates of the flux of solar neutrinos
from the different nuclear reaction chains were necessary.

Improvements on both these fronts have been carried out in the last
four and half decades such that some new and significant results are
emerging on neutrinos.

• On the theoretical front, a much better model of the sun’s energy
generation and transport has emerged from a lot of work Bahcall
and associates have done over a number of years. The fluxes of
neutrinos form the main nuclear reaction sequences, and some of
the side reactions that occur have all been calculated carefully.
These fluxes are referred to as the fluxes from the Standard Solar
Model. The bulk of the neutrino flux is due to the pp reaction
chain, which cuts off at 0.42 MeV. Among other smaller contrib-
utors to the flux, the one of particular interest from the point of
view of Davies’ experiment is the boron neutrinos from 8

5B. These
neutrinos are spread in energy from about 1 MeV to about 14 MeV,
with a maximum in the flux occurring at about 5 MeV. The flux
of boron neutrinos is about five orders of magnitude smaller than
the flux from the pp reaction chain.

• On the experimental front, Davies set about improving the sen-
sitivity of the chlorine-argon radiochemical method and reducing
backgrounds by working deep underground in the Homestake mine.
Over many years of operation, Davis collected data on the flux of
the boron neutrinos and found it smaller than that expected from
the standard solar model by a factor between 2 and 3.

• The difference between the number of neutrinos observed from the
sun and what is expected on the basis of the standard solar model
has come to be called the solar neutrino problem.

The reduced flux seen with respect to the boron neutrino flux is
also seen in the study of the dominant neutrino flux from the pp chain.
Radiochemical detectors, using the reaction 71Ga(ν, e−)71Ge and count-
ing the number of 71Ge, are sensitive to the neutrino flux from the pp
chain. The experimental collaborations SAGE and GALLEX have done
the experiments. Their results also show numbers which are smaller
than that expected from the standard solar model. Two other neutrino
experiments Kamiokande and SuperKamiokande, involving large water
detectors in the Kamioka mine in Japan, are sensitive to the same range
of energy of neutrinos as those in the chlorine experiment of Davies.
In these detectors, the measurement of the neutrino flux is done by an

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 49

✐

✐

✐

✐

✐

✐

✐

✐

entirely different method. They observe the flashes of Cherenkov light
produced by the electrons scattered elastically by the incident neutrinos
in water, with an arrangement of a large number of photo multipliiers
looking into the water tank. These measurements also give a result
which is about half the expected value.

Explanations of these observations are based on two possibilities.
First, the standard solar model may not be accurate enough to give the
theoretical fluxes. Second, the reduced fluxes seen in the experiments
may be due to a phenomenon called neutrino flavor oscillations. The
standard solar model has been examined very carefully and there seems
to be a consensus of opinion that its results for the neutrino fluxes can
be trusted. Explanation in terms of neutrino flavor oscillations is being
increasingly favored.

Neutrino flavor oscillation phenomenon involves the following pic-
ture. The basis of weak interactions involves neutrinos with definite
lepton numbers which label the different flavors of leptons, electron-like,
muon-like, etc. If the neutrinos have a nonvanishing rest mass, the basis
of the mass eigenstates will be mixtures of flavor eigenstates (and vice
versa), and the two bases are related by unitary transformations. In such
a situation, a neutrino born with a certain flavor from a weak interac-
tion decay, say electron-like, will, after propagating through a certain
distance in vacuum or in matter, have a finite probability for changing
its flavor to, say, muon-like or tau-like flavor. If the detector is one which
detects electron neutrinos only, it will measure a reduced flux of electron
neutrinos. All the detectors above are electron neutrino detectors. It is
possible they are measuring reduced electron neutrino fluxes due to the
occurrence of flavor oscillations.

A new heavy water detector for neutrinos has come into operation in
1999 at the Sudbury Neutrino Observatory, in Sudbury, Canada, called
SNO. This detector has the capability to detect not only electron neutri-
nos but also neutrinos of other flavors. The data from SNO are expected
to resolve whether the solar neutrino deficit is due to flavor oscillations
or to deficiencies in the standard solar model.

Efforts are being made to check the idea of flavor oscillations with
neutrino beams produced from high energy accelerators. There are a
number of such projects which are either under way or being planned
for the near future.

Since the existence of rest mass of the neutrino is related to the
phenomenon of neutrino flavor oscillations, efforts are also being made
to measure the electron neutrino mass directly by high precision studies
of the beta decay of tritium near the end point of the electron energy
spectrum.
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Future Outlook

In summary, through the dedicated work of a very large number of work-
ers in the field in the last three decades, the standard model of elemen-
tary particles and their interactions has evolved. With the discovery of
the top quark in the last five years and the precision measurements car-
ried out at LEP and SLC, the standard model has been put on a secure
foundation. Yet there are many questions remaining to be answered. At
the center of these questions: Where is the Higgs particle? Only when
it is found and its properties measured, can we hope to understand the
generation of fermion masses.

There are still other unanswered questions: Are there still more gen-
erations? Where is Supersymmetry? Does string theory have anything
to do with elementary particles? Are quarks and leptons truly pointlike,
or are they composite? Doubtless, there is lot of work to be done in the
years ahead.

The other sector which is exciting is the neutrino sector. An unam-
biguous observation of neutrino oscillations will be a very exciting event
establishing the existence of nonvanishing neutrino masses, which has
far-reaching implications.
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CHAPTER 2

Historical Overview of Accelerators and Colliding
Beam Machines

Accelerators

Devices for producing high energy particles are the particle accelerators.
Studies of elementary particles start with the production of these parti-
cles by accelerating protons or electrons to high energies and bombarding
a target with them. This target may be a stationary target or another
focused beam, a fixed target setup or a collider setup, respectively. Apart
from the energy to which the particles are accelerated, another factor
of importance is the intensity of the beam particles produced by the
accelerator, or the luminosity in the collider.

Early particle accelerators depended upon production of high volt-
ages applied to electrodes in an evacuated tube. These go under the
name of Cockcroft-Walton generators [1] and Van de Graaff [2]; ma-
chines. These early devices are limited to achieving energies only in the
few MeV range because of high voltage breakdowns, discharges, etc.,
and are suitable for explorations in nuclear physics. They are not of
much interest for studies in elementary particle physics, which typically
require energies in the hundreds of MeV to GeV ranges.

To achieve the much higher energies of interest to particle physics,
particle accelerators have been constructed either as circular accelerators
using a combination of magnetic and radio frequency (rf) electric fields
such as cyclotrons, synchrocyclotrons, and synchrotrons, or as linear ma-
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chines using only high frequency electric fields, called linear accelerators
or linacs. In these machines acceleration to high energies is achieved by
repeatedly applying a radio frequency electric field in the right phase,
at the right time to the particles, so that each application increases the
energy of the particles by a small amount. Other particle accelerators
like betatrons and synchrotrons achieve a steady acceleration of particles
by the electric field induced by a varying magnetic flux.

Cockcroft-Walton Generators

This is one of the earliest accelerators built using electrostatic principles.
It involves constructing circuits for voltage multiplication using trans-
formers and capacitors. The transformer supplies alternating current
of certain voltage to a capacitor-rectifier circuit in such a way that the
AC current travels up a line of capacitors and is distributed to rectifiers
and returned to the ground through another line of capacitors. The
DC current flows through the rectifiers in series. The rectified voltage
is a multiple of the input voltage to the transformer, the multiplying
factor determined by the number of capacitors in the line. Although
these accelerators are now primarily of historical interest, the particles
accelerated by these devices are injected into other machines for accel-
erating them to very high energies. Such a use goes under the name of
an injector.

Van de Graaff Accelerator

In this device a sphere is charged to a high potential by a moving belt
on which charge is continually sprayed and transported. The charge is
removed at the sphere through a system of brushes and the potential
of the sphere is raised. The accelerating tube has the sphere at one
end of it and is the high voltage electrode. It is capable of accelerating
positive ions to several MeV of energy and currents of order 100µA are
achievable. The whole system is enclosed in a sealed tank containing a
special gas mixture to prevent electrical breakdowns.

To produce higher energies, tandem Van de Graaffs have been con-
structed in which one starts by accelerating negative ions toward the
sphere, stripping them of their electrons at the sphere, and then accel-
erating the positive ions. This way one can double the energy of the
positive ions. Van de Graaff accelerators have played an important role
in investigations into properties of nuclei. They are not of much use in
elementary particle physics.
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Cyclotron

Invented by Lawrence [3], this accelerator employs a combination of
magnetic field and oscillating electric field to accelerate charged particles.
The particles to be accelerated travel in bunches and a magnetic field
is used to bend the path of the particles into circular arcs. At certain
times when they reach certain parts of the path, the phase of the electric
field is such that the particles are accelerated there. In other parts of
the path, that is at other times, the phase of the electric field is of no
concern because the particles are shielded from the field. If the frequency
of the electric field is chosen so that it is in the accelerating phase for the
particles, they get repeated pushes at the accelerating parts of the path.
Even a modest amplitude of the electric field is sufficient for achieving
high energies.

The angular velocity of the rotation of the particle of charge q and
mass m is equal to qB/m and is independent of the velocity or the
radius of the orbit, as long as the particle is nonrelativistic. It is called
the cyclotron frequency. If the frequency of the alternating electric field
is chosen equal to the cyclotron frequency, the condition for repeated
acceleration at the gaps is met. For magnetic fields in the range of 1 to
2 Tesla, and for accelerating protons, this frequency works out to be in
the radio frequency range—hence the term radio frequency (rf) electric
field is used to refer to it.

The workings of the cyclotron can be understood as follows. A con-
stant magnetic field is created in a region occupied by structures called
the dees. The dees are hollow metallic semicircular cylinders shaped in
the form of the letter D (and a reversed D) such as is obtained by cutting
a cylindrical pill box across a diameter. The two D shapes are separated
by a gap along the straight section of the cut pill box. The dees are con-
nected to an rf power supply. Positive ions, say protons, are injected into
the center of the dees. Under the constant magnetic field, they are bent
into a semicircular path inside the dee until they come to the straight
edge of the dee. The rf electric field is in such a phase as to accelerate
the ions across the gap between the dees. When they are moving inside
the dees, they are shielded from the electric field. The ions acquire in-
cremental energy only across the gap and in the next dee travel along
a path of larger radius and reach the other straight edge of the dee. If,
by this time, the phase of the electric field is again such as to accelerate
the ions, they acquire some more energy. They go into a semi-circular
path of larger radius and the process of acceleration repeats across the
gap between the dees and the particles acquire more and more energy.
The condition for the repeated increases in energy will be achieved if
the rf frequency is equal to the cyclotron frequency of the ion. When
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the radius of the orbit in the dee becomes nearly equal to the radius of
the dee, the beam is extracted for external use by deflecting the ions
with a negatively charged plate. In the late 1930’s, protons of energy
up to 25 MeV were accelerated in a cyclotron. Increases beyond this
energy could not be achieved with a fixed rf frequency machine because
the cyclotron frequency decreases due to the relativistic increase of the
proton mass.

Synchrocyclotron

There is a limit to the energy which can be achieved in a cyclotron.
When the energy increases, the particle’s mass increases and the cy-
clotron frequency qB/m is reduced. To continue accelerating the parti-
cles across the gaps beyond this energy, the rf frequency must also be
reduced to keep pace with the changed cyclotron frequency. Machines
have been built which incorporate these features. They are called syn-
chrocyclotrons. These machines can accelerate particles to much higher
energies as long as one scales up the size of the dees. Synchrocyclotrons
have been used to accelerate protons in the 100 to 1000 MeV range.
Examples of such synchrocyclotrons are the 184-inch Berkeley machine
(maximum energy 720 MeV), the CERN synchrocyclotron (maximum
energy 600 MeV), and the Dubna synchrocyclotron (maximum energy
680 MeV). However, there is a limit to further increases in energy using
this method because the magnet becomes prohibitively expensive.

Betatron

The betatron was invented by Kerst [4]. It is a machine for accelerating
electrons. The electrons are injected into a doughnut shaped evacuated
ring and are accelerated by the induced electric field due to a changing
magnetic flux within the doughnut ring. The magnetic field B0 needed
to keep the particle in a circle of radius R satisfies the relativistic equa-
tion eB0R = p, where e is the charge of the particle and p the relativistic
momentum. When the flux φ linked with the orbit changes with time,
the particle will feel the induced electric field and will change its momen-
tum. It can be shown that to keep the electron in the orbit for a large
number of turns, it is necessary to satisfy the condition φ = 2πR2B,
where φ is the flux enclosed by the orbit, B the magnetic field at the
orbit, and R the radius of the orbit. If this condition is satisfied, the
electron orbit does not shrink or expand. The electron in this orbit can
be accelerated by increasing φ and B together. The electrons gain en-
ergy as they move in the circle of fixed radius. Typically, the energy
increase in each turn is about a few hundred electron volts. Thus to

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 55

✐

✐

✐

✐

✐

✐

✐

✐

increase its energy substantially, a large number of rotations is required,
and for all that time, the particles must stay focused in a bunch.

Betatron Oscillations

The magnetic field at the position of the orbit of the electrons in a
betatron can be resolved into two components, one along the axis of
symmetry of the machine (perpendicular to the plane of the doughnut)
defined as z, the other in the radial direction r. If the particles are
to be in stable motion in the orbit, any displacements in either the z
or the r directions must bring restoring forces into play so that the
equilibrium orbit is attained again. Detailed analyses show that, if the
z component of the magnetic field at the equilibrium orbit position is
given by Bz = B0( rR )

−n, with n positive, the index n must satisfy the
condition 0 < n < 1, in order for the forces to be of the restoring type.
Then the beam executes betatron oscillations in the z and the r directions
with frequencies given by ω0

√
n and ω0

√
(1− n), respectively, where

ω0 = eB0
m . The condition for a stable beam implies that the magnetic

field must decrease from the center of the machine to the outer edge.
Clearly, the amplitude of these oscillations must be smaller than the
dimensions of the vacuum chamber holding the beam. Otherwise the
beam will be lost to the walls.

Synchrotron: Principle of Phase Stability

E. McMillan proposed that a new kind of accelerator called the syn-
chrotron be built based on the principle of phase stability [5]. To under-
stand this principle, consider a particle in a cyclotron just about to pass
the gap between the dees. Suppose it has the right velocity to cross the
gap when the electric field between the dees is going through zero. If
there are no energy losses, the particle will go on moving in this orbit
indefinitely at constant speed. Such a particle may be said to be in a
synchronous orbit. Suppose we have another particle which arrives at
the gap somewhat earlier than the particle in the synchronous orbit.
Then it will see a nonzero electric field and will be accelerated and gain
energy. Because of its increased relativistic mass, its angular velocity
will decrease. It will take longer for it to arrive at the next gap and it
will be a little later in phase than previously. This will keep on occurring
until such a particle will cross the gap at zero electric field. But, this
particle still has higher energy than that required for it to cross the gap
at zero field. Going into further rotations, this particle will tend to cross
the gap when the electric field is in a decelerating phase. This will reduce
its energy and bring it back to its synchronous value. Thus the situation
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is such that the disturbed orbits will oscillate both in phase and energy
about the synchronous values which are constant. Such oscillations are
referred to as synchrotron oscillations. To increase the energy, it is nec-
essary to increase the synchronous value. This can be done by either
decreasing the frequency of the electric field or increasing the strength
of the magnetic field.

A device which makes use of the decrease in the frequency of the
electric field (while keeping the magnetic field constant) is the synchro-
cyclotron. A device which works using the other possibility, namely
increasing the magnetic field, accelerates the particles like in a betatron,
and it is called a synchrotron. In this latter case, the machine will be
shaped in the form of a doughnut ring with one or more gaps in the ring
where the alternating electric field can be applied. A magnetic field nec-
essary to maintain a particular orbit radius is applied. For accelerating
electrons, one increases the magnetic field while holding the frequency
of the electric field constant. For nonrelativistic protons on the other
hand, it is necessary to increase the freqency also as the magnetic field
increases.

Alternating Gradient Strong Focusing Machines

To reach very high energies with a synchrotron, one can increase either
the radius of the machine or the strength of the magnetic field. From a
practical point of view, however, there is a limit to how high the magnetic
field can be raised. Since the particles circulate in a doughnut shaped
evacuated vessel and go around many revolutions, it is necessary to hold
the particles in their motion, to great precision, to the middle portion
of the doughnut shaped region. To cut costs, this doughnut shaped re-
gion should be as small as possible. These requirements translate into
keeping the vertical and horizontal oscillations (betatron oscillations)
of the beam in the doughnut small. It is found that the amplitude of
the vertical oscillation varies inversely with the frequency of the vertical
oscillation. Thus this frequency must be high. The frequency of the ver-
tical oscillation is shown to be ω0

√
n and can be increased by increasing

n for a fixed magnetic field. But there is a limit to how high n can go
since stability in the radial motion demands that n < 1. This clearly
leads to an impasse. A way around this impasse was the invention of the
principle of strong focusing by Christofilos in an unpublished paper [6]
and, independently found by Courant, Livingston, and Snyder [7]. They
showed that if the magnet is built of alternate sections of large positive
and negative values of n, such a combination is similar to combinations
of converging and diverging lenses of equal strength and can be shown to
be converging on the whole. They showed that the oscillation amplitude
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can be diminshed substantially. Using quadrupole magnets, phase sta-
ble synchronous acceleration can still be achieved with large reductions
in radial oscillation amplitudes compared with a machine with uniform
n values. The first strong focusing proton synchrotron using the alter-
nating gradient principle, the AGS (Alternating Gradient Synchrotron),
was built at Brookhaven National Laboratory and accelerated protons
to 30 GeV energy. The route to much higher energies, in the range 10
to 100 TeV, seems feasible using the alternating gradient principles.

Some Fixed Target High Energy Accelerators

Notable among the many synchrotrons that have been operated around
the world for fixed target experiments are the 3 GeV protron synchrotron
called the Cosmotron at the Brookhaven National Laboratory (BNL)
(1952), the 1 GeV machine at Birmingham (1953), the 12 GeV electron
synchrotron at Cornell University (1955), the 30 GeV AGS machine
at BNL, the 1000 GeV superconducting synchrotron at the Fermi Na-
tional Accelerator Laboratory (FNAL), and the 500 GeV SPS machine
at CERN. These machines have proved to be tremendously important
in making rapid progress in elementary particle physics research in the
last half century.

Synchrotron Radiation

Synchrotrons which accelerate electrons suffer from an important limita-
tion. The charged particles in the circular machine emit electromagnetic
radiation called synchrotron radiation. It is found that the energy radi-
ated by a particle in every revolution is given by Erad = 4π

3
αβ2γ4

ρ , where
ρ = radius of curvature of the orbit, α = 1

137 , β = particle velocity in
units of the velocity of light (one in our units), and γ = (1 − β2)−1/2.
Since the relativistic energy of the particle is given by E = γm0, where
m0 is the rest mass energy of the particle, the value of γ is much higher
for electrons than for protons of the same momentum. The loss by
synchrotron radiation is very much more significant for electron syn-
chrotrons than for proton synchrotrons because it varies as the fourth
power of γ. With the above formula, one finds typically, for a 10 GeV
electron circulating in a circle of radius 1 km, the energy loss by syn-
chrotron radiation is about 1 MeV per revolution, while for 20 GeV
electrons, it rises to 16 MeV per revolution. Compensation for this huge
energy loss becomes an important feature in an electron machine. Hence,
the use of linear accelerators to accelerate electrons to high energies.
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Linear Accelerator

Electrons by virtue of their low mass become relativistic already at ener-
gies of the order of an MeV. Circular machines such as the cyclotron, the
betatron, or the synchrotron are not very suitable to accelerate them to
energies higher than a few hundred MeV. This is because of the strong
radiation emitted by charged particles under accelerated motion, the
synchrotron radiation. The energy loss by synchrotron radiation varies
as the fourth power of the energy of the particles and inversely with ra-
dius of the orbit. Thus, at some stage in a circular machine, the amount
of energy the particles lose by synchrotron radiation becomes greater
than the energy they gain from the rf source. Clearly the method to cut
the synchrotron radiation losses is to avoid using circular machines and
accelerate the particles in linear machines instead.

The linear accelerator can be used to accelerate electrons, protons, or
even heavier ions. It also uses multiple pushes given to the particles in
the beam to accelerate them to high energies. Modern linear accelerators
make use of the electromagnetic field established inside a hollow tube
of conducting material, called a wave guide. Standing waves are formed
inside the cavity of the wave guide. The cavities act as resonators and
are referred to as rf cavities. Because standing waves can be considered
as a superposition of two waves travelling in opposite directions, particles
which move with the same velocity as one of the travelling waves will
be accelerated. For high energy electrons, whose velocity is almost that
of light (c), the electromagnetic wave in the cavity must move with
the phase velocity. Achievement of this condition is made possible by
the insertion of suitable partitions inside the cavity and exciting the
cavities at the right frequency. Considerations of phase stability in linear
accelerators proceed much as those in circular accelerators. It is achieved
during that part of the cycle of the rf when the potential increases rather
than when it decreases.

The first proton linear accelerator was built in Berkeley in 1946 and
the first electron linear accelerator was successfully put into operation
in Stanford around 1955. Linear accelerators, which accelerate electrons
and positrons with high intensity to 50 GeV of energy, have been con-
structed and operated at the Stanford Linear Accelerator Center.

Colliding Beams Accelerator

In fixed target experiments, all the energy of the accelerated particle is
not available for exploring the high energy frontier because some of the
energy is associated with the motion of the center of mass and is not
available for the production of new particles. Achievement of highest
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center of mass energies is possible if one could perform experiments in
a frame in which the center of mass of the colliding particles is at rest.
This is possible in a collider setup. Most of the colliders in operation are
synchrotrons with counterrotating bunches of particles in circular rings.

The laboratory reference frame is defined as one in which a particle
of energy E is incident on a target particle of mass M at rest, while
the center of mass reference frame is one in which the center of mass of
the (incident particle-target particle) system is at rest. These reference
frames are related by Lorentz transformations along the beam direction
in the laboratory. The square of the total four-momentum is denoted
by the symbol s and is a relativistic invariant. Using this, one can find
relations between the components in these two frames. In the center
of mass frame, since the total three-momentum is zero, the square of
the total four-momentum is simply the square of the total energy W =
E1+E2 of the particles labeled by the labels 1 and 2, respectively. Thus,
in the center of mass frame, s = W 2. All the center of mass energy is
available for production of new particles. Written in terms of laboratory
frame variables, since a particle of energy E and three-momentum 7p is
incident on a stationary target of mass M , s = W 2 is also equal to
(E +M)2 − 7p2 = 2(EM +M2). Thus for E >> M , W grows at best as√
E. To improve on this, one could look into doing experiments in the

laboratory in which the energy associated with center of mass motion is
reduced to zero.

A first proposal for attaining very high energies in collisions by means
of intersecting beams of particles was made by Kerst et al. [8]. The
colliding beams accelerator is a realization of this idea. In the colliding
beam setup, one has two beams of relativistic particles directed one
against the other arranged such that the total three-momentum of the
two particle system is zero in the collision region. In this case, s =
W 2 = (E1 + E2)2, where E1 and E2 are the energies of the particles
in the two beams. If E1 = E2 = E, we have W 2 = 4E2, or W = 2E.
In other words, in the colliding beam frame of reference, W grows like
E and all the energy in the beam is available for reactions. The only
practical question is one of obtaining sufficient intensity in each beam
so that there will be a reasonable number of events in which reactions
occur.

Luminosity in Colliding Beams

In colliding beams setup, the collision rate is of prime concern. Colliders
that have been built so far involve protons on protons or on antiprotons,
electrons on positrons, and electrons on protons. The rate R of reaction
in a collider is given by R = σL, where σ is the cross section for the
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interaction of the particles in the beam, and L is called the luminosity.
It is given in units of cm−2 s−1 and one would clearly like to have for it as
high a value as possible. For two oppositely directed relativistic beams of
particles traveling in bunches in the beams, it is given by L = fnN1N2

σxσy
,

where f is the revolution frequency, n the number of bunches of particles
in each beam, and N1 and N2 the number of particles in each bunch.
The product σxσy is the cross sectional area of the beams with a length
σx in the horizontal (x) and length σy in the vertical (y) directions. L
can be increased if the cross sectional area of the beams is decreased.
There are special methods to achieve this, but there is a limit to how
much this can be increased because of space charge effects of the beams.
Typical values of L for electron-positron colliders are around 1031 to
1032 cm−2 s−1. These values are much smaller than what is available in
a fixed target setup, which, for a proton synchrotron beam of few times
1012 particles per second impinging on a liquid hydrogen target about
1 m long, is about 1037 cm−2 s−1.

Proton-Proton and Proton-Antiproton Colliders

Kerst et al. [8] showed that it is possible to have sufficiently intense
beams in machines such as the proton synchrotrons for the event rates
to be nonnegligible. The first such collider machine was the ISR (In-
tersecting Storage Ring), constructed at CERN. It contained two rings
of magnets (with vacuum chambers inside) adjacent to each other and
stored proton beams of 30 GeV energy circulating in opposite direc-
tions. There were eight locations in the ring where the proton beams
were brought to intersect. These were the locations where collisions
occurred and the products of the collision were studied with suitable de-
tectors set around the collision regions. This machine, with W=60 GeV
in the center of mass frame, is equivalent to a fixed target proton syn-
chrotron beam of energy about 2,000 GeV. A colliding beam accelerator
involving protons and antiprotons, the Spp̄S was the successor to the ISR
at CERN. The first W particles and Z0’s were produced with it. The
TEVATRON at FNAL started running in the collider mode in the year
2000 (pp̄, 2×1 TeV). The Large Hadron Collider (LHC) is under con-
struction at CERN and is expected to start working in the year 2005 (pp,
2×7 TeV). Another example of a colliding beam accelerator is HERA
which has studied collisions of 30 GeV electrons with, initially, 820 GeV
and, later, 920 GeV protons in storage rings.
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e+e− Collider Rings

Colliding beam accelerators involving storage rings of electrons and posi-
trons of steadily increasing energies have been constructed and used in
the study of particle creation in electron-positron annihilations. Exam-
ples of e+e− circular colliders which have had a large impact on high
energy physics are: AdA at Frascati (2×250 MeV; 1961), Princeton-
Stanford machine (2×500 MeV; 1961), VEPP-1 at Novosibirsk (2×0.7
GeV; 1963), ACO at Orsay and ADONE at Frascati (2×1 GeV), SPEAR
at SLAC (1972) and DORIS at DESY (Hamburg; 1974) (both 2×4 GeV),
PEP at SLAC (2×15 GeV), PETRA at DESY (Hamburg) (2×19 GeV),
CESR at Cornell (2×9 GeV), TRISTAN in Japan (2×33 GeV), and
BEPC at Beijing, China (2×2.2 GeV). At present the highest energy

Figure 2.1: An aerial view of the CERN site with the LEP circular ring
shown. (Courtesy CERN)
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e+e− collider ring is the Large Electron Positron Collider (LEP) at
CERN and has reached beam energies of about 2×108 GeV.

CERN is the European laboratory in which a consortium of Euro-
pean countries have invested for doing research in particle physics. Over
the years it has maintained very active experimental and theoretical
programs of investigations in particle physics. With LEP, it has been
possible to produce Z0’s copiously, and four large international collab-
orations have made a precision study of their properties in detail. In

Figure 2.2: The SLD detector was developed and built at the Stanford
Linear Accelerator Center, a high energy physics research facility oper-
ated on behalf of the U. S. Department of Energy by Stanford University.
(Courtesy SLAC)
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Figure 2.1 on page 61, a picture of the CERN site located at the France-
Switzerland border together with the LEP ring is shown. At the highest
energies of operation (208 GeV in center of mass), it has also produced
pairs of W particles, enabling a precision study of these particles.

e+e− Linear Collider

An exception to the circular storage ring machines is the linear electron-
positron collider at SLAC, called the Stanford Linear Collider (SLC)
and completed in 1989. SLAC is a high energy physics research facility
operated on behalf of the U. S. Department of Energy by Stanford Uni-
versity. There is a collection of experimental facilities at SLAC which
are shown in Figure 2.2 on page 62. Shown in this last figure are: 3 km
long linear accelerator, accelerating electrons and positrons to 50 GeV
energy; End Station A for fixed target experiments; SPEAR storage ring,
now used as a synchrotron radiation source; PEP, the 30 GeV colliding
storage ring, now upgraded to PEPII to serve as a B-factory, for colliding

Figure 2.3: A schematic diagram showing the SLAC linear e−e+ collider.
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9 GeV electrons with 3.1 GeV positrons; and finally, SLC, the 100 GeV
electron-positron collider. Associated with this complex is also a facility
for research into the design and construction of future accelerators.

The SLC has successfully operated for a number of years. Together
with the SLD detector, it has produced information on Z0’s supplement-
ing and complementing the information available from LEP at CERN.
The operation of SLC, a schematic diagram of which is shown in Fig-
ure 2.3 on page 63, represents an important milestone in the further
development of linear accelerators. The experiences gained by operat-
ing SLC will be of great help in the route to attainment of even higher
energies by colliding beams from linear accelerators. Plans are currently
being discussed for a 1 TeV electron-positron linear collider, called Next
Linear Collider (NLC); it is possible we may have one of these facili-
ties operating toward the end of the first decade of the 21st century.
Feasibility of colliding muon beams of very high energies is also being
considered.
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CHAPTER 3

Historical Overview of Detector Developments

Development of Detectors for Particle Physics

The remarkable developments in elementary particle physics have been
possible, on the one hand, with the development of higher and higher
energy accelerators and methods for increasing the intensities of the par-
ticle beams and, on the other hand, with the development of elaborate,
multi-purpose, complex detectors, capable of carrying out measurements
of many parameters, such as energy, momentum, position, time, mass
of the particles with as much precision as possible. The handling of
the large volumes of data produced by these detectors has only been
possible because of the simultaneous developments in computing power.
The construction and operation of these complex detectors in actual ex-
periments is constantly evolving and has developed into a fine art, and
many volumes have been written on the subject. Here is given a brief
historical overview of the development of the detectors. For more details,
refer, among many books, to Experimental Techniques in High Energy
Physics, by T. Ferbel [9], and Particle Detectors, by C. Grupen [10].

The detection of particles is based on an understanding of a number
of physical phenomena that occur in the interaction of the particles with
the detector medium, and the relative importance for the energies of the
particles concerned. The physical effects on which the detection of the
particles is based depend on the type of the particle, and whether it is
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electrically charged or neutral. For charged particles, brief descriptions
of the theory of ionization energy loss and the radiation energy loss in
media will be covered below.

For charged particles passing through matter, the most important
basic phenomena are the energy loss through ionizing collisions with the
particles of the medium (called ionization loss), and the loss of energy
by bremsstrahlung (called radiation loss). Ionization loss is important
for heavy, moderately relativistic charged particles, while radiation loss
is the dominant energy loss mechanism for highly relativistic charged
particles. Electrons and positrons become relativistic already at energies
of a few MeV, and at high energies their energy loss is almost all due to
radiation.

For the photon, detection is based on its electromagnetic interactions
with charged particles. Photons of low energy, less than 0.1 MeV, lose
energy mostly by photoelectric absorption in atoms. Between 0.1 MeV
and 1 MeV, there is competition between photoelectric absorption and
Compton scattering. Those of moderate energy, roughly between 1 MeV
and 6 MeV, lose energy by Compton scattering off the electrons in atoms.
Those of high energy, roughly higher than 6 MeV, lose energy by pro-
ducing electron-positron pairs in the vicinity of atomic centers. The
secondary particles produced by photons are charged particles, which
can be detected by methods used for the detection of charged particles.

For detecting neutrons, different methods have to be employed, de-
pending on the energy. In all these methods, secondary charged particles
are produced by the neutron interactions, which are then detected by the
methods used to detect charged particles. Neutrons in the energy range
of tens of MeV to about a GeV produce recoil protons through elastic
(n, p) scattering. Neutrons of energy higher than 1 GeV produce show-
ers of hadrons through inelastic interactions with nuclei of the medium,
and the hadronic showers are detected.

Neutrinos are notoriously difficult to detect because of their ex-
tremely weak interactions with matter. For their detection, one depends
upon charged current reactions of the form νx+n(or p) → x∓+p(or n),
where the subscript x on the left side denotes the neutrino flavor, and
x∓ on the right side denotes the charged lepton associated with the fla-
vor x. (Similar reactions hold for antineutrinos, also.) Inelastic neutrino
reactions on nuclei can also be used because these produce charged sec-
ondaries. The charged particles produced are detected by the methods
for the detection of charged particles. Detection of neutrinos requires
huge targets and high neutrino fluxes to have any significant number
of interactions. Another technique, called the missing energy method,
is used to determine that a neutrino has been produced. This method
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was used in the discovery of the W -bosons produced at the Spp̄S col-
lider at CERN. The detector surrounding the production location had
full coverage in solid angle so that the energy and momenta of all the
produced particles except the neutrino were measured. With this full
coverage, the fact that a neutrino is emitted can be deduced from the
missing energy and the direction of the missing momentum needed to
balance energy and momentum.

Before we go into the details of the detectors, we describe briefly the
physical processes initiated by charged particles and photons in media.
A good understanding of these basics is very important for the successful
construction and operation of the detectors.

Ionization Energy Loss and the Bethe-Bloch
Equation

The fundamental expression for ionization loss was derived a long time
ago, and goes under the name of Bethe-Bloch equation [11,12]. The mean
rate of energy loss per cm, for a particle of momentum p and mass m in
material of density ρ, is represented by −dEdx and given by,

−dE

dx
= z2C

Z

A

ρ

2β2

[
ln

2meβ2γ2Emax
I2(Z)

− 2β2
]
,

where z is charge, in units of electron charge, of the incident particle;
Z and A are the atomic number and atomic weight of the atoms of the
medium respectively; β = p/

√
p2 +m2 is the velocity of the incident

particle in units of the velocity of light (taken as 1 here) and γ2 =
1/(1−β2); me is the rest mass energy of the electron (c = 1); Emax is the
maximum kinetic energy that can be transferred to a free electron in one
collision; and I(Z) is the average ionization energy of an atom of atomic
number Z. From energy and momentum conservation, the expression
for Emax, when the incident particle with mass m and momentum p
collides with an electron of massme, is Emax = 2meβ2γ2/[1+(me/m)2+
2meγ/m]. As to other symbols in the expression, C = 4πNr2eme, where
N is the Avogadro’s number and re = α/me, is the classical electron
radius, where α = 1

137 (c = 1). For I(Z), Bloch [12] suggested the
simple expression I(Z) = IHZ, where IH is the ionization energy of the
hydrogen atom; many efforts have been put in by various individuals
to get better values for this quantity since Bloch’s original suggestion.
Because this quantity occurs only in the logarithm, this approximation
does not cause a serious error. A more serious correction arises from
the fact that in a medium other than a gas, the particles of the medium
cannot be considered as isolated for all but the closest collisions. The
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correction is called density effect and was first quantitatively evaluated
by Fermi [13]. The correction can be expressed as a modification of
the square bracket in the above expression for average energy loss by
subtracting a term δ from it. Since Fermi’s work, the density correction
has been refined by many workers; we draw attention here to the work
of Sternheimer [14]. The above expression for the average energy loss by
ionization, corrected for the density effect, is found to be valid for most
charged particles (other than the electron) over a wide range of energies,
from a few MeV to several GeV. Stopping power is another name given
to this function.

We should note that the stopping power is a function only of β of the
incident particle, varying roughly as 1/β2 for low β and increasing as the
logarithm of γ for high β. The minimum of the stopping power function
(rather a broad minimum) occurs between these βγ values corresponding
to a few times (p/m). The range R for a particle which suffers loss of
energy through ionization only, is obtained by performing the integral
R =

∫ E
0
dE/[dE/dx]. It roughly represents the distance the particle

travels before it is stopped. The concept of range is rather limited in
its application. Fluctuations in energy loss affect the range leading to
considerable variations in value. These fluctuations give rise to what are
called straggling effects.

In the above discussion, we did not include electrons as incident
particle. The region of energies over which electrons lose energy by
ionization is rather limited, the upper limit being tens of MeV. Above
this energy, radiative loss is the dominant energy loss. Even in the
energy range in which energy loss by ionization is to be considered, the
above expression has to be modified for two effects. First, the maximum
kinetic energy given by the electron to an electron in the medium is only
(1/2)me(γ−1), and second, the effects of the identity of the two particles
has to be taken into account. We do not give the expressions here, but
refer to the article on stopping powers of electrons and positrons [15].

Effects of Multiple Scattering of Charged Particles

When charged particles pass through matter, they are scattered by the
electric fields of the nuclei and electrons present in the matter. The
path of the particle, instead of being perfectly straight, is a zig-zag
one, characterized by a large number of small angular deflections. These
angular deflections represent the effect of multiple scattering the charged
particle suffers. Molière studied the distribution of scattering angles
in Coulomb scattering. He found that for small scattering angles, the
distribution is Gaussian, with mean scattering angle zero, and a width
which depends on the charge z, the momentum p of the particle, and
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the properties of the medium. The width is characterized by the root
mean square of the projected scattering angle Θprms, given by

Θprms =
13.6 MeV

βp
z

√
x

X0
[1 + 0.038 lnx/X0],

where β is the velocity of the particle in units of the velocity of light
(recall c = 1), x is the distance traversed in the medium, andX0 is the ra-
diation length in the medium. Here, X0 = [A/(4αρNZ2r2e ln 183Z

−1/3)],
where Z and A are the atomic number and atomic weight of the atoms of
the medium, respectively, α is the fine structure constant, re the classical
electron radius, ρ the density, and N the Avogadro number.

It is clear that multiple scattering effects put a maximum limit on the
momentum of a particle measured by deflecting it in a magnetic field.
The higher the momentum of the particle, the smaller its deflection. Due
to multiple scattering effects, the deflection angles less than Θprms do not
make sense. Corresponding to this root mean square angle, there is a
maximum momentum that can be determined by using the bending in a
magnetic field. To minimize multiple scattering effects, it pays to have
as little material as possible.

Energy Loss by Radiation: Bremsstrahlung

Highly relativistic charged particles lose energy predominantly through
radiation emission. The charged particles deflected by the Coulomb field
of nuclei emit some of their kinetic energy as photons. This process is
called bremsstrahlung. The cross section for the bremsstrahlung process
was first calculated by Bethe and Heitler, hence called the Bethe-Heitler
cross section [16]. The energy loss by bremsstrahlung by a relativistic
particle of mass m, charge ze, and energy E is given by,

−dE

dx
= 4αρ

N

A
Z2z2(

me
m

)2r2eE ln(183Z−1/3),

where α is the fine structure constant, Z and A are the atomic number
and atomic weight respectively of the particles of the medium, and re is
the classical electron radius α/me. In the above, only the effect of the nu-
clear Coulomb field has been taken into account. There are also Z atomic
electrons. Interactions with these also give rise to bremsstrahlung. A
simple way to correct for these effects is to replace the Z2 factor in the
above with Z2+Z = Z(Z+1). Below we will assume that this has been
done. (More sophisticated ways of taking into account screening effects
of the nuclear Coulomb field and of the atomic electrons are available,
but we do not enter into them here.)
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We note that, unlike ionization energy loss, radiation energy loss
varies linearly with the energy of the particle and inversely as the square
of the mass of the particle. Hence for heavy particles, radiation energy
loss is negligible unless the particle is extremely relativistic. For light
particles such as the electron, radiation energy loss becomes very impor-
tant at energies of the order of tens of MeV.

We may rewrite the expression for the radiation loss as

−dE

dx
=

E

(m2/m2
e)X0

with X0 =
A

4αρNZ(Z + 1)r2e ln 183Z−1/3 .

The quantity X0 is the radiation length. The radiation length is
usually given for electrons; for other particles of mass m, the effective
radiation length has a further factor m2/m2

e. Integrating the equation
for the radiation energy loss, we have E(x) = E0 exp{−x/[(m2/m2

e)X0]};
that is, the energy of the particle, with initial energy E0, after passing
through a length x in the medium, is exponentially reduced to 1/e of its
initial value in a distance equal to the effective radiation length for the
particle of massm. If the medium in which the particle travels has a mix-
ture of different elements, then X0 is obtained from, X−1

0 =
∑
i fi/X0,i,

where fi is the fractional abundance of element i and X0,i is the radi-
ation length for element i. Sometimes, the thickness traversed in the
medium is measured in g cm−2, obtained by multiplying the thickness
in cm by the density ρ of the medium.

At highly relativistic energies, a process related to bremsstrahlung
is the direct production of electron-positron pairs. This can be thought
of as the process in which the bremsstrahlung photon is virtual and
converts into the electron-positron pair. This has to be added to the
real radiation loss to get the total loss of energy.

There is an energy called the critical energy Ec, at which the energy
loss due to ionization equals the loss due to radiation. The value of Ec
for electrons is approximately given by Ec � (550/Z)MeV , valid for
Z ≥ 13. For muons, this critical energy is scaled by (mµ/me)2. In Cu
(Z = 29) for muons, this is about 810 GeV.

This concludes the discussion of the physical processes involved with
charged particles.

Physical Processes with Photons

We now proceed to a discussion of the physical processes which affect
photons in the medium. The photon, unlike charged particles, either
suffers an absorption in an atom of the medium or suffers a large angle
scattering usually accompanied by a change of energy for the photon.
To the former category belong processes called photoelectric effect and
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pair production, while Compton effect belongs to the latter category. In
photoelectric effect, the photon is absorbed by an atom of the medium
and an electron is ejected from the atom. In pair production, which
is only possible for photons of energy greater than twice the rest mass
energy of the electron (1.1 MeV), the photon disappears and produces
an electron-positron pair in the neighborhood of the nucleus of an atom
of the medium. Compton effect involves the scattering of photons on
the (nearly) free electrons in the medium.

Each of these physical effects is characterized by a cross section for
the process. The calculations of the cross sections for each of these
fundamental physical processes have been carried out using quantum
mechanics. These cross sections have characteristic behaviors depending
on the property of the atoms of the medium and on the energy of the
photon. Once these are known, one can calculate how a beam of photons
is reduced in intensity as the beam propagates through the medium.

The intensity of a photon beam I(x), at a location x in the medium,
is related to its initial intensity I0, through the relation I(x) = I0e

−µx,
where µ is called the mass absorption coefficient. If x is measured in
g cm−2, then µ, having the dimension of cm2 g−1, is related to the cross
sections by µ = N

A

∑
i σi, whereN is Avogadro’s number, A is the atomic

weight, and σi is the cross section for a process labeled i. (If, however,
x is to be in cm, µ must be multiplied by the density of the medium
and will be given in units of cm−1.) It turns out that µ is a strong
function of the photon energy. For low energies of photons, 0.01 MeV to
1 MeV, photoelectric effect is the dominant effect. For medium energies,
in the range of 1 MeV to about 6 MeV, Compton effect is the dominant
process. For energies higher than about 6 MeV, the contribution from
pair production overtakes that due to Compton effect and becomes the
dominant one.

Atomic Photoelectric Absorption

The cross section for the absorption of a photon of energy E by a K-shell
electron in an atom is large and contributes about 80% of the total cross
section. Clearly, the ejection of the electron from the atom is possible
only if E is greater than the binding energy of the K-electron. For
energies not too far above the K-shell binding energy, the photoelectric
cross section σKγ has the form

σKγ =
4
√
2

ε7/2
α4Z5σelγ ,

where ε = (E/me), and σelγ is the Thomson elastic scattering cross sec-
tion for photons, equal to (8π/3)r2e . The Thomson cross section has the
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numerical value 6.65 × 10−25 cm2. For ε >> 1, the energy dependence
is a much less steep function and is more like (1/ε). The high power
dependence on Z is a characteristic feature of atomic photoelectric ab-
sorption.

As a result of the vacancy created by the ejection of the K-electron,
an electron from a higher shell may fall into it, emitting a real X-ray
photon with an energy equal to the difference in energies of the two shells.
It is also possible that this energy is emitted, not as a real photon, but
as a virtual photon, and may be absorbed by an electron in the same
atom, and this electron might leave the atom with an energy equal to the
virtual X-ray energy minus the binding energy of that electron. Such
emitted electrons, whose energies are much smaller than that of the
ejected K-electron, are called Auger electrons.

Scattering of Photons by Quasi-Free Electrons

In media, the contribution to the scattering of gamma rays of energies
between 1 MeV and a few MeV comes from the electrons in the atoms.
These electrons can be treated essentially as free because their binding
energies are small compared with the photon energies. Photon scattering
by free electrons was observed and analyzed by Compton and goes under
the name of Compton effect (see section under “Compton Effect”). The
expression for the total cross section for the scattering of the photon by
a free electron is called Klein-Nishina formula [17]. It is

σKN = 2πr2e

[
1 + ε

ε2

{
2(1 + ε)
1 + 2ε

− 1
ε
ln (1 + 2ε)

}

+
1
2ε

ln (1 + 2ε)− 1 + 3ε
(1 + 2ε)2

]
.

Here, re is the classical electron radius, and ε = Eγ/me is the ratio of
the energy of the gamma ray Eγ in units of the electron mass energy me
(with c = 1). This is the cross section for one electron; for gamma ray
scattering from an atom, we must multiply the above expression by Z,
as there are Z electrons per atom, and they contribute incoherently to
the scattering σatomKN = ZσKN .

For high gamma ray energies, ε is large, and this cross section drops
like ln ε/ε. Energy and momentum conservation in the photon-electron
collision leads to an expression for the energy of the scattered photon
E′
γ in terms of the energy of the incident photon Eγ and the angle θγ ,

by which the gamma ray is scattered in the laboratory:

E′
γ

Eγ
=

1
1 + ε(1− cos θγ)

.
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The back-scattered gamma ray (θγ = π) has a minimum energy given by
E′
γ = Eγ/(1 + 2ε). In this circumstance, the scattered electron receives

the maximum energy. The angle of scattering of the electron with respect
to the initial direction of the photon in the laboratory has a maximum
value π/2.

Production of Electron-Positron Pairs by Gamma
Rays

The threshold energy of the gamma ray at which electron-positron pair
production is possible in the Coulomb field of a nucleus is 2me (taking
c = 1). For photon energies in the interval 1

αZ1/3 > ε � 1, the nuclear
Coulomb field is not shielded by the atomic electrons, and the expression
for the pair production cross section per atom is

σγe+e− = 4αr2eZ
2

(
7
9
ln 2ε− 109

54

)
.

When there is complete shielding, ε � 1
αZ1/3 , the cross section becomes

σγe+e− = 4αr2eZ
2

(
7
9
ln 183Z−1/3 − 1

54

)
.

It is found that for very high photon energies, the pair production cross
section becomes independent of the photon energy and reaches a value
which can be written as

σγe+e− ≈ 7
9
A

N

1
X0

,

where X0 is the radiation length in g cm−2, A the atomic weight, and
N Avogadro’s number.

Just as in the bremsstrahlung process where the contribution from
atomic electrons gave a modification of Z2 to Z(Z + 1), in pair produc-
tion also, the contribution from the atomic electrons can be taken into
account by the same procedure. In all the above pair production cross
section formulae, the multiplying factor Z2 should really be Z(Z + 1).

The total photon absorption cross section is the sum of the cross
sections for the photoelectric, Compton, and pair production processes.
Other photon processes, such as nuclear reactions induced by photons,
photon scattering by nuclei, etc., have rather small cross sections and
can be completely ignored in connection with processes of the detection
of photons.

This ends the discussion of physical processes initiated by photons
and which are relevant with respect to detectors of photons.
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Energy Loss by Strong Interactions

If the charged particles we considered above are hadrons, then in addition
to the electromagnetic interactions contributing to their energy loss in a
medium, their strong interactions may also contribute to the energy loss.
The total cross section for the strong interaction of a hadron with the
particles of the medium is made up of elastic and inelastic parts. The
inelastic parts are a reflection of the high number of secondary particles
that can be produced in a collision at high energies.

We can define an average absorption coefficient µabs, so that the
absorption of hadrons in passing a path length x through matter is
described by I = I0 exp (−µabsx), where I0 is the initial number of
hadrons and I the number surviving after passing through a thickness x
of matter. The coefficient µabs is related to the inelastic cross section by
µabs = N

A σinel, where N is Avogadro’s number, A is the atomic weight,
and σinel is the inelastic cross section. The dimension of µabs is cm2 g−1,
if thickness is measured in g cm−2. If we multiply µabs by the density ρ
of the material, we get it in units of cm−1, in which case the thickness
traversed is measured in cm. The inverse of µabs, λabs (of dimension
[cm]), represents a mean absorption distance in which the number of
particles is on the average reduced to 1/e of the initial value in passing
through the medium.

We can also define a total absorption coefficient µtot, which has con-
tributions from both the elastic and inelastic processes. The σinel will
be replaced by σtot = σel + σinel. Clearly, µtot > µabs, as σtot > σinel.

The magnitude of the strong interaction total cross sections is usu-
ally expressed in barns. The unit is 1 barn = 10−24 cm2. At high
energies, the total cross sections grow typically from 0.04 barns in water
(Z = 1, A = 1) to about 3.04 barns in uranium (Z = 92, A = 238). Cor-
respondingly, λtot varies from about 43 g cm−2 in water to 117 g cm−2

in uranium. For materials with Z ≥ 6, λtot is typically larger than the
radiation length X0.

This ends the discussion of all the physical processes which are partic-
ularly relevant for detector development. We describe below the various
detectors (by no means an exhaustive list) which have played a large
role in the discoveries of new particles and high energy phenomena.

Zinc-Sulphide Screen

The earliest detectors depended on direct optical observations. Exam-
ples are the detection of X-rays through the observation of the blacken-
ing of photographic films and the detection of α particles with screens
coated with zinc-sulphide. Faint flashes of light, called scintillations,
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are produced when the α particles impinge on the screen. The scintilla-
tions were viewed with the eye and counted, obviously a laborious and
tiresome task. Rutherford and his collaborators used this method to
study the scattering of alpha particles by thin foils of various materials,
including gold. The famous Rutherford’s scattering law was established
using this simple equipment.

Cloud Chamber

Another early detector was the Wilson cloud chamber. C. T. R. Wilson
made use of the fact that when a charged particle goes through a chamber
containing a supersaturated vapor, the vapor has a tendency to condense
on the ions created along the track of the particle and form droplets on
them. If the chamber is illuminated, the droplets become visible and can
be photographed with stereo cameras to get a three-dimensional view of
the particle’s track. By placing the cloud chamber in a uniform magnetic
field, charged particle tracks curve in the magnetic field depending on
the sign of the charge they carry. The momentum of the charged particle
can then be determined by making a measurement of the curvature of
the track and using the laws of charged particle motion in the magnetic
field. Counting the number of droplets along the track can be used to
give a measure of the particle’s energy. Knowledge of the energy and
the momentum of the particle allows one to calculate its mass. The
positron and the muon were two of the particles discovered in cosmic
rays studies using the cloud chamber. These were profound discoveries;
the discovery of the positron established Dirac’s idea of antiparticles, and
the discovery of the muon established that there indeed were particles
in the mass range between that of the electron and that of the proton
as suggested by Yukawa.

Bubble Chamber

Another detector similar to the cloud chamber is the bubble cham-
ber [18]. In this chamber, the medium is a liquefied gas; hydrogen,
deuterium, neon, and organic liquids have been used. The liquefied gas
is contained under pressure close to its boiling point in a chamber with
extremely smooth inner walls and fitted with pistons. If one expands
the chamber with the liquid in such a state, the pressure is lowered,
and the liquid goes into a superheated liquid phase. When it is in this
phase, if a charged particle enters it, bubbles are formed tracking the
ionization left by the particle. The bubbles grow in size and the growth
can be stopped at any time by stopping the expansion of the chamber.
The size of the resulting bubbles determines the spatial resolution of the
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Figure 3.1: A bubble chamber picture of Ω− decay. (Figure from V.
Barnes et al., Physical Review Letters 12, 204, 1964; reproduced with
permission from N. Samios and the American Physical Society c© 1964.)

bubble chamber. High resolution bubble chambers with resolutions of a
few µm have been operated. The bubbles along the tracks of charged
particles are photographed with several cameras to help in the three-
dimensional reconstruction of the track. More recently, development of
holographic readout systems enables three-dimensional reconstruction of
events with high spatial resolution. The bubble density along the tracks
is proportional to the ionization energy loss along the tracks.

The bubble chamber has been used at accelerators by adjusting the
timing of its entry into the superheated phase with the time of entry
of the particle beam. At moderately high energies, the interactions can
produce events with a number of secondary particles, all of which can
be recorded with high spatial resolution. Bubble chambers have usually
been operated in magnetic fields. An example of a bubble chamber
picture by which the Ω− was discovered is shown in Figure 3.1 above.

The magnetic field enables a determination of the momentum of the
particles by measuring the radius of curvature of the track and a deter-
mination of the sign of the charge they carry. Many hadronic resonances
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were discovered using such chambers at Brookhaven National Labora-
tory, Lawrence Berkeley Laboratories, CERN, and other laboratories,
in the mid 1960’s. These chambers are also useful in the study of rare
complex events arising, for example, in neutrino interactions.

There are some limitations in the use of bubble chambers for very
high energy experiments, which must be recognized. The repetition rate
of this detector being low, it will not cope with the high event rates
expected in many high energy experiments. Triggering the chamber
by depending on the time of entry of the particle into the chamber is
not possible because the lifetime of the ions is not long enough; the
superheated phase has to be prepared prior to the arrival of the beam
into the chamber. The basic shape of the chamber does not lend itself
for use around high energy storage ring experiments where the entire
solid angle around the collision region must be covered. Also, there
is not enough mass in the detector to completely contain all the high
energy particles and make measurements of the total energy deposited.
Identification of high energy particles, based on measurements of specific
ionization loss alone, may not work, because there may be no good
separation between them. For this, one also needs the momentum of the
particle. A good determination of the particle momentum depends on
how well the radius of curvature of the path in a magnetic field can be
determined, which, in turn, depends on how long a path length we have
to work with. For very high momenta, the required path length may
exceed the dimensions of the chamber. Despite these limitations, small
bubble chambers have been put to use, because of their high spatial
resolution, as vertex detectors, in experiments with external targets.
These have enabled measurements of small lifetimes of particles as low
as 10−14 s.

Spark Chamber

A commonly used track detector is the spark chamber. It consists of a
number of parallel metal plates mounted in a region filled with a mixture
of gases, helium and neon. The plates are so connected that every alter-
nate plate is connected to a high voltage source, while the other plates
are connected to ground. The high voltage source to every second elec-
trode is triggered by a coincidence between two scintillation counters,
one placed above the set of plates, and the other below them. When a
charged particle goes through the system of plates, it ionizes the gas mix-
ture in the space between the plates. The high voltage is so chosen that
sufficient gas multiplication occurs along the track of the particle to get
a spark discharge between the plates. The spark discharges are clearly
visible and can be photographed. More than one camera must be used
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if we want the data for construction of the track in three-dimensional
space. (There are also electronic ways of recording data from spark
chambers. In this case the plates must be replaced by a set of wires,
and one must locate which wires are fired.) Before the next event can
be recorded, a clearing field must be applied to clear away the ions from
the previous discharge. This causes a dead time which can be of the
order of several milliseconds.

Streamer Chambers

A streamer chamber is a rectangular box with two planar electrodes,
the space between which is filled with a suitable gas mixture. A sharp
high voltage pulse of short rise time and small duration is applied to the
electrodes after the passage of a charged particle, approximately parallel
to the electrodes. Every ionization electron released along the track of
the charged particle initiates an avalanche in the intense uniform electric
field between the electrodes. The electric field being only of short du-
ration (several nanoseconds), the avalanche formation terminates when
the field decays. The avalanche multiplication factor can reach as high as
108. Many of the atoms in the avalanche are raised to excited states and
emit radiation. The result is that one sees, from a side view, luminous
streamers in the direction of the electric field all along the particle’s tra-
jectory. On the other hand, if we could view them through the electrode,
the streamers would look like dots, affording the possibility of increased
spatial resolution. To make this view possible, the electrode is made of
a fine grid of wires rather than plates. Streamer chambers are capable
of giving pictures of particle tracks of superior quality. There are special
methods to improve the resolution obtainable with streamer chambers
by reducing the diffusion of particles in the interval between the passage
of the charged particle and the onset of the electric field, but we do not
go into these details. More details may be found in reference [19].

The successful operation of the streamer chamber depends upon the
generation of the electric field with the special characteristics mentioned
above. Such fields are generated with a Marx generator. It consists of
a bank of capacitors which are charged in parallel, each to a voltage V0.
Then these are arranged, by triggering spark gaps, to be connected in
series so that the voltage across the bank of capacitors is nV0, where n
is the number of capacitors in the bank. Through a special transmission
line, the high voltage signal across the capacitor bank is transmitted to
the electrodes of the streamer chamber without any losses.

For fast repetitive operation of the streamer chamber, the chamber
must be cleared of all the electrons from the previous event. (The pos-
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itive ions are not a problem because of their low mobility.) Because
a large number of electrons is present in the streamers, clearing them
with clearing fields will take too long, and the dead time of the chamber
will be too long. To solve this problem, an electronegative gas, such as
SF6 or SO2, is added. These have enormous appetite for electrons. The
electrons attach themselves to these molecules in very short times. Such
gases are called quenchers and allow recycling times of the order of a
few hundred milliseconds.

Scintillation Counters

These counters represent considerable development over the simple zinc-
sulphide scintillation screen of Rutherford’s alpha particle scattering
days. The principle of operation of a scintillation counter may be out-
lined as follows. The energy loss suffered by a particle impinging on
a scintillator substance triggers the emission of light. This light is de-
livered, by using suitably constructed light guides, to a device such as
a photomultiplier, which, together with suitable electronics, records the
light as an electrical signal and, hence, the particle that caused the emis-
sion of light.

Scintillating materials may be inorganic crystals, such as NaI, CsI,
or LiI, doped with some materials to produce activation centers. They
may also be some organic compounds in the form of solids or liquids.
In inorganic scintillators, the conversion of the energy of the incident
particle into light is due to the energy levels in the crystal lattice. In
organic scintillators, the process is different. Organic scintillators are
usually mixtures of three compounds. Two of these components, which
are active, are dissolved in an organic liquid or mixed with some organic
material to form a plastic. One of the active components is such that,
the energy loss due to a particle incident on it triggers the emission of
fluorescent radiation in the ultraviolet. The ultraviolet light is absorbed
in a short distance in this mixture. To get the light out, the other active
component is added. Its function is to be a wave length shifter; that is,
it absorbs the ultraviolet light and emits it again at a longer wave length
in all directions. This second active compound shifts the wave length so
that it overlaps the peak of the sensitivity of the photomultiplier device.
It is thus clear that liquid or solid scintillators can be built in any shape
to suit the experimental need.

The lifetimes of excited levels in the scintillating material essentially
determine the decay time for the light from the scintillator. Inorganic
scintillators have decay times of the order of microseconds, while for
organic scintillators, they are much shorter, typically of the order of
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nanoseconds. The organic scintillators are useful as triggering and time
measurement devices. Scintillators, both inorganic and organic, are used
as components in high energy physics experiments.

Cherenkov Detectors

When a particle travels through a medium such that its velocity v is
greater than the velocity of light in the medium c/n, where n is the
refractive index of the medium, radiation is emitted with certain spe-
cial characteristics. This was predicted by Cherenkov [20] a long time
ago. The physical mechanism responsible for the emission of radiation
is due to the rapidly varying (time dependent) dipole polarization of the
medium induced by the fast moving particle. When the velocity of the
particle is greater than the velocity of light in the medium, the induced
dipoles tend to line up along the direction of the particle motion and
produce a directed coherent radiation field. When the velocity of the
particle is less than the velocity of the light in the medium, the induced
dipoles are randomly oriented, and there is no radiation. The emitted
radiation is confined to a cone around the track of the particle with the
cone angle θ being given by cos θ = 1/(nβ), where β is the velocity of
the particle in units of the velocity of light. For real values of θ, since
| cos θ| ≤ 1, nβ ≥ 1. There is a threshold value of β = βthr = 1/n,
at which cos θ = 1. Thus, at the threshold value of β, the Cherenkov
radiation is emitted exactly in the forward direction θ = 0. Further,
because the medium is dispersive, n is a function of the frequency of
the radiation, ω, and only those frequencies will be emitted for which
n(ω) > 1. Corresponding to βthr = 1/n, the threshold energy for a par-
ticle of mass m, to emit Cherenkov radiation, is given by Ethr = γthrm,
with γthr = 1/

√
1− β2thr.

The refractive indexes for water, plexiglass, and glass, are 1.33, 1.48,
and 1.46–1.75, respectively. Correspondingly, the γthr for these media
are, 1.52, 1.36, 1.22–1.37 respectively. These do not correspond to very
high values of the energy. Large γthr values can be obtained for n close
to 1. This is the case for gases. Helium, CO2, and pentane at STP
have (n− 1) values, 3.3× 10−5, 4.3× 10−4, and 1.7× 10−3, respectively,
with corresponding γthr values about 123, 34, and 17, respectively. A
material called silica-aerogel has been developed, which gives n − 1 in
the range from 0.025 to 0.075, and is useful to bridge the gap between
the gases and the transparent liquids and solids.

The expression for the number of photons dN radiated as Cherenkov
radiation in a path length dx of the medium is
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dN

dx
= αz2

∫
βn>1

dω

(
1− 1

β2n2

)
,

where α is the fine structure constant (1/137), and z is the number of
units of charge on the particle. From this the number of photons emitted
in a path length L, in the frequency range between ω2 and ω1, is

N = z2αL

∫ ω1

ω2

sin2 θdω.

We can evaluate this integral approximately by assuming the integrand
is essentially constant as a function of ω. Then, the number of photons
emitted becomes

N ≈ z2αL sin2 θ(ω1 − ω2).

If we consider the visible range with wavelengths from λ1 = 400 nm to
λ2 = 700 nm, evaluating the above for a singly charged particle z = 1,
we get NL ≈ 490 sin2 θ cm−1. The amount of energy loss by Cherenkov
radiation does not add a significant amount to the total energy loss
suffered by the charged particle.

There are two ways that Cherenkov detectors have been put to use.
One of these is as a threshold detector for mass separation. The other is
for velocity determination and is called a differential Cherenkov detector.

First, we consider the threshold detector. Suppose there are two
particles of masses m1 and m2 (and m2 > m1) and let us suppose that
the refractive index is such that the particle with mass m2 does not
produce Cherenkov radiation; that is, β2 is slightly less than 1/n. (Let
us take β2 � (1/n).) Only the particle of mass m1 produces radiation.
The number produced is proportional to

sin2 θ = [1− 1/(β21n
2)] � [1− β22/β

2
1 ].

This simplifies to

sin2 θ =
1
β21

[
1
γ22

− 1
γ21

].

If the two particles have the same momentum, the expression in the
square bracket in the equation just above is (m2

2 −m2
1)/p

2, so that

N

L
≈ 490

m2
2 −m2

1

p2
cm−1.

If the quantum efficiency of the photomultiplier for the photons is ε, the
number of photo electrons Ne is

Ne � 490εL
m2
2 −m2

1

p2
cm−1.
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To get Ne photoelectrons, we need a length L, where

L =
Nep

2

490ε(m2
2 −m2

1)
cm.

We see that the length L needed to separate particles of momentum
p goes up as p2. Putting in numbers, for separation of kaons (mK =
494 MeV) and protons (mp = 938 MeV), at p = 10 GeV with ε = 0.2,
to get Ne = 10, we need a minimum length in the medium of L =
16.05 cm. All this calculation assumes that we can find a material with
the right refractive index such that the proton of 10 GeV is just below
threshold for the emission of Cherenkov photons. It may be difficult to
achieve this in practice. What is done in practice is to use two threshold
detectors. Suppose one uses silica-aerogel and pentane. The kaon will
give a Cherenkov signal in both, while the proton will give a signal only
in the silicon-aerogel. Comparing these rates can tell us the relative
numbers of kaons and protons.

The differential Cherenkov detector accepts only particles in a certain
velocity interval. Suppose we have a transparent medium of refractive
index n in which all particles with velocity above a minimum velocity
βmin give Cherenkov radiation. Let the Cherenkov photons go from the
dense medium into a light guide containing air, which guides the photons
into the photomultiplier. The Cherenkov photons from the minimum ve-
locity particles are emitted in the forward direction (θ = 0) and they pass
through the dense medium-air interface. As the velocity of the particles
increases, the emission is confined to an angle θ given by cos−1 1/nβ.
At a value of β = βmax, the angle θ becomes equal to the critical angle
for total internal reflection at the interface. These photons will not be
seen by the photomultiplier. This is one way to construct a Cherenkov
detector which accepts particles with β in the range βmin < β < βmax.
Another way we could do this would be to have an optical system which
focuses the conical emission of Cherenkov light and at the focus have a
diaphragm which lets only the light confined to a small angular range
into the photomultiplier. If we change the radius of the diaphragm, we
are in effect looking at particles of velocity in different intervals.

Differential Cherenkov detectors with correction for chromatic aber-
rations have been developed having resolution in velocity (∆β/β) ≈ 10−7

and are called DISC detectors. With these detectors, pions and kaons
can be separated at several hundred GeV.

At storage ring colliders, it is not possible to use differential Cherenkov
detectors. Storage ring detectors have to be able to detect particles com-
ing in all 4π solid angle directions. Here one uses what are called RICH
(Ring Imaging Cherenkov) detectors (refer to Figure 3.2). Around the
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Figure 3.2: A schematic diagram showing the use of Ring Imaging
Cherenkov detector at a collider. (Reproduced with permission of Cam-
bridge University Press, Figure 6.14 from Particle Detectors by C. Gru-
pen. Permission from C. Fabjan is also gratefully acknowledged.)

interaction point, a spherical mirror of radius Rsph is provided whose
center of curvature coincides with the interaction vertex. Another con-
centric spherical surface of radius Rdet < Rsph serves as the detector
surface. The space between these two spherical surfaces is filled with a
Cherenkov radiator. As soon as a particle enters the radiator medium
from the inner sphere, it emits Cherenkov photons within a cone of angle
θ around the direction of the particle.

By reflection from the outer spherical mirror, a ring is formed on
the detector surface whose radius r can be measured. Since the focal
length f of the spherical mirror is Rsph/2, r = fθ = Rsphθ/2, this
gives cos θ = cos 2r/Rs. For Cherenkov radiation, cos θ = 1/(nβ), so
we can immediately know the particle velocity, β = 1

cos (2r/Rs)
. Thus a

measurement of the radius of the Cherenkov ring on the detector gives
the particle velocity. The Cherenkov ring detector must not only detect
photons but also measure their coordinates in order to determine r. For
this purpose, a multiwire proportional chamber (MWPC—see below for
its description), with some photon sensitive mixture added to the gas,
is installed in the chamber. In order to get a good working detector, a
number of other technical problems have also to be solved but we do not
go into these details here.
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Transition Radiation Detector

It has been observed that when a charged particle passes through a
boundary between two media, the change in the dielectric properties
of the medium at the interface causes radiation to be emitted. Such
emitted radiation is called transition radiation. The physical mechanism
that is responsible for the occurence of this process can be understood
by analyzing the fields produced by the particle when it crosses the
boundary. When the charged particle approaches the boundary, the
charge of the particle and its mirror image on the other side of the
boundary constitute a dipole. The dipole strength is a rapidly varying
function of time for a fast moving particle and, correspondingly, the fields
associated with it. The field strength vanishes when the particle is at the
interface. The time dependent dipole electric field causes the emission of
electromagnetic radiation. The radiated energy emitted can be increased
by having the charged particle travel through many interfaces created,
for example, by sets of foils with intervening air spaces.

The characteristics of the transition radiation emitted have been
studied. It was found that the radiant energy emitted increases as the
energy of the particle increases. Since the total energy E of a particle
can be expressed as E = γm, where m is the rest mass energy of the
particle (with γ = 1/

√
(1− β2), where β is the velocity of the particle

in units of the velocity of light), for extremely relativistic particles, γ
is very large, and the larger the γ, the larger the radiated energy. Be-
cause of this property of the transition radiation, it is highly attractive
to use it to measure total energies of particles. Further, a frequency
analysis of the transition radiation shows that the photon energies are
in the X-ray region of the spectrum. The fact that the radiated energy
is proportional to γ arises mainly from the increase in the average X-ray
photon energy. For an electron of few GeV energy, the average energy of
transition radiation photons in a typical radiator is about 20 keV. The
angle θ between the direction of emission of the photons and that of the
charged particle is found to have an inverse dependence on the γ of the
particle. In a radiator made up of a periodic stack of foils separated by
air gaps, it is found that there is no transition radiation for γ < 1, 000.
When γ > 1, 000, constructive interference effects occur between radia-
tion coming from the various interfaces, and one sees strong radiation.
The threshold for a periodic structure radiator is γ = 1, 000.

Transition radiation detectors are made with a set of foils of materials
of low Z followed by a MWPC X-ray detector. The foils must have
low Z, because the X-ray photons produced suffer strong photoelectric
absorption, which varies as Z5. Low Z foils allow the X-rays to escape
out of the foils. Once out, they can be detected using an X-ray detector.

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 85

✐

✐

✐

✐

✐

✐

✐

✐

An MWPC filled with xenon or krypton can be used for this purpose.
The large Z values for xenon and krypton ensure good absorption for
X-rays in the MWPC.

The threshold of γ = 1, 000 in periodic radiators allows one to sepa-
rate particles at high energies which are otherwise not separable. Con-
sider separating 15 GeV electrons from 15 GeV pions. Both are ex-
tremely relativistic. The electrons have γ = 30, 000, while the pions
have γ = 111; through a periodic radiator, the electrons will produce
strong transition radiation while the pions will not. Similarly, pion-
kaon separation is possible for energies of 140 GeV. At these enregies
γπ > 1, 000, while γK � 280, and pions will contribute to transition
radiation, while kaons will not.

Nuclear Emulsion Method

The photographic film method has been transformed, with the devel-
opment of the nuclear emulsion method, for recording tracks of charged
particles. A thin glass plate is coated with an emulsion consisting of spe-
cially fine grained silver halide crystals (size, ≈ 0.1 µm− 0.2 µm) mixed
in a gelatin. The thickness of the emulsion coating can be anywhere
from a few tens of microns to two thousand microns. The ionization
released in the passage of the charged particle in the emulsion leads to a
reduction of the silver halide compound to metallic silver along the track
of the particle. On photographic development and fixing of the emul-
sion plate, these metallic silver particles are left while the unexposed
silver halide molecules are dissolved away. The end result is that the
track of the charged particle is made visible by the presence of metallic
silver left along the track. Two requirements on the detector we would
want are good spatial resolution and good sensitivity. To get a good
spatial resolution with this method, one must start with especially small
silver halide grains. On the other hand, if the emulsion is to be sensi-
tive enough to record particles with minimum ionization, the grain size
cannot be too small. These competing requirements force a compromise
on the grain size. Special nuclear emulsion plates meeting the require-
ments have been made by the photographic industry and have been used
in cosmic ray experiments and in some accelerator experiments. They
are very good as vertex detectors having a spatial resolution of 2µ m.
Measurements on particle tracks in nuclear emulsions used to involve a
lot of scanning labor. With CCD cameras and suitable pattern recog-
nition software, the work with nuclear emulsions can be automated on
the computer.
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Ionization Chamber

This is a device for the measurement of ionization energy loss of a
charged particle or the energy loss suffered by a photon in a medium.
If the particle or the photon is totally contained and does not leave the
chamber, the chamber measures the total energy of the particle or the
photon.

Ionization chambers can be constructed in planar or in cylindrical
geometry. In the planar case, the chamber has two planar electrodes
which are mounted parallel to the top and bottom walls of a rectangular
leak-proof box. A uniform electric field is set up between the two elec-
trodes by connecting them to a voltage supply. The container is filled
with a gas mixture, or a noble-gas liquid, or even a solid. This is the
medium which is ionized by the passage of a charged particle (or radi-
ation) through it, and the electrons and the positive ions drift in the
electric field and reach the appropriate electrodes. The electric field is
not strong enough to cause any secondary ionization from the primary
ions and electrons. When the primary charges move to the plates, they
induce a charge on the capacitor plates, which is converted to a voltage
signal and measured. The electrons drift much faster than the positive
ions; in typical cases, the collection times for electrons are of the order
of microseconds, while for the ions they are in the millisecond range. By
suitable choice of the time constant of the circuit, the electron signal
amplitude can be made independent of where the electron originated
inside the chamber.

In cylindrical geometry, the leak-proof box is cylindrical. One elec-
trode, the anode, is a wire on the axis of the cylinder, and the other
electrode, the cathode, is the wall of the cylinder. The space between
the anode and the cathode contains the gas mixture, or a noble-gas liq-
uid. The two electrodes are connected to a voltage supply, and a field
is created in the space between them. Unlike the planar case, the field
here is not uniform, varying as (1/r), where r is the radial distance from
the axis of the cylinder. The passage of a charged particle through the
region between the electrodes causes ionization, and the electrons drift
to the anode and the ions to the cathode. If the radius of the anode wire
is not too small, the electric field is not sufficient to create additional
ionization from the primary particles. When the drifting particles move
toward the electrodes, they induce charges on the electrodes which can
be converted to a voltage signal and measured. The signal is mainly due
to the electron drifting to the anode and can be shown to depend only
logarithmically on the point of origin of the electron. Cylindrical ion-
ization chambers, filled with suitable mixture of gases, have been made,
whose pulse duration is of the order of a few tens of nanoseconds.
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If a gas mixture or noble-gas liquid is used as the working medium
in the ionization chamber, it must not contain any electronegative im-
purities in it. Otherwise, the chamber does not function properly.

Silicon Microstrip Detectors

If an ionization chamber uses a solid as the working medium instead of a
gas, we get a solid state detector. Because the density of a solid relative
to a gas is high, a solid state detector can be used to detect particles of
much higher energy than in a gaseous ionization chamber.

A solid state detector is obtained by creating a region of intrinsic
conductivity between a p-type and an n-type conducting layers in the
semiconductor. Such a structure can be made by taking boron-doped
silicon (which is p-conducting) and drifting lithium into it. In this way,
structures with very thin p and n regions separated by a relatively large
intrinsic region can be produced. A typical structure might have thin
p-type and n-type regions separated by several hundred micro meters.
Strips may be put on the p-type region separated from one another
by 20 µm, with a negative potential applied to each. When a charged
particle passes through this structure, it creates electron-hole pairs in it.
The holes migrate to the strips and induce a pulse, which can be read
with suitable electronics. The distribution of charge on the readout
strips allows a spatial resolution of the order of tens of micrometers.
Silicon microstrip detectors are used as vertex detectors in e+e− colliders
in close vicinity of the interaction point. If the decay vertex is clearly
distinguished from the interaction point, this information can be used to
calculate the lifetime of the unstable hadron which decayed. Lifetimes
in the pico second range are accessible with silicon microstrip detectors.

If, instead of long strips, the strips are further subdivided into a
matrix of pads and each pad is isolated from another, such a setup can be
used to analyze complex events. Each cathode pad is read individually,
and a two-dimensional picture can be obtained. This type of silicon
detector is called a CCD silicon vertex detector.

Proportional Counters

If, in the cylindrical ionization chamber, the anode wire is made of very
small diameter (or the anode voltage is increased), the field strength in
the vicinity of the anode becomes high enough so that secondary ion-
ization takes place. Every primary electron leads to an avalanche of
105 to 106 secondary electrons. This factor is called the gas amplifica-
tion factor α. If the field strengths near the anode do not get too high,
this amplification factor α is a constant, and the output is proportional
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to the number N of primary electrons. The chamber operated in this
regime of electric fields is called a proportional counter. The output sig-
nal is proportional to the primary ionization deposited by the incoming
particle.

The avalanche formation takes place very close to the anode wire, in
a region of the order of a few mean free paths of the electrons, a few
µm. If one calculates the amplitude of the signal contributions from the
electrons and ions, one finds that the ions drifting slowly away from the
anode produce a much larger signal than the electrons drifting to the
anode. For example, for an anode radius of 30 µm, cathode radius 1 cm,
Argon gas filling the chamber, and anode voltage of a few hundred volts,
the rise time of the electron pulse is in the nanosecond range, while that
of the ions is in the millisecond range. This fact has to be kept in mind
in using a proportional counter in any experiment.

To observe the electron signal alone, one has to carry out a differ-
entiation of the signal with a suitable resistance-capacitor combination
circuit. Without this special circuit, the chamber cannot be used in
places where high rates are involved. An additional factor that must
be borne in mind is that the fluctuations in the primary ionization and
its amplification by the avalanche process have an adverse effect on the
energy resolution achievable with this detector.

Geiger Counter

In the proportional chamber, if the anode voltage is made higher than
in the proportional regime mentioned before, a copious production of
photons takes place during the formation of the avalanche. This leads
to higher probability for producing even more electrons through the
photoelectric effect. Photoelectric effect occurs also at points farther
away than the location of the primary avalanche. The number of pho-
toelectrons produced per electron in the initial avalanche increases very
rapidly due to the contributions of secondary and further avalanches. In
such a situation, the signal is not proportional to the primary ioniza-
tion but depends only on the voltage applied. This mode of operation
of the chamber leads to the Geiger counter. In the Geiger regime, the
amplitude of the signal is due to some 108 to 1010 electrons produced
per initial electron.

Once a charged particle has passed through the counter, the produced
electrons quickly reach the anode, but the ions being much heavier take
a long time to go to the cathode. On reaching the cathode, they will
cause further ejection of electrons from the cathode, which will initiate
the discharge again. To prevent this from happening, one has to choose
the resistance R and the RC time constant of the circuit such that
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the instantaneous anode voltage is reduced below the Geiger threshold
until all the positive ions have reached the anode. This time is usually
of the order of milliseconds and contributes to the dead time of the
counter. Another method that is adopted is called self-quenching. It
has been found that vapors of methane, ethane, isobutane, or alcohols,
or halogens such as Br2 added to the gas in the counter act as good
quenchers of the discharge. These additions absorb ultraviolet photons
so that they do not reach the cathode and liberate further electrons, and
the discharge stays located near the anode wire. The dead time of the
counter limits the ability of the counter to handle processes occurring at
high rates unless special measures are taken.

Multiwire Proportional Chamber (MWPC)

This device is a further development from the proportional counter. It
has the capability of being used as a detector of tracks of particles and
also measuring their energy loss. It can be used in experimental ar-
rangements where the data rates are expected to be high. MWPC are
extensively used in experiments in particle physics.

Instead of just one anode wire as in the proportional counter, the
device has a series of anode wires stretched in a plane, between the
two cathode planes. Typically, the anode wires are gold-plated tungsten
wires of diameters in the range 10 µm to 30 µm, separated from one
another by 2 mm and from the cathode planes by about 10 mm. The
tension in the wires has to be such that they are mechanically stable
against the electrostatic forces between the anode wires.

It has been found that such an arrangement functions as a series
of independent proportional counters [21]. The avalanche generation in
the multiwire proportional chamber proceeds much as in the propor-
tional counter. Each anode wire has avalanche charges in its immediate
vicinity proportional to the initial ionization, and the signal comes from
the positive ions drifting to the cathode. The influence of the negative
charges near one anode wire on a neighboring anode wire is negligible.
If one views the negative pulses induced on the anode wire with some
high time-resolution devices, such as fast oscilloscopes or fast analog-to-
digital converters (called flash ADC’s), one gets a series of pulses induced
by the different avalanches originating with different initial electrons se-
quentially drifting into the near vicinity of the anode wire. These pulses
have been observed to have a sharp rise time of 0.1 nanosecond and de-
cay in about 30 nanoseconds. With a slower electronic device one will
see only the time-integrated pulse.

The spatial resolution for an MWPC with continous cathode planes
is about 600 µm. Even then, the position perpendicular to the wire
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Figure 3.3: A schematic diagram showing how the tracks of two particles
are correctly constructed from the information gathered by segmented
cathode planes. (Reproduced with the permission of Cambridge Uni-
versity Press from Figures 4.28 and 4.29 in Particle Detectors by C.
Grupen.)

is known but not the position along the wire. This situation can be
improved if the cathode plane is segmented into a number of parallel
strips oriented in a direction perpendicular to the direction of the anode
wires. (The signal from each strip has to be read electronically, increas-
ing the costs associated with the electronics.) The amplitudes of the
pulses in the strips vary as a function of the distance of the strip from
the avalanche. The center of gravity of these pulse heights gives a good
measure of the avalanche position. In this manner, depending on the
number of segments in the cathode, with judicious choice of the setups,
spatial resolutions of the order of 50 µm along the anode wires can be
obtained.

It turns out that, with only one cathode plane segmented, the in-
formation from the anode wires and the cathode strips does not lead
to unique specifications of the coordinates from which to construct the
tracks; at least two cathode planes are needed. To see this, let us con-
sider just two particles going through the chamber simultaneously (see
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Figure 3.3). Two anode wires, say a1 and a2, will give signals. The
cathode strips also give signals. Suppose it is determined that strips
c1 and c2 contain the centroids of the pulse amplitudes. Now there is
an ambiguity in determining the coordinates of the particles because we
could associate c1 or c2 with each of a1 and a2, giving four possibilities
(two filled dots and two open dots in the figure). Only two of these
is the correct answer, but which? To resolve this ambiguity, suppose
the other cathode is also segmented (referred to as the upper cathode
plane in the figure), its strips oriented at 45◦ angle with respect to the
strips of the first cathode (called the lower cathode plane in the figure),
its signals also recorded, and centroids determined. The additional in-
formation from the second segmented cathode shows that the filled dot
locations are picked out rather than the open dots in the figure. Thus,
the ambiguity is resolved. Of course, this additional information adds
to the cost of electronics.

If the cathode strips are further segmented, so that we have a se-
quence of pads in each of the cathode planes, and signals from each pad
are read and centroids determined, one can construct without ambiguity
a number of simultaneous particle tracks passing through the chamber.
This additional knowledge comes at further cost associated with the
required electronics.

Microstrip Gas Detector

Microstrip gas detectors are MWPC highly reduced in physical dimen-
sions. The reduction in dimensions is possible, because the wires of the
MWPC are replaced by small strips which are evaporated on a thin,
ceramic, quartz, or plastic substrate. The cathode is also in the form
of strips evaporated on to the substrate, the anode and cathode strips
forming an alternating structure on the substrate. The anode strips are
about 5µm in size, the cathode strips are about 60 µm, and the anode
to anode separation is about 200 µm. The substrate with the anode and
cathode structures on it is mounted in a leak-tight box of height a few
millimeters and filled with a suitable gas mixture providing the medium
for ionization. The cathode strips can be further segmented to allow
two-dimensional readout.

Such microstrip gas detectors offer a number of advantages. The
dead time is very short, because the cathodes are so close to the anodes,
and the positive ions of the avalanche have to drift only a very small
distance. They have high spatial resolution. They are excellent devices
for use as track detectors in high rate environments.
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Planar Drift Chamber

The drift chamber is a further evolution of the MWPC in which the num-
ber of anode wires in the chamber can be reduced considerably (without
deterioration of spatial resolution) and hence the costs. The time inter-
val between the passage of a charged particle through the MWPC and
the creation of a pulse at the anode wire depends on the distance of the
passing particle from the anode. This time interval is found to be about
20 ns per millimeter. The design of the drift chamber is based on this
principle. A cell of a drift chamber is constructed so that the electrons
from the initial ionization first drift in a low field region, of the order of
1,000 V/cm, created by introducing potential wires, and later enter the
high field avalanche region around the anode. For many gas mixtures,
it is found that the drift velocity is practically independent of the field
strength, so that there is a linear relation between distances and drift
times. (If needed, one can introduce additional potential wires to make
the field constant in the drift region.) Thus, one needs far fewer anode
wires than in an MWPC, and/or their spacings can be increased without
reduction in the spatial resolution of the chamber. In this chamber, in
addition to recording the outputs as in the MWPC, the drift time of the
charges is also measured.

Cylindrical Wire Chambers

Cylindrical wire chambers have been developed for use with storage ring
colliders. They are capable of providing high spatial resolution for tracks,
and have excellent solid angle coverage around the collision region. They
are called central detectors because they are located immediately sur-
rounding the beam pipe, and there may be other detectors outside these
detectors.

The beam pipes are on the axis of the cylinder, taken as the z axis.
Around this axis, between two end-plates, the anode and potential wires
are stretched, so as to form concentric cylinders around the axis. One
cylinder in cross section is shown in Figure 3.4.

The potential wires are larger in diameter than the anode wires.
Thus layers of concentric cylinders of proportional chambers, or drift
chambers, are formed. The cells for the drift chambers are hexagonal
or trapezoidal in shape. The chamber is immersed in an axial mag-
netic field, and electric fields in the drift cells are perpendicular to the
axial magnetic field (taken as the (r, φ) plane with r=radial distance,
φ=azimuthal angle). The magnetic field is introduced for momentum
measurement. Because there are electric fields ( 7E) in a direction per-
pendicular to the magnetic field ( 7B), one has to take into account 7E× 7B

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 93

✐

✐

✐

✐

✐

✐

✐

✐

Figure 3.4: A schematic diagram showing the cross section of a cylin-
drical wire chamber with anode and potential wires indicated. Also
indicated on the right are stereo wires for removing ambiguities. (Re-
produced with the permission of Cambridge University Press from Fig-
ures 4.41 and 4.45 in Particle Detectors by C. Grupen.)

effects in track reconstruction. The signals from this type of chamber,
from the anode and potential wires, are similar to those from the planar
proportional and drift chambers. The position in the r, φ plane is ob-
tained from measurements in the drift cells, but the z coordinate along
the wire is not determined. To determine this position unambiguously,
some of the anode wires are stretched at a small angle with respect to
the wires parallel to the axis (“stereo” wires). These play the role that
the segmented cathode pads play in resolving ambiguities in the MWPC
with respect to the coordinate measurements obtained from the outputs
of the electrodes.

Cylindrical Jet Chambers

This is part of a central detector used with storage ring colliders. They
are specially designed so as to have a good capability for identification
of particles by measuring energy loss extremely well.

The basic construction is like that of the cylindrical drift cham-
ber (see description of “Cylindrical Wire Chambers” above). In the
azimuthal direction (φ direction), this detector is segmented into pie
shaped regions which provide the regions for the drift. There is an axial
magnetic field for momentum measurement. In the drift cells there are
also electric fields (in a direction perpendicular to the magnetic field)
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for providing the drift. To provide constant electric fields additional po-
tential wires or strips may also be present in the drift region. Energy
loss is determined by performing measurements of specific ionization on
many anode wires. This provides a measurement of the velocity of the
particle. Identification of the particle requires also a good measure of
its momentum. The accurate track reconstruction is achieved with the
bending in the magnetic field, taking care of any 7E × 7B effects on the
tracks. To resolve ambiguities in the z position determinations, one can
use “stereo” wires, or another method which involves staggering of the
anode wires.

Electron Shower Calorimeters

In many processes, high energy electrons are ejected from the interaction
region and it is necessary to measure their energies accurately. The elec-
tromagnetic shower calorimeters are devices which measure the energies
of electrons and photons above several hundred MeV. The physical pro-
cesses on which the detection is based are the processes of bremsstrahlung
emission by the electrons and of creation of electron-positron pairs by
the photons. These processes occur in the medium of the detector; a
single starting electron develops to become a cascade shower through
these processes. The detector is large enough in size that all the energy
is deposited in the detector. It is called a total absorption detector. If
the detector is such that it samples the amount of energy deposited at
various locations along the direction of the development of the shower, it
is called a sampling calorimeter. These sampling detectors may be liquid
argon chambers or scintillation counters. In a liquid argon chamber, the
signal is in the form of a charge pulse, while in a scintillator, the signal
is in the form of a light pulse. These signals are recorded and analyzed
by using appropriate electronics and photomultiplier systems, respec-
tively. To get an idea of the size of the detector, for complete absorption
of electrons, say of 10 GeV energy, one requires a size which is about
twenty radiation lengths long. It is found that the relative energy reso-
lution of such detectors improves as the energy increases, as 1/

√
E. If

the detector and readout systems are segmented, such calorimeters can
provide information with good spatial resolution also. Such electromag-
netic shower calorimeters are an integral part of any large multipurpose
detector used at high energy accelerators.

Hadron Shower Calorimeters

As with electrons, hadrons create a cascade shower of hadrons through
their inelastic collisions with nuclei of the detector material. Materi-
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als, such as uranium, tungsten, iron, or copper in which the interaction
lengths are short, are good for use as a sampling hadron calorimeter.
Typically, high energy hadrons, with energies greater than 1 GeV, pro-
duce hadronic cascades. They are detected as in the electromagnetic
shower counter, through the charge pulse or the scintillation light pulse
that is produced in the medium. Here, as in the electromagnetic shower
detector, the relative energy resolution improves as the energy increases.
However, the energy resolution of a hadronic shower detector is not as
good as that of the electromagnetic shower detector. This is because
a substantial fraction of the energy, such as that required to break up
nuclei against their binding energies, is not measurable in the detector.
Further any muons produced usually escape from the medium without
being detected and carry away energy.

One feature of the shower detectors which can be useful for identi-
fication of the particle as an electron or hadron is based on the differ-
ent lateral and longitudinal shapes that form as the showers develop.
Further, muons can be distinguished from the other particles, as they
typically penetrate through large amounts of material.

Time Projection Chamber (TPC)

The Time Projection Chamber (TPC) is an elegant method for recording
tracks of particles and works in planar or in cylindrical geometries. The
original idea is due to Nygren [22] The working of the cylindrical TPC
can be schematically explained as follows (see Figure 3.5).

Figure 3.5: A schematic diagram of a TPC working in an e−e+ collider.
(Reproduced with permission from the American Institute of Physics
and D. Nygren, Figure 4 in Physics Today, October 1978.)
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Figure 3.6: The diagram shows the segmentation of cathode pads for
reading out the signals from the TPC. (Reproduced with the permission
of Cambridge University Press from Figure 4.57 in Particle Detectors by
C. Grupen.)

A cylindrical chamber is filled to a pressure of 10 atm with a gas
mixture of Argon and methane (90:10) and divided into two parts by
an electrode at its center. The axis of the cylinder is taken as the
z axis, and the end-plates of the cylinder represent the (r, φ) planes.
An electric field is maintained between the central electrode and the
end-plates. This allows the charged particles produced by ionization
to drift toward the end-plates. There is also an axial magnetic field
present. It serves to limit the diffusion of particles perpendicular to the
field; the electrons, in particular, spiral around the magnetic field in
tight circles. The end-plates are divided into six pie shaped structures,
each containing multiwire proportional chambers. The anode wires in
each sector are stretched, parallel to one another, in the φ direction at
increasing values of r, starting from close to the axis of the cylinder
and working outward. Just behind the anode wires, there are sets of
segmented cathode pads (see Figure 3.6).

The signals are read from the anode wires and the cathode pads.
From these, the r, φ coordinates are obtained. The arrival times of the
primary electrons are also measured and recorded. From these, the z
coordinates are obtained. Thus, the TPC gives the r, φ, z coordinates
for every collection of the primary electrons, which the charged particle
produces by ionization along its track. The signal on the anode wire
also gives information about the specific ionization energy loss of the
particle. Together with the timing information, these serve to identify
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Figure 3.7: A cutaway view of the ALEPH detector; the size of the
detector can be gauged by the people shown in the lower right hand
corner of the picture. (Courtesy ALEPH collaboration and CERN.)

the particle. One very important useful feature of the TPC is that the
detector contains so little material that effects of multiple scattering on
the charged particles is minimized.

The TPC [23] has been used in the study of µ to e conversion at
TRIUMF. It is also incorporated into the ALEPH detector at LEP in
the study of e+e− annihilations.

Detectors at LEP

Our understanding of elementary particles has been advanced greatly by
the precision measurements that have been carried out with four large
multipurpose detectors, ALEPH, DELPHI, L3, and OPAL, working with
the Large Electron Positron Collider (LEP) at CERN, and with the
SLD detector working with the SLC at SLAC. The data obtained are in
good agreement with the predictions of the standard electroweak model
including higher order corrections. We end this section on detectors with
a brief description of each of them.
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Figure 3.8: A view of the cross section across the detector showing its
different components. (Courtesy ALEPH collaboration and CERN.)

ALEPH Experiment

ALEPH collaboration, a large group of many physicists and engineers
from around the world, constructed the ALEPH detector for use at LEP
(see Figure 3.7). The detector is arranged in the form of concentric
cylinders around the beam pipe.

The interactions of electrons and positrons occur in the middle of the
detector (refer to Figure 3.8). A superconducting coil, 6.4 m long and
5.3 m in diameter, generates a magnetic field of 1.5 T for momentum
determinations. The return yoke for the magnetic field is in the form of
a twelve-sided iron cylinder with plates at its two ends. There are holes
in the end-plates to accommodate the beam pipe and the quadrupole
focusing magnets for the beams. (The beam itself is inside a beryllium
pipe of diameter 16 cm and has a vacuum of 10−15 atm.) The iron in the
return yoke cylinder has a thickness of 1.2 m and is instrumented as a
hadron calorimeter (HCAL), by being divided into many layers through
which streamer tubes are inserted. Outside the yoke, there are two
further layers of streamer tubes to give the position and angle of muons
that have gone through the iron. Going in from the superconducting coil,
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there is the electron-photon shower calorimeter (ECAL) in the form of
alternating layers of lead and proportional tubes. It has high angular
resolution and good electron identification capability.

As we go further inward, we find the central detector of charged par-
ticles, in the form of a time projection chamber (TPC). It is 4.4 m long
and 3.6 m in diameter, and gives a three-dimensional measurement for
each track segment. It also provides a number of ionization measure-
ments for each track to help in particle identification. Going further
in, there is the inner tracking chamber (ITC), which is an axial wire
drift chamber. It has inner and outer diameters of 13 cm and 29 cm,
respectively, and a length of 2 m. It gives eight track coordinates and
provides a trigger signal for charged particles emerging from the inter-
action point. Even further in, and closest to the beam pipe, is a silicon
vertex detector. This records the two coordinates for particles along a
40 cm length of the beam line, one at 6.3 cm away and another at 11 cm
away from the beam axis.

DELPHI Experiment

DELPHI collaboration, also a large group of scientists and engineers
from different parts of the world, constructed the DELPHI detector for
use at LEP. It consists of a central cylindrical section (called the bar-
rel) and two end-caps (called the forward sections). Its overall length
and diameter are each over 10 m, and it weighs about 3500 tons (see
Figure 3.9).

The barrel part of the detector consists of the vertex detector, the
inner detector containing JET chambers and trigger layers, the time
projection chamber (TPC), the outer detector, and the muon chambers.
The vertex detector is nearest the e+e− interaction point and provides
very precise tracking information (to detect particles with very short
life) by extrapolating the tracks back to the interaction point. Next, the
JET chamber of the inner detector provides coordinate information for
points on each track between 12 cm and 23 cm radii. The trigger system
is made up of four levels, each of higher selectivity. The TPC consists
of two cylinders of 1.3 m length each, and occupies the space between
radii 29 cm and 122 cm. It provides the principal tracking information
and measures ionization loss precisely to help with particle identification.
The outer detector is composed of five layers of drift tubes between radii,
196 cm and 206 cm. Between the TPC and the outer detector is a ring
imaging Cherenkov detector (RICH) detector, 3.5 m long, inner radius
1.23 m and outer radius 1.97 m, divided in half by a central support
wall. Just outside the outer detector is the electromagnetic calorime-
ter, situated between radii 2.08 m and 2.60 m, mostly consisting of lead.
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Figure 3.9 A cutaway view of the DELPHI detector showing its different components. (Courtesy
DELPHI collaboration and CERN.)
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Surrounding that is the superconducting coil which provides an axial
magnetic field of 1.23 T. The hadron calorimeter is the next outer layer,
consisting mainly of iron, which does energy measurements of neutral
and charged hadrons. The muon chambers are the outermost part of
the detector and the most distant from the collision point.

In the barrel part of the detector, the precision of trajectory mea-
surements are 5 µm to 10 µm in the vertex detector, a fraction of 1 mm
in the TPC, and 1 mm to 3 mm in the muon chambers.

The forward parts of the detector consist of the forward chambers,
one on each end of the cylinder; the very forward tracker; the forward
muon chambers; and the surrounding muon chambers. Components,
similar to the components present in the barrel part of the detector,
are also present in the forward parts of the detector. This ensures the
provision of almost 4π solid angle coverage for the detector.

The component elements provide information in three-dimensional
form. This information is read out by a number of dedicated micropro-
cessors involving a large number of electronic channels. All the data are
then joined together to form events, which are sent to central computers
where they are stored for later analysis.

L3 Experiment

The L3 collaboration, again a large international one, constructed the
L3 detector for work at LEP. As with the other detectors, it is also a
multi-component cylindrical detector (see Figure 3.10). Going outward
from the beam pipe, inside which the electrons and positrons collide, the
silicon vertex detector is followed by a time expansion chamber (TEC).
These give precise track information on the charged particles produced
from the collision point. The next three cylindrical layers are the electro-
magnetic calorimeter called BGO (bismuth germanium oxide) calorime-
ter, the hadron calorimeter (HCAL), and the muon detector. The outer-
most layer contains the magnet which generates a magnetic field inside
the detector for measuring the momenta of the charged particles created
at the collision point.

The components of this detector function as in the other two detec-
tors described above. All the information from a collision gathered by
the different components of the detector is sent to computers where the
event is reconstructed. The reconstruction gives a picture, identifying
the particles and showing the paths taken by them and the energies they
carry.

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 102

✐

✐

✐

✐

✐

✐

✐

✐

Figure 3.10: A cutaway view of the L3 detector showing its different
components. (Courtesy L3 collaboration and CERN.)

OPAL Experiment

The OPAL collaboration also consists of a large consortium of scientists
and engineers from different parts of the world and has constructed
the OPAL detector. It is also a large, multi-purpose, multi-component
detector (see Figure 3.11) and it measures about 12 m long, 12 m high,
and 12 m wide.

There are three main layers in the detector arranged cylindrically
about the beam axis and with the collision point at its center. These are
the system of tracking detectors, electron and hadron shower calorime-
ters, and the muon detector system (see Figure 3.12). The central track-
ing system is made up of the silicon vertex detector, followed by the
vertex detector, which is followed by the jet chamber, and then by the
z-chambers. The tracking detectors detect the ionization caused by the
outgoing charged particle. The measurement of the locations of the ion-
izations yields information to construct the path of the charged particle.
The largest of the tracking chambers is the central jet chamber, where
the ionization caused by the charged particle is measured at a large
number of points along its path. These measurements allow a good de-
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Figure 3.11: A cutaway view of the OPAL detector showing its different
components. (Courtesy OPAL collaboration and CERN.)

termination of the particle’s trajectory. There is a solenoid outside the
jet chamber to provide an axial magnetic field in this detector just as
in the other detectors described above. There is also a pressure ves-
sel located here. A measurement of the curvature of the track of the
charged particle allows a determination of its momentum. Data gath-
ered on specific ionization loss along the track helps identify the particle
as electron, pion, kaon, etc. The vertex chamber lies just inside the
jet chamber and the silicon vertex detector is the innermost detector
closest to the beam pipe. The information from these is used to find
the decay vertices of short-lived particles, and also to improve the mo-
mentum resolution. The vertex and the jet chambers give very accurate
measurements of the tracks in a plane perpendicular to the beam axis.
Accurate information on the path along the beam axis is obtained by
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Figure 3.12: A cross-sectional view of the barrel part of the OPAL de-
tector showing its different components. (Courtesy OPAL collaboration
and CERN.)

the z-chambers located just outside the jet chamber. Outside the central
tracking system and the solenoid coil and pressure vessel are the bar-
rel electromagnetic calorimeters. These are made of lead-glass blocks.
There are also lead-glass blocks in the end-caps. The barrel lead-glass
blocks together with the lead-glass blocks in the end-caps cover 98% of
the full solid angle. Most electromagnetic showers start before the lead-
glass due to the matter already traversed, such as the magnet coil and
the pressure vessel. Presamplers are used to measure this shower effect
and to improve the energy resolution.

The iron of the magnet return yoke, outside the electromagnetic
calorimeter, serves as the hadron calorimeter. All the particles which
have cleared the electromagnetic calorimeter are either hadrons or muons.
The hadron calorimeter serves to measure the energy of the hadrons
coming through the electromagnetic calorimeter and also helps in iden-
tifying the muons. The thickness of the iron is four or more interaction
lengths and covers 97% of the full solid angle. The yoke is divided into
layers, and detectors are introduced in between the layers. These form
a cylindrical sampling calorimeter of 1 m thickness. The end-caps also
have hadron calorimeters in them to give full solid angle coverage.
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Finally, the outermost part of the detector, whether in the barrel or
at the end-caps, contains the muon detectors. The barrel part has 110
large area drift chambers, each chamber being 1.2 m wide and 9 cm deep.
There are 44 of these on each side of the barrel, and ten on the top and
twelve on the bottom of the barrel. At either end of the detector there
are four layers of streamer tubes laid perpendicular to the axis of the
beam and covering about 150 square meters area. The end-cap muon
detector on either side consists of 8 quadrant chambers and 4 patch
chambers, and each chamber has two layers of streamer tubes, spaced
19 mm apart. One layer of these has vertical wires, while the other layer
has horizontal wires.

An example of the display of an event in OPAL detector, in which
e+e− annihilate into a quark antiquark pair at 204 GeV, the quark and
the antiquark subsequently turning into jets of hadrons, is shown in
Figure 3.13 below.

Figure 3.13: OPAL display of e+e− annihilation into q and q̄, each of
which gives jets of hadrons. (Courtesy OPAL collaboration and CERN.)
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Figure 3.14: Cutaway view of the SLD detector at the SLC in SLAC.
SLAC is a high energy physics research facility operated on behalf of the
U. S. Department of Energy by Stanford University. (Courtesy SLAC.)

SLD Detector

The SLD detector was constructed at SLAC to work with SLC. Fig-
ure 3.14 above shows a cutaway view of the detector exposing its various
components to view. Many of the components in this detector function
in much the same way as in the detectors at LEP. A new feature of this
detector is a 3D silicon CCD vertexing capability. Combined with beam
spot sizes provided by SLC, this detector provides high precision track-
ing information, fine-grained calorimetry, and excellent particle identifi-
cation using the RICH counters. The production of polarized electron
beam at SLC with substantial polarization combined with the special ca-
pabilities of the SLD detector enabled the SLD experiment to make the
world’s best determination of the weak mixing angle with corresponding
implications for the Higgs boson mass in the standard model.
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GLOSSARY

Alphabetical Listing of Topics

In the part of the book that follows, is presented a glossary of terms,
using key words of commonly used terms in particle physics listed alpha-
betically. Brief explanations of the topics are provided, maintaining a
balance between depth and range, in each topic. A given topic is some-
times repeated under different alphabetical listings providing somewhat
different perspectives and different emphases. Cross references between
related topics are given throughout the listing. In as much as possi-
ble, the explanations under the different listings are self-contained. The
history of the evolution and development of ideas is also discussed in
the topics, providing elaboration of material contained in the early part
of the book on the historical overview of the field of particle physics.
For those interested in pursuing further details, references to the origi-
nal sources are given for the material covered under each listing in the
glossary.
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Abelian Gauge Theories
See in section under “Gauge Theories”.

Adler-Bell-Jackiw Anomaly
Let us consider a classical field theory described by a Lagrangian which
has certain continuous symmetries. According to Noether’s theorem,
for each generator of symmetry, there exists a current that is conserved.
If we quantize the field theory, two questions arise: (1) Do the sym-
metries of the classical theory survive after quantization? (2) Do the
corresponding currents still remain conserved? Renormalization effects
in quantum field theory play a subtle role in the answer to these ques-
tions, and the answers are not always yes as one might think. There
are cases where such symmetries are preserved and other cases in which
they are not. In the latter cases, the corresponding currents are not
conserved. Such cases are said to possess anomalies. They were first dis-
covered by Adler [24] and by Bell and Jackiw [25] and hence are referred
to as Adler-Bell-Jackiw anomalies or sometimes as Triangle anomalies.
Strictly speaking, theories possessing anomalies cannot be classified as
renormalizable. Theories with anomalies have to be put together in such
a way that, if there are several fields participating, each giving rise to
anomaly, the anomalies have to cancel among themselves.

Examples of theories where anomalies appear involve chiral symme-
tries with massless fermions. Consider the massless Dirac Lagrangian for
free fermions: L = ψ̄γµ∂µψ. It is invariant under the transformations
ψ → eiaψ and ψ → eiγ

5aψ, where the first is a phase transformation,
and the second is a chiral transformation. There are two currents Jµ

and Jµ5 corresponding to these symmetries, which are conserved ac-
cording to Noether’s theorem. It is easy to verify by direct calculation,
using the massless Dirac equations for ψ and ψ̄, that ∂µJµ(x) = 0 and
∂µJ

µ5(x) = 0. Thus, for massless fermions, both the vector and the axial
vector currents are conserved. One can form linear combinations of these
currents which have left and right chiralities: JµL = (1/2)(Jµ−Jµ5) and
JµR = (1/2)(Jµ + Jµ5), respectively, and these are separately conserved.
When we extend the considerations to the Dirac fermion interacting with
gauge fields, calculations similar to the above seem to suggest that both
the vector and the axial vector currents should be conserved. However,
a careful examination shows that this is not quite the case, and the axial
vector current is not conserved although the vector current is. The axial
vector current has an anomaly.

In quantum field theories involving chiral fermions and gauge bosons,
the gauge bosons have different interaction strengths when coupled to
left- or right-handed fermions. This is typical of the electroweak theory
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Figure 4.1: Triangle diagram leading to chiral anomaly.

where the coupling strength of the gauge boson to the fermion depends
on its chirality. In such theories, if one calculates the interaction of
one gauge boson with two other gauge bosons through an intermediate
state involving a triangle loop of fermions as shown in Figure 4.1 above,
where the gauge bosons have different couplings to left-handed and right-
handed chiral states, one obtains a divergent contribution, which is not
removable by the usual rules of renormalization theory. In other words,
the theory is non-renormalizable and is said to possess a chiral anomaly.
The only way theories involving such interactions can be made meaning-
ful and consistent is to introduce a suitable multiplet of fermions such
that the individual fermion anomaly contributions cancel one another
exactly.

Alpha Particle Scattering
When a collimated beam of α particles from a radioactive source is made
to pass through matter, some of the particles suffer deviations from their
original direction. They are said to be scattered. The scattering must be
due to the interaction between the particles of the beam and the atoms
of the material. Detailed study of this scattering process is capable
of giving information on both the scattered particles and the atoms of
matter. The scattering of α particles in various materials was studied
in detail by Rutherford in 1911 [26].

At that time there was evidence to suggest that atoms of matter con-
sisted of electrically neutral collection of positive and negative charges
and could be pictured as spheres of radius about 10−8cm. Thomson
proposed a simple model of the atom: a sphere of uniformly distributed
positive charge of radius 10−8cm throughout which was distributed an
equal negative charge in the form of electrons. Given a model of the dis-
tribution of charges in the atom, the scattering of the positively charged
alpha particle by the atom can be calculated quantitatively and com-
pared with experimental findings. With the Thomson model, it was
shown that the average deflection suffered by the alpha particle on a
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single atom should be very small. Even for matter in the form of a foil
of thickness t, assuming that the alpha particle suffers multiple deflec-
tions in the foil, the average deflection is still found to be small. The
probability of a large angle deflection is extremely small in Thomson
model. For example, the number of alpha particles scattered through an
angle of 10◦ or more in a gold foil of thickness 4×10−5cm was calculated
to be about 10−43 relative to the unscattered particles [27]. Experimen-
tally, Geiger and Marsden [28] found that 1 in every 8,000 particles was
scattered by an angle greater 90◦, a rate which is completely incompat-
ible with the Thomson model predictions.

Rutherford [26] proposed a new atomic model to explain the results
of alpha particle scattering in gold foils. In his model the positive charge
in the atom, instead of being distributed in a sphere of radius 10−8cm,
is concentrated in a much smaller sphere, the nucleus, and the nega-
tively charged electrons are distributed in the much larger sphere (ra-
dius 10−8cm) outside the nucleus. Further, the nucleus was assumed to
carry all the mass of the atom, since it was known that the electrons
had very small mass. In this model, the alpha particle suffers very little
scattering from the electrons, approaching the nucleus at very small dis-
tances where the electrostatic repulsion between the alpha particle and
the nucleus is very large. Treating the nucleus and the alpha particle as
point charges, and with the nucleus fixed, the calculation of the orbit of
the alpha particle is a simple problem in classical mechanics. Using this
theory, Rutherford calculated the fraction of alpha particles scattered
through a given angle θ. Geiger and Marsden [29] undertook to test
Rutherford’s model and found satisfactory agreement with experimen-
tal results. This established the Rutherford model of the atom as the
correct one.

Alpha Radioactivity
In 1896, Becquerel was the first person to notice that crystals of ura-
nium salt emitted certain rays which could affect photographic plates.
It was also established that the emitted radiation induced electrical con-
ductivity in gases. Salts such as these were called radioactive. Further
properties of the rays were gathered by examining a collimated beam
of these rays obtained by placing the salt at the bottom of a long and
narrow cavity in a lead block. At some distance above the lead block
a photographic plate was placed. This whole system was enclosed in a
chamber and evacuated. A strong magnetic field perpendicular to the
channel of the rays was established. When the photographic plate was
exposed to the rays and developed, two spots were found on the plate.
One of these spots was directly above the long channel indicating that

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 112

✐

✐

✐

✐

✐

✐

✐

✐

this component of the radiation from the salt was not affected by the
magnetic field. It must be electrically neutral. The other was a spot
not in line with the channel but displaced from it, say to the left of it.
If the magnetic field is reversed in direction, the deviated spot is found
on the right of the channel line. This component of the rays is thus not
electrically neutral. From the orientation of the magnetic field and the
bending these rays experienced in the magnetic field, it could be estab-
lished that these rays were made up of positively charged particles. The
electrically neutral component was given the name gamma rays (γ), and
the positively charged component was given the name alpha rays (α). If
the strength of the magnetic field was reduced, one also found another
deviated spot in a position on the side opposite to that of the alpha ray.
Thus, this component must also be charged but oppositely to the alpha
rays. This component was given the name beta rays. Detailed studies
of the properties of the α and β radiations from uranium were carried
out by Rutherford [30]. It was eventually established that the α rays
consist of doubly charged helium ions, the β rays consist of nothing but
electrons, and the γ rays are electromagnetic radiation of high energy.

AMANDA Neutrino Detector
The name of this detector stands for Antarctic Muon And Neutrino
Detector Array. It is a detector that has been constructed at the South
Pole to observe high energy neutrinos from astrophysical sources. The
energies of the neutrinos will be in the range of 1 TeV. Strings of PMT’s
(PhotoMultiplier Tubes) are located in water-drilled holes deep under
the South polar ice cap. Neutrinos coming through the earth will interact
with the ice or other particles and give rise to muons. The PMT array
will detect the Cherenkov light emitted by the muons. The tracking
of the muons is done by measuring the arrival times of the Cherenkov
photons at the PMT’s. Located at a depth of 1500 m to 2000 m under the
Antarctic ice, the detector array for AMANDA-B consists of 302 PMT’s
on 10 strings and has a detection area of about 10,000 square meters.
The detector has been collecting data for more than a year and the data
stored on tape are in the analysis phase. The detector collaboration is
a large one, consisting of 116 scientists from 15 institutions in the U.S.
and Europe.

In a further development of the operation, construction of AMANDA
II with an effective area several times that of AMANDA-B has been
completed. Initially, three strings of PMT’s were installed in depths
ranging between 1300 and 2400 meters. With these, information on the
optical properties of polar ice in this range of depths could be obtained.
In the early part of the year 2000, six further strings of PMT’s were
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added, thus completing the construction of AMANDA-II. Data taking
is in progress with the new system.

Annihilation of e+e−

Huge progress has been made in the last three decades in developing
high luminosity colliders of electron and positron beams. These col-
liders provide a much higher center of mass energies than fixed target
machines and consequently have a much higher discovery potential for
new particles. Significant advances have been made in studying the
properties of new particles produced with electron-positron colliders at
Orsay, Frascati, Hamburg, Novosibirsk, Stanford, Japan, China, and
LEP at CERN. The fact that electrons and positrons belong to the
lepton family, and seem to behave like points even at the highest ener-
gies examined, makes the theoretical and experimental analysis of the
production of new particles much simpler than with proton-proton or
proton-antiproton colliders which involve composite particles. Z0 and
W±, and a very rich spectrum of spin-1 mesons, have been produced
and studied at these machines. Much of our knowledge of these parti-
cles comes from such studies. One can also look for heavy leptons with
these colliders.

First evidence for two-jet structure in e+e− annihilation reaction
leading to hadron production was found in 1975 at the SPEAR ring at
SLAC. The jet structure is interpreted as evidence for quark-antiquark
production from the e+e− annihilation, with subsequent formation of
hadrons from the quark and the antiquark as they separate from the
production point [31]. Evidence for three-jet structure in e+e− annihi-
lation reaction leading to hadron production has also been abundant.
The three-jet structure is interpreted as evidence for quark, antiquark,
and gluon production with subsequent formation of hadrons from these
particles as they separate from one another [32–34].

The linear electron-positron collider at SLAC, called the SLC, with
unique capabilities to produce polarized electrons and positrons, has
helped us greatly in understanding various physics questions in the re-
gion of the Z0. A number of new proposals for constructing linear col-
liders of electrons and positrons is under active consideration for reach-
ing center of mass energies of 500 GeV or higher with high luminosity
(NLC—the Next Linear Collider). Colliders which involve muon beams
are also being contemplated.

Anomalous Magnetic Moment
Dirac theory of spin 1/2 point particles attributes an intrinsic magnetic
moment associated with the spin, equal to µB, which is called the Bohr
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magneton. The magnetic moment 7µ and the spin vector 7s are related by
7µ = gµB7s, where g is the Landé g-factor, and gµB is the gyromagnetic
ratio (equal in magnitude to µ/s). Since the electron has spin 1/2, g
according to Dirac theory should have the value of exactly 2.

The g values for the electron and the muon have been determined to
great precision experimentally and are found to be different from 2 by
about 0.2%. This difference is called the anomalous magnetic moment.
The existence of this difference suggests that the Dirac theory applies
only approximately to the electron and the muon. The proton and the
neutron are also experimentally found to have large anomalous magnetic
moments. The large deviations observed for the proton and the neutron
(compared with those for the electron and the muon) are attributed to
the fact that these particles are hadrons and composite in structure,
while the electron and the muon are essentially structureless points.

The deviation of g from the value 2 for spin 1/2 particles has its ori-
gin in what are generally called the radiative corrections and, at least for
the electrons and muons, are calculable from the theory known as quan-
tum electrodynamics (QED). For the protons and neutrons, which are
hadrons and hence participate in strong interactions, there are at present
no reliable calculations of these corrections available (see further under
“Quantum Electrodynamics (QED)” and “Quantum Chromodynamics
(QCD)”).

Antideuteron
First evidence for the production of antideuterons came from an exper-
iment performed by Dorfan et al. [35] at the Brookhaven AGS proton
synchrotron. They bombarded beryllium with protons of 30 GeV energy
and used counters as detectors. This was further confirmed in an experi-
ment using 43 GeV, 52 GeV, and 70 GeV protons on an aluminum target
at the Serpukhov proton synchrotron [36]. The experiment by Dorfan
et al. [35] also found evidence for antitriton. Based on these results, it
might be said that antimatter was produced for the first time.

Antineutron
Direct experimental confirmation of the existence of the antineutron, the
antiparticle of the neutron, came from a study of the charge exchange
scattering in antiproton-proton scattering reactions using a heavy liquid
bubble chamber [37] at the Berkeley Bevatron. Reactions that were stud-
ied included p̄p → p̄p, p̄p → n̄n, n̄n → π’s. These reactions established
the existence of the antineutron.
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Antiproton
Dirac’s theory of the electron requires the existence of antiparticle to
the electron coming from the re-interpretation of the negative energy
solutions to the equation. Dirac’s theory extended to the proton requires
the existence of the antiproton. Experimental finding of the antiproton
would affirm the correctness of using Dirac’s theory for the proton. Such
a particle was discovered in 1955 in an experiment performed at the
Berkeley Bevatron by Chamberlain, Segrè, Wiegand, and Ypsilantis [38].
Somewhat earlier, in studies of cosmic rays, several events were observed
which could have been due to antiprotons [39–42]. No definitive proof of
their existence could be established based on those earlier observations.

The experiment performed at the Bevatron was specifically designed
to produce and detect the antiproton and ascertain that this negatively
charged particle has a mass equal to that of the proton. Protons from
the Bevatron were made to impinge on a target, and the momentum and
velocity β (in units of the velocity of light) of the negatively charged par-
ticles originating from the target were measured simultaneously. There
was a large contamination by negative pions (100,000 pions for every
antiproton) which were copiously produced from the target. In this
huge background of pions, detecting antiprotons was a real challenge.
The experimental setup in schematic form for the antiproton search is
shown in Figure 4.2 on the following page. The negatively charged par-
ticles produced from the target T were bent and focused onto a scin-
tillation counter S1 by a system of dipole and quadrupole magnets,
and on to a second scintillation counter S2 by another set of bending
and focusing magnets. Then the beam passed through (1) a threshold
Cherenkov counter C1 which selected velocities β > 0.79, (2) a second
differential Cherenkov counter C2 which selected velocities in the range
0.75 < β < 0.78, then (3) a scintillation counter S3, and finally (4) a
total absorption Cherenkov counter C3 (not shown in the figure). They
estimated that the negative pions in the beam would have β = 0.99,
while the antiprotons (assuming protonic mass) would have β = 0.76.
Thus, a signal for pions would be a coincidence in the counters S1, S2,
C1, and S3 with no signal in C2, while for antiprotons, there would be
coincident signals in S1, S2, C2, and S3 and no signal in C1. The latter
events would be possible antiproton candidates. To further ensure that
they were indeed antiprotons, time of flight measurements were made
between the scintillation counters S1 and S2 which were separated by a
distance of 41 ft. For antiprotons this time of flight was expected to be
51 ns. Only those particles which gave counts in the counter and passed
this additional requirement of time of flight of 51 ns were accepted as
true antiprotons. Only 60 of these negatively charged particles passed
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Figure 4.2: Experimental arrangement to detect antiprotons. (Figure
from O. Chamberlain, E. Segrè, C. Wiegand, T. Ypsilantis, Physical
Review 100, 947, 1955. Copyright 1955 by the American Physical Soci-
ety.)

these cuts. A further check on the mass spectrum of these particles was
made by putting the target in a different position, transporting posi-
tive pions and protons down the same beam (reversing currents in the
bending magnets), and measuring the distribution of protons. There
was excellent agreement between the mass distributions of protons and
antiprotons, and it was established that the observed antiprotons had a
mass equal to that of the proton within about 1%.

Antiproton Annihilations
One of the features of the Dirac theory of spin 1/2 particles (electron
or proton) is that particles and antiparticles must be generated in pairs
and annihilated in pairs. Unlike electron-positron annihilations in which
photons are produced, in antiproton-nucleon annihilations, pions are
the usual annihilation product, and products such as photons and/or
electron-positron pairs are rare. Kaons are also only rarely produced.
Examples of antiproton-nucleon annihilation were observed in a nuclear
emulsion stack exposed to the antiproton beam from the Bevatron by
the same group which discovered the antiproton [43]. In this paper there
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is a beautiful example of an antiproton coming to rest and annihilating
with a proton bound in a nucleus in the emulsion. The energy released in
the annihilation process breaks up the nucleus in addition to producing
a number of pions. Tracks of the nuclear fragments as well as those due
to the charged pions are seen in the nuclear emulsion. Neutral pions are
not visible in the emulsion. The total energy measured from the visible
tracks is 1300 MeV, which is more than the energy equivalent of the
mass of the incoming antiproton proving that annihilation has occurred.
A determination of the mass of the incident antiproton could be made,
and it gave a value within few percent of the protonic mass.

Certain selection rules can be formulated for antiprotons annihilating
at rest. For example, it can be shown that if the antiproton-nucleon pair
is in a 3S1 state, it cannot annihilate into three pions. (See under “G-
parity” for a discussion of the selection rules leading to final states of
definite number of pions in nucleon-antinucleon annihilations).

Associated Production
The concept of associated production of new particles was put forward
by Pais in 1952 in an attempt [44] to explain how it is possible to have
a copious production of these particles and yet have long lifetimes for
decay. A brief history of the discovery of these particles will explain how
this concept came to be formulated.

Cosmic rays investigations [45] with cloud chambers, for a number
of years since 1947, had found evidence for the existence of unstable
particles with masses between the muon and the proton. Estimates of
their lifetimes placed them somewhere around 10−10s. These particles
were called V particles as they left V shaped tracks in the cloud chamber.
Two types of V particles were found, those that decayed into a proton
and a negative pion with a Q value of about 40 MeV, and those that
decayed into a pair of charged pions. The problem these particles posed
is that, if the interactions responsible for their long decay times are also
responsible for their production, then they must be produced only rarely.
The associated production hypothesis put forward by Pais to explain
this feature was as follows. If the V particle is produced in association
with another unstable particle by an interaction which is strong, the
production rate for the associated production will be high because of the
strong interactions. If the V particle and the other unstable particles
were to decay by means of a different interaction—the weak interaction—
they would have a long lifetime.

Substantial progress could be made with the construction and oper-
ation of the Brookhaven Cosmotron. Using the 1.5 GeV negative pion
beam from this machine, a number of V particles were produced and

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 118

✐

✐

✐

✐

✐

✐

✐

✐

could be studied quantitatively. It was possible to establish that these
particles were readily produced and yet decayed very slowly confirm-
ing the applicability of Pais’ ideas. V particles heavier than the pro-
ton were called hyperons and the V particles that decayed into pions
were a new kind of meson. (See also under “Lambda Hyperon”, “Σ
Particles”, “Ξ Particles”, “Kaons: The τ -θ Puzzle”, “Kaons—Neutral
K0
1 (K

0
S), K

0
2 (K

0
L)”, and “Hyperons—Decay Selection Rules”.)

Asymptotic Freedom
This is a property possessed by the non-Abelian gauge theory of quan-
tum chromodynamics (QCD). Simply put, it states that the coupling
constant, which characterizes the quark gluon interaction in QCD, be-
comes weak at large relative momenta or at short distances. A qualita-
tive picture of how this comes about is explained below.

First, let us note that even in electrodynamics, the charge, which is
a measure of the coupling between a charged particle and the electro-
magnetic field, is not an absolute constant. It is an effective coupling,
which depends upon how far one is from the charge. To understand
this, consider a positive charge placed at some point in a charge neu-
tral medium, which is polarizable. The presence of the positive charge
causes the neutral medium to be polarized; that is, it causes a separa-
tion of positive and negative charges of the medium in the near vicinity
of the positive charge. The negative charges from the medium will be
attracted to the positive charge and will be close to it all around, while
the positive charges of the medium will be repelled away from it to large
distances. The negative charges of the medium partially screen the pos-
itive charge, the amount of screening depending upon how far we are
from the location of the positive charge. The scale of distance at which
screening effect arises is set by the interparticle spacing in the medium.
For distances small compared to this scale, one sees the unscreened pos-
itive charge, while at larger distances the amount of screening will vary.
This screening effect of the medium is taken into account by introduc-
ing a dielectric constant for the medium according to which the effective
charge of the particle is obtained by dividing the charge by the dielectric
constant. In quantum electrodynamics, it turns out that the vacuum it-
self behaves as a polarizable medium, because of a process called vacuum
polarization which arises due to the possibility of the creation of virtual
electron-positron pairs from the vacuum. A positive charge placed in
the vacuum causes it to be polarized, and the measured effective charge
is a function of how close we are to the positive charge. In vacuum the
scale of distance at which one starts seeing the unscreened charge is set
by the Compton wavelength of the electron, 3.867× 10−11 cm. Only in
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experiments where we are probing the charge at closer distances will we
see the full charge. If the experiment probes the charge at greater dis-
tances, we will see the effect of the screening, and the measured charge
is a function of the distance at which we measure it.

Now let us consider QCD in which one considers the color interaction
of quarks with the gluons of the chromodynamic fields. The interaction
between quarks is due to the exchange of gluons between the quarks. An
analogous process of vacuum polarization occurs here in which colored
virtual quark-antiquark pairs are produced by the gluon during its pas-
sage between the quarks. As in electrodynamics this produces a screen-
ing of the color charge. This is not the whole story however. There is
another effect that comes into play. The gluon itself carries color charge
and can produce virtual gluon pairs which will also contribute to the
vacuum polarization. A calculation of this further effect shows that it
leads to an “anti-screening” effect. The total effect depends upon the
number of quarks of different flavors and on the number of gluons of
different colors. Detailed calculation shows that the combination that
enters the theory is (2f−11n), where f is the number of flavors and n is
the number of quark colors. If this quantity is positive, the theory will
be like QED, and the effective coupling will increase at short distances
(scale � Compton wavelength of quark), while it will decrease at short
distances for negative values. Because there are 6 flavors of quarks and
three colors, this quantity is negative in QCD. This results in the effec-
tive coupling decreasing at short distances or high momenta which we
term Asymptotic Freedom.

Atmospheric Neutrinos
These are neutrinos produced when high energy cosmic rays impinge
on the earth’s atmosphere and produce a shower of pions which decay
and eventually produce electron and muon neutrinos. A π+ produces
µ+ + νµ, the positive muon then subsequently decays into e+ + ν̄µ + νe.
Thus for each pion that decays, one gets a νµ, ν̄µ, and νe. On detecting
the flavor of the neutrinos by experiments, one expects to see a ratio of
two to one for the muon type of neutrinos relative to the electron type.
If this ratio is different from 2:1, a new phenomenon must be coming
into play. Experiment at the Super-Kamiokande (Super-K) project has
found the ratio to be 1:1 rather than 2:1.

The detector for the neutrinos in Super-K consists of a cylinder
containing 12.5 million gallons of very pure water, weighing about 50
kilotons, and looked at by some 13,000 photomultiplier tubes (PMT’s)
spread all around the cylinder surface. When a neutrino interacts in
the water, it produces secondary particles, which move with velocities
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greater than the velocity of light in the water. This results in the emis-
sion of Cerenkov radiation which is seen by the PMT’s as a ring shaped
pulse of blue light of very short duration (nanoseconds). From knowl-
edge of the position, timing, and the amplitude of the light signals, one
can construct the track of the secondary particles. It is also possible to
say in which direction the initial neutrinos are going. If the secondary
particle is a muon, the ring of Cerenkov light tends to be rather sharp,
while if it is an electron, the ring tends to be more diffuse. Thus it is pos-
sible to know whether electrons or muons are produced by the neutrino
interactions, and the numbers of muons and electrons produced must
reflect the numbers of the corresponding neutrino species. The number
of muons relative to electrons is less than the expected ratio of 2:1.

Many explanations, such as, an anomalous external source of elec-
tron neutrinos, faults with the water detector, and incorrect theoretical
estimates for the relative neutrino fluxes, were considered to explain the
deficit of muon neutrinos and rejected. The most plausible explanation
seems to be that we are seeing neutrino oscillations here; the muon neu-
trinos may be oscillating into tau neutrinos or into electron neutrinos.
The argument for this explanation is further strengthened in the Super-K
experiment by their measurement of up-down asymmetry for muon-type
and electron-type events as a function of the observed charged parti-
cle momentum. These measurements involve selecting neutrinos coming
into the detector from directly above the detector and those that enter
the bottom of the detector from below. The neutrinos entering from the
bottom of the detector have traveled through the earth, an extra 10,000
km, during which time they have had a greater chance to change their
flavor through oscillation. The measurement of the up-down asymmetry
by Super-K shows that there is a difference in the numbers of muon neu-
trinos, depending upon whether they have taken the shorter path or the
longer path before they reach the detector. It was found the electron-
type events are up-down symmetric (consistent with the geometry and
no oscillations), while muon-type events have considerable asymmetry.
The deficit in the muon-type events was nearly one half for the upward
going muons. The shape of the asymmetry as a function of the charged
particle momentum is also what one expects in a scenario involving os-
cillations. The favored oscillation parameters which are in accord with
the atmospheric neutrino measurements are (see under “Neutrino Oscil-
lations”) sin2 2θ ∼ 1; 10−4 ≤ ∆m2 ≤ 10−2 eV2.

The atmospheric neutrino experiment by Super-K makes it very plau-
sible that neutrino oscillations are occurring. However, before we can
claim that neutrino oscillations have definitely been found, we must look
for corroborations from other experiments. Plans are afoot to mount ex-
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periments using neutrinos from accelerators, exploring the same range
of neutrino oscillation parameters as in Super-K. These experiments are
expected to produce results in the next few years.

Atomic Nucleus—Structure
With the discovery of the neutron by Chadwick, the question was posed
as to the role neutrons play in the building of the atomic nucleus. The
suggestion was put forward independently by Ivanenko [46] and Heisen-
berg [47] that the atomic nucleus consists of protons and neutrons (rather
than protons and electrons). This suggestion had the immediate merit of
resolving a couple of outstanding problems of the time. One of these had
to do with the fact that, on account of the uncertainty principle, elec-
trons could not be confined in a space of nuclear dimensions (� 10−13cm)
without having extremely high kinetic energies. The second had to do
with the fact that the study of the rotational spectrum of diatomic ni-
trogen molecule shows that the nuclei obeyed Bose-Einstein statistics
rather than Fermi-Dirac statistics. The atomic number of nitrogen is
7, its atomic weight 14. This can be made up in the proton-electron
model of the nucleus by having 14 protons and 7 electrons to give net
7 units of positive charge to the nucleus and atomic weight of 14. This
requires a total of 21 particles. In this model, since each constituent
particle obeys Fermi-Dirac statistics, the system with an odd total num-
ber of particles would also obey Fermi-Dirac statistics in conflict with
requirements from the rotational spectrum. The proton-neutron model
of the nucleus, on the other hand, could be made up of 7 protons and
7 neutrons for a total of 14 particles. The neutrons being nearly as
massive as the protons, does not pose any problem with the uncertainty
principle in confining it to a space of nuclear dimensions. If the neu-
trons also obey Fermi-Dirac statistics, this system of even total number
of particles would obey Bose-Einstein statistics in conformity with the
requirement from the rotational spectrum. Thus the model, in which
an atom X with a nucleus of atomic weight A contains Z protons and
N = A−Z neutrons in its nucleus, became established. Such a nucleus
is represented as AZX.

Atomic Number
Studies of large angle α particle scattering by thin gold foils under the
direction of Rutherford led to the formulation of the nuclear model of
the atom [48]. According to this model, the electrically neutral atom
consists of a net positively charged nucleus carrying almost all the mass
of the atom, of size about 10−13 cm, surrounded by electrons in shells of
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much larger radius (10−8 cm), such that the whole system is electrically
neutral. The number of units of charge (in units of the magnitude of the
electron charge |e|) carried by the nucleus could be deduced from the
data on the scattering of α particles to be about (1/2)A|e| where A is
the atomic weight. The resultant electron charge in the atom must then
also be (1/2)A|e| for the atom to be electrically neutral.

Independently of the α particle scattering experiments, information
on the number of electrons in the atom was obtained by the entirely
different method of scattering of X-rays from light atoms by Barkla [49].
Barkla had shown that this number was equal to about half the atomic
weight, a conclusion supported by the work on alpha particle scattering.

If a number called atomic number, which is simply the number of
the atom when arranged according to increasing atomic weight, is intro-
duced, the charge of the nucleus is about equal to the atomic number
(times |e|). The importance of the atomic number lies in the fact that
the frequencies associated with the X-ray spectra of elements studied
by Moseley [50] were found to vary as the square of a number which
differed by unity in going from one atom to the next. If this number
is identified with the atomic number, the properties of the atom would
be determined by a number which increases by unity as one goes from
one atom to the next. The atomic nucleus would then be character-
ized by the atomic number of the nucleus Z and another number which
represents the nearest whole number to the atomic weight A.

Atomic Structure
The first quantum theory of the spectra of atoms was proposed by N.
Bohr [51] based on Rutherford’s model of the atom. According to this
model, the atom consists of a massive positively charged nucleus of small
dimensions and negatively charged electrons going around the nucleus,
with Coulomb interaction between the nucleus and the electrons. Clas-
sically such a system cannot be stable, as the electron in accelerated
motion in its orbits will emit radiation, lose energy, and eventually spi-
ral into the nucleus. To get around this difficulty, Bohr proposed that
classical mechanics and classical electrodynamics principles may not be
applicable to systems of atomic size. As support for this argument, he
pointed to the difficulty with behavior of specific heats, photoelectric
effect, black body radiation, etc., which for their resolution needed new
ideas to be introduced, such as the relation between energy E and the
frequency of the radiation ν, E = hν, h being Planck’s constant. He
proposed that the only stable states of an electron in motion around
the nucleus must have angular momenta which are integral multiples of
Planck’s constant. With this one modification, he was able to derive
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an expression for the allowed energy states of the hydrogen atom. He
also proposed that the atom emits radiation when it makes a transition
from a higher discrete energy state to a discrete state with lower en-
ergy. Such radiation leads to a discrete spectrum and in fact provided
an explanation of the Balmer formula for the hydrogen spectrum.

Axiomatic Field Theory
Lehmann, Symanzik, and Zimmermann [52] introduced a new formula-
tion of quantized field theories in 1955. The matrix elements of field
operators and of the S matrix are determined from a set of equations
based on some very general principles of relativity and quantum mechan-
ics. These equations contain only physical masses and physical coupling
constants. The advantage these equations possess over the standard
method of doing S matrix calculations is that this method does not
introduce any divergences in the basic equations. Although the equa-
tions as set up are not restricted to perturbation theory, the solutions
of the equations are obtained by a power series expansion in a coupling
parameter. The results obtained with the new formulation are identi-
cal with the results of renormalized perturbation theory using Feynman
diagrams.

Another approach to axiomatic field theory was developed by Wight-
man [53]. In this approach the focus of attention is on the vacuum ex-
pectation values of field operators and the properties they acquire due
to very general requirements of Lorentz invariance, absence of negative
energy states, and positive definiteness of the scalar product. It is shown
that they are boundary values of analytic functions, and local commu-
tativity of fields becomes equivalent to certain symmetry requirements
on the analytic functions. Given the vacuum expectation values, the
problem of determining the neutral scalar field in a neutral scalar field
theory was solved by Wightman.

Axions
In our discussions of conservation of CP for strong interactions we show
that, within the context of QCD, certain constraints on field config-
urations lead to modifications of the QCD Lagrangian density by the
addition of a term, which gives rise to violation of CP in strong interac-
tions. As there seems to be no experimental evidence for the violation of
CP in strong interactions, such a term had better have a zero coefficient,
if QCD is to be the theory for strong interactions.

The added term depends on a parameter θ (see under “Peccei-Quinn
Symmetry”) which gets modified into an effective θeff through inclusion
of quark mass effects, etc. The presence of this term can be shown to
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give rise to an electric dipole moment for the neutron (whose magnitude
depends on the size of θeff ), which can be looked for experimentally. No
nonzero electric dipole moment of the neutron has been measured within
the accuracy of the experiments. The experiments serve to put limits on
the magnitude of the θeff , of the order of 10−9. A value of zero for this
parameter is a natural result of Peccei-Quinn symmetry, which is exact
at the classical level and which will give rise to a massless Goldstone
boson. Such a particle is called the Axion. Quantum mechanical effects,
such as the triangle anomaly with gluons, give a nonzero value to the
mass of the axion arising from the spontaneous breaking of Peccei-Quinn
symmetry. Thus, the axion is a pseudo-Goldstone boson.

The effect of adding the triangle anomaly contribution modifies the
added term in the Lagrangian density to the form

L = (θeff − φ

f
)
g2

32π2
F aµνF̃

µν
a

where φ is the axion field and f is its decay constant. Including non-
perturbative QCD effects, it is found that the potential for the axion
field φ has a minimum when φ is equal to fθeff and the added term
vanishes. Thus the existence of the axion would solve the problem of
CP violation in strong interactions.

The question that naturally arises from these considerations is whether
axions do exist in nature. To look for them experimentally, one needs
to have some idea of their mass and the size of their couplings to the
various standard model particles. The mass of the axion turns out to be
inversely proportional to f .

Early axion models chose f to be of the order of the electroweak scale,
about 250 GeV, and have two Higgs doublets in them. The axion masses
and couplings are known once the ratio of the vacuum expectation values
of the Higgs doublets is specified and flavor conservation at the tree level
is imposed. Such an axion would have a mass of about 1.8 MeV and
would couple weakly to electrons and positrons. It has been looked for
and not found. Does this mean that one is brought back to the problem
of strong interaction CP violation? Not necessarily, because it is possible
that f may be much larger than the electroweak scale, 250 GeV.

Models in which f is much greater than the electroweak scale, are
called invisible axion models. The axion couplings become so weak that
they escape observation in laboratory experiments. However, even such
invisible axions do have astrophysical consequences. In particular, they
could be candidates for cold dark matter in the universe. Their existence
will have an effect on time scales of evolution of stars. Such effects, which
depend upon the strength of the interaction of axions with photons, elec-
trons, and nucleons, should not be so large as to lead to conflict with
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observational limits. For example, globular-cluster stars, provide evi-
dence that the strength of the photon-axion coupling must not be larger
than about 0.6× 10−10 GeV−1 [54]. Another astrophysical observation
is the duration of Supernova SN1987A neutrino signal. This signal is of
a few seconds duration. This establishes that the cooling of the neutron
star has proceeded through emission of neutrinos rather than via the in-
visible axions [55]. Such considerations are useful in providing regions of
exclusion for the axion nucleon couplings and provide direction for future
searches for axions. Further experimental searches for axions, both lab-
oratory and astrophysical, are in progress. At present it is inconclusive
whether axions exist.

B Baryon
The first indication of a b quark bound in a baryon came from the CERN
Intersecting Storage Ring pp collider [56]. Its mass as measured by this
group is about 5.43 GeV. It was found to be electrically neutral, decayed
into a proton, D0 meson and π−, and was produced in association with
another particle whose decay product contained a positron. The inter-
pretation given was that this is an example of associated production of
naked “b” states in pp interactions with a quark composition (udb), that
is, a Λ0b . This was further confirmed by observation at the pp̄ collider by
the UA1 collaboration [57].

B Meson
If bb̄ bound states in the form of Υ(1S) states exist, there should be
other bound states in which a b quark or antiquark is bound with other
quarks, such as one of the (u, d) pair or one of the (c, s) pair. Such
quark-antiquark bound states should exist as mesons, while a bound
state of three quark combinations should be baryons. For example, the
B± mesons are the bound states (b̄u) and (bū), respectively. Particles
such as these were found in a systematic study of one of the excited Υ
states called the Υ(4S) by the CLEO collaboration at the Cornell e+e−

ring [58]. At the energy of the production of Υ(4S) in this machine, a
strong enhancement of single electron production was observed. This
observation was interpreted as the fact that the energy of the Υ(4S) is
above the energy required to produce a B meson and its antiparticle B̄,
and the observation of the single electrons came from the weak decay
of the B meson or the B̄. Thus, the interpretation of this process is:
e+e− → Υ(4S) → BB̄ and B → e−+anything and B̄ → e++anything.
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Bs Meson
The Bs meson is the bound state formed from bs̄, is electrically neutral,
and may be called the strange meson Bs. Its antiparticle B̄s would be
the bound state b̄s. The first direct observation and measurement of its
properties were done at the CERN LEP e+e− collider by the ALEPH
and OPAL collaborations [59].

b Quark
The first indication of the existence of a heavy quark with mass around
4.5 GeV came from the observation of a dimuon resonance in 400 GeV
proton-nucleus collisions carried out at the Fermilab proton synchrotron
[60]. This strong enhancement of the dimuon signal at 9.5 GeV is in-
terpreted as being due to the production of the Υ(1S) state, which is
thought to be a bound state of a new quark and its antiparticle (the
first of a third generation family) called beauty quark, bottom quark, or
just b quark and which decays into a pair of muons. Other excited Υ
states called the Υ(2S), Υ(3S), and Υ(4S) have also been found and
their modes of decay have also been studied [61].

Details of their masses and decay widths and other properties can
be found in the “Review of Particle Physics” produced by the Particle
Data Group [62].

B0B̄0 Mixing
The B mesons contain b quark as one of their constituents. The B0

meson’s quark composition is db̄ while that of the B̄0 is d̄b. These are
also referred to as B0d and B̄

0
d, respectively. If the d quark in these is re-

placed by the s quark, we have the B0s and the B̄0s mesons, respectively.
These mesons are eigenstates of the strong interaction Hamiltonian and
have the same values of mass and other quantum numbers, such as to-
tal angular momentum J , parity P , and the charge conjugation parity
C. In the production processes of the B mesons, the appropriate eigen-
states are those of the strong interaction Hamiltonian. Once they are
produced, however, the weak interactions do not preserve quark flavours
and, therefore, lead to a mixing of the B0 and B̄0 states by second or-
der weak interactions. The mixings result in B0–B̄0 oscillations. Such
mixing was first found in the neutral kaon system, (K0–K̄0) mixing (see
under “Kaons—Neutral”), and led to K0–K̄0 oscillations.

A natural question that arises is whether oscillations occur in the B0–
B̄0 system similar to those in the neutral kaon system. First evidence for
such oscillations occurring was obtained by Albajar et al. [63], working
with the UA1 collaboration at the CERN proton-antiproton collider. If
B0–B̄0 oscillations do not occur, the two muons coming from the decay
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of the B0 and the B̄0 have opposite signs: B0 → µ−X, B̄0 → µ+X ′.
The appearance of same sign dimuons would signal the presence of such
oscillations. Unfortunately the situation is not that simple. Same sign
dimuons come also from a background process in which the B0 decays
directly to µ−X, while the other decays through a cascade process B̄0 →
DX ′ → µ−Y , where X, X ′, and Y are some hadronic states. If one
takes care to eliminate this background signal experimentally, in the
absence of oscillations, there should be no dimuon signal of the same
sign. In the experiment such background elimination was carried out,
but still a signal of same sign dimuon was left over. They interpreted
this excess signal as arising from the presence of oscillations in the B0–
B̄0 system. They found that the fraction of primary decays of the B′s
that give opposite sign dimuons from that expected without mixing was
0.121± 0.047.

The presence of B0–B̄0 mixing was also found at electron-positron
colliders by the Argus collaboration [64] at DESY working with the Doris
II storage ring. It has been confirmed by the CLEO collaboration [65] at
the Cornell e+e− storage ring. Both these groups have measured B0B̄0

mixing by looking for like sign dilepton events coming from the decay of
Υ(4S). The Argus collaboration had a total of 50 like sign dileptons, of
which 25.2 were determined to be background and 24.8±7.6 were signal.
Comparable numbers for the CLEO collaboration were: total 71 dilepton
events, 38.5 background, and 32.5±8.4 signal. CLEO calculates a value
for the mixing parameter r, which is defined as

r =
N++ +N−−

N± −N±(from B+B− decay)
,

where in the denominator, the number of opposite sign dileptons from
B+B− decays have been subtracted. Since the detector efficiencies for
ee, µµ, and eµ are not the same, CLEO first calculates from the signal
data, ree = 0.158 ± 0.085 ± 0.056, rµµ = 0.036 ± 0.098 ± 0.062, and
reµ = 0.262 ± 0.088 ± 0.051, and then calculates a weighted average,
r = weeree + wµµrµµ + weµreµ = 0.0188 ± 0.055 ± 0.056, with wee =
0.38, wµµ = 0.15, weµ = 0.47. These weights are proportional to the
expected number of dileptons from the single lepton rates. In all these
r values, the first error is statistical, the second one systematic. The
conclusion of these results is that the B0B̄0 mixing is substantial.

More recently, observations of B0B̄0 mixing in Z0 decays to bb̄, have
been done at LEP ring at CERN by the L3 [66] and the ALEPH [67]
collaborations. The L3 group found a mixing parameter, 0.178+0.049−0.040,
while the ALEPH group found a value, 0.132+0.027−0.026.
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BaBar Experiment
This is an experiment that is being undertaken to study the properties
of B mesons and conducted at a facility dedicated to producing large
numbers of B mesons, called a B-factory. This B-factory is located at
the Stanford Linear Accelerator Center (SLAC). The B mesons are pro-
duced in an electron-positron ring called PEP-II, which is an upgrading
of the older 30 GeV, 800 meter diameter, colliding-beam storage ring
called PEP. PEP-II is an asymmetric electron-positron collider, collid-
ing 9 GeV electrons with 3.1 GeV positrons.

A new detector called BaBar detector has been built, by a large in-
ternational collaboration of scientists and engineers from 72 institutions
in 9 countries, to study the properties of the produced B mesons from
the collision region. (The acronym for the name comes from the fact
that it will study B and B̄ system of mesons.) This detector, just as
other colliding beam detectors, consists of a silicon vertex detector in
its innermost part, followed by a drift chamber assembly and a particle
identification system. The electromagnetic calorimeter is made up of
CsI. There is a magnet to provide measurements of momentum, and the
return iron yoke is instrumented.

Apart from studying in detail the properties of B mesons, BaBar will
also be used for studying CP violation in the B meson system where
the effects are expected to be large (see further under “CP Violation—
Neutral B Mesons”).

BAIKAL Neutrino Telescope
This is a neutrino detector that is being constructed in Lake Baikal.
It is a unique telescope with an effective area of 2 times 11,000 square
meters. The water volume is controlled at about 200,000 cubic meters.
This detector will also be able to look at high energy neutrinos coming
from astrophysical objects.

BAKSAN Neutrino Detector
This neutrino observatory is situated in Prielbrusye in the Caucasus
mountains. It consists of a complex of detectors comprising a Gallium-
Germanium neutrino telescope, Lithium-Beryllium and Chlorine-Argon
telescopes (under construction), and an underground scintillation tele-
scope, all with the object of further observations on neutrinos, solar as
well as of astrophysical origin.

Baryon Number Conservation
Baryons are particles having a mass equal to or greater than protonic
mass. The proton is the lowest state among the baryons; all the other
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baryons are heavier and decay to lower mass states but the decays stop
when they reach the state of the proton. The neutron, is only about
1.29 MeV heavier than the proton and undergoes β decay emitting a
proton, an electron, and an (anti)neutrino. Protons have not been ob-
served to decay into any lower mass states despite the fact that there are
many lower mass particles, such as various mesons, muons, and electrons.
This lack of decay is supposed to be due to the operation of a selection
rule forbidding the decay. This selection rule goes under the name of
the law of conservation of baryons. Particles lighter than the proton are
assigned a baryon number zero. Particles heavier than the proton which
ultimately decay into the proton are all assigned a baryon number 1. An-
tibaryons carry the opposite baryon number, -1. The specific statement
of the conservation law for baryons is attributed to Stückelberg [68].
This was brought into further prominence by Wigner [69]. There are
also earlier discussions on this subject by Weyl [70].

Unlike some of the other conservation laws, this law is not directly
related to a symmetry principle. In fact, in theories of grand unification
of forces, the proton has a finite probability to decay, with violation of
conservation of baryon number. Many experiments have been set up to
look for proton decay; so far no such decays have been found.

Baryonic Resonance
The first among a very large number of baryonic resonances to be dis-
covered was what is now called the ∆(1232)P33. This was discovered in
the scattering of positive pions on protons, with pions having a kinetic
energy between 80 MeV and 150 MeV, from the Chicago cyclotron. The
cross section for this process was found to increase rapidly with energy
in this energy range. In these first experiments it was not clear whether
the cross sections go through a peak and come down to smaller values
as would be necessary if it was a resonance. Subsequent work [71] using
the pion beams of higher energies from Brookhaven Cosmotron showed
that it is indeed a resonance in the isospin 3/2, angular momentum P3/2
state of the pion-nucleon system.

Baryonic States
Many low lying baryonic states with excitation energies of the order of
several hundred MeV above the proton state were discovered in accel-
erator experiments in the late 1950’s and 1960’s. These states group
themselves systematically into families, with specific values of spin and
parity for all members of the family. Among these, two families, the
baryon octet and the decuplet, are specially worthy of note, because
they provided clues which led to classifying them in terms of a sym-
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metry scheme higher than isospin symmetry. The baryon octet has
spin J = 1/2, has positive parity, and contains both non-strange and
strange baryon states. It contains the proton and the neutron (mass 939
MeV); three strangeness −1 particles, Σ±,0 (mean mass 1190 MeV); the
Λ0 particle (mass 1115 MeV); and two strangeness −2 particles, Ξ−,0

(mean mass 1318 MeV), making a total of eight particles. The baryon
decuplet has spin J = 3/2 and positive parity and also contains both
non-strange and strange baryon states. There are ten members in this
family, four of these with a mean mass of 1230 MeV, three particles with
mean mass about 1380 MeV, two particles with a mean mass of about
1530 MeV, and one particle with mass about 1675 MeV. Of these ten
particles, through a series of detailed experiments, it has been estab-
lished that the first 4 states carry no strangeness, while the others carry
strangeness quantum numbers which are nonzero. The three of mass
� 1380 MeV have strangeness −1, the next two (mass � 1530 MeV)
strangeness −2, and the last one strangeness −3. The mean mass spac-
ing of the different strangeness states in these baryon multiplets is about
120 MeV to 150 MeV, while the mass differences between members of a
family with same strangeness are very small. This suggests a grouping
of the particles with given strangeness into multiplets of isotopic spin.
For the octet, the proton and neutron form an isospin doublet, the Σ’s
an isospin triplet, the Λ an isospin singlet, the Ξ’s an isospin doublet.
For the decuplet, the quartet of states with mass around 1230 MeV
form an isospin (3/2) multiplet, the triplet of states with mass around
1380 MeV are assigned an isospin 1, the doublet of states with mass
around 1530 MeV are assigned an isospin (1/2), and finally the single
state at about 1675 MeV is assigned an isospin 0. The eight members
of the octet multiplet can be assigned to the eight dimensional represen-
tation of SU3 and the ten members of the decuplet can be assigned to
the ten dimensional representation of SU3 (see further under “Eightfold
Way”). In the decuplet, the first four are referred to as the “∆” parti-
cles, ∆++,∆+,∆0,∆−, the next three “Σ”-like particles, Σ+,Σ0,Σ− ,
the next two “Ξ”-like particles Ξ0,Ξ−, and the last is called Ω−. Further
work on the SU3 symmetry scheme showed that all these states can be
understood as the excitations in a bound state of three quarks, called
the u, d, and s quarks, in a model called the constituent quark model
(see further under “Constituent Quark Model of Hadrons”).

At higher masses there are other multiplets of baryons, called charm
baryons and beauty (or bottom) baryons. The charm baryon contains a
“charm” quark, while the beauty (or bottom) baryon contains a “beauty”
(or “bottom”) quark in addition to two other quarks.
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Beta Decay
Radioactive sources emit radiations which have been classified as α, β,
and γ rays which are supposed to arise when the nucleus of the atom
undergoes a transformation. Of these, the β rays have been found to
be electrons. Early observations of the energy spectrum of the emitted
electrons showed the existence of a discrete energy spectrum on top of
which was superposed a continuous energy spectrum. Further studies
revealed that the discrete spectrum is associated with a process in which
the nucleus emits γ radiation. Sometimes, instead of the γ ray being
actually emitted by the nucleus, the energy of the nuclear transformation
is transferred to one of the electrons bound in the atom, and ejection
of the electron occurs with an energy which corresponds to the nuclear
transition energy, minus the binding energy of the electron in the atom.
Such electrons are called conversion electrons and are closely associated
with the emission of γ radiation. The electrons which have a continuous
energy distribution and which are emitted in nuclear transformations
are called β rays.

Before we discuss the continuous energy distribution and its implica-
tions, we digress a little and discuss some of the features of the energy
changes in β decay in general. The atomic mass, the nuclear mass,
and the electron mass all play a role here. Let us denote the bare nu-
clear mass with atomic number Z as NZ . The mass of the atom MZ
is made up of the bare nuclear mass together with the masses of the Z
electrons in the atom, less the sum total of their binding energies BZ :
MZ = NZ + Zm−BZ , where m is the mass of the electron (recall that
we are taking c, the velocity of light, equal to one). For the bare nucleus
undergoing β (electron) decay, we may write NZ = NZ+1+m+Q, where
Q is sum total of the kinetic energy of the electron, the recoil kinetic
energy given to the nucleus, and the kinetic energy given to any other
particles that may be emitted in the process, and is simply called the Q
value for the decay. (We will see immediately below that at least one
other particle, called the neutrino, is indeed emitted.) Rewriting this in
terms of atomic masses, we have

MZ =MZ+1 + (BZ+1 −BZ) +Q (electron emission)

The second term in the round brackets, namely, the difference in the
binding energies, is usually very small compared to the beta ray energies.
We may write similar equations for the case of positron emission. Here
the atomic number changes from Z to Z−1: hence, NZ = NZ−1+m+Q,
or in terms of atomic masses,

MZ =MZ−1 + 2m+ (BZ−1 −BZ) +Q (positron emission)
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Another process that occurs, which is included under the term β decay,
is orbital electron capture. This usually occurs in heavy nuclei, from
the K-shell of the atom because these electrons have an appreciable
probability of spending a lot of time inside the nuclear volume. Here, if
the binding energy of the electron is represented by BKZ , then we have
NZ +m−BKZ = NZ−1 +Q, or equivalently

MZ =MZ−1 + (BZ−1 −BZ) +BKZ +Q (electron capture)

In electron capture, Q represents the sum total of the energy carried
away by the neutrino and the recoil energy given to the nucleus. If the
atomic masses are such that K-shell capture is not possible, capture of
electrons may occur from higher shells, such as L-shell or M -shell.

Let us get back to the continuous energy distribution of the β parti-
cles. The continuous energy distribution for the electrons poses a serious
problem with energy conservation. The electrons are emitted when the
nucleus makes a transition between two definite energy states and there-
fore must have a unique energy. It is found, however, that the continuous
energy distribution has a definite upper limit, and that only this upper
limit (plus the rest mass energy of the electron) equals the energy dif-
ference between the nuclear states involved.

Another problem has to do with angular momentum conservation.
Consider, for example, β decay of tritium, 31H → 3

2He+e−. The spin an-
gular momentum (measured in units of h̄, the unit of angular momentum
which we take to be 1) of 31H on the left-hand side and that of 32He on
the right-hand side are known to be (1/2) each. On the right-hand side,
the total angular momentum carried is made up of the total intrinsic
spin carried by the two particles, which can thus have the values 0 or 1,
plus any orbital angular momentum between the two. Since the orbital
angular momentum can take on values which are only integral, the total
angular momentum on the right-hand side can be only integral. There
is a discrepancy in the value of the angular momentum on the left and
right sides leading one to question angular momentum conservation.

Both these problems disappear, if one assumes that along with the
electron, an additional electrically neutral particle carrying half a unit
of intrinsic angular momentum is emitted undetected. This particle
must also have very little rest mass energy associated with it so that
the maximum total electron energy (kinetic and rest mass energy) will
be equal to the energy difference of the nuclear states, as is observed.
Such a solution of this problem was proposed by Pauli [72], and this
particle has been called the neutrino (see also under “Neutrino”). It is
a massless, chargeless particle, carrying (1/2) unit of intrinsic angular
momentum.
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Beta Decay Leading to Bound Electrons
Normally when β decay occurs, the decay electron or positron is emitted
and escapes from the atom to the outside. Since the beta energy spec-
trum has all kinetic energies ranging from zero to some maximum value,
those electrons at the low energy end of the spectrum, as they escape,
can be strongly influenced by the attractive electric force of the nucleus.
If the attractive force they feel is strong enough, it is possible that the
electron might end up in a bound state in the atom corresponding to the
daughter nucleus. A precise calculation of the probability of this bound
state decay has been done quantum mechanically [73]. These calcula-
tions indicate that there is a small probability for the decay electron to
end up in the bound state, typically of the order of 10−4 to 10−5 relative
to the normal decay probability.

The first direct observation of β-decay electrons ending up in a bound
state was carried out at the Darmstadt heavy ion facility by Jung et
al. [74]. They observed the β decay of 16366Dy

66+ ions stored in the
ring of the heavy ion facility. The number of daughter ions, 16367Ho

66+,
produced from the decay of the parent ions was measured as a function
of time spent in the ring. From this, a half-life for the decay could
be determined. It was found to be 47+5−4 days. This result, taken in
conjunction with the measured half-lives for electron capture from the
M1 and M2 shells of neutral 16367Ho, provided the information necessary
to put a limit on both the Q value for electron capture and the electron
neutrino mass.

Beta Decay of the Λ
The Λ particle is an electrically neutral baryon having strangeness -1.
It has been observed to decay into a proton and π− meson. The first
observation of the β decay of this baryon, Λ → proton + electron + ν̄e,
was reported by Crawford et al. [75] using the Berkeley Bevatron and a
liquid hydrogen bubble chamber. The sequence of the reactions which
led to this decay was established to be:

π−p → Σ0 +K0; Σ0 → Λ + γ; Λ → p+ e− + ν̄e.

Another observation which confirmed this finding was due to Nordin et
al. [76]. It was done with a different initial beam. A beam of separated
K− was allowed to impinge on a target which was a liquid hydrogen
bubble chamber. The K− reacted with the protons in the liquid hydro-
gen in the bubble chamber, by the reaction K− + p → Λ + π0, the Λ
from which underwent a β decay. Since these initial observations many
more such β decays of the Λ have been observed.
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Beta Decay of the Neutron
The neutron, being heavier than the proton by 1.29 MeV in energy
units, can undergo decay into a proton: n → p + e+ + νe. The Q-
value in this reaction is rather small, and hence one would expect a
rather small decay probability and therefore a long lifetime. A first
evidence that such a decay of the free neutron was occurring came from
experiments performed at a nuclear reactor by Snell and Miller [77].
This was confirmed in further works by Robson and by Snell et al. [78],
who also measured the lifetime to be in the range 9 to 25 min. The
lifetime is now known much better. It has the value (886.7± 1.9) s.

Beta Decay of π+

The positive pion is heavier than the neutral pion by a small amount,
the difference in energy units being about 4.59 MeV. From theoretical
considerations, Gershtein and Zeldovich [79] and, independently, Feyn-
man and Gell-Mann [80] predicted that the charged pion ought to suffer
β decay into the neutral pion state: π+ → π0 + e+ + νe. The first ob-
servation of this decay was made by Dunaitsev et al. [81] at the Dubna
synchrocyclotron using spectrometers.

Beta Decay—Strong Interaction Corrections
In the introduction to the theory of beta decay, we mentioned that the
interaction Hamiltonian in this case is formed from the product of two
currents, one from the proton-neutron system and the other from the
electron-neutrino system. Of these, the proton-neutron system belongs
to the family of particles called hadrons, which are subject to strong
interactions, while the electron-neutrino system is not. The latter system
belongs to the family of particles called leptons. The question, then, is
whether the strong interactions that the hadrons feel require corrections
to the β decay theory which have to be taken into account. In general
the answer is yes. However, for the vector hadronic current, it can be
shown that the strong interaction corrections do not modify the coupling
involved. This was first shown by Gershtein and Zeldovich [79], and also
by Feynman and Gell-Mann [80], and goes under the name of Conserved
Vector Current Hypothesis.

The answer comes from analogy with a similar question in electrody-
namics about the equality of the observed electric charge of the proton
and the positron. This equality of the observed charges is a statement
about the electric charges after all renormalization effects due to strong
interactions for the proton are taken into account. It can be shown that,
if one starts with equal “bare” electric charges for the proton and the

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 135

✐

✐

✐

✐

✐

✐

✐

✐

positron, and the divergence of the vector currents of the particles van-
ish (that is, conservation of vector current holds), then the renormalized
electric charges are also equal.

Renormalization effects arise from strong interactions which have the
property of being charge independent. Description of this is simple in
terms of the concept of isotopic spin: the proton and neutron are con-
sidered as two substates of a particle, the nucleon, with isospin vector
7I, (components (I1, I2, I3)), with eigenvalues 7I2 = (1/2)((1/2) + 1) and
I3 = +(1/2) for the proton and I3 = −(1/2) for the neutron state
(see further under “Isotopic Spin”). In analogy with ordinary spin,
I1 + iI2 and I1 − iI2 will play the role of raising and lowering opera-
tors, changing neutron to proton and proton to neutron, respectively.
Statement of charge independence becomes a statement of symmetry
under rotations in the isotopic spin space. One can introduce an isospin
(vector) current for the nucleon 7Iµ(x), whose isospin “3” component
I3,µ(x) is related to the electromagnetic current. The other compo-
nents, A±

µ (x) = I1,µ(x)±iI2,µ(x), can be associated with currents, which
change a neutron into a proton (upper sign) and proton into a neutron
(lower sign), respectively, and which play the role of currents in beta
decay. If the currents 7Iµ(x) have divergence zero (that is, a conserved
vector current (CVC) exists), and the “bare” weak coupling constants
are equal, then the renormalized weak coupling constants will also be
equal in analogy with the renormalized electric charge. Thus, the conse-
quence of CVC is that the weak coupling constant for vector interactions
in beta decay is not renormalized.

Beta Decay—Theory
The quantum field theory of β decay was first given by Fermi [82] in
1934. Assuming the existence of the neutrino, he formulated the the-
ory for the emission of the electron and an antineutrino by a method
similar to that used for treating the emission of radiation by an excited
atom. (An antineutrino is emitted along with the electron rather than
a neutrino, because of the association of a lepton number with these
particles; see discussion under “Leptons”.) In radiation emission by the
atom, the interaction Hamiltonian density is formed by the scalar prod-
uct of the electromagnetic vector current of the electron, ψ̄(x)γµψ(x),
and the vector potential of the electromagnetic field, Aµ(x),

H(x) = eψ̄(x)γµψ(x)Aµ(x).

By analogy, Fermi assumed that in beta decay, the interaction Hamilto-
nian density is the scalar product of the vector current formed from the
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proton-neutron system with a similar vector current formed from the
electron-neutrino system,

H(x) = GF ψ̄p(x)γµψn(x)ψ̄e(x)γµψν(x).

In radiation emission, the coupling constant is the electric charge e of the
electron. In beta decay, a corresponding coupling constant GF called the
Fermi weak coupling constant was introduced, which has the dimensions
of energy times volume (or dimension of length squared, in units where
h̄ = c = 1). The calculation of the probability of transition proceeds in
first order perturbation theory using the expression,

P = 2π|M |2ρf ,
where M is the matrix element for the transition, and ρf is the number
of final (f) states per unit energy interval accessible to the products of
the decay.

The electron and the antineutrino, each have intrinsic angular mo-
mentum (spin) 1/2, so the total spin angular momentum carried by these
is 0 or 1. If no orbital angular momentum is carried by them with re-
spect to the nucleus, then the total change in the angular momentum
∆J of the nuclear states can only be 0 or 1, and the parity of the nu-
clear state does not change. These are called allowed transitions. Of
these, the transitions in which ∆J = 0 are called Fermi transitions (no
spin flip in n → p), the ones in which ∆J = 1 are called Gamow-Teller
transitions (spin flip in n → p). It should be noted that in the Fermi
theory with vector currents alone, no spin flip can occur in the trans-
formation of a neutron into a proton or vice versa, and hence it cannot
give rise to allowed Gamow-Teller transitions. To accommodate allowed
Gamow-Teller transitions, modification of the simple Fermi theory above
is necessary (More on this below). Other transitions, in which nonzero
orbital angular momentum is involved in the nuclear transition, so that
∆J > 1, are called forbidden transitions. In forbidden transitions, in ad-
dition to spin flip or no spin flip, there is a change in the orbital angular
momentum in the transformation n ↔ p.

Fermi succeeded in deriving expressions for the decay rate (or the
mean lifetime) and for the energy distributions of the β-particles in al-
lowed Fermi transitions. As mentioned above, the vector interaction
used by Fermi did not allow spin flip in the n → p transformation, hence
it did not allow Gamow-Teller transitions, and to account for these a
modification of the theory was necessary. It was soon found that, within
the requirements of special relativity, five possible forms of the currents
are allowed, a linear combination of whose scalar products occurs in the
interaction Hamiltonian for β decay. These forms are named according

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 137

✐

✐

✐

✐

✐

✐

✐

✐

to their transformation properties under Lorentz transformations and
space reflections in Dirac theory: (S) (ψ̄ψ) scalar, (V)(ψ̄γµψ) vector,
(T) (ψ̄γµγνψ) tensor, (A) (ψ̄γ5γµψ) axial vector, and (P) (ψ̄γ5ψ) pseu-
doscalar. Of these, the (P) pseudoscalar form can be safely ignored
in nuclear beta decay processes because it produces effects only of or-
der β2 � 10−3, where β is the typical velocity of a nuclear particle (in
units of the velocity of light). Of the rest, (S) scalar and (V) vector
forms do not allow spin-flip, and hence can account for Fermi transi-
tions, while (T) tensor and (A) axial vector forms allow spin flip, and
hence can account for Gamow-Teller transitions. Many years of very
detailed work had to be done to determine which of these combinations
best described all the data in the field including the discovery that neu-
trinos and electrons have left-handed helicities −1 and −β, respectively,
and antineutrinos and positrons have right-handed helicities +1 and +β,
respectively, where helicity measures the projection of the spin on the
direction of the momentum (longitudinal polarization). (See also under
“Parity—Nonconservation in Nuclear β Decays”.)

In an allowed Fermi transition, since the total angular momentum
carried by the electron and the antineutrino is zero, the right-handed
antineutrino (helicity +1) is accompanied by an electron of opposite
helicity. Theoretical calculations based on the vector interaction (V)
tend to favor the configuration in which the electron and the antineutrino
have opposite helicities and, hence, tend to go in the same direction,
whereas the scalar interaction (S) favors same helicities and, hence, tend
to go in opposite directions. Experimentally, the antineutrino direction
is determined by momentum conservation, if one knows the electron
momentum and the recoil momentum given to the nucleus. When the
electron and the antineutrino go in the same direction, large values of
nuclear recoil will occur, while when they go in opposite directions, small
values of nuclear recoil will occur. Thus, an experiment determining the
recoil distribution in allowed Fermi decays can decide whether (V) or (S)
interaction is favored, because for (V) one expects large nuclear recoil
and for (S) small nuclear recoil. Experimentally one finds large nuclear-
recoil momenta are favored, hence (V) rather than (S) is selected.

In an allowed Gamow-Teller transition, the total angular momen-
tum carried by the electron and the antineutrino is 1. Thus, they have
parallel spin. Again, the right-handed antineutrino (helicity = +1) is
accompanied by an electron of opposite helicity. It is found that the (A)
interaction favors opposite helicities, whereas the (T) interaction favors
the same helicities. Hence one expects to see large nuclear recoil mo-
menta only for (A) interactions and small recoil nuclear momenta only
for (T) interactions. Experimentally one finds again large nuclear re-
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coil momenta are favored, thus picking (A) over (T). Further work has
shown that the combination (V-A) best describes the entire set of data
available in the field [80].

Details of the theoretical derivation of the expression for probability
of β decay per unit time, and hence an expression for the half-life for β
decay can be found in any book on nuclear physics, for example, in the
book by Segrè [83]. We will only quote the result here and not present
the details. The probability, w(pe)dpe, of a β decay, giving an electron
with momentum in the interval (pe, pe+ dpe) is derived to be (assuming
zero neutrino mass)

w(pe)dpe =
G2F
2π3

|M |2F (Z,Ee)(W − Ee)2p2edpe.

(If a finite neutrino mass, mν �= 0 is assumed, the factor (W − Ee)2

in this expression, should be replaced by [W − Ee]
√
[W − Ee]2 −m2

ν .)
Here, GF is the Fermi weak coupling constant, characterizing the β
decay coupling, W is the total disintegration energy (that is, the en-
ergy difference between the nuclear states), Ee is the total energy of
the electron (including its rest mass energy), pe =

√
E2e −m2

e is the
momentum of the electron, and Eν is the energy of the antineutrino.
Energy conservation (neglecting the small nuclear recoil energy) gives
W = Ee + Eν . |M |2 is the square of the matrix element for the nu-
clear transition. The matrix element M is reduced to an integral over
the nuclear volume of the electron wave function, the antineutrino wave
function, and the wave functions of the transforming neutron and the
produced proton, summed over all the particles of the nucleus. The
function F (Z,Ee) is called the Fermi function and corrects for the fact
that the wave function of the electron is not a plane wave but affected
by the Coulomb field of the nucleus. This function has the approximate
form F (Z,Ee) = 2πη1[1−exp−2πη1]−1, where η1 = Z

137βe
with βe being

the velocity of the electron (in units of the velocity of light) far from the
nucleus. This factor is nearly unity, except for very low energy elec-
trons and/or high Z nuclei. For allowed transitions, M is independent
of pe and pν , and may be considered a constant for the discussion of the
energy distribution of the electrons in β decay. The above expression
represents the form of the β electron spectrum. An exactly similar ex-
pression holds for the positron spectrum, the only modification occuring
in the Fermi function in which the η1 is opposite in sign for positrons.
Using η = (pe/me), ε = (Ee/me), W0 = (W/me).

We see that a plot of√
w(η)

η2F (Z,Ee)
versus (W − Ee)
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Figure 4.3: Kurie plot for 64Cu electrons and positrons. (Figure from
G. E. Owen and C. S. Cook, Physical Review 76, 1726, 1949. Copyright
1949 by the American Physical Society.)

must give a straight line. Such a plot is called a Kurie plot. This plot
is shown in Figure 4.3 above, for electrons and positrons from 64Cu.
Deviations from a straight line, for energies Ee away from the end point
W in this plot, indicates forbidden transitions. (For energies very near
the end point W , the result of assuming mν �= 0 can be shown to lead
to a Kurie plot with a vertical tangent at the end point. There is thus
a possibility, at least theoretically, to find whether mν is zero or not.
Experimentally, however, this seems very difficult for reasons of detector
efficiency and resolution.)

The total decay rate λ is obtained from the above expression for
the probability by integrating it over all electron momenta up to the
maximum allowable, pe,max =

√
(W 2 −m2

e). The expression is

λ =
G2F
2π3

|M |2
∫ pe,max

0

(W − Ee)2p2edpe.

In evaluating the integral over pe, introducing η = pe/me, we get

λ = G2F |M |2 m
5
e

2π3
f,
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and f stands for the integral

f =
∫ ηmax

0

F (Z, η)(W0 − ε)2η2dη,

where we recall W0 = W/me, ε = Ee/me, and Ee =
√
p2e +m2

e. The
half-life τ is given by τ = lne 2

λ . Thus the product fτ can be written as

fτ =
const
|M |2 ,

where the const = [2π3/(G2Fm
5
e)]; it thus gives information about the

square of the matrix element. For allowed transitions, |M |2 is nearly 1.
Using the measured value of fτ for various allowed transitions, one can
deduce a value for the Fermi coupling constant GF . For example, the
measured fτ -value for 14O-decay, which is a Fermi transition, is 3100±
20 s. Putting in the values of the various quantities in the “const” above,
one gets for GF the numerical value 1.4 × 10−49 erg cm3. Analysis of
many β decays gives values for GF which are close to this value thus
giving credibility to this quantity being the universal coupling constant
for β decay interactions. The value for GF can be rewritten as

GF = 1.0× 10−5(
1
Mp

)2,

where Mp is the mass of the proton. In a more refined theory, where
one takes into account the structure of the proton and neutron one gets
the numerical value of GF for Fermi transitions modified to

GF = 1.02× 10−5(
1
Mp

)2.

One can also get an idea of the coupling constant for a decay, which is a
mixture of Fermi and Gamow-Teller transitions, from its measured fτ -
value. An example is the free neutron decay, which has an fτ -value =
1080±16 s. From this, the ratio of the Gamow-Teller to Fermi couplings
can be evaluated (except for the sign), and it turns out to be about 20%
to 25% larger than the Fermi coupling in magnitude.

Usually, the value of ln fτ , rather than fτ , is quoted from exper-
iments on β decays. The ln fτ -values range from about 3 for allowed
transitions to larger values, such as 6, 9, 12, 15, for forbidden transi-
tions. The largest ln fτ -value known is 23 for 115In, which has a half-life
of 6× 1014 years.
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Bhabha Scattering
The elastic scattering process e+e− → e+e− was first calculated by
Bhabha [84]. The scattering process is due to photon exchange between
the particles involved and can be calculated, using QED, to the order in
perturbation theory necessary to give the desired accuracy. Because the
electrons and positrons are found to be points (with no structure) even
at the highest energies investigated, the theoretically calculated Bhabha
scattering cross section can be used to measure luminosity of electrons
and positrons in colliders. All LEP experiments have luminosity mon-
itors installed as close to the beam direction as possible and measure
Bhabha scattering continuously, along with any other measurements
that may be going on at the same time. The continuous monitoring
of the luminosity is very important for high precision measurements.

Big-Bang Cosmology
In the early stages of the evolution of our universe after the big bang,
particle physics has a significant role to play in answering some questions
of cosmology. This interrelation between particle physics and cosmology
has emerged as a very fruitful area of study and we briefly summarize
here the highlights of these endeavors.

The space-time metric for our universe at early times after the big
bang is usually taken to be described by the so called Robertson-Walker-
Friedmann metric,

ds2 = dt2 −R2(t)
[

dr2

1− kr2
+ r2dΩ2

]
dΩ2 = dθ2 + sin2 θdφ2

In this equation, R(t) may be loosely referred to as the radius, or the
“size” of the universe. The constant k can be chosen to be either +1, 0,
or −1 by appropriate scaling of the coordinates. These values of k give
closed universe, open universe, or spatially flat universe, respectively.
Einstein’s general relativity theory gives the time rate of change of the
radius of the Universe, called the Hubble parameter, H = Ṙ(t)

R(t) , where[
Ṙ(t)
R(t)

]2
= H2 =

8π
3
Gρ− k

R2(t)
+

Λ
3
,

where G is Newtonian gravitational constant, ρ is the total energy den-
sity, and Λ is the cosmological constant. We should note that, for a
system of relativistic particles at temperature T , the radiation energy
density varies like T 4, and the number density varies like T 3. The total
number of relativistic particles T 3R3, which is essentially the entropy,
remains constant if the expansion is adiabatic, which implies T ∝ (1/R).
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If we divide both sides of the equation above by H2, and introduce
ρc = [3H2/(8πG)], called the critical density, we may rewrite the pre-
ceding equation as

1 =
ρ

ρc
− k

H2R2
+

Λ
3H2

.

Energy conservation is expressed by equating the time rate of change of
energy in a sphere of radius R to the rate of flow of energy through the
bounding surface,

d

dt
(
4π
3
R3ρ) = −pṘ · 4πR2,

where p is the pressure. From this we can immediately derive, ρ̇ =
−3(ρ + p)(Ṙ/R). Differentiating the equation given above for (Ṙ/R)2

with respect to time, we get,

R̈

R
=

Λ
3
− 4πG

3
(ρ+ 3p).

We shall take Λ = 0 hereafter. Putting a suffix 0 to denote present day
values, we have

k

R20
= H2

0 (Ω0 − 1), Ω0 = (ρ0/ρc).

Here R0, H0, and ρ0 are the present day values of radius, Hubble param-
eter, and total energy density, respectively. The parameter Ω0 is called
the density parameter. The ultimate fate of the universe depends on this
parameter; Ω0 > 1, < 1,= 1 define whether k = +1, −1, 0, respectively,
and determine whether the universe is closed, open, or spatially flat.

Now we refer to some observational facts.

• The present day value of the Hubble parameter is not known pre-
cisely even after half a century of observations. It is usually ex-
pressed as H0 = 102h0 km s−1 Mpc−1 (Mpc=megaparsec=3.26 ×
106 light years), with h0 lying somewhere in the range 0.4 to 1.

• The presence of a cosmic microwave background radiation (CMB)
has been established [85]. It is found that the entire universe is
pervaded by photons having a black body distribution with tem-
perature T = 2.7◦K. Within a “horizon” distance of 1028 cm we
find 1087 photons.

• Knowledge of Ω0 is obtained from several different measurements.
A very important input is the observationally determined baryon
to photon number densities (nB/nγ), in the range (0.3−10)×10−10.
This fact is used in deducing, from the observation of visible matter

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 143

✐

✐

✐

✐

✐

✐

✐

✐

in the form of stars and galaxies, an estimate of Ω0(visible) ≤ 0.01.
Other observations on rotational curves of galaxies, use of virial
theorem to determine cluster masses, gravitational lensing effects,
etc., and all give estimates of Ω0 in the range 0.1 to 2. These
estimates show that there is a lot of invisible or “dark matter” out
there. Particle physics may provide an answer as to what the dark
matter may be (see under “Dark Matter, Machos, Wimps”).

• Until recent observations with high resolution angular scales, it was
thought that the CMB is completely isotropic (see further under
“Cosmic Microwave Background Radiation”).

• Measurements of the relative abundance of primordial light ele-
ments, hydrogen, and helium (4He) have been done by astronomers
for a long time. It is found that the abundance of hydrogen is
about 70%, and of 4He about 25%. A very interesting fact is that,
based on our knowledge of particle physics and nuclear processes,
all the primordial relative abundances observed can be determined
in terms of one parameter, nB/nγ in the range (1.5−6.3)×10−10.

The scenario for the evolution of the universe is as follows. In the
early stages, the energy density is dominated by radiation, the tempera-
ture is very high, and the universe is populated by relativistic particles.
Taking Boltzmann’s constant equal to unity (1 eV = 1.2 × 104 K), for
T > 1015 GeV, the total number of degrees of freedom g of relativistic
paticles could be as much as 100 (such as in grand unified theories).
In the radiation dominated regime, the k/R2 term may be neglected in
comparison with the other term and by integration we can get a “tem-
perature clock”:

t � (gG)−1/2/T 2 � g−1/2(2.4 s)(1 MeV/T )2.

Thus instead of the time, it is convenient to specify the temperature at
which various events occur. However, in astrophysics, the events in the
history of the universe, and are said to occur at certain red shifts. The
red shift parameter z is related to R(t) by 1 + z = (R(t0)/R(t)), where
R(t0) is the present size of the universe, and 1+z measures the red shift
as the ratio of the observed wavelength of some particular spectral line
to the wavelength that line has in the laboratory.

At a temperature of tens of MeV (time � a few millisec), the universe
is populated by protons, neutrons, electrons, positrons, photons, and dif-
ferent neutrino species. The baryons are nonrelativistic while the other
particles are all relativistic. The baryons contribute very little to the
energy density, since (nB/nγ)(mN/T ) � 10−8, where mN is the nucleon
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mass. The particles are kept in equilibrium by various processes, such as
νν̄ ↔ e+e−, νn ↔ pe+, γγ ↔ e+e−. At this stage, these reaction rates
are faster than the expansion rate of the universe. The characteristic
expansion rate drops as the temperature drops. The weak interaction
rates drop even faster, so a stage will be reached at which the neutrinos
will no longer be in equilibrium. This happens at a temperature of about
3 MeV. The stronger interactions, such as electromagnetic interactions
and strong interactions, keep the protons, neutrons, positrons, and pho-
tons in kinetic equilibrium. For T > me (me is the rest mass energy of
the electron), the numbers of electrons, positrons, and photons are com-
parable. Electrical charge neutrality gives n(e−) − n(e+) = n(protons)
and hence there is a very slight excess (about 10−10), of electrons over
positrons. When T starts to drop below me (time � 1 s) the process
γγ → e+e− is highly suppressed, and positrons annihilate with electrons
and are not replenished. The annihilation heats up the photons relative
to the neutrinos. Following this, a small number of electrons (and an
equal number of protons), about 10−10 per photon, are left over.

As time progresses, since the radiation energy density falls like T 4

(or R−4), and the energy density of nonrelativistic matter falls like R−3,
the universe will become matter dominated at some stage. The time at
which this occurs can be found by equating radiation and matter energy
densities. It is found that the temperature Teq at which this happens
is Teq = 5.6Ω0h20 eV, and the corresponding red shift parameter zeq is
obtained from 1 + zeq = 2.4× 104Ω0h20. Prior to these values, radiation
dominates, while after these values, matter dominates.

The big achievement of big-bang cosmology is nucleosynthesis. Going
back to the stage when rates of weak processes were still fast compared
to the expansion rate, neutrons ↔ protons reactions were rapid, and
the neutron to proton ratio followed the Boltzmann factor, exp[−(mn−
mp)/T ]. As temperature falls, there are fewer neutrons. The weak in-
teraction rates are still significant until a temperature of a few MeV.
When the temperature drops further, neutrons decay, and these decays
become significant. The first step in making heavier nuclei is the produc-
tion of deuterons, represented as d. The binding energy of the deuteron
is small, about 2.2 MeV. If the temperature is above a certain critical
value, any deuterons formed will be photo-dissociated right away. Since
the photon to nucleon ratio is so large, the temperature has to fall sub-
stantially below the binding energy of 2.2 MeV so that the deuterons
that are formed do not get dissociated. It turns out this temperature
is about 0.1 MeV, and this is the temperature below which nucleosyn-
thesis may be said to begin. There are not enough nucleons at this
stage to have production of 4He by many body reactions; nuclei must be
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Figure 4.4: Kinematics of electron-nucleon deep inelastic scattering.

built step by step by strong and electromagnetic interactions. Reactions
which play a role are: pn → dγ, nd → 3Hγ, dd → 3He n, 3He n → 4Heγ,
3Hd → 4He n, etc. Once the bottleneck of deuteron production is crossed
at T � 0.1 MeV, further nucleosynthesis up to 7Li proceeds rapidly and
all the neutrons are rapidly used up in these processes. The primordial
abundances calculated depend on the ratio nB/nγ � 10−10 and are in
reasonable agreement with observed values. Elements heavier than these
primordial ones are synthesized later in stars, after stars and galaxies
are formed.

Bjorken Scaling
This concept was developed in 1969 by J. D. Bjorken [86] in connection
with the theory of deep inelastic scattering of leptons on nucleons. It
plays a very significant role in elucidating the substructure of the nu-
cleon, a role as important as that played by the Rutherford scattering
of alpha particles for understanding the structure of the atom and its
nucleus.

To explain Bjorken scaling, let us consider the kinematics involved
in deep inelastic scattering of leptons (electrons or neutrinos and their
antiparticles) on nucleons. Here we consider only the scattering of elec-
trons. In Figure 4.4 above, we have the diagram in which an incident
electron with a well defined four-momentum pµ = (E, 7p) is incident on a
nucleon at rest in the laboratory with four-momentum Pµ = (M,70). The
nucleon suffers a highly inelastic scattering process, producing a whole
slew of particles in the final state X, the total of the four-momenta of
these produced particles being, pµtot = (Etot, 7ptot). The electron acquires
a final four-momentum p′µ = (E′, 7p ′), which is measured. We spec-
ify the invariant mass W of the products of the nucleon breakup by
W 2 = E2tot − 7p 2tot. The four-momentum qµ transferred by the elec-
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tron to the proton is known from the measurements to be qµ(q0 =
E − E′, 7q = 7p− 7p ′). The square of the four-momentum transfer is then
q2 = (E − E′)2 − (7p− 7p ′)2. The same quantity in terms of the nucleon
and its products in the final state is q2 = (Etot −M)2 − (7ptot −70) 2. We
introduce the laboratory energy transfer, ν = (Etot −M) = (E − E′),
which can be written in the invariant form ν = q · P/M . Then a simple
calculation using these definitions shows that q2 = W 2 −M2 − 2Mν.
Thus, the whole process is specified, if one gets just the two quantities,
q2 the square of the four-momentum transfer and ν the energy transfer.
The invariant mass of the produced hadrons W 2 can be calculated to
be W 2 = M2 + 2Mν + q2. Such a reaction in which one measures only
the outgoing electron’s energy and momentum, (the initial electron’s
energy and momentum being known), and in which no specific hadrons
are detected in the final state, is called an inclusive reaction. Inciden-
tally, we notice that if we were to treat elastic scattering, we would set
W = M , and we would have q2 = −2Mν. Let Q2 = −q2, and if we
define a variable, x = Q2

2Mν , then we have 1 − x = (W 2 −M2)/(2Mν),
and we see that x is restricted to the range 0 < x ≤ 1. The value x = 1
holds for elastic scattering, whereas x → 0 is the region of deep inelastic
scattering. The smaller the x value, the higher the energy transfer, and
the higher the resolution with which the nucleon is seen. Another useful
variable is y = [1− (E′/E)], which has the invariant form y = q ·P/p ·P
and represents the fraction of the energy lost by the incident electron in
the laboratory.

The cross section for the inclusive deep inelastic scattering of the
electron by the nucleon has been worked out. In Figure 4.4, if we suppose
that the momentum transfer that occurs between the electron and the
nucleon is by a single photon exchange, the differential cross section for
the process is proportional to the product of two tensors, one coming
from the Lepton vertex Lµν and the other coming from the hadron vertex
Hµν ,

dσ = (
4πα
q2

)2
1

4[(p · P )2 −m2
eM

2](1/2)
4πM LµνH

µν d3p′

2E′(2π)3
,

where α is the fine structure constant, M the nucleon mass, me the
electron mass, the second factor is the flux factor, and the last factor
is the final electron phase space factor [87]. For the electron, using the
rules of quantum electrodynamics, Lµν has the form

Lµν = 2[p′µpν + pµp
′
ν + (q2/2)gµν ].

The hadronic tensor, obtained by summing over all accessible hadronic
states, has a form dictated by general invariance requirements and is

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 147

✐

✐

✐

✐

✐

✐

✐

✐

written in terms of two structure functions, W1(Q2, ν) and W2(Q2, ν),
which are functions of the two variables Q2 and ν as

Hµν = (−gµν + qµqν/q2)W1(q2, ν)
+ [Pµ − (P · q/q2)qµ][P ν − (P · q/q2)qν ]W2(Q2, ν).

In terms of laboratory coordinates, neglecting electron mass, one can
write,

d2σ

dQ2dν
=

πα2

4p2 sin4 θ/2
1
pp′

[
W2(Q2, ν) cos2 θ/2 + 2W1(Q2, ν) sin2 θ/2

]
.

Bjorken showed that the structure functions W1 and W2 are related
to matrix elements of commutators of hadronic currents at almost equal
times in the infinite momentum limit. He showed that this infinite mo-
mentum limit is not divergent. If this limit is nonzero, he predicted
that the structure functions, when Q2 → ∞ and ν → ∞, but Q2/ν
is finite, can depend on Q2 and ν only through the ratio Q2/ν. Thus
Bjorken scaling for the functions W1 and W2 are the statements that,
for Q2 → ∞ and ν → ∞, but x = Q2/(2Mν) remaining fixed,

MW1(Q2, ν) → F1(x)
νW2(Q2, ν) → F2(x)

and the limiting functions F1(x) and F2(x) are finite.
In terms of the variables x and y, we may cast the expression for the

deep inelastic scattering of electron on nucleon as

d2σ

dxdy
=

2πα2s
Q4

[xy2F1(x) + 2(1− y)F2(x)].

Bjorken Scaling—Experimental Confirmation
The first experimental evidence for Bjorken scaling behavior was re-
ported by Bloom et al. [88] and confirmed by Breidenbach et al. [89].
Figures, adapted from the experimental paper of Miller et al. [90] and
from Friedman and Kendall [91] are reproduced here to illustrate Bjorken
scaling in Figure 4.5 and Figure 4.6, respectively.

Bjorken Scaling—Explanation
Feynman [92] showed that the scaling behavior is what one gets if the
proton was composed of “pointlike” constituents (which he called par-
tons, from which the incident electrons suffer scattering, and in the limit
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Figure 4.5: Bjorken scaling of νW2, shown as a function of ( νQ2 ∼ 1
x ) for

different Q2. (Reprinted from the Beam Line, Vol. 20, No. 3, 1990.)

when Q2 → ∞ and ν → ∞, but Q2/ν remains finite, the deep inelas-
tic electron-proton cross section is given by the incoherent sum of the
parton cross sections, summed over all the partons of the proton. For
the case of elastic scattering of the electron from a particular pointlike
constituent i, with charge ei, and mass mi, the result for the cross sec-
tion can be derived making use of the result for the elastic scattering of
electrons on muons [87]. We may write

d2σi

dQ2dν
=

πα2

4p2 sin4 θ/2
1
pp′

(
e2i cos

2 θ/2 + e2i
Q2

4m2
i

2 sin2 θ/2
)

× δ(ν −Q2/(2mi)),

where the result is written in terms of laboratory coordinates, the inci-
dent electron four-momentum being pµ, the final momentum being p′µ,
q2 = −Q2 being the square of the four-momentum transfer qµ = pµ−p′µ,
and θ the angle of scattering of the electron. We also suppose that the
parton’s initial four-momentum is pµi = xPµ, and its mass mi = xM ,
where Pµ and M are the four-momentum of the proton and its mass,
respectively. This expression may be compared with the previously de-
rived result for the inclusive deep inelastic cross section,

d2σ

dQ2dν
=

πα2

4p2 sin4 θ/2
1
pp′

[
W2(Q2, ν) cos2 θ/2 + 2W1(Q2, ν) sin2 θ/2

]
.
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Figure 4.6: Bjorken scaling of νW2, shown as a function of Q2 for a
single value of ω = 1

x = 4. (Reproduced with permission, from the An-
nual Reviews of Nuclear Science, Volume 22 c©1972 by Annual Reviews
www.AnnualReviews.org.)

This shows that, if each parton i contributes incoherently to W i
1 and

W i
2 (we assume this to be the case for Q2 → ∞ and ν → ∞), then

comparison gives

W i
1 = e2i

Q2

4M2x2
δ(ν −Q2/(2Mx)),

W i
2 = e2i δ(ν −Q2/(2Mx)).

The total contribution to W1 and W2 from all partons can be obtained
by summing these expressions over i. The variable x, the fraction of
the momentum of the proton P carried by the parton i, is not a discrete
quantity but actually is continuously distributed over the range 0 to 1 for
each parton. Thus the sum over partons is replaced by an integral over
x with a weighting function, fi(x), which represents the probability that
the parton of type i carries a fraction x of the momentum of the proton.
This probability function is called the parton distribution function and
parameterizes the proton in the parton model. (It is not calculable in
the model but has to be obtained from fits to the experimental data.)
Then one has

W1 =
∑
i

∫ 1

0

dx fi(x)e2i
Q2

4M2x2
δ(ν −Q2/(2Mx)),

W2 =
∑
i

∫ 1

0

dx fi(x)e2i δ(ν −Q2/(2Mx)).
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The delta functions occurring inside the integrals can be rewritten as
δ(ν − Q2/(2Mx)) = (x/ν)δ(x − Q2/(2Mν)), and the integrals over x
easily performed. Then we obtain

νW2(Q2, ν) =
∑
i

e2ixfi(x) ≡ F2(x),

2MW1(Q2, ν) =
∑
i

e2i fi(x) ≡ 2F1(x),

where now x = Q2/(2Mν). We see that, in this parton model of deep
inelastic scattering, the fractional momentum carried by the parton
constituent of the proton is precisely the scaling variable Q2/(2Mν)
that Bjorken introduced. From the definitions of the functions F1(x)
and F2(x) defined in the parton model, we see that they are related:
2xF1(x) = F2(x). This relation between F1 and F2 is called the Callan-
Gross relation [93]. Parametrizations of the parton distribution func-
tions can be obtained by imposing the requirement that they reproduce
the experimentally measured values of F1 and F2 as a function of x.

BooNE—Booster Neutrino Experiment
This is an experiment being set up to detect neutrino oscillations at
Fermilab using the neutrinos created by the protons from the 8 GeV
booster. The goals of BooNE are, first, to confirm or refute the obser-
vations that have already been made by the LSND experiment at Los
Alamos on the oscillation of νµ neutrinos and to a much better statisti-
cal precision (thousands of events), and second, determine the oscillation
parameters accurately.

Borexino Experiment
This is an experiment designed to study solar neutrinos. It is being set
up in the Gran Sasso laboratories, situated between Rome and Terramo
in Italy, and is designed to detect the monoenergetic 7Be neutrinos in
the solar nuclear cycle. Three hundred tons of liquid scintillator with a
fiducial volume of 100 tons is expected to produce about 50 events per
day due mostly to 7Be neutrinos. Two thousand PMT’s (Phototmul-
tiplier Tubes), each of 20 cm diameter, will detect scintillation light in
real time.

Bottomonium
The first evidence of a new vector meson, called the Υ(1S), was found by
Herb et al. [60]. With the Fermilab proton synchrotron, this group stud-
ied production of pairs of muons in 400 GeV proton-nucleus collisions.
The reactions studied were p+Cu → µ+µ−+X and p+Pt → µ+µ−+X.
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They found a strong enhancement of the muon pairs at an invariant mass
of 9.5 GeV in a sample of 9000 dimuon events. This strong enhance-
ment was interpreted as being due to the production of a neutral vector
meson state, called the Υ(1S), which subsequently decayed into a pair
of muons. The Υ(1S) meson is interpreted as the bound state of a new
quark-antiquark pair, (bb̄), of the b-quark (and its antiquark), called by
some the bottom quark and by others as the beauty quark. This quark
represents the first discovery of the bottom member of a third quark fam-
ily (−, b), after the (u, d) and the (c, s) families. (The “−” in the third
quark family represents a vacancy, because, at that time, the top mem-
ber of the family, called the top quark, was yet to be found.) The electric
charge carried by the b-quark was found to be (-1/3) times the unit of
charge (|e|) just like the d and the s quarks of the first two generations.
This was accomplished by measuring the decay width of the Υ(1S) state
to electron pairs and fitting to theoretical calculations which favored a
charge assignment of (−1/3)|e| for the b-quark. The production of the
Υ(1S) state was independently confirmed in electron-positron annihila-
tions by the Pluto detector collaboration [60] and the DASP detector
collaboration [60] working at DESY in Hamburg, Germany.

Evidence for the existence of higher excited states of the Υ fam-
ily started coming in shortly after the discovery of the Υ(1S). First
evidence for further structure in the Υ region, now called the Υ(2S)
state (with an invariant mass around 10.0 GeV) and the Υ(3S) state,
was announced by Innes et al. [94] working with the Fermilab proton
synchrotron. The existence of the Υ(2S) state at an invariant mass of
around 10.01 to 10.02 GeV was also confirmed independently in electron-
positron annihilations by Bienlein et al. [61], and by the DASP detec-
tor collaboration [61] at DESY. Confirmation of the existence of the
Υ(3S) and the Υ(4S) states of the bb̄ system came from the work of
the CLEO detector collaboration [61] and from the CUSB detector col-
laboration [61]. The CLEO collaboration pointed out, from the ob-
served characteristics of the Υ(4S) state, that this state lies in energy
above the threshold for the production of B mesons. The values of
the masses and widths of these states as reported in the most recent
“Review of Particle Physics” [62] are: Υ(1S), 9.46037 ± 0.00021 GeV,
Γ = 52.5 ± 1.8 keV; Υ(2S), 10.02330 ± 0.00031 GeV, Γ = 44 ± 7 keV;
Υ(3S), 10.3553± 0.0005 GeV, Γ = 26.3± 3.5 keV; and Υ(4S), 10.5800±
0.0035 GeV, Γ = 10 ± 4 MeV. The spectroscopy of the states of the bb̄
system reveals a lot of information about the strong forces that are re-
sponsible for these bound states, hence, the great interest in their study.
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Bremsstrahlung
When a high energy charged particle passes through a medium with
an energy greater than its rest energy, it radiates energy in the form
of electromagnetic radiation, due to collisions with the atoms of the
medium. This radiation is called Bremsstrahlung. The cross section for
this process has been derived in QED. (See section on “Energy Loss by
Radiation: Bremsstrahlung” in Chapter 3, and in the Glossary under
“Infrared Divergence”.)

Cabibbo Angle—Cabibbo Mixing Matrix
In our earlier discussions of β decay processes, we concerned ourselves
with nuclear β decays only. It was soon found from other experiments
that many of the other elementary particles also decayed with lifetimes
in the range from 10−6 s to 10−10 s. The muon was discovered with a
mass about 206 times the electron mass and a lifetime of 2 µs and was
found to decay into an electron and two neutrinos. Also the pion, with
a mass of about 276 times the mass of the electron, was found, which
decayed with a lifetime of about 2.7×10−8 s into a muon and a neutrino.
Particles such as the Λ with strangeness quantum number S = −1 were
found to undergo β decay, decay products of which had strangeness
S = 0 associated with them. The question soon arose whether the Fermi
theory developed for β decay could be extended to describe these and
other decays. In other words, the question arose as to how “universal”
the applicability of Fermi theory was.

The question was soon answered in the affirmative. When Fermi
theory was applied to negative muon decay with (V-A) coupling of two
currents, one current formed from the electron and its (anti-)neutrino
system, and the other current from the muon and its neutrino system,
the energy distribution of the decay electrons and the lifetime could be
fitted with about the same value of the coupling GF as was the case
with neutron decay. Actually a very careful comparison of muon de-
cay and neutron decay revealed that the two GF values differed from
one another by a small amount, the value obtained from neutron de-
cay being somewhat smaller, about 97% of the one obtained from muon
decay. Similar calculation for Λ beta decay revealed that this process re-
quired a much smaller value of GF . Of these, the neutron decay involves
the decay of a non-strange particle into non-strange particles, so that
the strangenesss change is zero, while Λ decay involves a change in the
strangeness quantum number. Faced with this situation, Cabibbo [95]
tried to see if the data on strangeness conserving hadronic currents with
∆S = 0 and the strangeness changing hadronic currrents with ∆S = 1
could be brought into line with the same value of GF if the hadronic
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currents were somehow shared in the decay interactions. Specifically,
he proposed that strangeness conserving hadronic currents coupled with
the lepton currents with a further factor cos θC , while the strangeness
changing hadronic currents coupled with leptonic currents with a factor
sin θC , where θC is called the Cabibbo angle. It was soon found that with
a value of sin θC about 0.23, one could fit these decays with the same
value of GF . This Cabibbo modification of the Fermi theory has been
found very successful in bringing a number of decay processes involving
elementary particles in line with the same value of GF . In other words,
there is universality in such decay processes. When β decay theory is
thus, generalised to apply to decays of other elementary particles, one
calls the generalised theory, a theory of weak interactions of elementary
particles. Thus, the theory of weak interactions includes the theory of β
decay as part of it.

In terms of the quark picture, Cabibbo’s modifications can be accom-
modated by introducing a mixing between the d and s quarks through
a matrix U which has the form,(

d′

s′

)
= U

(
d
s

)
,

where U is the matrix

U =
(

cos θC sin θC
− sin θC cos θC

)
.

The Cabibbo rotated quark states d′ and s′ are the ones which are
involved in forming the weak ∆S = 0 and ∆S = 1 currents.

Cabibbo-Kobayashi-Maskawa (CKM) Matrix
The extension of Cabibbo mixing involving two quark families, d and s,
to one involving Cabibbo-like mixing in three quark families, d, s, and b
was done by Kobayashi and Maskawa [96] in order to accommodate the
phenomenon of CP violation. It can be shown that the phenomenon of
CP violation cannot be accommodated with just two quark families; it
requires at least three families. By convention the mixing is introduced
in terms of the quarks d, s, and b, all of the same charge, −(1/3)|e|, in
the form, 

 d′

s′

b′


 = V


 d

s
b


 ,

where the matrix V has the form,

V =


 Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb


 .
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Introducing the generation labels i, j = 1, 2, 3, cij = cos θij , and sij =
sin θij , the matrix U is usually parametrized, involving the angles, θ12,
θ23, θ13, and the phase angle δ13, in the form,

V =


 c12c13 s12c13 s13e

−iδ13
−s12c23 − c12s23s13e

iδ13 c12c23 − s12s23s13e
iδ13 c13s23

s12s23 − c12c23s13e
iδ13 −c12s23 − c23s12s13e

iδ13 c13c23


 .

This particular parametrization has the advantage that if one of the
inter-generational mixing angles is zero, the mixing between those gen-
erations vanishes. Further, when θ23 = θ13 = 0, the mixing matrix
reduces to the Cabibbo form of the mixing matrix, allowing the identifi-
cation of θ12 = θC . By suitably choosing the phases of the quark fields,
the three angles, θ12, θ23, and θ13, may each be restricted to the range
between 0 and π/2, and δ13 to the range 0 to 2π.

There is experimental information on the size of the different el-
ements of the V matrix. |Vud| is the best known element; it is ob-
tained by comparing superallowed nuclear beta decay with muon de-
cay, including radiative corrections and isospin corrections. Its value is
|Vud| = 0.9740± 0.0010. |Vus| is determined from the analysis of the de-
cay K → πeν, and is found to be |Vus| = 0.2196± 0.0023. To find |Vcd|
one can use data on production of charm in neutrino nucleon collisions:
νµN → µ+charm+X. From these one gets, |Vcd| = 0.224± 0.016. The
data on charm production also allows one to extract |Vcs| depending on
assumptions one makes about the strange quark content in the sea of
partons in the nucleon. From these considerations |Vcs| = 1.04 ± 0.16
is found. |Vcb| is found from the measurements on decays of B mesons
(which occur predominantly through b → c quark transitions), B →
D̄+ l++ νl, where l is a lepton and νl is its corresponding neutrino. By
these measurements one gets |Vcb| = 0.0395 ± 0.0017. |Vub| is obtained
by looking for the semi-leptonic decay of B mesons produced at the
Υ(4S) resonance. These decays are due to b → u+ l+ ν̄l and its charge
conjugate; one gets at these by measuring the lepton energy spectrum
above the end point of the lepton energy spectrum in b → c + l + ν̄l.
In this manner, one gets the ratio (|Vub|/|Vcb|) = 0.08± 0.02. From the
additional constraint provided by the fact that the mixing matrix V is
unitary, with just three generations of quarks, one can derive bounds
on the remaining matrix elements. In this manner, the modulii of the
matrix elements of V are found to be in the ranges as shown below [62]:

V =


 0.9745− 0.9760 0.217− 0.224 0.0018− 0.0045

0.217− 0.224 0.9737− 0.9753 0.036− 0.042
0.004− 0.013 0.035− 0.042 0.9991− 0.9994
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Figure 4.7: The unitarity condition on the CKM matrix elements, re-
presented geometrically as a triangle. Correct estimates of the matrix
elements should lead to closure of the triangle.

The phase δ13 can be obtained from measurements on CP violation. In
the case of CP violation in the neutral Kaon system (see “CP Violation—
Neutral Kaons”), the calculation of the ε parameter involves δ13.

The information provided by the unitarity of the V matrix and the
direct measurements of the modulii of some of the matrix elements,
allows one to construct what is called the unitarity triangle. Applying
unitarity to the first and third columns of the V matrix, we have

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

A geometrical representation of this equation in the complex plane pro-
vides us with the unitarity triangle.

In the parametrization we have chosen for V , we note from the above
that Vcb is real, and Vcd is very nearly real and equal to −s12. Vud and
Vtb are both real and nearly 1, so that the unitarity condition written
above may be reduced to

V ∗
ub + Vtd = −VcdV ∗

cb.

This is represented by a triangle ABC as shown in Figure 4.7 on the
preceding page.

Let us choose to orient the triangle such that the side CB of the
triangle is horizontal with length −VcdV ∗

ub. The other sides are CA
representing V ∗

ub and AB representing Vtd. The side CB is the resultant
of the addition of the two complex vectors CA and AB. If the relevant
matrix elements are correctly estimated from the measurements, the
unitarity triangle should close.
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Callan-Gross Relation
See under “Bjorken Scaling—Explanation”.

Cathode Rays—Discovery of the Electron
The first elementary particle to be discovered was the electron in 1897
by J.J. Thomson [97]. His work involved a study of electrical discharges
in gases at low pressures. Rays, called cathode rays, were produced in
these discharges. J. J. Thomson made a study of these cathode rays to
determine their nature. He established that the cathode rays consisted
of particles carrying negative charges, as they were affected by electric
and magnetic fields. Then he proceeded to determine the ratio of charge
e to mass m of these particles, e/m, by subjecting them to deflections
in electric and magnetic fields. The cathode ray particles were made to
pass through a region between two plates of length l (say, in the x di-
rection) between which a constant electric field Ey was maintained (say,
in the y direction). The particles suffered a deflection in the y direction
transverse to their motion, and, from the known direction of the electric
field and the direction of deflection, it could be established that these
particles carried a negative charge. If the particles had a velocity v and
traversed a distance l in the x direction between the plates, it is easy to
show that the magnitude of the deflection D suffered in the y direction is
D = 1

2
eEy

m (l/v)2. To determine the velocity v of the particles, Thomson
imposed a magnetic field Bz in a direction z, mutually perpendicular to
the x and y directions. The direction of the magnetic field (+z or −z)
was so chosen that the deflection it caused tended to oppose the deflec-
tion caused by the electric field. The magnitude of the magnetic field was
adjusted until it produced a deflection which cancelled the deflection due
to the electric field. It is easy to show that under this circumstance, the
velocity v = (Ey/Bz). Having measured the velocity of these particles, a
measurement of the deflectionD in the absence of the magnetic field, can
be used to determine the value of e/m for the cathode rays. This gave
a value for (|e|/m) = 1.76× 1011 Coulombs/kg. The negatively charged
particles in the cathode rays were given the name electron. In 1911 Mil-
likan, by an ingenious method, determined the magnitude of the charge
of the electron |e| to be |e| = 1.6×10−19 Coulomb. Combining this with
(|e|/m) measured earlier by J. J. Thomson, the mass of the electron could
be determined: m = 9 × 10−31 kg. The electron is the first of a family
of elementary particles to be called the lepton; its charge and mass have
been measured much more accurately since those early measurements,
and the modern values are: e = −(1.60217733 ± 0.00000044) × 10−19

Coulomb and m = (9.109389± 0.000054)× 10−31 kg.
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Causality Condition—Quantum Field Theory
Causality condition is a recognition of the fact that no effect can occur
which precedes the cause. In quantum field theory, it is a statement
that measurements of a field at one point in space-time do not affect
the measurements of the field at another point in space-time, if the two
space-time points are separated by a space-like interval. For an under-
standing of this concept and its implications, an introduction to some of
the basic ideas of relativity and quantum field theory is necessary. This
will be done in brief.

In special theory of relativity, the maximum speed with which a
particle can propagate between two space-time points is the velocity
of light c (which in our units is 1, since we work in units in which
h̄ = c = 1). This implies that if we have two space-time points, xµ

with components (x0, 7x) and yµ with components (y0, 7y) in the four-
dimensional continuum, a disturbance occurring at yµ can be felt at xµ,
only if the space-time interval between these points, defined in terms of
their components as (x− y)µ(x− y)µ = (x0 − y0)2 − (7x− 7y)2, is zero or
positive. If it is zero, the interval is called light-like, and if it is positive,
the interval is called time-like. In the case of light-like interval, it is easy
to understand why this is zero: the spatial distance between the two
points is |7x−7y|, and the time taken for light (photons), starting at time
y0 at 7y, will reach the point 7x at time x0, if x0 = y0+ |7x−7y| or x0−y0 =
|7x−7y|. Any material particle other than a photon travels with a velocity
less than 1, hence the time taken by it to traverse the distance between
the two points will be more, in other words, x0−y0 > |7x−7y|. For points
in the four-dimensional continuum where the coordinate components are
such that x0−y0 < |7x−7y|, no physical particle will be able to propagate
between such points. The space-time interval for such points will satisfy
(x0 − y0)2 < (7x− 7y)2, and such intervals are called space-like intervals.
We say no causal communication is possible between points separated
by space-like intervals.

It can be shown that in a relativistic theory of single particles, de-
scribed by wave functions obeying relativistically invariant wave equa-
tions, one has violations of causal connections between points separated
by space-like intervals. If one calculates the probability amplitude for a
particle to propagate between such points, it is found to be non-vanishing
(although small). It also turns out other difficulties are encountered; the
equations have solutions for positive as well as negative energies, making
the interpretations of negative energy solutions problematical in such a
theory [98]. In a relativistic situation, one cannot restrict attention to
the single particle only, for when its energy becomes large enough, it
can create other particle-antiparticle pairs. In fact, even when there is
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not sufficient energy to create real particles, quantum mechanics via the
uncertainty principle, allows for arbitrarily large fluctuations in energy,
∆E, for arbitrarily small time intervals, ∆t, provided ∆E∆t = 1 (since
in our units h̄ = 1). Thus intermediate states can occur in which arbi-
trarily large number of particles can exist for arbitrarily small intervals
of time. Such particles are called virtual. Thus in a relativistic theory,
a single particle theory is untenable and a many particle description be-
comes necessary. The many particle theory is constructed by quantizing
a field theory, thus leading to quantum field theory.

In classical relativistic field theory, the fundamental dynamical vari-
ables are fields, described by functions of space-time coordinates. One
starts with a relativistically invariant expression for the Lagrangian
constructed with the field functions and their space and time deriva-
tives. Following well-known procedures, the Hamiltonian is constructed
in terms of the field variables φ(x) and the canonically conjugate vari-
ables π(x). (For details refer to [98].) Quantization is carried out by
elevating φ(x) and its canonical conjugate to operator status and in-
troducing commutation relations between them. In quantizing the field
theory, the Fourier expansions of the field operators with positive fre-
quency component have as their coefficient an operator a(7p) that anni-
hilates a particle with momentum 7p and energy ω(7p) = p0 =

√
7p2 +m2,

while the negative frequency component, being the Hermitian conjugate
of the positive frequency solution, will have as its coefficent an operator
a†(7p) that creates a particle with momentum 7p and energy ω(7p). The
Hamiltonian is expressible as an integral over all momenta of the prod-
uct of the number operator, np = a†(7p)a(7p) and ω(7p). φ(x) which are
real are suitable for describing electrically neutral particles, annihilation
and creation operators are Hermitian conjugates of one another, and
a particle is its own antiparticle. If φ(x) is complex, it will annihilate
negatively charged particles and create positively charged particles, and
the Hermitian conjugate operator φ†(x) will create negatively charged
particles and annihilate positively charged particles. Thus this quantum
field theory leads to a multiparticle theory with both particles and an-
tiparticles. All the states of the system are constructed from the vacuum
state |0〉, defined by a(7p)|0〉 = 0, applying creation operators repeatedly
to the vacuum state.

Now we return to causality condition in quantum field theory. This
condition is stated in the form that the commutator of field operators
at space-like separations vanishes, that is, [φ(x), φ(y)] = 0, for (x −
y)µ(x − y)µ < 0. With this condition, if one calculates the amplitude
for a particle to propagate from x to y, it also obtains a contribution for
the antiparticle to go from y to x, the two contributions cancelling each
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other exactly. Thus for space-like separations, measurement of the field
at x does not affect the measurement of the field at y and causality is
preserved in quantum field theory.

Using the causality conditions in quantum field theory, Gell-Mann,
Goldberger, and Thirring [99] treated the scattering of spin zero particles
by a force center and the scattering of photons by a quantized matter
field. The dispersion relations of Kramers and Kronig for applications
in optics were derived from field theory. Many other applications of
dispersion relations appeared over the next several years. (See also under
“Dispersion Relations”.)

Charge Conjugation (C) Operation
If one examines the classical Maxwell’s equations for electromagnetism,
one notices that these equations remain invariant under the operation
of change of sign of charge and magnetic moments provided the electric
and the magnetic fields also are changed in sign. Such a change in the
sign of the charge and magnetic moment of a particle (without changing
any other of its properties) is called the operation of charge conjugation.
At high energies, one has to use concepts of quantum field theory to
describe the behavior of particles and their interactions, and the situa-
tion is somewhat different. In such a regime, particles are accompanied
by antiparticles, where the antiparticles, besides being distinguished by
the sign of their charge and magnetic moment, may have other quan-
tum numbers, such as baryon number or lepton number, which have
to be reversed, too. Thus, charge conjugation operation in relativistic
quantum field theory involves not only the change of sign of charge and
magnetic moment of the particle but also the change of sign of baryon
number, lepton number, etc., if these are nonvanishing. Mesons have
neither baryon nor lepton number.

A question naturally arises whether the four fundamental interac-
tions observed in nature—gravitational, electromagnetic, weak, and
strong—are symmetric under the operation of charge conjugation. Ex-
perimental evidence is available on this subject. The available data in-
dicate that three of these interactions—gravitational, electromagentic,
and strong—respect this symmetry, while weak interactions do not. Be-
fore we present these evidences, we present some details on the operation
of charge conjugation.

The mesons π+ and π− are antiparticles of one another with baryon
and lepton numbers zero. If the π± meson is represented by the ket |π±〉,
then the charge conjugation operation represented by C gives C|π±〉 →
α|π∓〉, where α is a possible phase factor. It is clear from this operation,
the states |π±〉 are not eigenstates of the operator C. On the other
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hand, a charge neutral state may be an eigenstate with some eigenvalue
λ: C|π0〉 = λ|π0〉 [100]. Repeating the operation a second time we
get back to the original state, so we must have λ2 = 1 or λ = ±1.
To see whether we should assign the eigenvalue +1 or −1 to the |π0〉
state, we recall the fact that the π0 meson decays into two photons
through electromagnetic interactions. Now the photon is a quantum of
the electromagnetic field. Suppose we represent the photon state by
|γ〉. As this is also electrically neutral, C|γ〉 = λγ |γ〉, where λγ is the
eigenvalue. Repeating the operation again we get back the initial state,
so λ2γ = 1 or λγ = ±1. This eigenvalue must be chosen to be −1,
because the electromagnetic field changes sign when the charge-currents
producing the electromagnetic field change sign, and the photon is a
quantum of the electromagnetic field. Thus for each photon, the charge
conjugation eigenvalue is −1. A system of n photons will have eigenvalue
(−1)n, which for n = 2 gives the value +1. Thus, if in π0, decaying
through electromagnetic interactions, charge conjugation symmetry is
respected, the |π0〉 state must be one with eigenvalue λ = λ2γ = +1.

If we assign the charge conjugation eigenvalue +1 to π0, it has the
further consequence that π0 should not decay into 3 photons if charge
conjugation symmetry is valid in electromagnetic interactions. This has
been tested experimentally. The branching ratio for π0 → 3γ to π0 → 2γ
is less than 3×10−8. Another test comes from the decay of the η0. It
also decays 39% of the time into 2γ’s, so that it can be assigned C
eigenvalue +1 like the π0. The branching ratio for η0 → 3γ decay is
less than 5 × 10−4 and for η0 → π0e+e− is less than 4 × 10−5. Thus,
electromagnetic interactions are invariant under the C operation.

To test C invariance for strong interactions, one studies reactions
in which certain particles are produced, their rates of production, their
energy distribution etc., and compares them with reactions in which all
the particles are replaced by the antiparticles. Experiments performed
show that they give identical results at the level of much better than
1%.

Charge conjugation parity can be defined for a neutral fermion-
antifermion system, such as pp̄, nn̄, or quark-antiquark system. If the
fermion-antifermion system is in a state of orbital angular momentum l
and the total spin is s, it can be shown that the charge conjugation par-
ity has the eigenvalue C = (−1)l+s. (See section under “Positronium”
where this is explicitly shown.)

Weak interactions do not respect charge conjugation symmetry. They
also violate reflection symmetry or parity operation (P). Neutrinos are
products of decays through weak interactions, for example, in meson de-
cays. Experimentally they are found to be left-handed, while antineutri-
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nos are found to be only right-handed. (See further under “Neutrino”.)
There are no left-handed antineutrinos, nor any right-handed neutrinos.
If C operation applied to these particles, right-handed neutrinos and
left-handed antineutrinos would have to be present. The combined op-
eration of charge conjugation and reflection (CP ) seems to hold for weak
interactions. Under the combined operation of CP , a left-handed neu-
trino would go into a right-handed antineutrino. This is in conformity
with what is observed. Actually a small violation of CP is observed in
weak interaction processes involving neutral K mesons. (See more under
“Conservation/Violation of CP”.)

Chargino
These are mixtures of the hypothetical w-inos and charged higgsinos,
which are the supersymmetric partners of the W and the charged Higgs
bosons, respectively. (See under “Supersymmetry”.)

Charm Particles—Charmonium
The existence of charm quark was established through the observation of
a vector meson resonance called the J/ψ in e+e− collisions at SLAC, and
simultaneously, in the production of massive e+e− pairs in proton colli-
sions with a beryllium target at Brookhaven National Laboratory [101].
The resonance peak in both cases was at 3.1 GeV. The J/ψ resonance
was interpreted as the bound state of a new quark, called the charm
quark c, and its antiparticle, the charm antiquark c̄. Higher excited
states of this bound system exist, too. The family of bound states of cc̄
are called Charmonium states. From measurements on charmonium, the
mass of the charm quark was estimated to be between 1.1 and 1.4 GeV.
In the quark model of elementary particles, the “charm” quark along
with the “strange” quark form the second generation of quarks after the
first generation of “up” and “down” quarks. The electric charge carried
by the charm quark is +(2/3)|e| while that carried by the strange quark
is −(1/3)|e| (where |e| is the magnitude of the electron charge), just like
the up and down quarks.

According to the constituent quark model of elementary particles,
mesons are made up from bound states of quark-antiquark pairs, while
the baryons are made up from bound states of three quarks. The non-
strange mesons and baryons are made from the first generation quarks,
u and d. The strange mesons and baryons contain at least one strange
quark, s. Similarly, the charm mesons and baryons will contain at least
one charm quark, c. The first proposal for the existence of such hadrons
was made by Bjorken and Glashow [102]. Many of the charm hadrons
have been found.
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First evidence for charm baryons Λ+c = (udc) and Σ++c = (uuc) was
reported by Cazzoli et al. [103] who observed the production of charm
baryons with neutrinos at the Brookhaven proton synchrotron, detectors
being hydrogen and deuterium bubble chambers. The mass of the Σ++c
was found to be 2426±12 MeV. Confirmation of this discovery came from
the work of Baltay et al. [104] working with the broad band neutrino
beam at the Fermilab proton synchrotron, detector being heavy liquid
bubble chamber. From their measurements they came up with a mass
for the Λ+c state at 2257± 10 MeV, and the mass difference between the
Σ++c and the Λ+c state to be 168± 3 MeV, giving the Σ++c a mass about
2425 MeV. First evidence for the doubly strange baryon Ωc = (ssc)
came from the work of Biagi et al. [105] who studied the production
of charm-strange baryon states produced in the collision of Σ− with
nucleus from the hyperon beam at SPS in CERN. They reported a mass
of 2.74 GeV for this state. First evidence for a charm-strange baryon Ξ+c
was also presented by Biagi et al. [106] from a study of the reaction Σ−

from the hyperon beam at CERN SPS impinging on a Be target which
led to the production of Ξ+c + X with subsequent decay of the Ξ+c to
ΛK−2π+. The mass of this state was given by them to be 2.46 GeV.
The neutral counterpart of this baryon Ξ0c was subsequently found by
Avery et al. [107] working with the CLEO detector at the Cornell e+e−

ring. The quark content of Ξ0c is (dsc), and its mass was quoted to be
about 2471 MeV. A measurement of the mass difference between the
Ξ+c and the Ξ0c states was done by Alam et al. [108] also working with
the CLEO detector at the Cornell electron-positron ring. They quoted
a value for the mass difference, M(Ξ+c ) −M(Ξ0c) = (−5 ± 4 ± 1) MeV.
Observation of a narrow anti-baryon state, interpreted as Λ̄−

c = (ūd̄c̄), at
2.26 GeV with a decay width less than 75 MeV, decaying to Λ̄π−π−π+,
was reported by Knapp et al. [109].

First evidence for the production of charm mesons D+ = (cd̄) and
D− = (c̄d) was presented by Peruzzi et al. [110] working with the SLAC-
SPEAR electron-positon storage ring. They looked for the production
of a new narrow charged resonance in electron-positron annihilation at
a center-of-mass energy of 4.03 GeV. They found a state at a mass of
1876±15 MeV in the K±2π∓ channel, but not in the channel K∓π+π−.
They interpreted these events in terms of production of D+ and D−

mesons which then decayed to D+ → K−2π+ and D− → K+2π−.
The neutral counterparts D0 = (cū) and D̄0 = (c̄u) were also found in
a SLAC-SPEAR experiment in multihadronic final neutral states pro-
duced in electron-positron annihilation at center-of-mass energies in the
range between 3.90 GeV and 4.60 GeV. The data indicated new nar-
row neutral states with mass 1865 ± 15 MeV and a decay width less
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than 40 MeV, which decayed into K±π∓ and K±π∓π±π∓. The inter-
pretation of the data was that D0 and D̄0 were produced in the anni-
hilation reaction and these particles decayed to D0 → K−2π+π− and
D̄0 → K+π+2π−. Charm-strange mesons have also been found. These
are the D+s = (cs̄) and D−

s = (c̄s), first evidence of which came from
the DASP collaboration [111]. Evidence for excited states, D∗+

s as well
as D∗−

s , was also presented in this work. The mass of the lower state
was given as 2.03 ± 0.06 GeV while that of the excited state was given
as 2.14± 0.06 GeV.

Continuing work in these studies has culminated in a lot of infor-
mation on lifetimes, branching ratios for decay into various modes, and
checks on assignment of various quantum numbers given to these parti-
cles, be they baryons or mesons. Details can be found in the “Review of
Particle Physics” [62].

Chew-Frautschi Plot
A number of Regge trajectories (see under “Regge Poles”) are known
which are nicely exhibited in the Chew-Frautschi Plot. If one plots along
the abscissa M2 where M is the mass of the particle or the resonance,
and along the ordinate J , the spin of the particle or resonance, one finds
that the known particles and resonances fall on straight lines in the plot
(see Figure 4.8).

Chiral Symmetry
To introduce the idea of chiral symmetry, we consider the Lagrangian
for QCD for very light u and d quarks. Writing only the fermionic part,

in terms of the isotopic spin doublet q =
(

u
d

)
, we have

L = q̄(iγµDµ)q − q̄mq,

where D represents the covariant derivative, and m is the (diagonal)
mass matrix of the u and the d quarks. This Lagrangian has isospin
SU2 symmetry which transforms the q doublet. If we introduce quark
chiral components qL and qR by

qL =
(
1− γ5

2

)
q; qR =

(
1 + γ5

2

)
q,

and set the mass terms to zero in the above Lagrangian, we see that
the left (L) and right (R) chirality projections of q do not mix, and the
Lagrangian is symmetric under separate unitary (UL and UR (UL �= UR))
transformations of the L and R chirality projections. Associated with
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Figure 4.8: Chew-Frautschi plot of Regge trajectories for baryons and
baryonic resonances. (Figure from Introduction to High Energy Physics
by Donald H. Perkins. Copyright c© 1982 by Addison-Wesley Publish-
ing Company, Inc. Reprinted by permission of Addison Wesley Longman
Publishers, Inc.)

these symmetries are four currents, which have both isosinglet U1 and
isovector (SU2) parts,

q̄Lγ
µqL, q̄Rγ

µqR

q̄Lγ
µT iqL, q̄Rγ

µT iqR

where T i, i = 1, 2, 3 are the generators of SU2. If the chiral symmetry is
exact, these chiral currents will be conserved. From these chiral currents,
we can form combinations which are four-vector (V ) and axial four-
vector currents (A)

Jµ(V ) = q̄γµq, J iµ(V ) = q̄γµT iq

Jµ(A) = q̄γµγ5q, J iµ(A) = q̄γµγ5T iq.

Chiral symmetry is said to hold if these vector and axial vector currents
are conserved. It is known that the vector currents are exactly conserved
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corresponding to transformations with UL = UR. What about the ax-
ial vector currents? Their conservation does not seem to correspond
with any obvious symmetry of strong interactions, and it is possible
these symmetries are broken spontaneously. Spontaneous breaking of
the continuous symmetries associated with these axial curents will lead
to the appearance of massless, spinless Goldstone bosons. The only par-
ticles in nature which seem to come close to satisfying this requirement
seem to be isospin triplets of pions which have a rather low mass, are
pseudoscalar particles, and are capable of being created by axial vector
isospin currents.

Chirality States of Dirac Particles
Violations of parity (P ) and charge conjugation (C) occur in the elec-
troweak interactions of the Standard Model. To describe this concisely,
it is useful to introduce the notion of chirality states. Let us introduce
the matrix γ5 = iγ0γ1γ2γ3 from the Dirac theory for the electron. States
for which the eigenvalue of γ5 is +1 are called states of right-handed chi-
rality, and those with eigenvalue −1 are states of left-handed chirality.
The Dirac spinor ψ, using projection operators constructed with γ5, can
be written as a sum of right- and left-handed chiral components:

ψ = ψR + ψL; ψR = [(1 + γ5)/2]ψ, ψL = [(1− γ5)/2]ψ.

Maximal violations of parity and charge conjugation appear in the the-
ory, if the coupling favors one chirality of the particle over another. For
massless particles, chirality is the same as helicity, the projection of spin
along the direction of motion.

CHORUS Experiment
The acronym CHORUS stands for Cern Hybrid Oscillation Research
apparatUS. It is an experiment at CERN, designed to study the oscilla-
tions of the muon neutrino into tau neutrinos from a pure muon neutrino
beam produced by the CERN SPS accelerator. Muon neutrinos of high
intensity (about 106 cm−2 s−1) and energy 27 GeV will travel through
850 m before being registered in a detector which is sensitive to tau neu-
trinos. Scintillation fibres are used as sensitive elements in the tracker,
and special CCD cameras and nuclear emulsion techniques will be used
for track recognitions and scanning.
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Colored Quarks and Gluons
The need for color as an extra quantum number for the quarks comes
about as follows. In the constituent quark model, where baryons are
bound states of quarks, the ten states of the decuplet can be considered
as quark composites of u, d, s quark flavors as follws: ∆++ = (uuu),
∆+ = (uud), ∆0 = (udd), ∆− = (ddd); Σ+ = (uus), Σ0 = (uds),
Σ− = (dds); Ξ0 = (uss), Ξ− = (dss); Ω− = (sss). The mass differ-
ences between the states of differing strangeness can be accommodated
in the model by assuming that the mass of the strange quark ms is
about 150 MeV more than mu � md. To get a positive parity for the
decuplet, we have to assume that the quarks move in a spatial state of
orbital angular momentum zero. However, one immediately runs into a
difficulty. The bound state, being made of three quarks (each of which
is a fermion), has to be described by a wave function which is totally
antisymmetric in all its variables. The wave function is a product of spa-
tial part, flavor part, and spin part. If the orbital angular momentum is
zero, the spatial part is symmetric, so the product of the flavor and the
spin part must be antisymmetric. The ∆++, ∆−, and Ω− have flavor
symmetric quark combinations, being made of identical quarks (uuu),
(ddd), and (sss), respectively. To get the total spin for the bound state
to be J = 3/2 all three quarks will have to be in a spin symmetric state
leading to a violation of Pauli principle. In order to get over this prob-
lem, another degree of freedom is attributed to quarks, together with the
demand that the wave function be antisymmetric in this new degree of
freedom. This new degree of freedom is called color and it is postulated
that each flavor of quark comes in three colors, traditionally called red,
green, and blue, and that baryons which are bound states of quarks have
no net color, that is they are color singlets. Likewise mesons, which are
bound states of quarks and antiquarks, must also have no net color (i.e.,
must be color singlets). The attribution of three colors to each quark
flavor finds support in two other experimental facts: (a) three colors
are required to get the decay rate for π0 → 2γ right, and (b) at high
energies in e+e− reactions, the ratio of the cross section for annihilation
into hadrons to that of annihilation into a pair of muons also requires
three colors to get it right. A formal theory called quantum chromody-
namics (QCD), has been formulated which uses the notion of color as
a dynamical degree of freedom and which governs the color interactions
of quarks (see under “QCD—Quantum Chromodynamics”). The color
charge for quark interactions plays a role similar to that played by the
electric charge in the electromagnetic interactions of charged particles
(Quantum Electrodynamics (QED)). Electromagnetic interactions are
mediated by a massless vector particle, the photon. Likewise, color in-
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teractions of the quarks are mediated by a new massless vector particle
called the gluon. While the quantum of the electromagnetic field, the
photon, is electrically neutral, the quantum of the color field, the gluon,
is not color neutral but does carry color charge, leading to some very
important differences between QED and QCD.

Composite Model of Pions
The first composite model of pions was explored in a very interesting
paper by Fermi and Yang [112]. In this paper, the model for the pion
as a bound state of nucleon and an antinucleon was shown to lead to
properties of the meson required in the theory of Yukawa [113] to explain
the short range nature of nuclear forces. It is interesting that replacing
the nucleon and antinucleon of this model by quarks and antiquarks
leads to the modern constituent quark model of mesons.

Compton Effect
A. H. Compton discovered in 1922 that the scattering of X-rays by thin
foils of materials did not follow what was expected from classical electro-
magnetic theory [114]. The classical theory of the scattering was given
by Thomson. According to this theory, the incident radiation sets free
electrons of the material into oscillatory motion, which then re-radiate
energy in the form of scattered radiation in all directions. He showed
that the intensity of the scattered radiation at an angle θ to the inci-
dent radiation varies as (1 + cos2 θ) and that it is independent of the
wavelength of the incident radiation.

Compton studied the scattering of molybdenum Kα-rays by graphite
at various angles to the incident beam and compared the scattered spec-
trum with the incident spectrum. Compton found that at a given angle,
the scattered radiation had two components. One of these had the same
wavelength as the incident one, while the other component had a wave-
length which was shifted with respect to the incident one by an amount
which depended on the angle of scattering θ, clearly at variance with
what is expected from Thomson’s theory.

In order to understand this behavior, departing from Thomson’s
classical picture, Compton treated the incident radiation according to
quantum theory. According to this theory, radiation consists of quanta,
photons of energy h̄ω, and momentum h̄ω/c, where ω is the angular fre-
quency of radiation, c the velocity of light, h̄ = h/(2π), and h is Planck’s
constant. (In units in which h̄ = c = 1, energy and momentum of the
photon are both equal to ω.) He treated the scattering as an elastic col-
lision of the incident photons with the free electrons of the material in
which the scattering is being studied. Using laws of energy and momen-
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tum conservation in the elastic scattering process, he was able to derive
λ′ − λ = (2π/m)(1− cos θ), where λ′ is the wave length of the scattered
radiation, λ is the wave length of the incident radiation, and m is the
mass of the electron. The wavelength shifts measured from the exper-
iment were in excellent accord with the quantum theory derivation of
the collision. This experiment provided direct experimental verification
that the photon is an elementary particle with energy and momentum.
The intensity of the scattered radiation and the polarization properties
of the scattered radiation have also been derived in quantum electrody-
namics. The result for the intensity can be derived from an expression
for the scattering cross section for photons on electrons known as the
Klein Nishina formula [98] and plays a very important role in the energy
loss of photons in materials.

Confinement of Color
It is believed that QCD does not allow asymptotically free particle states
which carry a net color. In other words, colored quarks or gluons will not
be seen as free particles. They are permanently confined within hadrons.
As free particles we will see hadrons only because they are color singlets,
that is, colorless objects, which are combinations of colored quarks and
antiquarks.

We may understand how this property arises from the following qual-
itative considerations. Elsewhere in this book, we have mentioned an-
other property asymptotic freedom possessed by QCD. According to this
property, the effective quark gluon coupling vanishes at infinite ener-
gies or short distances, so that at high energies, the quarks and gluons
inside a hadron can be treated approximately as non-interacting parti-
cles. As one proceeds to lower energies or longer distances, this effective
coupling increases and is expected to become very large at very large
distances. At high energies, one can develop a perturbation treatment
of QCD, expanding in terms of the small effective coupling constant.
Such a perturbative treatment has been found to give results which
agree with experiments in a number of phenomena involving hadrons
at high energies. As one proceeds toward low energies, such a pertur-
bative treatment is not good because of the increase in the size of the
expansion parameter. In the region of very strong coupling, an alter-
native method due to Wilson [115] may be employed. In this method,
the continuum QCD is replaced by discretizing it on a lattice of four-
dimensional Euclidean variables, and the statistical mechanics of this
system is considered. Through such studies Wilson showed that color is
confined, in the sense that if two colored quarks on the lattice are pulled
to a large distance apart, the energy of such a configuration increases
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proportional to the length separating the quarks. Clearly the energy
needed to pull the quark to infinite distance from the other quark will
be infinite. He also showed in this lattice version of the theory, the only
states that have finite energy for infinite separations are configurations
in which the separating objects are color singlet objects. Color con-
finement in lattice version of QCD is thus established. It is believed,
although there is no good formal proof, that the confinement property
holds true in continuum QCD also.

Conservation/Violation of CP
It has been stated, under our discussion of charge conjugation operation,
that the weak interactions are not invariant under the separate opera-
tions of spatial reflection (parity, P) and replacement of particles by
antiparticles (charge conjugation, C). They seem to be invariant under
the combined operation of CP . Experimental proofs of these statements
come from the work of Wu et al. [116] on testing parity conservation
in weak interactions. For violation of charge conjugation the evidence
comes from the establishment of the property of the neutrino being only
left-handed in electron beta decays [117]. Measurements of electron and
positron polarizations in several beta decays have been carried out re-
sulting in helicity −β for electrons and +β for positrons, where β is the
velocity of the particle in units of the velocity of light. Just as left-
handed electrons are accompanied by left-handed neutrinos in electron
decays, right-handed positrons must be accompanied by right-handed
antineutrinos. The attribution of helicity +1 to the antineutrino is con-
sistent with the fact that when the mass can be ignored for high energy
positrons (v � c), the helicity of the positron tends to the value +1.
The fact that one does not have left-handed antineutrinos is evidence
for the violation of C in beta-decay reactions and weak interaction re-
actions generally. The operation of CP seems to be respected by beta
decay processes in which left-handed neutrinos go over into right-handed
antineutrinos.

The question has been raised whether CP is conserved in general in
weak interaction reactions. Studies of decays of neutral K mesons have
revealed a small violation of CP (see further under “Kaons—Neutral
K0
1 (K

0
S), K

0
2 (K

0
L)). Violation of CP is also being looked for in other

elementary particle decays, notably among the B0, B̄0 mesons.
CP violation is being searched for because it has some very important

consequences with respect to the current constitution of the universe—it
is predominantly matter and no antimatter. In a very interesting paper,
Sakharov [118] has pointed out that a solution to the long standing prob-
lem of the asymmetry between the numbers of baryons in the universe
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relative to the number of antibaryons may be linked to CP violation
(see further under “Universe—Baryon Asymmetry”).

Conserved Vector Current Hypothesis
See under “Beta Decay—Strong Interaction Corrections”.

Constituent Quark Model of Hadrons
Gell-Mann [119] and Zweig [120] independently suggested in 1964, that
use be made of the objects corresponding to the fundamental three
dimensional representation of SU3 as the basic building blocks of all
hadrons. These objects were named quarks by Gell-Mann and aces by
Zweig, but the name quarks has come to be accepted by the particle
physics community. This triplet of quarks has a spin 1/2 for each and
carries a baryon number 1/3. The triplet breaks up into an isotopic spin
doublet with charges (in units of |e|) +(2/3),−(1/3) and an isotopic spin
singlet with charge −(1/3). These are called the (u, d) and s quarks, re-
spectively. The antiquarks will consist of (ū, d̄) and s̄, carrying opposite
sign baryon number and opposite sign for charges from the correspond-
ing quarks. SU3 symmetry is assumed to be the symmetry of strong
interactions, and interaction Lagrangians can be constructed in terms
of the quarks. If the SU3 symmetry is exact, all the hadrons formed
from these building blocks must have the same mass. Because there are
mass differences between the different hadrons, the SU3 symmetry is not
exact but broken. The breaking of this symmetry is assumed to be due
to mass differences between the different quarks. Thus, there must be a
lightest quark which must be stable. If one attributes a property called
strangeness S = −1 to the s quark (and therefore, S = +1 to the s̄ anti-
quark) and S = 0 to the isodoublet (u, d), one can form all the low lying
meson and baryon states, non-strange as well as strange, with quark-
antiquark combinations for the mesons, and three quark combinations
for the baryons. If one of the quarks or the antiquarks possesses non-zero
strangeness, then the hadron containing it will have non-zero strangeness
and the hadron will be called a strange hadron. Thus, baryons can be
formed which will have strangenesses in the range zero to −3 and mesons
with strangenesses −1, 0, and +1. If the states which have been seen ex-
perimentally are put into correspondence with these theoretical states, a
mass difference between the s and the (u, d) quarks of about 150 MeV is
required to fit the data. The constituent quark model is quite successful
in describing the low energy hadronic spectrum. It was subsequently
found necessary to give an additional quantum number, called color, to
the quarks (see under “Colored Quarks and Gluons”).
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Initially, only three types of quarks were introduced, the u, d, s
(“up”, “down”, and “strange”). Now the standard model envisages the
existence of six quarks: (u, d), (c, s), and (t, b), where c is the charm
quark, t the top quark, and b the bottom quark. We briefly review the
properties of these quarks: u, c, t carry charge +(2/3)|e|, while d, s, b
carry charge −(1/3)|e|, and each quark carries a baryon number (1/3).
For mesons, bound state combinations can be formed from these and
the antiquarks. As quarks carry a spin of 1/2, the lowest bound states
would be classified as 1S0 and the 3S1 states with total baryon number
zero. These could be identified with the pseudoscalar and vector mesons.
Higher excited states could come from higher orbital angular momenta
between the quark and antiquark. The quarks also carry a quantum
number called color, and the color dependent forces are such that only
color neutral (color singlet) combinations manifest as mesons. Thus
now, in addition to non-strange and strange mesons, we can have charm
mesons or bottom mesons, if the quark in them is charm or bottom,
respectively. We can also form three quark combinations whose states
will represent the baryons. Again, just as in the case of mesons, we can
have charm baryons or bottom baryons, if one of the quarks in them is
charm or bottom. The “Review of Particle Physics” [62] lists many of
these meson and baryon states and their quark constitutions and various
detailed properties such as rates of transitions between various states.
It is a rich source of information on mesons and baryons.

Cooling—Particle Beams
In storage ring colliders an important objective is to obtain the high-
est possible luminosities in the beams. There are methods known as
beam cooling which achieve this end. The entire topic of techniques
for handling of beams and enhancing their desired characteristics and
minimizing the undesirable qualities is a highly specialized one. It is
technically a complex field but very fascinating in the fantastic results
that have been achieved and are still being developed. We cannot hope
to do justice to this field in the short space that is being devoted to the
topic of beam cooling here. We give only a brief account of the physics
principles which are of importance in this field.

Cooling a beam of particles is a method by which one focuses the
beam particles in space to a very small spot (small spatial volume), and
also concentrate in that spot only particles with a very small spread
in momentum (small momentum volume). The six coordinates, three
spatial coordinates and three momentum coordinates specify a point in
what is called phase space. The product of an element of spatial volume
and an element of momentum volume is called phase volume, and the
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beam particles are represented in the phase volume by a distribution
of points in it. Liouville’s theorem states that for particles subject to
conservative forces, the overall phase volume is an invariant. This seems
to suggest that it may be a physical impossibility to achieve cooling.
However, a deeper understanding of the applicability of this theorem to
particle beams suggests that there are effective ways of circumventing the
theorem; for example, the overall phase volume can be held constant to
satisfy the theorem, while at the same time the phase volume associated
with particles of the beam can be reduced.

Major landmarks in the field of cooling started with the invention of
“electron cooling” by Budker in 1967 [121] and that of “stochastic cool-
ing” by van der Meer in 1968 [122]. The experimental verification that
electron cooling works came from Budker et al. in 1976 [123]. The exper-
imental verification of stochastic cooling and its use in the Intersecting
Storage Ring at CERN occurred in 1975. Since then these methods are
incorporated in all storage ring colliders. For details on electron cooling
and stochastic cooling, please see sections under “Electron Cooling” and
“Stochastic Cooling”.

Cosmic Microwave Background Radiation
One of the predictions of the big bang theory of the origin of the universe
is the existence of a primordial, relic radiation left over from the big bang
red shifted by the expansion of the universe [124]. Calculations suggest
that such relic radiation will be isotropic and will have a black body
temperature of about 3 degrees Kelvin at present. The detection of this
relic radiation, referred to as Cosmic Microwave Background (CMB),
will provide very good evidence to establish the big bang theory. CMB
was discovered by Penzias and Wilson in 1965 [125] thus establishing
the big bang theory. They found that the power spectrum was isotropic
and unpolarized within an accuracy of ten percent and fitted to a Planck
distribution with a temperature of about 3 K.

Subsequent to the discovery, much more precise work has been done
by many groups on the power spectrum, and the black body temperature
has been determined more precisely to be 2.73 ± 0.01 K. These further
studies have also shown that the radiation is unpolarized to the level of
10−5. Small deviations from isotropy have also been found. Spherical
harmonic analysis of the CMB ∆T (θ, φ)/T , where T is the temperature
and θ, φ are the spherical polar angles, reveals that there exists a dipole
anisotropy at the level of 10−3. The power at an angular scale θ is given
by a term of multipole order l of order (1/θ). The dipole anisotropy seen
can be understood in terms of the solar system moving relative to the
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isotropic CMB radiation. Using this interpretation, one can determine
the velocity of the center of mass of the solar system with respect to the
CMB and its direction. In precision studies of the CMB anisotropy, this
effect and the effect of the Earth’s velocity around the Sun are removed.

The interest in CMB anisotropy stems from the fact that theoretical
considerations suggest that we should have temperature fluctuations in
higher multipoles of order 10−5 in order to seed the formation of galaxies.
COBE [126] indeed found such an anisotropy in 1992. The angular reso-
lution of COBE was limited to 7 degrees. Even higher precision studies
have been done by the Boomerang collaboration [127]. The Boomerang
experiment studied the CMB with a microwave telescope, looking at
2.5% of the sky, with an angular resolution of (1/4) of a degree. The
microwave telescope was flown on a balloon over Antarctica for a 10-day
duration.

The higher order anisotropies are thought to arise from primordial
perturbations in the energy density of early universe present in an epoch
when the matter and radiation stopped to interact through photon scat-
tering. Thus the detection of the anisotropies is proof for the existence
of the density perturbations which are enhanced by the gravitational
instability leading to the kind of structures we see at present. In the
case of a flat universe, the peak of the power spectrum is expected to
occur at an angular scale of 45 arcminutes. Boomerang has measured
this peak with great precision, and the location and the magnitude of
the peak agree with what is expected from a flat universe. From the
location of the peak we can infer that the density of the matter (includ-
ing dark matter) is within 10% of the critical value. However, this need
not necessarily mean that the universe will expand forever, for “dark
energy” may be present which provides repulsion. Dark energy may be
looked upon as a manifestation of the cosmological constant. The lesson
of the Boomerang experiment is that the universe has a large amount of
dark energy.

Dark energy has the effect of accelerating the expansion of the uni-
verse. Measurements of distances to some type Ia supernovae show that
the expansion of the universe is indeed accelerating. This effect is what
one gets for a universe which is spatially flat and in which two thirds of
the critical density arises from dark energy associated with the cosmo-
logical constant.

Data from Boomerang continue beyond the peak at 45 arcseconds
up to an angular scale of 15 arcseconds. Theory predicts a second peak
at 15 arcseconds. Boomerang data has such a peak but its height is less
than theoretical expectations. At present there is no understanding of
this discrepancy.
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Cosmic Rays
Ever since the discovery by Hess in 1912 that the earth is being con-
stantly bombarded by extremely energetic particles, called cosmic rays,
a large amount of effort has been expended in understanding the na-
ture of the radiation, its content, and its source or sources. Besides the
inherent interest in the study of cosmic rays for its own sake, there is
another practical reason to study them. In many high energy physics ex-
periments, identification and suppression of the background effects due
to cosmic rays is essential for the success of the experiment. We include
here a brief summary of this field.

Cosmic rays reaching the earth from outer space consist of stable
charged particles and stable nuclei, and are classified as primary or as
secondary. Primary cosmic rays are those that are produced by spe-
cial accelerating mechanisms operating in various astrophysical sources,
while secondary cosmic rays originate from the collisions of primary cos-
mic ray particles with intestellar material. Electrons, protons, nuclei
of helium, carbon, oxygen, iron, heavier nuclei, etc. are all produced
in stars and constitute primary radiation. Nuclei of lithium, beryllium,
and boron are classified as secondary because they are not produced
abundantly in stars.

Measurements of the intensity spectrum of primary nucleons in the
energy range from a few GeV to about 100 TeV are described very
well by a power law [62]. It is approximately given by the expression
Inuc(E) ∼ 1.8E−α, measured in units of nucleons cm−2 s−1 sr−1 GeV−1,
where the exponent α is about 2.7 and the energy E is the total energy
of the particle including the rest mass energy. A quantity γ = α − 1
is called the integral spectral index. It turns out that about 79% of
primary nuclei are free protons. Another 15% are nucleons which are
bound in helium nuclei. To get an idea of the actual numbers, we
may mention that the primary oxygen flux at 10.6 GeV/nucleon is
3.26 × 10−6/(cm2 s sr GeV/nucleon). At the same energy per nucleon,
the proton flux and the helium flux are about 730 times and 34 times the
oxygen flux, respectively. The differential flux of electrons and positrons
incident at the top of the atmosphere as a function of the energy shows
a steeper fall compared to the spectra of protons and nuclei (more like
E−3). Above 10 GeV energy, the proportion of antiprotons relative to
protons is about 10−4. These are all secondary, for at present there
exists no evidence for a primary antiprotons component.

When the primary cosmic rays strike the atmosphere of the earth,
many charged mesons and neutral mesons are produced by the collisions
of primary cosmic rays with air atoms and molecules. Muons and neu-
trinos arise as decay products of the charged mesons, while electrons,

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 175

✐

✐

✐

✐

✐

✐

✐

✐

positrons, and photons are produced from the decay of neutral mesons.
As one goes down from the top of the atmosphere, the meson and nu-
cleon components decrease due to decays or interactions. It is found
that the vertically incident nucleon component follows an exponential
attenuation law with an attenuation length of about 120 g cm−2. The
vertical intensity of π± with energy less than about 115 GeV reaches a
maximum at a depth of 120 g cm−2, which is at a height of about 15 km.
The intensity of low energy pions is small because, for most of them, the
decay time is shorter than the interaction time, and so these decay.

Let us first consider the neutrino component. Every pion decay gives
rise to µ+ + νµ or µ− + ν̄µ, so a measurement of the flux of muons will
give a good estimate for the flux of muon neutrinos (and antineutrinos)
produced in the atmosphere. The value of the pion intensity at its max-
imum provides a good knowledge of the νµ(ν̄µ) fluxes to be expected in
the atmosphere. The muons decay and give rise to an additional muon
neutrino and an electron neutrino per muon. Thus from each pion decay
(and subsequent muon decay), one expects two muon neutrinos and one
electron neutrino, giving a ratio, νµ/νe = 2 for the atmospheric neutri-
nos. Once produced, these weakly interacting particles, with energies of
the order of several GeV, propagate for large distances without much
hindrance.

The high energy muons produced in the top of the atmosphere reach
sea level because of their low interactions. They typically lose about
2 GeV of energy through ionization loss before they get to ground level.
The mean energy of muons at ground level is about 4 GeV. The energy
spectrum is more or less flat for energies lower than 1 GeV and drops in
the energy range 10 GeV–100 GeV, because the pions capable of giving
rise to muons of this energy range do not decay but instead interact. A
detector at sea level receives a flux, 1 cm−2 min−1 of muons. The angular
distribution for muons of energy ∼ 3 GeV at ground level follows a cos2 θ
behavior, where θ is the angle from the vertical.

The electromagnetic component at sea level consists of electrons,
positrons, and photons. These originate from cascades initiated by decay
of neutral and charged pions. Most electrons of low energy at sea level
have originated from muon decays. The flux of electrons and positrons of
energies greater than 10 MeV, 100 MeV, and 1 GeV, are roughly about
30 m−2 s−1 sr−1, 6 m−2 s−1 sr−1, and 0.2 m−2 s−1 sr−1, respectively.

Protons seen at sea level are essentially the energy degraded primary
cosmic ray protons. About 30% of the vertically arriving nucleons at sea
level are neutrons; the total flux of all protons of energy greater than
1 GeV arriving from a vertical direction is about 0.9 m−2 s−1 sr−1 at
ground level.
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Once one goes deep underground, the only particles that penetrate
are the muons of high energy and neutrinos. The intensity of muons
deep underground is estimated by taking the intensity at the top of the
atmosphere and considering all energy losses they suffer. The average
range of muons is given in terms of depth of water equivalent (1 km water
equivalent = 105 g cm−2). The average ranges for muons of 10 GeV,
100 GeV, 1 TeV, and 10 TeV, found from literature, are 0.05, 0.41, 2.42,
and 6.30 km water equivalent, respectively.

Another phenomenon worthy of note is extensive air showers initiated
by cosmic ray particles. Such showers occur when the shower initiated
by a single cosmic ray particle of very high energy at the top of the at-
mosphere reaches the ground level. The shower has a hadron at its core,
which subsequently develops an electromagnetic shower mainly through
π0 → γγ processes in the core. Electrons and positrons are most nu-
merous in these showers with muons an order of magnitude smaller in
number. Such showers are found spread over a large area on ground and
are detected by a large array of detectors in coincidence. Extensive air
showers probe cosmic rays of energy greater than 100 TeV. An approx-
imate relation between the shower size, as measured by the number of
electrons ne in the shower, and the energy of the primary cosmic ray E0
is found to be E0 ∼ 3.9× 106(ne/106)0.9 valid at a depth of 920 g cm−2.

At the very highest energies, of the order of 1017 eV and above, there
is intense interest at present in studying the cosmic ray particle spec-
trum. When the E−2.7 factor is removed from the primary spectrum,
the spectrum is still found to fall steeply between 1015 and 1016 eV. This
has been called the knee. Between 1018 and 1019 eV, a rise in the spec-
trum has been noticed, called the ankle. The cosmic ray community is
studying this region of energies quite intensively. It looks as though the
ankle is caused by a higher energy cosmic ray population mixed in with
a lower energy population at energies a couple of orders of magnitude
below the ankle. The interpretation that is being placed at present on
these results is that the spectrum below 1018 eV is of galactic origin, and
the higher energy population is due to cosmic rays originating outside
the galaxy.

Cosmological Bound on Neutrino Rest Mass
The first cosmological upper bound on neutrino rest mass was derived by
Gershtein and Zeldovich [128]. They showed how one can greatly reduce
the upper limit on the muon neutrino (νµ) mass by using cosmologi-
cal considerations connected with the hot model of the universe. Their
considerations are as follows. In the big bang theory of the creation of
the universe, one envisages the universe as expanding from an initial
very hot and extremely dense state. In the early stages of the universe,
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at temperatures T such that the energy was greater than ∼ 1 MeV,
neutrino generating processes occurred, producing various kinds of neu-
trinos. At thermal equilibrium, one can estimate the number densities
of the different kinds of fermions (and antifermions) and bosons that are
generated using equilibrium statistical mechanics. When the universe
expands and cools down, the neutrinos survive because of the extremely
low νν̄ annihilation rates. Their density goes down because of the ex-
pansion in volume due to the expansion of the universe. Because the
volume increases as Volume ∝ (1 + z)−3, where z is the red shift, one
can estimate the number density of the neutrinos in the current epoch,
characterized by z = 0, from that prevalent at the latest epoch when
thermal equilibrium was maintained, T (zeq) ∼ 1 MeV, where zeq is the
red shift at that epoch. Such considerations give an estimate of the
number density, nν + nν̄ , of 300 cm−3 for each species of neutrinos at
the current epoch. This number density is enormous; by comparison,
all the visible matter in the universe contributes to an average density
of hydrogen atoms of only 2× 10−8 cm−3. If each neutrino has a mass,
the number density derived can be translated into a mass density. Now,
the mass density, ρtot, of all possible sources of gravitational potential
in the universe has been ascertained to be ρtot ≤ 10−29 g cm−3. The
mass density provided by the different neutrino species has to be less
than ρtot. This provides an upper limit on the neutrino mass. Assuming
only electron and muon neutrinos (and their antiparticles) each having
mass mν , Gershtein and Zeldovich derived this upper limit to be 400 eV.
Subsequent independent works by Cowsik and McLelland [129] and by
Marx and Szalay [130] have shown this limit to be about 8 eV. Compar-
ing this with improved laboratory measurements, from which an upper
bound for m(νµ) of 0.17 MeV is found, we see that cosmological consid-
erations reduce this upper bound by several orders of magnitude for the
muon neutrino, while not doing very much for the electron neutrino.

CP Violation—Neutral B Mesons
CP violation was first observed in the neutral K meson system. With
three families of quarks discovered since then, and mixings among the
charge −(1/3)|e| quarks of these families represented by the Cabibbo
Kobayashi Maskawa (CKM) matrix, it came to be realized that the
phenomenon of CP violation may not be restricted to the neutral Kaon
system but may also be present in neutral mesons containing charm
and bottom quarks. Investigations in the matter have shown that CP
violation in mesons containing charm may not be observable, but it
should be observable in neutral B mesons containing bottom (or beauty)
quarks. As the violation is not expected to be large, one requires a large
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supply of neutral B mesons to make the observation possible. To meet
these requirements and study other properties of B mesons, dedicated
accelerators have been built to serve as B factories. One of these is the
BaBar Experiment at SLAC (see further under “BaBar Experiment”).

We present a brief description of CP violation in neutralB mesons [62].
To observe CP violation in neutral B meson systems, one has to ob-
serve B0 and B̄0 meson decays and compare them. The quark content
of B0(B̄0) is db̄(d̄b). Unlike in the neutral kaon system, the life time
difference between the two B0 eigenstates is expected to be negligibly
small. These states will be distinguished only by the mass difference
∆M between the two states. If the decay of the neutral B(B̄) meson
occurs through the weak transformation of one b quark (b̄ antiquark),
it is found that the difference between B0 and B̄0 decays is expressible
in terms of an asymmetry parameter Aa. This parameter depends upon
the particular C eigenstate a with eigenvalue ηa, the phase φM associ-
ated with B0-B̄0 mixing, and the phase φD associated with the weak
decay transitions according, to

Aa = ηa sin [2(φM + φD)].

Considering the transition b → cc̄s leading to B0(B̄0) → ψKS , the
asymmetry in the Standard Model is a quantity without any uncertainty
due to the hadronic matrix elements. The experimental constraints on
the elements of the CKM matrix allow a prediction for this asymmetry
AψKS to be between −0.3 and −0.9. If there is any sizable deviation
from this range, physics beyond the Standard Model may be required.

Another decay mode of interest is B0(B̄0) → ππ and involves the
quark transition b → uūd. The asymmetry Aππ can be worked out
similarly to the other case. Both could involve B0B̄0 mixing, but the
difference between Aππ and AψKS would be a signal for CP violation
arising from beyond the CKM matrix, called direct CP violation.

CP violation could also be looked for in charged B meson decays.
B+ and B− decay to charge conjugate states. Difference in these rates
signals CP violation. Here there are more theoretical uncertainties in
evaluating what the difference should be. Predicted effects are small and
not precise.

The B0s meson (sb̄ quark content) affords another possibility for ob-
serving CP violation. Here the mass difference ∆M is much larger,
although not yet measured. The width difference is also expected to be
larger for Bs. Thus, there may be a possibility of finding CP violation
just as in neutral K meson system by observing the Bs with different
lifetimes decaying into the same CP eigenstates.
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Current work in progress should soon enrich our knowledge of the
details of CP violation, how much of it is due to the CKM mixing
matrix, and how much is due to direct CP violation.

CP Violation—Neutral Kaons
Data on beta decays support the idea of CP conservation. CP violation
was first observed in neutral Kaon decays by Christenson et al. [131].
Neutral Kaon systems consisting of K0 and K̄0 exhibit some strange
properties in their decays. These particles have opposite strangeness
quantum numbers and are produced copiously in association with other
particles also possessing strangeness, by collisions of non-strange parti-
cles involving strong interaction processes. The total strangeness of the
particles produced in strong interaction must add up to zero because it
was zero initially. Because strangeness is conserved in strong interac-
tions, such interactions cannot induce K0 → K̄0 transitions. When the
weak interactions are included, strangeness is no longer a good quan-
tum number, and K0 → K̄0 transitions are possible, for example, via
K0 → π+ + π− → K̄0. Thus, the degenerate K0 and K̄0 states cannot
be eigenstates of the full Hamiltonian when the weak interactions are
also included and linear combinations are needed. CP eigenstates can
be formed, |K0

1 〉 = (|K0〉 + |K̄0〉)/21/2 and |K0
2 〉 = (|K0〉 − |K̄0〉)/21/2,

with eigenvalues +1 and −1 respectively. The |K0
1 〉 and |K0

2 〉 states
are distinguishable by their decay modes if CP is conserved during the
decay.

Neutral K mesons have been observed to decay into 2π (π0π0, π+π−)
and 3π (π+π−π0, 3π0) decay modes. By Bose symmetry, the total wave
function of the 2π decay mode must be symmetric under the exchange of
the two particles. As the pions are spinless, the exchange involves only
the operation of C followed by P , so CP = +1 for the 2 pion state. For
the three pion state, because the Q value for the decay is small (about
70 MeV), the three pions will mostly be in a relative orbital angular
momentum zero state. The π+π− in the three pion state will have
CP = +1 (by argument similar to the one for the 2 pion state). The
π0 has C = +1 (because of its 2γ decay) and has P = −1 (because the
pion has odd parity), so this 3 pion state has CP = −1. Contributions
from higher relative orbital angular momenta will not allow one to have
such a clean argument as to the value of CP , and both +1 and −1
may be possible. However, these contributions will be suppressed due to
centrifugal barrier effects. The end result of these considerations is that
the |K0

1 〉 with CP = +1 can decay only into 2 pions, and the |K0
2 〉 state

with CP = −1 can decay only into 3 pions if CP conservation holds.
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These decays involve quite different Q values, populate quite different
regions of the phase space, and will have different disintegration rates.
The measured lifetimes for these decay modes are 0.9 × 10−10 s and
0.5× 10−7 s, respectively.

In a very interesting experiment performed by Christenson et al. [131],
they demonstrated that |K0

2 〉 state also decays into 2 pions with a small
branching ratio of 10−3, thus indicating violation of CP . Hence, the
nomenclature for describing the short-lived and the long-lived states has
to be revised in view of the discovery that CP is violated. The short-
lived state is called |KS〉 and the long-lived state is called |KL〉; the
short-lived state is mostly |K0

1 〉 with a small admixture of |K0
2 〉, and

the long-lived state is mostly |K0
2 〉 with a small admixture of |K0

1 〉. CP
violation is characterized by the value η+− for the ratio of amplitude
for the long-lived state to decay into 2 pions to that for the short-lived
state to decay into 2 pions. Experimental determination of this ratio
was possible because of observable interference effects in the π+π− sig-
nal due to the fact that both the long-lived and the short-lived states
can decay into π+π−. Similar CP violation is observed in the 2π0 mode
also, characterized by a value for η00. η+− and η00 are in general com-
plex quantities with a modulus and a phase φ. Their experimental val-
ues are |η+−| = (2.274 ± 0.022) × 10−3, φ+− = (44.6 ± 1.2) deg and
|η00| = (2.33 ± 0.08) × 10−3, φ00 = (54 ± 5) deg. Two new parameters
called ε and ε′ are introduced related to η+− and η00 by η+− = ε − ε′,
η00 = ε − 2ε′. CP violation has also been established in leptonic decay
modes of the neutral K mesons: K0

L → e+νeπ
− and K0

L → e−ν̄eπ+; the
final products are CP conjugates of each other and one would expect an
asymmetry if CP is violated [132]. If the rate of decay to positrons is
Γ+ and to electrons is Γ−, then the asymmetry they measure is

δ =
Γ+ − Γ−
Γ+ + Γ−

= (+2.24± 0.36)× 10−3.

The data available on CP violation in K0 decays have been accom-
modated in the “superweak” model due to Wolfenstein [133]. In this
model, CP violating effects are due to a new interaction much weaker
than the usual weak interaction and seen only in the K0 system. One
of the predictions of this model is ε′ = 0 so that |η+−| = |η00| and
φ+− = φ00. It also leads to predictions for the asymmetry in leptonic
decay modes of the K0 which are in agreement with experiments.

There are other models of CP violation which involve six flavors of
quarks and mixing among them, more general than the Cabibbo mix-
ing discussed elsewhere. The mixing is characterized by the Cabibbo
Kobayashi Maskawa (CKM) Matrix [96]. In this model of six flavors of
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quarks, a finite value of ε′ is expected. Recent experiments have deter-
mined that ε′ is different from zero and that CP violation may be a more
general phenomenon than that observed in K0 system only. Thus, for
example, systems of neutral bottom (B0) mesons may also exhibit CP
violation, and this is being searched for in special accelerators, called B
factories, designed for this purpose.

CPT Invariance
The CPT theorem due to Pauli [134] states that in relativistic field the-
ories, all the interactions are invariant under the combined transforma-
tions C, P , and T , where C represents the particle-antiparticle conjuga-
tion, P the reflection operation, and T the time reversal operation, the
operations being performed in any order. The theorem is based in local
quantum field theory on very general assumptions and is not easy to cir-
cumvent. However, in view of the fact that many symmetries which were
thought to be good turned out experimentally not to be borne out (such
as parity violation and CP violation), it is desirable to determine exper-
imentally whether CPT theorem is violated. For this one needs to focus
attention on some of the consequences of the CPT theorem and see to
what extent the consequences are borne out. Particles and antiparticles,
according to the CPT theorem, must have the same mass and lifetime,
and magnetic moments which are the same in magnitude but opposite
in sign. Fractional difference in masses of π+ and π− is found to be less
than 10−3, for proton and antiproton it is less than 8 × 10−3, and for
K+ and K− it is less than 10−3. The best test of mass difference comes
from the study of neutral K decays: (MK̄0 −MK0)/MK0 ≤ 10−18. Life-
time equalities for particles and antiparticles have also been tested, and
for pions, muons, and charged kaons, the fractional difference is found
to be less than 10−3 for all of them. Magnetic moments for particles
and antiparticles have also been compared; in the case of muons, the
fractional difference is less than 3 × 10−9. For electrons and positrons
a very high precision test of the equality of the g-factors is provided by
the development of the ion trap technique by Dehmelt [135] with the
result g(e−)/g(e+) = 1 + (0.5 ± 2.1) × 10−12. Thus, it might be stated
that CPT invariance is generally valid.

Crossing Symmetry
The amplitudes for different processes are obtained from the matix el-
ements of the scattering matrix which relates physical particle states
and, hence, is only defined in the physical region, where all the mo-
menta and all the scattering angles are real. In quantum field theory,
however, the nonphysical region also has significance. Suppose we have
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a matrix element T (p3, p4; p1, p2), which gives the physical amplitude
for some process in which particles 1 and 2 with four-momenta p1, p2,
respectively, are incident on one another, and particles 3 and 4 with
four-momenta p3, p4, respectively, leave the interaction region. In ex-
tending this matrix element to the nonphysical region, we suppose that
there exists an analytic continuation in some variables, which takes us
to the nonphysical region. An explicit expression for the matrix element
T can be obtained to any order in perturbation theory, and its analytic
continuation to the nonphysical region can be checked.

To understand what is involved, we consider a process involving the
interaction of two particles, leading to a final state involving two particles
also. Let us introduce the Mandelstamm variables, s = (p1 + p2)2,
t = (p1 − p3)2, and u = (p1 − p4)2. The four-momentum conservation
gives p1 + p2 = p3 + p4, where p2i = m2

i , mi being the mass of the ith
particle, i = 1, 2, 3, 4. The Mandelstamm variables are Lorentz invariant
scalars and satisfy s + t + u =

∑4
i=1m

2
i , so that only two of the three

variables are independent. Thus the variables on which the matrix T
depends can be chosen to be any two of these three variables.

The channel in which the particles undergo the reaction 1+2 → 3+4
is called the s-channel. Here the physical region for s is s ≥ (m1 +
m2)2. In this channel t and u are physical four-momentum transfer
variables. We can define a crossed channel reaction by crossing particle
3 to the left-hand side and replacing it by its antiparticle 3̄, and crossing
particle 2 to the right-hand side and replacing it by its antiparticle 2̄:
1 + 3̄ → 2̄ + 4. (It could also be achieved as: 4̄ + 2 → 1̄ + 3 by crossing
particles 4 and 1.) The channel obtained by this procedure is called
the t-channel. Because the momenta of the antiparticles are opposite
in sign to the momenta of the particles, in the t-channel the physical
region corresponds to t ≥ (m1+m3)2, and s = (p1− p2)2 and u = (p1−
p4)2 become the physical four-momentum transfer variables. The other
crossed channel we can get is called the u-channel in which 1+4̄ → 2̄+3,
the physical region corresponds to u ≥ (m1 +m4)2, and s = (p1 − p2)2

and t = (p1 − p3)2 are physical momentum transfer variables. Thus,
as an example, consider the s-channel reaction π+ + p → π+ + p. The
crossed t-channel reaction is π+ + π− → p + p̄. The crossed u-channel
reaction is π− + p → π− + p where, instead of crossing the protons, we
have crossed the pions. In perturbation theory, the s- and u-channel
amplitudes are simply related by the substitution rule; p2 and p1 in the
s-channel become −p2 and −p1, respectively, in the u-channel. Similarly
one can give the substitution rule to get the t-channel amplitude from
the s-channel amplitude. The relation of the amplitudes for crossed
processes is the statement of crossing symmetry. Thus in our example,
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the amplitudes for π+p scattering, π−p scattering, and p+ p̄ → π++π−

are related by crossing symmetry. The nonphysical region in one channel
becomes the physical region in the crossed channel.

Current Algebra
This is an approach to dealing with dynamical effects of strong interac-
tions on various weak processes, which involve hadrons, and was pursued
vigorously in the 1960’s. This approach enabled one to obtain relations
between different weak processes suffered by hadrons. It was also able
to give relations between weak and strong interactions of hadrons. As it
was known that the axial vector currents are only partially conserved (a
concept called Partial Conservation of Axial Currents (PCAC)), it was
combined with some other techniques developed by Adler, and others to
obtain these relations [136]. We include here a brief description of the
current algebras which have been applied to weak interaction problems.

A simple form of current algebra which was first used by Adler [137]
and Weissberger [138] to derive a relation which goes under their names
will be described to illustrate the procedure. We consider the ∆Y =
0 (hypercharge non-changing) weak vector J iµ(V )(x) and axial vector
J iµ(A)(x) currents, with i = 1, 2, 3, and consider introducing equal time
commutation relations between them as shown below. The hypothesis
of the conservation of the vector current (CVC) leads to the identifica-
tion of J1µ(V )(x)± iJ2µ(V )(x) with the charge changing isospin currents
and J3µ(V )(x) with the isovector part of the electromagnetic current.
When electromagnetic interactions are absent, all three components of
the vector current, J iµ(V ) i = 1, 2, or 3, are conserved separately. We
can define generators of isospin rotations (isospin vector charges) by

Ii(t) =
∫
d3xJ i0(V )(x), i = 1, 2, 3.

These generators satisfy the equal time commutation relations

[Ii(t), Ij(t)] = iεijkI
k(t), i, j, k = 1, 2, 3,

where εijk is totally antisymmetric in its indices and ε123 = 1. In the ab-
sence of electromagnetism these generators are time independent. When
electromagnetism is present, the components with i = 1 and 2 will not
be conserved, will become time dependent, and will not commute with
the electromagnetic part of the Hamiltonian. The basic idea of the ap-
proach of current algebra is to propose that the equal time commutation
relations hold exactly even when electromagnetism is present. One can
extend these considerations to the isospin axial vector charges also. De-
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fine
Ii,A(t) =

∫
d3xJ i0(A)(x), i = 1, 2, 3.

Because these axial vector current components are not conserved, these
quantities are time dependent, but they are isospin vectors. They will
satisfy the equal time commutation relations,

[Ii(t), Ij,A(t)] = iεijkI
k,A(t), i, j, k = 1, 2, 3.

To close the algebra, we assume that

[Ii,A(t), Ij,A(t)] = iεijkI
k,A(t), i, j, k = 1, 2, 3.

Just as with the vector isospin currents we assume that these relations for
the axial vector isospin currents are valid even when electromagnetism is
present. The above three sets of commutation relations between, vector-
vector charges, vector-axial vector charges, and axial vector-axial vector
charges form the SU2 × SU2 algebra of charges. Using these, different
applications have been considered, most of which are in the nature of
sum-rules.

The one involving axial vector-axial vector commutation relations
was the one which was used to derive an expression for calculating the
axial vector coupling constant gA for the proton. The starting point for
this work is the matrix element between two proton states of equal mo-
mentum, of the commutation relation between an axial charge and an
axial current. This is written in the form of a dispersion integral, over
unknown matrix elements of the divergence of the axial vector current,
which involves not only single particle intermediate states but also more
complicated states. After integrating over the internal degrees of free-
dom in the intermediate states, one makes the approximation of keeping
only the contribution to the matrix element from the pion pole. Without
going into the details, we quote the final result derived by Adler [137] and
Weissberger [138]. This relation is essentially in the form of a sum-rule:

1 = |gA|2
[
1 +

2M2
p

g2
1
π

∫ ∞

mπ

dELπ
pLπ

(ELπ )2
(σtotπ−P (E

L
π )− σtotπ+P (E

L
π ))

]
,

where the integral involves the difference of laboratory total cross sec-
tions for negative pions on protons and positive pions on protons at a
laboratory energy ELπ for the pion. The integral is over all pion labora-
tory energies starting at the mass of the pion mπ and going to infinity.
pLπ is the corresponding laboratory momentum for the pion, Mp is the
mass of the proton, and g is the pion nucleon coupling constant. In the
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integral, the ∆(1236) resonance gives a rather large contribution, due to
which the right-hand side becomes less than 1 and, hence, g2A is some-
what larger than 1. The evalutation of the integral can be performed
by using pion-proton scattering data obtained from experiments, and
finally one obtains |gA| � 1.16. This compares reasonably well with the
experimental value of 1.24.

Current algebras have been extended to SU3 × SU3 currents and
many interesting results involving the multiplet of particles related by
SU3 symmetry have been derived. For details reference must be made
to original literature.

Dalitz Plot
Many reactions or decays of particles lead to a final state involving
just three particles. A plot was invented by Dalitz [139] to investigate
whether there are any correlations among the product particles in three
particle final states and has come to be called the Dalitz plot. The energy
distribution of the produced particles is a product of the square of the
matrix element for the reaction (or decay) and the phase space factor for
the three particles. If the matrix element is a constant, the distribution
is directly determined by the phase space factor. If the observed distri-
butions differ markedly from the distribution determined by phase space
factors alone, the difference must be attributed to the non-constancy of
the square of the matrix element. Knowledge of regions where the ma-
trix element is large or small can be used to learn about the kinds of
interactions among the particles which give rise to that behavior of the
matrix elements. The plot that Dalitz invented incorporates, in a clever
way, the constraints imposed by energy and momentum conservations
and allows one to draw conclusions about the square of the matrix el-
ement and, hence, about the possible correlations among the produced
particles.

The phase space factor represents the number of quantum states
available for a particle of momentum 7pi between 7pi and 7pi + d7pi and
is given by V d3<pi

(2π)3 , where V is the normalization volume. We consider
three spinless particles in the final state, so the phase space factor is∏3
i=1

V d3<pi

(2π)3 . Momentum conservation is expressed by a delta function
in the three momenta. In a frame in which the total momentum is
zero (usually called the center of mass system), momentum conservation
gives 7p3 = −(7p1 + 7p2) resulting from the integration over 7p3. The total
energy of the final particles is Ef = E1 + E2 + E3, where Ei is the
energy of particle i, with i = 1, 2, 3. The matrix element for the process
is expressed in a Lorentz invariant form, and the phase space expression
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can be made relativistically invariant if each of the volume factors is
supplied its Lorentz contraction factor m/E, where m is the mass and
E the energy of the particle.

It is then not difficult to show that the number of quantum states
available per unit final energy interval in Ef , dN

dEf
= const · dE1dE2.

This comes about as follows. The number of states, after performing
the integration over 7p3, is proportional to p21dp1dΩ1p

2
2dp2dΩ2, where Ω’s

represent the appropriate solid angles. If the initial state is unpolarized,
the angular integrations can be performed by changing variables to the
polar and azimuthal angles, θ12 and φ12, between the particles 1 and 2,
and integrating over the solid angle of 1, which gives 4π. The integration
over φ12 leads to a further factor of 2π. Taking the Lorentz contraction
factors mentioned above, we have for the number of states the expression,

dN = constant · p
2
1dp1p

2
2dp2d(cos θ12)
E1E2E3

,

where in E3 we must remember that the momentum 7p3 = −(7p1 + 7p2).
Using the energy-momentum relation for the particles, E2 = p2 +m2,
we can rewrite the expression for the number of states as

dN = constant · E1dE1E2dE2E3dE3
E1E2E3

,

where the last factor E3dE3 in the numerator comes from p1p2d cos θ12 =
E3dE3. The final total energy is Ef = E1+E2+E3, and for fixed values
of E1 and E2, dEf = dE3, so

dN

dEf
= constant · dE1dE2.

This says that the phase space for three bodies, represented by the den-
sity of points per unit area in the E1, E2 plane, is uniformly distributed.

Schematically, the Dalitz plot is obtained if one plots the number of
events with energies E1 and E2 (the third energy is fixed because it is
Ef − E1 − E2), plotted in the E1, E2 plane and is shown in Figure 4.9.
The event rate is given by the phase space multiplied by square of the
matrix element |M(E1, E2)|2. Any deviation from uniformity of the
density of points indicates the effect due to the non-constant behavior
of the matrix element.

To illustrate how the Dalitz plot is made and how it is used in the
determination of spin and parity of particles undergoing decays, let us
consider the three pion decay mode of the charged K meson. In this
case, all the three final particles have the same mass. The Q value
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Figure 4.9: Construction of the Dalitz plot. (Adapted from Introduction
to High Energy Physics by Donald H. Perkins. Copyright c© 1982 by
Addison-Wesley Publishing Company, Inc. Reprinted by permission of
Addison Wesley Longman Publishers, Inc.)

for the reaction is 75 MeV, and the pions in the final state are close
to being nonrelativistic. Their kinetic energies are εi = Ei − mπ, i =
1, 2, 3. The Dalitz plot is obtained by drawing an equilateral triangle
of height Q, and plotting points inside the triangle with values ε1, ε2, ε3
measured perpendicularly from the three sides of the triangle as shown
in Figure 4.9

From the property of the triangle, it follows that Q = ε1 + ε2 + ε3.
Further, the points are restricted to a region in which every | cos θ| ≤ 1,
where θ is the angle between any two particles, θ12 or θ23 or θ31. The
boundary values cos θ12 = ±1 correspond, for example, to particles 1
and 2 moving parallel or antiparallel to one another, and similarly for
the others.

In the case of three nonrelativistic particles, this boundary turns
out to be the circle inscribed within the triangle as shown, and all the
points will lie inside the inscribed circle. If the origin O is taken as the
center of the inscribed circle and the plotted point has the coordinates
x, y as shown, then the following relations can be deduced from the
figure: ε1 = AP sin 30 + α, ε2 = AP sin 30− α, and ε3 = y + (Q/3).
It is also seen from the figure that AR = (2Q/3) − y, RP = x, and
AP =

√
AR2 +RP 2. Note that AP cosα = AR and AP sinα = RP ,

so that ε1, ε2, and ε3 become, ε1 = (Q/3) − (y/2) + (31/2/2)x, ε2 =
(Q/3) − (y/2) − (31/2/2)x, and ε3 = y + (Q/3). From these we can
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Figure 4.10: Boundary shapes in Dalitz plot for relativistic final parti-
cles. (From Introduction to High Energy Physics by Donald H. Perkins.
Copyright c© 1982 by Addison-Wesley Publishing Company, Inc. Re-
printed by permission of Addison Wesley Longman Publishers, Inc.)

deduce the x, y coordinates, x = ε1−ε2√
3
, y = 2Q

3 − (ε1 + ε2) belonging to
the values ε1 and ε2.

As the final state particles become relativistic, the boundary changes
from the inscribed circle C to other shapes, C′, C′′, etc., as shown in
Figure 4.10, with the inscribed inverted triangle becoming the shape in
the extreme relativistic limit.

Now we turn our attention to the expected distribution of points in
the Dalitz plot for different assumed values for the spin of the kaon.
In the decay of positive kaons into three charged pions, two of them
will be π+, while one will be π−. Let pions 1 and 2 be the positive
pions and 3 the negative one. In this case the distribution of points
must be symmetrical in the two triangles BAD and CAD in Figure 4.9.
We now use angular momentum conservation in the decay. toward this
end, we form the total angular momentum J of the final three pion
state by the vector sum of the orbital angular momentum of the positive
pions, 7L+, about their center of mass, and the angular momentum of the
remaining negative pion, 7L−, about the center of mass of the positive
pions. Thus 7J = 7L+ + 7L−, which implies that the magnitude of J
satisfies |L+ − L−| ≤ J ≤ |L+ + L−|. Bose statistics for the two like
pions imply L+ can take on only even values 0,2,. . . . Remembering that
the pion has intrinsic odd parity, the possible values of J and parity

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 189

✐

✐

✐

✐

✐

✐

✐

✐

L− L+ = 0 L+ = 2
0 0− 2−

1 1+ 1+, 2+, 3+

2 2− 0−, 1−, 2−, 3−, 4−

Table 4.1: Values of J and parity for assumed values of L+, L−.

for different values of L+ and L− can be worked out and are shown in
Table 4.1 We see that, if J �= 0, then one of L+ or L− is not zero. The
experimental data obtained by Orear et al. [140], and reproduced here
in Figure 4.11, for the decay of charged kaons, shows how one can obtain
information about the spin of the kaon.

Consider L+ ≥ 2, then we expect the matrix element to vanish when
the two positive pions are at rest because of the angular momentum
barrier effects. This corresponds to the point when ε3 of the negative
pion is at its maximum value. Thus there will be a depletion of events
at the top of the inscribed circle, in the region labeled A in Figure 4.11
on the following page. If there is no noticeable depletion around the
region A, we will conclude that L+ = 0. Similar arguments can be made
for L− ≥ 1, in which case, the region of the inscribed circle around
C of Figure 4.11, corresponding to the negative pion at rest, will show
a depletion of points. The data [140] show no deviation from unifor-
mity in the entire figure, hence one must conclude that the spin-parity
assignment for the kaon is 0−.

The kaon, however, is also observed to decay into a two pion mode,
K+ → π+ + π0, in which case we would conclude that the parity has to
be even, if it has zero spin. Measurements of mass and lifetimes of the
particles which decay into the 3 pion and 2 pion modes revealed that
they were equal within experimental errors.

Historically, the three pion decay mode was called the τ -mode and
the two pion decay mode, the θ-mode. That these decay modes represent
the decay modes of a single particle presented a puzzle, called the τ -θ
puzzle, and was widely discussed in the mid-1950’s. The resolution of the
puzzle demands that either there are two different particles accidentally
having the same mass and lifetimes or something is wrong in the deduc-
tion of the parities assuming parity conservation in the decay process.
It is the latter possibility, which prompted T. D. Lee and C. N. Yang to
ask what evidence there was for parity conservation in weak interactions
in general [141]. The detailed examination of this question led to the
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Figure 4.11: Dalitz plot for 3 pion decay of the Kaon. (Figure from J.
Orear, G. Harris, S. Taylor, Physical Review 102, 1676, 1956. Copyright
1956 by the American Physical Society. Reproduced with permission
from J. Orear and the APS.)

overthrow of parity conservation in weak interactions and one cannot
determine the parity of the kaon from its decay modes.

Dark Matter, Machos, Wimps
The name dark matter has been given to matter in the universe about
whose existence we learn only through its gravitational effects. There
is also luminous matter in the universe about whose existence we learn
through the fact that it emits or absorbs radiation.

The amount of a given type of matter is given as a ratio of the density
ρ of that type of matter to the critical density, where the critical density
ρc is defined in big bang cosmology as ρc = [3H2/(8πG)]. Here H is
the Hubble parameter, and G is the Newtonian gravitational constant.
The ratio (ρ/ρc) is denoted by the symbol Ω. The present value of the
Hubble parameter has been deduced to be H = 100 h0 km s−1 Mpc−1

(Mpc = megaparsec = 3.26× 106 light years) with h0 lying in the range
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between 0.4 and 1. The value of Ω for luminous matter, denoted by Ωl,
is estimated to be of the order 0.01 or less.

There are several methods by which the amount of dark matter
present can be determined. These include (1) observations of rotation
curves of spiral galaxies, (2) gravitational lensing effects by single galax-
ies and clusters of galaxies, (3) estimates of cluster masses by using the
virial theorem, and (4) estimates by studying the peculiar velocity mea-
surements of galaxies distributed within distances of the order of a few
hundred Mpc.

Of these, method (1) presents the strongest evidence that more than
visible matter is involved. What is observed are the velocities v of hydro-
gen clouds in circular motion around a galaxy center by measuring the
Doppler shifts as a function of r, the distance from the center. Simple
considerations suggest that v2 � GMl/r, where Ml is the visible mass
of the galaxy mostly concentrated at its center. Such observations have
been done on many spiral galaxies. The measurements show that the
velocities, instead of varying inversely with r, are actually independent
of r for large r. The velocity has a flat behavior as a function of r. Such
a velocity curve as a function of r is called flat rotation (velocity) curve.
This gives an estimate of Ω � 0.1 which is about ten times that for
luminous matter. The other methods, (2), (3), and (4), give even larger
values of Ω, but these methods involve additional assumptions about the
formation of the galaxies.

From all these observations, the value of Ω has been estimated, and it
is found to lie in the range 0.1 to 2. These values, which are considerably
in excess of Ωl = 0.01 of luminous matter, indicate that there is a lot
of mass that has not been accounted for. In accounting for the discrep-
ancy, one invokes the existence of dark matter which is not luminous, as
mentioned above.

What is the nature of this dark matter? Is it baryonic or non-
baryonic? The composition is called baryonic if it is made up of ordinary
matter, such as protons, neutrons, and electrons. This form of matter
readily emits and absorbs radiation and hence would be luminous on the
whole. Exceptions are matter in the form of white dwarfs, neutron stars,
black holes, and Jupiter-like large planets having masses of the order of
a tenth of the mass of the Sun and not luminous because of no nuclear
reactions in their cores. Massive objects of the last type, which are not
self-luminous are called machos and may be found in the halos around
galaxies. The gravitational lensing methods can be used to search for
such objects. Such methods indicate that a significant part of the mass

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 192

✐

✐

✐

✐

✐

✐

✐

✐

in the halo of our galaxy could be composed of machos. However, strin-
gent limits on the total amount of baryon content of the universe have
been deduced from observations of the abundance of deuterium, helium,
and lithium synthesized by nuclear reactions right after the big bang.
The value of Ωbaryonic derived from these limits is considerably less than
the range mentioned above.

Thus a significant contribution of non-baryonic dark matter is indi-
cated. There are additional arguments for non-baryonic contribution.
Without non-baryonic contribution to seed galaxy formation, it turns
out to be difficult to obtain sufficiently small scale fluctuations in the
cosmic microwave background radiation. Also, inflationary models of
the universe require Ω = 1.

Non-baryonic dark matter has been further classified as hot or cold.
This classification has to do with whether the dark matter particles were
relativistic or nonrelativistic at the time in the universe when there was
sufficient matter to form a galaxy. If neutrinos have a small mass, they
will be relativistic and could constitute hot dark matter. Supersymmet-
ric extensions of the standard model have neutralinos which are mix-
tures of the neutral higgsinos, z-inos, and photinos. The neutralinos
may have a mass in the range of tens to hundreds of GeV and will have
weak interactions with other matter. Such weakly interacting massive
particles are called wimps and may contribute to cold dark matter. The
lightest supersymmetric particle (LSP) may be stable and contribute to
dark matter. Axions, introduced in extensions of the standard model
to avoid CP violation in strong interactions, could also be part of cold
dark matter.

There are at present a number of experimental efforts to find dark
matter. These efforts have not resulted in any discoveries so far but have
served to set limits on the mass of the dark matter candidates.

Deep Inelastic Scattering with Polarized Particles
In our discussions of Bjorken scaling, we already introduced the subject
of deep inelastic scattering of electrons on protons. (For details of kine-
matics, etc., please refer to our discussions under “Bjorken Scaling”.) In
our previous discussions we considered the deep inelastic scattering of
unpolarized electrons on targets of unpolarized protons. If we perform
deep inelastic scattering experiments involving polarized incident parti-
cles and targets, we can gain knowledge of the spin distribution inside
the proton from measurements of the polarized structure functions.

Such experiments have indeed been carried out by the EMC collab-
oration [142]. This collaboration measured the spin asymmetry in the
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deep inelastic scattering of longitudinally polarized muons on longitu-
dinally polarized protons over the range 0.01 < x < 0.7 of the Bjorken
scaling variable x = Q2/(2Mν), where q2(= −Q2) is the square of the
four-momentum transfer and ν is the energy transferred by the inci-
dent particle in the laboratory. The spin asymmetry is a measure of
dσ(L,R)−dσ(R,R)
dσ(L,R)+dσ(R,R) , where the arguments L, R of the dσ’s refer to the lon-
gitudinal polarizations of the electron and proton, respectively. Using
the asymmetry data, they derived the spin-dependent structure function
gp1(x) for the proton. This function can be integrated over the variable
x and produce a quantity called Ip1 .

The Bjorken sum-rule [143] involves integrating gp1(x) − gn1 (x) over
x, where gn1 (x) is the neutron spin dependent structure function, and it
gives ∫ 1

0

(gp1(x)− gn1 (x))dx =
1
6
|gA
gV

|(1− αs
π
),

where gA and gV are the axial vector and vector coupling constants de-
termined from neutron beta decay. This sum-rule includes QCD effects.
It is derived using light cone algebra, relates the quark-parton model
with weak currents, and is hence on a good theoretical footing. The
numerical value of the right-hand side of this sum-rule is 0.191± 0.002,
for an αs = 0.27± 0.02.

Separate sum-rules for the proton and the neutron have been derived
by Ellis and Jaffe, called the Ellis-Jaffe sum-rule [144], using SU3 current
algebra and assuming an unpolarized strange quark sea. These sum-rules
for the proton and the neutron are∫ 1

0

dxgp,n1 (x) =
1
12

|gA
gV

[
+(−)1 + 5

3

[
3(F/D)− 1
(F/D) + 1

]]
,

where in the first term of the square bracket, the plus sign is for the
proton, and the minus sign is for the neutron, and F/D is the SU3 ratio
of F to D type couplings. Using the values, (F/D) = 0.632± 0.024 and
(gA/gV ) = 1.254± 0.006, one can work out the right-hand sides for the
proton and the neutron. For the proton, this is the above mentioned
integral Ip1 and has the theoretical value 0.189 ± 0.005. Using the ex-
perimental data from asymmetry measurements, which give gp1(x), I

p
1 is

found by integrating gp1(x) over x. The numerical value thus obtained
is 0.114± 0.012± 0.026, which is distinctly smaller than the theoretical
value for the right-hand side.

If one assumes that the Bjorken sum-rule is valid, the small value
measured from experiment for the quantity Ip1 , leads one to conclude
that quark spins contribute very little to the proton spin (about 10%),
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and most of the contribution to the proton spin must come from the po-
larization of the gluons and/or orbital angular momentum of the quarks.
(This is referred to as the proton spin crisis.) This is in marked contrast
to the successful results of the constituent quark model and the parton
model where the spin of the nucleon is assumed to be carried by the
quark-partons. It also means that the result of integrating the neutron
spin-dependent structure function gn1 (x) over x must give a significant
negative value for the integral, a result which can be checked when the
spin dependent structure function for the neutron is also measured ex-
perimentally.

∆(1232)++

This is the first baryonic resonance discovered in collisions of positive
pions on protons. The work was done at the Chicago cyclotron with
pion beams of kinetic energy in the range from 80 MeV to 150 MeV
and subsequently confirmed with pions of much higher energy at the
Cosmotron in Brookhaven National Laboratory. A dramatic peak in
the cross section was observed at a total center of mass energy of 1232
MeV. The scattering amplitude for this process is analyzed in terms
of isospin and spin of the combined pion-nucleon system, and the phase
shift for the isospin 3/2, spin 3/2 state goes through 90◦ at a total center
of mass energy of the pion nucleon system of 1232 MeV corresponding
to the peak in the cross section.

∆(1232)0

This charge neutral resonant state was first indicated in experiments
done by Anderson et al. [145] in collisions of negative pions on protons.
They measured the cross section for negative pions in the energy range
80 MeV to 230 MeV. The cross section for this process also exhibits a
peak at a total center of mass energy of 1232 MeV.

Deuteron
This is an isotope of hydrogen of mass 2, 2H. It is the simplest nucleus
next to the nucleus of hydrogen—the proton. The chemical element is
deuterium. The nucleus of this atom has a proton and a neutron and
plays a role in nuclear physics similar to that of the hydrogen atom in
atomic physics.

Historically, evidence for its existence [146] came from efforts to
understand the discrepancy between the atomic weight as determined
chemically and as determined by mass spectrographic methods. If it was
assumed that a hydrogen isotope of mass 2 was present to the extent
of 1 part in 4,500 of hydrogen of mass 1, then the discrepancy between
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the two values could be removed. The actual discovery of the heavy
isotope came from analyzing atomic spectra of hydrogen in a discharge
tube [147]. Samples of hydrogen for the discharge tube were obtained
by concentrating the isotope of mass 2 by evaporating large quantities of
liquid hydrogen. The discharge was run in such a way as to make promi-
nent the atomic spectrum over the molecular spectrum. In the Balmer
lines they saw faint lines on the short wavelength side of the 1Hβ , 1Hγ ,
1Hδ shifted by 1 to 2 Å. The wavelength of the faint lines agreed with
those calculated for isotope of mass two. They obtained an idea of the
relative abundance of 2H by comparing the times required to record the
faint lines relative to the strong ones. In this way they estimated the
relative abundance to be about 1 part in 4,000 in natural hydrogen and
those in the concentrated samples to be about five times greater.

The studies of atomic energy level structure are carried out by using
light to excite and ionize the atoms. Analogously, the deuteron struc-
ture can be studied by exciting and disintegrating (“ionizing”) it with
light of suitable wavelength. From the mass measurements, it was esti-
mated that the binding energy of the deuteron was small—of the order
of 2 MeV—which in this case would require gamma rays. Using Th
C ′′ gamma rays of energy 2.62 MeV, Chadwick and Goldhaber [148]
achieved the disintegration of the deuteron: γ+d → p+n. By studying
the details of this reaction they were able to come up with a first good
measurement of the mass of the neutron. Since those first measurements,
many more accurate measurements of the deuteron binding energy are
available.

Very shortly after the work of Chadwick and Goldhaber [148], the
nuclear spin of deuterium and the magnetic moment of the deuteron
were determined. For nuclear spin determination, the method used de-
pends on the fact that a measurement of intensities of alternate lines in
the molecular spectra of diatomic molecules with identical nuclei should
show a variation. This comes about because interchanging identical nu-
clei affects the sign of the wave function of the molecule as shown just
below.

The wave function of the molecule is expressible as the product
ψ = ψelecψvibψrotψnucl.spin, where ψelec is the electronic wave func-
tion of the molecule, ψvib is the wave function of the vibrational state,
ψrot is the wave function of the rotational state, and ψnucl.spin is the
wave function referring to the nuclear spin. Under interchange of nuclei,
the electronic wave function does not change sign for the ground state of
most molecules, and the vibrational wave function is likewise symmetric.
The rotational wave function of the molecule with rotational quantum
number j acquires a factor (−1)j when the two nuclei are interchanged.
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Turning to the behavior of the wave function for nuclear spin, a nu-
cleus with spin I has a degeneracy (2I + 1) due to the projection M ,
which can take any of the values, I, I − 1, · · · ,−I. For two identical
nuclei, there are (2I + 1)2 wave functions of the form ψM1(1)ψM2(2),
where the arguments of the functions refer to the coordinates of the
nuclei. For identical nuclei, one must use combinations of these func-
tions which are symmetric and antisymmetric under the interchange of
the nuclei. The product function with M1 = M2 leads to symmet-
ric wave functions. There are (2I + 1) of these. The remaining ones,
(2I + 1)2 − (2I + 1) = 2I(2I + 1), have M1 �= M2. Every such prod-
uct function must be replaced by symmetric and antisymmetric func-
tions: (1/

√
2)[ψM1(1)ψM2(2)± ψM2(1)ψM1(2)], (upper sign, symmetric,

and lower sign, antisymmetric). Thus half of the 2I(2I + 1) product
functions with M1 �=M2 are symmetric and the other half are antisym-
metric with respect to the interchange of the nuclei. The total number
of symmetric functions is (2I + 1) + I(2I + 1) = (I + 1)(2I + 1), and
there are I(2I + 1) antisymmetric functions. For nuclei obeying Bose
statistics, symmetric nuclear spin functions must go with even rotational
wave function (even j), and antisymmetric nuclear spin functions must
go with odd rotational wave functions (odd j). In this way the statis-
tical weight associated with the nuclear spin influences the intensity of
transitions in the rotational spectrum of the molecule between states of
different j. Because the ratio of the symmetric to antisymmetric nu-
clear spin functions is (I+1)/I, we expect that, for nuclei obeying Bose
statistics, the intensity of even rotational lines will be (I + 1)/I times
that of the odd rotational lines in the rotational spectrum. For nuclei
obeying Fermi statistics, the opposite will be the case. This method was
used by Murphy and Johnston [149] and they found intensity ratios in
two separate measurements to be 1.95± 0.06 and 2.02± 0.04, leading to
the result 1 for the nuclear spin of deuteron.

Historically, the first determination of the magnetic moment of the
deuteron was carried out by Esterman and Stern [150] using a Stern-
Gerlach apparatus. They obtained a value between 0.5 and 1 nuclear
magneton for the magnetic moment of the deuteron. Taking the value of
2.5 nuclear magnetons for the magnetic moment of the proton as deter-
mined earlier and using additivity of the magnetic moments of the proton
and the neutron in the deuteron, they suggested that the neutron would
have a magnetic moment between -1.5 and -2 nuclear magnetons. These
values were considerably improved by I. I. Rabi and collaborators [151]
by developing the molecular beam magnetic resonance method. The
values obtained in this work were 2.785 ± 0.02 nuclear magnetons for
the proton and 0.855±0.006 nuclear magnetons for the deuteron. These
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values have been further improved over the years with the development
of nuclear magnetic resonance techniques. Modern values for the proton
and deuteron are 2.79284739 ± 0.00000006 and 0.85741 nuclear magne-
tons, respectively.

Dirac Equation
This equation arose as a result of the quest to obtain a relativistic equa-
tion for an electron which contains time and spatial derivatives only to
first order. Dirac invented this remarkable equation in 1928 [152]. This
equation has been found to describe particles of spin 1/2 very well. The
Dirac equation for a free particle of mass m has the form

(−i7α · 7∇+ βm)ψ(7x, t) = i
∂

∂t
ψ(7x, t),

where the set of quantities, αk, (k = 1, 2, 3), and β are four-by-four
square matrices satisfying the anticommutation relations,

{αk, αl} ≡ αkαl + αlαk = 2δkl, (k, l = 1, 2, 3),

{αk, β} = 0, (k = 1, 2, 3),

β2 = 1,

and the function ψ(7x, t) is a one-column matrix containing four compo-
nents. (Here δkl is the Kronecker delta symbol, equal to 1 when k = l
and zero when k �= l.) The anticommutation relations are imposed in
order that the Klein-Gordon equation

(
∂2

∂t2
− 7∇2 +m2)ψ(7x, t) = 0

also hold for each of the four components of the wave function, which
guarantees that the energy and momentum for a free particle satisfy the
relativistic equation E2 = p2 +m2. The matrix function ψ(7x, t) stands
to the right of the four-by-four matrices. The Hermitian adjoint matrix
function, ψ†(7x, t), is a one-row matrix containing four elements (complex
conjugates of those in ψ) and will occur to the left of the four-by-four
matrices. The products of the matrices with ψ or ψ† will follow the
multiplication rule for matrices.

A canonical form for the matrices αk, k = 1, 2, 3, and β is

αk =
(

0 σk

σk 0

)
and β =

(
I 0
0 −I

)
.
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Here the elements 0 and I are 2×2 zero matrix and unit matrix, respec-
tively, and the σk are 2 x 2 Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
.

We may rewrite the Dirac equation in a more compact form. For this
we introduce the γµ, (µ = 0, 1, 2, 3) matrices according to the definitions,
γ0 = β, γk = βαk(k = 1, 2, 3). Multiplying the equation by γ0 from the
left, we have

(iγµ∂µ −m)ψ(x) = 0.

The anticommutation relations for the γ matrices follow from those of
the α and β matrices,

{γµ, γν} = 2gµν ,

with g00 = 1, gkl = −δkl, (k, l = 1, 2, 3). From the definitions, we can
see that the following Hermiticity properties follow

γ0† = γ0, γk† = −γk.

These can be combined into the single relation:

γ0γµ†γ0 = γµ.

The function defined by ψ̄(x) = ψ†(x)γ0 is easily seen to satisfy the
equation

i∂µψ̄(x)γµ +mψ̄(x) = 0.

The Dirac equation for ψ and its conjugate ψ̄ given above can be used
to show that the quantity ψ̄(x)γµψ(x) = jµ(x) satisfies the conservation
law ∂µj

µ(x) = 0. The zero component of jµ(x) is j0(x) = ψ̄(x)γ0ψ(x) =
ψ†(x)ψ(x) = |ψ(x)|2 (or, written more explicitly in terms of the four
components,

∑4
k=1 |ψk(x)|2) and is clearly a positive quantity. This is

just as in the Schrodinger theory, ψ(x), resembling the wave function
with four components and the spatial integral of j0(x), is independent
of time.

In the early stages of the development of this theory by Dirac, the
equation was considered as suitable for describing the motion of a single
relativistic particle. However, there are problems with this single par-
ticle interpretation. Fourier analysis of ψ(x0, 7x) in terms of plane wave
states e−i(p

0x0−<p·<x) will contain integral over p0 from −∞ to +∞. In
the single particle picture, p0 =

√
7p2 +m2 is the energy of the parti-

cle of momentum 7p, and both positive and negative energies occur in
the superposition. In a relativistic theory there is no reason to exclude
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negative energy states because the particle may change its energy by
arbitrarily large amounts (through some interaction) and go into a neg-
ative energy state. In such a case there is nothing to prevent the particle
from going into lower and lower energy states and ending up at negative
infinity in energy, which is clearly physically absurd.

Faced with this problem, Dirac proposed the idea of the “hole” the-
ory. Because the theory is for electrons, which obey the Pauli exclusion
principle, he proposed that all the states of the negative energy sea be
filled with electrons. Pauli principle will prevent electrons making tran-
sitions to negative energy states because they are all occupied. If one
defines the ground state of the theory to be one in which all the positive
energy states are unoccupied by any particles while all the negative en-
ergy states are occupied, only measurable quantities are differences from
the ground state values. The infinite energy and the infinite charge pos-
sessed by the negative energy sea are thus not observable. A vacancy
in the negative energy sea will clearly be observable and manifest as a
particle of the same mass as the electron but of opposite sign of charge.
In this way, Dirac was led to propose the idea of an antiparticle to ev-
ery particle that is described by his equation. This was a revolutionary
idea at the time but was remarkably soon proven to be correct with the
discovery of the positron in cosmic rays by C. D. Anderson in 1933.

It was soon realized that although the idea of the hole theory solved
the problem for the electrons, because of Pauli exclusion principle, the
Klein-Gordon equation considered as a relativistic equation for a single
spinless particle also suffers from the negative energy problem. Here
there is no exclusion principle and hole theory will not help. Conse-
quently, some other method had to be found to solve the negative en-
ergy problems in relativistic theories. A solution was found by going
away from the idea that the relativistic equations describe single parti-
cle behavior. Instead, it was proposed that the functions which satisfy
the relativistic equations are not wave functions of single particles, but
represent field functions. These field functions when quantized give rise
to quanta of the field which manifest as particles. Thus one has a quan-
tum field theory whose field equations are the Klein-Gordon equation
or the Dirac equation. The Fourier decompositions of the fields involv-
ing positive and negative values of p0 are referred to as positive and
negative frequency modes and do not have any direct connection with
positive and negative energies of particles. In quantum field theory, the
field functions become operators, the positive frequency parts of which
destroy particles and negative frequency parts create antiparticles, all
of positive energy. Correspondingly, the Hermitian conjugate field func-

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 200

✐

✐

✐

✐

✐

✐

✐

✐

tions become operators which create particles and destroy antiparticles.
Relativistic quantum field theories which yield particles of spin 0, 1/2,
and 1 have been successfully constructed (see section under “Quantum
Field Theory” for more details).

For further reference, it is useful to write the Dirac equation for the
electron of charge e, (e < 0) in an electromagnetic field described by the
four-vector potential Aµ(x):

(iγµ∂µ − eγµAµ(x)−m)ψ(x) = 0.

Negative energy solutions of this equation will be associated with the
antiparticle to the electron, namely, the positron.

The correspondence between negative energy solutions of the Dirac
equation and the positron solutions can be formalized in terms of an
operation known as charge conjugation. Let us describe the positron
by the charge conjugate wave function ψc. It will satisfy an equation,
similar to the one above for the electron, except that, e → −e in it,

(iγµ∂µ + eγµAµ(x)−m)ψc(x) = 0.

Now we explore the relation between ψc and ψ. It is clear that in going
from the equation for ψ to that for ψc, one has to have the same sign
for the derivative term and the eA term. This suggests that we take the
complex conjugate of the equation for the ψ, and we get (factoring an
overall negative sign)

[(i∂µ + eAµ)γµ∗ +m]ψ∗ = 0.

What we now need to do is to find a nonsingular matrix Cγ0, such that

(Cγ0)γµ∗(Cγ0)−1 = −γµ,
then we can cast the equation for ψ∗ in the form

[(i∂µ + eAµ)γµ −m](Cγ0ψ∗) = 0.

Now we can identify Cγ0ψ∗ = Cψ̄T = ψc (T represents transpose), and
we have the desired connection. Because γ0γµ∗γ0 = γµT , we have to
find a matrix C, such that

C−1γµC = −γµT .
It is easy to verify that C = iγ2γ0. Thus we have ψc = Cγ0ψ∗ =
iγ2ψ∗. This is the desired relation between the electron wave function
and the charge conjugate wave function, which is the wave function for
the antiparticle, the positron.
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Dispersion Relations
An approach popularly known as dispersion relations for treating scatter-
ing processes involving strongly interacting particles was vigorously pur-
sued in the 1960’s. This method provides relationships between matrix
elements for processes based on very general principles such as Lorentz
invariance, causality, and the unitarity of the scattering matrix (or com-
pleteness of the set of all physical states). The detailed knowledge of
an underlying field theory was abandoned in this method, since at that
time, one neither knew what the fundamental fields were nor had any
knowledge as to what the Lagrangian might be. Even if one knew these,
strong interactions could not be treated using perturbation theory, and
no method other than perturbative solution of field theories was known.
The dispersion method draws its inspiration from the field of optics which
treats the propagation of light through a dielectric medium.

In treating the propagation of light through a medium, one intro-
duces the concept of the refractive index, n. The refractive index is
in general a complex quantity with real and imaginary parts represent-
ing the refractive and absorptive parts. Dispersion relations in optics
are relations between the real and imaginary parts of the refractive in-
dex. It can be shown that these relations follow from the principle of
causality; namely, no disturbance can emanate from a scatterer before
the incident wave has reached it. The propagation through a medium
occurs as a result of the incident wave accelerating the electrons bound
in atoms with a set of natural frequencies ωk, k = 1, 2, 3, . . . and subse-
quent re-radiation by these accelerated electrons. If the electrons with
these natural frequencies are described by simple damped harmonic os-
cillators labeled by k, one can show that the refractive index is related
to the amplitude for the forward scattering of light by the atoms, with
an amplitude f(ω), where

f(ω) =
∑
k

ak
ω2

ω2k − ω2 − iγkω
,

where γk, k = 1, 2, 3, . . . are damping constants and ak, k = 1, 2, 3, . . . are
related to oscillator strengths which determine how effectively a given
oscillator k contributes to the scattering amplitude. The important point
one notices from this expression for the forward scattering amplitude is
that, considered as a function of the complex variable ω, it has poles
given by

ω = −(1/2)iγk ± (ω2k − (1/4)γ2k)
1/2.

As the term due to the damping constants is usually small compared to
the term due to ω2k, the square root is real and the poles are only in the
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lower half ω-plane (Im (ω) < 0). (We will show later that the location of
the poles of the forward scattering amplitude being only in the lower half
ω-plane is directly a consequence of causality.) The function f(ω) does
not fall off for large ω, so let us consider the function f1(ω) = f(ω)/ω2,
which, because it has poles only for Im (ω) < 0, can be represented by
the Cauchy integral formula

f1(ω) =
1
2πi

∫
C

f1(ω′)
ω′ − ω

dω′,

where the contour C consists of the real axis (−∞ < ω′ < +∞) and the
infinite semicircle in the upper half plane. Because the function f1(ω)
falls off like ω−2 for large ω, the contribution from the infinite semicircle
is zero, and we have

f1(ω) =
1
2πi

∫ +∞

−∞

f1(ω′)
ω′ − ω

dω′.

Let us approach the real axis for ω from the upper half plane, then
ω → ω + iε for small ε, and we have

f1(ω) = lim
ε→0

∫ +∞

−∞

f1(ω′)
ω′ − ω − iε

dω′.

Using the fact that [1/(x − iε)] = P (1/x) + iπδ(x), where P stands for
the Cauchy principal value, we immediately get

f(ω) =
1
πi
P

∫ +∞

−∞

f1(ω′)
ω′ − ω

dω′.

Taking the real part of both sides we have

Re f1(ω) =
1
π
P

∫ +∞

−∞
dω′ Im f1(ω′)

ω′ − ω
.

Similarly taking the imaginary parts of both sides, we get

Im f1(ω) = − 1
π

∫ +∞

−∞
dω′Re f1(ω

′)
ω′ − ω

.

We can put these in a usable form if we notice that f1(ω) satisfies the
properties Re f1(ω) = Re f1(−ω) and Im f1(ω) = −Im f1(−ω), we can
rewrite the above as an integral over positive ω only and get

Re f1(ω) =
1
π
P

∫ ∞

0

2ω′ Im f1(ω′)
ω′2 − ω2

dω′
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and

Im f1(ω) = − 1
π
P

∫ ∞

0

2ω
Re f1(ω′)
ω′2 − ω2

.

These pair of relations relating real and imaginary parts of the for-
ward scattering amplitude are called dispersion relations. They were
first derived for optics by Kramers [153] and Kronig [154].

The way these relations may be used is as follows. Using the fact that
unitarity relates the imaginary part of the forward scattering amplitude
to the total cross section

Im f(ω) =
ω

4π
σtot(ω),

one can use the measured total cross sections at various energies to
evaluate the right-hand side of the first relation. This gives us the real
part of the forward scattering amplitude. Consistency demands that if
we use this on the right-hand side of the second relation, we should get
back the imaginary part which we used in the first relation.

We now derive the connection between causality and the fact that
f(ω) has poles only for Imω < 0. Suppose we have an incident light
wave given by A(x, t). Fourier analyzing it, we can write

A(x, t) =
1

(2π)1/2

∫ +∞

−∞
dωA(ω) exp iω(x− t),

If A(ω) has no poles in the region Im (ω) > 0, then A(0, t) can be
evaluated by residue theorem by completing the contour for t < 0 in the
upper half ω plane. Because there are no poles for Im (ω) > 0, we get
A(0, t) = 0 for t < 0. If an atom was located at x = 0, this says that
the incident wave does not reach the atom before time t = 0. Let the
incident wave reach an atom located at x = 0. This atom will produce
a scattered wave in the forward direction at a location x at time t given
by

S(x, t) =
1

(2π)1/2x

∫ +∞

−∞
dωf(ω)A(ω) exp iω(x− t),

where f(ω) is the forward scattering amplitude. Causality demands
that the scattered wave should not be present for times t < x. We have
already seen that A(ω) has no poles in the region Im (ω) > 0. Thus if
f(ω) also has no poles in the region Im (ω) > 0, S(x, t) will be zero for
t < x and demand of causality will be satisfied.

These ideas from optics have found extensions in applications to the
scattering of strongly interacting particles such as pion-nucleon scatter-
ing. All such activities started with the work of Gell-Mann, Goldberger,
and Thirring [155]. They considered the case of scattering of photons by
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a proton. They pointed out that the form of the scattering amplitude
permits analytic continuation to complex values of the photon energy.
They further showed that the forward scattering amplitude for a photon
on a proton is proportional to the integral∫

d4xei(k·x)θ(x0)Aµ,µ(x0, 7x),

where, k(ω,7k) is the four-momentum of the photon, and the function
Aµ,µ(x0, 7x), which is labeled by the photon polarization vectors with
the index µ, depends on the matrix element of the commutator of two
electromagnetic currents with index µ each, between proton states with
momentum p. The arguments of the currents are separated from one
another by the four vector (x0, 7x). In our discussion of causality (see
section under “Causality Condition—Quantum Field Theory”), we point
out that a way of stating this condition is that the commutator vanishes
for space-like separations. Thus Aµ,µ(x0, 7x) = 0 for x0 < |7x|. The θ
function with argument x0 means that the integral over x0 extends over
positive x0 in a region with x0 > |7x|.

The exponential in the integrand above can be written eiω(x0−k̂·<x),
where ω is now the photon energy. Since the integration is restricted to
the region x0 − k̂ · 7x > 0, we see that the form of the integral permits
us to let the photon energy become complex with a positive imaginary
part. This analytic continuation of the expression in the photon energy
to the upper half of the complex ω plane allows us to write a Cauchy
integral representation for the forward scattering amplitude where the
contour consists of the real axis and the infinite semicircle in the upper
half ω plane. Calling the integral f(ω), a parallel is established between
the f(ω) in the optics case above and f(ω) here. Notice that f(−ω) is
given by the same integral with −θ(−x0) in it, which is just f∗(ω). This
helps us to do the same manipulations for ω in the region −∞ < ω < 0
as in the optics case.

In this case, we could derive dispersion relations only for f1(ω) =
[f(ω)/ω2] and not for f1(ω) due to its slow fall off as ω → ∞. In
the present case, the behavior of f(ω) for ω → ∞ depends on how
Aµ,µ(x0, 7x) behaves when x20 − 7x2 → 0. This behavior may be very
singular. If this singularity is no worse than the derivative of a delta
function of finite order, then f(ω) is bounded by a polynomial in ω for
large ω. If this polynomial is of order n, dispersion relations can be
derived for f(ω)/ω2n, and it has the form

Re f(ω) =
n∑
m=1

Cm(ω2)m−1 +
ω2

π
P

∫ ∞

0

dω′2 Im f(ω′)
ω′2n(ω′2 − ω2)

.
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The derivation of dispersion relations for scattering of massive par-
ticles, such as the case of pions on protons, is not a straight forward
extension of the photon-proton case. This is because, for the mas-
sive particle, the exponential which appears in the integral becomes
exp(iωx0 − i

√
ω2 −m2 k̂ · 7x). It is not possible now to continue ana-

lytically to complex ω without resorting to complicated methods. Thus,
proofs of dispersion relations for pion-nucleon scattering or other scat-
tering processes are much more complicated and we do not go into them
here.

DONUT Experiment
The acronym here stands for Direct Observation of the NU Tau. This
is an experiment to be performed at Fermilab in which tau leptons pro-
duced directly by ντ are to be detected. The ντ ’s may have arisen from
the oscillation of another neutrino flavor.

Drell-Yan Mechanism
The first observation of muon pairs with high invariant mass in hadron-
hadron collisions occurred in an experiment performed at the Brookhaven
proton synchrotron in 1970 [156]. The reaction studied the collision of
protons in the momentum range of 22–29 GeV with a uranium target,
p + U → µ+ + µ− +X, and observed pairs of muons in the final state
having a certain mass range. (This was a prelude to the experiments
which discovered the J/ψ and the Υ; for details, see sections under
“J/ψ meson” and “Bottomonium”.)

Away from resonances, the production of massive muon pairs in the
continuum, is through a mechanism called the Drell-Yan process [157].
Here a quark (or an antiquark) from the incident particle annihilates
with an antiquark (or a quark) from the target and produces a virtual
photon, which materializes into a lepton pair q+ q̄ → µ++µ−. Study of
such processes yields information about the quarks, quark distribution
functions in the hadrons, etc.

In a study of collisions of π+ and π− with 12C, an isoscalar nuclear
target (that is, one with equal numbers of protons and neutrons), the
cross sections have been measured for σ(π∓+12C → µ++µ−+X) and the
ratio σ(π−C) to σ(π+C) for the production of muon pairs determined.
Experimentally, the ratio of the total cross sections for these reactions,
(σ(π−C)/σ(π+C)), is found to be equal to 4 in the region away from any
resonances giving rise to the dilepton system. This is what one expects
in the Drell-Yan picture. In the case of π− = (ūd), the u-antiquark
from the π− annihilates with a u quark from the carbon nucleus, the
cross section is proportional to 18e2u, where eu = (2/3)|e| is the charge
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of the u quark, and there are 18 u quarks in the carbon nucleus. On
the other hand, for the case of π+ = (ud̄), the d-antiquark from the
π+ annihilates with a d quark from the carbon nucleus, and there are
18 of these also, leading to a cross section proportional to 18e2d, where
ed = (−1/3)|e| is the charge carried by the d-quark. The ratio is clearly
equal to (18(4/9)e2)/(18(1/9)e2) = 4. Measurements of differential cross
sections have been used to give information about the quark distribution
functions in the hadrons.

Eightfold Way
In the late 1950’s, with the development of high energy accelerators,
many particles and resonant states were discovered. There were a num-
ber of attempts to develop a system of classification of the particles
which would give some hints as to any underlying symmetry that was
responsible for these particle states. The most successful attempt was
that due to Gell-Mann [158] and Ne’eman [159]. They recognized that
in the spectrum of particle states, the known particles and resonances
could be accommodated in multiplets with same spin J and parity P
containing 1, or 8, or 10, or 27 members. These numbers of particles in
the multiplets suggested investigation of symmetry groups larger than
the isospin group which is associated with the special unitary group in
two dimensions SU2 and which is suggested by the charge independence
of nuclear forces. Gell-Mann and Ne’eman investigated the simplest
generalization to charge independence, namely, special unitary group in
three dimensions SU3. (For details, see under “SU3—Model for Hadron
Structure”).

In SU3, there are eight generators of the group which form a Lie
algebra, just like the three components of the isospin Ii, i = 1, 2, 3 which
are the generators of SU2. In the case of isospin, it is known that I3 and∑
i I
2
i can be simultaneously diagonalized. The eigenvalues i3 of I3 can

be any one of the (2I+1) values in the range −I,−I+1,−I+2, . . . ,+I,
and that of the

∑
i I
2
i is I(I + 1), so the states are labeled by giving

I and I3. In the case of SU3, if the generators are Fi, i = 1, . . . , 8,
two of these generators are simultaneously diagonalizable along with∑8
i F

2
i . It is customary to choose the two diagonalizable operators as

F3 = I3, called the third component of the isospin, and 2√
3
F8 = Y ,

called the hypercharge. Calling the eigenvalues of these two operators i3
and y, the states can be labeled by these values. Just as the states in
the case of SU2 can be graphically represented on an i3 line (abscissa)
with the values ranging from −I,−I + 1, . . . , I − 1,+I, the graphical
representation of the states for SU3 requires a plane, with i3 as abscissa
and y as ordinate, every state being represented by a point (i3, y) in
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Figure 4.12: Octet representation of SU3.

this plane. The electric charge carried by a particle Q can be written in
terms of these eigenvalues as Q = |e|(i3 + y

2 ).
One finds that the baryons p, n,Σ±,Σ0,Λ0,Ξ−,Ξ0 with JP = (1/2)+

fit nicely into the eight-dimensional irreducible representation of the SU3
group. The (i3, y) values for these particles are: p(1/2,+1), n(−1/2,+1),
Σ+(1, 0), Σ0(0, 0), Σ−(−1, 0), Ξ0(1/2,−1), Ξ−(−1/2,−1), and Λ0(0, 0).
These states group into isotopic spin multiplets for different values of y,
(p, n) and Ξ−,0 forming isospin doublets with I = 1/2, Σ+,0,− isospin
triplet with I = 1, and Λ0 an isospin singlet with I = 0. These states
are degenerate in mass in the limit of exact symmetry. The shape in the
(i3, y) plane of the states occupied by particles in the octet representation
resembles a hexagon (see Figure 4.12).

The fact that the masses are not quite the same for the different y
values is an indication that the SU3 symmetry is only approximate. With
suitable symmetry breaking put in, one can generate the actual masses
of these baryonic states. Gell-Mann [158] and Okubo [160] proposed a
mass formula

M =M1 +M2y +M3[I(I + 1)− Y 2

4
],

whereM1,M2,M3 are constants in one multiplet. A relation that follows
from this formula is

MΞ +MN
2

=
3MΛ +MΣ

4
,

where the subscripts to the masses identify the particle in the multiplet.
The equality of the two sides of this expression is extremely well satisfied
when the experimentally measured masses are put in.

In the meson sector, the pions and the kaons, along with the η0,
fit into a multiplet of eight particles with JP = 0−. Here the i3, y
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Figure 4.13: Decuplet states of SU3.

assignments are as follows: K+,K0 and K̄0,K− are I = 1/2 isospin
doublets with y = +1 and y = −1, respectively; π+,0,− is an isospin
triplet with I = 1 and y = 0; and η0 an isospin singlet with I = 0 and
y=0. The mass formula in this sector is satisfied better when squares of
masses rather than when first powers of masses are involved. It can be
written as

M2 =M2
0 +M2

1 [I(I + 1)− Y 2

4
],

whereM2
0 ,M

2
1 are constants. A relation that is derivable from this mass

formula is

M2
K =

3M2
η +M2

π

4
.

The experimental masses substituted here lead to satisfaction of the
equality very well, which is another success for the idea of SU3 symmetry.

Particles belonging to the 10-dimensional irreducible representation
have also been found. The ∆ resonances are members of this decuplet.
The pattern of states in the (i3, y) plane leads to a triangular shape,
unlike the hexagonal shape for the octet representation (see Figure 4.13).
Here we have a total of 10 particles. Four particles, ∆∗++,∗+,∗0,∗−, form
an isospin quartet with I = 3/2 and y = 1; three particles: Σ∗+,∗0,∗−,
an isospin triplet with I = 1 and y = 0; two particles: Ξ∗0,∗−, an isospin
doublet with I = 1/2 and y = −1; and finally, Ω∗−, an isospin singlet
with I = 0 and y = −2. In this triangular representation, there is a
linear relation between I and Y of the form I = (1/2)Y + constant.
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Thus the mass formula in the decuplet representation can be reduced
to the form M = M0 + M1Y . The states with different y values are
spaced linearly. Knowing the spacing between the ∆ and the Σ∗ states,
one can predict what the masses of the Ξ∗ and Ω− states should be.
Search for baryonic resonances with these masses were crowned with the
spectacular discovery of these particles in experiments and the idea of
SU3 as the underlying group structure for the baryons and mesons was
firmly established.

Electromagnetic Form Factors of the Nucleon
In scattering experiments involving targets of strongly interacting par-
ticles such as the proton or the neutron (together called the nucleon),
one studies the matrix element of the electromagnetic current operator
jµ(x) between the nucleon state N and any state n to which connec-
tion is established by the electromagnetic current (Ψn, jµ(0)ΨN ) (for
explanation of details, see reference [161]). In electron proton scatter-
ing, for example, the scattering amplitude in the one photon exchange
approximation can be shown to be proportional to

ūe(p′)γµue(p)
1

(p′ − p)2 + iε
(ΨP ′ , jµ(0)ΨP ),

where the factor before the fraction 1/((p′ − p)2 + iε)) comes from the
electron electromagnetic current, and the last factor is that from the
proton electromagnetic current. The electron is a lepton and does not
participate in any strong interactions. Hence its electromagnetic current
is that of a structureless point particle whose matrix element between
plane wave states expressed as a Fourier transform is the first factor
above. The proton on the other hand is not a point particle and exists for
a certain fraction of time dissociated into a (n, π+), (p, π−, π+), . . ., etc.
These pions themselves also interact with electromagnetic fields. Thus
the current matrix element of the proton must include a sum over all
these complicated mesonic and other particles into which the proton can
dissociate, and it looks as if it might be a formidable job to get an expres-
sion for it. However, based on very general requirements such as Lorentz
invariance and Hermiticity, one can write down a very general form
for the matrix element of the proton current operator (ΨP ′jµ(0)ΨP ).
Clearly its structure will have the form ū(P ′)Gµ(P ′, P )u(P ), where the
u(P ), u(P ′) are the Dirac spinors for the initial and the final proton,
and the quantity Gµ(P ′, P ) represents the effect of summing over all the
mesonic and other intermediate particles. When the effect of the mesons,
etc., is neglected, the matrix element of the proton current must resemble
the structureless electron current, so Gµ(P ′, P ) → γµ. Hence in general,
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Gµ(P ′, P ) can only depend on γµ, P
′µ, and Pµ. Of these, instead of P

′µ

and Pµ, we may use the combinations, (P
′µ+Pµ) and qµ = (P

′µ−Pµ).
Then Gµ(P ′, P ) is of the form

Gµ(P ′, P ) = γµA(P 2, P
′2, P · P ′) + (P

′µ + Pµ)B(P 2, P
′2, P · P ′)

+ (P
′µ − Pµ)C(P 2, P

′2, P · P ′),

where A,B,C are Lorentz invariant functions of P 2, P
′2, P ·P ′, and are

indicated as such in the above expression. For elastic scattering, P 2 =
P

′2 =M2 where M is the mass of the proton. The scalar product P ·P ′

can be expressed in terms of q2 ≡ (P ′−P )2, so that 2(P ·P ′) = 2M2−q2.
Thus the functions A,B,C are invariant functions of the square of the
four-momentum transfer qµ = (P

′µ−Pµ) and constants such as M2. It
is customary to suppress the dependence on constants such as M2, so
A,B,C are functions of q2.

The expression forGµ can be further simplified using the fact that the
electromagnetic current satisfies the conservation law ∂µj

µ(x) = 0. This
translates in momentum space to qµ(ū(P ′)Gµ(P ′, P )u(P )) = 0. When
this procedure is carried out we see that the terms involving A and B
vanish (on using Dirac equations for u(P ), ū(P ′) and P 2 = P

′2 = M2),
whereas the term involving C gets the coefficient q2 which is in general
not zero. To enforce the conservation of the current we thus have to
choose the function C = 0, whereas the functions A,B can be arbitrary.
Taking current conservation into account, the form of the current is

ū(P ′)Gµ(P ′, P )u(P ) = ū(P ′)[γµA(q2) + (P
′µ + Pµ)B(q2)]u(P ).

This is usually written in a slightly different form, taking account of an
identity called the Gordon identity,

ū(P ′)γµu(P ) =
1

2M
ū(P ′)[P

′µ + Pµ + iσµνqν ]u(P ),

where σµν = i
2 [γ

µγν − γνγµ]. This identity allows us to replace the
P

′µ + Pµ term by the γµ term and the σµνqν term and write,

ū(P ′)Gµ(P ′, P )u(P ) = ū(P ′)[γµF1(q2) +
iσµνqν
2M

F2(q2)]u(P ),

where we have put A(q2)+2MB(q2) = F1(q2), and 2MB(q2) = −F2(q2).
The result for Gµ(P ′, P ) is finally

Gµ(P ′, P ) = γµF1(q2) +
iσµνqν
2M

F2(q2).
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Multiplying this by the charge e, it contains two unknown functions,
F1(q2) and F2(q2) of q2, normalized so that eF1(0) = e and eF2(0) =
(κ/(2M)), which are called Dirac charge form factor and Pauli anoma-
lous magnetic moment form factor, respectively. The quantity κ is called
the anomalous magnetic moment of the proton because it adds to the
Dirac magnetic moment (e/(2M)). These are elastic form factors, since
here we treated only elastic eP scattering. The cross section for eP scat-
tering can now be calculated using the expression for the proton current
matrix element given above and the result in the laboratory frame is

dσ

dΩ
=

α2

4E2 sin4 θ/2
cos2 θ/2

1 + (2E/M) sin2 θ/2[
F 21 (q

2)− q2

4M2
(4M2F 22 (q

2) + 2(F1(q2) + 2MF2(q2))2 tan2 θ/2)
]
,

where E is the electron energy and θ the electron scattering angle in
the laboratory. This result is sometimes expressed in terms of two other
form factors defined as

GE(q2) = F1(q2) +
q2

4M2
F2(q2),

GM (q2) = F1(q2) + F2(q2).

We cannot at present calculate any of these form factors reliably from a
theory. Our knowledge of these comes from experimental measurements
on eP elastic scattering. From a fit to the experimental data, we find
that the q2 dependence of GE(q2) is described well by 1

(1−q2/(0.71GeV )2)2 ,
where q2 is measured in GeV 2.

Electron
The first member of the lepton family was discovered in 1898. See section
under “Cathode Rays—Discovery of the Electron”.

Electron—Anomalous Magnetic Moment, g − 2
The first theoretical calculation of the anomalous magnetic moment of
the electron was done by Schwinger [162]. In a series of papers, he
developed systematic methods for handling divergences which arise in
higher orders of perturbative quantum electrodynamics and absorbing
them into quantities such as the mass and charge of the electron—a pro-
cedure called renormalization. After this process is carried out in a care-
ful, consistent, and Lorentz invariant way, many physically measurable
quantities obtain finite corrections which modify their values obtained
in the lowest order. Such corrections are called radiative corrections as
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they arise from higher order processes in which more and more virtual
(and/or real) quanta are included.

The electron, which in lowest order of interaction with the electro-
magnetic field is described by the Dirac equation and has a gyromagnetic
ratio g = 2 associated with the spin. The radiative corrections modify
this result which is expressed in terms of the difference g − 2. The ra-
diative correction to the magnetic interaction energy was calculated by
Schwinger as an application of his method, and he showed that there is
an additional contribution to the spin magnetic moment of magnitude
[(g − 2)/2] = α

2π ≈ 0.0011614 where α is the fine structure constant
(1/137). (See section under “Electromagnetic Form Factors of the Nu-
cleon”; F2(0) = 0 in lowest order and gets a correction α/(2π) to first
order in α).

The first measurement of g−2 for the electron was done by Foley and
Kusch [163] who obtained the value 0.00229±0.00008 agreeing with α/π
from theory. The most accurate measurement of g − 2 for the electron
and the positron has been carried out by Van Dyck et al. [135] (see
section under “CPT Invariance”).

Electron—Charge Measurement
The first precision measurement of the electric charge carried by the
electron was done by Millikan [164] by an ingenious method. His method
is now well known and will be described only briefly. He produced a fine
spray of oil drops in a region between two metal plates. These drops
were so fine that they fell very slowly under gravity. Besides gravity,
these droplets suffered a viscous drag due to the air in which they were
falling and, hence, soon attained a terminal velocity. The magnitude of
the viscous force is given by Stokes’ law, 6πηav, where η is the coefficient
of viscosity, a the radius of the drop, and v the velocity of the drop. By
observing a droplet with a microscope, one could time its motion between
specified locations in the field of view and, hence, get a measurement
of its velocity. Then he imposed an electric field E between the metal
plates. It turns out that the droplets acquire charge due to friction with
the air, or for some other reason. If a droplet has a charge q, it will
be subject to a force qE due to the electric field, in addition to the
gravitational force and the viscous force. Thus, it would have a changed
velocity, up or down, depending on the sign of the electric field and
the sign of the charge. If the fundamental unit of charge is e, a drop
carrying n units will have a charge q = ne. By measuring the altered
velocity in the electric field, he could determine the charge q. Using
this technique, he observed many droplets over long periods of time and
measured the charges they carried. He then observed that the charges
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carried by the drops had a set of discrete values, and these values were
always an integer multiple of a fundamental charge. He identified that
fundamental charge as, e, the unit of charge. He extracted this number
from his observations on many droplets. He obtained a value which,
when expressed in SI units, is |e| = 1.60 × 10−19 Coulomb. Since then
the electron charge has been measured by many improved methods and
is one of highly precisely determined numbers, the most recent value
being 1.60217733× 10−19 Coulomb, with an uncertainty of 0.3 part per
million.

Electron Cooling
In the development of accelerators to provide high energy particles, pro-
tons or antiprotons, the intensity of particles produced in the beam, is
a very important consideration. Methods to increase the intensity to
as high a value as possible are highly desirable. A method to achieve
this was put forward by Budker [165]. The method suggested exploits
the effect of the sharp rise in cross section for interactions of electrons
with heavy particles such as the proton, or positrons with antiprotons,
at small relative velocities. This results in damping out synchrotron and
betatron oscillations in the proton or the antiproton beam. The method,
called electron cooling, has been shown to be capable of compressing and
accumulating proton and antiproton bunches in the beam and, hence,
increasing the intensity per bunch.

To achieve electron cooling experimentally, one injects a beam of
“cool electrons” into a storage ring of heavy particles, say protons, in a
straight section of the storage ring. When the velocity of the electrons
and that of the heavy particles coincide in magnitude and direction, an
effective friction is introduced by the electrons on the heavy particles,
which causes the phase-space volume of the heavy particles to decrease.
This means the volume in which the heavy particles are contained is
considerably reduced and the spread of the energy in the bunch in the
beam is also reduced. The first experimental studies of using electron
cooling techniques on a beam of 35–80 MeV protons was carried out
by Budker et al. [166], and since then it has been successfully used in
many heavy particle storage rings. At a proton energy of 65 MeV and
electron current of 100 mA, they reported measurements of the betatron
oscillation damping time and the equilibrium proton beam dimensions.
The latter quantity was found to be ≤ 0.8 mm and angular spread
≤ 4× 10−5. The momentum spread of the proton beam as measured by
δp/p was ≤ 1× 10−5.
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Electron-Nucleus Scattering
The first theoretical paper directing attention to the possibility of deter-
mining charge distributions in atomic nuclei by electron scattering was
carried out by Rose [167]. Considering the nucleus as a point charge
but treating the electron relativistically with the Dirac equation, Mott
had earlier derived an expression for the scattering cross section for
the electron, which is referred to as the Mott scattering formula [168].
Rose pointed out that the finite size of the nucleus will give rise to siz-
able deviations from the Mott scattering formula, when the change in
the wavelength of the electrons is of the order of the nuclear diameter.
Thus, the deviation is expected for large scattering angles of the elec-
tron. For a spherically symmetric charge distribution in the nucleus, the
Fourier transform of the observed angular distribution gives the nuclear
charge distribution directly. For high energy electrons, one needs to con-
sider also other competing processes, such as nuclear excitations, atomic
excitations and ionization, and bremsstrahlung, and separate out their
effects.

The first studies of electron scattering on nuclei were carried out
in detail using the Stanford linear accelerator for electrons by a team
headed by Hofstadter [169] These studies gave the first measurement of
the electromagnetic radius of the proton. Results for helium nucleus are
also presented in this early paper. Following on this work, electron scat-
tering studies on a number of nuclei were done, and their electromagnetic
structure was determined.

Electron-Positron Pair Production
While the discovery of the positron was made by Anderson [170] in
cosmic rays, confirming one of the predictions of the Dirac equation
that antiparticles to electrons must exist, Blackett and Occhialini de-
veloped cloud chamber techniques in a magnetic field [171] and showed
that electron-positron showers are also generated in cosmic rays. These
observations, not only confirmed the earlier findings of Anderson [170]
but also led to detailed studies of the properties of cosmic radiation. A
method was developed by them so that the high energy cosmic ray par-
ticles, trigger the cloud chamber and take their own photograph in the
chamber. The result of the passage of the cosmic ray particles is to cre-
ate a shower of particles in the cloud chamber, whose charges could be
analyzed by the curvatures of the tracks in the magnetic field. They an-
alyzed the nature of the particles in the showers and the complex tracks
they left in the cloud chamber. The points of origin of electrons and
positrons in the showers were observed. It was shown that they arise, as
a result of collision processes involving a cosmic ray particle and a par-
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ticle in the cloud chamber. The frequency of occurrence of the showers
was measured by them and shown to be in conformity with other work
related to the occurrence of bursts of ionization in cosmic rays. This
work further confirmed the correctness of Dirac theory for the electron
and paved the way for the construction of a theory of cascade show-
ers based on the interaction of electromagnetic radiation (photons) with
electrons and positrons.

Electron-Proton Elastic Scattering
See the section under “Electromagnetic Form Factors of the Nucleon”.

Electron—Relativistic wave equation
See section under “Dirac Equation” for this item.

Electron—Spin
Much of the early information on the properties of the electron came
from a study of atomic spectra. The introduction of spin as an intrinsic
property possessed by the electron emerged from these efforts. Exper-
imental work on atomic spectroscopy revealed a number of regularities
in the spectra of atoms. The work of Bohr on the spectrum of the hy-
drogen atom was produced in an effort to understand how these spectra
arose. It was found that not only hydrogen but also the alkali atoms had
spectra which presented similar regularities. The levels in these atoms
fell into closely grouped multiplets and the spacings between the levels
of the multiplets followed simple relationships.

The study of Zeeman effect (that is, the study of spectra of atoms
placed in a magnetic field) showed that the different levels of a multi-
plet in these atoms split in different ways due to the magnetic field. To
understand these observations, Landé and others pointed to the effect
of several different angular momenta in an atom (those of the different
electrons), which coupled to form a resultant. The resultant was quan-
tized as in the Bohr theory of the hydrogen atom. In the case of just
two angular momenta, for example, the relative orientation of these vec-
tors could be parallel, antiparallel, or some other orientation in between.
Then the resultant angular momentum can take all integral quantized
values between the minimum and the maximum values (in units of h̄,
which we have taken as 1).

It was assumed that the various levels of a multiplet could somehow
arise from the different relative orientations of the angular momentum
vectors as follows. If, to each such angular momentum vector, one could
associate a small magnet with a tiny magnetic moment and the mag-
nets interacted exerting torques on one another, the energy of interac-
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tion would then depend upon the relative orientation of the magnets.
This would explain the separation in energy of different members of a
multiplet. If the energy is proportional to the cosine of the angle be-
tween the magnetic moments, a simple law is derived for the spacings
of the levels in a multiplet. This law was called the Landé interval rule,
and the spacings derived from the experimental values followed this rule
to a very high degree. In a magnetic field, J would have components
along the magnetic field (taken as the quantization axis) ranging from
J, (J − 1), . . . ,−J , leading to (2J + 1) possibilities in all. Each of these
would lead to a different energy level in the magnetic field, and just by
counting them one could determine J . In this way, the vector sum J
of the angular momenta in the atom could be determined by Zeeman
effect.

Applying these considerations to the levels in an alkali atom, as there
is only one outer electron around a core, one would not expect to see
a multiplet structure in the levels; yet experiments do show a multiplet
structure. Experiments in fact showed that the levels of alkali atoms
were doublets with the quantum numbers J turning out to be not inte-
gers (as expected in Bohr’s theory) but half odd integers. For example,
only an s state was found to be single with one value J = 1/2, while a
p state turned out to be double with J = 1/2 and 3/2, and a d state
double with J = 3/2 and 5/2, etc. This information on the J values
was extremely puzzling and the whole situation was very confused. The
resolution of the problem came in two parts. Pauli [172] made the sug-
gestion that an electron was to be labeled by a new two-valued quantum
number σ in addition to the known labels (n, l,ml) corresponding to
the principal quantum number n, orbital angular momentum l, and the
projectionml of orbital angular momentum on the z-axis; this would ob-
viously lead to a doubling of the levels. Uhlenbeck and Goudsmit [173]
went further and suggested that this new degree of freedom be associ-
ated with an intrinsic property of the electron, the ability to carry an
intrinsic angular momentum. They suggested that the value of 1/2 for
J in an atomic s state has nothing to do with the atomic core around
which the outer electron moved but that it possessed an intrinsic angular
momentum (1/2) leading to two possible orientations in a magnetic field,
mJ = ±1/2. (The intrinsic angular momentum carried by the electron
is essentially quantum mechanical in nature and cannot be thought of
in classical terms.) This intrinsic angular momentum, which could be
called the spin, combines with the orbital angular momentum to pro-
duce the total angular momentum J which is what is observed. They
also proposed that for spin, the ratio of the magnetic moment to spin
(called the spin gyromagnetic ratio g) was two times that for the or-
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bital gyromagnetic ratio. With these suggestions, most of the Zeeman
splittings in alkali spectra could all be understood and the notion of an
elementary particle possessing an intrinsic degree of freedom called the
spin was born.

Electroweak Synthesis
As early as 1964, in a paper written by Salam and Ward [174], the re-
quirements for a theory which unifies electromagnetism and weak inter-
actions were enunciated. They drew inspiration from the fact that both
electromagnetism and weak interactions act on leptons as well as hadrons
universally, and both are vector in character. Universality and the vec-
tor character are features of a gauge theory and so they started looking
for a gauge theory of weak interactions despite the profound differences
between electromagnetism and weak interactions. If the strength of the
weak force was determined by the fine structure constant, they showed
that the mass for the gauge mediator needs to have a value approxi-
mately 137 times the mass of the proton and a group structure for the
weak interaction, which is a combination of vector and axial vector cou-
plings.

Independent of the efforts by Salam and Ward, Weinberg was also
working on the idea of unifying electromagnetism and weak interactions
and his preliminary work was published in 1967 [175]. He too was moti-
vated to look for a gauge multiplet, which would include the mediators
of the weak interactions along with the photon. The impediment to this
unification was, of course, the huge difference between the masses of the
gauge mediator for the weak interaction and the photon, and the size
of their couplings. He suggested that a way to bridge these differences
might arise from the fact that the symmetries relating electromagnetic
and weak interactions, which are exact symmetries of the Lagrangian,
might be broken by the vacuum. Such symmetry breaking had been
examined by Goldstone earlier [176], who showed that it would give rise
to massless bosons which are now called Goldstone bosons. Since such
massless bosons were not observed in nature, this symmetry breaking
mechanism was not taken seriously at that time. Weinberg proposed
a model in which the symmetry between electromagnetic and weak in-
teractions was spontaneously broken, but massless Goldstone bosons
were avoided by introducing photon and intermediate boson fields as
the gauge fields [177]. He wrote down a Lagrangian for leptons interact-
ing with such gauge fields and ended with a conjecture that such a field
theory with spontaneously broken symmetry might be renormalizable.

Another aspect of this synthesis was addressed by Glashow even as
early as 1961 [178]. He examined a theory in which the weak interac-
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tions are mediated by vector bosons. He showed that in a theory with
an isotopic spin triplet of leptons coupled to a triplet of vector bosons,
there are no partial symmetries. To establish such partial symmetries
one would be obliged to introduce additional leptons or additional inter-
mediate bosons. Because there was no evidence for additional leptons,
he suggested introducing at least four vector boson fields including the
photon. This was the first introduction of the idea of a neutral inter-
mediate vector boson, in addition to the charged intermediate vector
bosons, to mediate weak interactions. He showed that such a theory
contains partially conserved quantities which are the leptonic analogues
of strangeness and isotopic spin.

One of the common features of the unification proposal made by
Salam, Weinberg, and Glashow is the introduction of the neutral inter-
mediate vector boson as a mediator of weak interactions. Thus in ad-
dition to weak decay processes which involve a charge change (charged
current weak interactions mediated by charged gauge bosonsW±), there
should also be processes in which weak interactions participate without
the change in charge of the participating particles (neutral current weak
interactions mediated by neutral gauge boson Z0). Such a neutral cur-
rent effect was discovered in 1978, lending support to the idea of unifica-
tion as pursued by Salam, Weinberg, and Glashow. The renormalization
of the spontaneously broken gauge theory was proven by G. ’t Hooft in
1971 [179]. The weak interaction mediators, the W± and Z0, were also
first found in 1983–84 by the UA1 and the UA2 collaborations work-
ing at the CERN p̄p collider [180,181]. (See further under “Standard
Electroweak Model”.)

Energy Quanta—Photon
At the beginning of the 20th century, there were intense investigations
on the nature of radiation emitted by a hot body, called black body radi-
ation. In experimental measurements of the energy density of the black
body radiation, when examined as a function of the frequency of emit-
ted radiation, it was found to have a maximum (which shifted to higher
frequencies as the temperature of the emitting body was increased), and
then it gradually fell off to zero.

The only theoretical derivation of this energy spectrum available at
that time was due to Rayleigh and Jeans; the crucial ingredient for this
theory was the classical notion that the energy of radiation could take
on all possible continuous values. This Rayleigh-Jeans formula for the
energy density showed a behavior proportional to the square of the fre-
quency for all frequencies with no maximum, clearly disagreeing with ex-
perimental results at high frequencies, and further leading to the absurd
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result that the integral of the energy density over all frequencies would
be infinite. These were indications that there was something seriously
wrong with the assumptions which were the basis of the Rayleigh-Jeans
derivation.

Planck studied this problem anew and started examining the conse-
quences of assuming that the energy carried by electromagnetic radiation
may be in the form of discrete packets or quanta. Planck assumed that
the energy E associated with radiation of frequency ν is given by E = hν,
where h is a constant (having the dimension of energy times time) in-
troduced by Planck (hence called Planck’s constant). The quantum of
radiation has come to be called the photon. Using this definition of en-
ergy, Planck derived the expression for the energy density of black body
radiation which bears his name. It gave an energy spectrum for black
body radiation which agreed with what was found from experimental
studies.

According to the special theory of relativity, no massive particle can
travel with the velocity of light. The photon, the quantum of radiation,
does travel with the velocity of light c, hence, its rest mass must be zero.
This implies that the photon has a momentum p = E/c = hν/c associ-
ated with it. (In terms of units h̄ = c = 1, we would have, introducing
the angular frequency ω = 2πν, p = E = ω.)

The firm establishment of the idea of the light quantum as being
correct came from Einstein’s explanation [182] of the photoelectric effect
using the ideas of Planck. The photoelectric effect was discovered by
Hertz in 1887. The initial observations of Hertz were refined by the
later and much more precise work of Millikan [183] and others, who
confirmed all Hertz’s findings. They found that when a freshly cleaned
metal surface was irradiated with light, the surface emitted electrons. No
emission of positive ions was found. It was found that there is a threshold
frequency of the irradiating light ν0 (which depends on the metal), and
for frequencies less than this threshold frequency, there is no electron
emission. The number of photoelectrons emitted, as measured by the
photoelectric current, was found to be proportional to the intensity of
the light and independent of the frequency of the light (as long as it
is greater than ν0). The energy of the photoelectrons was found to be
independent of the intensity of the light but was found to vary linearly
with the frequency of the light.

It is easy to see that these observations cannot be explained by using
Maxwell’s classical electromagnetic wave theory for the nature of light.
According to the classical theory, the energy carried by an electromag-
netic wave is proportional to the intensity, which is the square of the
amplitude of the wave. On this basis, we would expect the energy of
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the photoelectrons to vary with the intensity of the source of the waves,
and it should have no frequency dependence—exactly contrary to what
was observed. Einstein’s explanation of this effect used the idea that the
incident light consists of photons of energy hν, and that these quanta
release electrons from the metal by colliding with them. However, to
have an electron leave the metal, a minimum amount of energy has to
be supplied to it, characteristic of the metal, called the work function W
of the metal. This minimum energy determines the threshold frequency
ν0 =W/h. Further, for the same frequency, a high intensity light source
puts out a much higher number of photons than a low intensity one.
Thus one would expect that the higher intensity source would lead to
emission of more photoelectrons than would a lower intensity one. This
is in accord with what is observed. The kinetic energy that the electron
acquires is determined by conservation of energy: kinetic energy of the
electron = hν − hν0. This varies linearly with the frequency as is ob-
served experimentally. With this explanation of the photoelectric effect,
the idea of photons, as light quanta, was firmly established.

The fact that photon arises from quantizing the electromagnetic field,
which is a vector field described by electric and magnetic field vectors,
suggests that the photon should carry intrinsic angular momentum or
spin. Early experimental proof that the photon has spin 1 came from the
work of Raman and Bhagavantam [184]. (See further under “Photon—
Mass, Spin, Statistics”.) Thus the photon is an electrically neutral,
massless particle with spin 1.

Eta meson
A particle that is predicted to exist when SU3 symmetry is extended
to hadrons is the η meson (see section under “Eightfold Way”). It was
discovered in the reaction π+ + d → p + p + π+ + π− + π0 by Pevsner
et al. [185]. It was found that the number of events as a function of the
invariant mass of the three pion system, as measured by

M2 = (Eπ+ + Eπ− + Eπ0)2 − (7pπ+ + 7pπ− + 7pπ0)2,

showed a sharp peak at an energy of about 550 MeV. This is interpreted
as the particle called the η0, which decays into three pions.

Careful measurements of its properties have been carried out since
then. Its mass has been measured to be 547.3 ± 0.12 MeV. A number
of other decay modes have also been seen in experiments. Among these,
η0 → 2γ has been seen with a branching ratio of about 39%, and the
three pion decay mode has a comparable branching ratio of about 23%.
The η0 meson decays just like π0 into 2γ, and because the other decay
modes have comparable branching ratios, it is concluded that the decay
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occurs through electromagnetic interactions and not through weak in-
teractions. The observation of the 2γ decay mode of the η0 suggests that
its spin cannot be 1 and its lifetime must be of the order of the lifetime
for π0. Since parity is conserved in electromagnetic interactions, one
may also determine the spin and parity of the η0 from its decays. The
Dalitz plot for the three pion decay mode shows a uniform distribution
of events [186] thus allowing one to conclude that its parity is odd and
its spin is zero. (See section under “Dalitz Plot”.)

Searches for any other states with mass close to 550 MeV have found
negative results. The mass of the η0 substituted in the meson mass
formula (see section under “Eightfold Way”) shows that the relation is
well satisfied. Thus, η0 is concluded to be an isosinglet with y = 0 in
the SU3 octet.

Eta′ Meson
First evidence for a mass state around 960 MeV in mass came from a
study of the invariant mass distribution of the five pions in the reaction

K− + p → Λ0 + π+ + π+ + π0 + π− + π−,

observed in the hydrogen bubble chamber at the LBL Bevatron [187] and
confirmed by Goldberg et al. [188] in the reactionK−+p → Λ0+neutrals
(and also the one involving charged pions in the final state) observed
in the hydrogen bubble chamber at the Brookhaven proton synchrotron
(AGS). The invariant mass distribution showed a peak at a mass of about
960 MeV. A more precise measurement of its mass is 957.78±0.14 MeV.
The width of this state is small, and it decays predominantly in the mode
η0 + 2π with a branching ratio of about 44%. Notable absence is the
three pion decay mode. The absence of the three pion decay mode allows
one to conclude that the interaction responsible for the decay is not
electromagnetic in this case but involves strong interactions. The decay
mode to η0+2π0 has been observed, which allows one to conclude isospin
0 or 2 for the decaying particle. However, isospin 2 can be excluded from
the production mechanism, as it involves K− and p, both of which have
isospin 1/2. Thus one must attribute isospin 0 to it. Decay mode leading
to ρ0 + γ (including nonresonant π+ + π− + γ) has also been seen with
a branching ratio of about 30%. A Dalitz plot analysis of these decay
events as well as of the η0 + 2π events allows one to draw conclusions
about the spin and parity of the decaying particle. The conclusion from
this study for JP is 0−. This particle is given the name η′ 0.

According to the SU3 classification of mesons, there is room for a
particle which is a singlet under SU3. There will be two particles both
with I = 0 and Y = 0 of which one (η0) is in a SU3 octet and the other
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(η′0) is in a SU3 singlet. In general there could be mixing between these
states when SU3 symmetry is broken leading to more complicated mass
formulae. (This, in fact, happens when we consider the vector mesons
with J = 1.) As the mass formula in the SU3 octet is well satisfied with
the experimental value of the η0 put in, it seems that for the pseudoscalar
mesons, consideration of η0 − η′0 mixing is not necessary.

Exchange forces
The implications of the suggestion that atomic nuclei are made up of
protons and neutrons rather than protons and electrons were first ex-
amined by Heisenberg [47]. He wrote the Hamiltonian function of the
nucleus and made a general discussion of the forces between protons and
neutrons in nuclei, called nuclear forces. In analogy with the notion of
electrical forces between charged particles arising as a result of exchange
of photons, he suggested that exchanges of some quanta were respon-
sible for the nuclear forces. These exchange forces must be capable of
acting between two neutrons, two protons, or a proton and a neutron.
That the specifically nuclear forces (as distinct from the electrical forces
between protons) between any pair of these particles were similar was
established by examining the stability of nuclei with different numbers
of protons and neutrons. Together with the knowledge of the fact that
neutron and proton had almost the same mass, it led Heisenberg to
propose the isotopic spin formalism for the description of proton and
neutron as two states of a particle called the nucleon. This was further
explicitly elaborated in a work by Cassen and Condon [189]. In analogy
with ordinary spin, in the formalism of isotopic spin, proton and neutron
are the “up” and “down” states of a doublet of isotopic spin 1/2. The
equality of force between any pair of nuclear particles (protons or neu-
trons) can be expressed in this formalism as a symmetry under rotations
in the I-spin space, which rotates protons into neutrons. The notion of
charge independence of nuclear forces is a consequence of the invariance
of nuclear interactions under isotopic spin rotation transformations, or
I-spin symmetry.

Exclusion principle
It was Pauli who made the statement of the exclusion principle in the
context of electrons in atoms [172]. He stated that an atom cannot
contain two electrons with identical sets of quantum.

This statement applies to particles other than the electron also. Na-
ture has two kinds of particles, namely particles with spin of 1/2 like the
electron and others with integral spin like the photon. The exclusion
principle of Pauli applies to all particles with half odd integral spin. In
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quantum mechanics, this means that the wave function of a two parti-
cle system obeying the exclusion principle has to be antisymmetric with
respect to the exchange of all the variables, such as position, spin, and
isospin, describing the particles.

Fermi Interaction—Weak Interaction
Fermi constructed a field theory of β decay, treating the emission of
electrons and neutrinos from a nucleus much as the emission of photons
from an excited atom (for details see under “Beta Decay—Theory”).
The form of the interaction that Fermi proposed, which was successful
in deriving the form of the continuous spectrum of beta decay and the
lifetime, has come to be called Fermi interaction. It is characterized by
the dimensionful Fermi coupling GF .

Many other particles have been found in nature which also undergo
decay processes. A question that naturally arises concerns the nature
of the interaction responsible for the observed decays. This question
was examined for the first time by Lee, Rosenbluth, and Yang [190].
In particular, they looked at muon decay to electron and two neutrinos
and the nuclear capture of muons and tried to describe these with Fermi-
type interactions. In muon decay the Fermi interaction would involve
the product of the currents, one formed from an electron and a neutrino
and the other from the muon and the other neutrino. In muon nuclear
capture, a µ− may be absorbed by a proton with resulting emission of
a neutron and a neutrino. Here the two currents would be formed, one
from the proton-neutron system and the other from the muon-neutrino
system. In each case there is a phenomenological coupling constant g,
which would have the dimensions of energy times volume as in beta
decay. The value of the g’s could be determined by fits to the available
data on muon decays and nuclear capture probability of muons. Lee,
Rosenbluth, and Yang found values, g = 3 × 10−48 erg cm3, and g =
2 × 10−49 erg cm3, respectively, from these processes. They noted that
these numbers are strikingly near each other and also near the value
found from nuclear beta decays. The equality of these interactions led
them to suggest that the interaction responsible for these decays may be
universal. Thus nuclear beta decays and the decays of various elementary
particles are governed by a universal interaction which is called weak
interaction in general. Since the early days much progress has been made
in understanding weak interactions. These interactions are transmitted
through an intermediate field, the quanta of which are the W and Z
bosons.
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Fermions
When we consider a system of two identical particles, the behavior of
the wave function of the two particle system under the exchange of two
particles is decided by a deep law of nature. Particles come in two
classes—those for which the wave function of a two particle system is
symmetric under their interchange and those for which the wave function
is antisymmetric under the interchange. The former category of particles
with symmetric wave functions are called bosons named after their dis-
coverer S. N. Bose, and the latter with antisymmetric wave functions are
called fermions named after their discoverer E. Fermi [191]. Examples of
particles which are bosons are, the photon, the pion, the deuteron, and
the alpha particle. Examples of fermions are, the electron, the proton,
the neutron, the muon, and the neutrino.

A particle which is a bound state made up with an even number of
fermions is a boson. The wave function of a system of many such par-
ticles which are bosons, is described by wave functions which are sym-
metric under the interchange of any two identical bosons. For a many
fermion system, the wave function of the system is antisymmetric under
the interchange of any two identical fermions. This behavior of identi-
cal particles with antisymmetric wave functions under their interchange
was also independently discovered by Dirac [192]. The statistics of an
assembly of fermions is called Fermi-Dirac statistics, while the statistics
of an assembly of bosons is called Bose-Einstein statistics. The anti-
symmetry principle for two identical fermions can be shown to lead to
Pauli’s exclusion principle; namely, no more than one fermion can be in
a given quantum mechanical state.

Feynman diagrams
Particle physics experiments involve the scattering of particles and the
measurement of cross sections. Using quantum field theory, one tries to
calculate the cross section theoretically, in terms of the matrix element
M for the scattering process. Unfortunately, even for the simplest of
processes, the exact expression forM is not calculable. If the interaction
responsible for the scattering is weak and can be characterized by a small
coupling parameter, an approximation to M can be obtained as a power
series in terms of this small parameter, keeping the first few terms of
this series.

Feynman [193] devised a beautiful way to calculate the matrix ele-
ments of processes involving electrons and photons (the coupling charac-
terized by the fine structure constant (1/137)) in the different orders of
perturbation theory, organizing these calculations with the aid of visual
diagrams, which have now come to be called Feynman diagrams. The
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Figure 4.14: Examples of Feynman diagrams in quantum electrodynam-
ics.

diagrams show a flow of electrons and photons with lines belonging to
these. The simplest diagram that can be drawn is one for the emission
or absorption of a photon by an electron (Figure 4.14). We see that
the diagram has straight lines, which represent electrons, and wavy lines
which represent photons. Where these lines meet (as in (a) and (b) of
the figure), we have what is called a vertex. We can join the fundamental
vertices in various ways to represent different scattering processes. As an
example, if we join the photon lines from the vertices, we get the diagram
shown in part (c) of the figure, which can be interpreted as two electrons
coming in, exchanging a photon between them at the vertices, and going
out as the scattered electrons. Lines coming into a vertex or leaving a
vertex are called external lines. In the figure in part (c), we have four
external lines. The wavy line, which joins the two vertices, is called an
internal line, and represents the virtual photon exchanged between the
two electrons. If we assign four-momentum vectors to each line in the
diagram, p1, p2 to the incoming electron lines, p′1, p

′
2 to the outgoing

electron lines, and q to the internal photon line, four-momentum conser-
vation at either vertex can be represented by p′1 = p1 − q, p′2 = p2 + q.
Eliminating q between these two, we get, the overall four-momentum
conservation for the scattering process: p1 + p2 = p′1 + p′2. To specify
the electrons further, we may include a specification of the spin states
s1, s2, s

′
1, s

′
2 of the electrons. Figure 4.14 represents the scattering of two

electrons with momenta p1, p2 and spins s1, s2 to momenta p′1, p
′
2 and

spins s′1, s
′
2.
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Having drawn the diagram, Feynman gave some rules, which are
now called Feynman rules, to write the matrix element for the process
corresponding to the diagram. Feynman rules state what factor inM has
to be associated with each element of the diagram, external line, vertex,
internal line, etc. The product of the various factors gives M (in this
case to second order in perturbation theory), the order of perturbation
theory being determined by the number of vertices in the diagram.

Following Feynman’s original methods, Feynman diagrams and Feyn-
man rules for theories other than quantum electrodynamics have been
constructed and have been extremely useful for perturbative calcula-
tions.

Flavor-Changing Neutral Currents
Weak decay of hadrons into leptons occurs by the emission of the charged
W boson or the neutral Z boson by one of the quarks in the hadron,
and subsequent decay of the W or the Z into the outgoing leptons.
Weak decays also lead to hadrons in the final state, which arise from
the W or the Z decaying into quarks. Let us focus attention on the
neutral Z bosons which transmit neutral current weak interactions. At
the quark level, we can have, d-quark to d-quark transitions, s-quark
to s-quark transitions, as well as d-quark to s-quark transitions (and
vice versa). Experimental observations show that the neutral Z do not
mediate strangeness changing transitions. Prior to the introduction of
the idea of the charm quark, with only three quarks, u, d and s, it was
not possible to understand the absence of strangeness changing neutral
currents. With Cabibbo mixing among the d and the s quarks, d′ =
d cos θ + s sin θ pairs with the u to form a left-handed doublet. The
orthogonal combination s′ = s cos θ − d sin θ has no other quark with
which to form a doublet, and so has to be treated as a singlet. In this
situation the neutral Z mediates d′ → d′ (doublet) transitions and s′ →
s′ (singlet) transitions with different strengths. Adding these, give d → d
and s → s transitions, and in addition give d ↔ s transitions. The latter
are the strangeness-changing neutral currents, which would conflict with
the lack of such effects in experiments. The situation was resolved with
the introduction of the idea of the charm quark, which could pair with
the orthogonal combination s′ into a second left-handed doublet. In this
case it is easy to see that there are no d ↔ s transitions in the neutral
weak current. Thus with two families of quarks and Cabibbo mixing,
there are no strangeness-changing neutral currents.

More generally, suppose the quarks are arranged in three families,
(u, d), (c, s), and (t, b), and the d, s, b quarks undergo mixing through a
unitary matrix to d′, s′, b′ respectively. A general feature of such mixing
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is that neutral weak currents involving a flavor-change are absent. This
is in accord with the absence in experiments of flavor-changing neutral
current effects in general. (See further discussion under “GIM Mechan-
ism”.)

Fock space
This is a concept that was introduced by Fock [194] and is a method
for describing states of a quantum system with an arbitrary number
of particles, including the possibility of an infinite number of particles.
When one deals with a physical system possessing an infinite number of
degrees of freedom, the concept of a field proves to be useful. The field is
quantized to obtain quanta of the field, which are the particles. For sim-
plicity we will consider only the case of a scalar field. In the procedure
for quantizing the field, the field functions and their time derivatives,
which are functions of space and time, become operators. Fourier ex-
pansions of these operators are carried out. The expansion coefficients
are operators, called creation and annihilation operators, which obey cer-
tain commutation relations. If the creation and annihilation operators
for a particular mode of wave number k are a†(k) and a(k), respectively,
expressions for the Hamiltonian H of the system (the total energy) (we
are ignoring complications due to zero point energy for the present) and
for the number N of particles, can be written in terms of these operators
as

H =
∑
k

Eka
†(k)a(k), N =

∑
k

a†(k)a(k).

Here Ek is the energy associated with the mode k. If a†(k)a(k) = Nk
is interpreted as the number of quanta in the mode k, the Hamiltonian,
which represents the total energy, is obviously equal to the sum, over all
modes, of the energy per quantum in mode k multiplied by the number
in mode k, and the total number of particles N is the sum, over all
modes k, of the number of particles in mode k. If we want the ground
state of the system to have zero energy, we introduce a ground state or
the vacuum state vector |0〉, which is such that a(k)|0〉 = 0. In such
a state the energy is zero and the number of quanta is zero. One can
create a one particle state by a†(k)|0〉. Using the commutation relations
of the creation and annihilation operators, it is possible to show that this
state has the eigenvalue 1 in mode k for the number operator and that
the energy has the eigenvalue Ek in this state. Thus we have created
a one particle state by operating on the vacuum state vector once with
a creation operator. Using this procedure, a two particle state will be
a state obtained by a†(k1)a†(k2)|0〉. One can extend this procedure for
constructing state vectors with more particles. In this manner one can
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construct the full Hilbert space of states generated by the state vectors
such as

|n〉 = a†(kn)a†(kn−1) · · · a†(k1)|0〉,
for various values of n. A general state of the system is a linear super-
position of states formed with such state vectors. This space is called
the Fock space. In making this simple introduction to Fock space we
have sidestepped a number of subtleties which have to be taken care
of, relating to questions of normalization of the states, identity of the
particles, etc. Clearly, the concept of Fock space is very useful for the
description of a state with an arbitrary number of particles.

Form Factors
See under “Electromagnetic Form Factors of the Nucleon”.

Forward-Backward Asymmetry
The forward-backward asymmetry in e+e− → l+l− is defined as

AFB ≡ σF − σB
σF + σB

,

where l± are leptons, and σF and σB are the cross sections for the l− to
travel forward and backward, respectively, with respect to the incident
electron direction. High precision measurements of this quantity at the
position of the Z mass are available from LEP and SLC.

The theoretical expression for the forward-backward asymmetry de-
pends upon the axial-vector and vector couplings, and the values of Z
mass and width. The experimental data have to be adjusted for straight
QED corrections as well as electroweak corrections. One must remove
the standard QED corrections to verify the size of the electroweak cor-
rections. The quality of the measurements at LEP and SLC have made
this precision comparison between theory and experiment possible. It is
found that theory and experiment agree very well thus establishing the
correctness of the Standard Model.

Froissart Bound
Clearly, the knowledge of the behavior of total cross sections for hadronic
interactions at very high energies is of great importance in the study of
high energy collisions of elementary particles. Froissart [195] proved a
very important theorem on the large energy behavior of hadronic cross
sections. The behavior is usually expressed in terms of a variable s
(called a Mandelstam variable), which is the square of the total energy
of the colliding particles in a frame in which the total three-momentum
of the colliding particles is zero (usually referred to as the center of
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mass frame). In dealing with pion-nucleon scattering, for example, Man-
delstam [196] introduced a representation for the scattering amplitude,
which exhibits its analytic properties as a function of the energy and mo-
mentum transfer variables. This representation, called the Mandelstam
representation, has been very useful in the study of pion-nucleon scatter-
ing using dispersion relations (see section under “Dispersion Relations”)
and unitarity. Froissart proved that a reaction amplitude involving two
scalar particles, satisfying Mandelstam representation, can grow at most
like Cs ln2 s, as a function of s, where C is a constant. This implies that
the total cross section can grow at most like ln2 s. Intuitively one would
expect a bound on the cross section at high energies based on the fact
that the strong interactions of hadronic particles are of finite range, and
the derivation by Froissart reflects this expectation. Experimental data
on hadronic interactions at high energies are in qualitative agreement
with the predictions of the Froissart bound.

G-Parity
In our discussion on charge conjugation, we noticed that the charge
conjugation parity quantum number can only be defined for uncharged
particles. In the case of charged particles, for example, charged pions, a
quantum number called the G-parity, closely related to charge conjuga-
tion, can be introduced. It can be used to derive selection rules for states
consisting of a system of charged pions or for a nucleon-antinucleon sys-
tem with total baryon number zero [197]. The operation G consists of
a combination of the operation of charge conjugation and a rotation
in isospin space. Specifically, G = CR where C represents the charge
conjugation operation and R represents a rotation in isospin space. We
choose the operation R to be a rotation by 180 degrees around the y
axis in isospin space. If this operation is applied to a state with a z-
component of isospin, I3, it results in changing the value of I3 to −I3.
Thus, for example, if we consider a π+ meson, its I3 has the value +1
before the rotation, which changes to −1 under the rotation; the charge
conjugation operation changes the I3 value back from −1 to +1. This
makes it plausible that π+ may be an eigenstate of G. To derive its
eigenvalue, let us look at the particular state with I = 1, I3 = 0. The
wave function for this state behaves like the wave function of orbital
angular momentum I and z-component zero, Y 0I (θ, φ). The rotation op-
eration of π about the y axis makes θ → π − θ, φ → π − φ. Under
these transformations of θ and φ, Y 0I → (−1)IY 0I . Thus the isospin
wave function ψ(I, 0) → (−1)Iψ(I, 0). Because the strong interactions
are invariant under rotations in isospin space (a fact which is based on
the observed independence of strong interactions on the electric charge
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of the interacting particles), this behavior of the isospin wave function
must hold also for the states with I3 �= 0. Thus G operating on a π+, or
π−, or π0 state, will give us

G|π(+,−,0)〉 = C(−1)1|π(+,−,0)〉
= (−1)C|π(+,−,0)〉.

We know what the eigenvalue of C in the |π0〉 state is; it is +1 (see
section under “Charge Conjugation Operation”). This leads to G|π0〉 =
(−1)|π0〉. Thus the eigenvalue of G, called the G-parity, is clearly −1
for the neutral pion. For the charged pions, the effect of operating with
C may introduce an arbitrary phase. It is convenient, however, to define
the phases in such a way that all the charged and the neutral members
have the same G-parity, namely (−1). This amounts to defining the
phase factor in the C operation on the charged states as leading to
(-1). With this choice, the charged as well as the neutral pions have
G-parity (-1). From the definition of G-parity, it is also clear why we
must have baryon number zero for the system. Under the operation C,
the baryon number changes sign, and this would not allow one to define
an eigenvalue for G for a system with baryon number nonzero. One can
show that the G-parity for a state containing n pions is (−1)n. It can
also be shown that the operator G commutes with the isospin operator.

We may consider an application of the concept of G-parity to derive
certain selection rules in nucleon-antinucleon annihilation. Consider,
for example, the annihilation of antiprotons on neutrons at rest. The
reaction involves the emission of pions in the final state. We will show
that the annihilation cannot give rise to three pions in the final state
due to conservation of G-parity, in the reaction

p̄+ n → π− + π0

→/ 3π.

To derive this, we first note that the effect of the C operator on a nucleon-
antinucleon system with total spin s and orbital angular momentum l
is to give a factor of (−1)l+s (refer to section under “Charge Conju-
gation Operation” and “Positronium”). Thus the G-parity of such a
nucleon-antinucleon state is given by G = (−1)l+s+I , where I is the to-
tal isospin of the nucleon-antinucleon system. The isospin assignments
(I, I3) for the proton and neutron are (1/2,+1/2) and (1/2,−1/2), re-
spectively, while for the antiproton and antineutron they are (1/2,−1/2)
and (1/2,+1/2), respectively. The total I3 value for the antiproton-
neutron system is (−1), so it cannot belong to I = 0 and must be-
long to I = 1. Thus the G-parity for the antiproton-neutron system

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 231

✐

✐

✐

✐

✐

✐

✐

✐

is (−1)l+s+1. For the two pion annihilation, the G-parity must be
(−1)2 = +1, and therefore (l+ s) must be odd if G-parity is conserved.
For 3-pion annihilation, the G-parity is (−1)3 = −1, and (l + s) must
be even.

Consider now the 2-pion annihilation from a singlet spin state (s = 0)
of the (p̄, n) system; the G-parity is (−1)l+1 and l has to be odd. For low
values of l, the state on the left-hand side is 1P1, which has a spatial even
parity (+1) (remembering antiparticles have opposite intrinsic parity to
that of the particle). On the right-hand side the two pions in orbital
angular momentum state l = 1 have a spatial parity (−1). Thus parity
conservation will forbid the 1P1 antiproton-neutron state to go into 2
pions. (1S0 is not possible because l = 0 is even.) Thus for the singlet
spin state, no annihilation is possible for l = 0 or l = 1 states.

Now consider the triplet spin state of the (p̄, n) system. Since l+s has
to be odd, this excludes 3P0,1,2 states, and only 3S1 state can annihilate
into 2 pions. For antiprotons annihilating at rest, the antiproton is
preferentially captured from S-states, and therefore, only annihilation
from 3S1 state need be considered. By G-parity conservation, this state
cannot decay into 3 pions.

Another applications of G-parity selection rules is in the decay of
vector meson resonances, ρ (770 MeV), ω (782 MeV), φ (1020 MeV), f
(1270 MeV). These states decay into pions, and the multiplicity of the
decay pions can be derived by the application of G = (−1)n rule for
the n pion state. Thus, the ρ and f mesons, which decay into 2 pions
(G = +1), cannot decay into 3 pions, and the ω and φ, which decay into
3 pions (G = −1), cannot decay into 2 pions. The η (547 MeV) and η′

mesons (both pseudoscalar mesons) whose dominant pion decay modes
are 3 pion and 5 pion modes respectively, however, are not strong inter-
action decays. They decay due to electromagnetic interactions. This is
because of the existence of the 2γ decay mode for these mesons, which
implies that C = +1. Further, since I = 0 for these, the G-parity must
be +1. Strong decay via the 2 pion decay mode is forbidden by parity
conservation. Thus η and η′ states decay by electromagnetic interac-
tions, which violate G-parity.

g − 2 Factor
(See section under “Electron—Anomalous Magnetic Moment, g − 2”)

GALLEX Experiment
This is a gallium radiochemical solar neutrino detector currently in op-
eration in the Gran Sasso laboratories in Italy. The capture reaction of
solar neutrinos in gallium-71 leads to the production of germanium-71,
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which are separated by radiochemical means and counted. This reaction
measures the most abundant neutrino flux from the Sun, that from the
pp reaction. The target is 30 tons of gallium in the form of an aqueous
solution of gallium trichloride. Shielding for the experiment is provided
by the rock overburden to the extent of 3300 meters of water depth
equivalent. The efficiency of the radiochemical method has been tested
by calibrating with a chromium neutrino source. The expected rate of
production of 71Ge induced by solar neutrinos is about one atom per
day. Proportional counters are used to detect the K and L x-rays emit-
ted by 71Ge during its decay. The experiment finds a deficiency in the
solar neutrino flux nearing a factor of two.

Gamow-Teller Selection Rules
(See section under “Beta Decay—Theory”, referring to Gamow-Teller
transitions)

Gauge Theories
The impetus for studying gauge theories came from the realization that
the principle of gauge invariance can lead to strong restrictions as to
the form of interactions between elementary particles. To illustrate this
statement, we consider first, in brief, classical electromagnetism, where
the idea of gauge invariance originated.

The interactions of charged particles with electromagnetic fields are
governed by the laws of electromagentism as embodied in the famous
Maxwell’s equations. As is well known, these equations describe pre-
cisely how the electric and magnetic fields vary in space and time when
the sources of these fields, which are charges and currents, are given. In
a system of units convenient for studies in theoretical particle physics,
we may write Maxwell’s equations for the electric ( 7E) and magnetic ( 7B)
fields in the form

7∇ · 7E = ρ

7∇× 7E = −∂ 7B

∂t
7∇ · 7B = 0

7∇× 7B = 7j +
∂ 7E

∂t

where all the quantities, 7E, 7B, ρ,7j, are in general functions of space
and time, and ρ and 7j are charge and current densities. An immediate
consequence of the fourth equation is conservation of the electromagnetic
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current:
7∇ ·7j + ∂ρ

∂t
= 0,

which follows from the mathematical identity that the application of
divergence operator to a curl operator acting on a vector leads to zero.
This conservation law states that if the amount of charge changes in a
certain volume V , it must be accounted for by a flow of charge (that is,
a current) through the surface bounding the volume V , no matter how
small the volume V . Since the volume can be made as small as we like,
this conservation law of charge must hold at every space time point, that
is, it must hold locally. In treating electromagnetic problems in classical
(or in quantum) mechanics, it is found convenient to introduce a scalar
potential V (x) and a vector potential 7A(x), instead of the electric and
magnetic field vectors, through the definitions

7B = 7∇× 7A; 7E = −7∇V − ∂ 7A

∂t
.

With these definitions two of the Maxwell’s equations are automatically
satisfied. The other two can be rewritten in a different form. But before
we write those down, we note that the potentials belonging to given 7E,
7B are not uniquely defined.

Let us consider transformations 7A → 7A′ = 7A+ 7∇χ and V ′ = V − ∂χ
∂t ,

called gauge transformations. It is easily seen that the 7A′ and V ′ lead
to the same values for 7E and 7B. Thus, 7A′ and V ′ can serve as vector
and scalar potentials as well as 7A and V .

To incorporate special relativity, we need to treat space and time
on the same footing, so we introduce four vector notation. Let Aµ(x),
µ = 0, 1, 2, 3 be a four vector potential with A0(x) = V (x), Ai(x), i =
1, 2, 3 be three components of 7A(x). (We use the metric g00 = −g11 =
−g22 = −g33 = 1). The gauge transformation may then be written
as Aµ → A′µ = Aµ − ∂µχ, where ∂µ = (∂0,−7∇). If we define the
antisymmetric tensor, Fµν = ∂µAν −∂νAµ, we see that the components
with one of µ or ν equal to zero, coincide with the definition for the
electric field vector components, while those components with µ, ν taking
on spatial values, 1, 2, 3, give the magnetic field components. Thus the
definition of Fµν incorporates two of the Maxwell’s equations. The other
two can be compactly rewritten as ∂µFµν = jν with jν = (ρ,7j). The
current conservation equation takes the simple form ∂µj

µ = 0. Thus all
the Maxwell’s equations can be written as,

Fµν = ∂µAν − ∂νAµ,

∂µF
µν = jν .
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The latter equation, in terms of the potentials, takes the form,

✷Aν − ∂ν(∂µAµ) = jν ,

where the operator ✷ = ∂µ∂µ. As a consequence of the last equation,
we immediately see that ∂νjν = 0 is automatically satisfied. Thus local
gauge invariance of Maxwell’s equations and local charge-current con-
servation are intimately connected. We further note that, by choosing a
suitable function χ(x), we can make the potential Aµ satisfy, ∂µAµ = 0,
in which case, the last equation takes the simple form

✷Aν = jν .

The choice of gauge such that ∂µAµ = 0 is called the Lorentz gauge. In
the Lorentz gauge the equation for the four vector potential takes the
simplest form.

Consider the problem of a spin (1/2) particle of mass m and charge q
interacting with an electromagnetic field. The Lagrangian for the fields
without interaction is

L = −1
4
FµνFµν + ψ̄(iγµ∂µ −m)ψ.

The free particle of spin (1/2) is described by the Dirac equation,

(iγµ∂µ −m)ψ = 0.

Now we would like to know how the interaction with the electromagnetic
field is to be introduced. Here a principle known as the gauge principle
comes in handy. The demand that the Dirac equation above be invariant
under local phase transformations of the wave function ψ of the form,
ψ → ψ′ = eiqχ(x)ψ, is the gauge principle. Using this, we transform ψ
to ψ′ and work out the equation satisfied by ψ′. It is

eiqχ(x)[iγµ(∂µ + iq∂µχ)−m]ψ′ = 0.

Clearly the equation is not invariant under this transformation because
of the appearance of the ∂µχ term which is nonzero when χ is a function
of space and time. This, however, suggests a way to construct an equa-
tion which would be invariant under such a transformation. Suppose,
instead of the free Dirac equation, we start with the equation

[iγµ(∂µ − iqAµ)−m]ψ = 0,

where Aµ(x) is the four vector potential of the electromagnetic field.
Now if we demand that the equation be invariant under the phase trans-
formation of the ψ, the equation satisfied by ψ′ is

[iγµ(∂µ − iq(Aµ − ∂µχ))−m]ψ′ = 0.
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This equation may be rewritten as

[iγµ(∂µ − iqA′
µ)−m]ψ′ = 0,

where A′
µ = Aµ−∂µχ. We now see that if we absorb the extra term that

was introduced by the phase transformation of the ψ as a gauge transfor-
mation of the potential Aµ(x), we have invariance of the equation under
the phase transformation. The physics described by the equation for ψ
with the original Aµ(x) is the same as that described by the equation
for ψ′ with the gauge transformed potential A′

µ(x).
This simple example tells us that, to get an equation which is in-

variant under phase transformations of the wave function, we replace
the ordinary derivative ∂µ by Dµ = ∂µ − iqAµ, called the covariant
derivative. The local phase transformations of the ψ can be absorbed
into local gauge transformations of the Aµ. The gauge principle has dic-
tated the form of the interaction between the charged particle and the
electromagnetic field and is, hence, a very powerful principle.

The function χ(7x, t) can be viewed as the generator of local gauge
transformations of the electromagnetic potentials on the one hand, and
on the other, as generator of local phase transformations of the form
eiqχ(<x,t) on the wave function. These phase transformations form a
group, called the group of U1 transformations. Since the elements of
this group commute with one another, it forms an Abelian group. Thus,
electromagnetic theory is known as a U1 gauge theory, or an Abelian
gauge theory.

One can envisage more complicated gauge transformations. If the
particle wave function has two components, as it well might if it has
isotopic spin (1/2) for example, the generator of SU2 phase transfor-
mations can be written in the more complicated form, eiq

∑3
i=1 Ti·χi(<x,t),

where the Ti are (1/2) times the Pauli matrices τi, i = 1, 2, 3. The
gauge potentialsWiµ would also be more complicated objects being four
vectors in ordinary space-time (index µ) and also have 3 components
(index i) in the space of isospin. The covariant derivative now would be
Dµ = ∂µ − iq

∑3
i=1 Ti ·Wiµ. The gauge transformation of Wiµ is more

complicated in this case because the Pauli matrices do not commute. It
is

Wiµ(x) → Wiµ(x)− ∂µχi(x)− q
∑
j,k

eijkχj(x)Wkµ(x),

where eijk is the totally antisymmetric tensor with e123 = 1.
Such transformations are called non-Abelian gauge transformations

and the corresponding gauge potentials lead to non-Abelian gauge fields.
Such non-Abelian gauge fields are called Yang-Mills fields [198]. One can
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define field strengths Wµν
i = DµW ν

i − DνWµ
i , and the Lagrangian in

this case can be written as

L = −1
4

3∑
i=1

Wµν
i Wiµν + ψ̄(iγµDµ −m)ψ.

It is possible to go further: if we write the generator of phase trans-
formations in the form eiq

∑8
i=1(λi/2)χi(<x,t), where λi are the Gell-Mann

matrices, we have SU3 phase transformations. If we attach an index i
to the wave function which can take three possible values called color
(red, blue, or green), then we have color SU3 symmetry and we get local
color charge conservation. Gauge invariance will need a set of eight non-
Abelian gauge potentials which undergo gauge transformations. When
quantized, these lead to eight colored gluons, and we have the theory
called Quantum Chromodynamics (QCD).

An important point must be noted here. The vector bosons, which
one has to introduce according to the gauge principle, have to be mass-
less. Clearly a mass term in the Lagrangian would be of the form
M2

∑
iW

µ
i Wiµ; it is not invariant under gauge transformations of the

Wµ
i .

Gauge Theories—Massive Vector Bosons
The idea of a gauge principle has also been extended to describe the weak
interactions of leptons and quarks. In this case, however, the theory is
much more subtle, because the gauge invariance turns out to be hidden,
unlike the cases of electromagnetism or Yang-Mills fields or QCD, where
it is manifest. The story of the explicit construction of a theory of weak
interactions based on the gauge principle, where the gauge symmetry is
hidden, is a fascinating one and we owe it to the work of Glashow, Salam,
and Weinberg (see also the section under “Electroweak Synthesis” for
the references to their original work). The most crucial contribution
they made was to incorporate a mechanism for the generation of masses
for the vector bosons, and still retain many of the features of the gauge
principle so that theory is renormalizable. We present below, in brief,
some of the general features that such a construction must possess.

In our discussion on the gauge principle, we introduced the SU2
gauge model. In that model one has to introduce an isospin triplet of
non-Abelian gauge fields Wµ

i , i = 1, 2, 3 which undergo gauge transfor-
mations. Let us recall that the weak force has been established to be of
the V −A form and involves only left-handed fermion currents (see dis-
cussions in section under “Beta Decay—Theory”). It is thus clear that,
if the weak force is mediated by the exchange of quanta, the exchange
quanta have to arise from vector fields. The fact that the effective low
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energy weak interaction theory involves only left-handed fermion cur-
rents is not difficult to build into the gauge theory. In view of these
facts, it is natural to attempt to construct a theory of weak interactions
also based upon a gauge principle. The SU2 Yang-Mills gauge model
provides such a possibility. Linear combinations of the isotriplet vector
fields can be formed,

W±
µ =

1√
2
(W1µ ∓W2µ), W 0

µ =W 3
µ .

The corresponding field operators can lead to annihilation (and creation)
of the charged W bosons which has the potential to mediate charged-
current weak interactions. A feature of such a gauge approach is that
neutral-current reactions of the same strength as the charged-current re-
actions, mediated by the neutral W 0

µ partner of the charged W ’s, must
also occur. Since electromagnetism is also based upon a gauge theory,
this brings in the hope of unifying electromagnetism and weak interac-
tions into one gauge theory.

The most serious impediment to this program of unification is the
fact that weak interactions are of extremely short range and hence must
be mediated by only massive vector bosons, while the W ’s provided by
the gauge theory are massless. The mechanism for generating masses
for the gauge bosons and the fermions is called the Higgs mechanism.
The mechanism involves the spontaneous breaking of gauge symmetry.
(See further under “Higgs-Kibble Mechanism—Non-Abelian Gauge The-
ories” and under “Standard Electroweak Model”.)

Gauge Theories—Renormalizability
We have mentioned earlier that Quantum Electrodynamics (QED) is
based on a gauge field theory. The gauge invariance of the theory guar-
antees that the mass of the quanta of the field, the photons, is zero.
Feynman [193], Schwinger [199], and Tomonaga [200] created the co-
variant theory of quantum electrodynamics. In constructing this theory,
demand is made that the Lagrangian function for the system should be
invariant when a local phase transformation of the electron field is car-
ried out. This necessitates that a gauge field be introduced, which is
altered in a suitable way, so that the Lagrangian is invariant. In QED
the phase factors are elements of the U1 symmetry group.

The solution of the gauge theory has been possible in perturbation
theory which relies on the smallness of the coupling between the charged
particles and the photons. Physical quantities are calculated in this the-
ory to various orders of perturbation theory, that is, to given powers
of the coupling constant of the theory. Gauge invariance has to be re-
spected at all stages of the calculations. In high orders of perturbation
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theory, intermediate states occur in which particles can go around in
loops and the momenta associated with particles in the loop can take an
infinite range of values. This leads to infinities in the theory. A limiting
procedure respecting all the symmetries of the theory, including gauge
invariance, has to be devised to handle the infinities without introducing
any ambiguties. Such limiting procedures are called regularization. A
theory is said to be renormalizable, if these regularized infinite contribu-
tions can all be consistently eliminated and absorbed into redefinitions
(or renormalizations) of a finite number of properties of the particles,
such as mass, charge, renormalization of the wave functions.

Gauge theories possess the vital property of being renormalizable. A
renormalizable theory involves only a finite number of such parameters
and these are not at present calculable ab initio. What is done is to
put in the experimentally measured values for these quantities. Once
these are put in, the theory can be used to calculate various physical
quantities which can then be compared with experimental measurements
of those quantities. The agreement between theoretical and experimental
values of the anomalous magnetic moments of the electron and the muon,
and the Lamb shifts in hydrogen and helium to high precision, is the
cornerstone of QED.

One can construct other gauge theories by taking other symmetry
groups to which the phase factors can belong and, hence, introduce other
gauge fields with more complicated gauge transformations. Examples of
such gauge theories has been given under the section on “Gauge The-
ories”. All such theories are renormalizable. G. ’t Hooft established
that theories, in which spontaneous breaking of gauge symmetry occurs,
such as the electroweak theory of Glashow, Salam, and Weinberg, are
also renormalizable [201].

Gell-Mann, Nishijima Formula
In the period around 1953, besides the neutron, proton, and pions, a
number of new particles were found in experiments. A set of new mesons,
now called the Kaons, charged and neutral, were found. Also hadrons,
heavier than the proton, which decay into protons and pions were found.
These were the Λ0, Σ+,−,0, Ξ−,0. Gell-Mann [202] and independently
Nishijima [203] made an effort to classify these particles by extending
the notion of charge independence to them. Historically this is the first
formula attempting to classify all the known particles at that time and
discover any underlying symmetry. The Gell-Mann, Nishijima formula
relates the charge of a particle (in units of |e|) in terms of the isotopic
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Particle B I3 S Q
P 1 (1/2) 0 1
N 1 -(1/2) 0 0
Λ0 1 0 -1 0
Σ+ 1 1 -1 1
Σ0 1 0 -1 0
Σ− 1 -1 -1 -1
Ξ0 1 (1/2) -1 0
Ξ− 1 -(1/2) -2 -1
π+ 0 1 0 1
π0 0 0 0 0
π− 0 -1 0 -1
K+ 0 (1/2) 1 1
K0 0 -(1/2) 1 0
K̄0 0 (1/2) -1 0
K− 0 -(1/2) -1 -1

Table 4.2: Assignment of quantum numbers in Gell-Mann, Nishijima
formula.

spin, strangeness and baryon number. It is

Q =
1
2
B +

1
2
S + I3,

where I3 is the third component of the isotopic spin, B the baryon num-
ber, and S the strangeness. The assignment of these quantum numbers
for the particles is given in Table 4.2. Hadrons (strongly interacting
particles) heavier than the proton and which decay into protons and
mesons are called Baryons and have a baryon number B associated with
them. Mesons are assigned baryon number zero. The quantum number
called strangeness was introduced to explain the copious associated pro-
duction of certain particles and their slow decay violating strangeness.
The discovery of more particles and resonances, and the realization that
these particles could be grouped in multiplets of eight and ten, led to the
assignment of the particles to irreducible representations of the group
SU3. (See section under “Eightfold Way”.) The sum B + S has come
to be called the hypercharge Y .

GIM mechanism
In an important work, the idea of introducing symmetry between leptons
and quarks in weak interactions of hadrons was explored by Glashow,
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Iliopoulos, and Maiani (GIM) [204]. The motivation for introducing this
symmetry was as follows. It was known at this time that the lepton
family consisted of the electron and its neutrino, and the muon and its
neutrino. On the quark side, only three quarks were introduced, namely,
the u, d, and s quarks, which results in an asymmetry in the number
of leptons and quarks. To rectify this, Glashow et al. [204] proposed
the introduction of a fourth quark, now called the charm quark. They
proposed a model of weak interactions in which the V −A currents con-
structed out of the four basic quark fields interact with charged vector
boson fields (now known to be the W±) and the neutral vector boson
field (now known to be the Z0). They showed that such a theory leads to
no violations of strong interaction symmetries. They extended the the-
ory to the case of leptons and quarks having Yang-Mills symmetry. (The
idea of introducing a fourth quark, which they called charm quark had
already been explored in a paper by Bjorken and Glashow in 1964 [102];
see details under “Charm Particles—Charmonium”.)

The mechanism proposed in reference [204] provides for the absence
of flavor-changing neutral currents, in accord with experimental find-
ings. Considering just two families of quarks, (u, d) and (c, s), the d
and s quarks undergo Cabibbo mixing and become d′ = d cos θ+ s sin θ,
and s′ = −d sin θ + s cos θ, respectively. This mixing of the families is
necessary to account for ∆S = ±1 charged current decays. The 2 x 2
mixing matrix is unitary, which guarantees that the weak interactions
are universal (see “Cabibbo Angle”). The charged current V −A struc-
ture involves the sum of ūγµ(1 − γ5)d′ and c̄γµ(1 − γ5)s′ over the two
families. The neutral V −A current involves the sums:

ūγµ(1− γ5)u+ c̄γµ(1− γ5)c

and
d̄′γµ(1− γ5)d′ + s̄′γµ(1− γ5)s′.

In the latter sum we see that the cross term involving the d and s quarks
has a zero coefficient. Thus, with Cabibbo mixing among the d and s
quarks, the neutral current has no flavor-changing elements in it.

The GIM mechanism has also been extended to the case of three
families of quarks, involving mixing among d, s, and b quarks. It leads
to the general absence of flavor-changing neutral currents in the weak
decays of hadrons.

Gluino
A hypothetical particle of spin 1/2, which is the supersymmetric partner
of the spin 1 gluon. Because the gluons form a color octet, the gluino
likewise must be a color octet. (See under “Supersymmetry”.)
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Gluon
In the section on gauge theories, we have seen that if we demand in-
variance under local phase transformations which are elements of SU3
symmetry, we get non-Abelian gauge fields. The SU3 symmetry is as-
sociated with color, which can take on one of three possible values, red,
blue, and green. The non-Abelian gauge fields carry color and mediate
interaction between particles which carry color. The structure of the
color fields is similar to that of the electromagnetic field, so they are
called chromo-electric fields and chromo-magnetic fields. Quantization
of such a gauge theory gives rise to quanta of the color electric and mag-
netic fields which are called gluons. The fermions of the theory which
carry color charges are called quarks. Each flavor of quark, u or d or
s, etc., comes in three colors. The strong interactions between colored
quarks are mediated by the exchange of colored gluons in analogy with
the interaction between electrically charged particles being mediated by
the exchange of photons. Details of the dynamics of quarks and gluons
have been constructed in analogy with QED and the theory is called
Quantum Chromodynamics (QCD). The fact that gluons carry a color
charge, unlike the photon which is electrically neutral, leads to the pos-
sibility of interactions among gluons. This interaction is of the same
strength as the interaction between a quark and a gluon, and has to
be included at a fundamental level. When the full calculations are car-
ried out, it is found that the color interaction between quarks becomes
weaker at short distances and stronger at long distances. Thus at high
energies, which corresponds to probing short distance scales, the inter-
actions become weak. One can use perturbation theory in this regime.
Correspondingly, the theory involves strong coupling at long distance
scales or at low energies, and perturbation theory is not valid. One of
the features that is conjectured to come out of such non-perturbative
region is the confinement of color; that is, free quarks or free gluons are
not observable. They are permanently confined in hadrons. Hadrons
are viewed as bound states of quarks, and require for their solution,
non-perturbative methods because of the strong coupling. Despite these
limitations, perturbative QCD calculations are applicable in a number
of phenomena involving hadrons and impressive successes do exist which
put perturbative QCD on a firm footing.

Gluons like photons are massless quanta and carry a spin of 1. Direct
observation of gluons is from the production of gluon jets in e+e− anni-
hilations. As mentioned above, because of color confinement, one cannot
see free quarks or gluons in electron-positron annihilations. The primary
quarks and gluons which are produced in the annihilation rapidly mate-
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rialize into colorless hadrons, and it is the jets of the hadrons which are
seen in experiments.

First evidence of quark jets in e+e− annihilations came from the
work of Hanson et al. [31]. Working at center of mass energies of 6.2 and
7.4 GeV, they found the hadrons produced in the reaction had a two jet
structure. They determined the jet axis angular distribution integrated
over azimuthal angles. It was found to be proportional to (1 + a cos2 θ)
with a = 0.78 ± 0.12. The angular distribution is consistent with that
expected from two quarks being initially produced in the annihilation
process, e+e− → qq̄.

First evidence for the gluon jet came from e+e− annihilation into a
three jet structure of hadrons [205]. The process that they observed was
e+e− → qq̄g, where g is a hard gluon emitted in a non-collinear direction
with respect to the quarks. The data were completely consistent with
predictions from QCD for the emission of non-collinear hard gluon from
either the quark or the antiquark arising from the annihilation process.
Such three jet e+e− annihilation events afford the possibility to deter-
mine the spin of the gluon. The first experimental determination of the
spin of the gluon using three jet events was carried out in the TASSO
detector at PETRA [206]. The experiment analyzed the angular corre-
lations between the three jet axes from the experiment. When compared
with theoretical expectations based on QCD, they found that the data
were in agreement with theory when they assume vector (spin 1) gluons,
while scalar (spin 0) gluons were disfavored by about four standard de-
viations. Confirmation of these results came from the independent work
of Berger et al., of PLUTO collaboration [207]. This collaboration also
found that the scalar gluon was strongly disfavored by their data.

Gluon Distribution in the Proton
Deep inelastic scattering of electrons on protons has revealed the quark
structure of the proton. The measured structure functions give informa-
tion on the momentum distributions of the quarks in the proton. Since
in the parton model, the quarks carry a fraction x of the proton’s mo-
mentum, one would expect the momentum sum-rule

∑
i

∫ 1
0
dxqi(x)x = 1

to be valid, if the proton contained nothing but quarks, where qi(x) is
the quark distribution function for a quark of flavor i. When the sum-
rule was evaluated using experimental data on the quark distribution
functions extracted from deep inelastic scattering, it did not give the
value 1 but only half. This established that there were other partons,
electrically neutral, which contribute to the momentum sum-rule. This
neutral component is the gluon associated with the quanta of the chrom-
dynamic fields. It carries the remaining fraction of the momentum of the
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proton. It is invisible in the low to moderate q2 deep inelastic electron
proton scattering experiments.

The gluon component in the proton can manifest through the process
of photon-gluon fusion leading to the production of the J/ψ in the deep
inelastic scattering experiment. The virtual photon may dissociate into a
cc̄ (charm-anticharm) pair and interact with two gluons from the proton,
eventually forming the J/ψ, a color singlet bound state. When the
process of J/ψ production is calculated, it will depend upon the gluon
distribution in the proton. Thus the measurement of the J/ψ production
gives information on the gluon distribution in the proton. The process
of charm meson production, in which the produced cc̄ do not form J/ψ,
but where each c and c̄ pick up d̄ and d quarks, respectively, from the
vacuum and form D mesons, can also give information on the gluon
distribution in the proton.

Goldberger-Treiman Relation
This relates the axial vector coupling constant in β decay with the
pion decay constant and the pion-nucleon coupling constant. It was
first derived by Goldberger and Treiman using dispersion relation tech-
niques [208]. We have seen that the vector current in β decay is con-
served.

What can we say about the conservation of the axial vector current?
That it cannot be exactly conserved is seen from the following argu-
ment. The exact conservation implies a symmetry called chiral sym-
metry. Through the Goldstone theorem, spontaneous breaking of chiral
symmetry leads to spin 0 massless particles corresponding to each of the
four axial vector currents. These four axial vector currents are one isos-
inglet current Jµ(A) and three isovector currents Jµi(A), i = 1, 2, 3 (su-
perscript A for axial vector). Nature does not seem to have four massless
pseudoscalars which participate in strong interactions but it does have
an isotriplet of pions which have a very low mass. Let us treat these
as the Goldstone bosons of spontaneous chiral symmetry breaking and
write the matrix element of the Jµi(A) between the vacuum and a one
pion state as

〈0|Jµi(A)(x)|πj(p)〉 = −iqµFπδije−iq·x.
Here i, j stand for isospin indices and Fπ is a constant having the di-
mensions of mass and called the pion decay constant. Its value can be
determined by using the above matrix element to calculate the rate for
pion decay and fit it to the experimental value. The value of Fπ comes
out to be 95 MeV. If we take the four-divergence of the above current, we
should get zero for a conserved current. On the right-hand side we get
q2 which is m2

π; that is, the pion must be massless (Goldstone boson).
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Using pions as the Goldstone bosons of chiral symmetry breaking,
we can derive implications for hadronic matrix elements involved in cer-
tain processes [98]. Let us consider the β decay of the neutron, and
in particular, the matrix element of the axial vector isospin current of
the nucleon N . The most general form it can have involves three form
factors:

〈p|Jµ(A)(q)|n〉 = ūp
[
γµγ5FA1 (q

2) + qµγ5FA2 (q
2)

+ iσµνqνF
A
3 (q

2
]
un.

Unlike the case of the conserved vector current, the value of FA1 at zero
momentum transfer is renormalized and we want to know what it is.
Let us write FA1 (0) = gA. If we take the divergence of the above axial
current, it amounts to multiplying the matrix element with qµ, and
conservation of the axial current constrains the form factors to satisfy

ūp(p′)[−2mNFA1 (q2) + q2FA2 (q
2)]γ5un(p) = 0.

Thus

gA = lim
q2→0

q2

2mN
FA2 (q

2).

From this it is clear that gA will be zero unless FA2 (q
2) develops a pole at

q2 = 0. Now we must remember that we do have a massless particle, the
pion, which can play a role here. The π− emitted by the neutron could
disappear into the the vacuum. This could lead to a pole at q2 = 0.
To evaluate this contribution we note that the pion-nucleon interaction
Lagrangian can be written as

LπNN = gπNNπ
iN̄γ52T iN,

where 2T i = τi, i = 1, 2, 3 are the Pauli isospin matrices, and gπNN is
the pion-nucleon coupling constant. From this the matrix element for
the neutron to emit a π− (and change into a proton), and for the pion
to propagate with a four-momentum q and disappear into the vacuum
is

gπNN2ūpγ5un
i

q2
(−iqµFπ),

where the last factor (−iqµFπ) represents the pion disappearing into the
vacuum (pion decay). The coefficient of qµūpγ5un is to be identified
with FA2 (q

2) occurring in the matrix element of the axial vector current
between nucleon states given above. From this we can read off the
contribution to FA2 (q

2); it is

FA2 (q
2) =

2
q2
FπgπNN .
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Using this we get for gA the relation,

gA =
Fπ
mN

gπNN .

This is the Goldberger-Treiman relation. Putting in the value of gπNN =
13.3, obtained from nucleon-nucleon scattering at low energies, and Fπ =
95 MeV, we find for gA the result 1.3. This compares favourably with the
experimental determination of the ratio gA/gV � 1.25. The agreement
is to within 5%. The use of the idea of pion as the Goldstone boson has
other successes in describing the behavior of pion-pion and pion-nucleon
scattering amplitudes at low energies.

Goldstone Theorem
This theorem relates to the appearance of massless spinless particles as
a result of the spontaneous breaking of some continuous symmetry [188].
We present a derivation of this theorem [98]. Let us consider a field the-
ory involving a number of fields, φi, i = 1, 2, . . . , N . Let the Lagrangian
be

L = (kinetic energy terms− V (φ),

where the kinetic energy terms are those which involve derivatives of the
fields, and V (φ) stands for the potential energy terms. Let the minimum
of V as a function the φ’s occur at some nonzero value of the fields φi0
so that the first derivative of the V vanishes at φi = φi0. Expanding the
V about this minimum, we get

V (φ) = V (φ0) +
1
2
(φi − φi0)(φ

j − φj0)
∂2V

∂φi∂φj φ0

+ · · ·

The coefficient of the quadratic terms in the expansion, which involve
the second derivative of the potential evaluated at the minimum φ0,
is a symmetric matrix. Its eigenvalues give the square of the masses
of the fields, which have to be positive because the minimum of the
potential is positive. If we can show that any continuous symmetry of
the Lagrangian which is not respected by φ0 gives eigenvalue zero for
the mass matrix, then we would have established Goldstone’s theorem.
To do this let us consider an infinitesimal transformation of the φi,

φi → φi + εδi(φ),

where ε is an infinitesimal parameter and δi(φ) is some function of the
fields. If we consider the special case of constant fields, the kinetic
energy terms do not give any contribution, then the invariance of the
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Lagrangian implies that the potential energy terms have to be invariant
under the above transformation. Thus we must have

V (φi) = V (φi + εδi(φ)).

This is satisfied if

δi(φ)
∂V (φ)
∂φi

= 0.

Let us differentiate this expression with respect to φj and set φ = φ0.
Then we get

∂

∂φj

[
δi(φ)

∂V (φ)
∂φi

]
=

∂δi

∂φj

∣∣∣∣
φ0

· ∂V
∂φi

∣∣∣∣
φ0

+ δi(φ0)
(

∂2V

∂φi∂φj

)∣∣∣∣
φ0

.

Of these the first term already vanishes because we are at the minimum
of V , so the second term has to vanish by itself. If the ground state φ0
is invariant, then δi(φ0) = 0 and the relation is satisfied for any value
of the mass matrix term. The δi(φ0) �= 0 when the ground state is not
invariant under the symmetry transformation, and in that case, this will
be associated with eigenvalue zero of the mass matrix. Thus one has a
massless boson associated with a spontaneously broken symmetry and
the Goldstone theorem is established.

Grand Unified Theories (GUTS)
The idea behind grand unification is that the Standard Model group
SU3(color)×SU2×U1 is a subgroup of some larger gauge group G with
quarks and leptons belonging to the same multiplets of G. It is assumed
that the symmetry represented by G is exact above some mass scale
MX , called the grand unification mass, and broken below that scale. The
gauge couplings g1, g2, and g3 belonging, respectively, to the U1, SU2 and
SU3(color) factors are related to the single gauge coupling gG through
known G-dependent factors above the mass scale MX . Above the mass
scale MX , the renormalization group equations with G as the gauge
group determine the evolution of gG. Below the mass scale MX , the
group G is assumed to be broken spontaneously, and the three couplings
evolve according to their individual renormalization group equations. A
good test as to whether grand unification works is to take the known
values of the couplings at the weak scale, of the order of the W-boson
mass, evolve them to the mass scale MX , and see whether they meet
there.

An early attempt at grand unification was that based on the group
G=SU5 [209]. The first generation leptons and quarks were assigned
to two different representations, the 5∗ and the 10, the 5∗ containing
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(dc, e−, νe) and the 10 containing (ec, d, u, uc), where the superscript c
represents the conjugate. One of the immediate consequences of putting
leptons and quarks in the same representation is that transformations
among them are possible, which leads to the prediction of proton decay,
through one of its quarks transforming into a lepton by virtual emis-
sion or absorption of a heavy gauge boson X. The calculated rate for
p → e+π0 is in the range 2 × 1029±1.7 years for a heavy gauge boson
mass of the order 1014 GeV. Experimental measurements for this decay
mode place a lower bound of 1032 years. Thus SU5 may not be the
unifying grand gauge group. The fact that the assumption of a large
unification mass scale, and the evolution of couplings to that scale, pre-
dicts a rate for proton decay which is close to the experimental bound
makes the idea of GUTS schemes extremely interesting. Unifying groups
other than SU5 have also been explored. Pati and Salam [210], in 1973,
proposed a gauge group based on a left-right symmetric SU2×SU2×U1
electroweak interaction. In this theory, parity violation naturally arises
as a result of the spontaneous breaking of symmetry, and “lepton num-
ber” was identified with a “fourth color”. Another group which was
actively investigated was SO10 [211]. The nice thing found about this
group is that SU5 × U1 is one of its subgroups. The general problem of
embedding SU3 × SU2 × U1 in a larger grand unifying group was stud-
ied by Gell-Mann, Ramond, and Slansky in 1978 [212]. There is much
literature on the subject of grand unified theories in the period 1974 to
1982. We do not go into details here; interested readers may wish to
refer to the original literature on the subject.

Hadronic Collisions
Hadrons are strongly interacting particles such as the proton, neutron,
pion, kaon, and Σ. Accelerators produce beams of these particles to
study collision processes involving them. Such collisions involving strong-
ly interacting particles come under the category of hadronic collisions.
The size of the cross section for strongly interacting particles is of the
order of the square of the radius of a typical hadron (10−13cm) and is
typically in the milli-barn range (10−27cm2). At high energies many in-
elastic processes occur and the total cross section which takes account
of all these processes increases. However, this increase of the total cross
section with energy has to respect unitarity, which is essentially a state-
ment of the conservation of probability. Theoretically, Froissart derived
a unitarity bound for the growth of this cross section, known as the Frois-
sart bound. If s is the square of the center of mass energy of the colliding
particles, Froissart bound says that the cross section cannot grow faster
than ln2 s. (See more in the section under “Froissart Bound”.)
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Hadronic Shower
In high energy collisions, the resulting product is a jet of hadrons, called
a hadronic jet or a hadronic shower. The reaction that is studied involves
a high energy hadron impinging on a nucleus leading to the production
of many hadrons. In the early studies, nuclear emulsions were utilized to
study collisions of cosmic ray particles with the atoms of the emulsion;
the nuclear emulsions served both as the target and detector. The char-
acteristics of secondaries produced in such collisions were studied by a
number of different nuclear emulsion groups [213]. The specific focus in
the experimental studies was on the distribution of the transverse mo-
mentum components of the secondaries. Theoretically, statistical and
hydrodynamic models were developed by Fermi and Landau [214] to de-
scribe the multiple production of particles at high energies. They found
evidence for limited transverse momentum of secondary particles pro-
duced in such showers. Most of the secondary particles (about 80%)
were found to be pions; a few heavy particles were also produced. The
average multiplicity and the average transverse momentum of the pions
and the heavy particles produced were measured. It was found that both
these quantities were practically independent of the primary energy with
the average transverse momenta being limited to around several hundred
MeV/c. The results were in qualitative agreement with the statistical
theories of the multiparticle production at high energies.

With the development of high energy accelerators and colliders, much
more data are available than from cosmic ray studies. An example was
the intersecting storage ring at CERN (ISR; now no longer in oper-
ation), which consisted of two counter rotating proton beams each of
30 GeV and intersecting at eight points where the collisions were stud-
ied. The center of mass energy is 60 GeV, which would correspond to
an incident proton energy of about 2,000 GeV on a fixed target. Hage-
dorn [215] formulated and studied in detail a thermodynamical model
of secondary particle production and produced an atlas of momentum
spectra of secondary particle production in proton-proton and proton-
nucleus collisions. He made efforts to take into account the dynamics
of the interactions of the particles. Comparison with experimental data
showed good agreement with the thermodynamical model.

Hadrons—Constituent Quark Model
See discussion under “Constituent Quark Model of Hadrons”.

Hadrons—SU6 Classification
The idea of incorporating the spin of the quarks in an SU3 symmetric
framework led to the exploration of higher symmetry groups, notably
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the SU6 symmetry. This was first proposed by Gürsey and Radicati in
1964 [216] and also by Sakita [217]. They were motivated by the follow-
ing considerations. In nuclear physics, Wigner had considered embed-
ding isospin and spin, both of which belong to SU2, in a larger group SU4

and classified nuclear states according to the irreducible representations
of SU4. We have seen elsewhere that, on introducing strangeness along
with isospin, it is necessary to describe the particles as SU3 mulitplets.
Analogous to Wigner’s approach for nuclear states with SU4, when the
spin and SU3 symmetry are taken together, the enlarged group of in-
terest in particle physics is SU6. When particle multiplets are classified
based on representations of SU6, some very interesting results are found.

Three quark bound states are of relevance in the baryonic sector.
In terms of representations of SU6, one has to study the decomposition
of the product 6× 6 × 6 into irreducible representations of dimensions,
20, (two) 70’s, and 56. Of these, the 56-dimensional representation is
completely symmetric in all the quantum numbers and is capable of
accommodating the SU3( 1

2 )
+ baryon octet and the (3

2 )
+ baryon decuplet

in it. In the meson sector, made up of quark-antiquark bound states,
6× 6∗ can be decomposed into irreducible representations of dimension
35 and a singlet. The 35 states split into a pseudoscalar meson octet and
a degenerate vector meson nonet. These are capable of accommodating
the (π,K, η) in the octet, and the nonet of vector mesons with negative
parity, (ρ, ω,K∗, φ). The SU6 symmetry gives a natural explanation of
the degeneracy, of the octet and the singlet states, in the nonet. Mass
formulae also have been derived. There is an equal spacing result for
vector mesons,

M2
φ − M2

K∗ = M2
K∗ − M2

ρ ; M2
ρ = M2

ω.

Since the mass splittings of the octet of pseudoscalar mesons and the
octet of vector mesons are related here, we have also

M2
K∗ − M2

ρ = M2
K − M2

π .

One also gets results for baryon magnetic moments which is amazingly
good. If we take the proton magnetic moment as the unit, we get the
neutron magnetic moment to be −2/3, for Λ0 the value −1/3, and for
Σ+ the value +1, etc. The ratio of the neutron to the proton magnetic
moment is a spectacular success of the SU6 symmetry.

Hadrons—Weak Interactions
Hadrons are observed to decay through weak interactions. The hadronic
currents involved in weak decays in the V −A theory of weak interactions
were studied by Cabibbo and he extended the SU3 symmetry to these
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currents [95]. (For details, see discussion under “Cabibbo Angle” and
under “Hyperons—Decay Selection Rules”.)

HERA—The Electron-Proton Collider
This is a high energy electron-proton collider operating at the DESY
laboratories in Hamburg, Germany. The collider has 30 GeV electrons
colliding against 920 GeV protons (in its upgraded form). There are two
detectors which have been collecting data from these collisions, called
H1 and ZEUS. Deep inelastic scattering of the electrons on protons give
information about the sub structure of the proton in regions of high val-
ues of the square of the four-momentum transfer q2 = −Q2, not reached
by any other collider so far. It also probes regions of much smaller values
of the Bjorken scaling variable x (see further under “Bjorken Scaling”).
The highest Q2 value reached is 40,000 GeV2, and the smallest x value
reached is 0.000032. At these values of Q2, the scattering should be
analyzed using the full electroweak model, involving not only the virtual
photons but also the W bosons and the Z0 bosons. The deep inelastic
scattering cross section has three form factors, F1, F2, and F3, just as
is the case for deep inelastic scattering induced by neutrinos. The data
obtained by H1 and ZEUS detectors have advanced the knowledge of
the deep inelastic structure functions in regions not previously probed.
These data have given further valuable information on the quark and
gluon distribution functions in regions of very high Q2 and very low x.
The data have provided further tests of QCD. They also have provided
information on the structure function for the photon and, through stud-
ies of J/ψ production, a very good measure of the gluon distribution
function in the region of very small x. They also search for new parti-
cles and new currents, and look for deviations from the standard model.
For details we refer to some of the papers containing the measurements
of the structure functions [218].

Higgs Mechanism—Abelian Gauge Theories
The Lagrangians for the field theories possess certain invariance proper-
ties, such as translational, rotational, gauge invariance. Generally, the
ground state of the field theory, called the vacuum state, shares the sym-
metry property of the Lagrangian. However, it is known that this is not
always the case as is seen from the existence of phenomena such as fer-
romagnetism, where the ground state of the theory does not possess the
rotational symmetry of the Lagrangian or the Hamiltonian. The system
of atoms with spins interact with one another described by a Hamilto-
nian which involves the scalar product of the spin vectors of the particles
involved and is, hence, a rotational invariant. When one takes the mate-

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 251

✐

✐

✐

✐

✐

✐

✐

✐

rial to a temperature below the Curie temperature, the system acquires
a spontaneous magnetization in some direction, and hence the ground
state (or the vacuum state) of the system does not have rotational sym-
metry. The direction in which the spins align themselves spontaneously
is, of course, random. These different directions of alignment correspond
to different degenerate vacuum states. There is no energy cost involved
in going from one direction of orientation to another because of the de-
generacy of the vacuum states. We may say that we have spontaneous
breaking of rotational symmetry which has occurred.

An example of a Lagrangian field theory in which the symmetry
property of the Lagrangian is not possessed by the vacuum state of the
theory involves a complex scalar field φ with self-coupling of the field of
the form λφ4. This Lagrangian is

L = ∂µφ∂
µφ∗ −m2φ∗φ− λ(φ∗φ)2.

This would be the Lagrangian for the scalar field with a mass term m2

but for one difference. Here we would like the sign of the m2 term to be
positive or negative. So in this Lagrangian, we do not interpret m as the
mass associated with the field; instead, we consider it as a parameter in
the potential term: V (φ, φ∗) = m2φ∗φ + λ(φ∗φ)2. The field φ has zero
mass in our model Lagrangian.

Let us demand that the Lagrangian above be invariant under the
local phase transformations of the φ,

φ → φ′ = eiqχ(x)φ.

This necessitates the introduction of a covariant derivative instead of
the ordinary derivative, and a gauge field, Aµ(x),

∂µ → Dµ = (∂µ + iqAµ),

and the Lagrangian which is invariant is

L = (Dµφ)(Dµφ)∗ − V (φ, φ∗)− 1
4
FµνFµν .

Here we have added terms which contain derivatives of the gauge field,
Fµν = ∂µAν − ∂νAµ so that they can play a dynamical role. This
Lagrangian is clearly invariant under the phase transformation of φ,
because it amounts to a gauge transformation of the Aµ, Aµ → Aµ

′
=

Aµ + ∂µχ(x).
Now let us pay attention to the ground state of the model. Classi-

cally, it is obtained by minimizing the potential function,

∂V

∂φ
= 0 = m2φ∗ + 2λ(φ∗φ)φ∗.
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If m2 > 0, this expression is zero only for φ = 0. This is what hap-
pens when one interprets the m2 term as the mass term for the φ field.
However, if m2 < 0, we can solve for |φ|2 = (φ∗φ), and the zero occurs
at

|φ|2 = −m2

2λ
.

Let us call the right-hand side a2/2; this says that the minimum of the
potential occurs at |φ| = a/

√
2. If we treat φ as a quantum field, the

field φ becomes an operator, and the condition for the minimum of the
potential holds for the vacuum expectation value of the operator φ,

|〈0|φ|0〉|2 = a2/2.

We now parametrize the quantum φ(x) field in a different way. Being a
complex field, it can be written as

φ(x) = ρ1(x)eiθ1(x)

where ρ1 and θ1 are two real fields. For the vacuum expectation value
of these fields, it is clear that we must have |〈0|ρ1(x)|0〉| = a/

√
2 and

|〈0|θ1|0〉| = 0. We expand φ about the minimum and write ρ1 = (a +
ρ)/

√
2, θ1 = θ/a, so that

φ(x) =
1√
2
(a+ ρ(x))eiθ(x)/a.

Substituting this in the above Lagrangian we may rewrite it as

L = −1
4
FµνFµν + (1/2)q2a2A′µA′

µ + (1/2)(∂µρ)2 − λa2ρ2

+ coupling terms,

where A′µ = Aµ + (1/a)∂µθ is the gauge transformed vector potential.
We see from this result that the gauge field with spin 1 and the scalar
field ρ have acquired masses qa and 2λa2, respectively, and the θ field has
disappeared altogether. This mechanism of generation of mass is called
the Higgs mechanism [219] and our gauge field has acquired a mass. In
this model calculation, we chose Abelian gauge symmetry. The Glashow,
Weinberg, and Salam work on electroweak unification involves a different
choice of gauge symmetries, namely non-Abelian gauge symmetry, and
a doublet structure for the scalar fields. But the essential feature of
the generation of masses for the gauge bosons is based upon the Higgs
mechanism for the scalar fields. It can be so arranged that, apart from
the charged W fields and the neutral field Z0 acquiring masses, the
photon can be left massless. Reference may be made to the section
under “Standard Electroweak Model” for details of these procedures.
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Higgs-Kibble Mechanism—Non-Abelian Gauge Theories
Kibble [220] extended the Higgs mechanism of mass generation for non-
Abelian gauge theories, hence it is called the Higgs-Kibble mechanism.
We give here the essential features of generation of mass in a non-Abelian
gauge theory.

Let us consider the SU2 gauge group with generators denoted by
Ti, i = 1, 2, 3, satisfying the commutation relations,

[Ti, Tj ] = ieijkTk,

where eijk are the structure constants of the group totally antisymmetric
in its indices, with e123 = 1. We introduce a complex doublet of scalar
fields,

φ =
(

φ1
φ2

)
,

and introduce a potential function V (φ) which depends on φi’s through
combinations which are invariants of the gauge group V (φ) = m2(φ†φ)+
λ(φ†φ)2.

To discuss spontaneous breaking of the gauge symmetry, we choose
the potential and parameters in it such that its minimum occurs for
nonvanishing expectation value of 〈0|φ|0〉 = v �= 0. Then the local
symmetry will be spontaneously broken. If we start with the Lagrangian

L = Dµφ†Dµφ− V (φ)− 1
4
Fµνi Fµνi,

where Dµ = ∂µ + ig
∑3
i=1 TiAµi is the covariant derivative and Fµνi =

∂µAνi − ∂νAµi + gεijkAµjAνk is the field strength tensor, we see that
it is invariant under local SU2 transformations of the φ because it sim-
ply amounts to a gauge transformation of the gauge potentials as in
the Abelian case treated before. We are concerned with spontaneous
symmetry breaking. For m2 < 0 the potential has a minimum at
〈0|φ†φ|0〉 = a2, a =

√−m2/(2λ). We choose the physical vacuum with
the expectation value of φ nonzero. Just as in the Abelian case, we
rewrite the field φ(x) as

φ(x) = exp[i7T · 7ξ(x)]
(

0
(v1(x) + v2(x))/

√
2

)
,

with 〈0|7ξ(x)|0〉 = 0, 〈0|v2(x)|0〉 = 0, 〈0|v1(x)|0 = a, choosing the gauge
called the unitary gauge. Let us define a new transformed field φu(x),

φu(x) = U(x)φ(x) =
(

0
1√
2
(v1(x) + v2(x))

)
,
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where U(x) = exp[−i7T · 7ξ(x)]. In terms of this new field, we can write
the covariant derivative as: UDµφ = UDµU

−1φu = Duµφ
u. Putting in

Dµ = ∂µ+ ig 7T · 7Aµ, we see that Duµ works out to be Duµ = ∂µ+ ig 7T · 7Bµ,
where 7Bµ is a new gauge potential related to the old potential 7Aµ by

7T · 7Bµ = U(x)7T · 7AµU−1(x)− i

g
U(x)∂µU−1(x).

Thus the effect of removing the phase functions 7ξ(x) from φ manifests
as a gauge transformation on the 7Aµ. With these new gauge potentials,
we can define new field strengths, which take the form

Gµνi = ∂µBνi − ∂νB
µ
i + geijkB

µ
j B

ν
k .

The Lagrangian in the unitary gauge now becomes

L = (Duµφ
u)†(Dµuφu)− V (φu)− 1

4
GµνiG

µν
i .

The gauge boson described by the potentials Bµi have acquired a mass
as can be seen from the quadratic terms in the potentials B contained
in |Duµφu|2,

g2

2
(0 a)(7T · 7Bµ)(7T · 7Bµ)

(
0
a

)
=

1
2
(ga)2

4
7Bµ. 7Bµ,

where we have used the vacuum expectation value a for 〈0|v1(x)|0〉. It
is clear from this that the gauge field has acquired a mass ga2 . This is
the way Higgs mechanism works in the case of a non-Abelian SU2 gauge
group. It is possible to extend these procedures for other gauge groups.

Higgs Particle—Searches
The Higgs particle is of central concern to proving the correctness of the
standard electroweak model of spontaneous symmetry breaking. Exper-
imental searches for the Higgs particle are a standard procedure when
new vistas are opened with higher energy acelerators. There are theo-
retical arguments as to why the mass of the Higgs particle cannot be
small. These are based on the fact that the vacuum state of the theory
which leads to the correct value of the mass of the W boson will not be
the true ground state of the theory. The value of the mass of the Higgs
particle constrained by such a consideration depends upon the top quark
mass and the energy up to which the standard model is assumed to be
valid. If one assumes that the model is valid up to the Planck scale,
then it can be shown that the Higgs mass must be greater than about
130 GeV.
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The experiments at LEP have provided the best limits on the mass
of the standard model Higgs particle (H). They have looked for the
decay of Z to HZ∗, where Z∗ is a virtual Z which manifests as one
of the decay products, e+e−, µ+µ−, τ+τ−, hadrons, etc. It has also
been looked for in e+e− → ZH, with the H decaying hadronically (that
is, into quark-antiquark pairs) or into tau pairs. At a center of mass
energy in LEP of 190 GeV, it should be possible to find Higgs boson
of mass up to 95 GeV using e+e− → ZH; however, nothing has been
found in this region of energies. The energy of LEP has been pushed
up to 208 GeV with which it should be possible to reach a Higgs mass
of about 114 or 115 GeV. Since the Higgs boson couples to a fermion in
proportion to the mass of the fermion, it has a high probability to decay
into bb̄. These quarks will hadronize into B mesons. The experiments
can tag the B mesons. The problem is that in the standard model, bb̄
pairs can be produced even without their coming from the decay of the
Higgs particle. These represent a background which has to be removed.
If after removing these background B mesons, there is still a signal left
over, one could attribute it to the production of the Higgs particle. The
experiments have been looking for such a signal above the background.
Although elaborate analyses show that there is a hint of a small excess
of such events seen in some of the four LEP experiments, there is no
clear signal for the Higgs particle. If the Higgs particle has a mass of
115 GeV, unfortunately there is vanishingly small phase space for the
production of the Higgs particle at a LEP energy of 208 GeV.

In supersymmetric extensions of the standard model, there are
charged Higgs bosons, two neutrals, and one pseudoscalar particle. For a
large value of the ratio of the expectation values of the Higgs fields which
couple to “up” type quarks and “down” type quarks, the lightest neu-
tral Higgs scalar must be less than 130 GeV in mass. If a neutral Higgs
scalar is found in this range, there would also be other accompanying
signs of supersymmetry which could be looked for and checked.

If the mass of Higgs particle is higher than can be discovered at LEP,
there are chances that it could be discovered at the Fermilab Tevatron
through pp̄ → HZX and pp̄ → HWX. It will occupy center stage
when the Large Hadron Collider (LHC) starts operating in 2004. The
discovery of the Higgs particle and its properties will point the way to
future directions for particle physics.

Hypercharge
The hypercharge quantum number Y is a combination of baryon number
B and the strangeness number S, Y = (B + S). Mesons have baryon
number equal to zero. Baryons, which are defined as strongly interacting

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 256

✐

✐

✐

✐

✐

✐

✐

✐

particles heavier than the proton and decaying eventually into a proton,
are assigned a nonzero baryon number. Conservation law of baryon
number prohibits proton decay into any mesons or any other particles
with zero baryon number.

When the baryons and the pseudoscalar mesons are classified in terms
of hypercharge, one can see a close parallel between the two sets of
particles (See discussion under section on “Eightfold Way”). This is
seen below.

(p, n) (K+,K0) have Y = +1, I = 1/2;

(Σ+,Σ0,Σ−) (π+, π0, π−) have Y = 0, I = 1;

Λ0 η0 have Y = 0, I = 0;

(Ξ0,Ξ−) (K̄0,K−) have Y = −1, I = 1/2.

It is apparent that these particles group themselves into multiplets which
are octets when seen in terms of the isospin and hypercharge. This led
to the idea of SU3 symmetry.

Hypernuclei, Hyperfragments
A hypernucleus is one in which a neutron in the nucleus is replaced by a
Λ0. Hypernuclei are unstable and decay emitting nucleons and pions or
just nucleons. The mesonic decay modes may be thought of as the decay
of the Λ0 in the nucleus, Λ0 → P + π−, N + π0. First evidence for a
hypernucleus was obtained in 1953 by Danysz and Pniewski [221]. They
saw an event in a G5 emulsion 600µ thick, which had been exposed to
cosmic rays at the very high altitude of 85,000 feet. They saw two stars
in the photographic plate. One of these stars was the origin of a heavy
nuclear fragment, while the second star appeared to be at the end of the
track of the fragment ejected from the first star. From their studies they
ruled out the possibility of accidental coincidence responsible for these
stars. What they were seeing at the second star was consistent with
the explanation based on a delayed disintegration of a heavy nuclear
fragment originating at the first star.

Since that first observation, many similar fragments were found in
the observations made by many workers. For the detailed interpretation
of what they observed, we consider one example of the observations made
by Fry et al. [222], which allows one to determine the binding energy of
Λ0 in a nucleus. A negative K meson came to rest in the emulsion and
was absorbed by a nucleus of an emulsion atom. The primary reaction
that occurred was K−+P → Λ0+π0. The Λ0 stayed in the nucleus and
became bound in it. The reaction resulted in the first star, and one of the
tracks from the star, which was clearly a heavy particle, was interpreted
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as a nucleus of 9Be with a Λ0 bound in it. This heavy nuclear fragment
9
ΛBe traveled in the emulsion a short distance and decayed into a π−

meson, a proton, and two 4He nuclei (which themselves came from the
very shortlived primary 8Be nucleus in the decay) with a total kinetic
energy release of 30.92± 0.5 MeV. The energy of the negative pion was
measured to be 26.6± 0.6 MeV.

Using these facts, and the fact that the energy released in the Λ0 dis-
integration into P , and π− is 37.56 MeV, one can determine the binding
energy of the Λ0 in 9Be as follows. Starting from the end products of
24He, P , and π−, we try to reassemble the original nucleus and keep
track of the energies involved. First, in forming the Λ0 from the P and
π−, one needs 37.56 MeV. Assembling the two He nuclei into 8Be, one
gains 0.10 MeV. So in getting Λ0 and 8Be one has to spend 37.46 MeV.
The total energy release in the 9ΛBe decay is 30.92 MeV, the difference,
(37.46 − 30.92) MeV= 6.54 MeV, must account for the binding energy
of the Λ0 with 8Be to form 9

ΛBe. Other hypernuclei in systems of low
mass numbers have also been studied.

Evidence also exists for double hypernuclei. First evidence for this
came from the work of Danysz et al. [223]. An example is the 11

ΛΛBe
studied from the interaction of 1.5 GeV K− mesons in nuclear emul-
sions. The basic reaction involved is the production of Ξ− from the
K− interaction which subsequently interacts with a proton in one of the
emulsion nuclei according to Ξ−+P → Λ+Λ. In this case both the Λ’s
are bound in the nucleus.

Hyperons—Decay Selection Rules
Hyperons are unstable particles which are heavier than the nucleon pos-
sessing nonzero strangeness. Examples are Λ0 (mass 1115.683 MeV),
Σ+,0,− (masses 1189.37, 1192.642, and 1197.449 MeV, respectively), and
Ξ−,0 (masses 1314.9, 1321.32 MeV). The lifetimes of these unstable par-
ticles are: (Λ0, 2.632×10−10 s), (Σ+, 0.799×10−10 s), (Σ0, 7.4×10−20 s),
(Σ−, 1.479× 10−10 s), (Ξ−, 1.639× 10−10 s), and (Ξ0, 2.90× 10−10 s).
These lifetimes are incompatible with their copious rates of production
in high energy accelerators. The hypothesis of associated production
was formulated to explain this (see also the section under “Associated
Production”). It was further postulated that in strong interaction pro-
cesses, strangeness is conserved, while it is violated in weak interaction
processes. Thus the production process will lead to a copious produc-
tion of hyperons along with kaons such that the total strangeness is
conserved. The decay of Λ0 leading to P +π− is a strangeness changing
process and proceeds through weak interactions.
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The study of weak interaction decays of strange particles has revealed
the operation of certain selection rules. In the section on beta decay, it
was shown that the weak interaction Hamiltonian density can be writ-
ten in the form of a scalar product of a V − A (four vector) current
with its Hermitian adjoint, multiplied by a coupling constant GF , called
the Fermi weak interaction constant. The current contains contributions
formed from the nucleon sector and from the lepton sector. To describe
the weak decays of all particles in a universal manner, one may extend
the weak interaction Hamiltonian density by adding other strongly in-
teracting particles such as hyperons and kaons. A simple way for this
extension is to add the V − A currents for all the strongly interacting
particles (whether they possess strangeness or not) and form the Hamil-
tonian density. Certain features observed in the decays of hyperons and
kaons lead to some restrictions on the form of the currents in the product.
We describe these briefly. Weak decays of strongly interacting particles
fall into three classes, hadronic, leptonic and semileptonic. Hadronic
decay mode involves only strongly interacting particles among the prod-
ucts of the decay. Leptonic decay modes involve only leptons among
the final decay products. Semileptonic decay modes have a mixture of a
strongly interacting particle or particles and leptons.

A V − A current of the form ψ̄nγ
µ(1 − γ5)ψp, which occurs in beta

decay of the neutron, is called a ∆S = 0 current. It describes a trans-
formation of a neutron into a proton in which the strangeness does not
change, both having strangeness zero. Reading from left to right, the
charge Q increases by one unit. This feature is referred to as a cur-
rent which has ∆Q = 1. (The Hermitian adjoint current will also have
∆S = 0, but will have ∆Q = −1.) All the terms in the current must
have ∆Q = 1 to be in accord with charge conservation. A feature that is
built into the theory is that the ∆S = 0 part of the weak Hamiltonian be
invariant under CP to accommodate features observed in semileptonic
decays. It has been found that to accommodate all the features of the
decays of strange particles, one adds to the (V −A) ∆S = 0 currents, cur-
rents which have (V −A) |∆S| = 1 also. Transitions in which |∆S| = 2
do not seem to occur; for example, Ξ−, which has S = −2, has not been
observed to decay into n+ π− (strangeness 0), even though energy con-
siderations would allow such a decay. It was pointed out by Feynman
and Gell-Mann [80] that the absence of |∆S| = 2 transitions implies that
the structure of the currents for which |∆S| = 1 must have ∆S = ∆Q.
This selection rule seems to hold. Thus for example, Σ+ → n + e+ + ν
is forbidden because it would involve the ∆Q = 1,∆S = −1 current
ψ̄nγ

µ(1 − γ5)ψΣ+ . On the other hand, the decay Σ− → n + e− + ν̄ is
allowed as it involves the ∆Q = ∆S = 1 current, ψ̄Σ−γµ(1 − γ5)ψn.
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Similar arguments suggest that K+ → π+ + π+ + e− + ν̄ is forbidden,
while K+ → π+ + π− + e+ + ν should be allowed. These are borne out
from experimental data.

Another selection rule, called the ∆I = 1/2 rule, for the weak Hamil-
tonian has been formulated in trying to reconcile the rates of the follow-
ing decays. K0 is observed to decay to π+ + π− and K+ to π+ + π0.
The former decay occurs about five hundred times faster than the second
one. The kaon has isospin 1/2. The allowed isospin states for the final
state two pion combinations can be worked out. The two pion (J = 0)
state in neutral K can have isospins I = 0 as well as I = 2, while in the
charged K decay, it has only I = 2. Thus, the matrix element for the
neutral K decay has mixture of ∆I = 1/2, 3/2, 5/2 pieces in it, while for
the charged K decay, ∆I = 3/2, 5/2 only. The ∆I = 1/2 piece seems to
have an enhancement relative to the 3/2 and 5/2 pieces. This is readily
accommodated if we demand that the strangeness changing part of the
weak interaction transforms as an isospinor. The ∆I = 1/2 rule seems
to be successful in explaining many other features; for example, the rate
for Λ0 → n+π0 is about 1/3 of the total (Λ0 → n+π0)+(Λ0 → p+π−),
which is in accord with experiment.

Cabibbo [95] introduced SU3 symmetry in the discussion of weak
decays of strange particles and was able to show the ∆S = ∆Q rule and
that the strangeness changing currents obey the ∆I = 1/2 rule. With the
introduction of the Cabibbo angle, he was able to accommodate the low
decay rates for strange particles and showed that the weak interactions
are indeed universal in character.

Inclusive Spectral Distributions
Consider the collision of a high energy particle A with another particle
B leading to final state particles C + X, where C may be one specific
particle, and X may be one particle or a collection of particles. If MX is
the invariant mass of X and X is a single particle, MX has a fixed value.
On the other hand, X may be a collection of particles in various channels,
such as D+E, D+E+E′, . . . , in which case the value of MX can vary
continuously. Sometimes we are interested in the spectral distribution of
particles C emerging in the reaction regardless of what other particles X
were produced together with C. In this case, we sum over the final state
distributions of all particles in channels X and exhibit the distribution
of particle C only. Such a spectral distribution for particle C is called
an inclusive distribution. Processes in which one or more of the particles
of X are specifically identified (and measured) lead to what are called
exclusive distributions.
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Inclusive distributions are simple to obtain from a knowledge of the
particles A, B, and C, and measurements of their four-momenta. Let
pA, pB, pC be the four-momenta of these particles. Four-momentum
conservation determines pX , the total momentum of the collection X,
from pA + pB = pC + pX , and we do not need to measure it separately.
The four-momentum transfer from A to C is q = pA − pC , which can
also be expressed as q = pX − pB . We can form the following invariants
from these four-vectors,

p2A =M2
A, p

2
B =M2

B, p
2
C =M2

C , p
2
X =M2

X , q
2 = (pA − pC)2, q · pB ,

where MA, MB, and MC are the rest masses of particles A, B, and C,
respectively. Since we have pX = pB + q, we have

p2X = (pB + q)2 =M2
B + q2 + 2pB · q.

Since p2X = M2
X , one can gain a knowledge of MX from a knowledge of

q, and pB alone. Let us define

x = − q2

2pB · q =
q2

M2
B + q2 −M2

X

.

Note that q2 ≤ 0 (spacelike) and, because MX ≥ MB , 0 ≤ x ≤ 1. When
MX = MB, x = 1. The kinematics of the process is such that it can be
described in terms of three independent invariants, which we choose to
be pA · pB, q2, and x, regarding MX as a variable.

Let us illustrate the foregoing with a specific example. Consider the
collision of two protons P1 + P2 → π+ + X in the laboratory system,
where the proton P1 is the beam proton and P2 the target proton (at
rest), and X is a collection of particles which are not measured. We
write

pP1 = (EP1, 7pP1), pP2 = (MP , 0), pπ+ = (Eπ+ , 7pπ+), pX = (EX , 7PX).

In this system, 7q = 7pX , and q0 = EX −MP or EX = q0 +MP . Also,
pP1 · pP2 = EP1MP , so the three independent variables may be written
as

EP1, q
2, x.

If θ be the angle between p̂π+ and p̂P1, then q2 =M2
P+M

2
π++2(EP1Eπ+−

pP1pπ+ cos θ), x = − q2

2MP q0
, and Eπ+ = EP1+MP −EX = EP1+ q2

2MP x
.

Feynman proposed a parton model of hadrons for describing inclusive
spectral distributions of hadrons originating in high energy collisions of
hadrons [92]. According to this model, the hadron is composed of point-
like constituents called partons. These partons undergo collisions, and
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the cross section for the hadron-hadron collision is given by the incoher-
ent sum of the individual parton-parton cross sections summed over the
distributions of the partons in the hadron. He showed that the inclusive
distributions of hadrons, in this model, scale in the very high energy limit
and depend only on the variable x. In the parton model, the variable x
can be shown to be simply the fraction of the momentum of the hadron
carried by the parton. (See also section under “Bjorken Scaling”). First
conclusive evidence for Feynman scale invarince in hadronic inclusive
experiments came from the work of Bushnin et al. [224] and of Binon
et al. [225] working with the Serpukhov proton synchrotron. Further
developments have shown that the parton model has its underpinnings
in the field theory of QCD.

Infrared Divergence
An important result of classical electromagnetic theory is that charged
particles in accelerated motion radiate electromagnetic energy. This
carries over in quantum electrodynamics where, in many nonstationary
processes, such as scattering of a charged particle in an external field
or the sudden emission of a beta particle from a charged nucleus, the
processes are accompanied by the emission of electromagnetic radiation.
Such emission is called bremsstrahlung. The treatment of emission of
radiation by charged particles when they are scattered by the Coulomb
field of a nucleus is carried out using time dependent perturbation theory
(expanding in powers of � 1/137, the fine structure constant). The dif-
ferential cross section for the radiation of frequency ω, when the charged
particle scatters off a nucleus of charge Ze, was calculated by Bethe and
Heitler already in 1934. It is called the Bethe-Heitler cross section [16];
for a modern treatment see Reference [98]. This cross section has the
characteristic feature that when one considers the emission of very low
frequency photons ω, in an interval dω, it behaves like dω/ω as ω tends to
zero. The cross section integrated over all frequencies diverges logarith-
mically as ω tends to zero. This divergence is called infrared divergence.
The divergence is directly attributable to the fact that the photon has
rest mass zero; if the photon had a mass, the lowest frequency it could
have would not be zero but its rest mass. To regulate this divergence,
one introduces a small photon mass λ; of course, in the final result, the
dependence on this mass should disappear.

In the limit of zero frequency, the Bethe-Heitler bremsstrahlung cross
section can be shown to be the product of the elastic scattering cross
section in the Coulomb field of the nucleus and a factor representing
the effect of the emitted radiation, called the radiative correction which
diverges as the frequency goes to zero (or as the photon mass goes to
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zero). Since the loss of energy by radiation can also be considered as
loss of energy suffered by the charged particle in the scattering process,
it is not possible to distinguish between the elastic scattering process,
including corrections due to virtual emission and absorption of radiation,
and the inelastic process in which real radiation is emitted. Both have
to be included to a given order of perturbation theory. When detailed
calculations of the virtual corrections to the scattering cross section are
made, it turns out that they too are divergent as the photon mass goes to
zero. When one adds the two, namely the effects of virtual corrections
and of the real emission process, the dependence on the photon mass
cancels out, and one is left with a finite result. In a typical experiment,
the electron energy can be measured with a finite resolution ∆E. The
result of this is that the ultimate correction to order α can be shown to
depend on the parameter (α/π) ln(∆E/m), where m is the mass of the
charged particle which suffers the scattering. If this parameter is large,
it is not possible to ignore higher order corrections involving several
quanta, including the possibility of emission of an infinite number of
quanta. In such a case, the effect of low frequency quanta (or low ∆E)
factorize as an exponential which vanishes as ln(∆E/m) → 0.

Already in 1937, Bloch and Nordsieck [226] pointed to the fact that
an expansion in powers of e2/(4πh̄c) does not allow one to take the
classical limit h̄ → zero, and so this method does not allow one to
recover the classical radiation result for a charged particle. (Here we
exhibit the h̄, c dependence explicitly, as one is interested in the classical
limit h̄ → 0.) They developed expansion in terms of another set of
parameters, e2ω/(mc3), h̄ω/(mc2), h̄ω/(cδp), where ω is the frequency of
emitted radiation, δp the change in momentum of the particle, andm the
mass of the particle. They showed that for frequencies for which these
parameters are small, the quantum mechanical result is just the result
of rewriting the classical radiation formula. The total probability for a
given change in motion of the particle is not altered due to the interaction
with radiation. The mean number of quanta emitted is infinite but in
such a way that the mean energy radiated is equal in value to what
would be emitted in the corresponding classical motion.

Infrared problems exist in all quantum field theories which have
quanta with zero rest mass. The problem is considerably more com-
plex in non-Abelian gauge theories and we do not go into them here.

Instantons—’t Hooft-Polyakov Monopole
In some cases, the Euclidean form of the field equations (setting x4 = ix0
in them) of non-Abelian gauge theories can be solved in the classical
regime. Such solutions are called instantons, and they lead to solutions
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with finite energy which are localized both in space and in the Euclidean
time variables. In quantum field theory, interpreting these as quantum
effects, one gets modifications to the effective Hamiltonian of the quan-
tum field theory. In effect what happens is that, in the non-perturbative
regime of a quantum field theory, particles are found which are in addi-
tion to the quanta belonging to the fields occurring in the theory. The
famous instanton found in four-dimensional non-Abelian gauge theory
was shown by ’t Hooft to lead to nonconservation of the U1 axial cur-
rent in QCD, a fact which leads to an understanding of the light meson
spectrum like the pion.

Appearance of extra particle states in theories with spontaneously
broken symmetry can be shown to be related to certain topological prop-
erties of the vacuum states in such theories. An example is an SU2 gauge
theory with an isovector Higgs field (called the Georgi-Glashow model).
’t Hooft [227] and Polyakov [228] derived classical solutions for the Higgs
field in this theory. It had such a structure that when this gauge theory is
interpreted as a unified theory of electromagnetic and weak interactions,
they showed that this solution is a magnetic monopole. Also, examples
exist which show that the dynamics of theories in the strong coupling
regime are related to the particles which are the heavy classical states
in the limit of weak coupling.

Integer Spin—Statistics of Light Quanta
The statistics known as Bose-Einstein statistics dealing with particles of
integer spin originated with the work of Bose in 1924. He gave a new
derivation of Planck’s law for radiation. From the historical point of
view, it is useful to review Bose’s method as it is at the base of quantum
statistics. This we do briefly below.

The problem he considered was one of calculating the average energy
of a gas of photons contained in a vessel of volume V at a temperature
T . He imagined the phase space divided into cells of size h3 (h=Planck’s
constant) and considered the distribution of quanta in these cells. Con-
sider a total of N cells, of which N0 contain 0 quanta, N1 contain 1
quantum,. . . , Nj contain j quanta, etc. If M be the maximum number
of quanta per cell, then we must have

M∑
j=0

Nj = N.

Focussing attention on the cells only, the number of ways of selecting the
N cells such that N0 contain 0 particles, N1 contain 1 particle, etc., is

W =
N !

N0!N1! · · ·NM !
.
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Let us maximize W subject to the condition that the total energy is a
constant and the total number of cells is a constant. If Ej is the energy
associated with a cell which contains j particles, then the total energy
is

M∑
j=0

EjNj = E = constant,

and the total number of cells is
M∑
j=0

Nj = N = constant.

In the usual manner we get, for a canonical distribution at a temperature
T ,

Nj =
N exp (−Ej/kT )∑M
j=0 exp (−Ej/kT )

.

The average energy per cell is

Ē =
E

N
=

∑M
j=0NjEj∑M
j=0Nj

.

Now let us consider the quanta being photons of energy hν, then Ej =
jhν, then

Ē =

∑M
j=0 jhν exp (−jhν/kT )∑M
j=0 exp (−hν/kT )

.

In the limit when the number of photons M per cell is very large, the
expression for Ē works to be

Ē =
hν

exp (hν/kT )− 1
.

Let us consider the photons to form a perfect gas in a volume V with mo-
menta E/c, where E is the energy of a given photon and c is the velocity
of light. The average number of photons with energy in the interval hν
and hν + d(hν) and in the volume V is 2 × 4πν2dν

c3 . We have assumed
that each photon has two polarization states corresponding to the two
transverse polarizations for a massless spin 1 particle. Multiplying this
by Ē given above, we get for the energy density uνdν of radiation in the
frequency range (ν, ν + dν) Planck’s Law

uνdν =
8πν2dν
c3

exp (hν/kT )− 1
.
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Intermediate Vector Bosons
Electromagnetic interactions of charged particles are known to be me-
diated by the exchange of photons between them. As an extension of
this idea, Yukawa [113] suggested that nuclear forces and β decay could
both be explained by meson (boson) exchange [113], if this meson was
unstable. This idea of Yukawa, however, proved to be untenable for a
number of reasons. The boson for mediating weak interactions has to
have spin 1, (hence has to be a vector or axial vector particle) in order
to give agreement with data on β decay, etc., while the pions responsible
for nuclear forces were spin zero particles and so would not do. Yet the
idea of a boson mediating weak interactions was attractive and was not
given up. It popped up from time to time, and finally found formal ex-
pression in a proposal put forward by Schwinger [229] that the observed
weak interactions be mediated by vector bosons.

Using this idea of Schwinger, the (V − A) current-current structure
of weak interactions can be obtained from a more fundamental interac-
tion between the weak charged current Jµ(x) and the vector boson field
Wµ(x) by an interaction Hamiltonian density:

H = g[Jµ(x)W †
µ(x) + J†µ(x)Wµ(x)].

The coupling constant g specifies the strength of the (current-W boson)
interaction. In second order perturbation theory, this could give rise to
an effective current-current interaction if the W particle’s propagator
has a very big mass MW .

As an illustration, consider the beta decay of the neutron. The weak
nucleon current emits a W− converting a neutron into a proton, the W
propagates and is absorbed by the electron-neutrino current, giving rise
to the final product, the electron and the electron antineutrino. The
matrix element will contain the product g2, the two currents, and the
propagator for the W , 1/(q2 − M2

W ), where q is the four-momentum
transfer between the neutron and the proton. If M2

W � q2, the matrix
element reduces to the product of (g2/M2

W ) with the product of the
currents. If one sets (g2/8M2

W ) = GF /
√
2, where GF is the Fermi weak

coupling constant, the intermediate vector boson theory reduces to the
Fermi current-current theory.

Many weak processes were worked out in terms of the weak vector
boson theory and comparison with experiments set limits on the mass of
the W . These early limits were in the several GeV range as the highest
energy accelerators available had energies of this order. Since the theory
closely parallels quantum electrodynamics (QED), calculations of higher
order weak corrections were attempted. Unlike QED, the intermediate
vector boson theory, involving as it does massive charged vector particles,
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was found to be non-renormalizable. This proved to be a significant
hurdle which was only overcome many years later with the development
of spontaneously broken non-Abelian gauge theories (see section under
“Gauge Theories” and “Higgs Mechanism”).

Spontaneously broken non-Abelian gauge theories were shown to be
renormalizable and Glashow, Weinberg, and Salam developed the the-
ory of electroweak unification with intermediate vector gauge bosons
mediating electromagnetic and weak interactions (see also section under
“Electroweak Synthesis” and “Standard Electroweak Model”). This the-
ory predicted that charged vector bosons should exist at a mass of about
80GeV, and a neutral vector boson Z0 should exist at a mass of about
90 GeV, which would play a role in neutral-current processes much like
the charged W ’s play in charged current processes.

These were confirmed with the finding of the W and Z bosons by
the UA1 [180] and UA2 [181] collaborations working with the CERN p̄p
collider. The experimental observations in these experiments consisted
in finding isolated large transverse momentum electrons with associated
missing energy in the case of the charged W ’s, and in the case of the
neutral Z, the finding of Z0 → e+e− decays. Much precise work on the
detailed properties of the Z0 and the W± particles and their couplings
to quarks and leptons has since been carried out at the Large Electron
Positron Collider (LEP) working at CERN. The mass of the Z0 is now
known to be MZ0 = 91.187 ± 0.007 GeV and the mass of the charged
W ’s, MW = 80.41± 0.10GeV.

Isotopic Spin
Soon after the neutron was discovered in 1932, one obvious property
of the neutron was pointed out by Heisenberg [47]. He noted that,
apart from the fact that it is electrically neutral, it has almost the same
mass as a proton, only very slightly heavier. Further, as far as the
structure of atomic nuclei is concerned, the strong interactions which
the protons and neutrons suffer inside the nuclei seem to be similar,
regardless of the fact that the proton carries an electric charge (charge
independence of the nuclear force). These facts led Heisenberg to suggest
that the neutron and proton be treated as two states of a single particle,
the nucleon. Heisenberg suggested introducing isotopic spin or isospin
vector 7I, whose z-projections Iz = +1/2 and Iz = −1/2 would serve to
label the proton and neutron states of the nucleon. Heisenberg defined
charge independence of strong nuclear forces in the language of isospin
as: “strong interactions are invariant under rotations in isospin space”.

The introduction of isospin is entirely in analogy with ordinary spin.
Recall the fact that in the absence of a magnetic field, the two magnetic
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substates ms = ±1/2, of the electron of spin 1/2, are degenerate. The
isotopic spin is different in that it is not a vector in ordinary space, but in
a space associated with internal properties of the neutron and the proton,
called an internal space, in this case, isospin space. The isospin vector
in this space has three components, I1, I2, I3, just as the ordinary spin
vector 7S has three components, S1, S2, S3 in three-dimensional space.
Because of the analogy with ordinary spin, all the theoretical machinery
that was developed to handle ordinary spin can be used to treat isospin
variables. The wave function for a particle with spin and isospin can be
written as a product of spatial wave function, the spin wave function,
and the isospin wave function. Just as the flip of spin from one state to
another is accomplished by the use of operators S± = (1/2)(S1 ± iS2),
one can achieve flip of isospin through the operators I± = (1/2)(I1±iI2),
which will result in a nucleon flipping its state from a proton (isospin
“up”) into a neutron (isospin “down”) and vice versa. These flips are
in effect rotations. In the case of ordinary spin they preserve |7S|2, while
the value of |7I|2 is preserved under rotations of isospin. Thus another
way of stating charge independence of nuclear forces is to say: “isospin is
conserved in strong interactions”. Because a state of spin S can have S3
projections, S, S−1, . . . , 0, . . . ,−S, there are (2S+1) degenerate states.
This is the multiplicity for a particle of spin S. Similarly a particle with
isospin I has multiplicity (2I + 1). The nucleon can be said to be an
isospin doublet because I = 1/2.

The notion of isospin can be extended to other hadrons which have
approximately equal masses but different charges. Thus the pion with
π+, π0, π− having nearly the same masses can be assigned to an isospin
triplet I = 1 with I3 = +1, 0,−1, respectively. Likewise, the Σ baryons,
which have charge (+, 0,−) states, are a triplet in isospin, I = 1, and
the ∆ isobars, which have four charge states, (++,+, 0,−), are assigned
to a quartet in isospin with I = 3/2. In assigning isospin to a given set
of particles, the value of I3 is determined by the charge Q carried by
the particles, the highest charge state being the one with I3 = I. All
the other states of the multiplet are obtained by decreasing I3 by one
unit until one gets to the state of the lowest charge with I3 = −I. To
accommodate mesons and baryons, strange and nonstrange, the relation
between the charge and isospin is given by the Gell-Mann, Nishijima
formula: Q = I3 + (1/2)(B + S), where B is the baryon number and S
is the strangeness quantum number (see also section under “Gell-Mann,
Nishijima Formula”).

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 268

✐

✐

✐

✐

✐

✐

✐

✐

J/ψ meson
The announcement of a new particle, the J/ψ meson, was jointly made in
November 1974 by S. C. C. Tings group working at Brookhaven, and B.
Richter’s group working at SLAC [101]. The experiment at Brookhaven
consisted in bombarding a beryllium target with high energy protons
and the observation of high mass electron-positron pairs in the resulting
product. A strong and a very narrow signal was seen at an invariant
mass of the electron-positron pair of mass of 3.1 GeV; Ting named this
particle J . The narrow width at this high energy was extremely unusual,
for the prevailing thinking at that time was that widths would be very
large as the energy increases. Thus, although the particle was seen by
Ting and his group in the summer of 1974, they did not rush to announce
their results then. They spent their time very carefully checking their
experiment. They wanted to make absolutely sure that it was a genuine
signal. At about the same time, the same particle was seen in the SPEAR
8.4 GeV electron-positron ring at SLAC by B. Richter and his group.
This group observed a very narrow peak in the cross section for e+e− →
hadrons, e+e−, µ+µ−, at a center of mass energy of 3.105± 0.003 GeV.
They quoted a value for the width at half maximum as 1.3 MeV, an
incredibly narrow value; the SLAC group named the particle ψ. The
two groups decided to make a joint announcement of their J/ψ findings,
and this occurred in November of 1974.

Following the discovery, it was soon established that the J/ψ be-
longed to a family of vector mesons just like the ρ, ω, and φ. In the
constituent quark model of hadrons, this new particle found a place as
a bound state of a new flavor quark and its antiquark. This new flavor
was called charm. The idea of introducing a fourth quark, the charm
quark, already had been explored by Bjorken and Glashow in 1964 [102]
on the basis of lepton-quark symmetry. They drew attention to the fact
that, on the lepton side, the electron and its neutrino and the muon
and its neutrino were known at that time, but on the quark side, only
three quarks were known, namely, the u, d, and s. A fourth quark, hav-
ing charge +2/3, paired with the s quark (charge −1/3), would bring
symmetry between leptons and quarks. The charm (c) and the strange
(s) quark would form the second generation of quarks after the first
generation of u and d.

The proposition that J/ψ was the bound state of the charm quark
with its antiquark was vigorously explored and has proven to be correct.
Because it is a charm-anticharm bound state, it has “hidden” charm
content and is also referred to as a charmonium bound state. On the
theoretical front, the non-Abelian gauge theory of quantum chromody-
namics (QCD) began to be formulated. It was postulated that quarks
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carry a quantum number called color and quarks interact with other
quarks through the exchange of colored gluons, which are quanta of the
non-Abelian gauge field. A potential model of interquark interaction in-
spired by QCD is one in which the short distance behavior of the poten-
tial is due to one gluon exchange, which reduces to a Coulomb potential
between two color charges, while at long distances the potential is linear
and is therefore confining. With this model, one can predict the spec-
trum of charmonium bound states. With parameters in the potential
fixed from QCD, the J/ψ is the n = 1 3S1 bound state of (cc̄). A bound
state is obtained at 3.1 GeV if the mass of the charm quark is chosen
in the range 1.1 to 1.4 GeV. This model also predicts a rich spectrum
of states for the charmonium system, which have been observed, includ-
ing the bound state corresponding to the 1S0 state. As one goes up in
energy of excited states, one will eventually cross the charm threshold
after which one should be able to produce particles with nonzero net
charm. Such particles are called charm particles, and both mesons and
baryons having a charm quark in them have been found (see further in
section under “Charm Particles”).

K2K Neutrino Experiment
This is a long baseline neutrino oscillation experiment being performed
in Japan. The purpose of this experiment is to confirm the occurrence of
neutrino oscillations. The muon neutrinos are produced at the KEK 12
GeV proton synchrotron and directed to the SuperKamiokande 50,000
ton Cherenkov water detector some 250 km away. In the period be-
tween June 1999 and the end of June 2000, 27 neutrinos from KEK have
been detected at SuperKamiokande. They expected this number to be
40.3± 5, based on observations with a near detector at KEK. The K2K
collaboration considers this to be laboratory evidence for the existence
of neutrino oscillations. (See further under “Neutrino Oscillations”.)

KamLAND Neutrino Detector
This is an experiment designed by a large collaboration of scientists from
Japan and USA. The aim is to test the observed solar neutrino deficit in
a terrestrial experiment. If one assumes that CP conservation holds in
the lepton sector, the oscillation probability is the same for particles and
antiparticles. Hence one can expect that if the deficit in solar neutrinos
is due to oscillation of electron neutrinos, the same oscillation effect
should be seen with electron antineutrinos also. Nuclear reactors are
a good source of electron antineutrinos and the aim of this experiment
is to use these. The flux and the energy distributions of the electron
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antineutrinos are well calculated from the known thermal powers and
fuel compositions of the reactors.

The energy of reactor antineutrinos is low, so it can only test what is
called the large mixing angle solution for the solar neutrino problem (see
further under “Neutrino Oscillations”). The large mixing angle solution
implies a maximum for the oscillation probability at a distance of about
250 km from the source. Kamioka is at about this distance from the
reactor source. The aim is to set up a 1000-ton liquid scintillator as
target and detector at Kamioka. The liquid scintillator consists of 20%
trimethylbenzene and 80% paraffin. It measures the e+ produced by
the antineutrinos by charged current reactions in the scintillator. The
recoil neutron with a kinetic energy of about 10 keV is moderated and
captured on protons after about 170 microseconds. These signals define
the neutrino signal. It is crucial to suppress the background at the
detector. Here a crucial role is played by the energy spectrum of e+.
The background at the detector can also be inferred directly from the
power modulation of the reactor.

At present the detector construction is well under way and data are
expected in the next year. The collaboration believes that they will
be able to demonstrate convincingly the validity or invalidity of the
large mixing angle solution of the solar neutrino problem. This can be
achieved in about one to two years of data taking, and the results will
be independent of models that power the neutrinos in the Sun.

Kaons: The τ -θ Puzzle
Kaons, or K mesons, are strongly interacting particles with a mass of
about 490 MeV. They come in positive, neutral, and negatively charged
varieties. The earliest observations of these particles came from work
with cosmic rays using Wilson cloud chambers or photographic emulsions
as detectors. V-shaped tracks originating from a point in the chamber
or the photographic plate would be seen, which led to the name of V
particles for them [230]. The V was interpreted as arising from the decay
of an incident neutral particle. An analysis of the two tracks of the V
showed, in many cases, that one of the tracks was a proton and the
other a negative pion, with a Q value about 35 MeV. In other cases,
both tracks of the V corresponded to pions, with some other Q value.
Thus, there were two different neutral V particles, which gave rise to
these two kinds of decay products. One of these neutral particles must
clearly be heavier than a proton, while the other is lighter than a proton.

With the construction of high energy accelerators, which were able
to produce these particles abundantly, clarifications as to their nature
emerged. The V particles which were heavier than the proton belong
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to a family named hyperons (Λ0,Σ, etc.), while the others which were
lighter than the proton were called K mesons or kaons. Further inves-
tigations showed that there were two distinct kinds of neutral kaons.
One of these was named K0 and the other K̄0, distinctly different from
K0. Before long, the charged counterparts to these neutral kaons were
found, the K± mesons, decaying to π± + π0. Thus, there were actually
four particles: (K+,K0) and (K−, K̄0), which were antiparticles of one
another. In terms of isotopic spin, it was more appropriate to assign
isospin 1/2 to each pair, rather than isospin 1, which would have been
appropriate had there been only one neutral K. The kaons and hyper-
ons were assigned a new quantum number called strangeness. These
particles were produced in association with one another, with opposite
values of strangenness, such that in the production reaction the total
strangeness was conserved. In their subsequent decays, each particle
decays with a change of strangeness, which leads to slow decays. Gell-
Mann assigned proper values of strangeness to these new particles in
order to extend the relation between isotopic spin and charge for them.
(See under “Gell-Mann, Nishijima Formula” for more details).

The masses and other properties of the kaons have been determined.
The K± have mass 493.677 ± 0.016 MeV, mean life τ = (1.2386 ±
0.0024) × 10−8s. K+,K0 are assigned strangeness S = +1, I3 = +1/2
and I3 = −1/2, respectively; K−, K̄0 are assigned strangeness S = −1,
I3 = −1/2 and I3 = +1/2, respectively. In terms of the quark model,
the compositions are K+ = us̄, K0 = ds̄, K̄0 = d̄s, and K− = ūs, where
s is the strange quark with strangeness −1. The dominant decay modes
are

K± → µ± + νµ (63.5%),

K± → π± + π0 (21.16%),

K± → π± + π+ + π− (5.59%),

K± → π0 + µ± + νµ called K+
µ3 (3.18%),

K± → π0 + e± + νe called K+
e3 (4.82%),

K± → π± + π0 + π0 (1.73%).

A number of other decay modes are seen at a level below 1% but we do
not discuss them here.

The spin of the kaons can be determined from a study of their decays.
K0 has been observed to decay into 2 neutral pions. One uses angular
momentum conservation to obtain information on the spin of the K0.
The final state, consisting of two identical bosons, is symmetric under
the interchange of the two particles, hence must have even angular mo-
mentum J = 0, 2, 4, . . .. Because the two pions are pseudoscalar and the

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 272

✐

✐

✐

✐

✐

✐

✐

✐

angular momentum is even, the parity P must be even. This suggests
JP for the particle 0+, 2+, 4+, . . .. For the charged counterpart, K+,
which decays into π+ + π0, all values of J are allowed. The fact that
the pion carries zero spin, implies that the parity for a state of angular
momentum J has to be (−1)J . Thus 0+ is a possibility for the charged
kaon, also. The three pion decay mode of the kaon provides much more
information through a Dalitz plot analysis. That analysis shows that
the kaon has spin zero (see also discussion under “Dalitz Plot”). If par-
ity is conserved, we may conclude that it has odd parity from its three
pion decay. Of, course, if parity is not conserved in the decay process,
no conclusion can be drawn about the parity of the kaon from its decay
modes.

One very important feature is seen from the observed decay modes.
Because the kaon is observed to decay into two pions and into three
pions, if it is the same particle, which has these two modes of decay, and
it has spin zero and a definite parity, then parity cannot be conserved
in the decay process. In the early days when the mass determination of
these particles was not as precise and absolute belief in parity conser-
vation prevailed, it was thought that these two particles were different
particles, having approximately the same mass accidentally. The particle
decaying to 2 pions was called the θ particle, while the one decaying into
3 pions was called the τ particle. This became a puzzle, called the τ -θ
puzzle: whether the θ and the τ particles were different and accidentally
had the same mass, or whether they were the same particle, but parity
was not conserved in the decay. When experimental data improved to
the point where the equality of the masses and lifetimes of these parti-
cles could be established more precisely [231], it became clear that they
were the same particle, and somehow the parity was not conserved in
the decay. This prompted Lee and Yang to investigate the question of
parity conservation, in weak interactions in general [141], resulting in the
eventual overthrow of parity conservation in weak interaction processes.

Since the parity of the kaon cannot be determined through its decays,
one may well ask how does one determine it? The reaction one uses is
K− +4 He → 4

ΛH + π0, where the negative kaons are brought to rest
and captured in helium. The capture of the kaon occurs fron an atomic
S-state. Some of these captures lead to a final state in which the Λ0

formed from the capture of the K− on a proton stays bound in the
nucleus, forming the hypernucleus 4ΛH. The hypernucleus decays into π

−

and 4He, both of which are zero spin particles. From detailed studies
of this decay, the spin carried by the hypernucleus is determined. It is
found from such measurements that the spin of 4ΛH is zero. Going back
to the capture reaction, because the capture occurs from an S-state, the
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orbital angular momentum of the products of the reaction must also be
zero. If Λ0 is assigned the same parity as the nucleon, that is, even
parity, then we can conclude that K− must have the same parity as the
final pion and, hence, is odd. In this manner, K− is established to be
a pseudoscalar particle, just as the pion. Although there are no direct
experiments which establish the parity for the other charged and the
neutral particles, we take the spin-parity for all of them to be (0,−), on
the basis that they all form a multiplet with nearly the same mass and,
therefore, probably represent the same pseudoscalar particle in different
charge states. All the kaons are taken to be pseudoscalar particles just
as the pion.

Kaons—Neutral K0
1(K0

S), K0
2(K0

L)
Neutral kaons exhibit certain special properties which we elaborate here.
The neutral kaons that are produced by strong interactions are K0 and
K̄0, which have definite strangeness S = +1 and S = −1, respectively.
With strong interactions alone, no transitions of the type K0 ↔ K̄0

are possible, because strangeness is conserved. If we include weak in-
teractions, this need not any longer be the case, because of the pos-
sibility of decay of either of these particles into π+ and π−, in which
case the conversion of K0 into K̄0 can occur through the sequence
K0 → π+ + π− → K̄0. Thus on including the weak interactions, we
find that the |K0〉 and |K̄0〉 cannot be eigenstates of the full Hamilto-
nian. One can form linear combinations of these which are eigenstates
of CP , (which is respected by the weak interaction Hamiltonian if the
phenomenon of CP violation is ignored temporarily),

|K0
1 〉 =

1√
2
(|K0〉+ |K̄0〉), CP eigenvalue + 1,

|K0
2 〉 =

1√
2
(|K0〉 − |K̄0〉), CP eigenvalue− 1.

If CP is conserved in the decay, these two states will be distinguishable
by their decay modes. The two pion state has CP = +1, and the
three pion state has CP = −1, and so K0

1 will decay to 2 pions only,
while the K0

2 will decay into 3 pions only (see also discussion under
“CP Violation”). The two pion decay mode occurs much faster because
there is more energy released in the decay than in the three pion decay
mode, and there is more phase space available. Since CP is known to
be violated by a small amount, when that fact is taken into account, the
short lived state is called K0

S , while the long lived state is called K0
L.

The short lived state is predominantly K0
1 , while the long lived state is

predominantly K0
2 . Thus if one starts with a beam of K0, because it is
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the linear combination |K0〉 = (1/
√
2)(|K0

1 〉+ |K0
2 〉), the K0

1 component
(nearly allK0

S) of the beam will decay away fast, and one will be left with
a beam of pure K0

2 (nearly all K0
L). The result will be that, near where

the K0 are produced, we will see two pion decays, and a long distance
away from the production point, we will see only three pion decays
corresponding to K0

L. This was exactly confirmed in an experiment by
Lande et al. [232] who measured the two lifetimes for the first time.
Their values are now known to be τS = (0.8934± 0.0008)× 10−10s and
τL = (5.17± 0.04)× 10−8s.

There is a very small mass difference between the two states K0
S and

K0
L. This has also been measured using the following technique. The

amplitudes of these states, in the rest frame of the particles, vary as a
function of time according to

A(K0
S , t) = A(K0

S , 0) exp [−i(mS − i(1/2)ΓS)t],

A(K0
L, t) = A(K0

L, 0) exp [−i(mL − i(1/2)ΓL)t],

where mS,L are the masses of the two states and ΓS,L are the respective
widths. If we start at time t = 0 with a beam which is initially all
K0, the amplitudes A(K0

S , 0) and A(K0
L, 0) are equal. Because of the

mass difference, their relative phases will be shifted as time progresses
and the beam will develop a K̄0 component. The appearance of K̄0 can
be detected by absorbing these on protons leading to the production of
Λ0. (Note that Λ0 can be produced only by K̄0 and not by K0; the
appearance of Λ0 is thus unambiguously related to the appearance of
K̄0.) In the rest frame of K0, after the lapse of time t, the amplitude
A(K̄0, t) for K̄0 as a function of time will be proportional to

[A(K0
S , t)−A(K0

L, t)].

Using the above relations of amplitudes at time t expressed in terms of
the amplitudes at time 0, we can work out the probability of observing
a K̄0 at time t (neglecting Γ2 in comparison to Γ1),

P (K̄0, t) � |A(K0
S , 0)|2
2

[1− exp (−ΓSt/2) cos (∆mt) + exp (−ΓSt)],

where ∆m = |mS−mL|. We can plot this quantity, which represents the
intensity of K̄0 produced at the time t, as a function of time, for different
values of the mass difference. Fitting it to the experimental data, one can
determine, the magnitude of the mass difference. In this manner, one can
get at the magnitude of this tiny mass difference, the earliest attempt
being by Boldt and Caldwell [233] and somewhat later by Camerini et
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al. [234]. The sign of the mass difference is not determined by such an
experiment.

Determination of the sign of the mass difference depends on another
type of experiment which involves a regeneration of K0

1 [235]. If we
start with a K0 (or a K̄0) beam and let it propagate for some time t,
such that τS < t < τL, the K0

S component would have decayed, and
we would have a pure K0

L beam. Now let this beam be passed through
some material. Since the |K0

L〉 can be thought of as made made up
of as a mixture of K0 and K̄0, the two components K0 and K̄0 of
K0
L will be affected differently by the scattering in the medium, which

affects the relative phase of these components (depending on the phase
shifts suffered by the K0 and K̄0), and K0

S will be regenerated. The
probability of regeneration of K0

S depends both on the thickness of the
material and on the sign of the mass difference. In this way the sign of
the mass difference is also determinable.

The quoted value for the mass difference in the recent “Review of
Particle Physics” [62] by the Particle Data Group ismL−mS = (3.489±
0.009)× 10−6 eV.

KARMEN Experiment
The acronym KARMEN here stands for KArlsruhe Rutherford Medium
Energy Neutrino collaboration. One major aim of the KARMEN ex-
periment is to measure the neutrino-nucleus interaction cross sections
via the charged current and neutral current channels on the nuclei 12C,
13C, and 56Fe. The second major aim is to search for flavor oscillations.
Neutrinos are detected in a 56-ton scintillation calorimeter at a distance
of 18 m from the source. In the period 1990–1995, data from KARMEN
showed no signal for ν̄µ to ν̄e oscillations. Since 1997 data have been
taken at a new detector confguration. The new data should cover the
whole oscillation parameter space available to another experiment, the
LSND experiment. The LSND experiment claims to have seen a signal
for such oscillations.

K∗(892) Resonance
This particle manifests as a (K − π) resonance state in the reaction,

K− + p → K̄0 + π− + p, or, K− + π0 + p, or, K̄0 + π0 + n

reported first by Alston et al. [236]. The study was carried out using the
15 in. hydrogen bubble chamber exposed to the K− beam of momentum
1.15 GeV/c at the LBL-Bevatron. On analysing the kinetic energies of
protons resulting from the reaction, they found a strong peak around
about 20 MeV. They interpreted this as arising from a K − π resonance
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(or a K∗− particle) being produced: K− + p → K∗− + p, and the K∗−

subsequently decaying into K̄0 + π−. The mean value for the resonance
mass was given by them to be 885 ± 3 MeV and its width as about 16
MeV.

The isospin of this particle was determined by measuring the branch-
ing ratio

R =
K∗− → K−π0

K∗− → K̄0π− .

These gave a value 0.75± 0.35 for R. Theoretically, R = 1/2 for isospin
1/2, while it should be R = 2 if the isospin is 3/2. The measured value
is consistent with isospin 1/2.

To determine the spin of the resonance, they studied the angular
distribution of the decay products of the resonance, and found it to be
consistent with J = 0 or J = 1, but excluded J > 2. A later experiment,
reported by Smith et al. [237] resulted in a spin parity assignment JP =
1− for this particle. In terms of quark model assignment, an excited
3S1 bound state of ūs would represent the vector boson K∗−. Many
other excited states are also known; for more details, refer to “Review
of Particle Physics” [62].

The “Review of Particle Physics” gives for this particle: Mass (K∗−) =
891.66±0.26 MeV, full width (K∗−) = 50.8±0.9 MeV, I(JP ) = 1/2(1−).
The neutral counterpart has a mass, M(K∗0) = 896.10 ± 0.28 MeV,
full width = 50.5 ± 0.6 MeV. These particles fit into a vector nonet
of particles consistent with expectations from SU3 symmetry and the
constituent quark model for mesons.

Kramers Kronig Relations
See section under “Dispersion Relations”.

Lagrangian
Lagrangian formulation of mechanics is an alternative formulation to
that based on Newton’s laws of motion. In particle mechanics, a func-
tion called the Lagrangian L is introduced, defined by L = T −V , where
T =

∑
i(1/2)mi7v

2
i is the sum of the kinetic energies of the particles. The

particles have mass mi and velocity 7vi for the ith particle, and V is the
sum of the potential energies, due to both any external agents and the
mutual interactions between the particles. In general L is a function of
the velocities as well as the position coordinates of the particles involved.
To be perfectly general, and not be restricted to Cartesian coordinates
only, one introduces generalized coordinates qi, i = 1, 2, . . . , 3N and ve-
locities q̇i = (dqi/dt), i = 1, 2, . . . , 3N for a system of N particles. Here
q̇i represents the time derivative of the ith coordinate, which is the gen-
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eralized velocity corresponding to that coordinate. A quantity called
the action is defined, which is the time integral of the Lagrangian be-
tween fixed end points. The equations of motion are the Euler-Lagrange
equations obtained by the variation of the action integral

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, 3, . . . , 3N.

For a single particle, q1 = x, q2 = y, q3 = z so i = 1, 2, 3 only, and
T = (1/2)m(ẋ2 + ẏ2 + ż2), V = V (x, y, z). The Lagrangian equations
are

m
dx

dt
= −∂V

∂x
, m

dy

dt
=
∂V

∂y
, m

dz

dt
= −∂V

∂z
.

Thus the Lagrangian formulation is completely equivalent to the New-
tonian formulation of mechanics.

From a theoretical and formal point of view, however, the Lagrangian
formulation has some clear advantages. One of these is the clear con-
nection between any symmetries the system possesses and conservation
laws associated with those symmetries, known as Noether’s theorem. To
illustrate this in the case of a single particle, we note, if the potential
energy of the system is independent of the coordinates x and y, but
depends only on z, then the Euler Lagrange equations read

d

dt

(
∂L

∂ẋ

)
= 0,

d

dt

(
∂L

∂ẏ

)
= 0,

d

dt

(
∂L

∂ż

)
= −∂V

∂z
.

This lets us say ∂L
∂ẋ and ∂L

∂ẏ are constants independent of time, in other
words, conserved quantities. These conserved quantities are called gen-
eralized momenta corresponding to the x and the y coordinates. The
potential being independent of x and y, the Lagrangian is invariant
under a transformation of coordinates in the x and y directions, the
consequence of which is that the corresponding components of the gen-
eralized momenta are conserved. This is a very general property of the
Lagrangian formulation and is very powerful in identifying conservation
laws. Conversely, if we know certain conservation laws hold true for
some system for which we do not know the detailed dynamics, it allows
us to fomulate a Lagrangian incorporating symmetries associated with
those conservation laws.

The Lagrangian formulation for particle mechanics involves a finite
number of degrees of freedom. In dealing with continuum mechanics,
such as is the case of fluid motion, or in the case of fields, one is dealing
with a system possessing an infinite number of degrees of freedom. The
Lagrangian formulation has been extended to deal with the dynamics of
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fields including the effects of relativity and is of great interest to particle
physics.

In field theory, one’s focus is the field function φ, which is a function
of space and time coordinates φ(7x, t). For simplicity we are considering
an example involving only one single scalar field. We start with a La-
grangian density L, which is a function of the field and its derivatives
with respect to space and time coordinates ∂φ

∂xµ ≡ ∂µφ. The derivatives
with respect to space and time coordinates both occur so as to treat
space and time on the same footing as required by special relativity. In-
tegrating L over all space and time gives the action. The Euler-Lagrange
equations of motion in the case of fields is

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

.

In the equations of motion we have the space and time derivatives ap-
pearing in such a way as to guarantee manifest Lorentz invariance. The
equations for the scalar field φ are just the Euler-Lagrange equations for
the φ. Similar equations hold for every component of a four-vector field,
or for the components of higher rank tensor fields.

We choose a suitable Lorentz invariant Lagrangian density function,
so that we obtain the desired field equation from the Euler-Lagrange
equation. For example, it is easily verified that, if we want the Klein-
Gordon equation to be satisfied by the field function, we choose the
Lagrangian density

L =
1
2
(∂µφ)(∂µφ)− 1

2
m2φ2.

In this case, the Euler-Lagrange equation gives,

∂µ∂
µφ+m2φ = 0,

which is the Klein-Gordon equation.
Lagrangians have been constructed, following and generalizing this

approach, for many relativistic field theories, including the electromag-
netic field, the electron-positron field, quark fields, chromodynamic fields,
and the combined electroweak field. To realize the quanta correspond-
ing to these fields, it is necessary to quantize these theories. In doing
so, the field functions become operators, with certain commutation rela-
tions imposed on them. In this manner, it is easy to construct quantum
field theories of free fields and analyze their contents. The problem of
treating fields with interaction between them is, however, in general a
difficult one, and exact solutions are not possible except in special cases.
Gauge field theories are examples in this category. Readers interested
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in details will be well advised to consult books and treatises which deal
with quantum field theories.

Lamb Shift
This refers to a shift of the 22S1/2 energy level of the hydrogen atom,
relative to the 22P1/2 level, first measured by Lamb and Retherford
and, hence, called Lamb shift [238]. One of the great triumphs of Dirac’s
relativistic theory of the electron was the prediction of the fine structure
of the energy levels of the hydrogen atom. The fine structure for the
n = 2 levels involves the splitting of the 22P1/2, 22P3/2 states, for which
Dirac theory has an exact prediction. Another prediction of the Dirac
theory is that the 22S1/2 state must be degenerate with the 22P1/2 state.

Experimental efforts designed to confirm Dirac’s theory through a
study of the Balmer lines were hampered by the large Doppler effect
of the lines in comparison to the small splitting they were trying to
measure, giving results which sometimes agreed, and at other times dis-
agreed, with theory. Lamb and Retherford measured these small split-
tings by using an ingenious method. They bombarded hydrogen atoms
with electrons and selected those atoms, which are put in the metastable
22S1/2 state by this process. The metastable atoms are detected using
the fact that when they reach a metal surface, the metal ejects electrons.
A measure of the ejected electron current gives an idea of the number
of metastable atoms reaching the metal. If during their passage to the
metal, the metastable atoms are subjected to radio frequency radiation
having an energy corresponding to the energy difference between one
of the Zeeman components of 22S1/2 and any component of the P lev-
els, the metastable atoms will absorb the radio frequency radiation and
make transitions to the P states. This will result in lower numbers of
metastable atoms reaching the metal plate, and consequently, the ejected
electron current will diminish. Through such measurements, they were
able to measure the energy differences between the 22S1/2, 22P1/2 levels
and found that the 22S1/2 state lies above the 22P1/2 state by 0.033cm−1

(about 1,000 MHz). The shift in the 22S1/2 level relative to the 22P1/2
level was clearly established which is in contradiction to the degener-
acy required in Dirac’s theory. This measurement indicated that there
were further corrections that needed to be made to Dirac theory to get
agreement with experiment.

Dirac’s theory of the hydrogen atom treats the interaction between
the proton and the electron through the static Coulomb potential. The
actual interaction which is generated through the exchange of photons
between the electron and the proton gives corrections to the static Cou-
lomb potential. These corrections are in general called quantum elec-
trodynamic corrections. Efforts to obtain these contributions were beset
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with divergence difficulties. The first theoretical calculation of the Lamb
shift was done by Bethe [239] treating the interaction between the elec-
tron and the radiation nonrelativistically. He calculated the correction
as a difference between the interaction energies of the bound electron
with the radiation field and that of the free electron of the same kinetic
energy interacting with the radiation field. For the case of the free elec-
tron, one gets a contribution which is interpreted as a contribution to
mass of the electron. He found the resulting difference in nonrelativistic
radiation theory. It was still logarithmically divergent. He obtained a
finite result by cutting off the spectrum of the radiation at the electron
rest energy mc2, anticipating that a full relativistic treatment would
give a result not too different from what he got. (This has been borne
out by a number of subsequent calculations.) The calculated Lamb shift
was in very good agreement with the measured value. The applicability
of quantum electrodynamic corrections to physical processes was thus
established.

Lambda Hyperon
The Λ hyperon is an electrically neutral unstable particle with a mass
higher than the proton, and is observed to decay into a proton and a
negative pion. Historically, it was discovered in cosmic ray studies us-
ing cloud chambers, in which the decay products left V-shaped tracks
and, hence, were called V particles. With the building of high energy
accelerators in mid to late 1950’s, large numbers of these particles could
be produced in the laboratory enabling a detailed study of their prop-
erties. Such studies showed that these particles are readily produced
in association with another particle, known as the kaon (see also un-
der “Associated Production” and under “Kaons”). An example of the
production reaction is π− + p → Λ0 +K0

The known properties of the Λ particle may be summarized as fol-
lows. Its mass is MΛ = 1115.683 ± 0.006 MeV, lifetime τΛ = (2.632 ±
0.020)×10−10 s. It is assigned a baryon number B = 1, an isotopic spin
I = 0, as there are no other particles which are close in mass to it, and a
strangeness S = −1; it is produced in association with another particle
K0 (in π−p collisions), which is assigned strangeness S = +1. Some of
its decay modes are

Λ0 → p+ π− (63.9%),

Λ0 → n+ π0 (35.8%),

Λ0 → n+ γ (1.75× 10−3),

Λ0 → p+ e− + ν̄e (8.32× 10−4).
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The β decay of the Λ0 is considerably slower than what we would get
if we assumed that the matrix elements for the decay were the same as
those for the neutron. This was resolved by Cabibbo by introducing the
notions of the ∆S = ∆Q and the ∆I = 1/2 rules and the Cabibbo angle.
(See also discussion under “Cabibbo Angle” and under “Hyperons—
Decay Selection Rules”.)

Its spin J has been determined by the following general method which
is applicable to any particle which decays into a nucleon and a pion.
Consider the Λ0 produced in the reaction π− + p → Λ0 +K0, with the
Λ0 subsequently decaying to π− + p. Let us go over to the rest frame
of the Λ0 and consider its decay in that frame. Let us take the incident
pion to be in the x direction. We define a plane given by the direction
of the momentum vector of the incident pion and that of the Λ0, and
define the normal to this plane as the z axis. Let us take this axis as the
quantization axis. Let θ be the angle between the direction of the decay
proton in Λ0 rest frame and the quantization axis. Then we may use a
result derived by Lee and Yang [240] for the case of a particle X of spin
J decaying into a nucleon and pion, X → N + π. They proved that

|〈cos θ〉av| ≤ 1
2J + 2

.

Further, if the decay angular distribution depends only linearly on cos θ,
then

|〈cos θ〉av| ≤ 1
6J

.

Experimentally it was found that in the case of Λ0 decay, the angular
distribution A(θ) is linear in cos θ and |〈cos θ〉av| � 0.19 [241]. Thus we
can immediately conclude that the spin of Λ0 is 1/2.

The intrinsic parity of Λ0 is defined, by convention, to be the same
as that of the nucleon. Since the nucleon is assigned positive parity, the
parity of Λ0 is positive. Hence it is a JP = (1/2)+ particle. In terms of
the constituent quark model, quark composition of Λ0 is uds.

Λ(1405S01) Resonance
Evidence for Σ−π resonance was obtained first by Alston et al. [242], us-
ing the hydrogen bubble chamber technique at the LBL-Bevatron using
1.15 GeV/c beam of K−. The reactions studied were

K− + p → Σ± + π∓ + π+ + π−,

K− + p → Σ0 + π0 + π+ + π−,

K− + p → Σ± + π∓ + π0.
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When a plot of the invariant mass distributions of Σ+π− and Σ−π+ were
examined, a clear peak was found (with no corresponding peak in doubly
charged members Σ+π+ or Σ−π−), at 1405 MeV, with a width of about
35 MeV. Since those original measurements, most recent compilations
give a mass of M = 1407± 4 MeV and a width Γ = 50± 2 MeV.

The spin was determined by an analysis of the angular distribution
and the polarization of Σ+ in the decay Λ(1405) → Σ+ + π−, with the
Σ+ subsequently decaying into p+ π0.

The intrinsic parity of this particle is not fixed by these considera-
tions; it could be odd or even. It is indirectly fixed from the following
information. Analysis of K̄-N scattering data at low energies suggests
the possibility of the occurrence of K̄-N bound state in the absence of
any other channels. If the Σ -π channel is available to it, the K̄-N bound
state will not be stable but will appear as a resonance in the Σ -π sys-
tem. If this resonance is a reflection of the K̄-N bound state, the parity
should be odd, as the K̄ has odd parity and the bound state occurs in
the zero angular momentum state. Thus Λ(1405S01) has spin 1/2 and
is assigned odd parity, JP = (1/2)−. In terms of the quark model, this
resonance is an excited state of the uds system.

Many other Λ resonance states are known: Λ(1520)D03, Λ(1670)S01,
Λ(1690)D03, Λ(1800)S01, Λ(1810)P01, Λ(1820)F05, Λ(1830)D05,
Λ(1890)P03, Λ(2100)G07, Λ(2110)F05, Λ(2350)H09. Details about these
states can be obtained from the full “Review of Particle Physics” [62].

Λb, Λc

These particle states, the Λ-beauty baryon (Λb) and the Λ-charm baryon
(Λc), are best understood in terms of their quark model compositions.
If the strange quark s in the uds combination is replaced by the charm
quark c, one gets the Λ+c baryon with isospin 0. If one replaces, the
strange quark s in the uds combination by the b quark, one gets the
Λ0b state. One can envisage there would also be excited states of these
quark combinations. Many of these have also been seen in experiments.
The spin of the ground states have not been obtained from experimental
measurements as yet. A spin of 1/2 is assigned to them on the basis
of the quark model. For further details regarding these particle states,
reference may be made to the full “Review of Particle Physics” [62].

Large Hadron Collider (LHC)
The Large Hadron Collider, abbreviated LHC, is a new accelerator under
construction at CERN to look at elementary particle physics processes at
an energy which has not so far been achieved anywhere. The successful
operation of the Large Electron Positron (LEP) collider at CERN turned
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up very accurate data, which were sensitive to phenomena beyond the
reach of its highest energies. To explore this region and beyond, one
needs even higher energy machines. There are many indications from
the data so far obtained that some of the fundamental questions to be
answered lie in around the 1 TeV energy region. The Large Hadron
Collider is being built to cover this region of energies.

To keep costs as low as possible, the LHC is being designed to share
the same 27 km tunnel that the LEP machine used, and will also use all
the particle sources and pre-accelerators that were already in place serv-
ing other projects. The LHC will incorporate some of the most advanced
superconducting magnet technology and accelerator principles and will
require great ingenuity on the part of the physicists and engineers. It
will be so designed that, in addition to looking for phenomena predicted
by current trends in theories, it will also be able to cope with surprises
that may arise and be able to probe in new directions.

The accelerator is designed to collide beams of 7 TeV protons on
beams of 7 TeV protons, for an energy in center of mass of 14 TeV.
At the collision points, the beams must be designed to have brightness
exceeding anything so far achieved so that the experiments will have
high interaction rates. The accelerator is designed also to be capable
of accelerating heavy ions such as lead, with center of mass energies
exceeding 1250 TeV. The LHC, in its heavy ion accelerating capabilities,
is designed to reach energies a factor of 30 greater than that achieved
at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National
Laboratory.

Some of the challenges that the designers will have to face may be
summarized as follows.

• The luminosity of LHC must reach 1034cm−2s−1. To achieve this,
each of the proton rings will be filled with 2835 bunches, each
bunch containing 1011 protons. Such large beam currents in an
environment of superconducting magnets working at temperatures
close to absolute zero will be a big challenge.

• At the collision points, the effects of beam-beam interaction will
put limits on the extent to which the beam intensities can be in-
creased without affecting their lifetimes. The LHC will operate at
the highest possible limit that this imposes.

• The bunches in the beams leave wake-fields which affect the bunches
that follow. Any small disturbance in the bunch will perturb suc-
ceeding bunches and under certain conditions these perturbations
could get amplified. The instabilities caused by such collective ac-
tion must be carefully controlled. This has to be done by suitably
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controlling the electromagnetic fields in the environment surround-
ing the beams.

• The aim is to store the beams for some ten hours of operation. Dur-
ing this time the particles make many millions of revolutions. The
amplitudes of their oscillations about their central orbit must be
carefully controlled. Beam-beam interactions may introduce non-
linear components in the guiding and focusing fields which may
lead to the onset of chaotic motion. Since no theory can predict
chaotic motion accurately, computers are used to track many par-
ticles, step by step, through the many thousands of magnets, for
a million turns. These results define tolerences for the quality of
the magnets under design and production.

• A very efficient collimation system has to be designed so that beam
losses to the beam pipe wall will not occur. Otherwise, the beam
particle energies converted into heat in the surrounding material
will induce a quenching of the superconducting magnets and stop
operation of the machine for long periods of time.

• The lattice of magnets in LHC has to be designed so as to have flex-
ibility for undergoing changes and upgrades as may be demanded
in the future due to unexpected phenomena.

• The synchrotron radiation loss suffered by the protons in LHC,
although not high, still will have to be taken care of. The power
emitted is about 3.7 kW, much of which will be absorbed as heat
by the beam pipe which is at a very low temperature. The re-
frigeration system to provide cooling has to take this heat load
into account. The ultraviolet light of the synchrotron radiation
also releases adsorbed molecules from the beam pipe wall, which
will increase the gas pressure in the beam pipe with consequent
degrading effects on the beam. The system has to be designed to
cope with these effects.

• The LHC magnets will be operated at 1.9◦K. This puts a demand
on the coil cable quality and its assembly, which is quite unusual.
To meet these demands special cables, capable of carrying 15,000
amps at 1.9◦K, and with the ability to withstand the large mag-
netic forces as the magnetic fields rise, are being constructed.

Four large detectors will be constructed to look at the products of the
collisions at four interaction points. These are: (1) ATLAS (A Toroidal
LHC Apparatus), (2) CMS (Compact Muon Solenoid), (3) ALICE (A
Large Ion Collider Experiment), and (4) LHCb (CP violation studies in
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B-meson decays at LHC). These gigantic detectors are under construc-
tion at present.

Left-Right Asymmetry
At SLC, a polarized electron beam is available and has been used to
measure precisely the parity violation asymmetry A,

A =
σR − σL
σR + σL

,

where σR and σL are the cross sections for the deep inelastic scattering
of a right- and left-handed electrons, respectively, eR,L+nucleon → eX.
The left-right asymmetry ALR = −A. These quantities depend upon the
weak mixing angle θW through sin2 θW , and a precision measurement of
the asymmetry, leads to a precision determination of the weak mixing
angle. For details on the values of sin2 θW , please see “Review of Particle
Physics” [62].

Leptons
Leptons are particles which participate only in processes which involve
the electromagnetic and weak interactions. They do not have strong
interactions. Presently, three families of leptons are known: (1) the
electron family, consisting of the electron (e−) and its neutrino (νe);
(2) the muon family, consisting of the muon (µ−) and its neutrino (νµ);
and (3) the tau family, consisting of the tau lepton (τ−) and its neutrino
(ντ ). The electron, the muon, and the tau come in both charge states,
negative as well as positive. The postively charged particles, the posi-
tron, the positive muon, and the positive tau, along with their associated
antineutrinos, are the antiparticles of the lepton families.

The leptons are all established to be particles of spin 1/2. The masses
of the charged leptons are also measured in various experiments: me =
(0.51099907 ± 0.00000015) MeV, mµ = (105.658389 ± 0.000034) MeV,
mτ = 1777.05 MeV. The electron is a stable lepton. The muon and the
tau are unstable and decay with lifetimes (2.19703±0.00004).10−6 s, and
(290.0 ± 1.2).10−15s respectively. The negative muon is found to decay
as µ− → e− + ν̄e + νµ, while the negative tau has many decay modes
involving hadrons in the final state as well as leptonic decay modes.
τ− → e− + ν̄e + ντ and τ− → µ− + ν̄µ + ντ each account for about
17% of the decays, the rest being decays to hadrons. The masses of the
neutral leptons, the neutrinos, are not very well known experimentally.
Only limits are available: mνe < 3 eV, mνµ < 0.17 MeV, mντ < 18.2
MeV. Current theoretical ideas take the mass of every neutrino species to
be zero; clearly this is an area in which theory may have to be modified
with discovery of new phenomena involving neutrinos, such as neutrino
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flavor oscillations. Initially, the name lepton was given to indicate that
these particles are light. The name lepton continues in spite of the fact
that the tau lepton is more massive than the proton.

We now give a brief historical survey of how we know the facts men-
tioned in the previous paragraphs. The first of these leptons, the elec-
tron was discovered by J. J. Thompson in cathode rays (see section
under “Cathode Rays”). It has negative charge and intrinsic spin 1/2
as known from atomic spectroscopic measurements. Dirac’s relativistic
theory of the electron necessitated the introduction of the positron, to
give a physical interpretation to the negative energy solutions of the
Dirac equation. The positron was discovered by Anderson (see section
under “Dirac Equation”) in 1932. The muon was discovered by Nedder-
meyer and Anderson [243] and by Street and Stevenson [244] in 1937.
When the muon was found, it was at first thought to be the particle
postulated by Yukawa [113], whose exchange between nuclear particles
generated the short range strong nuclear force. This idea had to be
abandoned because it was soon realized that if the muon was responsi-
ble for the strong nuclear force, it should have a lifetime many orders
smaller than its actual lifetime. The confusion in this state of affairs
was resolved with the discovery by Powell and his collaborators in 1947
of another particle, the pion, in nuclear emulsions exposed to cosmic
rays [245]. This particle seemed to be produced in abundance in cosmic
rays and could well fit the profile of the particle required by Yukawa. An
estimate of its mass put it also around 300 times the electron mass. Evi-
dence that this particle was unstable and decayed into a pair of particles,
one of which was charged and the other neutral, was also obtained in
the nuclear emulsion studies. The charged particle from the decay had a
unique energy, which was evidence for a two body decay. What was seen
was interpreted as π− → µ− + ν decay, where the neutral particle was
a neutrino. Other spectacular nuclear emulsion pictures showed, along
with the pion decay, the decay of the muon also, leading in the end to an
electron and missing energy. In the case of the muon decay, the decay
electron was seen to have a distribution of energy, so it had to involve
at least three particles in its decay products: µ− → e− + ν + ν. So the
sequence π− → µ− + ν, µ− → e− + ν + ν was seen. With the advent of
accelerators, pions were copiously produced and their properties as well
those of the muon could be studied much more accurately than could be
done with cosmic rays.

The tau lepton was discovered by Perl et al. in 1976 in e+e− an-
nihilation at the SLAC 8.4 GeV electron positron collider [246]. They
found anomalous eµ events with missing energy in electron-positron an-
nihilation, accompanied by no other charged particles or photons. They
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suggested that these events could be explained, if as a result of the
electron-positron annihilation, a pair of heavy leptons were produced,
each of which decays into electron (or muon) plus neutrals (neutrinos).
They provided a preliminary estimate of the mass of the heavy lepton as
in the range 1.6 to 2.0 GeV. Since that first discovery much more precise
work has been done on the tau lepton and the mass and lifetime quoted
above arise from these further studies.

Now let us turn our attention to the neutral leptons, the neutrinos.
Neutrinos are particles which were introduced to explain the continuous
energy distribution of electrons from the beta decay of a nucleus. A
fundamental beta decay is that undergone by the neutron: n → p +
e− + ν̄e. The shape of the energy spectrum of the electron at its end
point is in principle sensitive to the mass of the electron neutrino. In
practice, this study is made problematic because of the extremely small
number of particles at the end point of the spectrum. The results are
consistent with the electron neutrino mass being zero. A very large effort
has been put in the measurements of the tritium beta spectrum, and it
is these that put the limit on the electron neutrino mass as being less
than 2.8 eV (see further under “Neutrino Mass”).

We have been distinguishing between neutrinos and antineutrinos
and we also know now that neutrinos belonging to different families
are different. We now go into the observational reasons which make
these necessary. First, how do we know that neutrinos and antineutrinos
are distinct? Conventionally, we have associated an antineutrino with
e− beta decay, and the neutrino with e+ beta decay. From a nuclear
reactor we get lots of antineutrinos as a result of the e− beta decay of
fission products. Reines and Cowan [247] performed an experiment to
detect the antineutrinos from the reactor by absorbing them in a large
tank of water and looking for positrons produced by the inverse beta
process: ν̄e + p → n + e+. To increase the signal to noise ratio, they
detected both the positrons by their annihilation pulse and the neutron
by the delayed neutron capture gamma rays on protons produced after
the known neutron slowing down time of a few microseconds.

The success of this experiment suggests another which is obtained by
using crossing symmetry on the inverse beta process considered in the
previous paragraph: νe+n → p+e−. This should occur at the same rate
as the other. Now if the antineutrino and neutrino are the same particle,
the reaction ν̄e + n → p + e− should also occur at the same rate. An
experiment incorporating this idea is the reaction 37Cl(ν̄, e−)37Ar, where
the initial neutron is bound in the chlorine nucleus. Davies set up a large
tank containing a large amount of carbon tetrachloride and irradiated it
with antineutrinos from the reactor at Brookhaven National Laboratory
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and attempted to measure the number of argon atoms produced as a
result of the reaction [248]. Knowing the flux of the antineutrinos from
the reactor, he could estimate the number of argon atoms to be produced.
He found that the cosmic ray backgrounds were such that he could not
definitely establish whether the reaction did occur at the expected rate.
Even with better shielding from cosmic rays, he did not detect any argon.
On the other hand, he was successful in detecting neutrinos from the sun
by using the same radiochemical method. This strongly suggested that
the neutrino and the antineutrino are distinct particles.

This is what one would expect from the idea of associating a number
called the lepton number to the leptons and demanding conservation of
lepton number in reactions [249]. Associate a lepton number l = +1
to the electron, the negative muon, and the neutrino, and l = −1 to
the positron, the positive muon, and the antineutrino, and l = 0 to
all other particles. Conservation of lepton number allows the reaction
n → p+e−+ν̄, because total l = 0 on both sides, whereas, n → p+e−+ν
cannot occur, because l = 0 on the left-hand side, but l = 2 on the right-
hand side. The pion decays will be: π− → µ− + ν̄ and π+ → µ+ + ν
in accordance with l = 0 on both sides. The muon decay which we
thought involved two neutrinos, should really be µ± → e± + ν + ν̄,
with the lepton numbers balancing on the two sides. The neutrino and
the antineutrino are distinguished by the opposite values of the lepton
numbers they carry.

Now we come to the question of why we distinguish between the
neutrinos associated with electron, muon, etc. A reaction which can
occur is the two body decay of the muon: µ− → e−+ γ. This decay has
been looked for but has not been found. The earliest effort to look for
this decay was made by Hincks and Pontecorvo [250]. Since then many
more sensitive experiments have been done and have failed to see this
mode. These failures seem to imply that the muon has another property,
which the electron does not have. However, the muon does decay into an
electron, a neutrino, and an antineutrino—so how can we reconcile these
two facts? A reconciliation is possible if we require that the neutrino
associated with the electron, νe, and the one associated with the muon,
νµ, are different. Making a variation on the previous assignments, let
us associate a lepton number with each family [251]. Thus, if we let
le = +1 for e− and νe, lµ = +1 for µ− and νµ, le = −1 for e+ and
ν̄e, and lµ = −1 for µ+ and ν̄µ, we can rewrite the muon decay that is
observed as: µ− → e− + ν̄e + νµ. This reaction has the same value of
le = 0 and lµ = +1 on both sides. The conservation of lepton number
must now be refined to the statement of separate conservation of electron
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lepton number and muon lepton number, respectively. With such a law,
the decay µ− → e−+γ does not occur, because the muon lepton number
and the electron lepton numbers are not conserved. According to this,
the neutrino in the negative pion decay is ν̄µ: π− → µ−+ ν̄µ, while that
associated with positive pion decay is νµ.

The experimental evidence that the neutrino associated with the elec-
tron is different from that associated with the muon, came from the
observation of high energy neutrino reactions with matter [252]. The
high energy neutrinos (antineutrinos) were obtained from the decay of
pions π± → µ± + (ν/ν̄) at the Brookhaven AGS. If these neutrinos
and antineutrinos carry muon lepton number, they should produce only
muons and no electrons. The reaction studied was the bombardment of
aluminum with the muon neutrinos (or antineutrinos). The expectation
was that µ− (or µ+) and no electrons (or positrons) should be seen.
Indeed, this is exactly what was found. Thus it was established that the
electron neutrino is different from the muon neutrino. Extending this,
the tau family will also have its own lepton number lτ which should also
be conserved separately.

Lifetime of Particles
Most of the elementary particles seen in nature are unstable and decay
into other particles. In the lepton family, only the electron (and the
positron in isolation) are known to be stable particles. The nature of
the neutrino associated with the electron is at present under intense
scrutiny—it is possible that it undergoes oscillations into other flavors
of neutrinos. In the hadron family, only the proton (and the antiproton
in isolation) are probably stable. All other particles decay into lighter
particles, unless some law of conservation forbids the decay. The decay is
characterized by a lifetime. The lifetime, the usual symbol for which is τ ,
is related to the quantity called half-life, T1/2, familiar from radioactive
decays. If we start with N unstable particles which can decay, then T1/2
is the mean amount of time it takes for N/2 particles to decay. It is
related to the lifetime by: T1/2 = (ln 2)τ = 0.6932τ .

There is a characteristic mean lifetime τ associated with every parti-
cle. As examples, for the muon we have a mean lifetime τµ = 2.2×10−6s,
for the charged kaons τK+ = 1.24 × 10−8 s, and for the neutral pion
τπ0 = 8.4 × 10−17 s. When they decay, they may have several modes
of decay, the number in each mode being a certain fraction, called the
branching ratio, of the total number of decays. Thus for example, in K+

decays, a fraction � 64% decay into µ++ νµ, and a fraction � 21% into
π++π0. One of the objectives of the theory is to calculate the branching
ratios and the lifetime for each type of particle.
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The decays of most elementary particles are governed by three of the
four fundamental forces: weak, electromagnetic, and strong. The fourth
force, gravitation, does not seem to play a role. Which of these three
forces might be involved in a given decay can generally be figured out by
looking at the magnitude of the lifetimes. Generally, weak interaction
lifetimes fall in the range 10−13 s to 15 minutes, while electromagentic
lifetimes are of order 10−16–10−17 s, and strong interaction lifetimes are
of order 10−23 s. The longer weak interaction lifetimes, such as 15 min-
utes, are either a reflection of the fact that the energy difference between
the decaying particle and the decay products is very small or that some
other conservation law such as conservation of angular momentum is
operative.

Theoretically lifetimes are obtained by calculating the probability
per unit time that the system will make the transition from the initial
to the final state. This probability depends on a product of two fac-
tors, the square of the matrix element for the transition and the density
of final phase space available for the products of the decay, consistent
with kinematic conservation laws. The size of the matrix element for
the transition depends on which of the weak, electromagnetic, or strong
interaction Hamiltonian is used for providing the decay interaction. The
larger the energy difference between the initial and final states, the more
phase space is available and therefore the higher the probability for the
decay. The lifetime is obtained by taking the reciprocal of the total prob-
ability for the decay of the particle into all its modes, and the branching
ratio is the ratio of the probability for a particular mode relative to the
total probability.

Through the use of the uncertainty principle, a lifetime for a particle
can be expressed in terms of a finite width associated with the energy
level of the particle. Thus the larger the width, the larger the probability
per unit time for the system to decay, and the shorter the lifetime for
the particle. One can define partial widths for the different modes of
decay, and the total width must be the sum of the partial widths. The
branching ratio of a particular mode is then expressible as the ratio of
the partial width for that mode relative to the total width. These widths
are expressible in energy units of MeV or GeV.

Light-Front Field Theory
A Hamiltonian approach to relativistic quantum field theories based on
quantizing on the light-front, instead of with equal time commutators,
was proposed by Dirac in 1949 [253]. States in this formalism are de-
fined on the light-cone, instead of on the usual constant time surface
(x0 =const), and evolve along the x0 = x3 direction instead of in x0,
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where x3 is the third component of the coordinate point. Dirac pointed
out that there may be several advantages in treating field theories on
the light-front. We explain these briefly here.

We know that any dynamical theory which describes interacting par-
ticle systems should satisfy the principles of special relativity. Inertial
reference frames are related to one another by inhomogeneous Lorentz
transformations of the form,

x
′µ = aµνx

ν + bµ,

where x and x′ are the four-dimensional coordinates of the same event
in the two different frames. The quantities aµν and bµ which represent
the transformation form a group that is known as the Poincaré group.
We will focus attention on the proper subgroup of the inhomogeneous
Poincaré transformations which includes only the continuous coordinate
transformations and does not contain time reflections or space reflec-
tions.

For quantum mechanical systems, the state of the system with un-
primed coordinates, |Ψ〉, is related to the state of the system with
primed coordinates, |Ψ′〉, by a unitary transformation U(a, b): |Ψ′〉 =
U(a, b)|Ψ〉. Focusing attention on infinitesimal transformations, we may
write aµν = gµν + εµν , and bµ = εµ, where gµν is the metric and the ε’s
are infinitesimals. The infinitesimal form for the unitary transformation
is

U(a, b) = 1 + iεµPµ − i

2
εµνMµν ,

where Pµ are the four-momentum generators and Mµν are the angu-
lar momentum (and boost) generators. Considering the fact that two
successive transformations, (a, b) followed by (a′, b′), are equivalent to a
single transformation, (a′′, b′′), the U ’s satisfy the multiplication law,

U(a′′, b′′) = U(a′, b′)U(a, b).

This implies that the generators satisfy the following commutation rela-
tions:

[Mµν ,Mρσ] = i(gνρMµσ − gµρMνσ + gµσMνρ − gνσMµρ)

[Pµ, Pν ] = 0, [Pµ,Mρσ] = i(gµρPσ − gµσPρ).

It was pointed out by Dirac that for interacting fields there is no
unique way for including interactions in these generators. The only re-
quirement is that, whatever way the interactions are added to the gener-
ators belonging to free fields, the above commutation relations must still
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be satisfied. In the nonrelativistic case, it is possible to add an interac-
tion to the generator of time translations (Hamiltonian) only and have all
the commutation relations satisfied. In the relativistic case, however, the
commutation relations above can be satisfied only by adding interaction
terms to more than one generator. It is a matter of choice which gener-
ators we choose to call dynamical (that is, which contain interactions)
and which kinematical (that is, which do not contain interactions).

Based on these considerations, there are several possible kinematical
surfaces which can be constructed. We consider two of these: (1) instant
form surface, x0 =const, and (2) the light-cone surface, x0 + x3 = 0.

Of these more familiar choice is the instant form (equal time dy-
namics) in which one adds the interaction to the Hamiltonian P0. The
system evolves in the time variable x0. The physical quantities defined
at an instant of time that are left invariant are the generators of space-
translations (three-momenta), Pi, i = 1, 2, 3, and the generators of rota-
tions (angular momenta), J1 =M23, J2 =M31, J3 =M12, for a total of
six kinematical quantities. The remaining four generators are dynami-
cal, which evolve the system away from the surface x0 =const: the three
rotationless boosts, Ki =M0i, i = 1, 2, 3, and the Hamiltonian H = P0.

Dynamics based on the light-cone as the invariant surface is referred
to as light-front dynamics. Dirac showed that this form has the largest
number of kinematical generators, namely seven. This is one of the ad-
vantages mentioned previously. The light-front coordiantes are defined
by

(x+, x1, x2, x−) ≡
(
x0 + x3√

2
, x1, x2,

x0 − x3√
2

)
.

The seven kinematic generators are

P+, P 1, P 2, J3,K3,
K2 − J1√

2
,
K1 + J2√

2
.

Here the transverse components of angular momenta are mixed with
transverse boosts. Hence, unfortunately, manifest rotational invariance
is lost. The dynamical generators, which evolve the system away from
the initial surface x+ = 0, are

P−,
K1 − J2√

2
,
K2 + J1√

2
.

P− is the light-front Hamiltonian, canonically conjugate to the light-
front time x+.

Besides having seven kinematic generators, a major advantage of the
light-front formulation of field theory is that the vacuum state of the
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theory is the physical vacuum state for massive particles. If M is the
mass of a state, then since P 2 = 2P+P− − P 21 − P 22 = M2, both P+

and P− are positive for positive energies, so momentum conservation
forbids pair creation from the vacuum. This means the vacuum does
not have to be “renormalized” by effects of disconnected pair-creation,
pair-annihilation processes as in the instant form.

Another connection to employing light-front coordinates is found in
the use of infinite-momentum frames, where the coordinate system is
boosted along the third axis (the longitudinal direction) to the speed of
light. In these frames the motion of the particles is essentially along the
x0 = x3 direction. However, it must be emphasized that use of light-
front coordinates is not equivalent to boosting the system to the infinite
momentum frame.

A formulation of non-perturbative QCD, based on the light-front for-
mulation and applicable to bound-state problems, has been given in a
paper by Wilson et al. [254]. It outlines a broad program of deriving
effective Hamiltonians from QCD at any low momentum scale and treat-
ing non-perturbative effects. There are formidable problems to be solved
in connection with the infrared problems inherent in this method.

Lightest Supersymmetric Particle
If there is conservation of R-parity, one expects that the heavy super-
symmetric particles will decay to lower mass supersymmetric particles,
and the lowest mass state cannot decay any further without violating
the R-quantum number. Hence, it will be stable. (See further under
“Supersymmetry”.)

Livingston Plot
Since the early 1950’s, when efforts were made to construct charge par-
ticle accelerators in the laboratory, there has been a phenomenal growth
in the highest energy achieved by the accelerators. It has been noticed
that roughly every 7 years, the highest energy reached by the acceler-
ators has increased an order of magnitude. This can be dramatically
exhibited in a plot called the Livingston Plot in which the abcissa rep-
resents the years and the ordinate represents the energy reached by the
accelerators. A Livingston Plot for the years starting from 1960 onward
is shown in Figure 4.15.

One might wonder how long such a spectacular growth can be main-
tained. It is interesting to note that, with the tremendous progress made
in a succession of technologies, in the same time as the energy of the
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Figure 4.15: The highest energy Ecm achieved (in GeV) plotted as a
function of the year, called the Livingston Plot. (Adapted from Intro-
duction to the Physics of High Energy Accelerators by D. A. Edwards,
M. J. Syphers. Copyright c© 1993 by John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.)

accelerators have increased, the cost per unit energy to produce these
higher energies has actually decreased. With every new accelerator or
collider that has been built, great progress has been made in our quest
toward the understanding of the ultimate structure of matter. At the
same time new questions open up, the answers to which depend on the
construction and operation of even higher energy accelerators. Thus,
there are very good physics reasons why this growth in the energy of the
accelerators must be maintained. Of course, the associated question is
whether further developments in technologies will bring down the cost
per unit energy so that new ventures may still be economically feasible.

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 295

✐

✐

✐

✐

✐

✐

✐

✐

The Large Hadron Collider (LHC) at CERN is the highest energy col-
lider that is under construction at present and is expected to go into
operation by the year 2005. There are also discussions taking place on
the feasibility of building electron linear colliders reaching center of mass
energies of 500 GeV or 1 TeV.

Local Gauge Invariance
See section under “Gauge Theories”.

LSND Neutrino Experiment
The acronym LSND stands for Liquid Scintillation Neutrino Detector.
The experiment was performed at the Los Alamos laboratory and was
designed to search for oscillations of low energy neutrinos. The source of
neutrinos was the 800 MeV proton accelerator with 1 mA intensity. The
neutrinos were detected by 167 tons of liquid scintillator at a distance of
30 m from the source. LSND discovered an excess of events, which if they
were due to neutrino oscillations, would correspond to to an oscillation
probability of 0.3%.

MACRO Detector
This is a tracking detector for magnetic monopoles and for atmospheric
neutrinos.

Magnetic Monopole
In Maxwell’s electromagnetic theory, while isolated electric charges are
admitted, there are no corresponding isolated magnetic poles. Electric
charges are the source of electric fields, while magnetic fields have electric
currents as their sources. An electric current loop of area A, carrying
a current I in it, has a magnetic moment IA, and produces a magnetic
field equivalent to a bar magnet with a north pole and a south pole
of suitable strength, oriented perpendicular to the plane of the area of
the current loop. This basic asymmetry between electric charges and
magnetic poles is a feature of the basic equations of electromagnetism.
Another observational fact about electric charges is that it comes in
integral multiples of a fundamental charge unit. There is no theoretical
explanation for why the electric charge seems to be quantized.

Dirac put forward a new idea concerning the quantization of electric
charge. He showed that the quantization of electric charge can be un-
derstood, if isolated magnetic monopoles exist [255], although he could
not obtain a value for the unit of the monopole. He further showed that
quantum mechanics does not forbid the existence of isolated magnetic
poles. He also discussed why these particles are not observed in nature.
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The idea that electric charge is quantized if an isolated magnetic
pole exists can be understood from the following considerations. Let us
consider the motion of a spinless charged particle of charge e and mass
m, moving far away from a stationary isolated magnetic pole taken as
the origin. The magnetic field at the position of the electric charge a
distance 7x from the origin is 7B = g(7x/x3), where g is the strength of the
magnetic pole. The equation of motion of the charge in the field of the
magnetic monopole is

m
d7v

dt
= e(7v × 7B) = eg7v × 7x

x3
,

where 7x and m7v are the operators of position and momentum, respec-
tively, and the right-hand side of this equation must be understood to
mean the symmetrized product. The operators of position and momen-
tum have the usual commutation relations,

[xk,mvl] = iδkl.

The conserved angular momentum vector 7J can be derived to be,

7J = 7x×m7v − eg
7x

x
.

It is the operator for the generation of rotations.
Let us now consider the wave function of the electric charged par-

ticle in some state represented by the coordinate space wave function
ψ(7x, t). Let us carry out an infinitesimal rotation of the coordinate sys-
tem about the axis given by the direction of 7x, δ7ω = x̂δφ, where δφ
is the infinitesimal rotation angle. The operator generating rotation on
the wave function is δ7ω · 7J = −egδφ. For a finite rotation through an
angle φ, this results in the transformation of the wave function,

ψ(7x, t) → e−iegφψ(7x, t).

Now it is apparent that the demand of single (or double) valuedness of
the wave function under rotation through 2π implies that the product
eg has to be an integer (or an integer plus 1/2). This has the conse-
quence that, if a magnetic monopole of strength g exists, the charge e is
quantized.

More generally, the topological properties in grand unified theories
can be such that when the gauge group G is broken to a lower group
H at some mass scale M , monopoles may result. Polyakov [228] and ’t
Hooft [227] have discovered that magnetic monopoles exist if H contains
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a U1 factor. The mass of such monopoles is of the order M/α, where α
is the square of the relevant gauge coupling. In SU5 GUTS, for example,
monopoles of mass 1016 GeV exist. In this case, the Higgs field which
breaks SU5 to SU3 × SU2 ×U1 leads to knots in the gauge fields, which
manifest as monopoles. The presence of such monopoles has an impact
on the kinds of grand unification schemes and cosmology, which have
been studied.

Majorana Neutrino
We have seen in Dirac theory of the electron, the electron and the pos-
itron are clearly different particles, being antiparticles of one another.
They are distinguishable by the sign of their charge. There are neutral
bosons, such as the π0 meson, for which the antiparticle is the same as
the particle. The question naturally arises as to whether there is a theory
for a neutral fermion, such as the Dirac theory, in which the antiparti-
cle is the same as the particle. Indeed, that such a theory is possible
was discovered by Majorana [256] in 1937. A choice of representation of
the Dirac matrices is possible so that the Dirac equation is purely real.
Such an equation is suitable for describing a neutral fermion and in this
situation, the charge conjugate (Majorana) fermion is the same as the
fermion.

The question arises as to whether neutrinos are Dirac fermions or
Majorana fermions. Massless fermions have helicity (the projection of
spin in the direction of motion) as a good quantum number and are
described by the Weyl equation. For massive fermions, one can con-
struct chiral projections of left-handed and right-handed chiralities, and
the mass terms in the equation mix the chiralties. Thus for a massive
fermion, helicity eigenstates are different from the chirality states which
are involved in weak interactions. In the standard model of electroweak
interactions, only neutrinos of left-handed chirality νL and antineutrinos
of right-handed chirality νcR interact with gauge fields. Components of
opposite chirality νR and νcL are sterile, in the sense that they do not
participate in weak interactions. If neutrinos are massless, chirality and
helicity are the same, and in weak interaction processes, we cannot pro-
duce neutrinos and antineutrinos of the same helicity in the standard
model. If they have a mass, however, the helicity can be changed by
going into a Lorentz frame by a boost which changes the sign of the
momentum. In this case, we have means of producing neutrinos and an-
tineutrinos with the same helicity and comparing their activities [257]. If
these interact differently, they are Dirac fermions, while if they interact
identically, they are Majorana fermions.
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At present it seems that the only feasible experiment to settle whether
neutrinos are Majorana neutrinos is neutrinoless double beta decay. This
is a process unlike the ordinary double beta decay with emission of two
neutrinos (ββ2ν), which can occur in second order weak interaction
(A,Z) → (A,Z + 2) + 2e− + 2ν̄e and is, therefore, rare. The process of
neutrinoless double beta decay, (A,Z) → (A,Z + 2) + 2e−, is a process
which can occur only if the lepton number is violated by two units, a
departure from the standard model. A mass term which violates lep-
ton number by two units is called a Majorana mass term. Such a term
can convert the νceL emitted with one of the electrons, into a νeL, which
is absorbed at the second vertex where the second electron is emitted.
The amplitude for the process with lepton number change by two units
suffers a strong suppression relative to the two neutrino double beta de-
cay (ββ2ν) but has a larger available phase space for the final particles.
Further, the signal for the final state in the neutrinoless double beta
decay is clean—it will have one peak at the sum of the energies of the
two electrons. (In the case of two neutrino double beta decay, one has
a less clean signal, and the continuous electron spectrum has to be dis-
tinguished from the background.) The chances of seeing a neutrinoless
double beta decay require that the single beta decay of the initial isotope
must be absent or suppressed, and there be a large energy difference (Q
value for the transition) between (A,Z) and (A,Z+2) isotopes. Typical
lifetimes for double beta decays are in the range of 1019 to 1024 years.

A number of experiments have pursued the neutrinoless double beta
decay mode. 76Ge has been examined for ββ0ν decays and has not
been observed. A constraint on the half-life of > 1.9 × 1024 years has
been set from these data at 90% confidence level. This translates into an
effective Majorana neutrino mass < 1.1 eV [258]. An experiment looking
at 136Xe [259] has produced a result > 3.4 × 1023 years which implies
an effective Majorana neutrino mass < 2.8 eV. Improved experiments
are in progress with 76Ge, 136Xe, 100Mo, and 116Cd to reach effective
Majorana mass limits < 0.1 eV.

Mandelstam Representation
Amplitudes for scattering processes are in general complex functions of
energy and momentum transfer. It helps to know the analyticity prop-
erties of the amplitude in both of these variables. There is a conjecture
by Mandelstam [196], based on analysing nonrelativistic scattering prob-
lems and also analyzing a number of Feynman diagrams of perturbation
theory, on the behavior of the amplitude for the process: A+B → C+D,
with masses MA = M1, MB = M2, MC = M3, MD = M4 and four-
momenta PA = P1, PB = P2, PC = P3, PD = P4.
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Before we state the conjecture below, let us introduce the Lorentz
invariant variables,

s = (P1 + P2)2, t = (P1 − P3)2, u = (P1 − P4)2,

which are called the Mandelstam variables (with P 21 = M2
1 , etc.). Only

two of these three variables are independent because of the relation,
s+ t+ u =

∑4
i=1M

2
i between them.

In the center of mass system for the reaction A + B → C +D, s is
equal to E2cm, where Ecm is the sum of the energies of particles A and
B, t represents the square of the momentum transfer between particles
A and C, and u (which is not an independent variable) represents the
square of the momentum transfer between particles A and D. This is
called the s-channel reaction. In the s-channel, s is positive, while, t
and u are negative.

From this reaction, we can form another reaction, A+ C̄ → B̄ +D,
by taking the antiparticle of C to the left-hand side and the antiparticle
of B to the right-hand side. The antiparticles have four-momenta which
are the negatives of the momenta of the particles, P2 → −P2, P3 →
−P3, relative to the s-channel reaction. Hence here s = (P1 − P2)2,
t = (P1 + P3)2, and u = (P1 − P4)2. This channel is called the t-
channel reaction. In this channel, t is positive and represents the square
of center of mass energy of the A, C̄ system, while s and u are squares
of momentum transfers and are negative.

We can form yet another reaction from the above, A+ D̄ → B̄ + C,
by taking the antiparticle of D to the left-hand side and the antiparticle
of B to the right-hand side. Correspondingly here, s = (P1 − P2)2,
t = (P1 − P3)2, and u = (P1 + P4)2. This is called the u-channel
reaction. In this channel, u is positive and represents the square of
center of mass energy of the A, D̄ system, while s and t are squares of
momentum transfers and are negative.

As an example, let us consider the s-channel pion nucleon reaction:
π+ + P → π+ + P . The t-channel reaction is π+ + π− → P̄ + P , and
the u-channel reaction is π+ + P̄ → π+ + P̄ . The t-channel reaction
can be realized in the laboratory by running it in the reverse direction:
P̄ + P → π+ + π−. The u-channel reaction is difficult to realize in the
laboratory; we do not have a target of antiprotons to bombard with a
pion beam.

Now we come to the statement of the conjecture. For any “two par-
ticle to two particle” process, the amplitude can be written as a sum
of terms, each of which involves products of certain factors, say, Dirac
spinors, Dirac matrices, etc., and some functions which are Lorentz in-
variant functions. The Mandelstam conjecture is stated for the invari-
ant functions. Consider one of these invariant functions represented by
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F (s, t, u) of the variables s, t, u. Mandelstam conjectured that these
functions are analytic in the s, t, u plane, with cuts in these variables
determined by generalized unitarity conditions. The Mandelstam repre-
sentation incorporating these cuts is given by,

F (s, t, u) =
1
π

∫ ∞

s0

ds′
f1(s′)
s′ − s

+
1
π

∫ ∞

t0

dt′
f2(t′)
t′ − t

+
1
π

∫ ∞

u0

du′
f3(u′)
u′ − u

+
1
π2

∫ ∞

s0

∫ ∞

t0

ds′dt′
g12(s′t′)

(s′ − s)(t′ − t)

+
1
π2

∫ ∞

t0

∫ ∞

u0

dt′du′
g23(u′t′)

(t′ − t)(u′ − u)

+
1
π2

∫ ∞

s0

∫ ∞

u0

ds′du′
g13(s′u′)

(s′ − s)(u′ − u)
.

Here s0, t0, u0 are the starting points for the cuts in the s, t, u variables,
determined by the generalized unitarity conditions. Such a representa-
tion for the amplitude is very handy in applying dispersion relations to
the physical processes under consideration and the corresponding t- and
u-channel processes.

Mass Generation, Gauge Fields
See sections under “Higgs Mechanism” and “Higgs-Kibble Mechanism”.

Massive muon pairs
See section under “Drell-Yan Mechanism”.

Mesons
Mesons are strongly interacting particles. The name meson was coined
to describe a particle with mass intermediate between that of the elec-
tron and the proton. The meson was first introduced by Yukawa [113]
in an attempt to explain the short range nature of the strong nuclear
force. According to Yukawa, quanta with masses about 300 times the
electron mass, exchanged between the nuclear particles, could generate
a nuclear force with a range of about 10−13 cm. When the muon (origi-
nally named the µ-meson) was discovered in cosmic rays with a mass of
about 200 times the electron mass, it was first wrongly identified with
the particle postulated by Yukawa [113]. The discovery of the “pi” (π)
meson in cosmic rays using the nuclear emulsion technique by Powell and
collaborators, who also obtained pictures showing the sequential decay
of the π meson into the muon and that of the muon into an electron,
showed clearly that there was more than one particle with mass between
that of the electron and the proton. Soon it was established that it was
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the π meson and not the muon that had the right properties to partic-
ipate in the generation of short range nuclear interactions as suggested
by Yukawa.

Further studies of cosmic ray events showed that there were other
mesons with masses larger than those of the π mesons. They had
masses of about 1,000 electron masses. Some decayed into two π mesons
while others decayed into three, leaving V-shaped tracks in the record-
ing medium. For this reason, they were referred to as V particles at the
time. Some V particles were found to be even heavier than the proton
and to decay into a proton and a π meson and, hence, could not be
identified as mesons. Clarifications as to the nature of these V parti-
cles had to await the building of high energy accelerators, with which
one could produce, much more copiously, the events seen in cosmic rays.
Such studies eventually lead to an understanding that there were two
kinds of V particles. The ones that decayed into a proton and π meson
(classified as baryons or heavy particles) and those that decayed into
π mesons only (classifed as mesons) were produced in association with
one another. This property of association was encoded in terms of a
property of these particles known as strangeness. The π mesons were
called non-strange mesons, while the new V particles, which decayed
into π mesons (and lighter than a proton), were called strange mesons.
The strange mesons were then known as K mesons. With further de-
velopment of high energy accelerators and detection techniques, literally
many hundreds more strongly interacting particles, both baryons and
mesons, were produced. Gradually the names pions and kaons came to
be adopted for the π and the K mesons, respectively.

Clearly not all these particles could be classed as fundamental. A way
had to be found to understand them in terms of excitations in a more
fundamental system. The founding of the constituent quark model by
Gell-Mann and Zweig showed that this could indeed be done. According
to this model, the baryons are composed of three quark combinations,
while the mesons are composed of quark-antiquark combinations. The
three quark and the quark-antiquark combinations could exist in a num-
ber of states of excitation and these could be the hundreds of strongly
interacting particles being seen. Initially, only three types of quarks were
introduced, the u, d, and s (“up”,“down”, and “strange”). Now the stan-
dard model envisages the existence of six quarks: (u, d) (c, s) (t, b), where
c is the charm quark, t the top quark, and b the bottom quark. Briefly, we
review the properties of these quarks: u, c, and t carry charge +(2/3)e,
while d, s, and b carry charge −(1/3)e, and each quark carries a baryon
number (1/3). Bound state combinations can be formed from these and
the antiquarks. Because quarks carry a spin of 1/2, the lowest bound
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states would be classified as 1S0 and the 3S1 states with total baryon
number zero. These could be identified with the pseudoscalar and vector
mesons. Higher excited states could come from higher orbital angular
momenta between the quark and antiquark. The quarks also carry a
quantum number called color, and the color dependent forces are such
that only color neutral (color singlet) combinations manifest as mesons.
Thus now, in addition to nonstrange and strange mesons, we can have
charm mesons, bottom mesons, etc., if the quarks in them are charm,
bottom, etc., respectively. The “Review of Particle Physics” [62] lists
many of these meson states and their quark constitutions and various
detailed properties such as rates of transition between various states. It
is a rich source of information on mesons.

Minimal Supersymetric Standard Model (MSSM)
This model is an extension of the standard model [260]. It assumes
B−L conservation, where B and L are baryon number and lepton num-
ber, respectively. The supersymmetric partners of the standard model
particles are added to the standard model particles. The Higgs sector for
the standard model has one complex doublet with hypercharge Y = 1
capable of giving mass to u-type quarks. (There the conjugate doublet,
with hypercharge Y = −1, gives rise to mass for the d-type quarks.) In
the supersymmetric theory, the conjugate doublet is not allowed, and
one needs to have two complex Higgs doublets, one with hypercharge
Y = +1 and another with Y = −1, in order to give mass to both u-type
quarks and d-type quarks. There is a total of eight fields, of which three
are the would-be Goldstone bosons, providing masses to the W± and
Z0. The remaining five lead to physical particles in this model. There
are two physical charged Higgs scalars H±, two neutral scalars H0

1 ,H
0
2 ,

and one neutral pseudoscalar H0
3 .

There are many more parameters in this model than in the standard
model. The MSSM model has as many as 124 independent parameters.
Of these 19 have correspondence to the standard model parameters. The
remaining 105 parameters are entirely new parameters. One of the new
paramters is expressed as the ratio of the vacuum expectation values of
the neutral scalars (v1/v2) (with

√
(v21 + v22) = 246 GeV) and is usually

denoted by tanβ. If at the new machines, supersymmetric particles
are found, there will be a lot of work to be done to determine these
parameters and see how the MSSM model fares.

Among the particles of interest, special attention is focused on the
Higgs sector of MSSM. Of the two neutral Higgs, H0

1 and H0
2 , H

0
1 has

the lower mass. When this mass is computed in the theory including
radiative corrections at the one loop level, one finds that the mass of
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H0
1 is less than about 125 GeV for a top quark mass of 175 GeV and

top-squark mass of about 1 TeV. This prediction opened an exciting
prospect for LEP II, since it has enough energy to look for this Higgs at
around 100 GeV to 115 GeV. To date LEP II has found no clear signal
corresponding to this Higgs particle. This will certainly be one of the
main concerns at LHC when it operates.

Among many other features of the MSSM model, another particular
result we would like to mention here is about the running of the different
coupling constants as a function of the energy. It is found that the three
coupling constants, the strong, the weak, and the electromagnetic, meet
at 1016 GeV energy, representing a unification scale which is somewhat
less than the Planck scale.

A lot of theoretical and experimental work has already been done
on the consequences of the MSSM model. For fuller details, we refer
the reader to the “Reviews of Particle Physics” [62] and to the other
references mentioned there.

MINOS Neutrino Experiment
The acronym MINOS stands for Main Injector Neutrino Oscillation
Search. The neutrino beam is produced at Fermilab by 120 GeV pro-
tons from the main injector impinging on a carbon target. Secondary
particles, mostly pions and kaons, are focused down an 800 m evacu-
ated decay pipe. The decays of pions and kaons, produce a beam of
muon neutrinos with a very small admixture of electron neutrinos. The
muon neutrino beam is directed toward the Soudan mine a distance of
730 km from the Fermilab, where the Soudan2 1000 detector is located.
This detector is a gas ionization time projection calorimeter consisting
of 224 independent modules, each module being of dimensions 1m ×
1m × 2.5m and filled with a mixture of 85% argon and 15% carbon
dioxide gas. The new MINOS 10,000 detector will be used to detect the
neutrinos and search for neutrino oscillation effects.

MuNu Experiment
This is an experiment designed to measure electron antineutrino scatter-
ing on electrons at the BUGEY reactor in France. The aim is to study
the feasibility of measuring the magnetic moment of the neutrino.

Muon
The first evidence for the muon came from the study of cosmic rays
with a cloud chamber by Neddermeyer and Anderson [261] and was
confirmed in a paper by Street and Stevenson [244]. The method of
identifying these particles was based on a comparison of the measured
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energy loss by radiation suffered by particles in cosmic ray showers with
the theoretical expressions derived for them by Bethe and Heitler. They
showed that the energy loss was consistent with those of particles of mass
between the electron and the proton. The mass was estimated from these
measurements to be about 300 times the electron mass. All the early
experiments were done studying cosmic rays with a cloud chamber.

It was soon discovered that these particles were unstable in experi-
ments performed by Rossi et al. [262] and Williams and Roberts [263].
The first measurements of the mean lifetime for these particles were pre-
sented by Rasetti [264] and Rossi and Nereson [265]. The result they
obtained was approximately 2 microseconds. There was already evi-
dence in the work of Williams and Roberts that the muon decayed into
an electron. The first evidence that the electron in the muon decay
had a continuous energy spectrum came from the work of Hincks and
Pontecorvo [266]. They found the energy of the electrons in excess of
25 MeV present in the decay electron spectrum. Confirmation of this
result came from the work of Leighton et al. [267]. Their measurements
showed that the decay spectrum extended from 9 to 55 MeV with a
continuous distribution in between. They also pointed to the fact that
the shape of the spectrum and the end point was strong evidence for
the muon to have a spin of 1/2. From the observed end point energy,
they deduced the mass of the muon to be 217± 4 electron masses. The
observation of the continuous energy distribution of the electron shows
that in the decay products, along with the electron, two other neutral
particles must be involved.

With the development of accelerators and electronic methods of de-
tection, these early results on the muons have been amply confirmed
and the energy spectrum and the mean lifetime have been measured
very accurately.

A critical experiment performed by Conversi, Pancini, and Piccioni
tried to obtain information on whether the muon could be the mediator
of strong interaction [268] as proposed by Yukawa [113]. The difference
in behavior of positive and negative muons stopped in dense materials
was the focus of interest of these experiments. The effect of the Cou-
lomb field of the nucleus on the negative muon would tend to increase
the probability of capture by the nucleus, while for the positive muon
the opposite would be the case. If this were true, very few negative
muons would decay and all the decays could be attributed to the pos-
itive muons. They found, however, that slow negative muons undergo
nuclear absorption for sufficiently large atomic number Z as seen from
the fact that there were no decay electrons. When Z decreases below
� 10, decay electrons start appearing. This implies that the lifetime
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for nuclear absorption and the lifetime for electron decay of the muon
become nearly equal at Z � 10. In carbon with Z = 6, the emergence of
decay electrons indicated that the slow negative muon undergoes decay
rather than being absorbed by the nucleus. The fact that at Z � 10, the
lifetime for nuclear absorption becomes nearly equal to the lifetime for
decay, 2.2×10−6 s, shows that the muon does not interact very strongly
with nuclear particles. If it had been a strongly interacting particle, its
lifetime for absorption should have been much smaller, about 10−19 sec,
a factor of 1013 smaller. This striking discrepancy led to the proposal
of the two meson hypothesis by Marshak and Bethe [269], according
to which a meson other than the muon was responsible for the nuclear
forces. This conclusion came even before the π meson was discovered
by Powell and collaborators in cosmic rays. The observation of the π
mesons put the two meson hypothesis on a sure footing.

A further step in the mechanism for the nuclear absorption of muons
was taken by Pontecorvo [270], who noted the fact that the lifetime for
the capture of the negative muon by the nucleus is of the order of the
lifetime for electron K-capture process, once allowance is made for the
difference in the disintegration energy and the difference in the size of
the orbit of the electron and the muon. He was thus led to propose that
the muon decays by an interaction of the same strength as that involved
in β decay, coupling the electron and neutrino currents with the muon
and neutrino currents. This is the first time the idea of the universality
of Fermi weak interactions was proposed.

Before it was firmly established that the electron in muon decay had
a continuous energy spectrum, it was thought that the muon decayed
into an electron and a neutrino, in conformity with an idea of Yukawa,
and that the muon was the mediator of nuclear forces. However, the
experiment of Conversi, Pancini, and Piccioni disagrees with this picture.
So an alternative mode of decay of the muon was sought. Could it be
that µ− → e− + γ decay occurs? The signal for such a mode of decay
would be the appearance of monoenergetic electron and photon, each
of energy about 50 MeV. An experiment looking for the monoenergetic
electron and photon was performed by Hincks and Pontecorvo [250].
They did not find any. The nonappearance of this mode of decay is now
understood in terms of a separate conservation law of lepton number for
the electron and the muon.

Muonic Atoms
A muonic atom is formed when one of the electrons of the atom is re-
placed by a negative muon. The muon being about 200 times more
massive than the electron, the radii of the states of the muonic atom are
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about 200 times smaller. When the muon makes a transition between
states, there is emission of radiation, which typically lies in the X-ray
region of the spectrum. A high precision measurement of the X-ray tran-
sition energies was possible with the development of Ge(Li) detectors.
This was a highly fruitful activity in many cyclotron laboratories in the
late 1960’s and early 1970’s.

The equivalent of the Lamb-shift correction in muonic atoms is dom-
inated by corrections due to vacuum polarization in QED. The precision
measurements of the transition energies provided another independent
check of QED radiative corrections and electron-muon universality. In
heavy muonic atoms, fine structure and hyperfine structure measure-
ments are sensitive to the properties of the nucleus, such as the electric
charge distribution and the magnetic moments. These measurements
gave independent measurements of properties of nuclei, which could be
compared with those obtained from electron scattering measurements.
A further experiment, µ-e conversion in a muonic atom, tested the con-
servations of muon and electron lepton numbers to high precision, pro-
viding data supplementing what was known from the lack of occurrence
of µ → e+ γ.

Nambu, Jona-Lasinio Nonlinear Model of Hadrons
The model proposed by Nambu and Jona-Lasinio was a very interesting
one based on an analogy with the theory of superconductivity [271].
They suggested that the nucleon mass arises as a self energy of some
primary fermion field through the same mechanism that gives rise to
the energy gap in the theory of superconductivity.

This is a model in which an important vital step was taken which
introduced the notion of spontaneous breakdown of gauge symmetry.
They considered a simplified model of four-fermion nonlinear interaction
having γ5 gauge symmetry. As a consequence they found zero mass pseu-
doscalar bound states of the nucleon-antinucleon system which could be
identified with an idealized pion of zero mass (what is now identified
as the Goldstone boson). They further found that they could generate
finite mass pseudoscalar bosons, provided a symmetry breaking term
appeared in the Lagrangian of the theory. The hypothesis that the sym-
metries of strong interactions are spontaneously broken was very fruitful
in obtaining many properties of strong interactions of hadrons at low en-
ergies. The idea of spontaneous breaking of gauge symmetry has had a
profound influence on the development of a unified theory of electroweak
interactions.
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Neutral Intermediate Vector Boson
The idea that a neutral intermediate vector boson could play a role in
weak interactions was first noted by Glashow [272]. He pointed out
that with a triplet of leptons interacting with a triplet of vector bosons
(two charged intermediate vector bosons and the photon), the theory
possesses no partial-symmetries. On the other hand, he suggested that
a simple partial-symmetric model, capable of reproducing all the weak
and electromagnetic interaction data of the time, could be obtained by
adding a neutral intermediate vector boson to the two charged ones,
and having at least four intermediate vector boson fields including the
photon. He showed that such a theory exhibits partial-symmetries which
are the leptonic analogues of strangeness and isotopic spin of the strong
interactions. The subsequent discovery of the existence of weak neutral
current effects and the discovery of the Z0 shows the correctness of these
early ideas on the structure of weak and electromagnetic interactions of
leptons.

Neutral Weak Current
The first experimental evidence for the existence of weak neutral cur-
rents came from neutrino experiments performed at CERN with the
Gargamelle bubble chamber [273].

In the purely leptonic sector, this bubble chamber group observed a
reaction which was interpreted as ν̄µe− → ν̄µe

−. They evaluated a mix-
ing angle, the so-called weak mixing angle θW with 0.1 < sin2 θW < 0.6.
This reaction proceeds through the exchange of the neutral intermediate
vector boson (Z0) between the muon-antineutrino and the electron.

Another reaction studied was νµ+nucleus → νµ+X, the final state
in the reaction producing no electrons or muons but hadrons. This is
exactly what would be expected from a neutral current weak interaction.
The theory would involve the product of the neutral current formed from
the neutrinos with the neutral current formed from the nucleons in the
nucleus. A consequence of this will be that in the final state one will
have a neutrino rather than an electron or a muon. (The charged current
process would involve νµ + nucleus → µ− + X and, hence, will have a
muon in the final state.) The rate of the neutral current process was
compared with that from the charged current process. The observed
neutral current process could be pictured as due to the exchange of the
neutral intermediate vector boson (Z0) between the neutrino and the
nucleons of the nucleus, just as the charged current process is viewed as
due to the exchange of charged intermediate vector bosons (W±).

The neutral weak currents also play a role in atoms. In addition to
the photon exchange interaction between the electron in the atom and
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the nucleus, there is also the exchange of the neutral intermediate vec-
tor boson Z0 between them. The effect due to the neutral intermediate
vector boson is many orders of magnitude smaller than the electromag-
netic effects. However, there is one distinction between these two types
of interactions. The electromagnetic interaction is parity conserving,
whereas the weak interaction does not conserve parity. Hence, in the
transitions between atomic energy levels, there should be small, but ob-
servable, parity violating effects. Among these parity violating effects is
one where a rotation of the plane of polarization occurs for a polarized
wave traversing the medium containing the atoms. This is the so-called
optical rotation. The optical rotation is related to the amount of parity
violating amplitude in the state and can be calculated in terms of the
parameters of coupling of the neutral weak current. Experiments looking
for this optical activity have been done in atomic bismuth. The specific
transition was the 4S3/2 →2 D5/2 M1 transition at 648 nm [274]. The
measurements agreed with those expected from theory for a value of the
weak mixing angle given by sin2 θW = 0.25.

There are also other precise more recent measurements of atomic
parity violation in cesium, thallium, lead, and bismuth [275]. Further
confirmation of the existence of the neutral weak current comes from
measurements of parity non-conservation in inelastic electron scattering.
Parity violating asymmetry arises in inelastic scattering of longitudinally
polarized electrons on a deuterium target, e− + deuteron → e− + X.
The asymmetry parameter A is measured by finding the ratio of the
difference in the cross sections for left-handed (σL) and right-handed
(σR) polarized electrons, to their sum. The polarization asymmetries are
very small, typically of order 10−5. The measurement of such a small
asymmetry was accomplished by using special techniques involving a
Pockels cell with which the longitudinal polarization could be switched,
and the cross sections measured in the same setup [276]. The deduced
value for sin2 θW from such measurements was 0.224 ± 0.020. (See also
under “Parity-Violating Asymmetry in Deep Inelastic Scattering”.)

Neutralino
These are mixtures of photinos, z-inos, and neutral higgsinos, which are
the supersymmetric partners of the photon, the Z0, and the neutral
Higgs bosons, respectively. (See under “Supersymmetry”.)

Neutrino
In beta decay of nuclei, electrons are emitted when a nucleus in a given
energy and angular momentum state transforms into a daughter nucleus
in a definite state of energy and angular momentum. One would expect
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the electrons to exhibit a monochromatic energy spectrum correspond-
ing to this transition. Experimentally one finds the energy spectrum of
the electrons is continuous. Faced with the unsavoury prospect of aban-
doning energy conservation in beta decay, a way out was suggested by
Pauli in an open letter in 1930 [72]. The idea he put forward was that,
along with the electron, another neutral unseen particle is emitted, which
carries away the balance of energy and angular momentum in the transi-
tion. Fermi gave the name neutrino to this particle. Systematic studies
of a number of beta transitions suggested that the neutrino, besides be-
ing electrically neutral, must carry an intrinsic spin (1/2) just like the
electron and must have nearly zero rest mass. The neutrino, just like
the electron, should be described by Dirac’s relativistic equation, which
in turn implies that it must have an antiparticle, the antineutrino.

Since those early days of the proposal of neutrinos as a particle emit-
ted in beta decay, much work has been done, establishing that there
really is such a particle and measuring its various properties. As a re-
sult of these further studies, it is now known that it is the antineutrino
that is emitted along with the electron in beta decay, while the neutrino
is emitted in positron beta decays or in K-capture processes.

Neutrino Beams
The studies of weak interactions at high energies require that one have
high energy neutrinos (or antineutrinos) available. It was Pontecorvo [277]
who first suggested that production of intense neutrino beams by using
accelerators may be feasible. The motivation for producing such beams
was to perform experiments which could show whether the neutrinos as-
sociated with electrons in beta decay and the neutrinos associated with
muons in pion decays are the same or different. If ν̄µ is the same as ν̄e,
then it should be possible for it to induce the reaction ν̄µ+ p → e++ n.
The signature will be the production of positrons in the final state.
Schwartz [278] made a concrete proposal for producing neutrino beams
and his proposal was later executed at the Brookhaven (AGS) proton
synchrotron. He proposed that a natural source for high energy neutri-
nos are pions. On their decay, they can produce neutrinos with energies
in the laboratory ranging from zero to 45% of the pion energy, and the
direction of these neutrinos will be dominantly in the pion direction.
Thus, one could produce νµ beams from π+ decays and ν̄µ beams from
π− decays.

Neutrino Deep Inelastic Scattering
With the production of narrow band neutrino and antineutrino beams
obtained from decays of collimated beams of pions and kaons, the deep
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inelastic scattering processes involving neutrinos and antineutrinos on
nucleons have been studied experimentally. In these, the charged cur-
rent (CC) process involves νµ(ν̄µ)+p → µ−(µ+)+X, and neutral current
(NC) process involves ν(ν̄) + p → ν(ν̄) +X. The initial neutrino direc-
tion is known and the four-momentum of the final charged leptons can
be measured for the (CC) process. Using the variables introduced to de-
scribe deep inelastic scattering of electrons on nucleons, x = Q2/(2Mν),
y = [(q·P )/(p·P )] (see under “Bjorken Scaling”), the (CC) cross sections
for neutrinos (antineutrinos) on nucleon works out to be

d2σCC

dxdy
(
ν
ν̄
p) =

G2F s

4π
[xy2FCC1 (x) + 2(1− y)FCC2 (x)

± xy(2− y)FCC3 (x)],

where the + sign holds for neutrinos and the − sign for antineutrinos,
and where, in addition to the form factors F1 and F2, which appeared in
deep inelastic electron-nucleon scattering, a third form factor F3 appears
in neutrino reactions because of parity violation in the weak interactions
of neutrinos with nucleons. Here also Bjorken scaling is observed: in the
limit of large Q2 and ν, but x fixed, the form factors are functions of
x only and do not depend upon Q2. The Callan-Gross relation is also
verifed to be valid here. Just as in the electron-nucleon deep inelas-
tic scattering, violations from Bjorken scaling do occur, which can be
accommodated in QCD.

The case of the neutral current process is somewhat less precisely
handled experimentally. Here, because the outgoing neutrino is not ob-
servable and the incident neutrino direction is known but not its energy,
the energy of the recoil hadron jet represented by X has to be used to
measure the variable ν. The angle of jet recoil is also measurable. These
measurements, without any additional information, are not sufficient to
extract ν,Q2, and incident Eν for each event. In such a situation one has
to derive cross sections averaged over the neutrino spectrum, integrated
over Q2 or over Q2 and ν. This difficulty may be somewhat overcome
if one is working with a narrow band neutrino beam arising from the
decays of collimated beams of pions and kaons.

Neutrino Helicity
It has been mentioned that the study of angular momentum conservation
in beta decay suggests that the neutrino spin is 1/2. We now present
the experimental evidence that bears on this statement. If the mass
of the neutrino is zero, it can be shown that the Dirac equation for the
neutrino can be reduced to an equation with just two components. These
two states are labeled by the helicity of the neutrino (the spin projection
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Figure 4.16: Experiment to determine the helicity of the neutrino. (Fig-
ure from M. Goldhaber, L. Grodzins, A. W. Sunyar, Physical Review
109, 1015, 1958. Copyright 1958 by the American Physical Society.)

along the direction of the neutrino momentum). States of given helicity
are not parity conserving, and hence neutrinos of zero mass, described
by Dirac equation, naturally lead to parity violation. Detailed study of
the question of parity conservation in beta decays has found that parity
is indeed not conserved (see section under “Parity Nonconservation in
Nuclear β Decays”). The question arises whether the helicity of the
charged leptons and the neutrino involved in beta decay can be directly
determined experimentally. This has indeed been possible using some
ingenious techniques. We describe these briefly.

A combination of clever techniques was put to use in the measure-
ment of the helicity of the neutrino by Goldhaber et al. [117]. The exper-
imental arrangement used by them is shown in Figure 4.16. The exper-
iment measured the helicity of the neutrino arising from the K-capture
in the isotope 152Eu leading to the emission of a neutrino and a recoiling
(excited) daughter nucleus 152Sm∗. The excited daughter nucleus decays
by emitting a 961 keV γ ray to the ground state of 152Sm. It is known
that 152Eu as well as the ground state of 152Sm has spin 0. Thus by an-
gular momentum conservation, the angular momenta carried off by the
neutrino and the gamma ray must equal the angular momentum brought
in by K-capture, the magnitude of which is 1/2. Let us take the direction
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of the gamma ray as the axis of quantization. Letmγ , mν , mK represent
respectively the projection of the angular momentum of the gamma ray,
the neutrino, and the capture electron, in this direction. The possible
values for the projection are: mγ = ±1, mν = ±1/2, mK = ±1/2,
and these must satisfy, mγ + mν + mK = 0. Two possible ways of
satisfying this requirement are: mγ = +1,mν = −1/2,mK = −1/2 or
mγ = −1,mν = +1/2,mK = +1/2. To decide which of these possi-
bilities holds, one can measure the circular polarization of the emitted
961 keV gamma ray using the analyzing magnet shown in Figure 4.16. It
was found that mγ = −1, so that mν has to be +1/2. Now to determine
the helicity of the neutrino from this information, we also have to know
the direction of the neutrino momentum. It was ascertained by a further
measurement that the neutrino momentum was indeed in a direction op-
posite to that of the gamma ray. Since we have just established that mν ,
the projection of the neutrino angular momentum along the direction
of the photon momentum is +1/2, if the neutrino momentum is in a
direction opposite to that of the gamma ray, it follows that the helicity
of the neutrino is negative, −1. The neutrino is thus established to be
left-handed. (The helicity assigned to the antineutrino is right-handed
as the antineutrino is the antiparticle to the neutrino.)

The establishment of the fact that the neutrino momentum is oppo-
site to the gamma-ray momentum was made by observing the nuclear
resonance scattering of the emitted gamma rays on a target contain-
ing 152Sm. Nuclear resonance scattering can occur only if the gamma
ray energy is equal to the difference in energy between the excited and
ground states of 152Sm nuclei. This condition is usually not met because
the emitting nucleus recoils, and the recoil energy given to the nucleus
lowers the gamma ray energy by a small amount. However, if the nu-
cleus, as it emits the gamma ray, recoils in the direction that the gamma
ray is emitted, the gamma ray as seen by the scattering 152Sm nucleus is
Doppler shifted (blue shifted), compensating for the recoil energy loss.
Thus the nuclear resonance scattering of the gamma rays occurs only
if the source of the gamma rays (the excited daughter 152Sm∗ nucleus)
recoils toward the scatterer when it emits the gamma ray. The neutrino
momentum that gives this recoil is in a direction opposite to that of
the emitted gamma ray. The resonantly scattered gamma rays from the
scatterer are detected by a suitably shielded NaI crystal. In Figure 4.16,
the signal from the resonantly scattered gamma rays is clearly seen,
which establishes that the emitting nucleus is recoiling in the direction
of the emitted gamma ray, and the neutrino momentum is opposite to
that of the gamma ray.
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Measurements of the longitudinal polarization of the charged leptons
(electron or positron) in beta decays have also been done. One method
for measuring the longitudinal polarization of the decay leptons is by
scattering the leptons of known momentum from a thin magnetized iron
foil. It is known that two electrons of each iron atom are oriented par-
allel to the magnetizing field. The direction of the magnetizing field
can be chosen parallel or antiparallel to the momentum of the incident
leptons. The electron-electron scattering (called Møller scattering) de-
pends on the relative orientation of the spins. It is greater for antipar-
allel orientation than for parallel. Thus, by appropriately choosing the
magnetization direction in the iron, one can determine the amount of
longitudinal polarization of the beta particles. In this way it has been
found that electrons from beta decay carry helicity −β, while positrons
carry helicity +β, where β is the velocity of the beta particle (in units
of the the velocity of light). For high energy beta particles (β � 1), the
electron helicity is −1 (left-handed), while for the positron, the helicity
is +1 (right-handed). In the high energy limit where the lepton mass
can be ignored, the helicities for the charged leptons (anti-leptons) go
over smoothly into those for the neutrinos (antineutrinos).

These observations allow one to associate a quantum number, called
the lepton number, with these particles and demand conservation of lep-
ton number. It is assigned a value l = +1 for the electron and its
neutrino, while it is −1 for the positron and the antineutrino, and 0
for all other particles such as the proton or the neutron. Thus in neu-
tron decay, conservation of lepton number requires that, along with the
electron, only an antineutrino (and not a neutrino) will be emitted (see
details in section under “Leptons”).

Neutrino—Leptonic Quantum Numbers
We restate here that leptonic quantum numbers are associated with the
neutrinos and their corresponding charged lepton partners. The νe and
e− are allocated an electron lepton number le = 1; thus the antiparticles
ν̄e and e+ have the opposite value le = −1. Associated with νµ and µ− is
the muon lepton number lµ = +1, and ν̄µ and µ+ have lµ = −1. Similar
allocations of lτ can be made for the tau lepton and its corresponding
neutrinos. In any reaction, each type of leptonic quantum number seems
to be conserved separately. Thus in positive muon decay, we will only
have µ+ → e+ + νe + ν̄µ occuring. This decay has lµ = +1, and le = 0
on both sides.

Neutrino—Majorana
See section under “Majorana Neutrino”.
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Neutrino Mass
First evidence on the mass of the (anti)neutrino emitted in electron
beta decay came already from the study of the energy spectrum of the
beta electrons near the end point of the energy spectrum (see section
under “Beta-Decay Theory”). Fermi, who developed a field theory of
beta decay and derived an explicit expression for the continuous energy
spectrum of electrons emitted in beta decay, showed that the energy
spectrum has a different shape at the end point depending on the mass
of the (anti)neutrino. At the end point, it would have nearly a horizontal
tangent if its mass was zero, while it would have a vertical tangent if
its mass was nonzero. This is true if there is perfect energy resolution.
Finite experimental resolution makes clear cut statements regarding the
mass of the neutrino from end point measurements problematical.

An experiment by Lyubimov et al. [279] has suggested that 17 eV <
mν̄ < 40 eV, but the finite lower bound has not been confirmed by
any other experiments. A large amount of effort has been expended on
precision measurements of tritium β decay. It has a small end point
energy, W = 18.6 keV. At the end point, effects of leaving the daugh-
ter 3He atomic system in excited states have also to be taken into ac-
count. Until very recently, the best fits to the data with the square
of the (anti)neutrino mass as a free parameter required negative values,
which is an indication that there are probably some unexplained system-
atic effects distorting the data at the end point [280]. A new method
for investigating the tritium beta spectrum using a solenoid retarding
spectrometer, consisting of an electrostatic spectrometer with a guiding
magnetic field, was proposed by a group working in Mainz, Germany, in
1992 [281]. They had been perfecting this technique over a number of
years and measured the end point of the tritium beta spectrum at high
resolution. The source is molecular tritium frozen on to an aluminum
substrate. The most recent data obtained in 1999 showed that they
could be fitted with positive values of squared mass for the neutrino. If
they fit using data in the last 15 eV from the end point, they obtained
a limit of mν < 2.8 eV (95%C. L.), while if they used data in the last
70 ev from the end point, the limit obtained was mν < 2.2 eV (95%C.
L.). It seems that the Mainz group with its new technique has managed
to get the systematic effects under control and they are getting sensible
results which are fitted with positive mass square for the neutrinos.

It turns out that the existence of a nonzero mass for the neutrino
(antineutrino) has profound cosmological significance. With a neutrino
mass of the order of 40 eV, the relic neutrinos from the big bang pervad-
ing the universe could give enough of a gravitational effect so as to cause

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 315

✐

✐

✐

✐

✐

✐

✐

✐

the universe to be closed (that is, lead to a “big crunch”) or give rise to
an oscillating universe with repeated big bangs and big crunches.

Neutrino Oscillations
Pontecorvo speculated on the possibility that oscillations may occur be-
tween neutrino and antineutrino states if the lepton number were not
conserved [282]. He argued for such a possibility based on what was
known about the K0-K̄0 system (see section under “Kaons—Neutral
K0
1 (K

0
S),K

0
2 (K

0
L)”). Second order weak interactions induce transitions

in which K0 ↔ K̄0 are possible in the kaon system. If neutrinos and
antineutrinos are also mixed states as far as the lepton number is con-
cerned, then oscillations might occur between these states just as in the
neutral kaon system.

Since that early suggestion, other oscillation possibilities have been
envisaged. If we call the states with definite lepton numbers le, lµ, lτ as
states of definite flavor, then these represent eigenstates which are the
basis for weak interactions. If the neutrinos possess nonvanishing masses,
then the eigenstates of definite mass are mixtures of flavor eigenstates,
and vice versa. These two sets of states are related by unitary transfor-
mations.

To illustrate the quantum mechanics of the flavor oscillations (cyclic
transformation of flavors), we consider just two flavors and restrict to
propagation in vacuum. Let the kets representing the flavor states be
|νe〉 and |νx〉, and the mass eigenstates be |ν1〉 and |ν2〉 with energies
E1 =

√
(p2 +m2

1) and E2 =
√
(p2 +m2

2), respectively, where m1 and
m2 are the masses of these eigenstates, and the particle has a momentum
p. At any time t, the flavor eigenstates are

|νe(t)〉 = cos θ|ν1〉e−iE1t + sin θ|ν2〉e−iE2t,

|νx(t)〉 = − sin θ|ν1〉e−iE1t + cos θ|ν2〉e−iE2t,

where θ is the mixing angle between the flavors (assumed less than 45
degrees). The probability that a neutrino starting at time t = 0 with
electron flavor will retain its electron flavor at time t is obtained from
the amplitude,

〈νe(0)|νe(t)〉 = cos2 θe−iE1t + sin2 θe−iE2t.

The probability Pee for it to retain its electron flavor is

Pee(t) = |〈νe(0)|νe(t)〉|2 = 1− sin2 2θ sin2
(E1 − E2)t

2
.

If the massesm1 andm2 are very small and the neutrinos are relativistic,
then we may write E1,2 � p + m2

1,2/(2E) (we have used E � p in

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 316

✐

✐

✐

✐

✐

✐

✐

✐

the second term). Hence we have, E2 − E1 = (m2
2 − m2

1)/(2E)) ≡
±∆m2/(2E),∆m2 = |m2

1 −m2
2| with plus sign applying when m2 > m1

and minus sign when m1 > m2 and ∆m2 is a positive quantity. For
either sign we have

sin2
(E1 − E2)t

2
= sin2

∆m2t

4E
.

Thus we have
Pee(t) = 1− sin2 2θ sin2

πt

Tv
,

where we have introduced the vacuum oscillation time Tv = 4πE/∆m2.
We can also write this in terms of distances; if in a time t, the distance
traveled is t � R (with c the velocity of light = 1), and we introduce
the vacuum oscillation length Rv = Tv = 4πE/∆m2 (because we take
c = 1), we have

Pee(R) = 1− sin2 2θ sin2
πR

Rv
.

Thus, if we start with an electron flavor at some location and let the
particle travel a distance R, the probability to retain its flavor oscillates
with the distance R. The oscillation amplitude is determined by the
mixing parameter sin2 2θ. Because Rv is a function of the energy E, if
one has a distribution of energies for the neutrinos, one should average
the above probability for flavor retention over the energies. Averaging
gives Pee|ave = 1− 1

2 sin
2 2θ for vacuum oscillations at distances R which

are large compared with Rv. Thus there may be at most a decrease of a
factor of two, independent of the precise values of the neutrino masses
or, for example, the earth-sun distance. From the above, it can also be
verified that the probability Pex for starting in electron flavor at R = 0
and ending up in flavor “x” at R is Pex(R) = sin2 2θ sin2 πRRv

. Thus in
the two flavor case we will have, Pee(R) + Pex(R) = 1, as it should be.

The vacuum oscillation probability depends on two parameters, sin2 2θ
and ∆m2. A convenient expression to give Rv in meters is

Rv = 2.5
(

(p/MeV)
(∆m2/(eV)2)

)

For a value of ∆m2 � 10−4 eV2 and p � 1 − 10 MeV, Rv � 250 −
2, 500 kilometers. For smaller values of ∆m2, the values of Rv are cor-
respondingly larger. ∆m2 of order 10−11 eV2 gives a value of Rv �
1011 meters, which is approximately equal to the radius of the earth
orbit.

Probabilities for oscillations when the neutrinos propagate in matter
rather than in vacuum have also been worked out [283,284]. In matter,
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a difference arises between neutrinos of different flavors. The electron
neutrino νe (and not νµ or ντ ) interacts with electrons of the medium
throughW -boson exchange, thus altering the oscillation patterns. (Neu-
tral current interactions, which involve Z0 exchange, affect all neutrino
flavors equally and hence need not be considered as they will only give
an overall phase change and not relative phase differences.)

What Mikheyev and Smirnov pointed out (building on the earlier
work of Wolfenstein) was that the effect of matter can significantly af-
fect the neutrino oscillations and can lead to substantial enhancements
of the effects over the vacuum oscillations. Such matter enhancements
are called Mikheyev-Smirnov-Wolfenstein (MSW) effect. The presence
of matter can be expressed neatly in terms of two parameters which are
generalizations of the vacuum oscillation parameters. The vacuum mix-
ing angle θ is replaced by a matter mixing angle θm, and the square
of the mass difference, ∆m2, is replaced by a new quantity, ∆m =

(∆m2/(2E))
√
[(±A− cos 2θ)2 + sin2 2θ], whereA = 2

√
2GFNeE/∆m2,

GF being the Fermi weak coupling constant, and Ne the electron den-
sity in the medium (+ sign m2 > m1, and − sign m1 > m2). We
can write A = (Rv/Re), where Re =

√
2π/(GFNe may be called the

neutrino-electron interaction length, and Rv is the vacuum oscillation
length introduced previously. For definiteness we take m2 > m1 in the
work below.

The matter mixing angle parameter, sin2 2θm can be expressed in
terms of the vacuum mixing angle parameter as (for m2 > m1)

sin 2θm =
sin 2θ√

[1− 2A cos 2θ +A2]
.

This expression shows that even if the vacuum mixing angle parameter
sin2 2θ is small, a resonance situation can arise when A = cos 2θ, and
the matter mixing angle parameter sin2 2θm can become unity (that
is, θm = π/4). The resonance has a width corresponding to densities
satisfying |(A − cos 2θ)| = | sin 2θ|. One can introduce a matter oscilla-
tion length Rm. It can be expressed in terms of the vacuum oscillation
length as Rm = Rv/Dm, where Dm =

√
[1− 2A cos 2θ +A2]. At res-

onance, Dm|res = sin 2θ, and sin 2θm|res = 1. Note that for electron
antineutrinos, the sign of A will change, and for the same ∆m2 > 0, no
resonance occurs. Very different oscillation effects occur for neutrinos
and antineutrinos in matter which contains only electrons.

The flavor conversion probability, in the case of matter of constant
density, takes the form, (t � R)

Pex(R) = sin2 2θm sin2
πR

Rm
.
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In the limit when A � 1, Rv � Re, θm → θ, and Rm → Rv, and
the expression reduces to the expression for vacuum oscillations. In
the opposite limit when A � 1, Rv � Re, sin 2θm → sin 2θ/A, Rm =
(Rv/A) = Re, the conversion probability is suppressed by A2 factor,
so it is small. For the resonant case when A = cos 2θ, sin 2θm → 1,
Rm → (Rv/ sin 2θ) and Pex(R) = sin2(πR sin 2θRv

). Even in this resonant
case, because of the energy dependence of the oscillatory sine squared
function, on averaging over energy, we will get a factor 1/2. Thus for
constant density, the mixing can give at most a reduction of a factor of
2 and no larger.

One can obtain somewhat larger reductions than the factor of two, if
one treats the case of varying density and if this variation with distance
is slow. When the density varies slowly, the mass eigenstates propagate
through the region of varying density without making any transitions,
and the effect of variation in the density is felt only through the behavior
of the matter mixing angle parameter sin 2θm. The expressions for the
flavor states at any point are

|νe〉 = cos θm|ν1〉e−iE1t + sin θm|ν2〉e−iE2t,

|νx〉 = − sin θm|ν1〉e−iE1t + cos θm|ν2〉e−iE2t.

Let us consider that m2 > m1 and start from a region of high density
and move toward the region of low density, corresponding to an elec-
tron neutrino being born at the center of the sun and propagating out
through a region of slowly decreasing density. This electron neutrino will
encounter the resonance mentioned above, provided its energy is larger
than that required for the central density of the sun. From the reso-
nance condition, A = cos 2θ, it can be seen that this minimum energy
is Ec = 6.6 cos 2θ(∆m2/(10−4 eV2) MeV. So, for ∆m2 = 10−4 eV2, the
minimum value is about 6 MeV. Higher energy neutrinos will encounter
the resonance at some point on their path where the density is lower
than the central density.

In the region of high density, νe is mostly ν2, because here sin θm is
close to unity. As it proceeds into lower density regions, if the density
varies slowly enough, the ν2 will propagate as ν2. Eventually it exits
from the sun into vacuum, where θm → θ which is small. Now ν2 is
mostly in νx because cos θm → cos θ is now large in this region. Thus a
complete conversion of flavor can occur in the adiabatic case when the
density varies slowly. To treat the problem fully, one needs to carry out
a numerical solution of the propagation equations. In this way one can
obtain regions of the ∆m2− sin2 2θ parameter space where equal values
of Pex occur. Diagrams which show plots of Pex in the ∆m2 − sin2 2θ
parameter space are called Mikheyev-Smirnov diagrams. Typically, the
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contour of equal Pex is in the shape of a triangle, with one side parallel
to the abscissa (sin2 2θ), the other parallel to the ordinate (∆m2), the
third side being the sloping line joining the end points of the other
two lines to complete the triangle. In such a diagram the horizontal and
vertical portions of the contour are where the adiabatic approximation is
valid. The sloping line of the contour represents regions of the parameter
space where the adiabatic approximation is not valid and one has to take
into account the transitions between the mass eigenstates during their
propagation in regions of varying density. The more general problem
has been tackled by Parke [285], to which we refer the reader and we do
not go into those details here.

Neutrino Oscillations—Solar Neutrino Problem
There have been two types of experiments designed to detect neutrino
oscillations. In the first type, the probability that neutrinos of a certain
flavor, originating from some location with a certain flux, survive as neu-
trinos of the same flavor at the detector, which is some distance away
from the source, is measured. If measurement at the detector shows a
lower flux for the original flavor, the reduced survival probability is mea-
sured. Such experiments may be called disappearance experiments. In
the second type of experiment, one tries to detect directly, the neutrino
of a diferent flavor, by looking for the associated charged lepton in the
detector. Such experiments may be called appearance experiments.

In disappearance experiments, one would have to locate detectors
at different distances from the source and compare the fluxes measured
at the different locations to get an idea of the reduced flux arising from
oscillations. These locations will allow one to put limits on the minimum
and maximum values of the parameter ∆m2 to which these detectors
are sensitive. The minimum value of ∆m2 corresponds to oscillation
lengths which are much larger than the distance from the source to the
farthest detector location, while there is also a maximum ∆m2 which
will correspond to smaller oscillation lengths leading to averaging out of
the oscillations in the nearer detector. Solar neutrino experiments belong
mainly in this category. Other examples are nuclear reactor experiments,
which are a good source of electron antineutrinos. Since their energies
are low, they will not be able to produce muons or tau’s, precluding
appearance experiments. Thus, nuclear reactor experiments will also
have to be of the disappearance type.

Appearance experiments, on the other hand, need only a few clear
events to establish that oscillation has occurred. Examples are accel-
erator experiments, which are a source of muon neutrinos, so that one
looks for electrons above some background level in the detector. Such a
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signal will establish that they are produced due to flavor oscillation of
the muon neutrino.

Experiments looking for neutrino oscillations are the following: so-
lar neutrino experiments, reactor neutrino experiments, accelerator neu-
trino experiments, and atmospheric neutrino experiments. We give a
brief view of what has been learned about the parameter space of neu-
trino oscillations from these experiments.

Solar neutrino experiments were the earliest to be mounted. They
attempted to measure the neutrino flux reaching the earth from the
sun [286]. The neutrino flux was measured by looking for captures of
the neutrinos in 37Cl (Homestake experiment) contained in a large tank
of dry cleaning liquid, resulting in the production of 37Ar, which was
then extracted by radio-chemical methods and assayed. This reaction
has a threshold of about 7 MeV and, hence, is sensitive only to the 8B
neutrinos from the sun, which extend in energies all the way from a few
MeV to about 15 MeV. Theoretical calculations based on a model of
the sun, now called the Standard Solar Model (SSM) [287], give the flux
of 8B neutrinos originating from the core of the sun. Davis measured a
much lower neutrino flux than was predicted by the SSM, and repeated
measurements have confirmed the early discrepancy. This discrepancy
was the origin of the term solar neutrino problem.

As it happens, the sun puts out neutrinos with a wide distribution
of energies, and the Davis experiment was sensitive only to the highest
energy neutrinos which are not the most abundant in flux. About 98% of
solar energy is produced by the p-p reaction cycle, in which 4 protons are
converted into 4He, generating two positrons and two electron-neutrinos
in the process. The maximum energy of these electron-neutrinos is
0.42 MeV. They are called the pp neutrinos. Some heavier nuclei are
also produced in the pp cycle, notably Li, Be, and B with very little con-
tribution to the energy production from the sun. 8B decays and gives
rise to neutrinos with a continuous spectrum stretching to 14 MeV, and
7Be produces a discrete neutrino line at 0.80 MeV due to electron cap-
ture. There is also a small flux of (pep) neutrinos of about 1.44 MeV
and (hep) neutrinos with a continuum of energies up to 18.7 MeV [288].

SAGE [289] and GALLEX [290] experiments were designed to mea-
sure the flux of the neutrinos arising from the pp cycle. Kamiokande [291]
and SuperKamiokande [292] are water Cerenkov detectors, which were
designed to observe ν-e scattering, the scattered electrons giving Cerenkov
light which is detected. It has a threshold of 7 MeV and, hence, is capable
of looking only at the 8B neutrinos. All these experiments have reported
results. The results for the SAGE, GALLEX, and Homestake experi-
ments are given in terms of a unit called Solar Neutrino Unit (SNU),
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Experiment Measurement Theory
Homestake(SNU) 2.56± 0.16± 0.16 7.7+1.2−1.0
GALLEX(SNU) 77.5± 6.2+4.3−4.7 129+8−6
SAGE(SNU) 66.6+7.8−8.1 129+8−6
Kamiokande(Flux) 2.80± 0.19± 0.33 5.15+1.0−0.7
SuperKamiokande(Flux) 2.44± 0.05+0.09−0.07 5.15+1.0−0.7

Table 4.3: Results of solar neutrino measurements compared with theo-
retical expectations according to SSM. Statistical as well as systematic
errors are given separately for the experiments. The errors in theory
reflect the uncertainties of some of the underlying nuclear reaction cross
sections and assumptions of the SSM.

where 1 SNU=10−36 events/scatterer/s, while the results of Kamiokande
and SuperKamiokande experiments are expressed as the observed flux
of 8B neutrinos above 7.5 MeV in units of No·cm−2s−1 at the earth. Ta-
ble 4.3 presents the results of these experiments and theoretical expecta-
tions. Homestake, GALLEX, and SAGE use radio-chemical methods of
measurement, while Kamiokande and SuperKamiokande rely on direct
observation of neutrino electron scattering in water. These latter exper-
iments also demonstrate that the neutrinos are coming directly from the
sun by showing that the recoil scattered electrons are in the direction of
the line joining the sun and earth. SuperKamiokande results represent
the most precise measurements of the flux of the high energy neutrinos
(> 7.5 MeV) from the sun. From an examination of the table, we see
that all the measured results are lower than the theoretical expectations.

Much effort has been devoted to understanding the solar neutrino
deficit in terms of neutrino oscillations in vacuum, or including MSW
effects. We present here only the work by Bahcall, Krastev, and Smirnov
on this subject [293]. They present analyses of the data from all the solar
neutrino experiments paying special attention to the SuperKamiokande
data. The analysis strongly indicates that the large mixing angle (LMA)
MSW solution for active flavors fits the data well with ∆m2 = 1.8 ×
10−5 eV2 and sin2 2θ = 0.76. For vacuum oscillations, they find the
data are best fitted with ∆m2 = 6.5 × 10−11 eV2 and sin2 2θ = 0.75.
We do not present here the large number of effects they have taken into
account in arriving at their conclusions. Persons interested in the details
should consult the full paper.

Another new experiment studying neutrinos has come on stream at
the time of this writing. The Sudbury Neutrino Observatory (SNO)
in Sudbury, Ontario, Canada, uses 1 kilotonne of heavy water to de-
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tect neutrinos, besides scattering off electrons as in SuperKamiokande,
reactions such as, νed → ppe, and νxd → pnνx also. By observing the
neutrons from the second reaction, and their later capture, one can mea-
sure neutral current rates from all flavors x of neutrinos. The inverse
beta decay from the first reaction will help construct the neutrino spec-
trum above 5 MeV accurately. The comparison of the charged current
and neutral current rates will give signals which are independent of any
solar models. The spectral shapes will help differentiate between the
different solutions. (See further under “Sudbury Neutrino Observatory
(SNO)”.)

Searches for neutrino oscillations using reactor and accelerator neu-
trinos have not provided any conclusive evidence for neutrino oscilla-
tions. Among the many efforts afoot in reactor studies, the work at
the Goesgen reactor in Switzerland and at the Bugey reactor in France
may be mentioned. Accelerator experiments either in progress or to be
done at Brookhaven National Laboratory, Fermilab, CERN, Rutherford
Laboratory with Karmen detector, and the Liquid Scintillation Neutrino
Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF)
may all produce convincing evidence for neutrino oscillations in the fore-
seeable future.

Neutrinos—More Than One Kind
Danby et al. [294] carried out an experiment designed to test whether
the ν associated with the electron is the same as the ν associated with
the muon. They produced νµ and ν̄µ from the decay of π±, and they
let the νµ impinge on a target of aluminum and studied the products
of the reaction. They found only muons produced in the final state;
no electrons were produced. Thus it was clearly demonstrated that
the neutrino associated with the muon is different from the neutrino
associated with the electron in beta decay. For further details see section
under “Leptons”.

Neutrinos—Number of Species
With the advent of the high energy electron-positron collider rings and
the use of these in producing an abundant supply of Z0, much precise
work has been performed on measuring the mass and the width of the
Z0 resonance. The first evidence that the number of light neutrino
species equals three comes from such measurements at SLC [295]. The
measurements show the mass of the Z0 to be 91.14± 0.12 GeV and its
width to be 2.42+0.45−0.35 GeV.

In the standard model, the couplings of the leptons and the quarks to
the Z0 are specified, and one can calculate the widths for the decays of
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Z0 into various modes, e+e−, µ+, µ−, uū, dd̄, etc. If one constrains the
widths to all these visible modes to that given by the standard model,
by subtraction from the total width, one can find the width to modes
involving decays to neutral final particles, the neutrinos associated with
the electron, muon, and τ . For this they found the value 0.46±0.10 GeV.
The standard model also gives the value of 0.17 GeV for the partial
width to a given neutrino species. The total width for the neutrals
then translates into no more than 2.8 ± 0.6 neutrino species. In other
words, there are only three light neutrino species consistent with the
width data on the Z0. This has been further confirmed by other groups,
L3, OPAL, DELPHI, and ALEPH collaborations working with the large
electron-positron collider (LEP) [296].

Neutron
The discovery of the neutron has a very interesting history. Bothe and
Becker [297] in Germany observed that, when beryllium was bombarded
by alpha particles emitted from polonium, it emitted a radiation of high
penetrating power. Curie and Joliot [298] tried to measure the ionization
produced by this radiation by letting this radiation pass through a thin
window into an ionization chamber. They noticed that if they placed
any material containing hydrogen, the ionization inside the chamber in-
creased, and the ionization appeared to be due to the ejection of protons
of velocities nearly the tenth of the speed of light. Since at that time
the only other neutral particle that was known was the photon, they
thought the beryllium radiation was gamma rays, and that the basic
process by which the energy was transferred to the proton was a Comp-
ton scattering process of the gamma ray. Using this assumption, they
estimated the energy of the gamma rays to be about 50 MeV.

At this point Chadwick [299] undertook further observations of the
nature of the radiation emanating from beryllium. With an ionization
chamber and an amplifier he measured the ionization produced by the
sudden entry of a proton or an alpha particle into the chamber with
the aid of an oscilloscope. He found that the beryllium radiation ejects
particles, not only from hydrogen, but also from helium, lithium, nitro-
gen, beryllium, carbon, etc. The ionizing power of the ejected particles
from hydrogen was like that of protons with speeds about one tenth of
the speed of light. The ejected particles from the other elements also
had large ionizing power, suggesting that they were recoil atoms of those
materials. Chadwick found that the recoil atoms had ranges and ioniza-
tions which could not possibly have arisen by Compton process involving
a gamma ray of 50 MeV energy on the basis of energy momentum con-
servation in the collision process. He found that all the inconsistencies
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disappear if he assumed that the radiation emanating from beryllium
consisted of neutral particles of protonic mass and dubbed such parti-
cles neutrons. Assuming incident velocity for the neutron to be about
one tenth of the speed of light, he found that the observed energies of
the recoil atoms were in good agreement with what would be expected
from collisions of the neutron with atoms of the material. Even from
these early measurements, he was able to conclude that the neutron was
heavier than the proton and suggested that the mass was probably be-
tween 1.005 and 1.008 times the mass of the proton. He even proposed
a model for the neutron as a bound state of a proton and an electron
with a binding energy of about 1 to 2 MeV.

Neutron Decay
As the neutron is more massive than the proton, it was expected that it
would decay into a proton by the beta decay process, n → p+ e− + ν̄e.
First observation of the beta decay of the neutron came from the work of
Robson [300]. Working at the Chalk River nuclear reactor, he identified
the positively charged particle arising from the decay of the neutron to
be a proton by a measurement of the charge to mass ratio. He also
showed that the proton signal disappears when a thin boron shutter was
placed in the path of the neutron beam thereby absorbing the neutrons.
This established that the protons arise from the decay of the neutrons.
From the measurement he quoted a value for the lifetime of the neutron
as between 9 and 18 minutes. The modern value for the mean lifetime
of the neutron is 886.7± 1.9 s.

Neutron—Magnetic Moment
The earliest estimate of −1/2 nuclear magneton for the magnetic mo-
ment of the neutron came from studies of hyperfine structure of the
atomic spectra of a number of elements by Altshuler and Tamm [301].
Direct measurement of this from a Stern-Gerlach experiment [150] on
the deuteron gave a value for it between 0.5 and 1 nuclear magneton.
Knowing from another measurement on the proton, that its magnetic
moment was about 2.5 nuclear magnetons, and assuming the additivity
of the magnetic moments of the proton and the neutron in the deuteron,
Altshuler and Tamm came up with a value for the magnetic moment
of the neutron between −1.5 and −2 nuclear magnetons. A much more
accurate determination of the neutron magnetic moment was made by
Alvarez and Bloch [302] who used an extension of the magnetic reso-
nance method of Rabi and collaborators. Their value for the magnetic
moment was −1.93±0.02 nuclear magnetons. The modern value for this
quantity is −1.9130428± 0.0000005 nuclear magneton.
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Neutron—Mass
An early measurement of the mass of the neutron was made by the ob-
servation of the nuclear photoeffect of the deuteron, the analogue of the
atomic photoeffect in which measurements of excitation and ionization
potentials gave information about atomic energy levels and binding ener-
gies. Nuclear photoeffect was studied by Chadwick and Goldhaber [148]
in which they bombarded deuterium nuclei with gamma rays from ThC′′

with an energy of 2.62 MeV; the reaction studied was γ + d → p + n.
Deuteron was chosen because it was the simplest nucleus next to the
proton and had a very low binding energy. With a cloud chamber,
which was used to study this process, they could not get good accuracy
in measurements. Still they managed to extract a mass for the neu-
tron from these early measurements. The modern value for the neutron
mass is mn = 1.008664904 ± 0.000000014 u, where “u” is the atomic
mass unit defined with mass of 12C/12 = 1.6605402× 10−27 kg. On the
same scale the proton mass is mp = 1.007276470±0.000000012 u, giving
mn −mp = 0.001388434± 0.000000009 u.

Neutron—Spin
The establishment of neutron spin to be 1/2 was first done by Schwinger
in 1937 [303]. His reasonings went as follows. The fact that the proton
and the deuteron have spin 1/2 and 1, respectively, suggests that the
neutron spin can be 1/2 or 3/2. To decide between these possibilities,
he suggested looking at experiments on the scattering of neutrons by
para- and orthohydrogen. The experiments showed that the scattering
cross section of orthohydrogen is much larger than that of parahydrogen.
He showed that assuming a spin 3/2 for the neutron, one would expect
theoretically that the para- and ortho- cross sections would be compa-
rable in magnitude. Assuming a spin 1/2 for the neutron, on the other
hand, gives much larger ortho- cross section than para- cross section in
agreement with the experimental data. Thus, the spin of the neutron
was determined to be 1/2.

Neutron—Statistics
The spin of the neutron has been measured to be 1/2. In accordance with
the spin-statistics theorem of Pauli, the neutron must obey Fermi-Dirac
statistics.

Noether’s Theorem
This theorem represents an important tool to deal with symmetries asso-
ciated with physical systems. Physical systems possess various symme-
tries, for example, symmetry under space-time transformations, internal
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symmetry such as isospin and chiral symmetry, which is like an internal
symmetry acting differently on left-handed and right-handed chirality
parts of the Dirac field. In its simplest version Noether’s theorem ap-
plies to these three mentioned symmetries. The theorem states that for
each generator of symmetry, there exists a conserved current associated
with that generator.

To establish the connection between a symmetry and a conservation
law, we consider two examples from the above. First, we consider a
Lagrangian density L(φ, ∂µφ) for a scalar field theory and consider its
change under an infinitesimal space-time transformation, xµ → x

′µ =
xµ + εµ, with εµ infinitesimal. The change in the Lagrangian density
δL = L′ − L is

δL =
∂L
∂φ

δφ+
∂L
∂αµ

δαµ, αµ = ∂µφ.

Here δφ = φ′ − φ = εναν and δαµ = ∂µ(εναν). Now from the Euler-
Lagrange equation of motion we have ∂L∂φ = ∂

∂xµ
∂L
∂αµ ∂

µ(εναν). Using this
in the above we can write

δL =
∂

∂xµ
∂L
∂αµ

(εναν) +
∂L
∂αµ

∂µ(εναν)

= εµ
∂L
∂xµ

.

This can be written as

∂

∂xµ

[
−εµL+

∂L
∂αµ

εναν

]
= 0.

This can be cast in the form ∂Jµν

∂xµ = 0, where

Jµν = −gµνL+
∂L
∂αµ

αν .

The Jµν represents a set of conserved quantities, of which J0ν = P ν are
the energy-momentum four-vector densities which satisfy a conservation
law. This is the familiar conservation law following from symmetry under
space-time translations.

The second example we consider in which L is invariant under a
global transformation involving some internal symmetry, φ(x) → φ′ =
e−iεφ(x). The transformation is a phase transformation of the field
φ. In infinitesimal form we have δφ = φ′ − φ = −iεφ. We see that
there is a set of conserved quantities Jµ = −i ∂∂αµ

φ, satisfying ∂Jµ

∂xµ = 0.
The quantities Jµ(x) are a set of currents which satisfy the conservation
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law in this case. The zero component J0 when integrated over three-
dimensional volume is Q =

∫
d3x J0 and satisfies, ∂Q∂t = 0, that is, the

charge Q is conserved.

NOMAD Neutrino Experiment
The acronym NOMAD stands for Neutrino Oscillation MAgnetic Detec-
tor. The NOMAD collaboration has set up the NOMAD detector such
that every 14 s 1013 muon neutrinos from the CERN SPS go through the
3 ton detector. The detector can register up to half a million neutrino
interactions per year. The aim is to study νµ-ντ oscillations. The track
detector and the electromagnetic calorimeter are situated in a 0.4 T
magnetic field.

Non-Abelian Gauge Theories
See section under “Gauge Theories”.

Nuclear Forces
Historically, the forces between nuclear particles were considered one of
the four fundamental forces of nature. Heisenberg’s theory of atomic
nuclei included forces between nuclear particles, which had exchange
properties; the forces depended upon relative spins, relative positions,
and relative positions and spins. Hence, such forces were called exchange
forces. The specifically nuclear interactions between two protons, a pro-
ton and a neutron, and two neutrons are the same regardless of the
electric charge carried by the nuclear particles. Such a property was
called charge independence of nuclear forces. This fact taken together
with the fact that the proton and neutron have a very small mass dif-
ference, the concept of isotopic spin was introduced, according to which
the proton and the neutron are considered degenerate isotopic spin sub-
states of a particle called the nucleon, just like the two ordinary spin
degenerate substates of an electron in the absence of a magnetic field.
The concept of charge independence now enters the theory with isotopic
spin as the fact that the nuclear forces are invariant under rotations in
isotopic spin space.

With developments in particle physics in the last three decades, we
now know that quantum chromodynamics involving non-Abelian color
gauge fields which couple to colored quarks, much like the Abelian elec-
tromagnetic field, which couples to electrons in quantum electrodynam-
ics, generates the fundamental strong interaction force. The quarks in-
teract with one another through the mediation of the color gauge fields,
the quanta of which are the gluons. The nucleons are colorless bound
states of three quarks. Nuclei are bound states of nucleons in much the
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same way as molecules are bound states of neutral atoms. The binding
of atoms into a molecule occurs due to van der Waals forces between neu-
tral atoms, which owe their origin to the fundamental electrical forces
between electrons and nuclei. In much the same way, the nuclear forces
between nucleons in nuclei may originate as the equivalent of the van
der Waals forces from quantum chromodynamics. Details of this are not
clear as yet because bound states belong in the non-perturbative region
of the underlying theory.

Nuclear Reactor
A nuclear reactor is a device in which a self-sustaining fission chain reac-
tion occurs which leads to the production of energy, other fissile materi-
als, and isotopes. The first construction and operation of a chain reacting
pile was carried out under the direction and supervision of Fermi at the
University of Chicago during the months of October and November of
1942. Many people contributed to the project under Fermi’s supervision.
It was put into operation on December 2, 1942, a date which announced
the arrival of the nuclear era [304].

The first reactor used high purity enriched uranium (enriched in the
amount of 235U with respect to its natural abundance) and graphite in
it. When the uranium nuclei suffer fission, they give rise to neutrons
along with the fission products. These neutrons are slowed down in the
moderator, graphite in this case, after which they are highly effective in
causing further fissions. In each succeeding fission this process repeats
with further neutrons generated, slowed down, and causing further fis-
sions. There is a certain critical mass of uranium at which the process
becomes self-sustaining. The fission processes release energy which can
be extracted from the system by a suitable system of heat exchangers.
Neutron captures on the isotope 238U lead eventually to the produc-
tion of 239Pu. Plutonium suffers fissions as readily as 235U under slow
neutron bombardment and is a product of the reactor operation. It is
extracted by chemical methods from the spent fuel in reactors. Many
isotopes for medical and other uses are also produced in the reactor.
In many countries, production of energy by nuclear means contributes
substantially to their total energy needs.

Octet Multiplet
Baryons of spin and parity, JP = 1

2

+, are observed to form a multiplet
of eight particles with approximately the same mass. Such a multiplet,
called a baryon octet, naturally lends itself to a description in terms of
the octet representation of the group SU3. Many of the characteristics of
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the data can be systematically understood through the detailed workings
of SU3.

Mesons of the same spin and parity are also observed to form multi-
plets containing eight particles of approximately the same mass. These
form the meson octet.

If one uses the three-dimensional fundamental representation (3) of
SU3 and its conjugate 3̄, the basic particles of the representations being
the quarks and antiquarks, respectively, we can form all the baryons
from three quark bound states and the mesons from quark-antiquark
bound states. Such a description is the basis for the constituent quark
model for baryons and mesons. For details, see section under “Eightfold
Way” and “Constituent Quark Model of Hadrons”.

ω Meson
This particle manifests as a three-pion resonance at a mass of 782 MeV,
in isospin 0 and JP = 1− state. It was discovered first in the study of p̄p
annihilation products, using the hydrogen bubble chamber at the LBL
Bevatron [305]. The reaction studied was p̄+p → π++π++π0+π−+π−.
When the invariant mass distributions of combinations of any three pions
were plotted, they found no peaks in the mass distributions for total
charge 1 and 2, while when the charge was zero, a sharp peak was found
with a mass of about 782 MeV. This is called the neutral ω meson. The
width of the peak was determined to be between 9 and 10 MeV. These
results imply that the isospin is zero for this state and that the decay
involves strong interactions. The G parity for this state is −1. Taken
together with isospin zero, this means that the the charge conjugation
parity for the neutral ω meson is C = −1.

The spin and parity of the state was determined by looking at the
Dalitz plot (see section under “Dalitz Plot”). It can be shown that
if the spin associated with this state is zero (J = 0), there should be
no events in which the two charged pions have the same energy. There
should be fewer events near the symmetry axes of the Dalitz plot. There
was no such depletion found. Hence, J = 0 is excluded. Now consider
a configuration in which the three pion momenta are all in the same
line, and let this line make an angle θ with respect to some axis of
quantization. Such a configuration will be described in the wave function
with the angular function YMJ (θ), the parity of which is (−1)3(−1)J , the
first (−1)3 factor coming from the intrinsic parity for the three pions.
Since parity is conserved in the strong decay, if the parity of the ω meson
were (−1)J , there should be no such events. Such events should occur
on the boundary of the Dalitz plot. An examination of the plot in the
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boundary region shows that there are far fewer events there, which leads
one to conclude that spin-parity assignments 1−, 2+, 3−, . . . are possible.
One can also show that, if the spin-parity assignment was 2+, there
should be far fewer events in the center of the Dalitz plot where all the
pions have the same energy. This is not observed. Rejecting values of
spin greater than 2 as they would give much narrower widths, one takes
1− as the spin-parity assignment for this state. The modern value for the
mass of this state is 781.94± 0.12 MeV, with a width 8.41± 0.09 MeV,
with JPC = 1−− and IG = 0−. In terms of the quark model, this vector
meson is formed from the spin triplet combination of u, ū and d, d̄ in the
isospin zero state |ω〉 = (1/

√
2)(uū+ dd̄).

Ω− Hyperon
With the assumption of SU3 symmetry, a formula for the masses of
the baryonic resonances, known as the Gell-Mann Okubo mass formula,
predicts that the separation of levels with hypercharges Y = 0,−1,−2
should be constant in the decuplet representation. (See further in the
section under “Eightfold Way”.) Based on this, and knowing the masses
of the relevant Y = 0 and Y = −1 states, one can predict the mass of the
Y = −2 member of the decuplet. The prediction turns out to be a mass
of 1679 MeV. Such a particle has indeed been found [306] (see Figure 3.1
in Chapter 3). The modern value of its mass is 1672.45 ± 0.29 MeV,
remarkably close to where it was predicted to be found. Because its mass
is less than that of Ξ+K̄, it cannot decay by strong interactions into this
product. It can decay only by weak interactions into Λ+K−, Ξ0 + π−,
Ξ− + π0, . . .. Its mean lifetime turns out to be 0.822 ± 0.012) × 10−10

s. The branching ratios for the three mentioned modes of decay are
67.8%, 23.6%, and 8.6%, respectively. The spin-parity assigned for this
state, JP = (3/2)+, is based on SU3 symmetry; no direct experimental
determination of this is available. The quark model assignment for this
state is a bound state of sss with spin-parity (3/2)+.

Ω̄+ Particle
The antiparticle of the Ω−, the Ω̄+ particle has also been seen produced
in the reaction K++d → Ω̄ΛΛpπ+π− and decays via the mode Λ̄+K+.
The mass that fits the data on this particle has the value 1673.1 ±
1.0 MeV [307].

Paraquark Model
The idea of introducing another degree of freedom to get out of the dif-
ficulties with Pauli principle for the ground state baryons was proposed
by Greenberg [308]. He proposed that quarks obeyed para-statistics of
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order 3, thus providing three additional degrees of freedom. These ex-
tra degrees of freedom have since been called color. See section under
“Colored Quarks and Gluons”.

Parity Conservation
The concept of spatial parity as a conserved quantity in a quantum
mechanical system owes its origin to Wigner [309]. The parity operation
is a discrete transformation involving the behavior of a physical system
under inversion of spatial coordinates 7r → −7r. As this transformation
means that we are going from a right-handed system of coordinates
to a left-handed one, we might say that we are investigating whether
the system has “left-right symmetry”. It was tacitly assumed that, at
a fundamental level, nature does not distinguish between “right” and
“left” in all fundamental laws. It was quite a surprise when it was
discovered that weak interactions violate this symmetry principle.

If the quantum mechanical system is described by the wave function
ψ(7r), and P represents the parity operator, we have Pψ(7r) → ψ(−7r).
Applying P twice we see that P 2ψ(7r) = ψ(7r), or that P 2 = 1. This
implies that the eigenvalues of the parity operator are ±1. Parity will be
a conserved quantity if the operator P commutes with the Hamiltonian
of the system: [H,P ] = 0. If the Hamiltonian has the property that
H(−7r) = H(7r), such as when the Hamiltonian is spherically symmetric,
then clearly, [P,H] = 0, and the system described by the wave function
ψ(7r) will have definite parity. For systems which are described by a
spherically symmetric Hamiltonian, the wave functions ψ(7r) have the
form R(r)Ylm(θ, φ), where r, θ, φ are the coordinates of the point in
spherical polar coordinates, and the values of l label the orbital angular
momentum, and m its projection on the z-axis. The operation of spatial
inversion in spherical coordinates is achieved by r → r, θ → π − θ and
φ → π + φ. Since under these operations

Ylm(θ, φ) → (−1)lYlm(θ, φ),
the wave function of the system R(r)Ylm(θ, φ) → (−1)lR(r)Ylm(θ, φ),
the eigenvalues +1(−1) of the parity operator are associated with even
(odd) values of l. Thus, s, d, g, . . . states have even parity, while the
p, f, h, . . . states have odd parity. These parities are called orbital pari-
ties, since they arise from a consideration of the orbital angular momen-
tum associated with the state. Since the wave function associated with
a composite system can be expressed as a product of the wave functions
for the individual systems, parity for the composite system is a product
of the parities of the individual systems.

This may be applied to an atomic system in interaction with elec-
tromagnetic radiation. The system’s energy levels are characterized by
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angular momentum (in addition to other quantum numbers), and when
radiation is emitted, the highest probability occurs for electric dipole
radiation (E1) with the selection rule ∆l = ±1. Thus, the parity associ-
ated with the energy levels involved in the transition must change from
even to odd or odd to even. If parity is conserved in electromagnetic
interactions of atoms, the emitted E1 radiation must have parity −1
associated with it, so that the parity of the total system is conserved.
This means that electric dipole radiation will be emitted when the atom
goes from f to d state, d to p state, p to s state, etc. All experimen-
tal results are in conformity with parity conservation in electromagnetic
interactions.

Every elementary particle also carries an intrinsic parity. By con-
vention, neutrons and protons are assigned an intrinsic parity which is
+1. Studies of nuclear reactions at energies where no new particles are
produced show that parity is conserved in strong interactions; that is,
the parity of the initial and final states are the same. When as a result
of nuclear reactions between known particles, a new particle is created,
if parity is conserved in the production reaction, the intrinsic parity of
the newly produced particle is determined so that the initial and final
states have the same parity. An example may serve to illustrate this
point. Consider the reaction p+ p → π++ d (which is a reaction involv-
ing strong interactions) producing the new particle π+. The two protons
and the deuteron all have intrinsic parity +1. The π+ must have a suit-
able intrinsic parity associated with it such that parity is conserved on
the two sides of the reaction.

In relativistic collisions antiparticles are produced and the question
arises as to what intrinsic parity is to be associated with the antiparticle
of a given particle. The answer to this question depends on whether
we are considering particles which are bosons or fermions. For a boson,
the antiparticle has the same parity as the particle. For a fermion, a
consequence of the Dirac equation is that the intrinsic parity of the
antifermion is opposite to that of the fermion. This is amenable to
experimental tests in positronium decays.

Positronium is a bound state of an electron and a positron. It is
like a hydrogen atom in which the reduced mass of the electron is half
the electron mass. The lowest bound S states are ones in which the
spins of the electron and positron are parallel (3S1 state) or antiparallel
(1S0 state). The 1S0 state decays into two photons with a mean lifetime
of about 10−10s, while the 3S1 state decays into three photons with a
mean lifetime of about 10−7s. Let us consider the two photon decay:
e++ e−(1S0) → γ+ γ. Because the orbital parity associated with the S
state is +1, the parity on the left-hand side is determined by the intrin-
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sic parities of the electron and the positron. It will be +1 if they have
the same intrinsic parity, and −1 if they have opposite intrinsic parity.
If we can determine experimentally the parity carried by the two pho-
ton system on the right-hand side, using parity conservation, we would
have determined the parity on the left-hand side. In the rest frame of
the positronium, the two photons have equal and opposite momenta,
±7pγ . Let their polarization vectors (the direction of their electric vec-
tors) be 7e1 and 7e2. Two possible forms for the wave function of the two
photon system (with total angular momentum 0) can be written down
which satisfy Bose symmetry and which involve labels of both photons:
ψ1 ∝ (7e1 · 7e2) and ψ2 ∝ (7e1 × 7e2) · 7pγ . Of these ψ1 has even parity
because it is a scalar product of two vectors, each of which changes
sign under space inversion. On the other hand, ψ2 has odd parity, be-
cause, it involves an additional vector 7pγ in the scalar product, which
changes sign under space inversion. These functions are such that, for
even parity, the polarization vectors of the two photons must be parallel
to one another, while for odd parity, they must be perpendicular to one
another. Whether the polarizations are parallel or perpendicular can
be determined by experiment. Just such a determination was made in
an experiment performed by Wu and Shaknov [310]. In their experi-
ment, they used the dependence of Compton scattering of photons in
a magnetized material on the polarization of the photon to determine
the polarization direction of each of the photons. In this way, they de-
termined the polarizations of the two photons to be perpendicular to
one another. The two photon system has odd parity which implies that
the intrinsic parity of the positron is opposite that of the electron. This
is true for other fermions, too. Thus, the antiproton and antineutron
have opposite intrinsic parities to those of the proton and the neutron,
respectively.

Parity Nonconservation in Nuclear β Decays
The observation of the decays of kaons into two pion and three pion final
states, the final states having opposite parities, opened the question of
whether parity is conserved in weak interactions. One place where lots
of experimental data were available was in beta decay. The question
was first posed whether one could detect parity nonconservation in beta
decays.

An experiment to detect parity nonconservation in beta decays was
carried out by Wu et al. [311]. They studied β decay of oriented nuclei
to see if they could find any asymmetry in the direction of emission of
the electrons with respect to the spin direction of the nuclei. Any such
correlation between the spin of the nucleus and the momentum of the
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Figure 4.17: The experimental arrangement which established parity
violation in nuclear beta decay. (Figure from C. S. Wu, E. Ambler, R.
W. Hayward, D. D. Hoppes, R. P. Hudson, Physical Review 105, 1413,
1956. Copyright 1956 by the American Physical Society.)

emitted electrons would signal the presence of a pseudoscalar 7J ·7pe, which
changes sign under reflections. If electrons were emitted preferentially
in the direction in which nuclear spins were pointing (or preferentially
in the opposite direction), such an observation would constitute parity
violation in β-decay. To do such an experiment, they chose to work
with 60Co, which has a nuclear spin J = 5 and β-decays by electron
emission to an excited state of 60Ni, which has a nuclear spin, J = 4.
The β transition is a pure Gamow-Teller transition. To orient the 60Co
nuclear spins, they mounted the sample inside a solenoid and put the
assembly inside a cryostat maintained at a temperature of 10 millikelvin
(see Figure 4.17). The magnetic field generated by the solenoid oriented
the cobalt nuclear spins in the direction of the magnetic field. On the
left portion of Figure 4.17 the portion of the cryostat containing the
60Co nuclei is shown. The anthracene crystal just above the specimen
counts the beta particles by sending the scintillations from the crystal
through a lucite rod to a photomultiplier tube. A measure of the degree

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 335

✐

✐

✐

✐

✐

✐

✐

✐

of orientation of the cobalt nuclei was obtained by looking at the angular
distribution of the gamma rays emitted in the decay of the excited 60Ni.
Two NaI counters, one level with the source and the other located close
to the axis of the lucite rod, aided in the determination of the angular
anisotropy of the gamma rays and thus the degree of orientation of the
cobalt source. On the right side of Figure 4.17, the top part shows
the gamma ray counting rates in the two NaI counters. The calculated
gamma-anisotropy is shown in the middle part. In the bottom, the beta
asymmetry is shown for the two magnetic field directions. It should be
noted that the beta and the gamma asymmetry disappear at the same
time, which is the warm-up time (about 6 minutes). Notice also that the
beta counts become independent of the field direction when the sample
becomes warm, and the cobalt nuclei lose their orientation.

Let θ represent the angle between the spin direction of the cobalt
nuclei and the direction of motion of the β-electrons. The experiment
measured the number N(θ) of electrons emitted as a function of the
angle θ. Wu and collegues found that this number distribution could be
expressed in the form

N(θ) = 1− (n̂ · 7pe/E),
where n̂ is a unit vector in the direction of the nuclear spin (magnetic
field), 7pe the vector momentum of the β-electron, and E its total energy.
It is clear from this expression that more electrons are emitted in a
direction opposite to the nuclear spin than in a direction parallel to it.
As mentioned above, this is clear violation of front to back symmetry
with respect to the nuclear spin and, hence, violation of parity in nuclear
beta decay.

In the Gamow-Teller transition, nuclear parity does not change, so
detection of parity nonconservation in the decay implies that the emitted
leptons are in a mixture of orbital s and p states. Since N(θ) is a
maximum for θ = π and Lz = 0 in this direction, the electron and
neutrino spins must be aligned in this direction, or in other words, they
are longitudinally polarized. This longitudinal polarization has been
measured in electron and positron decays, by scattering them against
electrons in a magnetized material, and has been found to be −β and +β,
respectively, where β is the velocity of the decay lepton (in units of the
velocity of light). The longitudinal polarization of the neutrino (helicity)
has also been determined by an ingenious experiment (see section under
“Neutrino Helicity”).

Parity-Violating Asymmetry in Deep Inelastic Scattering
In the standard model of electroweak synthesis, one of the predictions
is for the existence of the neutral intermediate vector boson Z0, with
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a mass of about 90 GeV, with prescribed couplings to the leptons and
quarks. The reality of the effects of the Z0, called neutral current effects,
were measured a considerable time before the actual production of the
Z0 in the laboratory. One of these effects occurs in the deep inelastic
scattering of polarized electrons on deuterium target eR,Ld → eX. If
parity is violated in the couplings of Z0, a parity-violating asymmetry,
defined by

A =
σR − σL
σR + σL|

must have a nonzero value, where σR,L are the cross sections for the deep
inelastic scattering of right- and left-handed electrons on the deuteron.
In the quark-parton model this asymmetry can be shown to have the
form

A

Q2
= c1 + c2

1− (1− y)2

1 + (1− y)2
,

where Q2 is the negative of the square of the four-momentum transfer,
and y is the fraction of the energy transferred from the electron to the
hadrons. For the deuteron target, one can show that

c1 ∼ 3GF
5
√
2πα

(
−3
4
+

5
3
sin2 θW

)
,

and

c2 ∼ 9GF
5
√
2πα

(
sin2 θW − 1

4

)
,

where GF and α are the Fermi weak coupling constant and the fine
structure constant, respectively. In a very beautiful experiment per-
formed at SLAC, this parity-violating asymmetry was measured [312]
in 1979, about four years before the Z0 was directly produced in the
laboratory with the CERN Spp̄S collider. This not only established the
reality of the effect of the Z0 boson but also gave a good measurement
of the weak mixing angle θW .

Particle-Antiparticle Conjugation
See section under “Charge Conjugation”.

Parton Model
See also section under “Bjorken Scaling—Explanation”.

The study of the deep inelastic scattering of electrons on protons
shows that the form factors depend only on the dimensionless variable
x = Q2/(2Mν), when one takes the limit Q2 → ∞ and ν → ∞ but with
x finite (Bjorken scaling), where q2 = −Q2 is the square of the four-
momentum transferred by the electron and ν is the energy transferred
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by the electron in the proton rest frame. The parton model explanation
of Bjorken scaling was proposed by Feynman [92]. He suggested that the
proton may be pictured as a collection of pointlike free particles called
partons, and that the scattering of the incident high energy electron
by the proton, can be evaluated by calculating first the scattering from
these free pointlike constituents.

The reason why this is possible has to do with the time duration
of the collision of the electron in comparison to the time during which
the proton dissociates into a virtual state of free partons. If qµ(q0, 7q)
is the virtual photon four-momentum, q0 is very large for deep inelastic
scattering. The collision time (tcoll) with the proton is of the order of
the time taken for the proton to absorb the photon, � (1/q0). If δE
is the magnitude of the difference in energy between the proton state
and its state in virtual dissociation into partons, then the dissociation
time (tdiss) is � (1/δE). One can show that tdiss is very large compared
with tcoll at high energies, in which case the partons can be considered
as free particles during the collision. We can easily estimate q0, δE as
follows. Working in the center of mass frame of the electron-proton
system, let the incident proton of mass M have initial four-momentum
P of (P 0 =

√
7P 2 +M2, 7P ), then the electron’s initial four-momentum is

(|7P |,−7P ) where we have neglected the electron mass. After scattering,
the electron four-momentum is (|7P |− q0, 7P −7q). Again if we neglect the
mass of the final electron, we must have

(|7P | − q0)2 − (7P − 7q)2 = 0,

which simplifies to q2 − 2q0|7P | − 27P · 7q = 0. We also have P · q =
q0

√
7P 2 +M2 − 7P · 7q. Eliminating 7P · 7q between these two expressions

and simplifying, we get

q0 � 2P · q + q2

4|7P | .

If the proton dissociates into a parton of mass M1 and other partons of
mass M2 with momenta x|7P | and (1− x)|7P |, then

δE =
√
x|7P |2 +M2

1 +
√
(1− x)2|7P |2 +M2

2 −
√
7P 2 +M2.

This simplifies to

δE �
(
M2
1

2x
+

M2
2

2(1− x)
− M2

2

)
/|7P |.
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In the deep inelastic process, remembering q2 = −Q2 and P · q = Mν
are very large (compared to M2), we have for the ratio of the collision
time to the dissociation time,

(tcoll/tdiss) = [(2M2
1 /x) + (2M2

2 /(1− x))]/(2Mν −Q2).

Clearly this ratio is very small when both Q2 and 2Mν are very large
compared to M2. Thus these considerations show why in the deep in-
elastic process one can treat the partons in the proton as not interacting
with one another within the duration of the collision with the electron.
The partons scatter the electron incoherently, and the electron-proton
cross section is the sum of the parton contributions. However, as the
fractional momentum x carried by the parton is continuously distributed
between 0 and 1, the sum over partons is replaced by an integral over x
with a function fi(x), which is the probability distribution function for
a parton of type i to carry a fractional momentum x of the proton (and
summed over all parton types i). These are called parton distribution
functions and they characterize the proton in the parton model. After
the scattering process, over a long time scale, the partons are assumed
to recombine into the final state hadronic fragments arising from the
proton.

Parton Model—Bjorken Scaling Violation
In the interests of economy, let us suppose that the partons are identi-
fied with quarks. Then one can use quantum chromodynamics (QCD)
to govern the interactions of quarks. In the Bjorken scaling limit, the
proton is just a collection of free quarks. In QCD, the quarks emit and
absorb gluons, the coupling between them tending to zero at infinite
momentum transfers (Q2 → ∞) due to the asymptotic freedom of the
theory. At any finite Q2, the parton distribution functions acquire Q2

dependent corrections due to the possibility of emission of gluons, so
the parton distribution functions fi(x) are replaced by the quark and
gluon distributions, q(x,Q2) and g(x,Q2), respectively, in the proton.
The virtual photon which probes the proton now views it not merely as
a collection of quarks but as the more complicated (quark plus gluon)
system which leads to Bjorken scaling violations (explicit dependence on
Q2), departing from the simple parton model.

A set of differential equations to give the Q2 evolution of the quark
and gluon distribution functions was derived by Gribov and Lipatov,
and Altarelli and Parisi using perturbative QCD [313]. These are usu-
ally called the Altarelli-Parisi evolution equations, although Gribov and
Lipatov had derived these equations earlier independently for Abelian
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theories. The evolution equations are, introducing a scale parameter Λ
and t = ln(Q2/Λ2), into the so-called leading logarithmic approximation,

dqi(x, t)
dt

=
αs(t)
2π

[Pqq PQ qi + Pqg PQ g],

dg(x, t)
dt

=
αs(t)
2π

[Pgq PQ
∑
i

qi + Pgg PQ g],

where the symbolic notation

Pqq PQ qi =
∫ 1

x

dw

w
Pqq(

x

w
)qi(w, t),

and similar notations in the other terms have been used. Here, Pqq, Pgq,
Pgg are quark-quark, quark-gluon, and gluon-gluon splitting functions,
respectively, for which expressions are derived in perturbative QCD.
αs(t) is the “running coupling constant” expressed as a function of t.
Using these, one can solve the integro-differential equations and obtain
the quark and gluon distribution functions at any t (hence at any Q2),
given some initial values at t0 (Q20), where t0 is chosen such that pertur-
bation theory is applicable for t > t0. The initial parton distributions
at t0 are obtained from fits to experimental data at Q20 � 2− 2.5 GeV2.
The Q2 dependence of the functions depends on the value of Λ, called
the QCD scale. It is determined by fits to experimental data on the Q2

dependence of the form factors. Such work establishes that perturbative
QCD is capable of describing high energy phenomena involving hadrons
very well, over a very wide range of Q2 values, and goes a long way to-
ward establishing QCD as a fundamental theory for strong interactions.

Path Integral Formalism
In 1948, Feynman [314] proposed an alternative formulation of non-
relativistic quantum mechanics. This formulation and its relativistic
generalizations are found necessary in dealing with many problems in
perturbative quantum field theories, especially non-Abelian gauge field
theories.

The basic idea behind this formulation is the following. In quantum
mechanics, we know that the probability of an event, which is capable of
occurring through several different ways, is obtained by taking the sum of
the complex amplitudes, one for each such way, and finding the absolute
square of the sum. Thus the probability that a particle will be found to
have the path x(t) in some region of space will be the square of a sum
of contributions, one from each path in the region. Feynman proposed
that the contribution from any single path is given by exp iS, where S
is the classical action in units of h̄ for that path. He also proposed that
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the total contribution from all paths reaching a given point (x, t) from
earlier times is the wave function ψ(x, t). He showed that this function
satisfies the Schrödinger equation. He also studied the relation of this
method to matrix and operator algebra and considered applications in
particular in quantum electrodynamics.

Peccei-Quinn Symmetry
Conservation of CP seems to hold for strong interactions. Strong in-
teractions of hadrons have their origins in the interaction of quarks and
gluons, which make up the hadrons. The theory describing the inter-
actions of quarks and gluons is based on the color gauge field theory,
called Quantum Chromodynamics (QCD). The question we may well
ask is, does quantum chromodynamics give CP conservation?

It has been found that the non-Abelian QCD fields possess Euclidean
solutions which carry a topological quantum number. This requires a
much more complicated vacuum state than is normally included in the
perturbative treatment of field theories. There are infinitely many vacua
labeled by a parameter called θ. The Hilbert space of states factor into
subspaces of states built on these distinct θ vacua. The vacuum to vac-
uum transition amplitude, when calculated in a particular θ vacuum,
involves a sum over field configurations labeled by the topological quan-
tum number q defined by

g2

32π2

∫
d4xFµνa F̃ aµν = q,

where g is the coupling constant, F aµν is the non-Abelian gauge field,
and F̃ aµν = εµνρσF

ρσ
a , called the dual non-Abelian gauge field. Here the

ε tensor is totally antisymmetric in its indices, with ε0123 = 1. This
constraint on the field configurations imposed through q modifies the
Lagrangian density of the field theory by adding a term,

iθ
g2

32π2
F aµνF̃

µν
a ,

to it. Such a term clearly violates both P and CP . It will give viola-
tion of CP in strong interactions, which will be disastrous, for there is
no experimental evidence for such a violation. Peccei and Quinn [315]
suggested a way out of this problem. They suggested that if the full
Lagrangian possesses a chiral U1 invariance, changes in θ are equivalent
to changes in the definitions of the fields in the Lagrangian and will lead
to no physical consequences. The theory with the chiral U1 symmetry
(called Peccei-Quinn symmetry) is equivalent to a theory with θ = 0,
and P and CP will be conserved in strong interactions.
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A value of zero for θ is a natural result of Peccei-Quinn symmetry,
which is exact at the classical level, and which will give rise to a massless
Goldstone boson. Such a particle is called the Axion (see further in
the section under “Axions”). Quantum mechanical effects, such as the
triangle anomaly with gluons, give a nonzero value to the mass of the
axion arising from the spontaneous breaking of Peccei-Quinn symmetry;
thus the axion is really a pseudo-Goldstone boson.

φ Meson
The first evidence for this particle came from a study of the reactions
involving K− from the Brookhaven AGS proton synchrotron incident
on protons in a hydrogen bubble chamber [316]. There were many final
state products as a result of the K−-p interactions. Out of these, the
final states involving Λ0+K++K− and Λ0+K0+ K̄0, when analyzed,
showed a peak in the K − K̄ mass distribution at a mass of about
1020 MeV and a width of about 3 MeV. The small width is a reflection
of the fact that the phase space available for the decay of this state is
rather small (the threshold being about 988 MeV for the K+K− mode
and 995 MeV for the K0K̄0 mode) and is due to a weak decay process.
This particle is called the φ meson.

One can also study reactions in which the final state particles are
Σ0 +K+ +K− and Σ+ +K− +K0. A peak in the K+K− mass distri-
bution is seen but no such corresponding peak is seen in the K−K0 mass
distribution. This is consistent with the assignment of isospin I = 0 for
this resonant state. The decay φ → K+K− allows us to conclude that
its parity is (−1)J , where J is the spin of the φ. Under the charge conju-
gation operation C, we have CφC−1 = (−1)Jφ, and because I = 0, the
G parity operator G = CeiπI2 is the same as C. The G-parity for the φ
particle is (−1)J . It has also been observed that the branching ratio for
φ decaying into a pair of pions, relative to decay to a KK̄, is very small,
leading to the conclusion that the G-parity is (−1) for this particle, and
hence its spin J must be odd. J values higher than 1 are excluded from
a measurement of the branching ratio of φ → K0K̄0 to φ → K+K−,
which depends on the assumed spin of the φ; odd J > 1 give a poor
fit to this ratio. Hence, J = 1 is assigned to this particle. Thus the φ
meson is a vector meson and, in the constituent quark model, is almost
completely an ss̄ bound state due to dominance of the KK̄ decay mode.

The decay of the φ meson into a pair of charged leptons has also
been observed [317]. In the constituent quark model, the ratio of the
decays of the ρ0, ω0, and φ0 can be worked out on the basis of their
quark compositions. These also show that the φ is almost entirely ss̄
bound state.
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Photino
This is a hypothetical particle of spin 1/2, which is the supersymmetric
partner of the spin 1 photon. (See under “Supersymmetry”.)

Photoelectric Effect
The idea of the quantum of radiation made great strides toward believ-
ability with Einstein’s explanation of the photoelectric effect based on
Planck’s ideas of quanta of radiation [318]. Hertz at first, and later Mil-
likan in more detailed studies, had observed that when metal surfaces
were illuminated by light, they emitted electrically charged particles.
They established that (1) these emitted charged particles were nega-
tively charged electrons and not positive ions; (2) there was a threshold
frequency of light ν0, characteristic of each metal, below which frequency
there was no emission of electrons; (3) the magnitude of the current of
electrons emitted was proportional to the intensity of the light and inde-
pendent of the frequency of the light for ν > ν0; and (4) the energy of the
emitted electrons, as measured by a retarding potential applied to slow
them down, showed that the energy was proportional to the frequency
of the light and independent of its intensity.

These observations cannot be explained on the basis of the classical
theory of light waves. Classically, the energy associated with the light
waves is related to its intensity, and so the energy of the photoelec-
trons should vary with the intensity of light and not have the frequency
dependence that is actually observed. There is also no explanation clas-
sically why the photoelectric current should vary with the intensity of
the light. With Einstein’s use of the quantum picture for light, where
the energy of light photons is E = hν, higher frequency of light means
higher energy for the quantum, so that the emitted photoelectron will
have higher kinetic energy. The threshold frequency ν0 for each metal
implies a characteristic threshold energy E0 = hν0 below which it may
be energetically impossible to free an electron from the metal. The equa-
tion for the kinetic energy acquired by the electron may be written as
kinetic energy = hν − hν0. The variation of the photoelectric current
with the intensity of the light is understood because a low intensity light
source puts out fewer quanta than a high intensity source for the same
frequency. More photoelectrons will be emitted when a higher intensity
source is used. This explanation put the photon hypothesis for the light
quantum on a sound footing.

Photon—Mass, Spin, Statistics
A number of phenomena advanced the corpuscular nature of light. Most
notable among these was the behavior of the energy density of radiation
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from a black body as a function of the frequency of radiation. Expres-
sion for the energy density, derived by Rayleigh and Jeans, on the basis
of classical theory of radiation showed a quadratically increasing func-
tion of the frequency. This behavior, besides being physically absurd,
disagreed with experimental measurements at high frequencies. Planck
solved the problem by making a radical new assumption regarding the
nature of light. He proposed that the energy E of light came in discrete
packets, or quanta, E = hν, where ν is the frequency of the radiation,
and h is a constant with dimension energy × time. The expression for
the energy density of black body radiation, using the idea of quanta of
radiation, showed a decrease for high frequencies and was found to agree
very well with experimental results. Thus was born the quantum of the
electromagnetic field, the photon.

For a particle to be recognized as a particle, it must have, along with
its energy, an associated momentum, such that in collision processes,
one can see the effect of momentum conservation. Establishment of the
fact that the photon, in addition to having an energy E = hν, has a
momentum p = hν/c associated with it (where c is the velocity of light),
did not take long. Stark [319] was the first to make manifest the reality
of associating momentum and energy to the photon in the X-ray region.
Compton effect, discovered in 1923, established the idea of the photon
as an elementary particle endowed with energy and momentum beyond
any doubt (see further under “Compton Effect”).

The Compton effect has some additional consequences. By estab-
lishing that the momentum of a photon is given by p = hν/c, it also
determines that the rest mass of the photon is zero. This follows from
Einstein’s relation between energy and momentum: E =

√
c2p2 +m2

0c
4,

for a particle of rest mass m0. It is seen from here that E = cp or
p = E/c = hν/c follows, when the rest mass m0 is set to zero. The
Compton effect also shows that photons must be treated individually
in any processes of collisions in which they participate. It shows that
a photon cannot be split; a part of the energy of the photon cannot be
scattered.

Another property associated with a particle is its intrinsic spin. The
fact that the photon has polarization suggests that, when we associate
a wave fuction for the photon in quantum mechanics, it must have one
component for each state of polarization of the photon. The photon as
a particle with rest mass zero and spin 1 can be shown to have just two
states of polarization. Thus the photon is an elementary particle with
spin 1. The direct establishment that the photon spin is 1 was done by
Raman and Bhagavantham [320]. Raman was aware of the relationship
of photon spin to selection rules in spectroscopy—the possibility of the
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quantum being either right- or left-handed around an axis parallel to the
direction of its motion, corresponding to the two alternative projections
of its angular momentum on this axis. They considered the spectrum of
light scattering by molecules of a gas, which has three components: the
unshifted Rayleigh line, and two rotational bands, one on the high fre-
quency side and another on the low frequency side of the Rayleigh line.
They applied energy and angular momentum conservation to the scat-
tering of photons by the rotating molecules and deduced that the high
frequency and low frequency scattered components in the forward direc-
tion would consist of photons which have experienced a reversal of spin.
That is, if the incident light be circularly polarized, the Rayleigh line
would be circularly polarized in the same sense, while the rotational Ra-
man scattered lines would be reverse circularly polarized. They showed
that the observations in their experiment were in accord with these de-
ductions and hence deduced that the photon had an intrinsic spin of one
unit.

The statistics observed by a collection of light quanta was discovered
by Bose [321]. Photons obey Bose statistics; that is, a collection of
photons is described by a wave function, which is a totally symmetric
function of the coordinates and other attributes of all the photons in the
assembly.

Pion
The pion, originally named the π meson, was among the earliest ele-
mentary particles to be discovered in cosmic rays by Powell and collab-
orators working with photographic emulsion plates [322]. That such a
particle might exist was predicted by Yukawa [113] in 1935 based on
theoretical considerations for generating the strong short range nuclear
force between the nuclear constituents. He based his considerations on
an analogy with electromagnetic forces between charged particles which
are generated by the exchange of photons between them. The basic
electric force, which is the Coulomb force, has an infinite range of in-
teraction because the exchanged photons are massless. He showed that
exchange of massive quanta between nuclear particles would give rise
to a short range force, the range being inversely proportional to the
mass of the exchanged particle. By taking the range of the nuclear force
to be about 1.3 × 10−13 cm, he estimated that the exchanged particles
would have a mass about 300 times the electron mass (energy equivalent
� 150 MeV). At that time such particles could not be produced in the
laboratory because no accelerators were available with enough energy
to produce them. Cosmic rays were the only source known at the time
which had high energy particles among them.
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The search for particles with mass intermediate between those of the
electron and the proton were undertaken by a number of researchers
working in cosmic rays, in the early period using cloud chambers and
later using photographic emulsion plates. A particle, now called the
muon, was the first to be found in such studies (see further under
“Muon”). At first it was thought to be the particle that Yukawa had
predicted. For a number of reasons explained in the section on muons,
it turned out that it was not the particle which could be the mediator
of strong nuclear forces. Powell and collaborators [322] exposed pho-
tographic emulsion plates to cosmic rays at high altitudes. When the
plates were developed, they found them to contain tracks of new parti-
cles which had not been seen before, which were named π mesons. They
saw events, which they interpreted as the decay of a π meson coming to
rest in the emulsion and decaying into a muon. The decay muon was al-
ways found to have the same range in the emulsions, namely about 600µ.
This is consistent with the kinematics of a two-body decay in which the
decay products will have monochromatic energies. The other member
of the two-body decay product did not leave a track in the emulsion,
probably because it was neutral. The kinematics were consistent with
the neutral particle having zero mass and they considered it to be a
neutrino. They interpreted these decays as examples of π+ → µ+ + νµ.
There were also events recorded where, in addition to the π decay to µ,
they saw the µ decay to e. From the π-decay measurements, they came
up with a figure for the mean lifetime of the π as 10−8 s.

Progress of such work with cosmic rays was slow, but with the build-
ing of high energy accelerators at various institutions, rapid progress
could be made in this field. This fueled the growth of an era of good
measurements with which one could find precise values for the mass and
lifetime, and the spin, parity, etc., in addition to discovering new par-
ticles (K mesons and hyperons). Hints for the presence of these new
particles were already coming from cosmic rays work. Efforts were also
afoot to measure the scattering cross sections for pions on protons and
neutrons.

π+ Mass, Lifetime, Decay Modes
The mass and mean lifetime of the π+ has been measured in a variety
of experiments since it was first found. We give only the modern values
here: mπ+ = 139.56995 ± 0.00035 MeV and τπ+ = (2.6033 ± 0.0005) ×
10−8 s. The dominant decay mode is π+ → µ+ + νµ with a branching
ratio of (99.98770 ± 0.00004)%. All other decay modes have branching
ratios of the order of less than 10−4. An interesting mode is one leading
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to β decay of the pion π+ → π0 + e+ + νe with a branching ratio
(1.025± 0.034)× 10−8 [323].

π+ Spin Determination
The spin of the π+ has been determined by using a clever idea. The
reaction p+ p → π++d and its inverse are measured at the same center
of mass energy. Using the principle of detailed balance between these
two reactions one can determine the spin of the π+. The total cross
section for the forward process is calculated to be

σforward =
(
1
2

)2∑
if

|Mif |2EπEdpπ4πpf
.

Here the first factor (1/2)2 comes from averaging over the spins of the
two initial protons, Mif is the matrix element for the transition, and
the last factor comes from the final phase space with pπ, Eπ, Ed and pf
being the momentum of pion, energy of the pion, energy of the deuteron,
and the momenum of the proton, respectively, in the p-p center of mass
frame. The cross section for the reverse process, at the same center of
mass energy, is

σreverse =
1

6(2J + 1)

∑
if

|Mif |2 pfEπEd4πpπ
.

Here, of the first factor 1/6(2J + 1), 1/3(2J + 1) comes from averaging
over the spin of the π+ and of the deuteron, the other factor of 1/2 comes
from taking account of the identity of the two protons in the final state,
and the rest of the factors have the same meaning as in the previous
expression. Taking a ratio of these two expressions we get

σreverse
σforward

=
2

3(2J + 1)

(
pf
pπ

)2
,

where the unknown matrix element factor cancels out. The reverse cross
section for the absorption of π+ has been measured at a pion laboratory
energy of 24 MeV [324]. The forward cross section has also been studied
at a proton incident laboratory energy of 341 MeV [325]. The center of
mass energy here is approximately that involved in that of the reverse
reaction. Thus, all the factors in the ratio are known except the 2J + 1
which is determined by the ratio. It is found that J = 0 best fits the data.
There is no direct experimental determination of the parity of the π+.

π− Parity Determination
There is no direct experimental determination of the spin of the π−.
However, the spin of π− must be zero because it is just the antiparticle
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of π+. (Likewise, the mass and the lifetime of π− must be the same as
that of π+.)

There is a direct experimental determination of the parity of π−.
We describe how that was done. It can be shown that, if the reaction
π− + d → n + n occurs for π− at rest, then the parity of the π− must
be odd. The reasoning behind this conclusion is as follows. It turns out
that after the π− slows down in the material, it gets captured into high
atomic orbits from which it cascades down to lower states. It also turns
out that there is an appreciable probability for it to be in an atomic S
state. Suppose capture occurs from these atomic S states. In such a
case the initial angular momentum and parity of the system is 1±, the
+ sign holding for even parity, and the − sign for odd parity for the
π−. The final state two neutron system, by Pauli principle, can only
be in 1S0,

3 P0,1,2,
1D2, . . . . Of these the only state that has angular

momentum 1 is the 3P1 state, and this state has odd parity. So, if the
reaction occurs at all, the parity of π− has to be odd.

The capture reaction has indeed been observed to occur by Panofsky
et al. [326]; hence the parity of π− is determined to be odd. Thus, both
π+ and π− are spin zero particles with odd parity, that is, they are
pseudoscalars.

In showing that the above captures do indeed occur from an S state,
the following considerations are involved. The whole slowing down pro-
cess for the π− and the formation of the π-mesic atom takes a time
much shorter than the mean lifetime of the π−. It is captured in an
atomic orbit with a large value of the principal quantum number n from
which by Auger processes it cascades down to n � 7. Then a mechanism
discovered by Day, Snow, and Sucher [327] decides the further fate of
the pionic atom. The small radius neutral pionic atom wanders about
and soon penetrates the electron shell around a deuterium atom. The
intense electric fields in this region cause Stark mixing of the n2 de-
generate levels and populate the S levels. These populations are much
more than what they would be if the pionic atom came down to the 2P
and 1S states via radiative transitions. The capture probability rapidly
decreases as the angular momentum of the orbit increases, so S state
capture is favoured over capture from higher angular momentum states,
a fact which was used above.

π0 Mass, Lifetime, Spin, Parity
The neutral π has been detected by its decay mode, π0 → γ+γ. Precision
measurements on this decay allow one to determine the mass and mean
lifetime of this particle. They are mπ0 = 134.9764 ± 0.0006 MeV and
τ = (8.4 ± 0.6) × 10−17 s. The branching ratio for the 2 gamma decay
mode is (98.798±0.032)%. The e+e−γ decay [328] mode has a branching
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ratio (1.198 ± 0.032)%. Other branching ratios for two electron pairs
and one electron pair, which can be viewed as the internal conversion of
the two photons into two pairs or a single pair, respectively, are about
3× 10−5 and 7× 10−8, respectively.

The spin of the π0 is not measured directly. Its closeness in mass to
the charged members suggests that they could form an isotopic triplet if
its spin were also zero. Additional evidence for its spin being zero comes
from the occurrence of the 2 gamma decay mode. It can be theoretically
proven that a system with spin 1 cannot decay into 2 gammas while a
system with spin 0 can.

The parity of the π0 is determined from the following consideration.
Assuming spin 0 for the π0, the decay amplitudes for the two gamma
decay mode, which incorporate the requirements of Bose symmetry (lin-
earity in the polarization vectors of the two photons) have the forms

7e1 · 7e2 (for even parity),

7pγ · 7e1 × 7e2, (for odd parity),

where 7e1, 7e2, 7pγ are the polarization vectors of the photons, and the mo-
mentum of the photon in π0 rest frame, respectively. These amplitudes
predict that, for even parity of π0, the polarization vectors of the two
photons must be parallel, while for odd parity, they must be perpen-
dicular. In the modes in which these photons are internally converted,
these polarization correlations are carried over. If the angle between the
planes of the two pairs is φ, then for even (odd) parity, the distribution
in this angle is of the form 1 + 0.48 cos 2φ(1 − 0.48 cos 2φ) [329]. The
planes of the two pairs are found to be perpendicular to one another,
φ = π/2. Thus, the parity of π0 is determined to be odd.

Pion-Nucleon Scattering
In the 1950’s a very large amount of effort was expended in understand-
ing the properties of pions and their interaction with nuclear particles.
Of special interest was the scattering of pions on nucleons. As soon as
it was established that pions were pseudoscalar particles, the dynam-
ics of pion nucleon interaction, based on the Yukawa coupling between
pseudoscalar mesons and nucleon (pseudoscalar) currents with a cou-
pling constant g, was intensely investigated. Theoretical developments
were based on the use of perturbation theory for the Yukawa interac-
tion patterned on calculations in quantum electrodynamics developed by
Feynman, Schwinger, Tomonaga, and Dyson. Experimental data on the
scattering of pions on nucleons revealed that the magnitude of the cross
sections were quite large and showed a rapid rise with energy. These
features indicated that g2/4π would have to be of order 15 to provide a
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fit to the data. With such a large coupling constant it was clear that per-
turbation theory was inadequate to deal with the problem. No general
nonperturbative methods of treating the problem were known.

For a brief period, theoretical effort was put into the so-called Tamm-
Dancoff approximation to solve for the pion-nucleon amplitude, limiting
the coupling of this state to other nearest neighbouring states. This gen-
erated an integral equation for the pion-nucleon amplitude [330] with a
kernel limited to order g2/4π. Using angular momentum decomposition,
equations were developed for various angular momentum states, and ex-
pressions for the phase shifts were derived. Numerical solutions were ob-
tained and the phase shifts indicated a rapid rise in the I = 3/2, J = 3/2
state of the pion-nucleon system, indicating a possible resonance in this
state. The whole program was not developed further because (1) the
method was non-covariant, and (2) a consistent renormalization pro-
gram could not be properly developed to proceed with kernels of higher
orders.

Methods of analyzing the experimental data by performing partial
wave analysis of the data were developed around this time. Through such
analyses, one could extract the behavior of phase shifts as a function of
energy and other quantum numbers associated with the state. Many
ambiguities encountered in the process had to be resolved. Through
such analyses resonances could be found and classified as to their degree
of inelasticity in the various channels.

Another approach called the method of Dispersion Relations was
developed. Here the central focus was on the analyticity properties of
scattering amplitudes stimulated by the work of Gell-Mann, Goldberger,
and Thirring [155]. Dispersion relations relate the real part of the scat-
tering amplitude to the imaginary parts through dispersion integrals.
By the optical theorem, the imaginary part of the forward scattering
amplitude is related to the total cross section, which is measured in
experiments. Thus using a measurement of the total cross section as
a function of the energy to derive the imaginary part of the forward
scattering amplitude, one can determine the real part by evaluating the
dispersion integral. Regions of analyticity of the scattering amplitudes
with positions of cuts and poles specified in different channels give re-
lations between physical processes which are related to each other by
certain transformations called crossed-channel transformations.

For pion-nucleon scattering the method starts from relativistic ex-
pressions for the scattering amplitude, which are written in terms of
Dirac covariants (to take care of spin components) multiplied by Lorentz
invariant scalar functions of energy and invariant four-momentum trans-

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 350

✐

✐

✐

✐

✐

✐

✐

✐

fers. The invariant functions also depend on the isotopic spin of the
state. Using this technique, Hamilton carried out extensive dispersion
relations analyses of pion nucleon scattering [331]. We do not go into
details on this subject here, because the development of QCD as the
theory of strong interactions between quarks, which are the constituents
of hadrons, has provided us with a new field theoretical approach for
the problem. (For some further information on dispersion relations, see
section under “Dispersion Relations”.)

Pion-Pion Interactions
At energies in pion-nucleon scattering which are sufficient to produce
an extra pion, it is possible that the two pions in the final state suffer
interactions. Study of the effect of such final state interactions, which
would give results different from assuming pure phase space distributions
for the two pions, would help in understanding the nature of the pion-
pion interactions. Such methods were advocated by Goebel [332] and
further extended by Chew and Low [333]. Pursuance of this work led
to the prediction of spin 1, isospin 1, resonance in the two pion system,
which has since been termed the ρ meson [334]. More information may
be seen in section under “Rho Meson (ρ) Resonance”.

Planck Mass
An interesting comment was made by Dirac in connection with the New-
tonian gravitational constant GN . Its measured value is given to be
6.67259× 10−11 m3kg−1 s−2. He noticed that, if one divides h̄c by GN ,
one gets a quantity of the dimensions of square of a huge mass. When
one works out what the energy equivalent of this mass is, one gets a
value 1.221048×1019 GeV. He commented on the size of this mass when
compared with the mass of the electron, proton, etc. The mass given
by

√
h̄c/GN is denoted by MP and is called the Planck mass. In terms

of grams, it is roughly 10−5 grams. This mass now obtains a special
significance in terms of the energy scale at which all the fundamental
forces become unified and, accordingly, represents the energy at which
quantum effects in gravity become important.

Pomeranchuk Theorem
This theorem relates the interaction cross sections for particles on a given
target with that of antiparticles on the same given target at asymptot-
ically high energies. It was derived by Pomeranchuk, on the basis of
dispersion relations, and is called Pomeranchuk theorem [335]. It may
be stated as follows:
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lim
s→∞(σtot(s)XY − σtot(s)X̄Y ) = 0,

where s is the Mandelstam variable equal to the square of the center of
mass energy in the X(X̄), Y system, and σtot is the total cross section.

As we have seen in the section under “Dispersion Relations”, the real
part of the forward scattering amplitude for a given process is related to
the imaginary part through a dispersion integral over the imaginary part
of the forward scattering amplitude. The imaginary part of the forward
scattering amplitude is related to the total cross section by the optical
theorem and is, hence, measurable. The total cross section contains
contributions from elastic as well as inelastic processes at high energies.

Let us consider a dispersion relation in which the differences of the
imaginary parts of the forward scattering amplitudes for particles and
antiparticles occur inside the dispersion integral. Suppose the difference
in the total cross sections for particles and antiparticles for high s does
not tend to zero, but is some value δσ. Then applying optical theorem,
one can show that the difference in the imaginary parts of the forward
scattering amplitudes is ∝ √

sδσ. Evaluating the dispersion integral over
the difference of the imaginary parts, one gets a value for the difference
of the real parts which is ∝ √

sδσ ln s. The assumed behavior of the
imaginary parts implies that for each individual process XY , the imagi-
nary part of the forward scattering amplitude behaves like

√
s×constant,

while the real part behaves like
√
s ln s × constant. The result implies

that the real part of the elastic scattering amplitude dominates. This
behavior is contrary to intuitive expectations. The imaginary part of
the scattering amplitude gets positive contribution from every inelastic
process, while the real part gets contributions from a large number of
terms with random distribution of positive and negative signs. The ex-
pectation that the imaginary part must be dominant over the real part is
supported by experience with many models that have been constructed
to explore the behavior. The contradiction to experience is removed if
we change the assumption on the difference in particle and antiparticle
cross sections at high energies. We thus require δσ = 0, which implies
that both the particle as well as the antiparticle cross sections tend to
the same constant at high energies.

The theorem has been further generalized by Pomeranchuk and Okun
who showed that at high energies, scattering amplitudes are dominated
by elastic scatterings in the t-channel [336]. Only for elastic scattering,
the exchanged object has the quantum numbers of vacuum, an object
called the pomeron. This leads to exchange amplitudes which are not real
for forward direction. The pomeron plays a role in peripheral inelastic
processes.
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Positron
The positron is the antiparticle to the electron. It was predicted as a
necessary consequence of the Dirac theory for the electron. It has the
same mass and spin as the electron, only its charge is opposite to that
of the electron. Its magnetic moment and the value of g − 2 have been
measured and shown to be equal in magnitude to that of the electron.
See further in sections under “Dirac Equation”.

Positronium
This is a bound state of a positron and an electron. It resembles a
hydrogen atom—the proton of the hydrogen atom is replaced by the
positron. The reduced mass in this case is half the electron mass, and
hence the ionization energy is half that of the hydrogen atom, namely,
about 6.8 eV. The energy levels of this system are similar to those in
the hydrogen atom; the separations of the energy levels are half those in
the hydrogen atom because of the difference in the reduced mass. The
states are characterized by the principal quantum number n and the total
angular momentum J which is the vector sum of the orbital angular
momentum l and the total spin s. Because this system is electrically
neutral, it also possesses a charge conjugation parity quantum number C.

We can show that for such a fermion-antifermion system with orbital
angular momentum l and total spin s, the eigenvalue of C is (−1)l+s. For
this purpose, consider the behavior of the wave function of the bound
state under the interchange of the fermion and the antifermion, which
is equivalent to inversion of the relative coordinate 7r into −7r. The total
wave function of the bound state is a product of three factors belonging
to the spatial wave function, the spin wave function, and the charge
wave function. The spatial wave function is a product of the radial
wave function and an angular function, which for angular momentum
l, is the spherical harmonic Ylm(θ, φ). The spin wave function for total
spin s is χs. The system has two possible values of total spin, s =
0 or s = 1, corresponding to the singlet and the triplet spin states,
respectively. The particle interchange, equivalent to inversion of the
relative coordinate 7r between the particles, is achieved by r → r, θ →
π − θ, φ → π + φ. Under this transformation the radial wave function
is unchanged, while the spherical harmonic acquires a factor (−1)l, so
that the spatial wave function acquires the factor (−1)l. The spin wave
function χs, under the interchange of the spins, is antisymmetric for
s = 0 (singlet), and symmetric for s = 1 (triplet). These symmetries
are accommodated with the factor (−1)s+1 multiplying the spin wave
function due to the interchange. Thus the product of the space and spin
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wave functions acquires the factor (−1)l+s+1 when the fermion and the
antifermion are interchanged. Let the charge wave function acquire a
factor C under the interchange. The total wave function thus acquires
the factor (−1)l+s+1C.

It is experimentally observed that 1S0 state of positronium (J=0)
decays into two 2γ’s, while the triplet state 3S1 (J=1) decays into 3γ’s.
The charge conjugation parity C for an n photon state is (−1)n; thus for
n = 2, C is +1 and for n = 3, C is −1. These charge conjugation parities
are reproduced by choosing C = (−1)l+s. With this choice, the total
wave function acquires a factor −1 when the particles are interchanged
(overall antisymmetry), even though the system does not consist of iden-
tical fermions but is made up from a fermion and an antifermion. Thus,
we have the result C = (−1)l+s for the charge conjugation parity for
a fermion-antifermion bound state of orbital angular momentum l and
total spin s.

Proton
This is the nucleus of the simplest of atoms, namely, the hydrogen
atom. It is positively charged and has a mass for which the modern
value is 938.27231 ± 0.00028 MeV. Like the electron, it has spin 1/2
and is assigned a positive parity. The proton is a hadron and par-
ticipates in strong interactions. Dirac equation applied to the proton
would predict a magnetic moment for the proton of 1 µn, (µn= nuclear
magneton=e/(2M)). The experimentally measured value for the mag-
netic moment is not one nuclear magneton but considerably deviates
from it as shown by I. I. Rabi and collaborators [151] by developing
the high precision molecular beam magnetic resonance method. The
value obtained in this work for the proton was 2.785 ± 0.02 nuclear
magnetons. The modern value for the magnetic moment of the proton
is 2.79284739 ± 0.00000006 µn. These values suggest that the proton
is not a structureless particle like the electron; its hadronic structure
is responsible for the additional contribution to its magnetic moment.
Theoretical calculation of the magnetic moment of the proton will only
be possible when its hadronic dynamical structure is correctly described,
a problem which is still awaiting solution.

The electromagnetic structure of the proton is unraveled in high en-
ergy electron scattering experiments. The elastic form factors of the
proton, over a wide range of square of the momentum transfer, and the
deep inelastic form factors, over a wide range of square of the momentum
transfer and energy transfer, have been measured by electron scattering
experiments. Through high energy neutrino scattering, the weak form
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factors have also been measured. The size of the electromagnetic ra-
dius of the proton have been determined to have a mean squared value
0.71 fermi2.

The dipole polarizability of the proton has also been the subject of
investigations. First theoretical estimates of this quantity were provided
by Baldin [337] using data on photoproduction of π mesons and Comp-
ton effect on nucleons. He also pointed to the use of elastic photon
scattering on deuterons to obtain information about the polarizability
of the neutron. A measurement of this quantity for the proton was car-
ried out by observations on the elastic scattering of photons on protons
by Goldansky et al. [338]. From the cross section for γ-proton scat-
tering at 90 deg, they obtained a value for the electric polarizability,
αE = (11 ± 4) × 10−43 cm3. Further, using dispersion relations and
data on pion photoproduction, they obtained a value for the sum of
the electric and magnetic polarizabilities, αE + αM = 11 × 10−43 cm3.
Combining these results they obtained for the individual quantities,
αE = (9± 2)× 10−43 cm3 and αM = (2± 2)× 10−43 cm3, respectively.

Proton Spin Crisis
See discussion under “Deep Inelastic Scattering with Polarized Parti-
cles”.

ψ Particle (J/ψ)
This particle was discovered as a narrow resonance in (p,Be) collisions
leading to massive e+e− pair in Brokhaven National Laboratory by Ting,
as well as in e+e− annihilations at SLAC by Richter, at an energy of
3.1 GeV. This particle was soon interpreted as the bound state of a new
quark, the charm quark c, and its antiquark c̄ in a 3S1 state. It has
baryon number zero, and is hence a vector meson. The modern value of
its mass is 3096.88±0.04 MeV, and it has a full width of Γ = 87±5 keV;
its leptonic width is Γee = 5.26±0.37 keV. The dominant branching ratio
of its decays is to hadrons: (87.7± 0.5)%. Many other decay modes are
known with branching ratios of order 1% or less and details can be
obtained from the “Review of Particle Physics” [62]. Excited states 2S,
3S, and 4S are also known for this system. For further details regarding
charm mesons, see section under “Charm Particles”.

QCD—Quantum Chromodynamics
Quantum chromodynamics is the theory of the interaction of colored
quarks and colored gluons, the gluons being the quanta of the chromo-
dynamic field. It is formulated in a manner similar to quantum elec-
trodynamics (QED), which is the theory of interaction of electrically
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charged particles through the exchange of photons, the quanta of the
electromagnetic field. The earliest suggestions for such a formulation
were made by Nambu [339] and by Greenberg and Zwanziger [340].

In the formulation of the constituent quark model, quarks come in
different types, called flavor, up (u), down (d), strange (s), etc. For
each flavor, the need for color as an additional degree of freedom for
the quarks is covered elsewhere (see section under “Colored Quarks and
Gluons”). One needs a minimum of three colors for the quarks, usually
red, blue, and green. A simple model incorporating color would be to
consider another global symmetry, SU3 symmetry of color, just as for
flavor. Considering the quarks to transform in the triplet (fundamen-
tal) “3” representation of SU3 color symmetry, and the antiquarks in
the antitriplet or “3̄” representation, the requirement is imposed that
all hadronic wave functions be color singlets; that is, they be invariant
under SU3-color transformations. Under this condition, the only simple
combinations that are allowed are: q̄iqi, εijkqiqjqk, and εijkq̄iq̄j q̄k (where
εijk is the totally antisymmetric tensor, with ε123 = 1). These represent
objects with baryon number 0, 1, and −1, respectively, and are suitable
to describe, mesons, baryons, and antibaryons, respectively. The baryon
color wave functions are clearly antisymmetric in color, and when com-
bined with totally symmetric functions in space, spin, and flavor, there
is no difficulty in satisfying Pauli exclusion principle.

The suggestion of color singlet wave functions was clearly successful
in describing the phenomenology of low lying hadronic states. However,
there is no answer as to why color singlet states should be the only al-
lowable ones. For the answer to this and other questions, it was found
necessary to go from global to local symmetry and consider the color
SU3 gauge group. This leads one to a non-Abelian gauge theory which
is a generalization of the SU2 theory of Yang and Mills (see section
under “Gauge Theories”) [341]. The Lagrangian, which is invariant un-
der transformations of the SU3 gauge group, requires the introduction
of eight gauge fields, Aµi, i = 1, . . . , 8, and the form of the interaction
of the gauge fields with the quarks is automatically specified. The full
Lagrangian for the non-Abelian QCD theory is

L = [iψ̄γµ∂µψ −mψ̄ψ]− 1
4π

8∑
i=1

Fµνi Fµνi − g

8∑
i=1

ψ̄γµλiψAµi,

where Aµi, i = 1, · · · , 8 are the gauge potentials, the Fµνi are the gauge
field strengths, ψ is the quark fields, g is the coupling constant between
the quark and the gauge fields, and m is the mass of the quark of a
given flavor. A sum over all flavors has also to be carried out. The
quantization of this gauge field theory is not simple. It has been done
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and a set of Feynman rules for perturbative calculations have been de-
rived. These are similar to the rules in QED, only more intricate and
elaborate. In addition to the quark-gluon coupling vertex, which is the
analog of the electron-photon coupling in QED, color gauge invariance
of the theory dictates that there must exist three-gluon and four-gluon
vertices, depending on the same coupling constant as that involved in
the quark-gluon coupling. The theory is renormalizable, just like QED,
allowing one to calculate higher order contributions. The quanta of the
gauge field are called gluons. They are massless, spin 1 particles and
carry color.

Two very important properties of this gauge field theory were discov-
ered. The theory has been found to exhibit properties called Asymptotic
Freedom [342] and Color Confinement [115]. The first property refers
to the fact that the coupling of the quark with the gauge field tends to
vanish at high momentum transfers to the quark, so that in this limit,
the hadron can be considered a collection of noninteracting quarks (par-
tons) (see section under “Parton Model”). The second property refers
to the fact that at momentum transfers tending to zero (the infrared
regime), the effective quark-gluon coupling constant, αs = g2/(4π), be-
comes large, and it is conjectured that it requires infinite energy to sep-
arate colored objects into free particle states. In other words, although
there is no rigorous proof yet, there is a strong suggestion that color is
confined within hadrons. Hadrons, which are color singets, are the only
objects that can be found in asymptotically free particle states. The
property of asymptotic freedom provides the basis for the explanation
of Bjorken scaling with the parton model. In the perturbative regime,
QCD provides methods by which to calculate corrections to the parton
model and how Bjorken scaling will be broken. Such calculations have
been put to test in applications to deep inelastic lepton-proton scattering
and in e+e− annihilations leading to hadrons. Within the perturbative
approximations used, QCD has been found to describe these phenom-
ena at the level of a few percent. The region of energies dealing with
hadrons as bound states of quarks (and antiquarks) belongs to the non-
perturbative regime of QCD.

To learn the details of perturbative QCD calculations, the reader
may wish to consult a book on quantum field theory, for example, ref-
erence [98].

Quantum Electrodynamics—QED
Quantum Electrodynamics (QED) is the quantum field theory of the in-
teractions of charged particles with electromagnetic fields, in particular,
interactions of electrons and photons. It is formulated as an Abelian
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gauge field theory. The basic equations of the theory are a set of cou-
pled equations with manifest Lorentz symmetry, which determine the
electromagnetic fields for given charge-current sources of fields and the
dynamics of the charges for given electromagnetic fields. Maxwell’s equa-
tions determine the electromagnetic fields from the charge-current dis-
tributions, and the dynamics of the electron is determined by the Dirac
equation for the electron in the presence of electromagnetic fields, in ac-
cordance with the demand of gauge invariance. Wave-particle duality is
incorporated through the process of quantization of the electromagnetic
and the Dirac fields, the classical field functions becoming operators with
appropriate commutation relations imposed on them. At low energies,
or at large distances (low resolution), one needs to deal with states which
involve at most a few quanta. As the energy increases, one is proceeding
toward shorter distances and smaller time scales (higher resolution), and
the states with larger numbers of quanta begin to participate. A dimen-
sionless coupling constant, called the fine structure constant, equal to
α = e2/(4π) � 1/137, where e is the charge of the electron, determines
the coupling of the electron to the photon. This being a small number,
methods are developed to solve the coupled equations using perturba-
tion theory. This involves expansions in powers of this small coupling
constant.

The most elegant formulation of the perturbation method is due
to Feynman who invented the diagrammatic technique (now called the
Feynman diagram technique). With it one can carry out calculations
systematically for any process involving electrons and photons to any
finite order of perturbation theory [343]. At about the same time,
Schwinger [344], in a series of papers, and Tomonaga [345], also in a series
of papers, gave covariant formulations of electrodynamics. The equiva-
lence of all these formulations was established in a work by Dyson [346].

The matrix element for a given process can be written by first draw-
ing all possible Feynman diagrams which are relevant for the process and
associating a factor with each element of the diagram, according to the
given rules. Using this input into the standard formalism of relativis-
tic quantum mechanical calculations, cross sections or decay rates are
derived, which are in a form suitable for comparison with experimental
data for the process under consideration.

The number of vertices in a Feynman diagram is determined by the
order to which we are calculating the contribution to the process in per-
turbation theory. Thus, a process to order e2 will contain two vertices,
to order e4 four vertices, etc. In general, to any order in perturbation
theory, one will generate Feynman diagrams, some of which will con-
tain no loops, while others will contain loops. The diagrams with no
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loops are called tree diagrams, while the ones with loops are called loop
diagrams. To obtain the contribution from diagrams involving loops,
the rules demand that one must carry out an integration over the infi-
nite range of four-momentum associated with the loop. Such loop in-
tegrations in general give contributions which are infinite at the large
momentum end (ultraviolet divergences); sometimes (for loop or tree
diagrams) there are infinite contributions which come also from the low
momentum end (infrared divergences). To make unambiguous calcu-
lations of such divergent contributions possible in a Lorentz invariant
way, two steps have to be taken. The first is a process called regular-
ization, according to which the integral in question is defined through
some limiting process which respects all the symmetries of the theory
including gauge invariance. Before the limit is taken, one has a well
defined mathematical quantity on which one can perform operations in
an unambiguous way and can separate out the contributions which will
become infinite when the limiting process is carried out. The beauty
of QED is that, to all orders of perturbation theory, all the ultraviolet
divergences can be absorbed into redefintions of mass, charge, and the
normalization of the wave function of the particles by a process called
renormalization. For the renormalized values of the mass and charge,
one uses the experimentally observed values for these quantities. The
infrared divergences cancel among themselves and with contributions
from processes in which real soft photon emissions occur. Since ex-
tremely soft photons cannot be detected by any real detector with a
finite energy resolution, their residual effect in processes in which any
number of soft photons is emitted can be represented in terms of an
exponential of the form exp (−α/2π) ln(−q2/m2) ln(−q2/E2), where q2
is the (spacelike) momentum transfer in the scattering process in which
soft quanta are emitted, m is the mass of the electron, and E is the
energy of the electron.

The results of such calculations for many observable quantities, when
confronted with experimental measurements, give exceedingly good
agreement in many phenomena with distance scales ranging all the way
from large (macroscopic) scales down to scales of the order of 10−15 to
10−16 cm. Quantum electrodynamics is one of the most successful and
well-tested theories. It has also served as a model for the construction
of other quantum field theories of interacting particles.

The subject of QED is a vast one; for learning the details of the
subject, it is recommended that a book on the subject be consulted, for
example [98].
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Quantum Field Theory
In particle mechanics one has a system with a finite number N of degrees
of freedom. The system is described by giving the generalized coordi-
nates, qi, i = 1, . . . , N , and the generalized velocities, q̇i, i = 1, . . . , N .
The solution of the dynamical problem is obtained when one can give
the development of each degree of freedom as a function of time. To-
ward this end, the Lagrangian formulation of particle mechanics starts
with the construction of the Lagrangian, in terms of the kinetic and po-
tential energies of the system, and then derives equations of motion for
each degree of freedom by extremizing the action. Action is the time
integral of the Lagrangian. The Euler Lagrange equations that result
from extremizing the action by a variational principle are the equations
of motion. These equations are total differential equations of second
order in time, which when solved in terms of given initial conditions,
give the solution of the dynamical problem. In general, the solutions
will involve 2n constants of integration which are determined from the
initial condition on the coordinates qi and their time derivatives q̇i. The
Lagrangian formulation also shows that there is an intimate connection
between symmetry properties possessed by the Lagrangian and conserva-
tion laws that follow from it. Such formal considerations of symmetries,
etc. help in getting a great deal of insight into the system behavior even
without a complete solution of the equations of motion.

Extension of this method to systems, such as fluids, involving contin-
uous degrees of freedom have also been formulated. The main difference
in such situations is that the formalism has to be extended to deal with
an infinite number of degrees of freedom. Action in this case involves
integrals over all space and time of a Lagrangian density which is a func-
tion of the generalized coordinates and its space and time derivatives,
describing the fluid. The resulting Euler-Lagrange equations instead of
being total differential equations in time variable, now become partial
differential equations involving both space and time variables. The so-
lutions of these involve the solution of boundary value and initial value
problems. Symmetry principles and conservation laws play as important
a role here as in the case of particle mechanics.

Fields, such as the electromagnetic field, which satisfy Maxwell’s
equations for the electric and magnetic field vectors, are another example
of a system with infinite number of degrees of freedom. The field vectors,
being continuous functions of space and time, involve continuous (infinite
number of) degrees of freedom when treated as dynamical quantities,
just as the quantities in fluid mechanics. One can construct a Lagrangian
formulation of Maxwell’s equations of electromagnetic theory. A choice
of the Lagrangian is made such that it incorporates various invariances,
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such as Lorentz invariance, and such that the resulting Euler-Lagrange
equations give the Maxwell equations.

A customary procedure in classical electromagnetic theory is to in-
troduce scalar and vector potentials in terms of which the electric and
magnetic fields are expressed. It is found that the potentials belonging
to the fields are not unique. These undergo transformations, called gauge
transformations, which lead to different potentials all of which lead to the
same physical fields. These different potentials are said to be in different
gauges, and the fact that they lead to the same physical consequences is
referred to as gauge invariance of the theory. Gauge invariance is a very
important symmetry of electromagnetic theory. When treating interac-
tions of charged particles with electromagnetic fields, gauge invariance
plays a particularly significant role, especially in quantum theory, in re-
stricting the form of the interaction between the charged particle and
the electromagnetic field. The law of conservation of electric charge can
be shown to be a direct consequence of invariance under gauge transfor-
mations.

The transition from classical to quantum mechanics in field the-
ory follows a procedure similar to that followed in particle mechan-
ics. In particle mechanics, one defines momenta pi, i = 1, . . . , N con-
jugate to the coordinates qi, i = 1, . . . , N by pi = ∂L/∂q̇i, and con-
structs a quantity called the Hamiltonian, H =

∑
i piq̇i − L, from

the chosen Lagrangian. In quantum theory, the q′is and the p′js be-
come operators between which commutation relations are introduced:
[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0 (the first of these would have a factor
h̄ multiplying δij on the right-hand side, but we should remember that
in the natural units in which we are working, h̄ = c = 1).

A corresponding procedure can be extended to quantize a field the-
ory. For simplicity, consider a real scalar field φ(7x, t) which satisfies the
Klein-Gordon equation: ✷φ+m2φ = 0, where ✷ = ∂2/∂t2 −∇2 and m
is a parameter which will turn out to be the rest mass associated with
the quantum of the scalar field. One constructs a Lagrangian density
L, which is a function of the field φ and its space-time derivatives ∂µφ,
whose integral over all space and time gives the action. It is chosen such
that when we seek the extremum of the action we get the Klein-Gordon
equation as the equation of motion for the scalar field. The “momen-
tum” density conjugate to the field φ(7x, t), called π(7x, t), is defined by
π = ∂L/∂φ̇, where φ̇ represents the time derivative of the scalar field.
The Hamiltonian density is obtained from H = π(7x, t)φ̇(7x, t) − L. In
quantizing the theory, the quantities φ and π become operators and one
has to introduce commutation relations between them. One introduces
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“equal time” commutation relations,

[φ(7x, t), π(7y, t)] = iδ3(7x− 7y),

[φ(7x, t), φ(7y, t)] = 0, [π(7x, t), π(7y, t)] = 0.

The spectrum of the Hamiltonian is obtained by analogy with the treat-
ment of the harmonic oscillator in quantum mechanics. A Fourier in-
tegral decomposition of the field operator φ is carried out, the different
modes being characterized by a variable 7p,

φ(7x, t) =
∫

d3p

(2π)3
1

2ω<p
(a<pei(<p.<x−ω�pt) + a†<pe

−i(<p.<x−ω�pt)),

where ω<p =
√|7p|2 +m2, and a<p, a

†
<p are called annihilation and creation

operators in the mode 7p and play a role similar to the ladder operators
of the harmonic oscillator. The Fourier integral for π, similar to that of
the one for φ, follows. Using these, from the equal time commutation
relations for φ and π stated previously, one can derive that

[a<p, a
†
<p] = (2π)3δ3(7p− 7p ′),

and [a<p, a<p ′ ] = 0 = [a†<p, a
†
<p ′ ]. Finally, the expression for the total Hamil-

tonian for the system, has the mode expansion,

H =
∫

d3p

(2π)3
ω<p(a

†
<pa<p +

1
2
[a<p, a

†
<p]).

The second term inside the integral for H is δ3(0) which is infinite and
represents the sum over all modes of the zero point energies. This term is
not detectable, as experiments only find differences between the energy
of a state and that of the ground state, this infinite quantity cancels out.

Quantum field theories for other fields, such as the electromagnetic
field, the electron field, and the massive vector boson field, have been
likewise constructed. The quanta of these fields are the photon, the
electron, W , Z bosons, etc. Theories of interacting fields have also been
constructed. For electromagetic interaction of charged particles with
photons, requirement of gauge invariance restricts the form of the inter-
action almost completely. Details on this may be found in the section
under “Gauge Theories”. The solution of the problem of interacting
fields is possible with the use of perturbation theory, valid for those
cases in which the interaction is characterized by a coupling constant
which is numerically small, so that a solution involving an expansion in
powers of the coupling constant is possible.
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Quarkonia
Quarkonia are bound states of a quark and an antiquark with zero net
flavor. Examples are charmonium (cc̄ bound state) and bottomonium
(bb̄ bound state). (See also under “Charm Particles—Charmonium” and
under “Bottomonium”.)

Quarks
The SU3 symmetry, which has been successful in explaining octet and de-
cuplet families of baryons and octets of mesons, has among its represen-
tations, a fundamental triplet 3 representation and a distinct anti-triplet
3̄ representation. Gell-Mann [119] and, independently, Zweig [120] pro-
posed that there could be particles having quantum numbers associated
with these representations. The particles associated with the triplet rep-
resentation are called quarks, specifically the u, d, and s quarks, while
those associated with the anti-triplet representation are the antiquarks,
ū, d̄, and s̄, respectively. It was further shown that meson states could
be constructed as bound states of a quark and an antiquark, while the
baryons could be constructed as a bound state of three quarks. Ex-
amples are the proton and the neutron, which could be made up of the
combinations uud and ddu, respectively, if an electric charge +(2/3)|e| is
associated with the u quark, while a charge −(1/3)|e| is associated with
the d quark. The quarks must also carry a baryon number (1/3). It has
been shown that the entire SU3 family of particles could be constructed
out of these more fundamental objects, the quarks. Such a model of el-
ementary particles goes under the name of constituent quark model and
details may be seen in the section under that heading.

Subsequent work after those early suggestions has revealed the exis-
tence of three further quarks, denoted by c, b and t and called the charm
quark for c, bottom (or beauty) quark for b, and top quark for t. There is
experimental evidence to show that these quarks are much more massive
than the u and d quarks. The six quarks are arranged in three distinct
families of doublets: (u, d), (c, s), and (t, b), where the first member of
each doublet has the electric charge +(2/3)|e|, while the second member
of each doublet has the charge −(1/3)|e|. Some of the hadrons which
contain c, s, b quarks have been found experimentally. The “top” quark
has been found to have an incredibly high mass of about 175 GeV!

Among the quarks, the lightest of them should be stable, and if
it exists as a free particle, it should be possible to find it in suitably
designed experiments. The distinct signature it would carry would be
its fractional electric charge. Despite many attempts to discover the
quark, none have been found in the free state. Yet in describing the
structure of many hadrons they play a role as constituents. They seem
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to be permanently confined within hadrons. The confinement within
hadrons has been understood in terms of another property the quarks
carry. This property has been named color. Each quark comes in three
distinct colors, red, green, and blue. Colored quarks set up color fields in
the space around them. The quanta of these color fields are the gluons.
An SU3 color gauge theory called Quantum Chromodynamics has been
constructed to describe quarks and gluons and their mutual interactions.
This theory strongly suggests that colored objects cannot exist in free
particle states, and only combinations which are color singlets can occur
freely in nature. For more details on this subject, see in section under
“QCD—Quantum Chromodynamics”.

Quark Jets
First evidence for the production of quark jets was obtained at the
SLAC-SPEAR machine studying e+e− annihilations at center of mass
energies of 6.2 and 7.4 GeV [31]. The jets that are seen are hadrons.
They have their origin in the primary quark-antiquark pair that is pro-
duced as a result of the e+e− annihilation. The fundamental process is
the production of a virtual photon as a result of the electron-positron
annihilation. Following this, the virtual photon produces a back-to-back
quark-antiquark pair from the vacuum with extremely small distance
separating them. The property of asymptotic freedom of the quark
color interactions (see section under “QCD—Quantum Chromodynam-
ics”) implies that the quark and the antiquark can be treated as free par-
ticles at production. However, as the color carrying quark-antiquark pair
separate from the point of production, strong color confinement forces
come into play. At some stage during their separation, it becomes ener-
getically more favorable to create further quark-antiquark pairs from the
vacuum than to separate further. These newly created colored quarks
and antiquarks pair off with the originally created quark-antiquark pair
into color singlets. This results in the back to back jets of hadrons that
are seen in an electron-positron collider. The hadronization process of
the initial quark and antiquark is clearly separated from the process in
which they were produced but does occur along the direction of motion
of the initial quark and antiquark. Thus the produced hadronic jets are
aligned in the directions of the original quark and antiquark.

The quark jet axis angular distribution can be obtained from mea-
surements on the pencil jet of the hadrons that are produced in cones
around the initial quark and antiquark directions; all one has to do is
to integrate over the azimuthal angle around the axis of each of the
cones. Experimentally, the jet angular distribution was determined to
be proportional to 1 + (0.78 ± 0.12) cos2 θ. This can be compared with
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theoretical expectations as follows. A straightforward QED calculation
of the angular distribution of µ+µ− pair produced in e+e− annihilation
shows that it has the form (1 + cos2 θ) at high energies in the center of
mass. At the very short quark-antiquark distances at which the pair is
produced, the property of asymptotic freedom exhibited by the strong
color interactions allows us to treat them as free, spin-half, point parti-
cles. They couple through their (fractional) electric charge to the photon
just like the muon. Thus the angular distribution of the quark-antiquark
pairs should be the same as that for the muon pairs, namely (1+cos2 θ)
which is very close to what is observed.

The total cross section for e+e− → hadrons is also obtainable from
that for µ+µ− production. The total cross section for e+e− → µ+µ−

reaction calculated in QED is σ = 4πα2/(3E2cm), where α � (1/137),
and Ecm is the center of mass energy at which the e+e− annihilation is
studied. The total cross section for hadron production is the same as that
for quark-antiquark production, because the quark and the antiquark
convert into hadrons with one hundred percent probability. It differs
from that for µ-pair production in a couple of factors: first, the quarks
carry fractional charges, and second, they come in three colors. If we
write the charge carried by the quark as fq|e|, where fq is a fraction +2/3
for u quark, and −1/3 for d and s quarks, etc., the ratio R of the quark-
antiquark production cross section to that of the muon pair production
cross section is 3

∑
q f

2
q , where the sum has to be carried out over all

the quarks that have a mass less than Ecm/2, and 3 is the number
of colors. When Ecm is such that only u, d, s quarks are produced,
R = 3((2/3)2+(1/3)2+(1/3)2) = 2. As the energy is increased through
the c quark threshold, R takes a jump to 2 + 3(2/3)2 = 10/3. When
the energy is increased further through the b quark threshold, 3(1/3)2

is added to R making it 11/3. Finally, when the energy crosses the t
quark threshold, R should increase by a further 3(2/3)2 = 4/3, that
is, to 15/3. Experimentally, the behavior of R is consistent with these
calculations. At low energies (∼ 2 GeV) R has value 2 and jumps to the
values enumerated above as the additional quark thresholds are crossed
with increase in energy.

This shows that quarks indeed possess three colors, and that asymp-
totic freedom is valid for color interactions. Without the color factor all
the theoretical ratios would have been too low by a factor of three.

Quark-Parton Model
The parton model was put forward by Feynman to offer explanation for
the scaling observed in deep inelastic scattering of electrons by protons.
The deep inelastic form factors, which are called the deep inelastic struc-
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ture functions, can be shown to be functions of two variables, the square
of the four-momentum transfer q transferred by the electron, q2, and
another variable called ν = q · .p/M , where p is the four-momentum of
the initial proton, and M its mass. In the rest frame of the proton, ν
is the energy transferred by the electron during the inelastic scattering
process. Experimentally it was observed that at high values of q2 and
ν, the structure functions became functions of the ratio, q2/ν, instead
of being functions of the two separate variables, q2 and ν. This is called
Bjorken scaling. Feynman showed that if the proton was considered as a
collection of free partons, each carrying a fraction x of the momentum of
the proton, the deep inelastic scattering process could be viewed, at high
q2 and ν, as the sum of the incoherent contributions to the scattering
from all types of partons integrated over all values of x of the partons.
The integrals contain parton distribution functions which are functions
of x, and which represent the probability that a given parton carries a
momentum fraction x of the proton. These parton distribution functions
are parameters which describe the proton and are not calculated by the
model but have to be obtained by fitting to experimental data. It turns
out that the fraction x of the momentum of the proton carried by the
parton is nothing but q2/(2Mν), the scaling variable in Bjorken scaling.
This success raises the question as to what the partons are.

It has been mentioned above that Gell-Mann and Zweig proposed
the quark model of hadrons, according to which baryons are considered
as bound states of three quarks and mesons as bound states of a quark-
antiquark pair. In the interest of economy of concepts, it was considered
desirable to identify the partons with the quarks. Thus was born the
quark-parton model. The proton is described by quark distribution func-
tions, which represent the probability that a given type of quark in the
proton carries a momentum fraction x of the proton. These quarks of
the quark-parton model must be distinguished from the quarks of the
constituent quark model of the proton. The former are usually called
current quarks, while the latter are called constituent quarks. At low
resolving power (low energies), the proton consists of just the three con-
stituent quarks. As the resolution increases (high energies), the proton
is seen to be a sea of quark-antiquark pairs and gluons, each of which
carries a fraction x of the momentum of the proton. The quarks which
carry moderately large values of x (about 1/3 or more) are called va-
lence quarks, and the others with much smaller values of x are called sea
quarks. The formulation of QCD makes the connection between quarks
and partons even clearer. The parton model is obtained in the limit in
which asymptotic freedom is realized in QCD, that is, at infinite q2. For
finite q2, QCD predicts logarithmic violations of Bjorken scaling due to
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the possibility of emission of gluons by the quarks. These scaling vio-
lations of precisely the amounts predicted by QCD have been observed
and put the quark-parton model on a more sound theoretical footing.
Reference may be made to other sections under “Parton Model—Bjorken
Scaling Violations” and “QCD—Quantum Chromodynamics” for addi-
tional information.

Regge Poles
Regge [347] undertook the challenge of demonstrating the validity of
the Mandelstam representation (see section under “Mandelstam Repre-
sentation”) for the scattering of two particles which interact with one
another through a potential. He took the unorthodox approach of study-
ing the behavior of the scattering amplitude (which is usually expressed
as a sum of contributions from integer angular momentum partial waves)
as a function of the angular momentum continued analytically into the
complex plane. He found an alternative expression for the scattering
amplitude which gets its contributions from isolated poles in the com-
plex angular momentum plane. These poles are now called Regge poles.
The idea that Regge poles may contribute also in cases where the in-
teractions between particles are not representable by potential functions
has proven quite useful, for understanding certain features of scatter-
ing processes involving hadrons. We explain below briefly, starting from
potential scattering problems, the origin of the idea of Regge poles and
the role they play in determining the scattering amplitude. Then the
extension of these ideas to the relativistic scattering of two particles will
be presented briefly.

In potential scattering theory, the scattering amplitude for a two
particle to two particle scattering process is a function of two variables,
the energy and the scattering angle. It is convenient to work in the
center of mass system, where convenient variables are, the Mandelstam
variable s representing the square of the total center of mass energy, and
cos θ, the cosine of the scattering angle in the center of mass sytem. The
partial wave expansion for the scattering amplitude has the form

A(s, cos θ) =
∞∑
l=0

(2l + 1)a(l, s)Pl(cos θ).

The domain of analyticity of this function in the variable cos θ is rather
limited; outside of the region −1 ≤ cos θ ≤ +1, it is limited to the region
of the ellipse with foci at ±1 and extending up to the nearest singularity
of A(s, cos θ) in the complex cos θ plane. Regge sought an extension of
the domain of analyticity for the scattering amplitude, by extending l
to take on complex values, as follows. First, the above sum is rewritten
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Figure 4.18: Contour C for integration in the complex l plane. (Re-
printed with the kind permission of S. Gasiorowicz from his book, Ele-
mentary Particle Physics, John Wiley & Sons, New York, 1966.)

as a contour integral,

A(s, cos θ) =
i

2

∫
C

dl(2l + 1)a(l, s)
Pl(− cos θ)

sinπl
,

where the contour C is as shown in Figure 4.18. This contour integral
when evaluated gives −2πi times the sum of the residues of all the poles
contained inside the contour. The poles are due to sinπl which occurs at
integer l and the residues are (−1)l/π. Thus, one recovers the previous
expression.

Regge obtained an alternative expression by deforming the previous
contour so that one integrates along a contour parallel to the imagi-
nary axis with Re (l) ≥ −1/2. In this we make use of the properties of
Pl(cos θ) for complex argument and complex order. If a(l, s) has isolated
poles in the complex l plane at the locations shown, then these poles have
to be taken into account during the deformation of the contour. One can
take the contour past these poles so that the contour runs parallel to the
imaginary axis (C1), as shown in Figure 4.19 on the following page, but
then one has to take the contribution coming from these poles. Thus
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Figure 4.19: Contour C1 for integration in the complex l plane. (Re-
printed with the kind permission of S. Gasiorowicz from his book, Ele-
mentary Particle Physics, John Wiley & Sons, New York, 1966.)

the alternative expression to the above contour integral is,

A(s, cos θ) =
i

2

∫
C1

dl
2l + 1
sinπl

a(l, s)Pl(− cos θ)

−
∑
n

(2αn(s) + 1)βn(s)
sinπαn(s)

Pαn(s)(− cos θ),

where a(l, s) has been assumed to have poles at l = αn(s), n = 1, 2, . . .
with residues βn(s), n = 1, 2, . . .. The first term is called the background
integral and the contribution from the second term is due to the Regge
poles. This representation for scattering amplitude is valid for complex
cos θ resembling the old form but with l interpolated to nonintegral
values. It turns out that the contribution from the background integral is
small in many cases. Neglecting it, Regge could establish the validity of
the Mandelstam representation for a class of potentials in nonrelativistic
potential scattering theory.

Studying the behavior of the Regge poles in the complex l plane,
for the Yukawa potential, one gets a number of interesting insights. It
can be shown that the rightmost Regge pole determines the asymptotic
behavior of A(s, cos θ) as cos θ becomes large; this is because Pn(z) → zn

for large z. Further, the position of the poles αn(s) as a function of s
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Figure 4.20: Typical trajectories of a Regge pole in the complex l plane.
(Reprinted with the kind permission of S. Gasiorowicz from his book,
Elementary Particle Physics, John Wiley & Sons, New York, 1966.)

in the complex l plane has the following behavior. αn(s) for some n is
found to be located on the real axis when s < 0 (unphysical region for
this scattering channel). Initially, when s is negative and large, αn(s)
starts at values l ≤ −1. As s increases, the pole moves along the real l
axis to the right until s reaches the threshold value, equal to the square
of the sum of the masses of the particles sth, at which point the pole
moves up into the complex l plane (Im (l) > 0). Then as s increases
further, beyond sth to large positive values, the pole moves back to the
line at l = −1. The location on the real l axis at which the pole starts
moving into the upper half-plane is determined by the strength of the
potential, and for larger strengths, the pole leaves the real l axis at larger
and larger real l. Typical trajectories of a Regge pole in the complex l
plane are shown in Figure 4.20 for increasing values, G, of the strength of
the potential. It is clear from this figure that the potential needs to have
a minimum strength for the trajectory to reach the point Re (l) = 0. If
it does so at some s = s0(< sth), the scattering amplitude will have the
form [β/(s− s0)]P0(cos θ). This form is characteristic of a bound state
with zero angular momentum. If the potential is weak, there may be no
bound states. Thus Regge poles are closely connected with bound states
of a system.
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For positive s = sres, it may happen that the Regge trajectory
passes close to an integer value of l (with Im (l) > 0). In such a case,
this term will be dominant in the scattering amplitude, and the partial
wave amplitude will have a typical resonant form. Suppose at s = sres,
Re (αn(s)) = l, it can be shown that a(l, s) takes the form

a(l, s) =
βn(sres)

(2l + 1))[(s− sres)(dReαn(s)/ds))|sres + iImαn(sres)]
.

This has the characteristic form of a Breit-Wigner resonance at s = sres.
Regge’s ideas, which were developed for nonrelativistic potential scat-

tering problems, were soon taken over for application to relativistic scat-
tering of hadrons by Chew et al. [348]. The assumption is that in rela-
tivistic scattering problems also, the partial wave amplitudes are analytic
functions in the complex angular momentum plane with Regge poles,
αn(s), on whose trajectory bound states and resonances lie, as in the
nonrelativistic potential scattering problem. The hope was that these
poles would give a representation of the amplitude and provide an ele-
gant parameterization of hadronic scattering processes at high energies.
There was intense activity in this field in the 1960’s and early 1970’s.
It was soon found that hadronic interactions based on exchange of a
single Regge pole were not sufficient to describe the experimental data
well, and more complicated exchanges were included. This resulted in
the addition of many more parameters and resulted in loss of predictive
power. The discovery of Bjorken scaling and later the discovery of the
J/ψ particle in 1974 led to the subsequent formulation of quantum chro-
modynamics with quarks and gluons as the fundamental constituents of
hadrons. This shifted the activity away from studies involving Regge
pole exchanges. However, one basic idea that survives from that period
is that, instead of considering elementary particle exchanges of spin J ,
one has to exchange Regge poles. This amounts to interpolating the
amplitude for nonintegral (or non-half-integral) values of J , a procedure
which is called Reggeization.

Since the idea of Reggeization may well play a role in the further de-
velopment of particle physics, we include here a brief look at Regge pole
phenomenology. We start by briefly reviewing Mandelstam variables for
describing two body processes, and the role of crossing symmetry in the
present context.

Let us consider a reaction, a + b → c + d, where a, b, c, d are all
hadrons, with four-momenta pa, pb, pc, pd, respectively. The Mandelstam
variables s = (pa + pb)2 and t = (pa − pc)2 can be used to describe the
kinematics of this process. (The third variable u = (pa − pd)2 is not an
independent variable, as s + t + u =

∑d
i=am

2
i .) In the center of mass
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system of a and b, since the vector momenta of a and b are opposite,
s =W 2, where W is the total center of mass energy, so s may be loosely
called the energy variable. Bound states may occur for W < (ma+mb),
and scattering states occur for W > (ma +mb). If q = pa − pc is the
momentum transfer four-vector, then t = q2 � −2|7pa||7pc|(1 − cos θ),
where θ is the scattering angle in the center of mass. From here one sees
that cos θ � [1 + (2t/s)]. The physical region for the collision process
is | cos θ| ≤ 1, so that s is positive and t is negative. This is called the
s-channel process. The unphysical region in this channel is the region of
large positive t (| cos θ| � 1).

Related to the s-channel process is another one which is obtained
by switching particle b to the right-hand side and replacing it by its
antiparticle b̄, and particle c to the left-hand side and replacing it by its
antiparticle c̄. This gives the crossed-channel reaction a+c̄ → b̄+d. This
is called the t-channel process. Since we are replacing particles b and c by
their antiparticles, the four-momenta pb, pc of the s-channel process go
over into −pb,−pc, respectively. In this channel, the variable t becomes
positive, while s becomes the square of a momentum transfer and is
negative. Large positive values of t for the s-channel reaction occur
only in its unphysical region of cos θ, while large positive s can occur
only in the unphysical region of the t-channel reaction. The principle
of crossing symmetry states that there is one analytic function A(s, t)
which describes the amplitude for both processes. This means that the
amplitude for the s-channel process, when continued analytically into
its unphysical region, will give the amplitude for the t-channel process
in its physical region and vice versa. The analytic continuation gives a
representation for the amplitude in terms of sums over Regge poles in the
complex angular momentum plane in the s- and t-channel, respectively.

As stated before, the Regge trajectory connects bound states and res-
onances which occur whenever Reα(s) takes on integral (or half-integral)
values, and determines the asymptotic behavior of the amplitude in the
unphysical region when cos θ( or 2t/s) → ∞. If we use crossing symme-
try, this means that, for s → ∞ and t < 0, the amplitude will have the
form (recalling that for z large, Pα(−z) ∼ zα)

A(s, t) ∼
∑
n

sαn(t)βn(t),

where αn(t) refers to the Regge poles in the crossed channel, that is
the t-channel. Thus, the Regge poles in the crossed channel allow us to
make some very useful statements about the asymptotic behavior of the
amplitude for two particle high energy processes in the s-channel.

We may well ask, what can we say about the trajectories of the Regge
poles? We can deduce some properties of αn(t) through the following
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considerations. For forward scattering (elastic), t = 0, and we know that
there, A(s, 0) ∼ s (recall that the total cross section, which is related
to the imaginary part of the forward scattering amplitude, is nearly
constant for large s). This fact allows us to conclude that there must
be a leading Regge trajectory denoted by αP (t), such that αP (0) = 1.
This trajectory is called the Pomeranchuk trajectory. It is the Regge
trajectory that is relevant for elastic scattering at high energies. All
other Regge trajectories will have α(0) < 1. Because in elastic diffraction
scattering the quantum numbers and identities of the particles are the
same before and after the reaction, the exchanged Regge pole must carry
the quantum numbers of the vacuum. (The relevance of Pomeranchuk
trajectory for the Pomeranchuk theorem on the relation between particle
and antiparticle cross sections has been discussed in the section under
“Pomeranchuk Theorem”.)

We can also say something more about the behavior of the real part
of αP (t) in the neighbourhood of t = 0. Since the real part increases as
t increases, we must have near t = 0, ReαP (t) � 1+δP t, where δP must
be positive. Using this when we work out the elastic differential cross
section as a function of t, we can write it as

dσ(elastic)
dt

= (
dσ

dt
)t=0 exp 2(αP (t)− 1) ln(s/s0),

where s0 is some constant having the dimension of s to make the ar-
gument of the logarithm dimensionless. Regge theory does not have
anything to say about the size of s0. The theory predicts that the elas-
tic cross section falls off exponentially for small t (remember t < 0).
The above expression also predicts that the peak close to t = 0 shrinks
logarithmically with s. Such a shrinkage is actually seen experimentally
and establishes the usefullness of Regge theory for describing data in
this region.

For an s-channel process, we are concerned with the particles and res-
onances which are associated with Regge trajectories in the t-channel,
that is, whenever the Reα(t) takes on integral or half-integral values.
All the other quantum numbers, such as baryon number, strangeness,
isospin, parity, G parity, must be the same for a given trajectory. A
number of Regge trajectories are known which are nicely exhibited in
Chew-Frautschi Plots. If one plots along the abscissa s (or what is equiv-
alently the square of the mass of the bound state or the resonance), and
along the ordinate Reα(s), the “spin” of the particle or resonance, one
finds that the known particles and resonances fall on straight lines in
the plot (see Figure 4.8 under “Chew-Frautschi Plot”). We do not go
into further details on this vast subject. A comprehensive list of other
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leading trajectories which are exchanged and which are relevant for par-
ticular processes is available in the book by Collins [349], which the
reader interested in further details may consult.

Before we leave this section, we would like to conclude with the pos-
sibility that quantum chromodynamics may provide an explanation for
the linearity of Regge trajectories. In quantum chromodynamics, the
color interactions between quarks at large distances grow linearly with
distance. If one replaces this interaction by a model string stretching
between the quarks with a string tension k, one can calculate the re-
lation between the angular momentum of the system and the mass of
the hadron. A simple calculation shows that the angular momentum J
can be expressed as J = α′M2+const, where α′ (the slope of the Regge
trajectory) is related to the string tension parameter k. Fitting α′ to
a particular trajectory, for example, the ρ trajectory, one gets a value,
α′ = 0.9 GeV−2. This corresponds to a string tension k = 0.2 GeV2.

Regularization
Amplitudes for physical processes are calculated in gauge field theories
using Feynman diagrams in perturbation theory. When the Feynman
diagrams contain closed loops, the integration over the four-momentum
of the loops diverges. A prerequisite for handling divergent Feynman
integrals and extracting parts from them which can be absorbed into
the definition of the mass, charge, etc. and other parts which give rise
to finite contributions (which have observable consequences) is to have
unambiguous and consistent methods for achieving these ends respecting
all symmetries, such as Lorentz invariance and gauge invariance. Thus
methods must be found which make the divergent Feynman integral
finite through some limiting process. Any such methods which render
Feynman integrals finite are called methods of regularization.

A number of methods have been devised to give definition to di-
vergent integrals through suitable limiting processes which respect all
the symmetries in the problem. We will describe here two of the most
commonly used methods. The first is called Pauli-Villars Regulariza-
tion [350], and the second one is the method of dimensional regulariza-
tion due to ’t Hooft and Veltman [351]. In the first of these methods, the
integral is rendered finite by introducing large mass fictitious particles.
In the end, observable quantities should be independent of the fictitious
large parameters. In the second method, the four-dimensional loop in-
tegral is analytically continued to complex dimensions n where it can
be manifestly shown to be finite, and in the end the limit taken as the
number of dimensions n approaches four. We illustrate these methods
below by using a specific typical example.
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Figure 4.21: Feynman diagrams of the bare electron-photon vertex and
its correction to order e2.

Let us consider the correction to the bare lowest order vertex which
represents the coupling of the photon to the electron in QED. If the
four-momentum and the polarization four-vector of the photon incident
at the vertex are k and εµ(k), respectively, and the initial and final
electrons have four-momenta p and p1 = p + k, respectively, the vertex
is ū(p1)(−ie)γµu(p), where the u’s are the Dirac spinors for the electron.
The bare vertex and the correction to the bare vertex to order e2 are
shown in Feynman diagrams of Figure 4.21. Following the Feynman
rules, we can write the correction to the vertex as ū(p1)Γµ(p1, p)u(p),
where Γµ(p1, p) is given by the Feynman loop integral

Γµ(p1, p) =
∫

d4l1
(2π)4

−igρσ
(p− l1)2 + iε

ū(p1)(−ieγρ) i(l/2 +m)
l22 −m2 + iε

γµ

i(l/1 +m)
l21 −m2 + iε

(−ieγσ)u(p)

= 2ie2
∫

d4l1
(2π)4

ū(p1)[l/1γµl/2 +m2γµ − 2m(l1 + l2)µ]u(p)
((p− l1)2 + iε)(l22 −m2 + iε)(l21 −m2 + iε)

,

where l2 = l1 + k. The evaluation of this integral is done by combining
the denominators using Feynman parameter method,

1
abc

=
∫ 1

0

dxdydzδ(1− x− y − z)
2!

(xa+ yb+ zc)3
.

Using here a = ((p− l1)2+ iε), b = (l22−m2+ iε), c = (l21−m2+ iε), and
calling the denominator Den we have, (using l2 = l1+k and x+y+z = 1),

Den = [l21 + 2l1 · (yk − zp) + yk2 + zp2 − (x+ y)m2 + iε]3.

We shift the variable of integration l1 such that in the denominator, the
linear term proportional to l1 is removed. This is achieved if we define
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the new loop variable q = l1 + yk − zp, and the denominator can be
simplified to the form

Den = q2 −A2 + iε,

where A2 = −xyk2 + (1 − z)2m2. The numerator, when expressed in
terms of q and simplified, will have terms involving q which are quadratic,
linear, and independent of q. The terms linear in the four-vector qλ

integrate to zero, because the rest of the integrand is a function of q2

only. The term quadratic in q can be written in the form∫
d4q

(2π)4
qλqν

Den
=

∫
d4q

(2π)4
gλνq2/4
Den

,

because of the symmetry of the integrand. It is easy to see that the
quadratic term in the numerator gives a divergent contribution. Fo-
cussing attention on this divergent integral, we have to evaluate∫

d4q

(2π)4
q2

Den
.

Giving meaning to this integral involves the process of regularization
and will be our sole concern here.
(a) Pauli-Villars regularization In this method, we make the integral
finite, by replacing the photon propagator by an expression which is the
difference between it and that of another propagator with a very large
mass Λ, called the regulator mass,

1
(p− l1)2 + iε

→ 1
(p− l1)2 + iε

− 1
(p− l1)2 − Λ2 + iε

.

In the limit that Λ → ∞, the subtracted term is zero and we have the old
loop integral. For any finite Λ, however, the subtraction helps in giving
a convergent integral. The prescription is to first perform the integral
for finite Λ and afterwards take the limit Λ to infinity. The result of the
modification of the photon propagator, by a repetition of the previous
calculation for the subtracted term, leads to∫

d4q

(2π)4
(
q2

Den
− q2

Den(Λ)
),

where Den(Λ) = q2 − A2(Λ) + iε, with A2(Λ) = A2 + zΛ2. To perform
the integral over d4q, one carries out a transformation q0 = iq4 (called
a Wick Rotation), which makes the Minkowski four-vector q into the
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Euclidean four-vector q, and q2 = (q0)2 − 7q2 = −[(q4)2 + 7q2] = −q2E .
The integral over d4qE to be done is∫

d4q

(2π)4

(
q2

Den
− q2

Den(Λ)

)
,

which evaluates to
i

(4π)2
ln(

A2(Λ)
A2

).

For large Λ we see that A2(Λ) ∼ zΛ2, we see that the regularized inte-
gral shows it has a logarithmic dependence on the mass associated with
the regulator. When the regulator mass is taken to infinity, we get a
divergence, but now we know the exact value of the logarithmic diver-
gence. The calculation can be carried out to further stages to extract
the infinite and finite parts in the above expression for the correction to
the vertex. Note that this regularization method has respected Lorentz
symmetry and gauge symmetry.
(b) ’t Hooft-Veltman Dimensional regularization In this method,
we define an integral which represents an analytic continuation of the
original four-dimensional integral into n-dimensional space time, where
n can in general be complex. After we evaluate the integral, the original
integral is recovered in the limit when n → 4. We start with the integral
in terms of the Euclidean four-momentum qE ,∫

d4qE
(2π)4

q2E
(q2E +A2)3

,

of which the part that diverges is∫
d4qE
(2π)4

1
(q2E +A2)2

.

Analytically continuing this integral from 4 to sufficiently small n will
lead to convergent result for any integral and will serve to define it. The
analytically continued integral is∫

dnqE
(2π)n

1
(q2E +A2)2

.

This integral is easily evaluated by going into spherical coordinates in
Euclidean n-dimensional space. If dΩn is the element of solid angle on
the unit n-dimensional sphere, we can write dnq = qn−1dΩn, and we
have ∫

dnqE
(2π)n

1
(q2E +A2)2

=
∫

dΩn
(2π)n

∫ ∞

0

dqE
qn−1E

(q2E +A2)2
.
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In polar coordinates in n-dimensions, we have

dΩn = sinn−2 θn−1 sinn−3 θn−2 . . . sin θ2dθn−1dθn−2 . . . dθ1,

where 0 ≤ θn−m ≤ π, for 2 < m < n− 1, and 0 ≤ θ1 ≤ 2π. The integral
over the solid angle is easily performed, and we get∫

dΩn =
2πn/2

Γ(n/2)
.

The other integral is written as

∫ ∞

0

dqE
qn−1E

(q2E +A2)2
=

1
2

(
1
A2

)(2−(n/2)) ∫ 1

0

dxx1−(n/2)(1− x)(n/2)−1.

In writing this, we have used the variable x = A2/(q2E + A2). Now
the integral over x can be performed using the definition of the beta
function, and we get∫ 1

0

dxx1−(n/2)(1− x)(n/2)−1 =
Γ(2− n/2)Γ(n/2)

Γ(2)
.

Thus we have∫
dnqE
(2π)n

1
(q2E +A2)2

=
1

(4π)n/2
Γ(2− (n/2))Γ(n/2)

Γ(2)

(
1
A2

)(2−(n/2))
.

The gamma function has poles at zero and all negative integers. When
we take the limit as n → 4, writing n = 4 − ε, Γ(2 − (n/2)) = Γ(ε/2)
develops a pole at ε = 0. The other gamma function Γ(n/2) = Γ(2 −
(ε/2)) and tends to Γ(2) when ε → 0. From the property of the gamma
function, we have Γ(ε/2) ∼ 2

ε −γ+ · · · , where γ ≈ 0.5772 . . . is called the
Euler-Mascheroni constant. Thus the result for the divergent integral in
the limit when n → 4 is∫

dnqE
(2π)n

1
(q2E +A2)2

lim
n→4

1
(4π)2

(
2
ε
− lnA2 − γ +O(ε)

)
.

The 1/ε pole term signifies the divergence in the method of dimensional
regularization, which, in the Pauli-Villars regularization, appeared as a
logarithmic divergence. The correspondence this suggests is 1/ε ∼ ln Λ2,
between the two methods of regularization.

When working with dimensional regularization, we must remem-
ber to set gρσgρσ = n and not 4, and in an integral, replace kρkσ by
(k2/n)gρσ when the rest of the integrand is a function of k2 only. Also,
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the Dirac matrices need to be extended to n-dimensions. Various identi-
ties which involve Dirac matrices will get, in the limit that n approaches
4, ε dependent contributions. When these terms mulitply the 1/ε terms,
one will generate finite contributions which have to be taken into ac-
count. We do not go into details on this subject here which involves the
technicalities of renormalization procedure and the extraction of finite
parts; reference may be made to a book on quantum field theory [98]

Renormalization
Perturbative calculations in quantum field theories start by writing the
Lagrangian for the interacting fields as a sum of the free field Lagrangians
and the Lagrangians representing the interactions between the fields. In
the case of QED, for example, the full Lagrangian can be written as
a sum of the Lagrangian for the free Dirac electron, for the free elec-
tromagnetic field, and an interaction Lagrangian representing the inter-
action of the electromagnetic field with the electron. The solution of
the equations for this coupled set of fields is possible perturbatively if
the coupling between the electron and the electromagnetic field is small.
Then one starts from the unperturbed basis provided by the eigenstates
of the free Lagrangians and uses perturbation theory from there. The
mass parameter and the charge parameter that appear in the free La-
grangian are called bare parameters, because they are not the quantities
that are measured in the laboratory. (One cannot switch off the cloud
of virtual photons that surrounds an electron or the cloud of virtual
electron-positron pairs that accompany a photon.) The “dressing” of
the particle from the “bare” state is accomplished order by order in
perturbation theory by “renormalization” and one builds the dressed
particle from the bare particle. The methods of renormalization were
first formulated by Feynman, Schwinger, and Tomonaga. Many other
persons, such as Dyson, Salam, Weinberg, Bogolyubov and Parasiuk,
have also made important contributions to the field.

Calculations in quantum field theories using the Feynman diagram
approach involve, in general, calculation of diagrams with closed loops in
them. The four-momenta associated with the loops have to be integrated
over infinite ranges and they give rise to divergent contributions. By
the procedure of regularization, one gives meaning to these integrals
through some limiting procedures, so that one can deal with the terms,
which become divergent in the limit, in an unambiguous and consistent
manner. After regularization, one can proceed to subtract the terms that
become divergent. The procedure of renormalization involves absorbing
these divergences into the redefinition of various parameters, such as the
bare mass, the bare coupling constant, and wave function normalization.
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The infinite renormalization constants renormalize the bare parameters
by an infinite amount. These renormalized parameters still play the
role of mass, charge, etc., of the particles for which we substitute the
experimental values.

A theory is said to be renormalizable if to all orders of perturbation
theory, one can absorb all the divergences into the redefinition of a finite
number of parameters, which appear in the bare Lagrangian, by unam-
biguous subtraction procedures. For the redefined parameters, such as
charge and mass, the experimentally measured values for these quan-
tities are used. The finite contributions left over after the subtraction
of the divergences represent finite corrections to physical quantities to
various orders in perturbation theory and will have observable effects.

Gauge theories, such as QED, Yang-Mills theories, and QCD, pro-
vide classes of interacting field theories which are renormalizable. The
renormalization corrections to the anomalous magnetic moment of the
electron in QED have been calculated up to order α4 and agree very
well with the experimental measurements to eight significant figures.
The standard model with spontaneous symmetry breaking has also been
proven to be renormalizable; here, however, one needs experimental in-
puts for many more parameters than those required in QED. Here also
there are many impressive successes.

Renormalization Group
It has been mentioned under “Regularization” that infinities arise in the
perturbation theory evaluation of Feynman diagrams that contain loops.
After regularization, the would-be divergences are removed by absorbing
them into redefinitions of physical quantities through the procedure of
renormalization. This procedure actually introduces an arbitrary scale
into the problem. To see this, let us recall that in Pauli-Villars regular-
ization (see section under “Regularization”), the regularized expression
is of the form

ln
A2(Λ)
A2

.

To extract the Λ2 dependence, we rewrite this expression as

ln
(
A2(Λ)
µ2

)
+ ln

(
µ2

A2

)
,

where we have introduced an arbitrary parameter µ with the dimension
of mass so that both logarithmic terms have dimensionless arguments.
Renormalization removes the first of these terms; the second term rep-
resents the finite contribution. We have made the subtraction of the
divergent term at a mass scale µ2; µ is what is called the renormaliza-
tion scale which is arbitrary. Different prescriptions for renormalization
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call for different µ, and the corresponding finite parts will depend upon
what µ is chosen. Although we have shown the appearance of the renor-
malization scale in the Pauli-Villars regularization scheme, it is easy to
see that it also appears in the dimensional regularization scheme in a
subtle way. In this case the evaluation above led to

2
ε
− lnA2 − γ +O(ε),

which is rewritten as

2
ε
− lnµ2 + ln

µ2

A2
− γ +O(ε).

Introduction of µ2 makes the logarithm of the finite part have dimen-
sionless argument; it is not obvious that the ε in the logarithm of the pole
term carries dimension but it does, and this is made explicit by adding
− lnµ2 to it. Thus with any regularization scheme, the renormalization
prescription introduces a renormalization scale.

The renormalized quantities, such as the mass and coupling constant,
depend upon the renormalization scale, but physical quantities, which
are functions of these, cannot depend upon the renormalization scale.
Thus the renormalized quantities must transform in such a way that
physical quantities which depend upon the renormalized quantities re-
main invariant under change of renormalization scale. It turns out that
the transformation of the renormalized quantities, as the parameter µ
is changed, form a Lie group called the Renormalization Group. This
was noted a long time ago by Stückelberg and Petermann [352]. Renor-
malization group equations express the invariance of physical quantities
under changes of the renormalization scale.

Consider the contribution from a set of connected Feynman graphs
(those which cannot be split into two separate graphs by cutting any
single internal line) with external propagators removed. Let us de-
note this by G; it is called the single particle irreducible (1PI) Green’s
function. Suppose that in regularizing it we introduce a cut-off in the
loop momentum Λ, then we obtain the unrenormalized Green’s function
GU (pi, g0,Λ), where pi are external particle momenta, and g0 is the bare
vertex coupling constant. In a renormalizable theory, it turns out that
it is possible to define renormalized Green’s function GR(pi, g, µ) by

GR(pi, g, µ) = ZG(g0,Λ/µ)GU (pi, g0,Λ),

where the renormalized Green’s function GR is finite in the limit Λ → ∞,
and depends upon the scale µ and the renormalized coupling g. ZG is
a product of renormalization factors (such as wave function renormal-
ization and vertex renormalization), one for each external particle i in
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the Green’s function G. Since GU is independent of µ, the statement
dGU

dµ = 0 leads to the renormalization group equation. The form of the
equation is: (

µ
∂

∂µ
+ β(g)

∂

∂g
+ γ(g)

)
GR(pi, g, µ) = 0.

Here the functions β(g) and γ(g) stand for

β(g) = µ
∂g

∂µ
, γ(g) =

µ

ZG

∂ZG
∂µ

,

and are called the beta-function and anomalous dimension respectively.
The anomalous dimension depends on the Green’s function being con-
sidered, while the beta function is the same for all Green’s functions. In
finding the beta function and the anomalous dimension, the differentia-
tions with respect to µ are carried out keeping Λ constant, and the limit
Λ → ∞ is taken afterwards.

To illustrate the use of renormalization group equations we consider a
simple but useful example. If, in some problem, a single large momentum
P is present, all the particle momenta pi can be expressed as fractions xi
of P . Introducing P 2 the square of the four-momentum P and the change
of variable t = (1/2) ln (P 2/µ2), the renormalization group equation
becomes (

− ∂

∂t
+ β(g)

∂

∂g
+ γ(g)

)
G(xi, g, t) = 0.

Defining a running coupling constant g(t) by

t =
∫ g(t)

g(0)

dg′
1

β(g′)
,

the solution to the renormalization group equation can be written as

G(xi, g(0), t) = G(xi, g(t), 0)exp

[∫ g(t)

g(0)

dg′
γ(g′)
β(g′)

]
.

In problems with a single large momentum scale, all the P 2 dependence
arises from the running of the coupling constant g(t).

There are many applications of the renormalization group equations
in particle physics and statistical mechanics, but we do not go into this
vast subject here. Interested persons may seek additional information
from the book by Peskin and Schroeder [98].
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Resonance States
In elementary particle collision processes at high energies, a number of
product particles are produced, many of which are unstable. The unsta-
ble ones decay and give rise to products which themselves may be stable
or unstable. The chain of decays ends when all the products are sta-
ble. When examined, the unstable states which decay are found to have
a unique mass, a definite lifetime, and a unique set of quantum num-
bers, for example, angular momentum, parity, isospin, and strangeness.
Through the uncertainty principle, the existence of a finite lifetime im-
plies an energy width (or mass width) associated with the state. Such
unstable states are called Resonance states and are found in baryonic
systems as well as in meson systems. Broadly speaking, the lifetime of
the state gives information on the interaction responsible for the decay.
Very short lifetimes, of the order of 10−23 s, give rise to very broad
resonances, with widths an order of magnitude smaller than the mass,
and decay occurs through strong interactions. Lifetimes in the range
10−17 to 10−19 s are characteristic of decays through electromagnetic
interactions, and long lifetimes such as 10−10 s or longer are associated
with weak interactions. In addition, in each case there are characteris-
tic selection rules on the quantum numbers of the product particles; for
example, strangeness is conserved in strong interaction processes, but
violated in weak interactions.

To find the mass and quantum numbers associated with a resonant
state, one has to identify the product particles and measure the energy
and the three-momenta of sets of particles that are produced in the
reaction. If the same resonant state is produced in various reactions, the
invariant mass distribution for certain identified set of product particles
will have a peak at a certain value of the invariant mass which is the same
in the different reactions. Its width gives information about the decay
rate (or lifetime). A specific example will clarify these considerations.
Consider the reaction π− + p → Σ+ + π− +K0, with π mesons of some
energy E incident on a hydrogen target. One measures the energy and
three-momenta of the Σ+ and π−, and constructs the square of the
invariant mass

M2
Σπ = (EΣ + Eπ)2 − (7pΣ + 7pπ)2.

If one plots the square of the invariant mass distribution for incident
pion energies of 2.17, 2.25, and 2.36 GeV, one clearly sees a peak distin-
guished well from the phase space distribution expected in the case of
no resonances.

In cases where the final state consists of three particles, a method
using Dalitz plots (see section under “Dalitz Plot”) is very useful in
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identifying the existence of invariant mass peaks for combinations of
identified particles in the final state. The spin and parity of resonances
are also found using the plot as described under “Dalitz Plot”. In this
way, resonances have been found inK−π, Ξ−π, π−π, π−n, etc. systems.
The existence of meson resonances ω and ρ was also established. The
study of resonant states experimentally gives the spectrum of elementary
particle states. The object of the theory is to find the fundamental
interactions responsible for these states as bound states and resonances
of the underlying theory. In the last four decades hundreds of resonant
states have been found, studied, and classified. The constituent quark
model, in which baryonic states are considered as excitations of a bound
three quark system and mesonic states as excitations in a bound quark-
antiquark system, is very successful in describing the data well with six
flavors of quarks and three colors for each flavor. A comprehensive listing
of the known resonances and their qauntum numbers may be found in
Reference [62].

Rho Meson (ρ) Resonance
The ρ-meson resonance was found in 1961 by analyzing the invariant
mass of pairs of pions in the reaction π− + p → π+ + π− + n or π− +
π0 + p. The invariant mass distribution for the combinations π−π0 and
π+π− showed clear peaks at a mass value of 765 MeV, with a width
of 125 MeV. In the reaction π+ + p → π+ + π+ + n or π+ + π0 +
p, no peak was found for the π+π+ combination while for the π+π0

combination a peak was found at the same mass value of 765 MeV.
These peaks in the three charge states suggests that the resonance has
isospin 1, corresponding to ρ+, ρ0, ρ− states. The width being so large,
we can conclude that the decay is through strong interactions. Thus we
can use the decay distributions to gain information about spin, parity,
and G-parity quantum numbers. G-parity conservation in the decay to
two pions leads to the assignment of G = +1 to this resonance. This,
together with the I = 1 assignment, immediately lets us conclude that
the charge conjugation parity of ρ0 must be odd. ρ+ and ρ− are charge
conjugates of one another.

Information about spin and parity of the ρ resonance may be ob-
tained as follows. Because the two pion I = 1 state is odd under the
interchange of isospin variables, it must also be odd under the inter-
change of spatial variables, since there are two bosons. This means that
the orbital angular momentum for the decay has to be odd, and the
parity also has to be odd. This allows for the possibilities, 1−, 3−, . . . .
To decide between these, one has to study the angular distribution of
the two pions in the ρ rest frame. In the rest frame of the ρ, its state
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is described by
∑
m CmψJm. The distribution of the pions with re-

spect to the z axis will then have the form
∑
m P (m)|Y mJ (θ, φ)|2, where

P (m) = |Cm|2 and
∑
mmP (m) = 0. The larger the value of J the more

complex the angular distribution is, and by such studies it is found that
one can exclude spins higher than 1. Thus the spin and parity of the
iso-triplet ρ is determined to be 1−. The determination of the quantum
numbers of this resonance is typical of the methods used.

Salam-Weinberg-Glashow Model
In this model, the synthesis of electromagnetic and weak interactions is
achieved by inroducing the ingenious mechanism of spontaneous break-
ing of gauge symmetry. A model Lagrangian was proposed in which
the photon, mediating electromagnetic interactions, and the intermedi-
ate vector boson, mediating weak interactions, are unified into one spin
1 multiplet of gauge fields [353]. However, a big important difference
between these gauge particles had to be accommodated; namely, the
photon has zero rest mass, while the intermediate vector bosons must
have a large mass to provide short range weak interactions. The sym-
metry of the spin 1 gauge multiplet had to be somehow broken in such
a way so as to leave the photon massless and yet allow the interme-
diate vector bosons to acquire nonzero masses. Salam and Weinberg
proposed that the symmetry of the Lagrangian is spontaneously broken
by the vacuum (see section under “Higgs Mechanism”), with the result
that the would-be Goldstone bosons provide the longitudinal modes for
the intermediate vector bosons, making them massive and still leaving
the photons massless. In his paper Weinberg expressed the hope that a
theory with spontaneous breaking of gauge symmetry would be renor-
malizable. This conjecture has been proven to be correct with ’t Hooft’s
proof of the renormalizability of such theories in 1972 (see also under
“Standard Electroweak Model” for details).

Scaling behavior
See section under “Parton Model”.

Second Quantization
This is a procedure adopted in quantizing field theories. One starts with
a classical field theory, where the field functions, which are functions of
space and time, satisfy certain field equations arising from a Lagrangian.
A quantum version of the field can be obtained by looking upon the field
function as the wave function of a single particle in quantum mechanics,
satisfying the field equation (procedure sometimes called first quantiza-
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tion). However, with this procedure one runs into serious problems with
interpretations of the theory (see section under “Causality Condition”).
These difficulties are avoided if one does not identify the field function as
the wave function for a single particle but instead quantizes the classical
field directly. The procedure is second quantization only in a picture in
which the first quantization involved the interpretation of the field func-
tion as a one particle wave function for a quantum mechanical system.
Without that interpretation of the field function as a one particle wave
function, there is just one “quantization” of the classical field theory [98].
The procedure to “quantize” a field theory involves a redefinition of the
classical field functions as operators on which certain commutation rela-
tions are imposed. One can show that the Hamiltonian has eigenstates
which are obtainable by analogy with the simple harmonic oscillator.
The eigenstates represent not just one particle states but many particle
states.

Selectron
This is a hypothetical particle of spin 0, which is the supersymmetric
partner of the spin 1/2 electron. (See under “Supersymmetry”.)

Σ Particles
Sigma particles come in three charge states, Σ+,Σ0,Σ−, and are called
Sigma hyperons. Their masses are measured to be: M(Σ+) = 1189.37±
0.07 MeV, M(Σ0) = 1192.642 ± 0.024 MeV, and M(Σ−) = 1197.449 ±
0.030 MeV. Their lifetimes are determined to be: τ(Σ+) = (0.799 ±
0.004) × 10−10 s, τ(Σ0) = (7.4 ± 0.7) × 10−20 s, and τ(Σ−) = (1.479 ±
0.011) × 10−10 s. The decay modes for the charged Σ’s are as follows:
Σ+ → p+ π0(51.57%), Σ+ → n+ π+(48.31%), and Σ+ → p+ γ(1.23×
10−3). Decays to n+π++γ and to Λ0+e++νe have also been observed
with branching ratios of order 10−4 and 10−5, respectively. For Σ−,
the dominant decay mode is Σ− → n+ π−(99.848%). Other modes are
n + π− + γ(∼ 10−4), n + e− + ν̄e(∼ 10−3), n + µ− + ν̄µ(∼ 10−4), and
Λ0 + e− + ν̄e(∼ 10−5). Σ0 decays almost exclusively to Λ0 + γ. It is an
electromagnetic decay.

The fact that the Σ hyperon comes in three charge states suggests
that they are members of an isospin triplet. The spin of Σ+ was de-
termined by studying its decay after it was produced in the reaction,
K− + p → Σ+ + π−. The measurements are consistent with assigning
a spin of 1/2 to it. Σ− likewise has spin 1/2. The Σ’s are assigned a
strangeness S = −1. Through the study of the decay, Σ0 → Λ0 + γ or
equivalently to Λ0 + e+ + e−, the parity of Σ0 has been determined to
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be even. As all these particles fit into the baryon octet, they are all as-
signed even parity and spin 1/2. The quark structure of these particles
is: Σ+ = (uus), Σ0 = (uds), and Σ− = (dds).

Spatial Parity
See under “Parity Conservation” and “Parity Nonconservation in Nu-
clear β Decay.”

Spin Statistics Theorem
This is an important result first derived by Pauli [354]. It states that
for local field theories, demands of Lorentz invariance, positive ener-
gies, positive norms, and causality mean that particles with integral spin
obey Bose-Einstein statistics, and particles of half-odd integral spin obey
Fermi-Dirac statistics. In quantizing such theories, for particles obeying
Bose-Einstein statistics, commutation relations have to be imposed on
the field operators, while for particles obeying Fermi-Dirac statistics, one
has to impose anticommutation relations between the field operators. If
this is not adhered to, one will run into trouble with positive energies,
positive norms, or causality.

Spontaneous Breaking of Chiral Symmetry
The vacuum of QCD may have a special structure which may not re-
spect chiral symmetry. This occurs because, for massless quarks, quark-
antiquark pair condensates will be formed from the attractive interaction
in QCD of quarks with antiquarks. In the vacuum state they will have
zero total momentum and zero angular momentum; this requirement will
necessarily lead to a net chirality for the vacuum state. The vacuum ex-
pectation value of the scalar operator q̄q will be nonzero, which will lead
to a mixture of chirality projections. This will in turn allow the quarks
to develop effective masses in the vacuum. The existence of net chirality
for the operator q̄q signals the onset of spontaneous breaking of the full
symmetry group in which the right and left chirality quarks suffer dif-
ferent transformations, down to one in which the right and left chirality
quarks suffer the same transformations. Thus spontaneous symmetry
breaking will lead to the lack of conservation of axial vector currents,
while the vector currents will be conserved. Goldstone’s theorem then
leads to massless, spinless Goldstone bosons. (The pion is approximately
this Goldstone boson.)

Spontaneously Broken Symmetry
See section under “Higgs Mechanism”.
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Squark
This is a hypothetical particle of spin 0, which is the supersymmetric
partner of the spin 1/2 quark. (See under “Supersymmetry”.)

Standard Electroweak Model
This is a gauge theory unifying electromagnetic and weak interactions
due to Salam, Weinberg, and Glashow [353]. The general idea is to start
with massless fermions and massless gauge bosons belonging to some
gauge group. A Lagrangian is written down which possesses the gauge
symmetry corresponding to the gauge group. Spontaneous breaking of
gauge symmetry is achieved by introducing a Higgs field, which has
a nonvanishing vacuum expectation value (abbreviated as vev). The
Higgs field is so chosen that several of the gauge bosons as well as the
fermions will acquire mass, but the photon will be left massless. The
gauge symmetry that achieves all this is the gauge group SU2,L ×U1,Y .
We outline this development below.

Let us start with the Lagrangian for massless Dirac fields f ,

L = f̄ iγµ∂
µf

= f̄Liγµ∂
µfL + f̄Riγµ∂

µfR,

where fL = 1−γ5
2 f , fR = 1+γ5

2 f are the left-handed and right-handed
chiral components of the fermion f . In applying this to the electron and
its neutrino in the lepton sector, the electron has both left-handed and
right-handed components, while the electron neutrino has a left-handed
component only. Taking this fact into account we may write for the
(e, νe) sector,

L = ēRiγµ∂
µeR + ēLiγµ∂

µeL + ν̄eiγµ∂
µνe.

This is for the first generation. We have to add a similar term for each
of the other generation of leptons. The considerations which we develop
below for the first generation only have to be duplicated for the other
generations.

Now we have to decide what internal symmetry to impose on the
fermions. We choose to put (νe, eL) into an isospin doublet L and put
eR into an isospin singlet R. This isospin is called weak isospin to dis-
tinguish it from the isospin we use with strongly interacting particles.
Thus νe has T = 1/2, T3 = +1/2, eL has T = 1/2, T3 = −1/2, and eR
has T = 0, T3 = 0. The above Lagrangian can be written in the compact
form,

L = L̄iγµ∂
µL+ R̄iγµ∂

µR

This L is invariant under global SU2 transformations L → L′ = e
−i
2 <τ ·<αL,

R → R′ = R. (Here the 7τ has as its components, the three Pauli
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matrices.) We note that we can write the electric charge Qe in terms of
the generator T3 as Q = (T3 − 1/2) for the L state, and Q = (T3 − 1)
for the R state. In this form the charge is different for each member of
the isospin doublet. A related generator which gives the same quantum
numbers to all members of the doublet is Y = 2(Q−T3). It is called the
weak hypercharge. Its values for one generation of leptons and quarks are:
Y (lL) = −1, Y (eR) = −2, Y (qL) = 1/3, Y (uR) = 4/3, and Y (dR) =
−2/3. We also note that Y commutes with all the generators Ti, i =
1, 2, 3 of SU2. The generators Ti, i = 1, 2, 3 and Y belong to the direct
product group SU2,L × U1,Y .

We considered above a global transformation with space-time inde-
pendent parameters 7α. Let us make this a local symmetry by making
these parameters space-time dependent. Then to preserve the symmetry
of the Lagrangian, we have to replace the partial derivatives by the co-
variant derivatives with three massless gauge fields. The photon should
not be among these three gauge fields because eR being an SU2 singlet
will not interact with the photon, and we need it to interact. The way
to make this interaction possible is to enlarge the gauge group with a
U1 factor associated with the transformations of eR. We choose this U1
in such a way that the electric charge Q is a linear combination of the
U1 generator and T3 of the isospin. The hypercharge Y is the natural
choice, so that the direct product group will be SU2,L × U1,Y , and the
gauge invariant Lagrangian is

L = f̄ iγµD
µf,

where
Dµf = (∂µ + ig

1
2
7τ · 7Aµ + ig′

Y

2
Bµ)f,

and where 7Aµ is a triplet of gauge fields with coupling g, and Bµ is an
SU2 singlet.

Now we want to break this symmetry spontaneously to U1,em. We
do this by introducing a set of scalar fields Φ and let it have a nonzero
vacuum expectation value 〈Φ〉0 (abbreviated as vev), which is U1,em sym-
metric. We choose the scalar to be a complex doublet with hypercharge
Y (Φ) = +1, and write it in the form

Φ =
(

φ+

φ0

)
.

The Lagrangian for the scalar field Φ is

Ls = (DµΦ)†(DµΦ)− V (Φ),
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where

DµΦ =
(
∂µ + ig

1
2
7τ · 7Aµ + ig′

1
2
Bµ

)
Φ,

and V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2. The scalars can couple to fermions,
too. We introduce a coupling term with the Lagrangian which has a
Yukawa form and respects SU2 × U1 invariance,

LYukawa = ge l̄LΦeR + guq̄LΦ̃uR + gdq̄LΦdR +Hermitian Conjugate,

where the conjugate scalar field Φ̃ = iτ2Φ∗ which has hypercharge
Y (Φ̃) = −1, and ge, gu, and gd are the Yukawa coupling strengths
of the electron, the u-type quark, and the d-type quark respectively.

The total Lagrangian is the sum of all three Lagrangians above. Now,
to break the symmetry spontaneously, we let Φ have a nonzero vev,

〈0|Φ|0〉 =
(

0
v/

√
2

)
, v =

√
µ2/λ.

To see what particle spectrum emerges, we have to shift the fields about
their vev. We write

Φ = U−1(ξ)

(
0

v+η(x)√
2

)
, U(ξ) = ei

<ξ(x)·<τ/v,

where the original complex fields, φ+ and φ0 are parametrized in terms
of 4 real fields, ξi(x), i = 1, 2, 3, and η(x). These shifted fields are the
physical fields and have zero vev,

〈0|ξi|0〉 = 0, i = 1, 2, 3; 〈0|η|0〉 = 0.

We carry out a further gauge transformation to go into what is called
the unitary gauge (where only the physical fields are present), by writing

Φ′ = U(ξ)Φ.

Let us write Φ′(x) = v+η(x)√
2

χ, with χ =
(

0
1

)
. The fermion fields

transform as l′L = U(ξ)lL, e′R = eR, q′L = U(ξ)qL, u′R = uR, and
d′R = dR, and the gauge fields as

7τ · 7A′
µ

2
= U(ξ)

7τ · 7A
2

U−1(ξ) +
i

g
[∂µU(ξ)]U−1(ξ); B′

µ = Bµ.

Now we need to express the scalar Lagrangian in terms of the new fields.
We get

Ls = (DµΦ′)†(DµΦ′)− V (Φ′),
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where

DµΦ′ =
(
∂µ + ig

1
2
7τ · 7A′

µ + ig′
1
2
B′
µ

)
(v + η(x))√

2
χ,

and
V (Φ′) = µ2η2 + λvη3 +

λ

4
η4.

The Yukawa coupling Lagrangian becomes

LYukawa =
v√
2
[geē′Le

′
R + guū′Lu

′
R + gdd̄′Ld

′
R]

+
1√
2
[geē′Le

′
R + guū′Lu

′
R + gdd̄′Ld

′
R] + Hermitian Conjugate.

The above work is sufficient to extract some of the results of the
model. We can read off the mass terms which are coefficients of quadratic
field terms. (1) The mass of the Higgs scalar, mη =

√
2µ; (2) the fermion

masses,me = gev/
√
2,mu = guv/

√
2,md = gd/

√
2; (3) the vector boson

masses which are obtained from the part of the |DµΦ′|2 which depends
quadratically on the gauge fields. The parts of interest are

Vector Boson mass terms =
v2

2
χ†

(
g

2
7τ · 7A′

µ +
g′

2
B′
µ

)2
χ

=
v2

8
(
g2[(A′1

µ )
2 + (A′2

µ )
2]

+ [gA′3
µ − g′B′

µ]
2
)
.

Here the A′1
µ and A′2

µ appear quadratically, but A′3
µ and B′

µ have cross
terms. The terms involving these can also be expressed as quadratic
terms by forming suitable linear combinations of A′3

µ and B′
µ as follows.

We write

v2

8
[gA′3

µ − g′B′
µ]
2 =

v2

8
(
A′3
µ B′

µ

) (
g2 −gg′

−gg′ g′2

) (
A′3
µ

B′
µ

)
.

The matrix in the middle can be diagonalized by the following orthogonal
transformation,

Zµ = cos θwA′3
µ − sin θwB′

µ

Aµ = sin θwA′3
µ + cos θwB′

µ,

the previous expression becomes

(
Zµ Aµ

) (
g2 + g′2 0

0 0

) (
Zµ
Aµ

)
.
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From the diagonalization it is readily seen that the eigenvalues of the
matrix in the Zµ, Aµ basis are v

2

8 (g
2+g′2) and 0. Thus one linear combi-

nation of A′3
µ and B′

µ becomes the Z boson and the other combination is
the massless photon, reflecting a residual symmetry U1,em present. The
mixing angle is called the electroweak mixing angle. We also note that
tan θw = g′/g. Finally, the vector boson mass terms can be combined
into the form,

M2
WW

+
µ W

−µ +
1
2
M2
ZZ

µZµ,

with W±
µ = A′1

µ ∓A′2
µ√

2
, M2

W = g2v2

4 , and M2
Z = v2

4 (g
2 + g′2). M2

W is the
square of the mass of the charged W bosons, while M2

Z is the square of
the mass of the neutral Z boson.

Next we look at the fermion-gauge boson coupling terms from the
above. These can be written in the form g√

2
(J+µW+µ+J−

µ W
−µ), where

J+µ = ν̄′eγµe
′
L + ū′Lγµd

′
L, and J−

µ is the Hermitian adjoint of J+µ . It is
clear from the form that J+µ is a charge changing current, changing a
left-handed electron by adding one unit of (+) charge to it and making
it into a (left-handed) neutrino, or changing a left-handed d quark into
a left-handed u quark. J−

µ changes the charge by (−1) unit.
If we apply these coupling terms to calculate the effective four fermion

interaction at low energies (i.e., low invariant momentum transfers), we
get

Leffcc = − g2

2M2
W

J+µ J
−µ,

which is just the V −A theory. This lets us identify

g2

8M2
W

=
GF√
2
,

where GF is the Fermi weak coupling constant. This relation allows us
to estimate the size of the vev of the Higgs field. We have

v2 =
4M2

W

g2
=

1√
2GF

.

Putting in numerical values, we get v ≈ 246 GeV.
The theory also predicts that there must exist neutral current in-

teractions. Going back and picking out the appropriate terms in the
fermion-gauge boson coupling, we can identify

Lnc = gJ3µA
′3µ +

1
2
g′JYµ B

′µ,
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where JYµ is the hypercharge current JYµ = Jemµ −J3µ. Using the definition
of A′3

µ and of B′
µ in terms of Zµ and Aµ, we can write this as

Lnc = eJemµ Aµ +
g

cos θw
(J3µ − sin2 θwJemµ )Zµ,

where e = g sin θw.
A big triumph for this theory of electroweak unification came from

the discovery of the neutral currents experimentally of magnitude com-
parable to charged current effects. These experiments help to determine
sin2 θw. Precision experiments at LEP and at SLC have determined this
parameter to high accuracy. Using the rough value sin2 θw = 0.23, the
theory gives MW = 2−5/4eG−1/2

F / sin θw, MZ = MW / cos θw. Putting
in numerical values, we get MW � 80 GeV, MZ � 90 GeV. The W and
Z bosons were discovered by UA1 and UA2 collaborations at CERN in
1983 at about these predicted masses.

These experimental discoveries clearly establish the electroweak the-
ory on a sound footing. Because the theory has also been proven to
be renormalizable, higher order calculations can be undertaken. These
allow experimental tests of the model with higher and higher accuracy.
Much work has been done along these lines at LEP, SLC, and other
machines. The standard electroweak model, together with the QCD La-
grangian for strong interaction of quarks, constitutes what is called the
standard model. Predictions of the standard model have been tested to
very high accuracy in a number of experimental measurements. Some of
the details of these comparisons may be found in other sections in this
book.

Statistics—Bose-Einstein, Fermi-Dirac
In many problems a knowledge of the distribution of the number of par-
ticles in terms of different energies is important. A perfect gas is an
assembly of free noninteracting point particles. When the perfect gas is
treated as a quantum mechanical system, the fact that the particles are
indistinguishable plays a very important role in determining the statis-
tics the assembly obeys. The wave function for the assembly is given by
the product of the wave functions of the individual particles. Under the
interchange of all the coordinates (including spin, isospin, etc.,) of any
two identical particles, the wave function of the system is either symmet-
ric or antisymmetric. An assembly, described by wave functions which
are symmetric under the interchange of coordinates of any two particles,
obeys Bose-Einstein statistics. An assembly, described by wave func-
tions which are antisymmetric with respect to exchange of coordinates
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of any two particles, obeys Fermi-Dirac statistics. In the latter case, the
antisymmetry of the wave function under the exchange of any two coor-
dinates automatically limits the occupancy of the quantum state to just
one particle; no two particles can be in the same quantum state with the
same coordinates, which is Pauli’s exclusion principle. The distribution
formula for the number of particles nr with energy Er is derived to be
of the form,

nr =
1

exp(α+ βEr)± 1
,

where α is a constant determined by the condition that the total number
of particles in the system is N , and β = (1/kT ), T being the absolute
temperature, and k the Boltzmann constant. Here the minus sign in the
denominator, refers to the Bose-Einstein statistics, and the plus sign to
Fermi-Dirac statistics. In the case of Fermi-Dirac statistics, α is negative
and can be written in the form α = −EF

kT , where EF is called the Fermi-
energy. In the case of Bose-Einstein statistics, α cannot be negative
but can be positive or zero. The highest possible nr=0 corresponds to
α = 0, in which case infinite number is associated with the lowest energy
level Er=0 = 0. This has relevance to the phenomenon of Bose-Einstein
condensation.

Stochastic Cooling
This method of increasing the luminosity of particle beams in accel-
erators has been used at the pp̄ collider at CERN with which the in-
termediate vector W and Z bosons were found. The aim is to reduce
the phase volume associated with the beam particles. In attempting to
do this, one has to respect Liouville’s theorem, which states that one
cannot reduce the overall phase volume; one can only change its shape
when conservative forces act on the system. The total phase volume is
made up of the phase volume of particles in the beam and the phase
volume associated with the empty space surrounding the beam. What
may be attempted without conflict with Liouville’s theorem, for a given
total phase volume, is to decrease the phase volume associated with the
beam particles, by moving the particles individually toward the center
of the distribution, while at the same time increasing the phase volume
associated with empty space. However, to achieve this, one has to locate
the individual particles in the beam, sense their characteristics, act on
them individually, and make them go into the desired location of phase
volume. The procedure reminds one of Maxwell’s demon. The only
reason that it works here is that in moving the particles around one is
exchanging energy with them in such a way as not to come into conflict
with the second law of thermodynamics.
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Particles circulating in a beam undergo, in general, betatron oscilla-
tions (transverse to the beam’s circulation) and longitudinal oscillations.
Considering transverse oscillations first, if there were a single particle go-
ing around in a circular orbit, and one wanted to reduce the amplitude
of the horizontal betatron oscillation about this orbit, one could pick
up information about the transverse position with a transverse pickup
where its tranverse position is nonzero, and give it just the right kick at
a point where its transverse deviation from the orbit is zero, so that it
reaches the proper orbit, within a single turn of circulation. This can
likewise be done for the vertical betatron oscillations.

If we consider more than one particle, the same considerations can be
extended to the other particles if the response of the electronic system is
fast enough and resolves the individual particles. The total cooling time
will then be equal to the system response time multiplied by the number
of particles. If there are too many particles and the electronics is not able
to resolve them separately, then this estimate for the cooling time is only
a lower limit. In such a case, the system gain should be reduced so that
in each turn only a small fraction of the needed correction is given. This
is because, along with the signal from each particle, there are also signals
from all the other particles which are not resolved by the system. Every
particle is cooled by its own signal, but it is also simultaneously heated
by the uncorrelated signals from all the other unresolved particles. The
cooling rate is proportional to the system gain, while the effect of the
random heating gives rise to Brownian motion in phase space, the mean
square displacements of which vary linearly with time. Thus the heating
rate varies as the square of the system gain. It is, therefore, possible
to find an optimum system gain where one gets overall cooling. For
example, one might choose the system gain such that the heating rate
is about half the cooling rate.

To influence longitudinal oscillations, one requires “momentum cool-
ing”. Here one needs to develop a signal proportional to the momentum
of the particle. In the Palmer method, a pickup is used that measures the
dipole moment of the particles in a region of nonzero dispersion among
the particles. This produces a (root mean squared) voltage proportional
to the fluctuations in momentum in the beam. This voltage is then used
in a kicker to accelerate or decelerate the particles to reduce the mo-
mentum spread. It cools the beam. Another method, the Thorndahl
method, uses a notch filter. A notch filter is one whose response changes
sign depending upon whether the particle circulation frequency is above
or below the desired one. Evidence for stochastic cooling was obtained
by Carron et al. in 1978 [355].
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Storage Ring—Colliding Beam Machines
In the last couple of decades, much of the knowledge we have gained
about elementary particles has come from studies in colliding beam ma-
chines. Colliding beams of electrons with positrons, protons with pro-
tons, protons with antiprotons, and electrons with protons have all been
constructed. The main advantage in using colliding beams is in the
enormously large center of mass energies available for the production of
new particles as compared to machines in which an accelerated beam of
particles strikes a fixed target, called fixed target machines. All these
colliding beam machines have one common characteristic; the beams,
which are to be used in the collision, have first to be produced and then
stored in “storage rings” where they circulate for a long time. Clearly
one of the factors that affects the performance of the storage ring is the
length of time over which the beams can be held in the ring. Another
factor has to do with the ability to focus the beams to as small a region
as possible and with as little momentum spread as possible.

Once one has beams in storage rings with the desired characteristics,
two counter-rotating beams of particles are made to meet one another
at several points where collisions occurring between the beams and the
reaction products can be studied. The quantity that determines the rate
of reactions is called luminosity. If σ is the cross section for the interac-
tion of the beams, and L is the luminosity, then the number of collision
events per unit time (the reaction rate) is given by the product σL. The
expression for L in the case of two oppositely directed relativistic beams
is L = fnn1n2/A, where f is the revolution frequency of the beam, n is
the number of bunches of particles in either beam, n1, n2 are the num-
bers of particles per bunch in the two beams, and A is the area of cross
section of the beams. To obtain large luminosity, one has to diminish
A as much as possible and increase all the other quantities as much as
possible. Also, the bunches of particles should have a small momentum
spread. Typical values for the luminosities are about 1031 cm−2s−1 for
electron-positron colliders and about 1032 cm−2s−1 for pp colliders. To
reduce the momentum spread in the bunches, electron cooling and stoch-
asitc cooling methods are used. These also include methods to reduce
A and make the beams last long in the storage rings.

An interesting property of relativistic beams in storage rings is the
fact that they are polarized. This arises as a result of the emission of
synchrotron radiation by the circulating particles and was pointed out
by Ternov et al. [356].

The entire field of colliding beam accelerator physics has a very rich
literature and much exiciting work is being done. We have presented
only a brief summary here.
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Strange Particles
See sections under “Kaons: The τ -θ Puzzle” and under “Hyperons—
Decay Selection Rules”.

Strangeness Conservation
See sections under “Associated Production” and “Gell-Mann, Nishijima
Formula”.

String Theory
This is a theory of elementary particles in which particles, instead of be-
ing considered points, are pictured as the quantum modes of vibrating
strings. The first developments of this theory arose from efforts to un-
derstand the spectra of the enormous numbers of hadronic resonances,
produced in strong interactions, with rather high values of spin. The
mass squared of a particle of spin J was found to be given roughly by
M2 = J/α′, where α′ is a constant called the slope of the Regge trajec-
tory, and has the value α′ ∼ 1(GeV)−2. Although this relation has been
found to be true up to values of J ∼ 13/2, it is quite possible that this
relation continues on indefinitely.

A behavior of the sort described in the previous paragraph is in sharp
contrast to expectations from point-particle quantum field theories. In
quantum field theory, at high energies, the two-particle elastic scattering
amplitude is constructed, as the sum of exchanges in the s- and t-channel
tree diagrams (that is, diagrams involving no closed loops), where s and
t are the Mandelstam variables. Tree diagrams in which particles of
spin J are exchanged are found to give rise to bad high energy behavior,
violating the Froissart bound. For example, if all the external particles
are scalars, the t-channel amplitude, due to the exchange of a particle
of spin J , has the form, At(s, t) =

g2(s)J

t−M2 , and becomes worse and worse
for larger and larger J . If there are several t-channel contributions, due
to various values J , with masses MJ and couplings gJ , the contribution
will be

At(s, t) =
∑
J

g2J (s)
J

t−M2
J

.

According to this, the high energy behavior (at large s) will be deter-
mined by the exchange of the hadron of the highest J , a behavior which
is completely different from the much softer variation that is is found
experimentally. In other words, there does not seem to be a hadron
of highest spin. The experimentally observed behavior can be under-
stood, if, in the above expression, the sum over J extends to infinity and
the resulting sum is finite, as happens, for example, in the power series
expansion of e−x =

∑∞
J=0(−x)J/J !.
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There is also the contribution from the s-channel exchanges. In a
development similar to the discussion of the t-channel amplitude, the
s-channel amplitude As(s, t) is then

As(s, t) =
∑
J

g2J (t)
J

s−M2
J

.

Symmetry under cyclic permutations of the momenta of the external
particles demands that the same masses and couplings must appear in
the t-channel and s-channel amplitudes. Again, we will have bad be-
havior for large t if the sum is over a finite number of terms, and to get
a reasonable behavior, the sum will have to be extended over infinite
range.

Now, suppose the couplings and masses are such that the s- and t-
channel amplitudes are equal, then it seems that the amplitude should
be written either as an infinite s-channel sum or as an infinite t-channel
sum, but not as a sum over both s- and t-channel contributions. In fact,
analyzing the experimental data available at that time, Dolen, Horn, and
Schmid [357] showed that the two were very nearly equal. If this equality
is taken to be exact, the equality of the s- and t-channel amplitudes was
called duality, because these provide alternative descriptions of the same
process. This presented a challenge to theorists to construct a theory
which exhibits this duality.

Veneziano met the challenge and generated a “dual-resonance” am-
plitude in 1968 [358]. He wrote the amplitude for two body scattering
in terms of the beta function B(a, b), where B(a, b) = Γ(a)Γ(b)/(Γ(a) +
Γ(b)): A(s, t) = B(−α(s),−α(t)), where the α(s) and α(t) are Regge
trajectories in the s- and t-channels, respectively. Such a function is
symmetric under s ↔ t, and exhibits Regge behavior sα(t) for large s
and fixed t and tα(s) for large t and fixed s, and has poles at all integer
values of the Gamma functions. The behavior of B(a, b), near b = −J
(J a non-negative integer), is

B(a, b) ∼ (−1)J
J !

1
b+ J

(a− 1)(a− 2) · · · (a− J).

This expression exhibits all the singularities of the function B as a func-
tion of b for fixed values of a. It can be shown that the right-hand side
of the expression for B, when summed over all J from 0 to ∞, converges
for Re (a) > 0, that is,

B(a, b) =
∞∑
J=0

(−1)J
J !

1
b+ J

(a− 1)(a− 2) · · · (a− J).
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A simlar result holds for B interchanging a and b, and in this case the
infinite series converges for Re (b) > 0.

Veneziano chose to write linear Regge trajectory functions, α(t) =
α(0)+α′t. The function B(−α(s),−α(t)) has singularities corrsponding
to the exchange of particles in the t-channel of massM2 = (J−α(0))/α′,
J = 0, 1, 2, 3, . . . . The parameters α(0) and α′ in the Regge trajectory
function are called the intercept and slope of the Regge trajectory, respec-
tively. If α0 and α′ are positive, the pole with J = 0 has negative mass
squared, and such a particle is called a tachyon. If α′ were not restricted
to be positive, all the higher J values would also lead to tachyons. We
also note that the residue of the pole, α(t) = J , is a polynomial of Jth
order in s, which we want to be positive (so as not to have negative norm
states, called ghosts). The appearance of tachyons and ghosts were two
unappealing features of the dual resonance models, and a lot of effort was
put into curing these diseases. It was found that to get no ghosts, one
had to work in 26 space-time dimensions and α0 had to have the value 1.
If α0 is chosen to be 1, then the J = 1 state has a mass which vanishes.
Clearly, the dual resonance model predicts a massless J = 1 hadron,
in direct contradiction to observations. In fact, in another form of the
dual resonance model, consistency demanded the existence of a massless
J = 2 hadron, also. Another serious deficiency of the dual resonance
models was soon found when it was applied to other strong interaction
processes, such as deep inelastic scattering. In the region where s → ∞,
t → −∞, but s/t is held fixed (the Bjorken limit), the Veneziano am-
plitude falls off exponentially and fails to describe Bjorken scaling and
parton-like behavior of hadrons. These results led to a waning of interest
in dual resonance models for hadronic interactions.

At about this time, it was realized that the Veneziano model could
be understood in terms of the relativistic model of a closed string. An
action integral for the string was constructed, and the equations of mo-
tion were derived. Quantization of the theory was carried out using
the canonical formalism. For the closed string, periodicity properties
allow one to write the solution of the equations of motion in the form of
Fourier series. The Fourier coefficients become creation and annihilation
operators, and a vacuum state can be defined on which the action of the
annihilation operators will give zero. Creation operators acting on the
vacuum state will give excited states. One obtains a corresponding mass
spectrum. The elementary particles are identified with the different ro-
tational and vibrational states built on the vacuum state. The square
of the mass of the particle is proportional to the frequency of vibration
of the string and turns out to be an integer multiple of some basic pa-
rameter, agreeing with the linear Regge trajectory of the dual resonance

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 399

✐

✐

✐

✐

✐

✐

✐

✐

model. One feature of the bosonic string theory was that it was free
of ghosts only in 26 space-time dimensions, and its ground state was a
tachyon. It is interesting to note that these features are shared by the
dual resonance model.

In an earlier paragraph we mentioned the existence of massless spin
1 and spin 2 particles. An examination of the couplings of these spin 1
and spin 2 objects revealed that they resembled those of the Yang-Mills
fields and gravitational fields, respectively. These features motivated
Scherk and Schwarz [359] to suggest abandoning such a string theory for
describing hadrons, and instead use it as a method of unifying all the
fundamental forces including gravity. In this way, string theory could
provide an approach to quantum gravity. The hadronic mass scale is of
the order of 1 GeV (length scale of order 1 fermi), while that of gravity
is the Planck mass 1019 GeV (length scale ∼ 10−33 cm), the change of
viewpoint takes us nineteen orders of magnitude up in the mass scale
or down in the length scale. Based on the changed viewpoint, all the
excited states will be of the order of Planck mass, and the ground state is
essentially massless on this scale. There is a large amount of degeneracy
in the mass states of string theories giving the hope that many of the
observed particles could be accommodated in the ground state of the
theory.

The observed particles consist of leptons and quarks in addition to
the gauge bosons. Leptons and quarks being fermions, the problem
was to construct a spinning string theory. This was accomplished by
Ramond [360] who proposed the string equivalent of the Dirac equation
for the fermion. Soon thereafter, Neveu and Schwarz [361] constructed
a string theory of interacting bosons and fermions. They found that
such a theory could be consistently formulated only in 10 space-time
dimensions. They found a further bonus in this theory—the ground
state was not a tachyon.

A supersymmetric string theory was successfully constructed by
Green and Schwarz in 1982 [362]. This theory was also found to have
no tachyon in its ground state. Such string theories are called super-
string theories. Even superstring theories, while they do not suffer from
problems with ghosts and tachyons, still have anomalies (such as the
triangle Adler-Jackiw anomaly). In 1984, a major advancement was
made with the discovery that an anomaly-free superstring theory could
be constructed in 10 space-time dimensions. Since we want a theory
applicable in the four-dimensional world, attention was focused on what
to do with the six extra dimensions.

To deal with the problem of extra dimensions, an old theory of
Kaluza and Klein [363], in which they tried to unify electromagnetism
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and gravity by going to five-dimensional space-time, looked like an av-
enue that could be explored in this context. The ground state of the
five-dimensional general relativity was assumed to be the direct product
of four-dimensional Minkowski space-time with a circle S1. If the radius
of this circle is extremely small (∼ 10−33 cm), all observed phenom-
ena, at even the highest energies so far explored, will be averages over
the circle S1. Such ideas could be extended to hold for the six extra
dimensions.

Attempts to construct a superstring theory with all the desirable
low energy phenomenological characteristics have been successful. These
should have (1) four-dimensional space-time, (2) simplest form of super-
symmetry at the Planck scale, (3) a gauge group which is large enough
to contain the standard model gauge group, SU3×SU2×U1, and (4) the
standard model particles, the leptons and quarks with their associated
quantum numbers. The most successful superstring theory incorporat-
ing many of these features is the so-called heterotic string theory, based
on the exceptional gauge group E8 × E8. To get to 4 dimensions from
the 10 dimensions, different methods of compactifications of the extra
dimensions have been found. Such a theory has a number of accept-
able phenomenological features. There are only three generations of
light fermions (consistent with the observation of the width of the Z0).
Space-time supersymmetry is broken in a clever way, so that symmetry
breaking in the observable sector is reduced by a factor 1/M2

Planck, so
that the weak gauge bosons have small enough masses compared to the
Planck scale. There are only singlet and triplet representations of SU3
present. Of course, there are a number of additional particles predicted,
such as extra Z0 boson.

Based on these modest successes, there is a lot of exciting activity
taking place with superstring theories. However, the goal of achieving a
“theory of everything (TOE)”, is still probably a long way off.

Strong Focusing
See “Alternating Gradient Strong Focusing Machines” in Chapter 2.

SU3—Model for Hadron Structure
The search for an underlying symmetry which would explain the simi-
larity of patterns in the eight baryons and the eight pseudoscalar mesons
was the major preoccupation of workers in the 1950’s. The earliest such
attempt was by Sakata. Sakata constructed a model [364] which laid
the ground work for the full-fledged development of unitary symmetry.
He pointed out that in order to construct particles with strangeness, it
was necessary to add at least one strange particle to the proton and
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the neutron and consider a symmetry enlarged from isospin. (Isospin
symmetry, based on the observation of charge independence of nuclear
particle interactions, was by then already well established.) The only
known baryon having strangeness was the Λ0, so Sakata’s proposal was
to build all the then-known mesons and baryons with the triplet, proton
(p), neutron (n) and Λ0, and their antiparticles. For example, in the
Sakata model, K+ is the composite (Λ̄0p), K0 is (Λ̄0n), Σ+ is (Λ0pn̄),
Ξ− is (Λ0Λ0p̄), etc. Other baryons can similarly be written in composite
form in this model. In the limit of perfect symmetry, he set the masses
of Λ0, p, n, equal to one another and considered unitary transformations
among three particles (p, n,Λ0).

In isospin symmetry, the transformations of the ψ = (p, n) doublet
are of the form

ψ → ψ′ = Uψ,

where the transformations U form all unitary, unimodular 2 × 2 ma-
trices. U is of the form exp i7α · 7T , where 7α are the parameters of the
transformation, and 7T are the generators of the transformations. The
generators 7T can be expressed in terms of 2 x 2 Pauli matrices 7τ as
7T = (1/2)7τ . The group corresponding to these transformations is the
group SU2.

The Sakata model considers transformations of the triplet, ψ =
(p, n,Λ0), and may be written as

ψ → ψ′ = Uψ,

where the transformations U form all unitary, unimodular 3 × 3 ma-
trices. Here U may be written in the form exp i

∑8
i=1 αiTi, where

αi, i = 1, 2, . . . , 8 represent the parameters of the transformation, and
Ti, i = 1, 2, . . . , 8 are the generators of the transformation. The Ti, i =
1, 2, . . . , 8 can be expressed in terms of eight 3 × 3 matrices λi, i =
1, 2, . . . , 8 as Ti = (1/2)λi. A standard form for the matrices for λi, i =
1, 2, . . . , 8 was introduced by Gell-Mann and plays here a role similar to
that played by the Pauli matrices for SU2. The form given by Gell-Mann
is quoted here for easy reference.

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .
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The group corresponding to these transformations is SU3. The fun-
damental representations in the Sakata model are the triplet (3) to which
p, n,Λ0 belong, and the (3̄) to which the antiparticles p̄, n̄, Λ̄0 belong.
The mesons which are formed from particle-antiparticle combinations
would belong to the product representation 3 × 3̄, which reduces to an
octet and a singlet. The seven pseudoscalar mesons, π+, π0, π−,K+,K0,
K−, K̄0, can be fit into the octet; the discovery of the η0 meson would
complete the octet. On the baryon side, however, the Sakata model did
not do as well. In the examples above, the baryons in this model were
composites of two particles and one antiparticle (recall Σ+ = Λ0pn̄ etc.).
This implies that the baryon multiplet would be found in the reduction
of 3× 3× 3̄. Working out the reduction, one finds many more particles
in the multiplet than in the octet, and the Sakata model was in trouble.

The solution to this problem was proposed by Gell-Mann and in-
dependently by Ne’eman that the baryons also be accommodated in
the eight-dimensional regular representation of SU3 (see section under
“Eightfold Way”). With the proposal of the quark model, with the
quarks p, n, λ belonging to the fundamental triplet representation of
SU3, with their fractional charges (+2/3, -1/3, -1/3)|e|, respectively,
and with fractional baryon numbers 1/3 (now renamed u, d, s quarks),
it was possible to accommodate the octet baryon multiplet in the reduc-
tion of 3 × 3 × 3, and the mesons in 3 × 3̄. The Sakata model clearly
provided the inspiration to investigate the relevance of the higher sym-
metry group SU3 to particle physics, and this avenue has proved to be
very successful.

Sudbury Neutrino Observatory (SNO)
This is a new facility that has been constructed in the INCO Creighton
mine in Sudbury, Ontario, Canada, by a group of scientists from Canada,
U. S., and U. K. This facility is a neutrino observatory and will primar-
ily measure the intensities, energies, and directions of origin of electron-
neutrinos from the sun. The detector relies on the use of heavy water
(of which Canada has plenty), rather than ordinary water, for neutrino
detection. Deuterium in the heavy water gives the further capability to
detect the muon-neutrinos and tau-neutrinos, also. Taken together, the
data are expected to advance our understanding of the properties of neu-
trinos and also provide a check on solar models which are based on our
current knowledge of the energy generation and energy transformation
processes in the sun.

SNO is a heavy water neutrino detector, and as such, it is unique in
the world. It uses 1 kilo-tonne of heavy water contained in an acrylic
sphere of diameter 12m. The neutrinos interact with the deuterium

©2001 CRC Press LLC



“hb˙root”
2001/3/20
page 403

✐

✐

✐

✐

✐

✐

✐

✐

in the heavy water, resulting in the emission of Cherenkov radiation
from the heavy water. This radiation is detected by an array of 9600
photomultiplier tubes (PMT’s) mounted on a geodesic dome surrounding
the sphere. The entire heavy water sphere is immersed inside a sphere
containing ordinary, but highly pure, light water. The entire spherical
assembly is contained in a 30m spherical cavity excavated within the
rock of the mine, located at a depth of 6800 feet. This depth under the
rock provides excellent shield from cosmic rays. A very large amount
of effort has been devoted to making the laboratory extremely clean to
reduce radioactive signals which might otherwise mask the signal from
the neutrinos.

The SNO facility can make independent measurements of the fluxes
of the different flavor neutrinos by the following methods:

• First, there is the charged current reaction, νe + d → p + p + e−.
The ejected electron carries most of the energy of the neutrino and,
in its passage through the heavy water, gives rise to Cherenkov
radiation, which is detected. The pattern of the PMT’s that are
hit by the Cherenkov radiation is used to determine the neutrino
energies. Such measurements of the neutrino energy spectrum are
expected to show a distortion, if neutrino flavor oscillations are
occurring. About 30 events of this type are expected per day
according to the standard solar model.

• Second, there is the neutral current reaction, νx+ d → p+n+ νx.
This deuteron breakup reaction can be initiated by all flavors of
neutrinos, x. This feature of the detector is what gives SNO
its uniqueness. The neutron produced from the breakup of the
deuteron slows down in the heavy water and, after a characteris-
tic slowing down time, will eventually be captured on a nucleus.
The capture will lead to the emission of a cascade of gamma rays.
These gamma rays scatter against electrons in the medium, and
the electrons will generate Cherenkov light, which is detected in
the PMT’s. Clearly, the efficiency of this method of detecting neu-
trinos of any flavor will depend upon how efficiently the released
neutrons are captured and the resulting cascade of gamma rays de-
tected. Since the capture of neutron on deuterium is not all that
efficient, SNO is proposing to use two different systems to improve
neutral current detection. One of these will use 3He ultra-clean
proportional tubes suspended in a grid within the heavy water.
Because 3He has a large capture cross section for neutrons, the
proton and triton products following the capture give rise to pulses
in the counter wire. The other method will dissolve two tonnes of
ultra-clean MgCl2 in the heavy water. The chlorine has a high
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capture cross section for thermal neutrons. The capture leads to
a cascade of gamma rays peaked at about 8 MeV of energy, which
will be detected. About 30 neutrons per day are expected accord-
ing to the standard solar model.

• Third, there is the scattering reaction, νx + e → νx + e. This is
the reaction which is used by other light water detectors, such as
the SuperKamiokande. In principle, this reaction occurs for all fla-
vor of neutrinos, but the electron neutrinos give signals which are
about six times larger than for other flavors. Although good direc-
tional information on the neutrino can be obtained, this method
is not very good for determining spectral information on the neu-
trino, since in the final state the energy is shared between the
electron and the neutrino. The rate of these reactions in SNO is
expected to be about 3 events per day.

The water system in SNO has to be capable of handling large volumes
of extremely pure water. Products from uranium and thorium radioac-
tive chains have to be reduced to extremely low concentrations. The
purpose of the light water surrounding the heavy water is to provide for
absorption of gamma rays and neutrons which originate from activity
in the rock. For the 1 kilo-tonne of heavy water, impurities in the ordi-
nary water must be less than 10−14 g/g of water. Anything that comes
into contact with the water has to meet the stringent radio-impurity
levels set. The water purification system must also make sure that no
biological activity occurs to prevent the deterioration of the ultraviolet
transmittance of the water. All these tremendous engineering challenges
have been met in putting together the SNO system.

To handle the data, SNO has an extensive electronics and data ac-
quisition system. Signals from each of the 9600 PMT’s are processed
individually. Each PMT channel has a large dynamic range and timing
precision of better than one nanosecond. Power consumption must be
kept at a minimum to avoid excessive heat load in the mine.

In the first phase of operation, SNO is expected to take data from
the charged current mode. In the next phase, neutral current data are
expected to be taken. In Figure 4.22, we have reproduced an event
display from SNO, which illustrates the ring of hits on the PMT’s from
the Cherenkov cone. In the display, on the right-hand part, two rings of
hits on PMT’s can be seen. One of the rings is quite well defined, while
the other is more diffuse. The event display represents a two particle
event originating inside the detector. High energy muons usually give a
clear ring, and so one of the particles in the display is probably a muon.
Event displays like these will be analyzed for neutrino initiated events
with software that has been developed.
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Figure 4.22: An event display from SNO showing the ring of PMT’s
that have received hits from the Cherenkov radiation originating in the
heavy water. (Courtesy SNO collaboration.)

It will be very exciting should results from SNO confirm that neutrino
flavor oscillations are indeed occurring. The unambiguous discovery of
such oscillations would clearly establish that the neutrinos are not mass-
less. The mass of the neutrino plays a role in determining the eventual
fate of the universe, whether it will expand forever or fall back in a “big
crunch”.

SuperKamiokande Experiment
This is a large light water neutrino detector which has been operating
in the Kamioka mine in Japan and has provided high statistics data on
solar neutrinos. This detector has been able to map the solar neutrino
spectrum by measuring the recoil electron energy. It has also been used
to detect atmospheric neutrinos. Its data show that neutrino flavor os-
cillations may be occurring. (See further under “Neutrino Oscillations”
and under “Atmospheric Neutrinos”.)
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Supersymmetry
The elementary particle world consists of identical particles which sat-
isfy certain symmetry properties under the exchange of any two of the
identical particles. In quantum mechanics, the wave function of a two
(identical) particle system is either symmetric or antisymmetric under
the interchange of the particles. Particles are classified as bosons or
fermions depending on whether the wave function of the two particle
system is symmetric or antisymmetric, respectively, under the inter-
change of the two identical particles. In quantum field theories, the field
operators which describe fermions (bosons) are quantized by imposing
anticommutation (commutation) relations between the operators. Un-
til relatively recently, all the space-time and other symmetries which
have been considered have had the property that they only transform
bosons into bosons and fermions into fermions. Around 1970, a new
symmetry was discovered [365] which is capable of transforming a boson
into a fermion and vice versa. This symmetry is called supersymmetry.
Since bosons carry integral spin and fermions half-odd integral spin, su-
persymmetry relates integral spin particles with half-odd integral spin
particles. If supersymmetry is an exact symmetry of nature, supersym-
metric partners must have exactly equal masses and couplings to other
particles.

An immediate question that comes to mind is why we need super-
symmetry. One answer is purely theoretical—the new mathematical
structure provided by this extension of existing theories of symmetries
deserves study in its own right. But more significantly from the point of
view of particle physics, the existence of supersymmetry may provide an
answer to a puzzling question of the standard model for which there is no
satisfactory answer otherwise. Current theories put the energy scale at
which the unification of all the fundamental forces of nature, including
gravity occurs, at the Planck scale, about 1019 GeV. The electroweak
scale is characterized by the standard model Higgs vacuum expectation
value of about 246 GeV. These scales differ by some seventeen orders
of magnitude. The mass of the Higgs particle in the electroweak the-
ory gets radiative corrections which naturally tend to pull the particle
masses to the highest available mass scale, the Planck scale. In other
words, there is instability to radiative corrections. One way that this
might be avoided is if the intermediate states which contribute to the
radiative corrections, give contributions of opposite sign such that they
cancel when all the effects are added up. This is exactly what happens
in supersymmetric theories, where in the intermediate states, for every
particle, there is a supersymmetric partner which also occurs. These
supersymmetric partners give contributions, which are equal but oppo-
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site in sign to that from the particle, and cancel one another. In other
words, the existence of supersymmetry will provide a natural explana-
tion for the wide difference between the electroweak scale and the Planck
scale. This is in line with what happens in other examples. The photon
remains massless due to gauge symmetry, despite radiative corrections.
The pion would be massless if chiral symmetry was exact.

It is clear that supersymmetry cannot be exact. The mass degener-
acy expected between a particle and its supersymmetric partner (with
spins differing by 1/2) is not seen in nature. Hence supersymmetry is a
broken symmetry. We recall that the gauge symmetry of electroweak in-
teractions is broken by the Higgs field in such a way that the photon can
remain massless while theW and Z bosons acquire a mass related to the
electroweak scale. Suppose the supersymmetry breaking proceeds by the
analogs of the Higgs particle. Since it is spontaneously broken, super-
symmetry becomes a hidden symmetry in much the same way as gauge
symmetry is a hidden symmetry of the electroweak theory. The scale at
which the breaking occurs is assumed to be related to the electroweak
scale and to give masses to W ’s and Z’s and their superpartners which
are comparable to the electroweak scale. In this scenario, one would
expect to see a whole spectrum of new particles.

With this picture, the supersymmetric partners of the quarks and
gluons, of leptons and photons, all will acquire masses which could be
in the range of several hundred GeV to a TeV. It is possible to look for
them at the Tevatron of Fermilab, the LEP collider at CERN, and the
Large Hadron Collider (LHC) that is being constructed at CERN.

Supersymmetric theories with spontaneous symmetry breaking have
been constructed and can be shown to be renormalizable. Conserva-
tion of B − L is assumed, where B is the baryon number and L is the
lepton number. The invariance corresponding to this conservation law
is called R-parity invariance with R = (−1)3(B−L)+2S , where S is the
spin of the particle. A consequence of this invariance is that super-
symmetric particles must be produced in pairs if the initial state has
R-parity zero (corresponding to non-supersymmetric particles). Higher
mass supersymmetric particles are generally unstable and decay into
lower mass supersymmetric particles, conserving R parity; hence the
least massive supersymmetric particle must be stable as it cannot get
rid of its R-parity quantum number. Such a particle is called the lightest
supersymmetric particle (LSP).

The nomenclature for the particles which are paired as supersym-
metric partners of quarks, gluons, leptons, and photons are as follows.
The quarks have their spin zero partners, the squarks; the gluons, the
gluinos (spin half partners); the leptons, the sleptons (spin zero part-
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ners); and the photon, the photino (spin half partner). In addition the
W and Z bosons have their spin half partners, the w-inos and the z-inos.
The graviton (spin 2) has a supersymmetric partner, the gravitino with
spin (3/2). The Higgs particle structure contains two doublets of Higgs
fields, which is the minimum required for the generation of masses of
both the u-type and d-type quarks (and the charged leptons). Their
supersymmetric partners are called the Higgs-inos, and both charged
and neutral varieties are present. There is mixing among the charged
particles by themselves and among the neutral particles by themselves,
as the interaction eigenstates and the mass eigenstates may not coin-
cide. Thus the terms neutralinos and charginos are used to describe the
neutral mixture and charged mixture, respectively.

So far none of these new particles is seen in any of the Tevatron or
LEP experiments. These experiments have served to rule out masses
for these particles below certain values; for the lightest supersymmetric
neutral particle the lower limit is about 11 GeV, while for the others,
lower limits range from tens of GeV to 200 GeV. For details, reference
may be made to the “Review of Particle Physics” [62]. The future LHC
machine is expected to be a fertile place to look for these (and other)
particles.

τ Lepton
First indications that there might be another lepton in addition to the
electron and the muon was obtained by Perl et al [366] in 1975 by study-
ing e+e− collisions using the SPEAR 8.4 GeV electron-positron ring.
They found events at a center of mass energy around 4 GeV, in which
the final state contained e+µ−+missing energy or e−µ++missing energy
and no other charged particles or photons were detected. The threshold
for the production of these particles (3.56 GeV) was not far from the
threshold for the production of the J/ψ (3.74 GeV). Hence a big chal-
lenge was faced at the time, in unraveling the existence of this particle,
from the other observed hadronic background effects. Persistent and
careful search helped establish the existence of the heavy lepton distinct
from the hidden charm meson, the J/ψ.

The missing energy and momentum spectra appeared to suggest that
at least two additional neutral particles were being produced in each
event. In further studies [246] it was more definitely established that
the data were completely compatible with the hypothesis that these
anomalous events arise from the production, in the e+e− annihilation
reaction, of a pair of oppositely charged heavy leptons, each of which de-
cays into an electron or a muon and appropriate neutrinos. These heavy
leptons were given the name—τ± leptons. Thus what was observed was
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interpreted as τ+ → e+ + νe + ν̄τ and τ− → µ− + ν̄µ + ντ [367]. The
cross section for the process e+e− → τ+τ−, its threshold behavior, and
its magnitude were found to be consistent with what is expected if τ±

were point-like, spin 1/2, Dirac particles. Other spin possibilities have
been explicitly ruled out [368,369].

From the energy spectra of the decay electrons and muons, the mass
of the parent leptons could be deduced. The value found initially was
1.90 ± 0.10 GeV for the τ leptons. The experiment also determined
that the mass of the neutrino associated with the τ lepton, ντ , was
less than 600 MeV with 95% confidence. The lepton charged current
involving (ντ , τ) was found to be V − A rather than V + A, just like
in the decay of the muon. The leptonic branching ratios, for decay to
electrons and muons, was consistent with the assumption of e/µ uni-
versality and the strength of the decay coupling was found to be GF
as in muon decay. More up to date measurements place the mass at
mτ = 1, 777.05+0.29−0.26 MeV. Its mean lifetime has been measured to be
(290± 1.2)× 10−15 s.

Many decay modes of the tau leptons, both leptonic and semileptonic,
have been found and their branching ratios have been determined; details
may be found in the “Review of Particle Physics” [62]. Decay modes
involving one charged particle account for 84% to 85% of the branching
ratio. Of these, the leptonic decays of τ− involving either e−+ ν̄e+ντ or
µ−+ ν̄µ+ντ have branching ratios (17.81±0.07)% and (17.37±0.09)%,
respectively.

Technicolor Hadrons
We recall that supersymmetry was proposed to stabilize the radiative
corrections to the Higgs mass so that it does not naturally become of
the order of the Planck mass. Technicolor is an alternative method to
supersymmetry to protect the low mass Higgs particle from acquiring a
large mass of the order of the Planck mass [370]. This method considers
the possibility that, in addition to the usual stongly interacting color sec-
tor, there exists, at a mass scale of the order of 1 TeV, another strongly
interacting sector which has come to be called the technicolor sector.
Specifically, the fermion sector has (1) leptons, which are flavor dou-
blets (as in the standard model) and color and technicolor singlets; (2)
quarks, which are flavor doublets, color triplets, and technicolor singlets;
and (3) technicolor quarks, which are flavor doublets, color singlets, and
technicolor n-plets. The coupling of the n-plet gn is such that at a mass
scale of about 1 TeV, it becomes strong.

One of the consequences of having the technicolor quarks is that there
must exist a rich spectrum of technicolor hadrons with masses starting
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at around 3 TeV. Another main difference from the standard model
approach concerns processes which produce longitudinal Z’s and W ’s
above an energy of the order of a TeV. In the standard model approach,
e+e− annihilation forms a virtual photon or Z which can produce a pair
of transverse W ’s, which by virtue of their weak coupling give a non-
resonant contribution to R (the ratio for producing µ pairs to hadrons),
which can be calculated perturbatively. The virtual photon or Z can
also materialize into a pair of charged Higgs, which are essentially the
longitudinal W ’s. With technicolor quarks, the virtual photons and Z’s
can also decay into a pair of technicolor quarks. The resulting contribu-
tion to R will have characteristic resonances, just like the J/ψ, Υ, etc.,
which may be called the technicolor rho, technicolor omega, etc. at mass
of the order of a few TeV.

Technicolor theory, just like supersymmetry, requires the existence
of a different spectrum of new particles in the several TeV range. If they
are there, the Large Hadron Collider (LHC) has prospects of finding
them.

Third Quark Family
First indications that there was a third quark family matching the third
lepton family (ντ , τ), came from the observation of the dimuon resonance
at 9.5 GeV produced in 400 GeV proton-nucleus collisions using the Fer-
milab proton synchrotron [371]. The process occurring was interpreted
as the production of a new meson Υ(1S): p + nucleus → Υ(1S) + X
with subsequent decay of Υ(1S) → µ− + µ+. The Υ(1S) meson was
interpreted as the bound state of a new quark, called the b quark, with
its antiparticle b̄. The bb̄ bound state is also called bottomonium. The b
quark also goes under the name of beauty quark or bottom quark. More
details may be found in the section under “Bottomonium”. The b quark
carries charge −(1/3)|e|, like the d and the s quarks of the first and
second generations of quark families. Its mass is in the range of 4.1 GeV
to 4.4 GeV. The other quark of the third family, called the t quark (also
called the top or truth quark), which carries a charge +(2/3)|e|, is nec-
essary to complete the family of the third generation. It took a long
time to find it. Persistent searches for it finally paid off when it was
discovered at an incredibly high mass of about 175 GeV.

Three jets in e+e− annihilations
According to QCD, in addition to two-jet production in e+e− annihi-
lations corresponding to the process e+e− → qq̄, there should also be
processes in which the outgoing quark or the antiquark emits a gluon.
The gluon would manifest itself as a further hadronic jet, thus resulting
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in a final state with three jets. Two jet and three jet events have been
clearly seen in e+e− annihilations. From a study of the three jet events,
it has been possible to deduce that the spin of the gluon is 1. For more
details see sections under “Gluon”.

Three prong Kaon decay
The first example of the decay of a charged kaon into three charged par-
ticles was already obtained by Powell and collaborators in 1949 while
studying particles in cosmic radiation using nuclear emulsion plates [372].
The mass of the initial particle, determined by grain counting in the nu-
clear emulsion, was about 1000 electron masses. The heavy particle
came to rest in the emulsion and decayed emitting three charged parti-
cles all of which left tracks in the emulsion. This is the first example of
the decay of K+ into π+ + π+ + π−.

Three-triplet Model
In an effort to overcome some of the kinematical and dynamical diffi-
culties associated with the single-triplet quark model, a model was pro-
posed in which the low lying baryons and mesons were built out of three
triplets of quarks with integral charges [373]. Although the word color
was not introduced to specify the quarks in this paper, the double SU3
symmetry scheme proposed there can be looked upon as one in which,
one SU3 refers to color symmetry, while the other SU3 refers to the usual
flavor symmetry. In this picture, the low lying baryons and mesons are
singlets in color SU3. Particle states belonging to higher representations
of the color SU3 are considered to be separated from those in the sin-
glet representation by considerably larger mass differences than those
between particles existing within the singlet representation. The three
triplet model is thus considered the first introduction of an additional
symmetry for the quarks, now called color symmetry.

Time reversal transformation
The idea of time inversion transformation was introduced into quantum
mechanics for the first time by Wigner in 1932 [374]. In many problems,
the Hamiltonians of physical systems are invariant under a change in sign
of the time variable. This amounts to interchanging the past and the
future. The invariance of the Hamiltonian under time reversal leads to
certain very general relations between transition probabilities and cross
sections for direct reaction A + B → C + D, and its inverse reaction
C +D → A+B. Such relations are obviously very useful.

Physical quantities can be classified according to their behavior under
the time reversal transformation t → −t. There are some, such as the
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coordiantes of points, kinetic energy, and total energy, which do not
change under the transformation. There are others, such as velocity,
linear momentum, angular momentum, and spin, which do change sign
under the transformation. The former quantities depend upon even
powers of t and, hence, are said to be even under the transformation,
while the latter depend upon odd powers of t and, hence, may be said
to be odd under the transformation.

We bring out the implications of time reversal transformation for a
physical system by considerations based on the Schrödinger equation.
The time rate of change of some state with wave function ψ is given by
the time dependent Schrödinger equation

i
∂ψ

∂t
= Hψ.

Let us denote the state obtained by the reversal of time by ψ′. In this
state all quantities which are even under the transformation have the
same value as in the original state, while the quantities which are odd
change sign but retain their magnitude. We now want to find the time
reversal operator T which changes the state ψ into ψ′. By defintion ψ′

satisfies

i
∂ψ′

∂t′
= −i∂ψ

′

∂t
= Hψ′,

as t′ = −t and the Hamiltonian has been assumed to be unchanged
under the transformation. Now let us take the complex conjugate of the
equation given above for ψ, and we have

−i∂ψ
∗

∂t
= H∗ψ∗.

If there exists a unitary operator U satisfying the conditions

UH∗ = HU, U†U = I,

operating with this operator U from the left on the equation above for
ψ∗, we have

−i∂Uψ
∗

∂t
= HUψ∗.

Comparing this equation with the one for ψ′ above, we see that

ψ′ = Uψ∗.

Defining an operator K which carries out complex conjugation on what
it operates, we may write

ψ′ = Uψ∗ = UKψ.
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Thus the operator T which relates ψ′ with ψ is T = UK; that is, it is a
product of a unitary operator and an operator for complex conjugation.

It should be noted that the complex conjugation operator K is an
antilinear operator. This is because, when K operates on the linear
combination of wave functions, we have

K
∑
i

aiψi =
∑
i

a∗iKψi.

K also has the property that the absolute value of the scalar product of
two arbitrary functions is unchanged, and the normalization of the wave
functions is also unchanged:

|〈Kψ|Kφ〉| = |〈ψ∗|φ∗〉| = |〈ψ|φ〉|.
Further, according to the general rule, the transformation of the wave

function by T must be accompanied by the the transformation of any
operator F in the form: F ′ = TFT−1.

We consider a few simple examples to illustrate the operation of time
reversal. First, we consider the Hamiltonian for a spin zero particle in
the coordinate representation:

H = (7p 2/(2m)) + V (7r), 7p = −i7∇.
In this case U = 1, because H = H∗, so that T = K. The transformed
position and momentum operators are: 7r ′ = K7rK−1 = 7r and 7p ′ =
K(−i7∇)K−1 = i7∇ = −7p, respectively.

Second, we consider the Hamiltonian for a spin zero particle inter-
acting with an electromagnetic field having a vector potential 7A, in the
coordinate representation:

H = (1/2m)(7p− e 7A)2 + V (7r),

7p = −i7∇.
Here from the defining equation for U,UH∗ = HU , we see that U must
have the property that it changes 7A into − 7A. Then T = UK. We can
easily verify that 7r ′ = T7r T−1 = 7r and 7p ′ = T7p T−1 = −7p.

Third, we consider a spin 1/2 particle in interaction with electromag-
netic field specified by a vector potential 7A:

H = (1/2m)(7p− e 7A)2 − (e/2m)(7σ · 7B) + V (7r),
7B = 7∇× 7A,

where the components of 7σ are the Pauli matrices. In this case, in order
to satisfy UH∗ = HU , U has to be written as the product U = U1U<σ,
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where U1 is the operator which changes 7A into − 7A, and U<σ is such that
U<σ7σ

∗ = −7σU<σ. If we choose U<σ = iσy, this is satisfied. Thus in this
case, T = U1(iσy)K. This shows that in the case of a spin 1/2 particle,
the time reversed state, by virtue of the matrix-operator iσy, has the z-
component of the spin flipped to a value opposite to that of the original
state.

We now derive the relation between the matrix elements for direct
and reverse transitions. Let us consider the matrix element between
time reversed states with wave functions ψ′

a and ψ
′
b: M

′
ab = 〈ψ′

a|M ′|ψ′
b〉.

Since ψ′
a = Tψa = Uψ∗

a, ψ
′
b = Uψ∗

b , we have

M ′
ab = 〈Uψ∗

a|M |Uψ∗
b 〉 = 〈ψ∗

a|U†MU |ψ∗
b 〉.

Making use of the hermiticity properties of the operator M , we deduce
that U†MU = M†∗ = MT , where MT is the transpose of M . Thus we
have

〈ψ∗
a|U†MU |ψ∗

b 〉 = 〈ψb|M |ψa〉
and the relation M ′

ab = Mba between the matrix elements of the direct
and reverse transitions.

Although we have based the above discussion on the nonrelativistic
Schrödinger equation, similar discussions can be carried out for the rel-
ativistic wave equations and in quantum field theory. We do not present
these details here—the interested reader may wish to consult a book on
quantum field theory [98].

Top Quark
The top quark is a member of the third quark family of which the other
member is the b quark. In the standard model they are arranged as
a weak isospin doublet, with the top quark carrying charge +(2/3)|e|
and I3 = +1/2, while the b quark has charge −(1/3)|e| and I3 = −1/2.
It was discovered by the CDF and D0 collaborations working at the
Tevatron in Fermilab [375,376]. Both groups searched for the top quark
in proton-antiproton collisions at a center of mass energy of 1.8 TeV.
The dominant mechanism for the production involves the production of
top quark-top antiquark pairs by a quark from the proton annihilating
with an antiquark from the antiproton, qq̄ → tt̄. There is also a small
contribution due to a gluon from the proton fusing with a gluon from the
antiproton, gg → tt̄. The estimated production cross section through
these channels, for a mass of the top quark of 175 GeV, is about 5 pb.

Top quarks can also be produced singly with a lower cross section
than with the previous mechanism. Such production involves q1q̄2 →
W ∗ → tb̄, where quarks of different flavor from the proton and the
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antiproton annihilate producing an intermediate virtual W which sub-
sequently decays into the final tb̄ pair, or quark-gluon fusion, q1g →
q2tb̄. Diminished experimental acceptances for the top quarks produced
through these channels make the contribution from these channels much
smaller than the dominant contribution from the other channels via tt̄
pairs. So one may ignore the contribution from single production of top
quarks.

If the mass of the top quark is above the (W, b) threshold, the top
quark decays predominantly into W + b. Decays to W + d or W + s are
suppressed relative to W + b, because the Kobayashi-Maskawa matrix
elements Vtd and Vts are so much smaller than Vtb. Expressions for the
decay width can be worked out using the standard model, and it is found
that the width varies from about 1 GeV for a top quark mass of 160 GeV
to about 1.5 GeV for a top quark mass of 180 GeV. Such large widths
imply very short lifetime for the top quark, which means that the top
quarks decay long before they can form top flavored hadrons or tt̄ bound
states.

If the t quark decays in the (W, b) mode and the W itself decays to
quarks or leptons, one might expect to see the following decay products
from the decay of a t quark: q1q̄2b or lνlb. For the tt̄ then, the possi-
ble final decay products could belong to one of three possible sets: (a)
qq̄1bq2q̄3b̄; (b)qq̄1blνlb̄ + qq̄1b̄l̄νlb; or (c)l̄νlbl′ν̄l′ b̄. The first set gives rise
to final states which are hadronic jets only. The second set gives rise
to a lepton and jets, while the last set gives rise to two lepton signal.
To identify the signal for the top quark, one has to reconstruct the in-
variant mass from measurements on the decay products event by event.
The characteristics of the emitted neutrinos are obtained by the large
transverse momentum imbalance in the event (missing pT ).

Top quark-top antiquark pairs have been observed in all of the decay
modes listed above by the CDF and D0 collaborations. The extraction
of the properties of the top quark from measurements on the decay prod-
ucts requires the understanding of the mechanism of production of the
top quark and also an understanding of the QCD backgrounds involved.
The ratio of signal to background is improved much by selecting events
in which a b quark is present, and the jets are very energetic, correspond-
ing to their origin from the decay of a very massive particle. The mass
of the top quark has been measured by both CDF and D0 collabora-
tions. The best determination of the mass was from the lepton plus jets
channel. The result obtained by CDF was (175.9±4.8±4.9) GeV [377],
and that obtained by D0 was (173.3 ± 5.6 ± 5.5) GeV [378], in each of
which the first uncertainty is due to statistical error, and the second one
is due to systematic error arising mainly from uncertainties in the jet
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energy scale and in the Monte Carlo simulations. Putting together all
the measurements, the Particle Data Group, which lists all the particle
properties, gives (173.8± 3.5± 3.9) GeV for the mass of the top quark.

These groups have also measured the production cross section for
(t, t̄) pairs in (p, p̄) collisions. The measured values from the lepton plus
jets modes are: (4.1 ± 2.0) pb (D0 collaboration, assuming top mass =
173.3 GeV) and (6.7+2.0−1.7) pb (CDF collaboration, assuming top mass
= 175 GeV). Theoretical estimates of the production cross section are
(5.0–5.8) pb, and (4.75–5.5) pb, respectively.

Clearly these measurements need to be improved as the Tevatron
work provides the basis for the extrapolation for future measurements
at LHC. The much higher cross sections expected at LHC will allow
one to carry out further extensive studies on the properties of the top
quark. Discrepancies between theoretical and experimental values for
the (t, t̄) production would signal the existence of new physics beyond the
standard model. On the decay side, the study of angular distributions
from t decays will allow one to see if the decay t → Wb is mediated by
(V − A) interactions. The fraction of longitudinal and transverse W ’s
in the decay is fixed once the coupling is determined. Any deviations
from such expectations would be very interesting because they would
call into question the Higgs mechanism for symmetry breaking. A lot of
interesting physics lies ahead to be explored at the LHC.

Two-Component Theory for Neutrino
The Dirac equation for a massive spin 1/2 particle has in it four matrices,
αi, i = 1, 2, 3 and β, with the requirements

αiαj + αjαi = 2δij , i, j = 1, 2, 3,

αiβ + βαi = 0, β2 = 1.

The term containing the β matrix is multiplied by the rest mass of the
particle and is necessarily present when the rest mass is not zero. In
this case the minimum dimension of the matrices, αi, i = 1, 2, 3 and β,
has to be 4× 4 and the wave function for the particle generally has four
components.

When the rest mass of the particle is zero, as for example in the case
of the neutrino, the term containing the β matrix is not necessary and
we only have three matrices, αi, i = 1, 2, 3, satisfying

αiαj + αjαi = 2δij , i, j = 1, 2, 3,

and the Dirac equation for the particle has the form

i
∂ψ

∂t
= −i7α · 7∇ψ.
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In this case it is possible to satisfy the anticommutations relation for
α’s by choosing them equal to the Pauli two-component matrices, αi =
σi i = 1, 2, 3 or 7α = 7σ. The corresponding wave function for the massless
spin 1/2 particle will have only two components. If one writes a plane
wave solution of the form,

ψ(7x, t) = u(p, s)e−i(Et−<p·<x), E = |7p|,
the amplitudes u(p, s) satisfy

|7p|u(p, s) = (7σ · 7p)u(p, s).
The solution of this equation with the usual form of Pauli matrices,
σ1 = ( 0 11 0 ) , σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
, with the direction of z axis

chosen along 7p, is of the form

u(p,+) =
[
1
0

]
.

In this case, we have

7σ · 7p
|7p| u(p,+) = +1u(p,+).

The operator on the left (7σ · 7p)/|7p| is the helicity operator, which rep-
resents the projection of the spin along the direction of motion of the
particle, and has eigenvalue +1 in the state u(p,+). It represents a
right-handed particle. To obtain a left-handed particle, we would have
chosen 7α = −7σ and have ended up with the solution

u(p,−) =
[
0
1

]
,

which would satisfy

7σ · 7p
|7p| u(p,−) = −1u(p,−).

Thus, in this state, the spin is oriented antiparallel to the momentum
and, hence, represents a left-handed particle. It is suitable for describing
left-handed neutrinos.

Such properties of the Dirac equation in the massless limit were dis-
cussed first by Weyl [70], but since the consequences led to violation
of parity, the theory did not achieve acceptance. Now, however, par-
ity violation in weak interactions has been experimentally established,
and the neutrinos of the theory are describable by two component wave
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functions [379]. Because in weak interactions charge conjugation sym-
metry is also lost, the combined operation of CP for the two-component
neutrino leads to the conclusion that, along with left-handed neutrinos,
only right-handed antineutrinos will exist. Processes in which neutrinos
appear can be treated in the two-component formalism.

Ultraviolet Divergences in Field Theories
The evaluation of the probabilities of occurrence of various physical pro-
cesses in quantum field theories is achieved by calculating the S-matrix
elements for the processes. When the interactions between the particles
involved are weak, the calculation of these elements is carried out us-
ing perturbation theory, the total Hamiltonian for the interacting fields
being written as the sum of the Hamiltonian for the free fields and an in-
teraction Hamiltonian which represents the interactions between the free
fields. In the lowest order of perturbation theory in which the physical
process can occur, the relevant S-matrix elements lead to finite results.
One can obtain corrections to the lowest order of perturbation theory by
going to higher orders in perturbation theory. These correction terms in
general involve intermediate states in which particles of arbitrarily large
momenta are produced and reabsorbed. The contribution from such in-
termediate states is calculated by integrating over the infinite range for
the arbitrary momentum of the particles in the intermediate states. Such
integrals diverge in general. These are called ultraviolet divergences as
the contribution to the integrals tends to diverge logarithmically when
the upper limit of the integrals tends to infinity.

For quantum electrodynamics (QED), Tomonaga, Schwinger, and
Feynman (see more in the sections under “Quantum Electrodynamics”
and “Renormalization”) made a systematic study of these divergent con-
tributions and gave prescriptions for the separation of the infinite parts
in an unambiguous and Lorentz invariant manner. They showed that
these infinite parts could be absorbed in a redefinition of a finite number
of parameters, such as the mass and the charge occurring in the theory,
and the renormalization of the wave functions through a process called
renormalization. The remaining finite parts represent higher order cor-
rections to the physical process under consideration. Using these meth-
ods, higher order corrections for many physical processes have been eval-
uated and confronted with experimental measurements. The improve-
ments in the experimental measurements necessitate the calculation of
further higher order corrections which presents a great theoretical chal-
lenge. In the end, when both the experimental and theoretical challenges
have been met, the results of experiment and theory agree remarkably
well for many processes. Such agreements between experiment and the-
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ory inspire confidence in accepting QED as the fundamental quantum
theory for the interactions of point-like charged particles and photons
and validates the method of renormalization.

Another renormalizable field theory is quantum chromodynamics
(QCD). In contrast with QED, QCD is a non-Abelian gauge theory,
with the quanta of the chromodynamic fields, called the gluons, carry-
ing a charge called color. As a result of the color assignment to quarks
and gluons, the color interactions have a property called asymptotic free-
dom. The effective coupling between quarks and gluons tends to vanish
at very high energies (in the ultraviolet region) and grows to large values
as the energy tends to small values (in the infrared region). Thus at high
energies a perturbative treatment of quark-gluon interactions is possible
using renormalization methods just as in QED. Of course, such calcu-
lations are technically more complicated on account of the non-Abelian
nature of the quark-gluon interactions. Perturbative QCD corrections
have been worked out for a number of processes and the results are
in reasonable accord with experimental findings. The degree to which
theory and experiment agree in QCD is less than in QED because of
the difficulties in carrying out calculations of QCD corrections and also
because in many processes non-perturbative corrections which are not
calculable with any accuracy at present are important (see further in the
sections under “Asymptotic Freedom” and “QCD—Quantum Chromo-
dynamics”). Properties of hadrons, which are color singlet-bound states
of quarks, or of quarks with antiquarks are hard to calculate because
they fall in the non-perturbative regime of QCD. Special methods (no-
tably lattice gauge theories among them) have to be devised to handle
the region of large couplings.

Universe—Baryon Asymmetry
The present state of our universe is predominantly made of matter
(baryons) as opposed to antimatter (antibaryons). This is certainly
observed in the local region around our galaxy, and there are further
observational and theoretical reasons which lead one to conclude that
this preponderance of baryons pervades the whole universe. One can ask,
within the standard big-bang cosmology, how this situation has evolved
from the beginning. One possibility is that the universe got created with
a nonzero baryon number initially. In that case, no further explanations
may be necessary if that nonzero baryon number is carried forward.

An alternative scenario in which equal numbers of baryons and an-
tibaryons were created at the big bang (and the initial baryon number
is zero) is, however, more likely, because the conservation law of baryon
number does not follow from any fundamental symmetry principles of
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physics. It is then necessary to see how the universe, which was initially
symmetric between baryons and antibaryons, has evolved to its present
state of preponderance of baryons over antibaryons. In fact, grand uni-
fied gauge theories (GUTS) of weak, electromagnetic, and strong inter-
actions have as their consequence the violation of baryon number as well
as that of CP invariance [380]. This is because in these theories, quarks
and leptons enter the model on the same footing, thus allowing for the
possibility of transformations between quarks and leptons. Such trans-
formations will violate baryon number as well as lepton number. The
interesting question that arises concerns the mechanism for the genera-
tion of excess baryons over antibaryons in these theories.

Already in 1966, Sakharov [381] showed how violation of CP in-
variance could lead to a baryon asymmetry in the universe. Following
developments of grand unified theories, a number of people [382] have
calculated the expected baryon asymmetry and the expected ratio of
the number of baryons to photons at present. Three important require-
ments are necessary for the evolution of baryon asymmetry from the
original symmetric state. They are (a) baryon number non-conservation
at a microscopic level, (b) CP non-conservation, and (c) departure from
thermal equilibrium. Baryon number nonconserving interactions are me-
diated in GUTS by superheavy bosons carrying color, called X bosons.
These could be gauge bosons or bosons of the Higgs type, coupling to
quark-lepton combination or quark-quark combinations, having typically
a mass of the order 1016 GeV. CP violation in GUTS depends on the
particular model chosen and several example models have been worked
out. The departure from thermal equilibrium occurs due to the decay
of the X boson when the temperature falls below their rest mass energy
MX .

The sequence of steps that takes place may be described as follows.
Initially one starts from an extremely high temperature T , the thermal
energy corresponding to which is of the order of the Planck mass energy
(MP = 1019 GeV). In this regime, the processes mediated by the X
bosons proceed at a rate Γ, which is faster than the Hubble expansion
rate H. Any baryon asymmetry that was present at the big bang will be
wiped out as equilibrium is established. In the range MP > T > MX ,
the production and decay rates of the X bosons are small compared
to the Hubble expansion rate. When the temperature starts dropping,
both H and Γ start decreasing, relative to the decay rate of X bosons.
When the Hubble expansion rate drops below the decay rate of the X
bosons, one passes to a regime where X decay becomes very important.
For MX of order 1015 GeV and T < MX , the inverse process to decay
will proceed at a smaller rate than the expansion rate, and departure
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from thermal equilibrium occurs. Hereafter, any baryon asymmetries
generated by X-boson decays will be maintained in later stages of the
evolution.

The asymmetry can be related to the fundamental parameters oc-
curring in the grand unified theory as follows. Suppose the X boson has
two decay channels with branching ratios γ and 1−γ, generating baryon
numbers B1 and B2, respectively. With CP nonconservation, the X̄ bo-
son decays generating baryon numbers −B1 and −B2 with branching
ratios γ̄ and 1 − γ̄ (and γ �= γ̄). Then, in the decays of X and X̄, the
average baryon number produced will be given by

∆B =
1
2
(γB1 + (1− γ)B2 − γ̄B1 − (1− γ̄)B2)

=
1
2
(γ − γ̄)(B1 −B2).

The ratio of the number of baryons nB to the number of photons nγ is
then found to be

nB
nγ

=
NX
N

∆B,

where NX is the number of X bosons and N is the total number of
helicity states. The experimental baryon to photon number ratio is
10−9. Agreement with this number is possible in GUT models through
the mechanism explained above.

Upsilon Particles
The upsilon particles (Υ) were found as a dimuon resonance in pro-
ton nucleus collisions as well as in electron-positron collisions. They
are interpreted as bound states of a third generation quark b with its
antiquark b̄. In the proton-nucleus collisions, the reaction studied was
p+nucleus → µ+µ−+X, at a laboratory proton energy of 400 GeV from
the Fermilab proton synchrotron [94,371]. A strong peak in the invariant
mass spectrum of the two muons was found at 9.5 GeV. This state has
been called the Υ(1S). This state has also been seen in electron-positron
annihilations at DESY-Doris-II storage ring [383,384]. The mass as de-
termined in the e+e− annihilation reactions was 9.46 ± 0.01 GeV, con-
sistent with identifying this state as the Υ(1S).

Further investigations in the mass region for the dimuon pairs in the
range 9.5 GeV to 10.5 GeV, at the electron storage rings, have revealed
the existence of four states in this region of which the first is Υ(1S). The
others have been called Υ(2S), Υ(3S), and Υ(4S). This nomenclature
evolved from a potential model construction of the bound states of the
bb̄ system. Inspired from QCD, the interaction potential between the
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quark and the antiquark in a color singlet state was taken as consisting
of an attractive Coulombic part (effective at short distances) and a linear
or logarithmic confining potential at large distances. At extremely small
distances the interaction potential is assumed to vanish to be in accord
with the asymptotic freedom of QCD.

Generating the spectrum of states arising in such a potential for a
two body problem is a standard exercise in quantum mechanics and is
qualitatively similar to generating that of the hydrogen atom or positro-
nium. The states can be labeled by the principal quantum number n,
orbital angular momentum quantum number l, and the total angular
momentum quantum number j. When the spins of the quark and the
antiquark are combined, one can have spin states that are singlets or
triplets in total spin. Thus in standard spectroscopic notation, we have
13S1, 23S1, 33S1, 43S1, . . . , etc., S states for the triplet spin and 13S0,
23S0, 33S0, 43S0, . . . , etc., and S states for the singlet spin, with princi-
pal quantum numbers n = 1, 2, 3, 4, . . . . There are also triplet and singlet
P states: 23Pj , j = 0, 1, 2, 33Pj , j = 0, 1, 2, . . .; 21P1, 31P1, . . ., etc. The
actual positions of the energy levels can be calculated numerically by
solving the Schrödinger equation once the parameters in the potential
and the mass of the b quark is chosen. These parameters are fit so
that the upsilon(1S), . . . , upsilon(4S) particles, can be identified with
the spin triplet S-wave bound states of the bb̄ system. The existence of
the 3P -wave bound states implies that there must be radiative transi-
tions between these and the 3S states; measurements of the energy of
these photons give the positions of the 3P levels, which can be compared
with the theoretical values. In this manner, the rich spectroscopy of the
bb̄ system has been studied in detail (see also section under “Bottomo-
nium”). The mass of the b quark from these fits ranges between 4.1 and
4.4 GeV. The upsilon(4S) has a mass which is higher than the sum total
of the mass of the b quarks; it decays into b and b̄ quarks, each of which
picks up light quarks (u, d, s) or (ū, d̄, s̄) from the vacuum to form color
singlet B (and B̄) mesons. Just as the triplet S-bound states are col-
lectively labeled Υ, the singlet S-bound states are labeled ηb states, and
the triplet P -bound states are labeled χb states, the subscript b refering
to the fact that these are bb̄-bound states.

The masses widths and branching ratios for prominent decay chan-
nels are now given.

(a) Υ(1S):
Mass = (9460.37 ± 0.21) GeV; Full width = (52.5 ± 1.8) keV;
Branching ratios: (e+e−) = (2.52 ± 0.17)%, (µ+µ−) = (2.48 ±
0.07)%, (τ+τ−) = (2.67+0.14−0.16)%; other channels have very small
branching ratios.
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(b) Υ(2S):
Mass = (10.02330 ± 0.00031) GeV; Full width = (44 ± 7) keV;
Branching ratios: (Υ(1S)π+π−) = (18.5 ± 0.8)%, (Υ(1S)π0π0) =
(8.8± 1.1)%, (e+e−) = (1.18± 0.20)%, (µ+µ−) = (1.31± 0.21)%,
(τ+τ−) = (1.7±1.6)%, (γχb(23P0)) = (4.3±1.0)%, (γχb(23P1)) =
(6.7±0.9)%, (γχb(23P2)) = (6.6±0.9)%; other channels have very
small branching ratios.

(c) Υ(3S):
Mass = (10.3553 ± 0.0005) GeV; Full width = (26.3 ± 3.5) keV;
Branching ratios: (Υ(2S) +X) = (10.6 ± 0.8)%, (Υ(1S)π+π−) =
(4.48 ± 0.21)%, (Υ(1S)π0π0) = (2.06 ± 0.28)%, (γχb(33P0)) =
(5.4± 0.6)%, (γχb(33P1)) = (11.3± 0.6)%, (γχb(33P2)) = (11.4±
0.8)%, whereX = anything; other channels have very small branch-
ing ratios.

(d) Υ(4S):
Mass = (10.5800±0.0035) GeV; Full width = (10±4) MeV; Branch-
ing ratios: (BB̄) > 96%, (non BB̄) < 4%; other channels have
very small ratios.

The spin-parity assignment JP for the Υ states from the experimen-
tal measurements is 1−; the spin-parity assignments for the χ states is
based on theory (experimental confirmation pending).

For more detailed information on the upsilon particles, reference may
be made to “Review of Particle Properties” [62].

V Particles
See discussion in sections under “Hyperons—Decay Selection Rules” and
“Kaons: The τ -θ Puzzle”.

V − A Interaction
See discussion under “Beta Decay—Theory”.

Vector Coupling Constant
See discussion under “Beta Decay—Strong Interaction Corrections”.

Ward Identity
This is an identity that was derived by Ward [385] in QED. It proved
that a conjecture by Dyson, on the finiteness of the renormalized charge,
is indeed valid. The renormalization constants called Z1 and Z2 in QED,
which are each infinite and refer respectively to vertex renormalization
and self-energy renormalization, are equal to one another (Z1 = Z2), to
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all orders of perturbation theory. It can be shown that this identity is
intimately connected with charge conservation and gauge invariance of
QED.

Weak Interactions
This is a fundamental interaction, which is responsible not only for the
beta decay of nuclei but also for the decays of many elementary parti-
cles. It has been unified with electromagnetic interactions successfully
under the scheme of “electroweak synthesis”. The mediators of the weak
interactions are the W and Z fields, whose quanta are the W± and Z0

bosons. (See further discussion under “Gauge Theories” and “Standard
Electroweak Model”.)

W± Boson
These particles are the carriers of the weak interactions between elemen-
tary particles and are responsible for the weak decays of the particles.
Their mass was predicted from theoretical considerations to be around 80
GeV. They were found at the SPS proton-antiproton collider at CERN
in 1983 by the UA1 and UA2 collaborations. They looked for isolated
large transverse energy electrons with large missing transverse energy.
These searches converged on the same events. The events fitted the hy-
pothesis that they originated from the two-body decay of a single parent
particle of mass about 80 GeV [386,387]. The particles were identified
to be theW± boson postulated in the unification of electromagnetic and
weak interactions.

Since their early discovery, the detailed properties of these particles
have been established by precision work done at the LEP collider in
its latter phase, called LEPII, which produced these particles in pairs.
For details regarding their properties, it is suggested that “Review of
Particle Physics” [62] be consulted.

Wimps
The name wimp stands for weakly interacting massive particle. The
neutralinos which could have mass in the range of tens to hundreds
of GeV could be classified as wimps. They could be part of the cold
dark matter in the universe. (See also under “Dark Matter, Machos,
Wimps”.)

W-inos
This hypothetical particle of spin 1/2 is the supersymmetric partner of
the spin 1 charged W bosons. (See under “Supersymmetry”.)
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Ξ Particles
See discussion under “Hyperons”. Ξ particles (and their antiparticles)
containing a charm quark (antiquark) have also been found.

Yang-Mills Fields
See discussion under “Gauge Theories”.

Yukawa Model
Originally proposed by Yukawa [113] to explain the origin of short-range
nuclear forces, it involves the exchange of scalar or pseudoscalar quanta
of mass between the electron and the proton. More recently, this notion
has been generalized to exchange of Higgs scalars and other particles
between fermions.

Z0 Particles
These particles are the neutral counterparts of the W± bosons respon-
sible for the weak interactions of elementary particles. The W± bosons
are responsible for mediating charged current weak interactions. The
Z0, likewise, mediate neutral current weak interactions. The first obser-
vations of these particles were made by the UA1 and UA2 collaborations
working at the CERN SPS proton-antiproton collider in 1983 [388,389].
They observed electron and muon pairs which appeared to have origi-
nated from the decay of a parent particle with mass about 92 GeV. This
particle was called the Z0 and identified to be the same as the particle
postulated in the unified theory of electroweak interactions. Since the
original discovery, much precision work has been done on measuring the
properties of this particle with the LEP collider at CERN and at the
SLC at SLAC. Details of these properties can be found in “Review of
Particle Physics” [62].

Z-inos
This hypothetical particle of spin 1/2 is the supersymmetric partner of
the spin 1 neutral Z0 bosons. (See under “Supersymmetry”.)
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