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E. Süli, University of Oxford
M.R. Tehranchi, University of Cambridge
J.F. Toland, University of Bath



More information about this series at http://www.springer.com/series/3423

http://www.springer.com/series/3423


Ieke Moerdijk • Jaap van Oosten

Sets, Models and Proofs

123



Ieke Moerdijk
Department of Mathematics
Utrecht University
Utrecht, The Netherlands

Jaap van Oosten
Department of Mathematics
Utrecht University
Utrecht, The Netherlands

ISSN 1615-2085 ISSN 2197-4144 (electronic)
Springer Undergraduate Mathematics Series
ISBN 978-3-319-92413-7 ISBN 978-3-319-92414-4 (eBook)
https://doi.org/10.1007/978-3-319-92414-4

Library of Congress Control Number: 2018948806

Mathematics Subject Classification (2010): 03-01, 03-B10, 03-C07, 03-E25, 03E10

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-92414-4


Preface

This is the text of a one-semester lecture course on mathematical logic for second or
third year mathematics students, which we have been giving at Utrecht University
for about 20 years by now. The course is entitled Foundations of Mathematics.
Actually, it is preferred that the students take the course in their third year, so they
have more knowledge of what it is that they are studying the foundations of. In
particular, they should have seen basic analysis, group theory and ring theory, as
well as vector spaces more general than R

n.
Students at Utrecht University and most other universities are subjected in

their first year to a course that teaches them to write mathematical proofs; this
course usually includes basic set-theoretic notation and elementary logic (truth
tables for propositional logic, for example), which obviates the necessity for
treating propositional logic in our course. Instead, we have opted to take the
shortest route to the main first results from mathematical logic that have some
mathematical significance, with a minimum of syntactical fuss. We believe this
approach distinguishes our book from many other introductions to the field.

The format of our course was of course dictated by the university schedule of
one-semester courses of 14 two-hour lectures. The main consequence of this was
that we had to postpone several important topics, notably computability (recursion)
theory, to a second more advanced course in logic. In the Appendix, we have tried
to help the reader by giving some directions and suggestions for further study, both
on the subjects treated in this book—model theory, proof trees and set theory—
and in areas we did not treat such as computability theory and the incompleteness
theorems.

While the global content of the course has remained fairly stable over the years,
we have continuously made small improvements to the text while taking turns
in lecturing the material. In particular, we have gradually added more and more
exercises, of which there are now 146. These vary a lot in difficulty, ranging from
easy “getting used to the notions” finger-exercises to serious exam questions. (In
the latter case, fairly generous hints have been provided.) Sometimes, the result of
an exercise is needed for the development of the theory, so one should do these
in any case. Solutions to the problems have not been included. This is a matter of
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vi Preface

pedagogical principle, although we are aware that, in these times, solutions might
easily appear on the web.

We would like to thank the teachers who have used our notes, some of whom have
suggested to Springer to publish the notes as a book. We acknowledge the criticism
and interest of all our students over the years. In particular, the following students
and colleagues have given useful criticism, have suggested alternative proofs or
exercises or have brought typos and other inaccuracies to our attention: Benno
van den Berg, Eric Faber, Nicola Gambino, Jeroen Goudsmit, Joep Horbach, Peter
Houben, Tom de Jong, Mark Kamsma, Fabio Pasquali, Marcel de Reus, Sebastiaan
Terwijn, Andreas Weiermann, Ittay Weiss and Jetze Zoethout. Needless to say, all
remaining errors are our responsibility.

We also thank the anonymous referees, who made valuable comments.
Finally, we acknowledge pleasant collaboration with Springer’s editorial staff, in

particular with Rémi Lodh.

Utrecht, The Netherlands Ieke Moerdijk
Jaap van Oosten



Introduction

Hilbert and the Motivation for Logic

In the year 1900, David Hilbert (1862–1943), one of the leading mathematicians of
his time, addressed the International Congress of Mathematicians in Paris with a list
of 23 problems, to be attacked in the coming century. For us, four of these problems
are of particular relevance:

1. Settle the Continuum Hypothesis. This is the statement that every infinite subset
of R is either in bijective correspondence with R itself or with N. Is it true or
false?

2. Prove that the axioms of the arithmetic of real numbers are free of contradiction.
10. Find an algorithm to determine whether a polynomial equation with integer

coefficients has a solution in the integers.
17. Prove that a positive definite rational function is a sum of squares.

Mathematics had become, during the 1800s, more and more an axiomatic science.
As Hilbert put it in his paper [33]:

When we are engaged in investigating the foundations of a science, we must
set up a system of axioms which contains an exact and complete description
of the relations subsisting between the elementary ideas of that science.

Whenever we try to give such a system of axioms for a particular field of
mathematics—be it group theory, Euclidean geometry or the theory of measure and
integration—some natural questions arise:

1. Are the axioms compatible: don’t they contradict each other?
2. Are the axioms independent, or can one axiom be derived from the others?

vii
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David Hilbert

3. Is the system of axioms strong enough? That is, they are supposed to govern a
particular part of the mathematical world. Is every statement which is always true
in this domain a consequence of the axioms?

Of these issues, the first one was of paramount importance for Hilbert. Indeed, it
was his philosophical conviction that as soon as an axiom system is compatible, it
describes a part of mathematical reality.

However, how does one prove that a certain collection of axioms is free of
contradiction? What does it actually mean to be “free of contradiction”? Similar
problems arise with respect to other questions. What does it mean to “derive”
something? Obviously, in order to study these matters in a precise way, we need
a mathematical apparatus to deal with “axioms”, “compatibility” and “proofs”.
Mathematical Logic is an area of mathematics in which such an apparatus is
developed.

Hilbert later formulated a more sophisticated motivation for setting up a formal
theory of “proofs”. In his beautiful paper Über das Unendliche (On the Infinite,
[34]), he distinguishes two mathematical worlds: an actual world, directly acces-
sible to inspection by the mind, the world of the integers and their elementary
properties and the geometry of Euclidean space; and an ideal world, where lots of
things live which have nicer properties than the actual things and whose description
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is often more elegant. Often, we arrive at knowledge about the actual world via a
detour through the ideal world. The examples Hilbert gives are:

• Imaginary numbers. Philosophers may doubt their existence, but we enjoy the
fact that every polynomial has a complete factorization and the beauty of
complex integration by which we also establish facts about the actual world (e.g.
∑∞

n=1
1
n2 = π2

6 ).
• Infinitesimals. Weierstraß’s theory of limits and convergence shows how these

can be reduced to finite numbers.
• Fractional ideals of number rings. Many rings, like Z[√−5], lack the desirable

property of unique prime factorization, but this is restored if one turns to
factorization of fractional ideals; this was shown by Kummer.

• And, could the world of infinite sets not also be seen as part of the ideal world?

The last item of this list was particularly dear to Hilbert, who calls Cantor’s theory
of sets “the most admirable flower of the mathematical mind, and one of the highest
achievements of purely intellectual human activity whatsoever” [34]. The use of
set theory and the higher cardinalities should be protected from paradoxes and be
rendered absolutely uncontroversial. So, here is what Hilbert proposed:

Let us set up a formalism S in which we can formulate and prove results from this
actual world. At the very least, such a system should be able to reason about natural
numbers and prove their basic properties. Now the ideal world is inaccessible to S,
but proofs about this world are finite things and therefore susceptible to analysis in
S. Hilbert advocated the creation of proof theory (Beweistheorie).

What can we hope to achieve by studying proofs? Here, in our view, we can
distinguish two forms of Hilbert’s Programme: a weak and a strong version (weak
and strong in aspirations and scope).

Hilbert’s Programme, weak version: using the system S, which should be
unproblematic in any philosophy of mathematics, prove that no proofs about the
ideal (infinitary) world exist which have an absurd conclusion.

There is, however, evidence (e.g. in [34, 44]) that Hilbert envisaged stronger results,
viz. that one could eliminate the use of infinitary reasoning. This led to:

Hilbert’s Programme, strong version: suppose we are given a proof of some
statement about the actual world (a statement which can be expressed in S), a
proof which may have used the whole set-theoretic machinery. Then one should
be able to find a (probably much longer and less elegant) proof in S of the same
fact.

Please bear in mind that the “Programme” was never formulated very crisply and
what we have given here is an interpretation. Discussion about what exactly Hilbert
strove to do is still active to this day (see e.g. the philosophical paper [16]). In the
Appendix to this book (Section A.2), we shall say a bit more on the fate of Hilbert’s
Programme.



x Introduction

What Is to Be Found in This Book?

We present an introduction to mathematical logic.
In Chapter 1 (“Sets”), we develop the mathematical theory of sets (the “paradise

Cantor created for us”, in the words of Hilbert) as used in everyday mathematical
practice. The notions of “set” and “function” are taken as primitive. We recall
elementary constructions of sets and functions and establish notation. Then we
revisit cardinalities. Without having to say what “the cardinality of a set” actually
is, we can say what it means that “the cardinality of the set X is less than (or equal
to) the cardinality of the set Y ”: |X| < |Y | (or |X| = |Y |). We prove the Schröder–
Cantor–Bernstein theorem which says that if there are 1–1 functions X→ Y and
Y → X, then the sets X and Y are in bijective correspondence. We show by Cantor’s
diagonal argument that every set X has lower cardinality than its powerset. We
formulate the Axiom of Choice (AC) and use it to deduce that for every infinite
set X, there is a 1–1 function N→ X as well as the familiar fact that a countable
union of countable sets is countable. We formulate Zorn’s Lemma (ZL) and show
that it implies AC and the “Principle of Cardinal Comparability” (PCC, also known
as the Law of Trichotomy). With the help of ZL, we establish the basic arithmetic
of cardinalities of infinite sets. We give examples of the use of ZL in mathematics:
maximal ideals in rings, bases for vector spaces. We give pointers to the literature
for proofs that the statements involved (e.g. that every vector space has a basis and
that any two bases of the same vector space have the same cardinality) actually need
ZL for their proofs. We develop the theory of well-ordered sets with the principles
of transfinite induction and recursion. In the last section of this chapter, we give
rigorous proofs of the equivalences between AC, ZL, PCC and the Well-Ordering
Theorem (which states that there is a well-ordering on every set).

In Chapter 2 (“Models”), we begin to do logic. Mathematical knowledge is
organized in the form of statements (propositions, theorems, but also conjectures,
questions), and logic aims to analyse at least two aspects of these statements: they
can be true or false (in a particular mathematical interpretation), and they can
sometimes be proved.

In order to study these aspects in a precise way, we restrict our attention to
certain idealized, abstract statements which are just strings of symbols of a certain
alphabet: the sentences of a formal language. We can then define what it means for
such an abstract sentence to be “true” in a particular interpretation (for example, the
sentence “2 is a square” is true in R but false in N). Such an interpretation is called a
model; this definition is by Alfred Tarski. The central theorem of this chapter is the
Compactness Theorem which says that a set of axioms is compatible (i.e. “true” in at
least some model) as soon as each of its finite subsets is. A proof of the Compactness
Theorem using ultrafilters is provided; this proof can be skipped if the reader prefers
to view the Compactness Theorem as a consequence of the Completeness Theorem,
which is proved in Chapter 3. We study relations between models (isomorphisms,
submodels and elementary submodels), and we embark on a little foray into Model
Theory: the study of theories from the perspective of their classes of models. We
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prove quantifier elimination for algebraically closed fields, the Löwenheim–Skolem
theorems and ω-categoricity of the theory of dense linear orders by Cantor’s back-
and-forth method.

Chapter 3 (“Proofs”) defines abstract proofs: an abstract proof is a collection of
sentences which is structured in such a way that every sentence which appears in it
is either an assumption or can be seen as a direct consequence of sentences which
have appeared “before” in the proof; we use the picture of a tree, and our proofs
are so-called natural deduction trees. Every proof has a unique conclusion, which
is a sentence. The theory of proofs takes up Chapter 3, Proofs. We prove the most
fundamental theorem of logic, Gödel’s Completeness Theorem, in this chapter. This
theorem says that a sentence is always true (in all possible interpretations) precisely
if it is the conclusion of such a proof tree. A small section deals with conservative
extensions and Skolem theories.

Now that the student knows what a formal theory is (a collection of sentences in
the sense of Chapters 2 and 3), we can look at the formal theory of sets. In Chapter 4
(“Sets Again”), we explain how the theory of sets can be set up with axioms; we
obtain Zermelo–Fraenkel Set Theory ZFC. We define ordinal numbers and prove
their basic properties. We can then give meaning to the notion of a cardinal number.
We hope to convince you that this theory is sufficient for “doing mathematics”, but
actually we cannot (in the scope of this book) even scratch the surface of this vast
topic.

These four chapters comprise just a first introduction to the vast and growing
subject of mathematical logic. In the Appendix, we have tried to help the reader
who wishes to know more by mentioning some important further developments in
the 1900s, and by suggesting some books and expository articles for further reading.
In particular, we have sketched the most important developments around Gödel’s
famous Incompleteness Theorems and in Computability Theory as it began with
Alan Turing’s foundational work.

Our treatment of proofs in Chapter 3 is very rudimentary, and only covers the
introduction of a formal system so as to be able to state and prove the Completeness
Theorem. But precisely because of the Incompleteness Theorems, Proof Theory
is really about the comparison of such systems and about questions of relative
consistency: can one “stronger” system prove that another is without contradiction?
And, how does one measure the strength of a system? The study of proof systems
from this point of view also has applications outside logic, in mathematics and in
computer science.

Similar remarks apply to Model Theory; we have developed enough material
in order to be able to prove the Completeness Theorem and have given some first
results in Model Theory in the hope of giving the reader a flavour of the field. But
Model Theory is a fast-developing area with many deep results in the theory itself
as well as beautiful applications, for example to Algebraic Geometry. Some of these
are described very briefly in the Appendix.

Our first chapter tries to make precise some aspects of what is sometimes called
“naïve” set theory—the handling of sets as done by every mathematician on a
daily basis. An axiomatic basis is presented in Chapter 4. Set theory as a field of
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mathematical logic is really the study of this system and related systems. What is
the proof-theoretic strength of these systems, and how can one construct natural
models: for example, different models where the Continuum Hypothesis fails, or
where it holds? And, which of these systems are approximations of the “true” world
of sets? Or is there no such true world? In the Appendix, the reader can find some
pointers to the literature about these topics.
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Chapter 1
Sets

This chapter intends to develop your understanding of sets beyond the use you have
made of them in your first years of mathematics.

The first mathematician who thought about sets, and realized that it makes sense
to organize mathematical knowledge using the concept of “set”, was Georg Cantor
(1845–1918). His name will appear at several places in this book. For biographical
information on Cantor, whose genius did not receive proper recognition in his time
and who had a troubled life, see [12] or the sketch in [37].

The first triumph of Cantor’s theory of sets was that he could show that there
are “different kinds of infinity”: although the set of rational numbers and the set
of irrational numbers are both infinite, there are “more” irrational numbers than
rational ones.

An important part of this chapter explains how to calculate with these different
kinds of infinity. It turns out that in order to set up the theory, it is necessary to adopt
a principle which was first formulated by Ernst Zermelo (1871–1953) in 1904: the
Axiom of Choice. In Sections 1.2 and 1.3, we introduce you to working with this
axiom and with a useful equivalent principle: Zorn’s Lemma.

Then, in Section 1.4, we develop another concept which originates with Cantor:
that of a well-order. Thanks to this idea, we can extend proofs by induction along N

to proofs for arbitrarily “large” sets.
Finally, in Section 1.5 precise proofs are given of the equivalences between

various versions of the Axiom of Choice.

So let us start. Instead of trying to formulate what a “set” is, we assume that you
already have some idea of it. A set has “elements”. If X is a set and x is an element
of X, we write x ∈ X. Think of X as a property, and the elements of X as the things
having property X. For the negation of x ∈ X, we write x �∈ X.

© Springer Nature Switzerland AG 2018
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2 1 Sets

Georg Cantor

A set is completely determined by its elements. This means: suppose the sets X

and Y have the same elements. So for all x ∈ X we have x ∈ Y , and vice versa.
Then we consider X and Y to be the same set: X = Y .

A set X is called a subset of a set Y if every element of X is also an element of Y .
We write: X ⊆ Y . If we want to stress that X ⊆ Y but X �= Y we may write X � Y .
To give an example of a subset: if x ∈ X then there is a subset {x} of X, which has
only the one element x.

The notation {x} is an example of the brace notation {} for writing sets: we specify
a set by giving its elements, either by listing them all (using dots if necessary, as
in {0, 1, 2, . . .}), or by giving the property that the elements of the set must satisfy,
as in

R>0 = {x | x ∈ R and x > 0}.
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The following examples of sets are familiar to you: the empty set ∅, which has no
elements, the set N = {0, 1, . . .} of natural numbers, and likewise the sets Z, Q
and R of integers, rational numbers and real numbers, respectively. (By the way, it
was Cantor who introduced the notation R.) Let us make clear once again, to avoid
misunderstanding:

in this book, the natural numbers start with 0.

Let us also recall the following basic operations on sets:

The union X ∪ Y of X and Y is the set {z | z ∈ X or z ∈ Y }.
The intersection X ∩ Y is the set {z | z ∈ X and z ∈ Y }.
The notations ∪ and ∩ are extended to (possibly infinite) indexed families of sets:⋃

i∈I Xi and
⋂

i∈I Xi . These are defined by:

⋃
i∈I Xi = {x | for some i ∈ I, x ∈ Xi};⋂
i∈I Xi = {x | for all i ∈ I, x ∈ Xi}.

If X ⊆ Y , the complement of X in Y , written as Y −X, is the set of those elements
of Y that are not elements of X (in the literature, one also finds the notation Y \X).

The sets X and Y are disjoint if they have no elements in common. This is equivalent
to: X ∩ Y = ∅.
We also assume that you have an idea of what a function between sets is: a function
f from X to Y (notation f : X→ Y ) gives us for each element x of X a unique
element f (x) of Y , the value of the function f at x.

A function f : X→ Y is completely determined by its values. That means: if f and
g are functions from X to Y and for every x ∈ X we have f (x) = g(x), then f and
g are the same function: f = g.

The following are examples of functions: for every set X, there is the empty function
from ∅ to X, and the identity function from X to X (this function, say IX : X→ X,
satisfies IX(x) = x for every x ∈ X). Given functions f : X→ Y and g : Y → Z

there is the composite g ◦ f : X→ Z (or gf : X→ Z), which is defined by: g ◦
f (x) = g(f (x)) for all x ∈ X.

In general, if X and Y are sets, and for every element x of X a subset Yx of Y is given
such that Yx has exactly one element, then there is a (unique) function f : X→ Y

with the property that f (x) ∈ Yx for every x ∈ X.

Let us recall some more definitions.

A function f : X→ Y is called injective (or 1–1) if for each x, y ∈ X it holds that
f (x) = f (y) implies x = y.

The function f is surjective (or onto) if every y ∈ Y is equal to f (x) for some
x ∈ X.
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And f is called bijective if there is a function g : Y → X such that for all x ∈ X and
all y ∈ Y the equalities g(f (x)) = x and f (g(y)) = y hold. Given f , the function
g is unique if it exists, and is called the inverse of f , notation: f−1.

If f : X→ Y is a function, there is the subset of Y which consists of all elements of
the form f (x) for x ∈ X. This subset is called the image of the function f . Likewise,
if A is a subset of Y , there is the subset of X which consists of all elements x ∈ X

such that f (x) ∈ A. This subset is sometimes denoted by f−1(A), and called the
inverse image or preimage of A under f .

Exercise 1 Prove the following statements:

(a) A function f : X→ Y is bijective if and only if it is both injective and
surjective.

(b) A function f : X→ Y is surjective if and only if the image of f is equal to Y .
(c) If f : X→ Y is injective, then f is a bijective function from X to the image

of f .

Exercise 2 Suppose that X is a set which can be written as a union X =⋃
i∈I Xi ,

and for every i ∈ I a function fi : Xi → Y is given in such a way that, whenever
Xi ∩Xj �= ∅, then fi(x) = fj (x) for every x ∈ Xi ∩Xj . Prove that there is a
unique function f : X→ Y which is such that for all i ∈ I and all x ∈ Xi , f (x) =
fi(x).

1.1 Cardinal Numbers

A set X is finite if for some n ∈ N there is a bijective function f : {1, . . . , n} → X

(for n = 0, the set {1, . . . , n} is empty). This means that X has exactly n elements;
we call n the cardinality of X and write |X| for this number (in the literature, the
notation �(X) is also sometimes used). A set which is not finite is called infinite.

Exercise 3 For an arbitrary set X there is at most one n such that |X| = n.

We introduce the following notations for (constructions on) sets:

• We assume that given sets X and Y , for every x ∈ X and y ∈ Y the ordered pair
(x, y) is given, and that we have a set X × Y , given as

X × Y = {(x, y) | x ∈ X, y ∈ Y },
which we call the Cartesian product of X and Y ; there are projection functions
πX : X × Y → X and πY : X × Y → Y sending the pair (x, y) to x and to y,
respectively; whenever we have functions f : Z→ X and g : Z→ Y there is
a unique function h : Z→ X × Y (sending z ∈ Z to the pair (f (z), g(z))) with
the property that πXh = f and πY h = g;

• Given a set A and a natural number n, we have the set An of n-tuples of elements
of A. If n = 0 this set will have exactly one element (the empty tuple); for n > 0,
elements of An are denoted (a1, . . . , an).
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• The set X + Y is the disjoint sum of X and Y , constructed as

{(0, x) | x ∈ X} ∪ {(1, y) | y ∈ Y }.
• The set YX is the set of all functions f : X→ Y .
• The set P(X) is the power set of X, that is, the set of all subsets of X.

Exercise 4 Show the following equalities for finite sets X and Y :

(a) |X × Y | = |X| × |Y |.
(b) |X + Y | = |X| + |Y |.
(c) |YX| = |Y ||X|.
(d) |P(X)| = 2|X|.

For arbitrary sets X and Y we write X ∼ Y to indicate that there is a bijective
function from X to Y .

Exercise 5 Prove the following facts about∼:

(a) X ∼ X.
(b) If X ∼ Y , then Y ∼ X.
(c) If X ∼ Y and Y ∼ Z, then X ∼ Z.

We write X ≤ Y if there is an injective function from X to Y .
Since every bijective function is injective, X ∼ Y implies X ≤ Y . Notice also

that if X′ ∼ X and Y ∼ Y ′, then X′ ≤ Y ′ whenever X ≤ Y .

In the literature the following theorem is sometimes called the “Schröder–Bernstein
Theorem” and sometimes the “Cantor–Bernstein Theorem” (Felix Bernstein, 1878–
1956; Ernst Schröder, 1841–1902).

Theorem 1.1.1 (Schröder–Cantor–Bernstein) If X ≤ Y and Y ≤ X, then
X ∼ Y .

Proof. Assume that f : X→ Y and g : Y → X are injective functions; we con-
struct a bijection from X to Y .

Define a subset A of X as follows: A consists of those x ∈ X for which there
exists an x ′ ∈ X such that x ′ does not belong to the image of g, and

x = (gf )n(x ′)

for some natural number n. The notation (gf )n(x ′) stands for: the function gf

applied n times to x ′ (for n = 0, this is just x ′). So, x ∈ A holds precisely when
either x is not in the image of g, or there is some x ′′ ∈ A such that x = gf (x ′′). For
x �∈ A, we must have x = g(y) for a unique y ∈ Y (since g is injective); denote this
y by g−1(x).

Now define the function h : X→ Y as follows:

h(x) =
{

g−1(x) if x �∈ A

f (x) if x ∈ A.
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Let us first show that h is 1–1. Clearly, the restrictions of h to A and to X − A

are injective, so we must prove that when x ∈ A and x ′ ∈ X − A, we cannot
have h(x) = h(x ′). But for x ′ ∈ X − A we have that gh(x ′) = g(g−1(x ′)) = x ′,
so gh(x ′) �∈ A; whereas for x ∈ A we have that gh(x) is again an element of A.
Therefore gh(x) �= gh(x ′), and thus h(x) �= h(x ′). We conclude that the function h

is 1–1.
Now, we claim that h is onto. Pick y ∈ Y ; we have to find an x ∈ X with

h(x) = y. Consider the element g(y) of X. If g(y) �∈ A, then h(g(y)) = y, so we
can take g(y) for x. If g(y) ∈ A, then (since clearly g(y) belongs to the image of
g) there is some x ∈ A such that g(y) = (gf )(x). Then by injectivity of g we have
y = f (x), so since x ∈ A, y = h(x), and we are done. �

We extend the notation |X| to arbitrary (not necessarily finite) sets X and use it as
follows:

We say |X| = |Y | if X ∼ Y .
The notation |X| ≤ |Y | means the same as X ≤ Y .
We write |X| < |Y | if |X| ≤ |Y | but not |X| = |Y | (equivalently, by Theo-
rem 1.1.1: |X| ≤ |Y | but not |Y | ≤ |X|).

When |X| < |Y | we think of X as “smaller than” Y ; similarly, if |X| ≤ |Y | we think
of X as “at most as large as” Y .

Definition 1.1.2 For a set X, we refer to |X| as the cardinality of X. An object of
the form |X| is called a cardinal number.

We regard every n ∈ N as a cardinal number, namely n = |{1, . . . , n}|. Note that
this also means 0 = |∅|. Note also that n ≤ m as cardinal numbers if and only if
n ≤ m in the usual ordering of N. There are also infinite cardinal numbers, such
as |N|.
Definition 1.1.3 We have the following operations on cardinal numbers:

• |X| × |Y | = |X × Y |.
• |X| + |Y | = |X + Y |.
• |Y ||X| = |YX|.
• 2|X| = |P(X)|.
Exercise 6 Is this a correct definition? What do you have to check?

Exercise 7 Prove that the operations+, × and (−)(−) for cardinal numbers satisfy
the following usual rules of arithmetic:

(a) (|X| + |Y |)× |Z| = (|X| × |Z|)+ (|Y | × |Z|).
(b) |X||Y |+|Z| = (|X||Y |)× (|X||Z|).
(c) (|X| × |Y |)|Z| = (|X||Z|)× (|Y ||Z|).
(d) (|X||Y |)|Z| = |X||Y |×|Z|.
Formulate and prove some more of these rules yourself.
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Now let us consider the cardinalities of power sets.
There is a bijective function from P(X) to {0, 1}X: for a subset S ⊆ X we define

the characteristic function of S by

χS(x) =
{

1 if x ∈ S

0 if x �∈ S.

Conversely, every function χ : X→ {0, 1} is of the form χS for a unique subset S

of X, namely S = {x ∈ X |χ(x) = 1}.
Therefore, |P(X)| = |{0, 1}X| = 2|X|.

Proposition 1.1.4 The following equalities between cardinal numbers hold:

(i) |N| = |N| + |N|.
(ii) |N| = |N| × |N|.

(iii) |N| = |Z| = |Q|.
Proof. We indicate only a proof of (ii), leaving the other statements as exercises. A
bijection f : N→ N× N is indicated in the following diagram:

(0, 3)

(0, 2) (1, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0) (3, 0)

. . .

...

The path obtained by following the arrows indicates the successive values of f .
Thus f (0) = (0, 0), f (1) = (1, 0), etcetera. �

Exercise 8 Find a formula for the inverse of the function f indicated in the proof
above. Also give proofs of the other statements of Proposition 1.1.4.

Proposition 1.1.5 (Cantor) For every set A we have the strict inequality

|A| < 2|A|.

In other words, there is an injective function A→ P(A) but there is no bijective
function between these sets.

Notice that you already know Proposition 1.1.5 for finite sets; indeed, n < 2n is true
for every natural number n.
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Proof. It is easy to construct the required injective function f : A→ P(A). Just
define f (a) = {a} (the singleton set whose only element is a).

For the statement in the proposition, we shall show something stronger than
required, namely that there cannot be any surjective function from A to P(A). The
argument we use is known as the Cantor diagonal argument. Suppose that

s : A→ P(A)

is surjective. We can construct a subset D of A by putting

D = {a ∈ A | a �∈ s(a)}.
Since s is assumed surjective, there must be some a0 ∈ A with s(a0) = D. But now
the simple question ‘does a0 belong to D?’ gets us into trouble: we have

a0 ∈ D iff a0 �∈ s(a0) (by definition of D)

iff a0 �∈ D (since D = s(a0)).

Thus, our assumption that such a surjective function s exists leads to a contradiction.
�

Example 1.1.6 This example illustrates the proof of Proposition 1.1.5 and explains
the term ‘diagonal argument’. In order to prove that |N| < 2|N|, suppose for a
contradiction that the set {0, 1}N of infinite sequences of 0-s and 1-s is in bijective
correspondence with N. Then we can list this set as a0, a1, . . ., where ai is the
sequence ai0, ai1, . . .. Now consider:

00 01 02

a10 a11 a12 · · ·

a20 a21 a22 · · ·

Clearly, the sequence

(1− a00), (1− a11), (1− a22), . . .

does not appear in the list, contradicting the assumption that we were listing all 01-
sequences. You should convince yourself that this pictorial argument is essentially
the same as the more general one of the proof of Proposition 1.1.5.

Proposition 1.1.5 has an important consequence: there are infinitely many infinite
cardinal numbers. In fact, if we write |N| = ω as is customary, we have

ω < 2ω < 2(2ω) < · · ·
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Let us try to determine the position of some familiar sets from analysis from the
point of view of their cardinal numbers. We have already seen that the cardinal
numbers of N, Q and Z are the same (Proposition 1.1.4). These are so-called
countable sets. We make the following definition:

Definition 1.1.7 A set X is called countable if X is empty or there is a surjective
function N→ X. We say that X is countably infinite if it is countable and infinite.

So, if a non-empty set X is countable, one can ‘enumerate’ all its elements as

X = {x0, x1, x2, . . .}

(but repetitions may occur).

Exercise 9

(a) Show that if f : N→ X is surjective, there is a function g : X→ N such that
f (g(x)) = x for all x ∈ X. How do you define g(x)? Conclude that |X| ≤ |N|.

(b) Show that every subset of a countable set is countable. Conclude from this and
item (a) that a set X is countable precisely when X ≤ N.

(c) Show that if X is countable then X is finite or |X| = ω.
(d) Show that if X and Y are countable, so are X × Y and X + Y .

An example of an uncountable set is {0, 1}N, as follows from Proposition 1.1.5.

What about the real numbers? There are several ways to determine the cardinality
of R. Our approach uses the so-called Cantor set, a subset C of R that was defined
by Cantor in order to prove that R is not countable. However, the set C has a lot
of independent interest and is also often used in topology. It is constructed as the
intersection

C =
⋂

n∈N
Cn

of an infinite sequence of smaller and smaller subsets of R,

R � C0 � C1 � C2 � · · ·

Each Ci is a union of closed intervals. C0 is the interval [0, 1], and Cn+1 is obtained
from Cn by “cutting out the middle third” from each of the intervals which make
up Cn:

C1 = [0, 1
3 ] ∪ [ 23 , 1]

C2 = [0, 1
9 ] ∪ [ 29 , 1

3 ] ∪ [ 23 , 7
9 ] ∪ [ 89 , 1]

etc.

Thus a point p of C is uniquely determined by specifying for each n the interval
of Cn to which p belongs. We can code this specification as a sequence of 0’s and
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1’s where 0 means “left” and 1 means “right” (for each subinterval of Cn, there are
exactly two subintervals of Cn+1 contained in it). For example,

p = 010 · · ·
is the point which lies in the left part [0, 1

3 ] of C1, then in the right part [ 29 , 1
3 ] of

the two intervals of C2 contained in [0, 1
3 ], then in the left part [ 6

27 , 7
27 ] at the next

stage, etcetera. Since the length of the intervals tends to zero, the sequence p defines
a unique element of C. In this way, we obtain a bijective function

ϕ : {0, 1}N→ C.

Thus,

|C| = 2ω.

Although C is just a subset of R, the two sets are equally large in some sense:

Proposition 1.1.8 |C| = |R|.
Proof. By Theorem 1.1.1, it suffices to prove that |C| ≤ |R| and |R| ≤ |C|. Since
C is a subset of R we obviously have

|C| ≤ |R|.
There are many ways to prove the converse inequality. For example, each real
number x is determined by the set of rational numbers which are strictly below
x. This defines an injective function

ψ : R→ P(Q).

Since |Q| = |N|, hence |P(Q)| = 2ω, we see that

|R| ≤ 2ω.

Since |C| = 2ω, we are done. �
Exercise 10 Show that 2ω × 2ω = 2ω. Conclude that the field of complex numbers
has the same cardinality as R.

Exercise 11 Prove that for a subset A of R, if |A| = ω then |R− A| = 2ω. [Hint:
use that R ∼ {0, 1}N. For countable A ⊆ {0, 1}N, show that {0, 1}N ≤ {0, 1}N − A.
Alternatively, given a countable subset A of R, construct a Cantor-like set which
does not meet A.]

Conclude that C ∼ P , where P is the set of irrational numbers.

Exercise 12 Prove that |RN| = |R|.
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Exercise 13 Let Cont denote the set of continuous functions R→ R.

(a) Show that the function Cont→ R
Q, which sends a continuous function

f : R→ R to its restriction to Q, is injective.
(b) Prove that |Cont| = |R|.
Exercise 14 Let A ⊆ N

N be a set of functions with the following property: for
every f ∈ N

N there is a function g ∈ A which satisfies: for all n ∈ N there exists an
m ≥ n with f (m) < g(m).

Prove that the set A is uncountable.

Exercise 15 Prove that the set of bijections N→ N is uncountable.

Exercise 16 Call a function f : N→ N repetitive if for every finite sequence of
natural numbers (a1, . . . , an) there exist a number k ∈ N satisfying

f (k) = a1, f (k + 1) = a2, . . . , f (k + n− 1) = an.

(a) Show that if f is repetitive then for any (a1, . . . , an) there are actually infinitely
many numbers k with this property.

(b) Show that there are uncountably many repetitive functions N→ N. [Hint: it
may help to use Exercise 15.]

Exercise 17 For each of the following sets of functions, determine whether it is
finite, countably infinite or uncountable. Give an argument in each case.

(a) A = {f : N→ N | for all n, f (n) = f (n+ 1)+ f (n+ 2)}.
(b) B = {f : N→ N | for all n, f (n)2 − 3f (n)+ 2 = 0}.
(c) C = {f : N→ N | for all n, f (n) ≥ f (n+ 1)}.

1.1.1 The Continuum Hypothesis

Suppose A is a subset of R such that N ⊆ A ⊆ R. Then we know that

ω ≤ |A| ≤ 2ω = |R|

and at least one of the inequalities must be strict because ω < 2ω. We may ask
ourselves: can it happen that both inequalities are strict? Is there a subset A of R
such that

ω < |A| < 2ω?

This problem was raised by Cantor. Unable to find such a set, he formulated the so-
called Continuum Hypothesis, which states that every subset of R which contains N
is either countable or has cardinality 2ω.
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It cannot be decided on the basis of the axioms of Set Theory (see Chapter 4)
whether the Continuum Hypothesis (CH) is true or false. Kurt Gödel (1906–1978)
showed in 1940 ([24]) that CH does not contradict these axioms; on the other hand,
Paul Cohen (1934–2007) proved in 1963 ([9]) that its negation doesn’t either. This
means: one cannot derive a contradiction by logical reasoning on the basis of CH
and the axioms of Set Theory, but it is also impossible to prove CH from these
axioms.

Kurt Gödel was already famous for his “Incompleteness Theorems” when he
proved the “Consistency of the Continuum Hypothesis”. Paul Cohen’s result,
usually referred to as “Independence of the Continuum Hypothesis”, solved a
problem posed by Hilbert in 1900 (see also the Introduction), and won him the
Fields Medal in 1966. The Fields Medal is, in Mathematics, what the Nobel Prize is
for Physics and other sciences. Cohen’s is the only Fields Medal ever awarded for
work in Logic.

1.2 The Axiom of Choice

An axiom in mathematics is a statement or a principle of reasoning that is simply
assumed because it is intuitively correct but it cannot be proved from more basic
facts. An example of such an axiom is the principle of mathematical induction for
natural numbers (see also the statements just before Proposition 1.4.4).

Of course, in general it is far from easy to see that a principle ‘cannot be proved’:
for over 2000 years, mathematicians tried to prove that Euclid’s controversial
“Parallel postulate” could be proved from the other axioms in geometry, until it
was established beyond doubt in the nineteenth century that this axiom does not
follow from the other four axioms of Euclid.

The Axiom of Choice is a bit peculiar among the axioms of mathematics, because
it asserts the existence of a function, without telling you what it is. It takes a
while to get used to the axiom, and it has remained somewhat controversial ever
since its formulation by Zermelo in 1904. Nevertheless, modern mathematics is
unthinkable without it, and almost all mathematicians accept it as true. Moreover,
another famous result of Gödel (also in [24]) asserts that the Axiom of Choice
does not contradict the other axioms of Set Theory (we will see these axioms in
Chapter 4). Eventually, it was again Paul Cohen who showed that the Axiom of
Choice does not follow from the other axioms of set theory either ([10]).

Informally, the Axiom of Choice states that given a collection of non-empty sets,
there is a way to choose an element from each set in the collection. Here is a more
precise formulation, which looks simpler.

Definition 1.2.1 The Axiom of Choice (AC) is the assertion that for every surjective
function f : X→ Y there exists a “section”; that is, a function s : Y → X such that
f (s(y)) = y for each y ∈ Y .
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In order to “define” such a section as in Definition 1.2.1, one has to “choose”,
for each y ∈ Y , an x ∈ X such that f (x) = y. In general, the Axiom of Choice
is needed when:

• there is more than one x such that f (x) = y (see Exercise 20), and
• Y is infinite (see Exercise 21).

But even in these circumstances the Axiom of Choice is not always necessary to
obtain a section. For example, if, in Definition 1.2.1, X = N, we can simply define
s(y) as the least n such that f (n) = y (this is the solution of Exercise 9 (i)).

An example of a genuine application of the Axiom of Choice is given by the
following simple proposition, which you may have thought was self-evident.

Proposition 1.2.2 If X is an infinite set, then there is an injective function N→ X,
hence ω ≤ |X|.
Proof. Intuitively, one can “choose” for each n ∈ N an element g(n) ∈ X such
that g(n) is different from all elements chosen before. This reasoning is essentially
correct, but below we present a detailed proof, just in order to make clear exactly
how the Axiom of Choice is used.

First we remark that if (x1, . . . , xn) is a finite sequence of elements of X such
that xi �= xj whenever i �= j , then there is an element xn+1 ∈ X such that xi �= xn+1
for all i ≤ n; for if not, we would have |X| = n, and X would be finite.

Now let A be the set of all such finite sequences (x1, . . . , xn) with at least one
element; and let B be the union A ∪ {∗}, where ∗ is any element not in A. Define a
function f : A→ B by:

f ((x1)) = ∗
f ((x1, . . . , xn+1)) = (x1, . . . , xn).

Then by our remark, we see that f : A→ B is surjective, and so the Axiom of
Choice says there is a section s : B → A.

This section s allows us to define a function g : N→ X by induction: let g(0) be
the element of X such that s(∗) = (g(0)); if g(0), . . . , g(n) have been defined, let
g(n+ 1) be the element of X such that

s((g(0), . . . , g(n))) = (g(0), . . . , g(n+ 1)).

Convince yourself that the function g thus defined is indeed injective. �
Remark 1.2.3 That Proposition 1.2.2 is a genuine application of AC (that is, it
cannot be proved without AC) follows from Theorem 10.1 in [38].

Exercise 18 Let SCBop (the “opposite Schröder–Cantor–Bernstein theorem”) be
the statement that given surjective functions X→ Y and Y → X, we have X ∼ Y .
In this exercise we show that SCBop follows from AC but cannot be proved without
it. The argument relies on Remark 1.2.3 and is due to Joel Hamkins.
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(a) Use AC to prove SCBop.
(b) Let X be an infinite set. Let A be the set of all (not just nonempty) finite strings

of elements of X in which each element appears only once. Let B = A ∪ {∗},
where ∗ �∈ A. Show that there are surjective functions A→ B and B → A.

(c) Let A and B be as in (b). Suppose A ∼ B. Show that there is a 1–1 function
N→ A.

(d) For A,X as in (b) and a 1–1 function N→ A, show that there is a 1–1 function
N→ X.

(e) Conclude that SCBop implies the statement of Proposition 1.2.2.

Exercise 19 Use Proposition 1.2.2 to show that if A is infinite and B is countable,

|A| + |B| = |A|.

Exercise 20 If A is nonempty and s : A→ B is injective, there is a surjective
function f : B → A such that f (s(a)) = a for all a ∈ A. Prove this without using
the Axiom of Choice.

Exercise 21 Prove the Axiom of Choice (every surjective f : X→ Y has a
section) in the following two special cases:

(a) Y is finite. [Hint: induction on the cardinality of Y .]
(b) X is countable.

The Axiom of Choice is essential for deriving basic properties of cardinalities, such
as given by the following proposition.

Proposition 1.2.4 Let I be a countable set and suppose for each i ∈ I , a countable
set Xi is given. Then the union

⋃

i∈I
Xi

is again a countable set.

Proof. If I ′ ⊆ I is the subset {i ∈ I |Xi �= ∅} then
⋃

i∈I Xi =⋃
i∈I ′ Xi , and I ′ is

countable by Exercise 9 (iv). So we may as well assume that Xi is nonempty for
each i ∈ I .

If I is empty, the union is empty, hence countable. So let I be nonempty.
Let g : N→ I be a surjective function; such g exists because I is countable.
Let J be the set of all pairs (f, i) such that f : N→ Xi is surjective. The

function J → I , given by (f, i) �→ i, is surjective, because each Xi is nonempty
and countable. By AC, it has a section s. Let fi : N→ Xi be such that s(i) = (fi , i).

Now consider the function

h : N× N→
⋃

i∈I
Xi
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defined by: h(n,m) = fg(n)(m). Convince yourself that h is surjective. Composing
h with a surjective function N→ N× N, we see that

⋃
i∈I Xi is indeed countable,

as required. �
Remark 1.2.5 No doubt you have seen Theorem 1.2.4 before, but it may not be
clear to you why the Axiom of Choice is necessary for its proof. The reason is, that
in order to do the construction in the proof we have to choose surjective functions
N→ Xi for all (possibly infinitely many) i. Indeed, without the Axiom of Choice
we cannot prove that R (which is always an uncountable set, as we have seen) is not
a union of countably many countable sets ([74])!

Exercise 22 Prove that the set

{x ∈ R | sin(x) ∈ Q}

is countable.

Another simple application of the Axiom of Choice is in the following familiar
theorem of analysis: if A is a bounded, infinite subset of R, then there is an element
a ∈ A such that A− {a} contains a sequence which converges to a (Bolzano–
Weierstraß).

Later we shall see that, as a consequence of AC, we have for any two sets X and Y :
either |X| ≤ |Y | or |Y | ≤ |X|.
There are many statements which are equivalent to the Axiom of Choice. We shall
now present one which is closer to our intuitive description of AC at the beginning
of this section. We need the following definitions:

Definition 1.2.6 Let I be a set and let Xi be a set for each i ∈ I .

(a) The disjoint sum
∐

i∈I Xi is the set of all pairs (i, x) with i ∈ I and x ∈ Xi .
(b) The product

∏
i∈I Xi is the set of functions f : I →⋃

i∈I Xi which satisfy
f (i) ∈ Xi for each i ∈ I .

Proposition 1.2.7 The Axiom of Choice is equivalent to the statement:

(�) For every family of sets {Xi | i ∈ I } such that Xi is nonempty for each i ∈ I ,
the set

∏

i∈I
Xi

is nonempty.

Proof. First we show that AC implies the statement (�). So let Xi be nonempty
for each i. Then the function

∐
i∈I Xi → I , which takes (i, x) to i, is surjective and

therefore has a section s by AC.
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Let

t : I →
⋃

i∈I
Xi

be such that s(i) = (i, t (i)); then t is an element of
∏

i∈I Xi , as is easy to check.
Conversely, assume (�) and let f : X→ Y be a surjective function. Then for

each y ∈ Y the set Xy = {x ∈ X | f (x) = y} is nonempty. By (�), the set
∏

y∈Y Xy

is nonempty. But any element of this set is a section of f . �
Example 1.2.8 This example is meant to give some intuition about the use or non-
use of AC. Consider the sets R, Z and Q. We have the equivalence relations∼Z and
∼Q on R:

x ∼Z y iff y − x ∈ Z

x ∼Q y iff y − x ∈ Q

and write R/Z and R/Q, respectively, for the sets of equivalence classes. There are
evident surjective functions

ϕ : R→ R/Z and ψ : R→ R/Q.

For ϕ, we can explicitly describe a section σ : R/Z→ R: for every equivalence
class ξ , the intersection of ξ with the half-open interval [0, 1) contains exactly one
point, which we take as σ(ξ).

We cannot do something similar for ψ . The Axiom of Choice says that there
must be a section, but it cannot be described explicitly. This is because the image of
such a section is a subset of R which is not measurable, and that such sets cannot be
explicitly defined is a result of [73].

The following puzzle has several versions; the one presented here is taken from [30].

Exercise 23 A cruel prison warden lines up countably many prisoners:
p0, p1, p2, . . . Every prisoner has received a cap on his head, which is either
black or white. Every prisoner can see all prisoners with a higher number than his
own. Eventually, each prisoner must guess the colour of his own cap (and of course,
his life depends on it). Show that by cunningly using the Axiom of Choice, the
prisoners can devise a strategy which will ensure that only finitely many prisoners
will make a wrong guess.

1.3 Partially Ordered Sets and Zorn’s Lemma

Zorn’s Lemma (formulated independently by Kazimierz Kuratowski (1896–1980)
and Max Zorn (1906–1993)) is a principle which is equivalent to the Axiom of
Choice (as we shall see in Section 1.5), but formulated quite differently; in many
cases, it is easier to apply than AC.
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The formulation uses the notion of a chain in a partially ordered set, which we
shall define first.

Definition 1.3.1 A partially ordered set or poset is a set P together with a relation
≤ between elements of P such that the following conditions are satisfied:

(i) For every p ∈ P , p ≤ p holds (one says that the relation ≤ is “reflexive”).
(ii) For every p, q, r ∈ P , if p ≤ q and q ≤ r hold, then p ≤ r holds (the relation
≤ is said to be “transitive”).

(iii) For every p, q ∈ P , if both p ≤ q and q ≤ p hold then p = q (the relation ≤
is “antisymmetric”).

We shall usually denote a poset as (P,≤), and the relation≤ is pronounced as “less
than or equal to”. The converse relation ≥, “greater than or equal to”, is defined by
x ≥ y if and only if y ≤ x.

Examples.

(a) The most important example of a poset is the powerset P(A) of a set A: the
relation p ≤ q holds for subsets p and q of A if and only if p is a subset of q

(i.e., p ⊆ q).
(b) If (P,≤) is a poset and S ⊆ P then clearly the restriction of the relation ≤ to

elements of S gives a poset (S,≤).
(c) Combining (a) and (b), we see that any collection C of subsets of a set X (i.e.,

C ⊆ P(X)) is naturally a poset when ordered by inclusion. Every poset (P,≤)

is isomorphic to a poset of this form: consider the mapping from P to P(P )

given by x �→ {y ∈ P | y ≤ x}.
(d) The usual order relations on N, Z, Q and R make these sets into posets. These

posets have the additional property that every two elements are comparable; that
is, for each x and y, we have either x ≤ y or y ≤ x. Posets in which every two
elements are comparable are called total or linear orders. Note, that the poset
P(X) is not a total order (at least if X has more than one element).

(e) Note, that if (P,≤) is a poset, then (P,≥) is a poset too.

Definition 1.3.2 Let (P,≤) be a poset.

(i) A subset C of P is called a chain if C with the restricted order is a total order.
In other words, if either p ≤ q or q ≤ p holds, for any two elements p, q of C.

(ii) If S is any subset of P , an element p of P is called an upper bound for S if for
each s ∈ S we have s ≤ p (p itself doesn’t need to be a member of S).

(iii) An element p ∈ P is called maximal if no element is strictly greater: whenever
p ≤ q we must have p = q .

Example 1.3.3 Let A be a fixed set with more than one element, and let P be
the poset {S ⊆ A | S �= A}, ordered by inclusion. This poset P has many maximal
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elements, namely the sets A− {a} for a ∈ A. On the other hand, P does not have a
greatest element. If C ⊆ P is a chain and the union

⋃
C = {x ∈ A | ∃S ∈ C x ∈ S}

is not equal to A, then this set is an upper bound for C. If
⋃

C = A, the chain C

does not have an upper bound in P .

Exercise 24 Suppose X and Y are sets. Let P be the set of all pairs (A, f ) where
A is a subset of X and f is a function A→ Y . Then P is a poset with the following
relation: (A, f ) ≤ (B, g) iff A ⊆ B and f is the restriction of g to A.
Show that if C = {(Ai, fi) | i ∈ I } is a chain in P , there is a unique function f :⋃

i∈I Ai → Y such that for each i the function fi is the restriction of f to Ai .
Conclude that every chain in P has an upper bound in P .

Definition 1.3.4 Zorn’s Lemma is the following assertion: if (P,≤) is a poset with
the property that every chain in P has an upper bound in P , then P has a maximal
element.

Note that if P satisfies the hypothesis of Zorn’s Lemma, then P is nonempty. This
is so because the empty subset of P is always a chain. However, checking that every
chain has an upper bound in P usually involves checking this for the empty chain
separately; that is, checking that P is nonempty (see Example 1.3.5 below).

Zorn’s Lemma isn’t a lemma, but a “principle” of a status similar to that of the
Axiom of Choice (cf. the remarks at the beginning of Section 1.2).

Example 1.3.5 Let us look at maximal ideals in rings. Let R be a commutative
ring with 1. As always in this book, for a ring we assume that 1 �= 0. Let P be the
poset of all proper ideals of R (that is, ideals I �= R), ordered by inclusion. If C is
a nonempty chain of ideals, its union

⋃
C is an ideal too, and

⋃
C is proper, since

1 �∈ ⋃
C because C consists of proper ideals. Moreover, P is nonempty since {0} is

a proper ideal by our assumption. So every chain in P has an upper bound. Hence,
by Zorn’s Lemma, P has a maximal element, which is a maximal ideal in R.

The existence of maximal ideals in rings cannot be proved without using Zorn’s
Lemma (or the Axiom of Choice). Other important basic facts from ring theory
likewise need some form of the Axiom of Choice, such as the statement that every
principal ideal domain has a maximal ideal, and the statement that every principal
ideal domain is a unique factorization domain (see [36]).

Example 1.3.6 A similar example is that of bases for vector spaces. Let V be a
vector space over R (or, in fact, any other field), for example the set of continuous
functions from [0, 1] into R. Then V has a basis, that is, a subset B ⊆ V with the
property that every v ∈ V can be written as a finite sum

v = c1b1 + · · · + cnbn
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with c1, . . . , cn ∈ R and b1, . . . , bn ∈ B, and moreover this finite sum is unique. In
order to prove this, let P be the poset of those subsets B ⊂ V which are linearly
independent (no element of B can be written as a linear combination of other
elements of B), ordered by inclusion. If B is a maximal element of P , B must
be a basis (check!).

Our next example uses Zorn’s Lemma to prove the Axiom of Choice.

Proposition 1.3.7 Zorn’s Lemma implies the Axiom of Choice.

As we have already remarked, Zorn’s Lemma is equivalent to AC. Here we prove
the most important implication. For the other direction, see Section 1.5.

Proof. We assume that Zorn’s Lemma is true.
Suppose given a surjective function f : X→ Y . A partial section of f is a pair

(A, u) where A is a subset of Y and u : A→ X a function such that f (u(y)) = y for
each y ∈ A. Given two such partial sections (A, u) and (B, v), put (A, u) ≤ (B, v)

iff A ⊆ B and u is the restriction of v to A. Let P be the set of partial sections (A, u)

of f ; then with the relation ≤, P is a poset, as is easy to see.
P is nonempty; this is left to you. Moreover, if C = {(Ai, ui) | i ∈ I } is a chain in

P , C has an upper bound; this is similar to Exercise 24. So the poset (P,≤) satisfies
the hypotheses of Zorn’s Lemma, and thus has a maximal element (A, s).

We claim that A = Y , and therefore that s is a section for f . Suppose that y �∈ A.
Then since f is surjective, there is an element x ∈ X such that f (x) = y. If we
define the function s′ : A ∪ {y} → X by

s′(w) =
{

s(w) if w ∈ A

x if w = y

then we see that (A ∪ {y}, s′) is a partial section of f which is strictly greater than
(A, s); this contradicts the fact that (A, s) is maximal. It follows that A = Y and we
have found a section for f . �

It is another important consequence of Zorn’s Lemma that any two cardinal numbers
|X| and |Y | can be compared: given sets X and Y , we have either |X| ≤ |Y | or |Y | ≤
|X|. In other words, there is an injective function X→ Y , or there is an injective
function Y → X (or both, of course).

Proposition 1.3.8 Zorn’s Lemma implies the following statement: for any two sets
X and Y ,

|X| ≤ |Y | or |Y | ≤ |X|

holds.

The statement in the proposition is sometimes called the “Law of Trichotomy”
(because one can equivalently put it as: one of the three possibilities |X| < |Y |,
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|X| = |Y | or |Y | < |X| is true). We shall refer to it as the Principle of Cardinal
Comparability (PCC).

Conversely, the Principle of Cardinal Comparability can be shown to be equivalent
to Zorn’s Lemma (or AC). For this, see Section 1.5.

Proof. Let X and Y be sets. We consider a poset P of triples (U, f, V ), where
U ⊆ X, V ⊆ Y and f : U → V is a bijective function. These triples are ordered
in a way reminiscent of the proof of Proposition 1.3.7: (U, f, V ) ≤ (U ′, f ′, V ′) iff
U ⊆ U ′ and f is the restriction of f ′ to U (note, that this implies that V ⊆ V ′).

P is nonempty, since we have ∅ as subset of both X and Y , and the “empty
function” is bijective.

If {(Ui, fi , Vi) | i ∈ I } is a chain in P , there is a well-defined function f :⋃
i∈I Ui →⋃

i∈I Vi which is a bijection. Therefore, every chain in P has an upper
bound, and by Zorn’s Lemma P has a maximal element (U, f, V ). If U �= X

and V �= Y , say x ∈ X − U and y ∈ Y − V , we can obviously define a bijection
between U ∪ {x} and V ∪ {y} which extends f , and this contradicts the maximality
of (U, f, V ). Hence either U = X, in which case f is an injective function from X

into Y , or V = Y , in which case the inverse of f is an injective function Y → X.�
Exercise 25 Prove the following variation: if X and Y are nonempty sets, then there
is either a surjective function X→ Y or a surjective function Y → X. You can do
this either by using Zorn’s Lemma (and mimicking the proof of Proposition 1.3.8),
or by applying that proposition directly.

It follows from Proposition 1.3.8 that we can define the maximum of two cardinal
numbers: max(|X|, |Y |) = |X| if |Y | ≤ |X|, and it is |Y | if |X| ≤ |Y |.

This allows us to state the following properties of the arithmetic of cardinal
numbers, which generalize Proposition 1.1.4. The proof makes essential use of
Zorn’s Lemma.

Proposition 1.3.9 Let A and B be infinite sets. Then the following hold:

(i) |A| + |A| = |A|.
(ii) |A| + |B| = max(|A|, |B|).

(iii) |A| × |A| = |A|.
(iv) |A||A| = 2|A|.

Proof. For (i), we have to show that there is a bijective function: A+ A→ A.
To this end, we consider the poset of pairs (X, f ) where X is a subset of A and
f : X + X→ X is bijective. This is ordered by: (X, f ) ≤ (Y, g) if X ⊆ Y and f is
the restriction of g to X +X.

If {(Xi, fi ) | i ∈ I } is a chain in this poset, then there is a well-defined bijective
function f : X +X→ X, where X =⋃

i∈I Xi and f is such that f extends
each fi .
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Therefore the poset under consideration satisfies the hypothesis of Zorn’s Lemma
(check this!) and so has a maximal element (X, f ). We claim that for this (X, f ),
A−X must be finite.

To prove this claim, we use Proposition 1.2.2: if A−X is infinite, there is an
injective function N→ A−X. Let N ⊆ A be the image of this function; then we
have a bijective function g : N + N → N (by Proposition 1.1.4), and since N and
X are disjoint, we can combine f and g to obtain a bijective function

(X ∪N)+ (X ∪N)→ X ∪N

which extends f ; but this contradicts the maximality of the pair (X, f ) in our poset.
Therefore, A−X is finite and we have proved the claim.

Now A ∼ X + (A−X), so by Exercise 19, there is a bijection ϕ : A→ X.
Combining f and ϕ we obtain a bijection between A+ A and A:

A+ A
ϕ+ϕ→ X +X

f→ X
ψ→ A

where ψ is the inverse of ϕ.

For (ii): suppose that |A| ≤ |B|. We have to show that |A| + |B| = |B|. Since
obviously |B| ≤ |A| + |B| and |A| + |B| ≤ |B| + |B| by hypothesis, using (i) we
have

|B| ≤ |A| + |B| ≤ |B| + |B| ≤ |B|

so |B| = |A| + |B| as required. Note that this proof does not require that A is
infinite.

For (iii), we form again a poset P of pairs (X, f ) with X ⊆ A, but now with X

infinite and f : X ×X→ X bijective. By Propositions 1.2.2 and 1.1.4 (ii), the poset
P is nonempty. We order this ‘by extension’ as in the proof of (i) (note that X ⊆ Y

implies X ×X ⊆ Y × Y ). In the same way as in (i) we see that every chain in P

has an upper bound (check for yourself that if {Xi | i ∈ I } is a chain of sets under
the inclusion ordering, and X =⋃

i∈I Xi , then X ×X =⋃
i∈I (Xi ×Xi)).

By Zorn’s Lemma, P has a maximal element (M, f ). If |M| = |A| we use the
bijection between M and A, together with f , to obtain a bijection between A× A

and A and we are done.
So suppose |M| < |A|. Now M is infinite by definition of P , and also A−M is

infinite: if A−M were finite (hence countable), then by Exercise 19 we would
have M + (A−M) ∼ M and therefore A ∼M , contradicting our assumption.
Therefore, we can apply part (ii) to conclude that A ∼ A−M .

Let g : A→ A−M be bijective. If M ′ is the image of M under g, then M and
M ′ are disjoint and g restricts to a bijection between M and M ′. Combining g and
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f , we also find a bijection f ′ :M ′ ×M ′ → M ′. Moreover, since M and M ′ are
disjoint, we have M ∪M ′ ∼ M +M ′, and we can find a bijective function

F : (M ∪M ′)× (M ∪M ′)→ M ∪M ′

which extends f , as follows: we have

(M +M ′)× (M +M ′) ∼ (M ×M)+ (M ×M ′)+ (M ′ ×M)+ (M ′ ×M ′).

We have M ×M ∼ M via f , and we have (M ×M ′)+ (M ′ ×M)+ (M ′ ×M ′) ∼
M ′ by using f , g, f ′ and part (i) of the proposition twice.

Finally, for (iv) we first notice that since A is infinite, 2 < |A| so 2|A| ≤ |A||A|;
for the converse inequality, we know from Proposition 1.1.5 that |A| < 2|A|,
so |A||A| ≤ (2|A|)|A|. Using (iii) of the proposition and Exercise 7, we see that
(2|A|)|A| = 2|A|×|A| = 2|A|, and we are done. �
Exercise 26

(a) Let A and B be nonempty sets, at least one of them infinite. Show that

|A| × |B| = max(|A|, |B|).

(b) Show that if A is infinite, then there is a bijection between A and N× A.
(c) Let A be an infinite set. Denote by A∗ the set of all finite sequences of elements

of A; that is,

A∗ =
∞⋃

n=0

An

(here An is the set of n-tuples from A).
Show that |A∗| = |A|.

(d) Let A be infinite; show that |A| = |Pfin(A)| (where Pfin(A) is the set of finite
subsets of A).

Example 1.3.10 Let us come back to Example 1.3.6 and show that if both B and
B ′ are bases of a vector space V , then |B| = |B ′|. In other words, the vector space
V has a well-defined dimension which is the cardinal number |B| for a basis B of
V . This fact cannot be proved (in full generality) without the Axiom of Choice!

We make use of the fact that a basis of a vector space V is a subset B which
generates V (every element of V can be written as a finite linear combination of
elements of B) but is minimal with this property: no proper subset of B generates V .

So, let B and B ′ be bases of V . We assume that you know the result in the case
when B and B ′ are finite. So suppose B is infinite.

For every b ∈ B ′ there is a finite subset Bb of B such that b can be written as
a linear combination of elements of Bb . Then

⋃
b∈B ′ Bb is a subset of B which
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generates V , so by minimality of B,

B =
⋃

b∈B ′
Bb.

It follows that B ′ is also infinite (otherwise, B would be a finite union of finite sets).
Since every Bb is finite, there are injective functions Bb → N and we see that

|B| ≤ |B ′| × ω = |B ′|.

By symmetry, |B| = |B ′|, as required.

We close this section with some miscellaneous exercises involving Zorn’s Lemma
and cardinalities.

Exercise 27 Let X be an infinite set. Prove that there is a bijection f : X→ X

with the property that for every x ∈ X and all n > 0, f n(x) �= x, where f n(x) =
f (· · · (f
︸ ︷︷ ︸

n times

(x)) · · · ). [Hint: consider Z×X, or use Zorn directly.]

Exercise 28 Prove that there is a linear order on any set.

Exercise 29 Prove that there is a dense linear order on any infinite set: that is, a
linear order such that whenever x < y, there is a z such that x < z < y. [Hint: use
the previous exercise to find a linear order on X; then consider Q×X.]

Exercise 30 This exercise is one of the first applications, given by Cantor [8], of
his theory of cardinalities to number theory.

A real number r is called algebraic if there is a non-zero polynomial

f (X) = Xn + a1X
n−1 + · · · + an−1X + an

with a1, . . . , an ∈ Q and f (r) = 0. A number which is not algebraic is called
transcendental. Write A for the set of algebraic real numbers, and T for the set
of transcendental real numbers.

Prove that |A| = ω and |T | = |R|.
This was Cantor’s proof that transcendental numbers exist, and that there are very
many of them.

Exercise 31 In this exercise we consider R as a group under addition.

(a) Prove, using Zorn’s Lemma, that there is a subgroup G of R which is maximal
w.r.t. the property that 1 �∈ G.

(b) Suppose G is as in (a). Show that there is a unique prime number p such that
p ∈ G.

(c) Let p be as in (b). Prove that for every x ∈ R there is an n ≥ 0 such that pnx ∈
G.
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Exercise 32 This is a variation on the theme of Exercise 31. We consider the
half-open interval [0, 2) ⊂ R as an additive group with addition modulo 2. As in
Exercise 31, there is a subgroup G of [0, 2) which is maximal w.r.t. the property
that 1 �∈ G.

(a) Show that for each real number x ∈ [0, 2) there is an even natural number n

such that nx ∈ G.
(b) Show that for each x ∈ [0, 2) the least natural number n satisfying nx ∈ G is a

power of 2.
(c) Show that for each odd natural number p we have 2

p
∈ G. [Hint: first show that

it is enough that for some power 2k with k > 0, 2k 2
p
≡ 2

p
(mod 2). Then use a

little algebra to prove this fact.]

Exercise 33 For a subset A of R such that 0 �∈ A, we define:
√
Q = {x ∈ R | x2 ∈ Q}

Q/A = { q
a
| q ∈ Q− {0}, a ∈ A}.

Prove that there is a subset A ⊆ R− {0} such that R can be written as a disjoint
union

A ∪√
Q ∪Q/A.

[Hint: apply Zorn’s Lemma to the poset of those A ⊆ R for which the following
holds: for all x, y ∈ A, xy �∈ Q.]

Exercise 34 Let (P,≤) be a poset. Call a subset A of P transversal if for any pair
x, y of elements of A we have: if x ≤ y then x = y. A subset B of P is called a
cross-section of P if for every x ∈ P there is a y ∈ B satisfying x ≤ y or y ≤ x.

(a) Prove that P has a maximal transversal subset.
(b) Prove that every maximal transversal subset is a cross-section.
(c) Prove that if A is a maximal transversal subset of P and B � A then B is not a

cross-section of P .

Exercise 35

(a) Prove that there is a subset A of R which is maximal with respect to the
properties:

(i) A is closed under addition (i.e., whenever a, b ∈ A then also a + b ∈ A).
(ii) A ∩Q = ∅.

(b) Let A be as in part (a). Prove that for every x ∈ R exactly one of the following
(mutually exclusive) statements holds: x ∈ A, x ∈ Q or there is a natural
number m > 0 and an a ∈ A such that mx + a ∈ Z. [Hint: given x ∈ R with
x �∈ A, x �∈ Q, consider the set

Ax = {nx + ka | a ∈ A, n, k ∈ N, n+ k > 0}.]
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1.4 Well-Ordered Sets

Definition 1.4.1 A partial order (L,≤) is a well-order, or a well-ordered set, if
every nonempty subset S of L has a least element in this order: there is an element
s0 ∈ S such that for each s ∈ S, s0 ≤ s.
We shall also sometimes say that the relation ≤ well-orders L.

Recall that a partial order (L,≤) is linear or total if for all x, y ∈ L we have x ≤ y

or y ≤ x.

Exercise 36 Prove that every well-order is linear.

Let us see some examples of well-orders.

(1) The set N is a well-ordered set. That this is so is exactly the principle of
induction for natural numbers. We shall see later that conversely for every well-
order there is a similar “induction principle” (Proposition 1.4.4).

(2) Z is not a well-ordered set (with the usual ordering): Z itself has no least
element. In the same way, Q and R are not well-ordered in the usual ordering.

(3) Define a new ordering on N by putting: n ≤ m if either n and m are both odd
and n is smaller than m in the usual ordering, or n and m are both even and n is
smaller than m in the usual ordering, or n is even and m is odd. This looks like:

0 ≤ 2 ≤ 4 ≤ · · · ≤ 1 ≤ 3 ≤ 5 ≤ · · ·

and ≤ is a well-ordering. In a similar way, we can have:

0 ≤ 3 ≤ 6 ≤ · · · ≤ 1 ≤ 4 ≤ 7 ≤ · · · ≤ 2 ≤ 5 ≤ 8 ≤ · · ·

and so on.
(4) Every finite linear order is a well-order.
(5) The set {1− 1

n
| n > 0} ∪ {1} is a well-ordered subset of R.

Exercise 37 Prove the following statements.

(a) If (L,≤) is a well-order, then so is every subset of L when equipped with the
restricted order.

(b) If (L,≤L) and (M,≤M) are two well-ordered sets, we can define the (reverse)
lexicographic order on the product L×M: for elements (x, y) and (x ′, y ′) of
L×M , put (x, y) ≤ (x ′, y ′) if either y <M y ′, or y = y ′ and x ≤L x ′. Then ≤
well-orders L×M . The reverse lexicographic order can be pictured as follows:
view M as points on a line (since M is linearly ordered) and replace every point
of M by a copy of L.

Generalize this construction as follows: if L is a well-order and for each
i ∈ L we are given a well-order Mi , then there is a well-order on the set∐

i∈L Mi .
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(c) This is a special case of the generalization in part (b):
If (L,≤L) and (M,≤M) are two disjoint well-ordered sets, we can define

an order on the union L ∪M in the following way. For x, y ∈ L ∪M we put
x ≤ y if and only if one of the following three conditions is satisfied:

(i) Both x and y are elements of L and x ≤L y.
(ii) We have x ∈ L and y ∈ M .

(iii) Both x and y are elements of M and x ≤M y.

Then ≤ well-orders L ∪M . This well-order on L ∪M , which we denote by
L+M , looks like putting M “on top of” L.

In this exercise we defined the reverse lexicographic order, rather than the lexi-
cographic order you might expect, for the sole reason that it corresponds to the
multiplication of ordinals that we shall define in Chapter 4 (see Exercise 139).

The following proposition gives a criterion for whether or not a linear order is a
well-order.

Proposition 1.4.2 A linear order (L,≤) is a well-order if and only if for every
infinite decreasing sequence

x0 ≥ x1 ≥ x2 ≥ · · ·
in L, there is an n such that for all m > n, xn = xm.

Exercise 38 Prove Proposition 1.4.2. In one direction, you need to use the Axiom
of Choice, in a way similar to the proof of Proposition 1.2.2.

Exercise 39 Recall that if (X,≤) is a poset, then (X,≥) is a poset too.
Prove: if (X,≤) and (X,≥) are both well-orders, then X is finite.

We introduce some terminology for elements of a well-ordered set L. The empty set
is vacuously well-ordered; it has no nonempty subsets.

If L is nonempty, the set L (as nonempty subset of itself) has a least element,
which we may as well call 0L. If an element x is not the greatest element of L then
the set {y ∈ L | x < y} has a least element, which we call x + 1. So if L is infinite,
L contains

{0L, 0L + 1 = 1L, 1L + 1 = 2L, 3L, 4L, . . .}
as a subset. If this subset is not the whole of L then its complement has a
least element ωL, and we may have ωL,ωL + 1, . . .. This process may continue
indefinitely!

An element x of L is called a successor element if for some y ∈ L we have
x = y + 1. Elements which are not successors are called limit elements. Note, that
0L is a limit element, as is ωL.

Exercise 40 Let x and y be non-maximal elements of a well-order L. Show that if
x + 1 = y + 1 then x = y.
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In a well-order (or more generally, in a poset), a least upper bound or l.u.b. of a
subset S is an upper bound x for S (see Definition 1.3.2) such that for every upper
bound y for S we have x ≤ y. Note that least upper bounds need not always exist in
a poset, but if they exist they are unique. Also note that x is a l.u.b. of the empty set
if and only if x is the least element.

Proposition 1.4.3 In a well-order (L,≤) every subset of L which has an upper
bound in L has a least upper bound. Moreover, an element x of L is a limit element
if and only if x is the least upper bound of the set

L<x = {y ∈ L | y < x}.
Proof. If S has an upper bound in L, the set of upper bounds (in L) of S is
nonempty, so it has a least element.

Suppose x is the l.u.b. of L<x = {y ∈ L | y < x}. Then if x = z+ 1 we must
have that z is the greatest element of L<x and therefore its least upper bound; but z

and x = z+ 1 are distinct. We conclude that x is a limit element.
Conversely, suppose x is a limit element. Then for each y < x, x is not equal to

y + 1, so y + 1 < x. It follows that no element smaller than x can be the l.u.b. of
L<x ; but x is an upper bound for L<x , so it is the least upper bound. �

We are now going to look at the principle of induction for well-ordered sets L.
The well-known induction principle for natural numbers,

(I0) If S ⊆ N has the properties that 0 ∈ S and for all n ∈ N, n ∈ S implies n+ 1 ∈
S, then S = N.

has an equivalent formulation:

(I1) If S ⊆ N has the property that for each n ∈ N, n ∈ S whenever N<n ⊆ S, then
S = N.

In a similar way, we have two equivalent induction principles for an arbitrary well-
ordered set L. We call a subset S of a well-order (L,≤) closed under least upper
bounds if whenever A ⊆ S and A has an upper bound in L, then the least upper
bound of A belongs to S.

Proposition 1.4.4 Let (L,≤) be a well-ordered set, and S ⊆ L an arbitrary
subset.

(i) If S is closed under the successor function (mapping x to x + 1) and under least
upper bounds, then S = L.

(ii) If for each x ∈ L the statement L<x ⊆ S implies x ∈ S, then S = L.

Proof.

(i) If S �= L then L− S has a least element x. Then we must have ∀y < x (y ∈ S),
yet x �∈ S, which contradicts the assumption of (i).

(ii) is left to you as an exercise. �
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Exercise 41 Prove Proposition 1.4.4 (ii). Prove also that the condition on S in
Proposition 1.4.4 (ii) is equivalent to the following three conditions:

(a) 0L ∈ S.
(b) If x ∈ S, then x + 1 ∈ S.
(c) If l is a nonzero limit element of L and L<l ⊆ S, then l ∈ S.

Example 1.4.5 Let us prove, by induction on L, that for each x ∈ L there is a
unique limit element l ≤ x and a unique natural number n such that

x = l + n

(l + n is shorthand for: the n-th successor of l, so l + 0 = l, etcetera).
Since the successor function is 1–1 where it is defined (Exercise 40), it is easy

to show that such a representation is unique. Suppose l + n = l′ + n′. Then by
induction on n we show that l = l′ and n = n′: if n = 0, we have l = l′ + n′, whence
n′ = 0 because l is a limit; and if n = k + 1 then l + n is a successor, so n′ = k′ + 1
for some k′. By injectivity of the successor, we have l + k = l′ + k′ and by induction
hypothesis it follows that l = l′ and k = k′, so n = n′.
For the existence of the representation, we use induction on L: clearly, 0L has the
representation 0L + 0, for 0L is a limit. If x = l + n then x + 1 = l + (n+ 1), and
if l is a limit, it has the representation l + 0.

For natural numbers, one has, beside induction for proving properties of natural
numbers, also the possibility of defining functions by recursion: a function f is
defined on natural numbers by a scheme which defines f (n+ 1) in terms of f (n)

or in terms of {f (k) | k ≤ n}. An example is the well-known Fibonacci sequence:
f (0) = f (1) = 1, and f (n+ 2) = f (n)+ f (n+ 1). Induction and recursion are
really two sides of the same coin, so it is not surprising that we can also define
functions on an arbitrary well-ordered set L by recursion. The idea is that one
defines f (x) in terms of the (not necessarily finite) set {f (y) | y < x}. There are
various formulations. We prove one in the proposition below and give others as
exercises.

Proposition 1.4.6 Let (L,≤) be a well-order, and S a set. Suppose we are given a
function R : L× P(S)→ S. Then there is a unique function F : L→ S with the
property that

(∗) F (l) = R(l, {F(x) | x < l})
for each l ∈ L.
The function F is said to be defined by recursion from R.

Proof. In this proof, let L≤z denote the set {y ∈ L | y ≤ z}, for z ∈ L.
First, let us show that if F is a function from L≤z to S such that F satisfies

condition (∗), then F is unique with this property; for if

G : L≤z → S
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also satisfies (∗) and F �= G, there must be a least element m ∈ L≤z such that
F(m) �= G(m); however in that case the sets {F(x) | x < m} and {G(x) | x < m}
are equal so that by (∗), F(m) = G(m), which contradicts our assumption on m.

Similarly, any F : L→ S satisfying (∗) must be unique.
From this uniqueness it follows that if z1 < z2 in L and F1 : L≤z1 → S and

F2 : L≤z2 → S satisfy (∗), then F1 must be the restriction of F2 to the subset L≤z1 .
Therefore, if for each z ∈ L a function Fz : L≤z → S exists which satisfies (∗),

the functions Fz can be patched together to a unique function

F : L =
⋃

z∈L
L≤z → S

and F also satisfies (∗) because for z ∈ L we have F(z) = Fz(z).
We see that in order to finish the proof it is enough to show that for each z ∈ L,

a function Fz as above exists. We do this by induction on L: for an application of
Proposition 1.4.4 (i) let E be the set {z ∈ L |Fz exists}. We wish to show E = L.

Suppose, for a given z ∈ L, that w ∈ E for all w < z; that is, Fw : L≤w → S

exists and satisfies (∗). We define Fz : L≤z → S by putting

Fz(w) = Fw(w) for w < z

Fz(z) = R(z, {Fw(w) |w < z}).

Check yourself that Fz satisfies (∗). We have proved that z ∈ E on the assumption
that w ∈ E for all w < z. In other words, the subset E satisfies the hypothesis of
Proposition 1.4.4 (i) and we may conclude that E = L as desired. �
Exercise 42 Let (L,≤) be a well-order and S a set. Prove the following two
variations on the principle of recursion.

(i) For any R : P(S × L)→ S there is a unique F : L→ S with

F(x) = R({(F (y), y) | y < x}).

(ii) For any s0 ∈ S, any R : P(S)→ S and any g : S → S, there is a unique
function F : L→ S which satisfies the following conditions:

F(0L) = s0.

F (l + 1) = g(F (l)) if l is not maximal in L.

F(l) = R({F(y) | y < l}) if l is a nonzero limit in L.

Example 1.4.7 Let us give a simple example of a function L→ {0, 1} defined by
recursion: the parity function. Consider the formulation of Exercise 42 (ii) with S =
{0, 1}, s0 = 0, g the switch function (g(x) = 1− x) and R the constant 0 function.
One obtains a unique function F : L→ {0, 1} such that F(x) is n mod 2, where n

is the unique natural number such that for some limit element l, x = l + n.
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More fundamental examples of functions defined by recursion appear in the proof
of Proposition 1.4.11 below, and in Section 1.5.

We conclude this section by discussing how to compare well-orders.

Definition 1.4.8 Let (L,≤) and (M,≤) be well-orders.

(i) An initial segment of L is a subset B ⊆ L such that for each x, y ∈ L: if x ∈ B

and y ≤ x, then y ∈ B.
(ii) An (order-)isomorphism f : L→ M is an order-preserving bijective function.

(iii) An embedding f : L→ M is an order-isomorphism from L to an initial
segment of M .

We write L ∼= M and say that L is isomorphic to M if there is an order-isomorphism
between L and M . We write L � M if there exists an embedding of L into M .

Lemma 1.4.9 There can be at most one embedding from a well-order L into a
well-order M . If L is a well-ordered set and l ∈ L there cannot be an embedding
L→ L<l . In particular, L cannot be isomorphic to L<l .

Proof. Suppose f and f ′ are two different embeddings: L→ M . Then the set
{x ∈ L | f (x) �= f ′(x)} is nonempty and has a least element x0. We may suppose
(since M is in particular a total order) that f (x0) < f ′(x0). But now we have: if
y < x0 then f ′(y) = f (y) < f (x0) and if y ≥ x0 then f ′(y) ≥ f ′(x0) > f (x0).
We conclude that f (x0) is not in the image of f ′, which is therefore not an initial
segment.

For the second statement we notice that the inclusion of L<l into L is an
embedding. Given an embedding f : L→ L<l , we can compose f with this
inclusion map to get an embedding L→ L, which is not the identity since its
image does not contain the element l. Hence we would have at least two different
embeddings L→ L, contradicting the first statement.

For the third statement, note that every isomorphism is an embedding. �
Corollary 1.4.10 If L � M and M � L then L ∼= M .

Proof. If i : L→ M and j : M → L are embeddings, then the composition j i :
L→ L is an embedding too. Since there is only one embedding from L to L by
Lemma 1.4.9 and the identity function f (x) = x is one, we see that j (i(x)) = x for
all x ∈ L. Similarly, i(j (y)) = y for all y ∈ M; so L ∼= M . �
Proposition 1.4.11 For any two well-orders L and M , we have either L �M or
M � L.

Proof. Let∞ be a new point not contained in M . Let M ′ = M ∪ {∞}.
Define R : L× P(M ′)→ M ′ as follows: R(l, S) is the least element in M of

M − S, if this set is nonempty, and ∞ otherwise. The function R does not really
depend on l, but that doesn’t matter.

By Proposition 1.4.6 there is a unique function F : L→ M ′ such that

F(l) = R(l, {F(x) | x < l})
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for all l ∈ L.
If F(l) �= ∞ for all l ∈ L, then F is an embedding from L into M (as we leave

for you to check). Otherwise, if l0 is the least element of L such that F(l0) = ∞,
then F restricts to an isomorphism between M and L<l0 , in which case there is an
embedding of M into L. �
Exercise 43 Prove: if L and M are well-orders such that L � M and L �∼= M , then
there is an m ∈ M such that L ∼= M<m where M<m = {x ∈ M | x < m}. Prove also
that this m is unique.

Exercise 44 Let L be a well-order and f : L→ L a map with the property that
x < y implies f (x) < f (y) for all x, y ∈ L.

Show that x ≤ f (x) for all x ∈ L. Show also that this does not follow from the
weaker condition that x ≤ y implies f (x) ≤ f (y).

Exercise 45 Let L be a set. Write P∗(L) for the set of nonempty subsets of L.
Suppose that h : P∗(L)→ L is a function such that the following two conditions
are satisfied:

(i) For each nonempty family {Ai | i ∈ I } of elements of P∗(L), we have

h(
⋃

i∈I
Ai) = h({h(Ai) | i ∈ I }).

(ii) For each A ∈ P∗(L), h(A) ∈ A.

Show that there is a unique relation ≤ on L which well-orders L, and is such that
for each nonempty subset A of L the element h(A) is the least element of A.

Exercise 46 Let L be a linear order. If A ⊂ L and a ∈ L, then a is called a strict
upper bound for A if x < a for every x ∈ A. Now suppose that the following is
true for every A ⊆ L: if A has a strict upper bound then A has a least strict upper
bound.

(a) Prove: if L �= ∅, then L has a least element.
(b) Prove that L is a well-order. [Hint: given a nonempty subset X of L, consider

the set AX = {x ∈ L | for all y ∈ X, x < y}.]
(c) Show that (b) may fail if we drop the ‘strict’ in ‘strict upper bound’.

Exercise 47 Extend the definition of ‘initial segment’ (Definition 1.4.8) to arbitrary
linear orders: an initial segment of (P,≤) is a subset B ⊆ P such that x ∈ B

whenever x ≤ y and y ∈ B.
Prove that a linear order (P,≤) is a well-order if and only if for every subset S

of P the linear order (S,≤) is isomorphic to an initial segment of (P,≤).

Exercise 48 A poset (W,≤) is called well-founded if every nonempty subset Y

of W has a minimal element y0 (i.e., for every y ∈ Y we have: if y ≤ y0, then
y = y0).
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(a) Prove that (W,≤) is well-founded if and only if W contains no infinite strictly
decreasing sequence x0 > x1 > · · · . Compare with Proposition 1.4.2.

(b) Conclude from (a) that a well-founded poset is a well-order if and only if it is
linear.

(c) Prove the principle of well-founded induction: if the poset (W,≤) is well-
founded and a subset S ⊆ W has the property that W<x ⊆ S implies x ∈ S for
any x ∈ W , then S = W . Compare with Proposition 1.4.4.

(d) Prove that Proposition 1.4.6 also holds for well-founded posets.
(e) Prove that a poset (W,≤) is well-founded if and only if there exists a function

from W into a well-order, which preserves the strict order <.

1.5 Principles Equivalent to the Axiom of Choice

We have seen the Axiom of Choice, Zorn’s Lemma and the Principle of Cardinal
Comparability. In this section, we formulate another principle of importance,
Zermelo’s Well-Ordering Theorem (Definition 1.5.2), and prove rigorously that
these four principles are equivalent.

In fact, these are just a few examples out of many: a multitude of statements have
been shown to be equivalent to the Axiom of Choice (you may have a look at the
books [38, 66]). Here we mention just two more, without proof:

Hausdorff’s Maximality Principle (Felix Hausdorff, 1868–1942) says that every
poset contains a maximal chain (maximal w.r.t. inclusion of chains). It is actually
rather easy to show that this is equivalent to Zorn’s lemma.

Tychonoff’s Theorem (Andrej Nikolayevich Tychonoff, 1906–1993) in Topology
says that if {Xi | i ∈ I } is an arbitrary set of compact topological spaces then the
product space

∏

i∈I
Xi

is again a compact space. The proof of Tychonoff’s Theorem makes use of AC.
On the other hand, it can be shown that the theorem implies AC (a fact first
proved in [42]; see also [38]).

The following lemma ensures the existence of “sufficiently large” well-ordered sets.
It should be emphasized that its proof does not use the Axiom of Choice or Zorn’s
Lemma. The lemma was published by Friedrich Hartogs (1874–1943) in [31].

Lemma 1.5.1 (Hartogs’ Lemma) For every set X there is a well-ordering
(LX, ≤) such that there is no injective function from LX to X.

Proof. Let P be the set of all pairs (L,≤) where L is a subset of X and ≤ is a
well-ordering on L. We shall denote the pair (L,≤) simply by L.
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For two such L and M we write as usual L � M if there is a (necessarily unique,
by Lemma 1.4.9) embedding of well-ordered sets: L→ M . We note the following
facts.

We have both L � M and M � L if and only if L ∼= M .

If L ∼= L′ and M ∼= M ′, then L �M if and only if L′ � M ′.

Therefore the relation� is defined on the set Q of equivalence classes of P modulo
the equivalence relation ∼=. By Proposition 1.4.11, the set Q is a linear order with
the relation �.

Note that, if L ≺ M (that is, L �M but M �∼= L), there is (by Exercise 43) a
unique m ∈ M such that L is isomorphic to the set M<m = {m′ ∈ M |m′ < m}with
the inherited order from M .

Therefore, if we denote the ∼=-equivalence class of L by [L], the set

{α ∈ Q | α < [L]}

is isomorphic to L.
Now suppose that W ⊆ Q is a nonempty set of ∼=-equivalence classes. Let α =

[L] be an arbitrary element of W . Consider the set

LW = {l ∈ L | [L<l] ∈ W }.

If LW is empty, clearly [L] is the least element of W . If LW is nonempty then it
has (as a subset of the well-ordered set L) a least element lW . But then [L<lW ] is
the least element of W . So every nonempty subset of Q has a least element, and
therefore Q is a well-ordered set.

There cannot be an injective function from Q into X, for suppose f is such a
function. Then f gives a bijection from Q to a subset U of X and we can give U

the induced well-ordering of Q; denote this well-ordering by ≤U . Now (U,≤U)

represents an element of Q and for every u ∈ U we have

[(U<u,≤U)] < [(U,≤U)]

in Q, by Lemma 1.4.9. If we now define a function g : Q→ Q by

g(α) = [(U<f (α),≤U)]

then g is an embedding Q→ Q<[(U,≤U)], but this contradicts Lemma 1.4.9. �

In his paper [85], Zermelo formulated the Axiom of Choice in order to prove the
following statement.

Definition 1.5.2 The Well-Ordering Theorem is the statement that for every set X

there exists a relation ≤ which well-orders X.
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Remark 1.5.3 Although the Axiom of Choice is intuitively correct, here we see
a consequence which is less intuitive, for it asserts that there is a relation which
well-orders the set of real numbers, for example. However, it can be shown that it is
impossible to define such a relation explicitly ([19]).

Proposition 1.5.4 The following assertions are equivalent:

(i) The Axiom of Choice.
(ii) Zorn’s Lemma.

(iii) The Principle of Cardinal Comparability.
(iv) The Well-Ordering Theorem.

Proof. We shall prove (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
The implication (i)⇒(ii) uses Hartogs’ Lemma (1.5.1). Suppose that (P,≤) is a
poset in which every chain has an upper bound, yet P has no maximal element. We
shall prove, using the Axiom of Choice, that in that case for every well-ordered set
L there is an embedding of L into P .

Since in P every chain has an upper bound, P is nonempty; let p0 ∈ P . By
the Axiom of Choice there is a function R : P(P )→ P such that for every subset
C of P we have: if C is a chain in P then R(C) is an upper bound for C; and
if not, R(C) = p0. Also, since P has no maximal element, for every p ∈ P there
is a q ∈ P with p < q; again using AC, there is a function g : P → P such that
p < g(p) for every p ∈ P .

Let (L,≤) be an arbitrary well-ordered set. Define a function F : L→ P by
recursion over L as follows:

– F(0L) = p0.
– F(x + 1) = g(F (x)).
– F(l) = R({F(x) | x < l}) if l is a non-zero limit element of L.

It is easy to check that F is an injective function from L into P . L was arbitrary, so
we get a contradiction with Hartogs’ Lemma.
The implication (ii)⇒(iii) is Proposition 1.3.8.
The implication (iii)⇒(iv) uses Hartogs’ Lemma once again. Let X be a set.
According to Hartogs’ Lemma there is a well-ordered set (LX,≤) such that there is
no injective function from LX into X. By Cardinal Comparability then, there must
be an injective function from X into LX ; but this gives us a well-ordering on X.
Finally, (iv)⇒(i) is easy. Suppose f : X→ Y is surjective. In order to find a section
for f , apply iv) to find a relation≤ on X which well-orders X. Now one can simply
define a section s : Y → X by letting s(y) be the least element of the nonempty set
f−1(y) in the well-ordering on X. �
Exercise 49 Give a direct proof of the fact that Zorn’s Lemma implies the Well-
Ordering Theorem.

Exercise 50 Let X be a set, and S a subset of P(X). We say that S is of finite
character if for every A ⊆ X it holds that A is an element of S if and only if every
finite subset of A is an element of S.
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The Teichmüller–Tukey Lemma (Oswald Teichmüller, 1913–1943; John Tukey,
1915–2000) states that if S is nonempty and of finite character, S contains a maximal
element (with respect to the subset ordering).

(a) Use Zorn’s Lemma to prove the Teichmüller–Tukey Lemma.
(b) Show that the Teichmüller–Tukey Lemma implies the Axiom of Choice.

Exercise 51 According to Hartogs’ Lemma, applied to the set N, there is a well-
ordered set W which is uncountable.

(a) Deduce from this that there exists a well-ordering (L,≤) with the following
properties:

(i) L is uncountable.
(ii) For every x ∈ L, the set L<x is countable.

[Hint: if W is an uncountable well-order, consider the set of those elements x

of W for which the set W<x is uncountable. Alternatively, one may show that
the statement follows directly from the proof of Hartogs’ Lemma.]

(b) Let L be as in (a). Prove that if x0 < x1 < x2 < · · · is an increasing sequence
in L then this sequence has an upper bound in L.

Exercise 52 Let L and M be well-orders and suppose L has no greatest element.

(a) Prove: if for every l ∈ L there is an embedding L<l → M then there is an
embedding L→ M .

(b) Does the statement in part (a) still hold if we replace “embedding” by “injective
function” throughout? Justify your answer.



Chapter 2
Models

In this chapter we develop the notion of a “formal language” as promised in the
Introduction; and also its “interpretation” in mathematical structures.

In the nineteenth century, a number of mathematicians started to reflect on Logic;
that is to say, the reasoning principles that are used in mathematical arguments
(before that time, Logic belonged to the realm of Philosophy and consisted in
studying syllogisms – separate reasoning steps – such as had been formulated by
Aristotle).

It occurred to George Boole (1815–1864) and Augustus de Morgan (1806–
1871) that the mathematical use of the words “and”, “or” and “not” obeys the
rules of algebra. This is why we have “Boolean rings”. Further steps, introducing
quantifiers (“for all” and “there exists”), were taken by Charles Sanders Peirce
(1839–1914), but the most important work of this era is Begriffsschrift of Friedrich
Ludwig Gottlob Frege (1848–1925), which appeared in 1879. “Begriffsschrift”
can be roughly translated as “the notation of concepts”. Frege not only defined a
complete logical language, but also set out to develop mathematics in it. He abruptly
abandoned the whole project after Bertrand Russell (1872–1970) pointed out an
antinomy in his work, but Russell himself continued it in Principia Mathematica
with A.N. Whitehead (1861–1947).

By this time (around 1900), the developing field of Logic had captured the
attention of leading mathematicians such as David Hilbert and Henri Poincaré.

The idea that abstract mathematical statements (and therefore also the “senten-
ces” of a logical language) can be interpreted in various “models” certainly existed
in the first decades of the twentieth century. In fact it is already implicit in the proof
by Lobachevsky (1792–1856) from 1826 that the parallel postulate is independent
of the other axioms of Euclidean geometry. However, the formal definition of the
notion “sentence φ is true in model X” is usually attributed to Alfred Tarski (1901–
1983): see [75] for the German translation of his original paper.
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Alfred Tarski

Certainly, Tarski created Model Theory, of which you will get a first glimpse in
this chapter.

2.1 Rings and Orders: Examples

This section is meant to serve as introduction and motivation for the formal
definition of an abstract language in the next section.

When we say that the real numbers R form a commutative ring with 1, we mean
that there are two distinguished elements 0 and 1, as well as operations + and ·,
such that certain axioms hold, for example:

x·(y + z) = (x·y)+ (x·z).

This is to be read as: whenever real numbers are substituted for the variables x, y

and z, we get an equality as above.
We call the whole of {0, 1,+, ·} the ring structure of R. Now of course you

know there are plenty of other rings. For example, let X be any set. The power set
P(X) can be made into a commutative ring with 1: take X for 1, ∅ for 0, and let for
U,V ⊆ X, U + V = (U ∪ V )− (U ∩ V ) and U ·V = U ∩ V .

Exercise 53 Check that this indeed gives a ring structure on P(X).

The example of P(X) makes it clear that the operation + does not, a priori, mean
addition of numbers, but is an abstract symbol generally used for the operation in
abelian groups; we might as well have used something like a(x, y) and m(x, y)

instead of x + y and x·y, respectively, and written the distributivity axiom as

m(x, a(y, z)) = a(m(x, y),m(x, z)).
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Similarly, one should regard 0 and 1 as abstract symbols that only acquire meaning
once they are interpreted in a particular set.

Many axioms for rings have a very simple form: they are equalities between
terms, where a term is an expression built up using variables, the symbols 0 and
1, and the operation symbols +, · (and brackets). From simple equalities we can
form more involved statements using logical operations: the operations ∧ (“and”),
∨ (“or”), → (“if. . . then”), ↔ (“if and only if”) and ¬ (“not”); and quantifiers ∃
(“there is”) and ∀ (“for all”). For example, if we want to express that R is in fact a
field, we may write

∀x(¬(x = 0)→ ∃y(x·y = 1))

or equivalently

∀x∃y(x = 0 ∨ x·y = 1).

We say that the statement ∀x∃y(x = 0 ∨ x·y = 1) “is true in R” (of course, what
we really mean is: in R together with the meaning of 0, 1,+, ·). Such statements
can be used to distinguish between various rings: for example, the statement

∃x(x·x = 1+ 1)

is true in R but not in the ring Q, and the statement

∀x(x·x = x)

is true in the ring P(X) but not in R.

Apart from operations on a set, one may also consider certain relations. In R we
have the relation of order, expressed by x < y. As before, we might have used a
different symbol for this relation, for example L(x, y) (“x is less than y”). And we
can form statements using this new symbol together with the old ones, for example

∀x∀y∀z(x < y → x + z < y + z)

which is one of the axioms for an ordered ring. In R, the order relation is definable
from the ring structure, because the statement

∀x∀y(x < y ↔ ∃z(¬(z = 0) ∧ x + z·z = y))

is true in R. However, this statement is not true in the ordered ring Q. Also the ring
P(X) is (partially) ordered by U ⊂ V ; in this ring, the order is definable, but now
in a different way:

∀x∀y(x < y ↔ (¬(x = y) ∧ x·y = x)).
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In yet another way, the order in Q is definable from the ring structure. In this case,
we use the theorem (first proved by Lagrange) which says that every natural number
may be written as the sum of four squares. Since every positive rational number is
the quotient of two positive natural numbers, we have:

x > 0 ↔ ∃y1 · · · y8 (x·(y2
1 + · · · + y2

4 + 1) = y2
5 + · · · + y2

8 + 1)

for all x ∈ Q. Since x < y is equivalent to ∃z(z > 0 ∧ x + z = y), we can define
the order on Q in terms of 0, + and · only.

We see that in general, when we wish to discuss a certain type of mathematical
structure, we choose symbols for the distinguished elements, the operations and the
relations which make up the structure, and using these we write down statements.
The use of such statements is varied: they may be axioms, required to be true in all
structures we wish to consider; they may be true in some, but not in others; or they
may be used to define elements or subsets of a structure.

In Mathematical Logic we study these statements and their relation to mathematical
structures formally. In order to do this we define formal statements as mathematical
objects. This is done in the next section.

We shall see many examples of different types of structures in the coming
sections.

2.2 Languages of First-Order Logic

This section is purely “linguistic” and introduces the formal languages for first-order
logic – or “predicate logic”.

Definition 2.2.1 A language L is given by three sets of symbols: constants,
function symbols and relation symbols. We may write

L = (con(L), fun(L), rel(L)).

Moreover, for each function symbol f and each relation symbol R a natural number
n of arguments is specified, and called the arity of f (or R). If f or R has arity n, we
say that it is an n-ary (or n-place) function (relation) symbol. Instead of 1-ary, 2-ary
and 3-ary we also use the words unary, binary, ternary. Since we shall consider a
0-place function symbol to be a constant, the arity of a function symbol is always a
number greater than 0; but we do allow 0-ary relation symbols (although we shall
not see many of those in this book).

Example 2.2.2 The language of rings has two constants, 0 and 1, and two 2-place
(binary) function symbols for addition and multiplication. There are no relation
symbols. The language of orders has one binary relation symbol (S or ≤) for “less
than or equal to”.



2.2 Languages of First-Order Logic 41

Given such a language L, one can build terms (to denote elements) and formulas
(to state properties). Note that we will first define what terms and formulas are
(mathematically) in Definitions 2.2.3 and 2.2.7, and then how we write them in
Definitions 2.2.5 and 2.2.9.

We use the following auxiliary symbols:

– A countably infinite set of variables. This set is usually left unspecified, and its
elements are denoted by x, y, z, . . . or x0, x1, . . .

– The equality symbol =
– The symbol⊥ (“absurdity”)
– Connectives: the symbols ∧ (“and”) for conjunction, ∨ (“or”) for disjunction,
→ (“if. . . then”) for implication and ¬ (“not”) for negation

– Quantifiers: the universal quantifier ∀ (“for all”) and the existential quantifier ∃
(“there exists”)

We assume that all auxiliary symbols are distinct, and that the set of auxiliary
symbols, the sets con(L), rel(L), fun(L) and the set of variables are pairwise
disjoint.

We will define the “terms” of a language L, making sure that for every constant
of L we have a term, for every variable we have a term, and whenever f is an n-
place function symbol of the language L and t1, . . . , tn are terms of L, we will have
a term indicating the application of the “function” f to “elements” t1, . . . , tn. A
precise and formal treatment defines terms as strings of symbols.
Let CL be the collection of all symbols: the symbols of L and the auxiliary
symbols. Write C∗L for the set of all finite strings of these symbols. Such a finite
string is written 〈a0, . . . , an−1〉 where a0, . . . , an−1 ∈ CL. For n = 0 this is the
empty string 〈 〉. On C∗L we have the operation of concatenation: given two strings
s = 〈a0, . . . , an−1〉 and t = 〈b0, . . . , bm−1〉 the concatenation s ∗ t is the string

〈a0, . . . , an−1, b0, . . . , bm−1〉.

Of course, we can have multiple concatenations and since this operation is associa-
tive we can simply write s1 ∗ s2 ∗ · · · ∗ sn for an iterated concatenation.

We shall now single out specific subsets of C∗L: the set of terms of the language
L and the set of formulas of L.

Definition 2.2.3 The set of terms of a language L (or L-terms) is the smallest subset
T of C∗L which satisfies the following conditions:

(i) If c is a constant of L then 〈c〉 is an element of T .
(ii) If x is a variable then 〈x〉 ∈ T .

(iii) If t1, . . . , tn is an n-tuple of elements of T and f is an n-place function symbol
of L, then the string

〈f 〉 ∗ t1 ∗ · · · ∗ tn

is an element of T .
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It is easy to see that for any collection of subsets of C∗L satisfying conditions (i)–
(iii) of Definition 2.2.3 its intersection also satisfies (i)–(iii). Therefore there exists
a smallest such subset, and Definition 2.2.3 is correct.

Example 2.2.4 Given a term of a language L, it is possible to recover uniquely the
steps by which it was constructed. For example, consider the string

〈f, g, x, h, x, c, h, y, d, d〉

where f is a 3-place function symbol, g and h are 2-place function symbols, c and
d are constants, and x and y are variables. Working “backwards” we identify the
“subterms” 〈d〉, 〈h, y, d〉 and 〈h, x, c〉which we may write as d , h(y, d) and h(x, c),
respectively; then, the subterm 〈g, x, h, x, c〉 which we may write as g(x, h(x, c))

and finally the given string, which we may denote by

f (g(x, h(x, c)), h(y, d), d).

This justifies the following notation, which will be used throughout in this book.

Definition 2.2.5 (Notation of terms) For a variable x, we will write just x for the
term 〈x〉. Similarly, for a constant c we will just write c for the corresponding term.
Given an n-place function symbol f and terms t1, . . . tn we write f (t1, . . . , tn) for
the term constructed in clause (iii) of Definition 2.2.3.

A term which does not contain variables (and hence is built up from constants
and function symbols alone) is called closed.

In our notation f (t1, . . . , tn) we have used brackets and separated the terms by
commas, to make for easier reading. This is not necessary for parsing the term, as
the following exercise shows (this generalizes the example above).

Exercise 54 Show that if t ∈ C∗L is a concatenation of terms, then we can recover
these terms uniquely from t .

Examples.

(a) Suppose L has a constant c and a 2-place function symbol f . The following are
terms of L: x, y, c, f (x, c), f (f (x, c), c), . . .

(b) Suppose L has no function symbols. The only terms are variables and constants.

It is an immediate consequence of the way the set of terms was defined that there is
an induction principle for terms: if T is any subset of C∗L which satisfies conditions
(i)–(iii) of Definition 2.2.3, then T contains the set of L-terms as a subset. The
following definition and exercise form an example of this.

Definition 2.2.6 Let t and s be elements of C∗L and let x ∈ CL be a symbol. The
substitution t[s/x] is defined by recursion on the length of the string t as follows.
Suppose t = 〈a0, . . . , an−1〉. Then we define:

(i) If n = 0 then t[s/x] = t = 〈 〉.
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(ii) If n > 0 and a0 = x then t[s/x] = s ∗ (〈a1, . . . , an−1〉[s/x]).
(iii) If n > 0 and a0 �= x then t[s/x] = 〈a0〉 ∗ (〈a1, . . . , an−1〉[s/x]).
Exercise 55 Suppose that t and s are L-terms and x is a variable. Prove that t[s/x]
is an L-term. [Hint: first prove that if t is of the form f (t1, . . . , tn) then t[s/x] is
f (t1[s/x], . . . , tn[s/x]). Then carry out induction on t as an L-term.]

For formulas we do almost the same thing. Just to give a few construction principles:
if t and s are L-terms, we will have an L-formula which expresses the equality of
these terms; if R is an n-place relation symbol of L and t1, . . . , tn are L-terms, we
have an L-formula which expresses that the n-tuple of “elements” (t1, . . . , tn) is in
the “relation” R; if ϕ and ψ are L-formulas, we will have a formula expressing “ϕ
and ψ”. The precise treatment also defines formulas as strings of symbols:

Definition 2.2.7 The set of formulas of a given language L (or L-formulas) is the
smallest subset F of C∗L which satisfies the following conditions:

(i) If t and s are L-terms then 〈=〉 ∗ t ∗ s is an element of F .
(ii) If t1, . . . , tn are L-terms and R is an n-place relation symbol of L, then

〈R〉 ∗ t1 ∗ · · · ∗ tn

is an element of F . Note that if R is 0-ary this means that 〈R〉 is an element
of F .

(iii) The string 〈⊥〉 is an element of F .
Formulas formed by (i), (ii) or (iii) are called atomic formulas.

(iv) If ϕ and ψ are elements of F then the following are elements of F :

〈∧〉 ∗ ϕ ∗ ψ

〈∨〉 ∗ ϕ ∗ ψ

〈→〉 ∗ ϕ ∗ ψ

〈¬〉 ∗ ϕ

(v) If ϕ is an element of F and x is a variable then the following are elements of F :

〈∀〉 ∗ 〈x〉 ∗ ϕ

〈∃〉 ∗ 〈x〉 ∗ ϕ

Just as in the case of L-terms there is a smallest subset of C∗L satisfying conditions
(i)–(v) of Definition 2.2.7. Accordingly, we have an induction principle for formulas
analogous to the one for terms.

Exercise 56 Prove by induction on formulas that the last symbol of a formula is a
variable or a constant, or ⊥ or a 0-place relation symbol R.
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Example 2.2.8 Let us indicate by example that, just as with terms, it is possible to
recover the whole construction process of a formula ϕ. Consider the formula

〈∃, x,→, R, x, y,∀, z,∧,¬,=, f, y, z, c, ∃, v, S, x, y, v〉

where R and S are, respectively, a 2- and 3-place relation symbol, f is a 2-place
function symbol, c is a constant and x, y, z, v are variables. We work backwards as
in Example 2.2.4. The last symbol is the variable v. Moving to the left we search
for the rightmost symbol which is either a relation symbol or the symbol =. Here
we find the ternary relation symbol S and the “subformula” 〈S, x, y, v〉 which we
may write as S(x, y, v). (Had we found the symbol =, then we would know that the
part to the right of that symbol must be of the form t ∗ s for terms t, s; and we can
recover t and s by Exercise 54 to find the “subformula” 〈=〉 ∗ t ∗ s, which we may
write as (t = s).) Now note that formulas are constructed from the atomic ones by
unary constructors (prefixing by ∀x, ∃x or ¬) and binary constructors (combining
ϕ,ψ to get 〈∧〉 ∗ ϕ ∗ ψ or similar, using ∨ or→). Having obtained the subformula
S(x, y, v) we look at the string for the maximal number of unary constructors
applied to it. In this example we find one: ∃, v preceding our subformula. So we have
a subformula 〈∃, v, S, x, y, v〉 which we may write as ∃vS(x, y, v). Next we move
left to find the rightmost binary constructor. Here we find ∧ and we know that the
string between this ∧ and our subformula must be a formula: it is 〈¬,=, f, y, z, c〉,
which we may write as ¬(f (y, z) = c) and we have a subformula which may be
written as (¬(f (y, z) = c) ∧ ∃vS(x, y, v)). Continuing in this way we obtain in
the end the formula

∃x(R(x, y)→ ∀z(¬(f (y, z) = c)∧ ∃vS(x, y, v))).

We introduce therefore the following informal notation, which we will use through-
out in this book.

Definition 2.2.9 (Notation of formulas) Atomic formulas are written as (t = s),
R(t1, . . . , tn),⊥, R (for R a 0-ary relation symbol). Formulas constructed by clause
(iv) of Definition 2.2.7 are written as (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) and¬ϕ. Formulas
constructed by clause (v) of Definition 2.2.7 are written as ∀xϕ and ∃xϕ.

Exercise 57 Prove the following two statements simultaneously, by induction on
strings:

(a) Whenever a string is a concatenation of two formulas, we can recover these two
formulas uniquely from the string.

(b) Whenever a string is a formula, we can retrieve its informal notation uniquely
from the string.

Examples/Remarks

(a) Note that, in contrast to the formal definition of formulas, in the informal nota-
tion we need brackets: ϕ ∨ ψ → χ might come from 〈∨〉 ∗ ϕ ∗ 〈→〉 ∗ ψ ∗ χ ,
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giving ϕ ∨ (ψ → χ); or from 〈→,∨〉 ∗ ϕ ∗ ψ ∗ χ which gives (ϕ ∨ ψ)→ χ .
However, outermost brackets are usually omitted.

(b) Suppose the language L has one constant c, one binary function symbol f and
one ternary relation symbol R. Then the expressions

∀x∀yR(c, x, f (y, c))

∀x(x = f (x, x)→ ∃yR(x, c, y))

R(f (x, f (c, f (y, c))), c, y)∧ (x = y ∨ ¬R(c, c, x))

are formulas of L (note how we use the brackets!), but the expression

∀R¬R(x, x, c)

is not (this might be called a “second-order formula”; quantifying over
relations).

There is also a recursion principle for defining functions on the set of formulas:

Proposition 2.2.10 (Recursion on formulas) Let V be the set of variables, A the
set of atomic formulas and F the set of all formulas. Suppose X is a set and we are
given functions:

fa : A→ X

f∧, f∨, f→ : X ×X→ X

f¬ : X→ X

f∀, f∃ : V ×X→ X

Then there is a unique function f : F → X satisfying the following conditions:

f (ϕ) = fa(ϕ) if ϕ is an atomic formula.
f (ϕ) = f∧(f (ψ), f (χ)) if ϕ = ψ ∧ χ.

f (ϕ) = f∨(f (ψ), f (χ)) if ϕ = ψ ∨ χ.

f (ϕ) = f→(f (ψ), f (χ)) if ϕ = ψ → χ.

f (ϕ) = f¬(f (ψ)) if ϕ = ¬ψ.

f (ϕ) = f∀(x, f (ψ)) if ϕ = ∀xψ.

f (ϕ) = f∃(x, f (ψ)) if ϕ = ∃xψ.

Exercise 58 Prove Proposition 2.2.10. [Hint: argue in a way similar to the proof of
Proposition 1.4.6.]

An important example of recursion on formulas is the definition of substitution of a
term for a variable in a formula.
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Definition 2.2.11 Let ϕ be a formula, x a variable and s a term. The substitution of
s for x in ϕ, which we will temporarily denote by ϕ[[ s/x ]] in order to distinguish it
from the substitution in Definition 2.2.6, is defined by recursion on ϕ as follows:

ϕ[[ s/x ]] = ϕ[s/x] if ϕ is an atomic formula; the
notation ϕ[s/x] is from Definition 2.2.6.

(ψ ◦ χ)[[ s/x ]] = (ψ[[ s/x ]] ◦ χ[[ s/x ]]) for ◦ ∈ {∧,∨,→}.
(¬ψ)[[ s/x ]] = ¬ψ[[ s/x ]].

(∀yψ)[[ s/x ]] = ∀yψ[[ s/x ]] if y is a variable distinct from x.

(∀xψ)[[ s/x ]] = ∀xψ.

(∃yψ)[[ s/x ]] = ∃yψ[[ s/x ]] if y is a variable distinct from x.

(∃xψ)[[ s/x ]] = ∃xψ.

From now on we shall write ϕ[s/x] instead of ϕ[[ s/x ]].
Remark 2.2.12 Our treatment of terms and formulas above may seem a bit
bureaucratic. Standard logic textbooks (e.g. [62]) deal with this very quickly. They
say for example: terms are strings of symbols. Every variable x and every constant
c is a term. If f is an n-place function symbol and t1, . . . , tn are terms then
f (t1, . . . , tn) is a term. However, this does not make immediate mathematical sense.
If the ti are strings of symbols, then what is “f (t1, . . . , tn)” and in what way is it
a string of symbols (rather than, as it would appear, a string of symbols and strings
(of symbols, and. . . ))? As we have seen, the usual casual definition can be justified,
and the more intuitive notation can be uniquely recovered from our formal one.

2.2.1 Free and Bound Variables

In the formula ∀x(R(x, y)→ ∃zP (x, z)) the variables x and z are bound by
the quantifiers ∀x, ∃z respectively; the variable y is free. The x in “∀x” is also
considered to be bound.

The intuition is that the formula above states a property of y but not of x or z; it
should mean the same thing as the formula

∀u(R(u, y)→ ∃vP (u, v)).

In the next section, where we shall give meaning to formulas, this will be made
precise. The situation is similar to the use of variables in expressions such as∫ x

0 f (t)dt: this expression is a function of x, not of t . And, of course,
∫ x

0 f (t)dt =
∫ x

0 f (u)du.
Now it may happen that the same variable occurs in more than one place, as in

the formula ∀y(R(x, y)→ ∀xR(x, x)). Here the first occurrence of the variable x

(in ∀yR(x, y)) is free whereas the two other occurrences (in ∀xR(x, x)) are bound.
Let us make a definition.



2.2 Languages of First-Order Logic 47

Definition 2.2.13

(i) Let ϕ be an L-formula. An occurrence of the variable x in ϕ is a natural number
i such that the i-th element of the string ϕ is x.

(ii) Let i be an occurrence of the variable x in formula ϕ, and let u be a variable
which does not occur in ϕ. The occurrence i of x in ϕ is bound if the i-th
element of the string ϕ[u/x] is x (note that the strings ϕ and ϕ[u/x] have the
same length).

(iii) If the occurrence i of x in ϕ is not bound, it is called free.
(iv) A formula with no free (occurrences of) variables is called closed, or a

sentence.

A closed formula should be thought of as an assertion.
Usually one talks about “free (and bound) variables” instead of “free and bound
occurrences of variables”. In practice we never consider expressions such as

∀x∀y∀xR(x, y)

or
∀y(R(x, y)→ ∀xR(x, x)).

In the first case one might be forgiven for thinking that the variable x is bound twice;
and in the second case one has the feature that the variable x occurs both bound and
free. When working with formulas we shall always stick to the following

CONVENTION ON VARIABLES In formulas, a variable will always be either
bound or free but not both; and every occurrence of it is bound at most once.

This convention is not meant to exclude formulas like ∀xP(x) ∨ ¬∀xP(x); cer-
tainly one can argue that the “same” variable (namely, x) is “bound twice”; but in
fact every occurrence of the variable is only bound once. However, in the case of
∀x(P (x) ∨ ¬∀xP(x)) we shall rather use the equivalent form (see Section 2.3 for a
precise definition of “equivalence of formulas”) ∀x(P (x) ∨ ¬∀yP(y)).

In the case of the two expressions above, we would replace ∀x∀y∀xR(x, y) by
∀x∀y∀uR(u, y) and ∀y(R(x, y)→ ∀xR(x, x)) by ∀y(R(x, y)→ ∀uR(u, u)).

2.2.2 Legitimate Substitutions

Substitution presents us with some subtleties. Suppose ϕ is the formula ∀xR(x, y).
If t is the term f (u, v), then ϕ[t/x] is just ϕ, since x is bound in ϕ; on the other hand,
ϕ[t/y] is ∀xR(x, f (u, v)). This is totally unproblematic. Intuitively, the formula ϕ

states a property of y. The substitution ϕ[t/y] should state the same property for t .
But now suppose t is the term f (x, y). The substitution ϕ[t/y] presents us

with a problem; if we carry out the replacement of y by t we get the formula
∀xR(x, f (x, y)), which intuitively does not “mean” that the property expressed by
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ϕ holds for the element denoted by t! Therefore, we say that the substitution is not
legitimate in this case.

Definition 2.2.14 A substitution ϕ[t/x] is legitimate if no variable in the term t

becomes bound in ϕ[t/x].
The notion of legitimate substitution plays a role when we consider formal proofs

in Chapter 3. In practice we shall consider the formula ϕ = ∀xR(x, y) from the
example above as the “same” formula as ∀uR(u, y) (see Exercise 60 below), and
now the substitution ϕ[f (x, y)/y]makes sense: we get ∀uR(u, f (x, y)).

If the term t is closed (in particular, if t is a constant), the substitution ϕ[t/x] is
always legitimate, as is easy to see.

2.2.3 First-Order Logic and Other Kinds of Logic

In this book, we shall limit ourselves to the study of “first-order logic”, which is
the study of the formal languages and formulas as we have described here, and their
relation to structures, as we will see in the next section.

This logic has good mathematical properties, but it also has severe limitations.
Our variables denote, as we shall see, elements of structures. So we can only say
things about all elements of a structure, not about all subsets, or about sequences of
elements. For example, consider the language of orders: we have a 2-place relation
symbol≤ for “less than or equal to”. We can express that ≤ really is a partial order:

(∀x(x ≤ x)∧
∀x∀y∀z((x ≤ y ∧ y ≤ z)→ x ≤ z))∧
∀x∀y((x ≤ y ∧ y ≤ x)→ x = y)

and that ≤ is a linear order:

∀x∀y(x ≤ y ∨ y ≤ x)

but we cannot express that≤ is a well-order, since for that we have to say something
about all subsets (we shall return to this example in Exercise 81).

It is possible to consider logics where such statements can be formed: these are
called “higher-order” logics. There are also logics in which it is possible to form
the conjunction, or disjunction, of an infinite set of formulas (so formulas will be
infinite objects in such a logic). For a bit more on these logics, see Section A.5 in
the Appendix.
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2.3 Structures for First-Order Logic

In this section we consider a fixed but arbitrary first-order language L and discuss
what it means to have a structure for L.

Definition 2.3.1 An L-structure M consists of a nonempty set, also denoted by M ,
together with the following data:

(i) for each constant c of L, an element cM of M;
(ii) for each n-place function symbol f of L, a function

f M : Mn→ M

(iii) for each n-place relation symbol R of L, a subset

RM ⊆ Mn.

We call the element cM the interpretation of c in M and similarly f M and RM are
called the interpretations of f and R, respectively.

Given an L-structure M , we consider the language LM (the language of the
structure M): LM is L together with, for each element m of M , an additional
constant (also denoted m). Here it is assumed that CL ∩M = ∅. If we stipulate that
the interpretation in M of each new constant m is the element m, then M is also an
LM -structure.

Definition 2.3.2 (Interpretation of terms) For each closed term t of the extended
language LM we define its interpretation tM as an element of M , by induction on t ,
as follows. If t is a constant, then its interpretation is already defined since M is an
LM -structure. If t is of the form f (t1, . . . , tn), then t1, . . . , tn are also closed terms
of LM , so by the induction hypothesis their interpretations tM1 , . . . , tMn have already
been defined; we put

tM = f M(tM1 , . . . , tMn ).

Next, we define for a closed formula ϕ of LM what it means to say that “ϕ is true
in M” (other ways of saying this are: ϕ holds in M , or M satisfies ϕ). We have the
following notation for this notion: M |� ϕ. For its negation we write M �|� ϕ.

Definition 2.3.3 (Interpretation of formulas) For a closed formula ϕ of LM , the
relation M |� ϕ is defined by induction on ϕ:

– If ϕ is a closed atomic LM -formula we have the following possibilities: it is equal
to⊥, it is of the form (t1 = t2), or it is of the form R(t1, . . . , tn) with t1, t2, . . . , tn
closed terms. Define:

M |� ⊥ never holds,
M |� (t1 = t2) if and only if tM1 = tM2 ,

M |� R(t1, . . . , tn) if and only if (tM1 , . . . , tMn ) ∈ RM,
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where the tMi are the interpretations of the terms according to Definition 2.3.2,
and RM the interpretation of R in the structure M .

– If ϕ is of the form (ϕ1 ∧ ϕ2) define

M |� ϕ if and only if M |� ϕ1 and M |� ϕ2.

– If ϕ is of the form (ϕ1 ∨ ϕ2) define

M |� ϕ if and only if M |� ϕ1 or M |� ϕ2

(the “or” is to be read as inclusive: as either. . . or. . . , or both).
– If ϕ is of the form (ϕ1 → ϕ2) define

M |� ϕ if and only if M |� ϕ2 whenever M |� ϕ1.

– If ϕ is of the form (¬ψ) define

M |� ϕ if and only if M �|� ψ.

– If ϕ is of the form ∀xψ define

M |� ϕ if and only if M |� ψ[m/x] for all m ∈ M.

– If ϕ is of the form ∃xψ define

M |� ϕ if and only if M |� ψ[m/x] for some m ∈ M.

In the last two clauses, ψ[m/x] results by substitution of the new constant m for
x in ψ .

In a way, this truth Definition 2.3.3 simply translates the formulas of LM (and hence,
of L) into ordinary language. For example, if R is a binary (2-place) relation symbol
of L and M is an L-structure, then M |� ∀x∃yR(x, y) if and only if for each m ∈ M

there is an n ∈ M such that (m, n) ∈ RM . In other words, RM contains the graph of
a function M → M (if we use AC).

Remark 2.3.4 In modern textbooks on model theory one seldom finds the require-
ment that the underlying set of an L-structure must be nonempty, and certainly
there are good reasons to allow the empty set as an L-structure (provided L has no
constants): consider the definition of a substructure generated by a subset just before
Exercise 95, and the proof of Theorem 2.8.3, where the nonemptiness requirement
is quite inelegant. Nevertheless, we stick to the old-fashioned convention that
structures must be nonempty because it is harder to formulate a sound and complete
proof system for possibly empty structures. Indeed, the empty structure satisfies
∀xϕ, for any formula ϕ.
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2.3.1 Validity and Equivalence of Formulas

We introduce the following abbreviation: ϕ↔ψ abbreviates (ϕ→ ψ) ∧ (ψ→ϕ).

Definition 2.3.5 An L-formula ϕ is called valid if for every L-structure M and
every substitution of constants from M for the free variables of ϕ we have M |� ϕ.
Two L-formulas ϕ and ψ are called (logically) equivalent if the formula ϕ ↔ ψ is
valid.

For example, the closed formula ∃x(x = x) is valid, since structures are required
to be nonempty.

The next couple of exercises provide you with a number of useful equivalences
between formulas.

Exercise 59 Show that the following formulas are valid:

(ϕ ∨ (ψ ∨ χ))↔ ((ϕ ∨ ψ) ∨ χ)

ϕ ↔ ¬¬ϕ

¬ϕ ↔ (ϕ→⊥)

(ϕ → ψ)↔ (¬ϕ ∨ ψ)

(ϕ ∨ ψ)↔ ¬(¬ϕ ∧ ¬ψ)

(ϕ ∧ ψ)↔ ¬(¬ϕ ∨ ¬ψ)

∃xϕ ↔ ¬∀x¬ϕ

∀xϕ ↔ ¬∃x¬ϕ

The equivalences ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ) and ¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ) are
called De Morgan’s Laws.

(ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(ϕ → (ψ ∨ χ))↔ ((ϕ→ ψ) ∨ (ϕ→ χ))

(ϕ → (ψ ∧ χ))↔ ((ϕ→ ψ) ∧ (ϕ→ χ))

((ϕ ∨ ψ)→ χ)↔ ((ϕ→ χ) ∧ (ψ → χ))

In the following, assume that x does not occur in ϕ:

(ϕ→ ∃xψ)↔ ∃x(ϕ→ ψ)

(∃xψ → ϕ)↔ ∀x(ψ → ϕ)

(∀xψ → ϕ)↔ ∃x(ψ → ϕ)

Check for yourself that a formula like ∃xϕ ↔ ¬∀x¬ϕ does not violate our
Convention on Variables!

Exercise 60 Suppose ϕ is a formula and u a variable that does not occur in ϕ. Show
that the formulas ∀vϕ and ∀u(ϕ[u/v]) are equivalent.
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Exercise 61 Show by counterexamples that the following sentences are not valid:

∃v(φ(v)→ ψ) → (∃vφ(v)→ ψ)

((∀xφ(x))→ ψ) → ∀x(φ(x)→ ψ)

Exercise 62 Prove that every formula is equivalent to a formula which starts with
a string of quantifiers, followed by a formula in which no quantifiers occur. Such a
formula is said to be in prenex normal form.

Exercise 63 Disjuction of formulas is associative up to logical equivalence (this is
the first item of Exercise 59) so if we form a formula by iterated disjunction, it does
not matter how we bracket it; we may write ψ1 ∨ · · · ∨ ψn. A similar remark goes
for conjunction.

(a) Let ϕ be a formula in which no quantifiers occur. Show that ϕ is logically
equivalent to a formula of the form:

ψ1 ∨ · · · ∨ ψk

where each ψi is a conjunction of atomic formulas and negations of atomic
formulas. This form is called a disjunctive normal form for ϕ.

(b) Let ϕ be as in (a); show that ϕ is also equivalent to a formula of the form

ψ1 ∧ · · · ∧ ψk

where each ψi is a disjunction of atomic formulas and negations of atomic
formulas. This form is called a conjunctive normal form for ϕ.

Exercise 64 Let L be a language with just one binary function symbol f . For each
item in the list of L-structures given below, give an L-sentence which is true in that
structure but false in the other three structures.

(a) R− {0} with the usual multiplication (as interpretation of f ).
(b) {x ∈ R | |x| > 1} with the usual multiplication.
(c) {x ∈ C | |x| > 1} with the usual multiplication.
(d) The set of 2× 2-matrices with real coefficients whose determinant has absolute

value > 1, with matrix multiplication.

In the following exercises you are asked to give L-sentences which “express” certain
properties of structures. This means: give an L-sentence φ such that for every L-
structure M it holds that M |� φ if and only if the structure M has the given property.

Example 2.3.6 Suppose L has a 2-place function symbol m. An L-structure M is
a nonempty set with a function mM : M ×M → M . If φ is the L-sentence

∀x∀y∀z(m(x,m(y, z)) = m(m(x, y), z))

then M |� φ precisely when the operation mM is associative. So we say that the
sentence φ expresses the associativity of m.
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Exercise 65 Let L be the empty language, so an L-structure is “just” a nonempty
set M . Express by means of an L-sentence that M has exactly 4 elements.

Exercise 66 Let L be a language with one binary relation symbol R. Give L-
sentences which express:

(a) R is an equivalence relation.
(b) There are exactly 2 equivalence classes.

Exercise 67 Let L be a language with just one 1-place function symbol F . Give an
L-sentence φ which expresses that F is a bijective function.

Exercise 68 Let L be the language with just the 2-place function symbol written
as a dot: ·. We consider the L-structures Z and Q where the dot · is interpreted as
ordinary multiplication.

(a) “Define” the numbers 0 and 1. That is, give L-formulas ϕ0(x) and ϕ1(x) with
one free variable x such that, in both Q and Z, ϕi(a) is true exactly when a = i

(i = 0, 1).
(b) Give an L-sentence which is true in Z but not in Q.

Exercise 69 Let L be the language {f, g} where f is a 2-place function symbol
and g a 1-place function symbol. Consider the L-structure M , with underlying set
R, f M is multiplication on R, and gM is the sine function. Give an L-formula φ(x)

with one free variable x such that for all a ∈ R the following holds:

M |� φ(a) ⇔ there is an n ∈ N such that a = (2n+ 1

2
)π.

Exercise 70 Let L = {≤} be the language of posets; here ≤ is a binary relation
symbol (and we naturally write x ≤ y instead of≤ (x, y)). So a poset is nothing but
an L-structure which satisfies the following L-sentences:

∀x(x ≤ x)

∀x∀y∀z((x ≤ y ∧ y ≤ z)→ x ≤ z)

∀x∀y((x ≤ y ∧ y ≤ x)→ x = y)

Suppose M is a well-order, seen as an L-structure. Give an L-formula φ(x) in one
free variable such that for every a ∈ M the following holds:

M |� φ(a) ⇔ a is a limit element.
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2.4 Examples of Languages and Structures

2.4.1 Graphs

A directed graph is a structure with vertices (points) and edges (arrows) between
them, such as:

The language Lgraph of directed graphs has two 1-place relation symbols, E and V

(for “edge” and “vertex”), and two 2-place relation symbols S and T (for “source”
and “target”; S(x, y) will mean “the vertex x is the source of the edge y”).

An Lgraph-structure is a nonempty set G together with two subsets EG,V G of
G, and two subsets SG, T G of G2. G is a directed graph precisely when G satisfies
the following axioms for directed graphs:

∀x(E(x)∨ V (x)) ∀x¬(E(x)∧ V (x))

∀x∀y(S(x, y)→ (V (x) ∧E(y))) ∀x∀y(T (x, y)→ (V (x) ∧ E(y)))

∀x∀y∀z((S(x, z)∧ S(y, z))→ x = y) ∀x∀y∀z((T (x, z) ∧ T (y, z))→ x = y)

∀z(E(z)→ ∃x∃y(S(x, z)∧ T (y, z)))

2.4.2 Local Rings

The language Lrings of rings has constants 0 and 1 and two 2-place function symbols
for multiplication and addition, denoted · and +. There are no relation symbols.

A commutative ring with 1 is an Lrings-structure which satisfies the axioms for
commutative rings with 1:

∀x(x + 0 = x) ∀x(x·1 = x)

∀xy(x + y = y + x) ∀xy(x·y = y·x)

∀xyz(x + (y + z) = (x + y)+ z) ∀xyz(x·(y·z) = (x·y)·z)
∀x∃y(x + y = 0) ∀xyz(x·(y + z) = x·y + x·z)

¬(0 = 1)

We have started to abbreviate a string of quantifiers of the same kind: instead of
∀x∀y we write ∀xy.
A local ring is a commutative ring with 1 which has exactly one maximal ideal. This
is a condition that involves quantifying over subsets (ideals) of the ring, and cannot
be formulated in first-order logic. However, one can show that a commutative ring
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with 1 is local precisely when for each pair of elements x, y the statement that x + y

is a unit implies that either x or y is a unit. That is, a commutative ring R with 1 is
local if and only if

R |� ∀xy(∃z(z·(x + y) = 1)→ (∃v(v·x = 1) ∨ ∃w(w·y = 1))).

Exercise 71 Let L be Lrings together with an extra unary relation symbol I . Give
L-formulas which express that the subset defined by I is:

(a) an ideal;
(b) a prime ideal;
(c) a maximal ideal.

2.4.3 Vector Spaces

Fix a field k. We can write down a language Lk of first-order logic, and axioms in
this language, such that the Lk-structures which satisfy the axioms are precisely the
k-vector spaces.

The language Lk has a constant 0 and a binary function symbol + to describe
the abelian group structure. Furthermore, it has a 1-place function symbol fm for
every element m of k, to describe scalar multiplication. Apart from the axioms for an
abelian group (which are the left side of the axioms for rings given in Section 2.4.2),
there are the axioms:

fm(0) = 0 ∀xy(fm(x + y) = fm(x)+ fm(y))

∀x(f1(x) = x) ∀x(fm(fm′(x)) = fmm′(x))

∀x(fm+m′(x) = fm(x)+ fm′(x))

In the second line of these axioms, 1 is the unit of the field k, and mm′ refers to
multiplication in k. In the third line, m+m′ refers to addition in k. Note that, if the
field k is infinite, then there are infinitely many axioms to satisfy!

Exercise 72 The language Lk and the axioms for vector spaces given above are
not very satisfactory in the sense that there are many important things about vectors
that cannot be expressed by Lk-formulas; for example, that x and y are linearly
independent vectors (if k is infinite).

Devise yourself a different language and different axioms which do allow you to
express that two vectors are linearly independent over the field of scalars. Mimicking
the example of graphs, have two 1-place relation symbols S and V (for “scalar”
and “vector” respectively). How do you express addition of vectors and scalar
multiplication?
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2.4.4 Basic Plane Geometry

The language Lgeom of basic plane geometry has two 1-place relation symbols P

and L for “point” and “line”, and a 2-place relation symbol I for “point x lies on
line y”. The axioms are:

∀x(P (x) ∨ L(x))

∀x¬(P (x) ∧ L(x))

∀xy(I (x, y)→ (P (x) ∧ L(y)))

∀xx ′(P (x) ∧ P(x ′)→ ∃y(I (x, y)∧ I (x ′, y)))

∀xx ′yy ′((I (x, y) ∧ I (x ′, y) ∧ I (x, y ′) ∧ I (x ′, y ′))→ (x = x ′ ∨ y = y ′))

Convince yourself that these axioms mean: everything is either a point or a line (and
not both), for every two points there is a line they lie on, and two distinct lines can
have at most one point in common.

Exercise 73 A famous extra axiom says that for every line l and point x not on l,
there is a unique line m through x which does not intersect l. Show how to express
this axiom in Lgeom.

2.5 The Compactness Theorem

Before we can state the main theorem of this section we discuss some abstract
general notions concerning first-order languages and structures.

Let L be a language. A theory in L (or L-theory) is simply a set of L-sentences
(closed formulas). This may be a set of axioms for a meaningful mathematical
theory, such as the axioms for local rings.

If T is an L-theory, an L-structure M is called a model of T if every sentence in
T is true in M; in other words, if

M |� ϕ

for every ϕ ∈ T . We shall also write M |� T in this case. So, a local ring is the same
thing as a model of the theory of local rings, etcetera.

For every theory T there will be sentences which are true in every model of T :
the consequences of the theory. We write T |� ϕ to mean: ϕ holds in every model
of T .

A theory T need not have models; T is said to be consistent if T has a model.
The antonym is inconsistent.

Exercise 74 If T is inconsistent, T |� ϕ holds for every L-sentence ϕ. Show also
that T |� ϕ if and only if T ∪ {¬ϕ} is inconsistent.
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Clearly, every model of T is also a model of every subtheory T ′ ⊆ T ; so if T

is consistent, so is T ′. The following important theorem says that in order to check
whether a theory T is consistent, one only needs to look at its finite subtheories:

Theorem 2.5.1 (Compactness Theorem; Gödel 1929) Let T be a theory in a
language L. If every finite T ′ ⊆ T is consistent, then so is T .

The easiest proof of the Compactness Theorem uses the Completeness Theorem
(Theorem 3.2.6), which is proved in Chapter 3. However, it is not strictly necessary
to go this way. If you would like to see a proof right away, see Section 2.5.1.

Exercise 75 Use the Compactness Theorem to show: if T |� ϕ then there is a finite
subtheory T ′ ⊆ T such that T ′ |� ϕ.

The Compactness Theorem can be used to explore the boundaries of what can be
expressed using first-order logic. Here are a few examples.

Example 2.5.2 Consider the empty language L: no constants, function symbols
or relation symbols. An L-structure is nothing but a nonempty set. Still, there are
meaningful L-sentences; for example the sentence

∀xyz(x = y ∨ x = z ∨ y = z)

will be true in a set S if and only if S has at most two elements. Likewise, there is
for any natural number n ≥ 1 a sentence φn such that φn is true in S if and only if S

has at most n elements.

Exercise 76 Give a construction for the sentences φn.

Consequently, if T is the theory {¬φn | n ≥ 1}, then S is a model of T if and only if
S is infinite.

In contrast, there is no theory T such that S is a model of T if and only if S is finite.
This can be proved with the help of the Compactness Theorem. For, suppose that
such a theory T exists. Consider then the theory

T ′ = T ∪ {¬φn | n ≥ 1}.

Assume that M is a model of T ′. Then M is also a model of T , so M is finite by
our assumption on T . Yet, by construction of T ′, M has at least n+ 1 elements, for
each natural number n! Clearly, this is impossible, so T ′ has no models.

But now by the Compactness Theorem, there must be a finite subtheory T ′′ ⊆ T ′
such that T ′′ has no models. Consider such T ′′. Then for some k ∈ N we must have
that

T ′′ ⊆ T ∪ {¬φn | 1 ≤ n ≤ k}.
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But any finite set with at least k + 1 elements is a model of T ∪ {¬φn | 1 ≤ n ≤ k},
hence of T ′′. We have obtained a contradiction, showing that the assumed theory T

does not exist.

Exercise 77 Conclude from this reasoning that there cannot be a single sentence φ

in the empty language such that φ is true in a set S precisely when S is infinite.

Example 2.5.3 The language Lgrp of groups has one constant e and one 2-place
function symbol ·. The theory Tgrp of groups consists of the sentences:

∀x(e·x = x) ∀x(x·e = x)

∀xyz(x·(y·z) = (x·y)·z) ∀x∃y(x·y = e ∧ y·x = e)

A group is nothing but an Lgrp-structure which is a model of Tgrp. Given a group G,
an element g is said to have finite order if for some n > 0, gn = g· . . . ·g

︸ ︷︷ ︸
n

is the unit

element of the group. The least such n is in this case called the order of g.
For each n ≥ 2, there is a sentence φn of Lgrp such that for any group G it holds

that G |� φn if and only if G has no non-trivial elements whose order is a divisor
of n:

∀x(x· . . . ·x︸ ︷︷ ︸
n

= e→ x = e).

Therefore, in complete analogy to the case with sets as structures for the empty
language (Example 2.5.2), there is a theory T , with Tgrp ⊆ T , such that the models
of T are precisely the groups which do not contain elements of finite order (such as
the group Z).

And again, in contrast there is no theory T such that its models are precisely
the groups which do contain elements of finite order. This is proved, using the
Compactness Theorem, in a way completely analogous to Example 2.5.2, and is
therefore left as an exercise.

Exercise 78 Carry out the proof of the last statement in Example 2.5.3.

There are many variations on Example 2.5.3. We mention one in the following
exercise.

Exercise 79 Consider the language Lgraph of directed graphs (Section 2.4.1). In a
directed graph, a cycle is a sequence (e1, . . . , ek) of edges, such that for each i with
1 ≤ i < k, the source of ei+1 is the target of ei , and moreover the target of ek is the
source of e1. The number k is the length of the cycle.

(a) Show that for each n ≥ 1 there is an Lgraph-sentence φn which is true in a graph
G exactly when G has no cycles of length n.

(b) Show that there is no theory T in Lgraph such that the models of T are precisely
the graphs which contain cycles.



2.5 The Compactness Theorem 59

(c) Show that there is no finite theory T in the language Lgraph such that the models
of T are precisely the graphs which have no cycles.

Example 2.5.4 This example and Example 2.5.5 illustrate another use of the
Compactness Theorem: it can be used to show the existence of new models of
certain theories. Technically, this example is a little different from the first two in
that it uses an extension of the language by a constant.

The theory PA of Peano Arithmetic describes the basic structure of the natural
numbers. The language has two constants 0 and 1 and two binary function symbols
+ and ·, and is therefore the same as the language for rings. PA has the following
axioms:

∀x¬(x + 1 = 0) ∀xy(x + 1 = y + 1→ x = y)

∀x(x + 0 = x) ∀x(x·0 = 0)

∀xy(x + (y + 1) = (x + y)+ 1) ∀xy(x·(y + 1) = x·y + x)

and in addition, there are the so-called induction axioms. Suppose ϕ contains the
free variables x, y1, . . . yn and does not contain the variable u; then the following is
an axiom of PA:

∀y1 · · · yn((ϕ[0/x] ∧ ∀x(ϕ→ ϕ[x + 1/x]))→ ∀uϕ[u/x]).

The theory PA is consistent since the ordinary set N of natural numbers, with the
usual interpretation of the symbols 0, 1,+, ·, is a model of PA.

However, there are other models of PA. This can be seen with the help of the
Compactness Theorem: consider the language L, which is the language of PA
together with one extra constant c. Let T be the L-theory which has all the axioms
of PA, and moreover all the axioms:

¬(c = 0)

¬(c = 1)

¬(c = 1+ 1)

¬(c = (1+ 1)+ 1)
...

Suppose T ′ is a finite subtheory of T . Then T ′ contains only finitely many of
these new axioms. Therefore, we can always make N into an L-structure which is a
model of T ′, by picking a large enough natural number for the interpretation of the
constant c.

Therefore, every finite subtheory T ′ of T is consistent; by the Compactness
Theorem, T is consistent. So T has a model M . Then M is, in particular, a model of
PA. One can show that in every model of PA, the interpretations of the closed terms

0, 1, 1+ 1, (1+ 1)+ 1, ((1+ 1)+ 1)+ 1, . . .
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are all distinct, so there is an injective function from N into M . Moreover, in M there
is the element cM which must be distinct from the elements 0M, 1M, (1+ 1)M, . . .,
because M is a model of T .

The element cM is called a nonstandard number and M is a nonstandard model.

Exercise 80

(a) Prove that PA |� ∀x(x = 0 ∨ ∃y(x = y + 1)).
(b) Let M be a nonstandard model of PA. Prove that M contains an infinite

descending chain: there are elements c0, c1, . . . in M such that c0 > c1 > · · · .
The theory of models of PA is very interesting from the point of view of

Model Theory, and also from the point of view of Gödel’s famous Incompleteness
Theorems. See the Appendix (Section A.1) for more on this.

Example 2.5.5 Consider the following language: the language LR which has a
constant r for every real number r , an n-place function symbol f for every function
f : Rn → R, and an n-place relation symbol R for every subset R ⊆ R

n.
Clearly, interpreting everything by itself, R is an LR-structure. Let TR be the set

of all LR-sentences φ such that R |� φ. Then R is a model of TR.
Now just as in the previous example, we form a new language L out of LR by

adding one extra constant c, and we let T be the union of TR with the set of new
axioms:

{c > n | n ∈ N}.

And just as in the previous example, we see that every finite subtheory of T is
consistent. Therefore by the Compactness Theorem, T has a model R.

R is a model of TR, and there is an embedding of R into R; but moreover, R
contains the “infinite” element cR. R is a field, because the axioms for a field are
true in R and hence form part of TR. Let d ∈ R be the multiplicative inverse of cR.
Then in R, d is greater than 0, yet it is smaller than 1

n
for each n! An element d

with these properties is called a nonstandard element. We say that R is a model for
nonstandard analysis.

Using a model for nonstandard analysis allows one to define concepts of ordinary
analysis without using the usual ε-δ definitions. For example, a function f : R→ R
is continuous at x ∈ R if and only if for each nonstandard element d , the element
|f (x + d)− f (x)| is at most nonstandard.

Moreover, a nonstandard element d is thought of as an “infinitesimal” element,
and in a model of nonstandard analysis, the differential quotient df

dx
is a “real”

quotient (instead of a limit): one says that the function f is differentiable at x if
and only if for any two nonstandard elements d and d ′, the expressions f (x+d)−f(x)

d

and f (x+d ′)−f (x)
d ′ differ by at most a nonstandard element.

Nonstandard Analysis originated in Logic and was first developed by Abraham
Robinson (1918–1974) (see [64]). It has now developed into a subfield of Analysis;
for a recent introduction, see e.g. [25].
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Another variation on the theme of the Compactness Theorem concerns well-orders.

Exercise 81 Let L be the language with just a 2-place relation symbol < for “less
than”.

(a) Give an L-sentence φ such that the models of φ are precisely the linear orders.
(b) Show that there is no L-theory T such that the models of T are precisely the

well-ordered sets.
[Hint: Suppose that such a theory T exists. Let L′ be the language obtained
from L by adding infinitely many new constants c1, c2, . . .. Let T ′ be the L′-
theory which contains T and a set of sentences saying that “c1 > c2 > · · · is
an infinite descending chain” (recall Proposition 1.4.2). Use the Compactness
Theorem to obtain a contradiction.]

(c) Use the technique of part (b) (and the hint there) to prove that for every infinite
well-order M there is an L-structure M ′ such that the following hold:

(i) M and M ′ satisfy the same L-sentences.
(ii) M ′ is not a well-order.

Here are some miscellaneous exercises about the Compactness Theorem.

Exercise 82 For sets X, let us write ‘|X| is divisible by 3’ if either |X| is finite
and divisible by 3, or X is infinite. Prove that there is no sentence φ in the empty
language which expresses this property. [Hint: suppose such a sentence φ existed.
Consider ¬φ.]

Exercise 83 Let L be an arbitrary language. A class M of L-structures is called
elementary if there is an L-theory T such that M is precisely the class of all models
of T .

Suppose that for such a class M we have that both M and its complement are
elementary. Prove that there is an L-sentence φ such that M is precisely the class
of all L-structures which satisfy φ.

Exercise 84 In this exercise we use the Compactness Theorem to prove that every
set X admits a linear order (that is, there is a linear order on X). You should compare
this with Exercise 28, where we proved the same result using Zorn’s Lemma.

(a) First prove the statement for every finite X, by induction on |X|.
(b) Now let X be arbitrary. Let L be the language with one 2-place relation symbol

< and constants {cx | x ∈ X}. The L-theory T has the axioms for a linear order:

∀x¬(x < x)

∀x∀y∀z((x < y ∧ y < z)→ x < z)

∀x∀y(x < y ∨ x = y ∨ y < x)

and moreover the axiom ¬(cx = cy) for every pair x, y of distinct elements of
X. Prove, using the Compactness Theorem, that T is consistent.

(c) Let M be a model of T . Show that M induces a linear order on X.
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Exercise 85 Use the Compactness Theorem in order to show that for every partially
ordered set (X,≤) there is a linear order � on X which extends ≤, that is: for all
x, y ∈ X we have x ≤ y → x � y.

Exercise 86 Let L be the language of rings and φ an L-sentence. Suppose that for
every natural number n there is a prime number p > n and a field F of characteristic
p such that F |� φ. Show that there is a field K of characteristic 0 such that K |� φ.

Exercise 87 (De Bruijn–Erdős) The result to be proved in this exercise was first
published in [15]; evidently, the authors (Nicolaas Govert de Bruijn 1918–2012;
Paul Erdős 1913–1996) were unaware of the force of the Compactness Theorem at
the time.
We consider simple undirected graphs: a simple undirected graph has edges just as
the directed graphs of Section 2.4.1, but now the edges have no direction. Moreover,
a graph is simple if for any two vertices, there is at most one edge between them. In
other words, a simple undirected graph is just a set with a symmetric binary relation.
Let (X,R) be such a simple undirected graph, and k a positive integer. A k-
colouring of (X,R) is a function f from X to the set {1, . . . , k} such that whenever
x, y ∈ X and R(x, y) holds, f (x) �= f (y) (note that this implies that the relation R

is irreflexive).
Prove (using the Compactness Theorem) the following statement: if every finite
subgraph of (X,R) has a k-colouring, then (X,R) has a k-colouring.

2.5.1 Proof of the Compactness Theorem Using Ultrafilters

In this subsection we give a quite succinct proof (mainly in the form of exercises)
of the Compactness Theorem.

Definition 2.5.6 Let I be a set. A filter on I is a collection U of subsets of I which
satisfies the following conditions:

(i) I ∈ U and ∅ �∈ U .
(ii) U is closed under binary intersection: if A,B ∈ U then A ∩ B ∈ U .

(iii) U is upwards closed: if A ∈ U and A ⊆ B ⊆ I , then B ∈ U .

The set of filters on I is partially ordered by the subset relation: U ≤ V if U ⊆ V . A
maximal element in the poset of filters on I is called an ultrafilter on I .

Exercise 88

(a) Let U be a filter on I and suppose that A is a subset of I such that A ∩ B �= ∅
for every B ∈ U . Show that there is a filter V on I such that A ∈ V and U ≤ V .

(b) Use Zorn’s lemma in order to prove that every filter on I is contained in an
ultrafilter on I .

(c) Let U be an ultrafilter on I . Show that for every subset A of I , either A ∈ U or
(I − A) ∈ U (and not both).
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(d) Let U be an ultrafilter on I . Show that for every pair A,B of subsets of I we
have: if A ∪ B ∈ U then A ∈ U or B ∈ U .

Example 2.5.7 A filterU is principal if there is some A ⊆ I such that U is precisely
the set of subsets of I which contain A. Let us say that U is generated by A in this
case.

Exercise 89

(a) Show that if U is generated by A then there is a bijection between the set of
ultrafilters on I which contain U as subset, and the set of ultrafilters on A.

(b) Show that a principal ultrafilter is always generated by a singleton set (a set with
one element).

(c) Show that if U is a non-principal ultrafilter, then U does not contain any finite
set.

The main example of a non-principal filter on I (if I is infinite) is the set of cofinite
subsets of I . This is called the Fréchet filter on I . By Exercise 89 we have that an
ultrafilter on I is non-principal if and only if it extends the Fréchet filter on I .

Definition 2.5.8 Let (Ai)i∈I be a family of sets, and U an ultrafilter on I . The
ultraproduct

∏
U Ai is the set of equivalence classes of the ordinary product∏

i∈I Ai by the following equivalence relation:

α ∼U β if and only if {i ∈ I | αi = βi} ∈ U .

We shall write A for
∏

U Ai and denote the equivalence class of α ∈ A by [α].
If, moreover, all Ai are L-structures, then we have an L-structure onA as follows.

For a constant c of L we let cA be the equivalence class of the element (cAi )i∈I
of

∏
i∈I Ai .

For an n-place function symbol f of L and [α1], . . . , [αn] ∈ A we let
fA([α1], . . . , [αn]) be the equivalence class of

(f Ai ((α1)i , . . . , (αn)i))i∈I .

(Check that this is well-defined on equivalence classes.)

For an n-place relation symbol R of L we let ([α1], . . . , [αn]) ∈ RA precisely
when the set {i ∈ I | ((α1)i, . . . , (αn)i) ∈ RAi } is an element of the ultrafilter U .
Again, here it should be checked that this is a valid definition.

Exercise 90 (Łoś’s Theorem) (Jerzy Łoś, 1920–1998)

(a) Check that Definition 2.5.8 defines a correct L-structure on A =∏
U Ai .

(b) Show that for every L-formula ϕ(x1, . . . , xn) and for every n-tuple
([α1], . . . , [αn]) of elements of A we have
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A |� ϕ([α1], . . . , [αn]) if and only if the set

{i ∈ I |Ai |� ϕ((α1)i, . . . , (αn)i)}

is an element of the ultrafilter U .

Theorem 2.5.9 (Compactness Theorem) Let T be an L-theory such that every
finite subtheory of T has a model. Then T has a model.

Proof. Let I be the set of all finite subsets of T . For an element i = {φ1, . . . , φn}
of I , pick a model Ai of {φ1, . . . , φn}. For every L-sentence φ let φ̂ be the set
{i ∈ I |φ ∈ i}. Note that for an n-tuple (φ1, . . . , φn) of L-sentences we have

{φ1, . . . , φn} ∈ φ̂1 ∩ · · · ∩ φ̂n

so this intersection is nonempty. Therefore the set of those subsets of I which
contain some φ̂1 ∩ · · · ∩ φ̂n as a subset, is a filter on I . Let U be an ultrafilter
which extends this filter and let A =∏

U Ai as an L-structure according to
Definition 2.5.8. We see that for every L-sentence φ the set {i |Ai |� φ} contains the
set φ̂ as a subset, and is therefore an element of U . It follows from Łoś’s Theorem
(Exercise 90) that A |� φ. Since φ was an arbitrary element of T , A is a model of
T , as desired. �

2.6 Substructures and Elementary Substructures

Definition 2.6.1 (Isomorphism of L-structures) Let M and N be L-structures.
An isomorphism from M to N , or L-isomorphism, is a bijection β : M → N such
that the following hold:

(i) β(cM) = cN for every constant c of L.
(ii) β(f M(a1, . . . , an)) = f N(β(a1), . . . , β(an)) for every n-place function sym-

bol f of L and every a1, . . . , an ∈ M .
(iii) (a1, . . . , an) ∈ RM ⇔ (β(a1), . . . , β(an)) ∈ RN for every n-place relation

symbol of L and a1, . . . , an ∈ M .

We say that M and N are isomorphic if there is an isomorphism β : M → N .

It is easy to see that if β :M → N is an isomorphism then so is β−1 : N → M , so
the relation of being isomorphic is symmetric.

Exercise 91 Let ϕ(y1, . . . , yn) be an L-formula and a1, . . . , an ∈ M . Consider
an isomorphism β : M → N . Show that M |� ϕ(a1, . . . , an) if and only if
N |� ϕ(β(a1), . . . , β(an)). Conclude that isomorphic L-structures satisfy the same
L-sentences.
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Exercise 92 For a field k, let Lk be the language of k-vector spaces as in
Section 2.4.3. Show that for k-vector spaces M and N , an Lk-isomorphism from
M to N is the same thing as a bijective k-linear map. Show also that for two rings R

and S, an Lrings-isomorphism from R to S is the same thing as a ring isomorphism.
The same holds for graphs, groups, posets, etc.

Definition 2.6.2 Let M and N be structures for a language L. We say that N is
a substructure of M , and write N ⊆ M , if N is a subset of M , and the following
conditions are satisfied:

(i) For every constant c of L, cN = cM .
(ii) For every n-place function symbol f of L, f N : Nn → N is the restriction of

f M to Nn (recall that this means that for all a1, . . . , an ∈ N , f M(a1, . . . , an)

is an element of N , and equal to f N(a1, . . . , an)).
(iii) For every n-place relation symbol R of L, RN = RM ∩Nn (this means that

for a1, . . . , an ∈ N , (a1, . . . , an) ∈ RM if and only if (a1, . . . , an) ∈ RN ).

When we are considering models M , N of an L-theory T , we also say that N is a
submodel of M if N is a substructure of M .

Exercise 93 Let N ⊆ M be a substructure. Show that for every quantifier-free L-
formula (that is, a formula without quantifiers) ϕ with variables x1, . . . , xn and for
every n-tuple m1, . . . ,mn of elements of N , we have

N |� ϕ(m1, . . . ,mn) if and only if M |� ϕ(m1, . . . ,mn).

Exercise 94 Let N be an L-structure. The diagram of N , denoted D(N), is the set
of all quantifier-free LN -sentences which are true in N .

(a) Suppose M is a model of D(N). Show that M has a substructure which is
isomorphic to N .

(b) Conversely, suppose that M is an L-structure such that N is isomorphic to a
submodel of M . Show that M can be made into an LN -structure which is a
model of D(N).

If M is an L-structure and N ⊆M is a nonempty subset which contains all the
elements cM and is closed under the functions f M , then there is a unique way of
making N into a substructure of M , by defining

RN = RM ∩Nn

for each n-place relation symbol R of L.
Now suppose {Ni | i ∈ I } is a family of subsets of M such that each Ni contains

all the constants cM and is closed under the functions f M . Then this also holds for
the intersection

⋂
i∈I Ni . Therefore, if M is an L-structure and S is an arbitrary

nonempty subset of M , there is a least substructure of M which contains S as a
subset; we shall call this the substructure generated by S. Note that the requirement
that S be nonempty cannot be dropped in the case when L has no constants.
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Exercise 95

(a) Show that the substructure generated by S can also be constructed as the
union of a chain of subsets of M , as follows. Let S0 be the union of S and
the set {cM | c a constant of L}. Suppose S ⊆ S0 ⊆ S1 ⊆ · · · ⊆ Sk have been
constructed; let Sk+1 be the union of Sk and the set consisting of all elements of
the form f M(a1, . . . , an) for an n-place function symbol of L and a1, . . . , an ∈
Sk .

(b) Write |L| for the cardinality |con(L) ∪ fun(L) ∪ rel(L)|. Conclude from part
(a) that the cardinality of the substructure generated by S is ≤ max(|S|, |L|, ω).
In particular, if the language L is countable and S is countable, the substructure
generated by S is countable too.

(c) More directly, the substructure generated by S is the set

{tM(a1, . . . , an) | t an L-term, a1, . . . , an ∈ S}.

Definition 2.6.3 A substructure N ⊆ M is called an elementary substructure,
written N � M , if the equivalence of Exercise 93 holds for all L-formulas ϕ.
Equivalently, if for every sentence ϕ of LN we have:

N |� ϕ if and only if M |� ϕ.

The notation N � M should not be confused with the same notation for embeddings
between well-orders in Chapter 1.

The notion of “elementary substructure” means that, from the point of view of L, the
elements of N have the same properties in N as in M . For example, consider Q ⊆ R

as a subring. Then this is not an elementary substructure, for 2 is a square in R but
not in Q. However, if we consider Q and R just as ordered structures (as structures
for the language with just one binary relation symbol <), then Q is an elementary
substructure of R. We shall not prove this last fact here, but anticipating some
definitions yet to come, we point out that the so-called theory of dense linear orders
without end-points (see Definition 2.9.4 at the end of this chapter), of which both Q

and R are models, has quantifier elimination (see the definition at the beginning of
the next section). Hence the statement follows from Exercise 98 below.

Exercise 96 Suppose N is an L-structure. The elementary diagram of N , denoted
E(N), is the set of all LN -sentences which are true in N . In analogy to Exercise 94,
prove the following:

(a) Suppose M is a model of E(N). Show that M has an elementary substructure
which is isomorphic to N .

(b) Conversely, suppose that M is an L-structure such that N is isomorphic to an
elementary submodel of M . Show that M can be made into an LN -structure
which is a model of E(N).

In the literature the theory E(N) is often denoted by Diagel(N).
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Exercise 97 (Tarski–Vaught Test) (Robert Lawson Vaught, 1926–2002) Suppose
N ⊆M is an L-substructure. Show that N � M if and only if the following
condition holds: for every LN -sentence of the form ∃xϕ which is true in M , there
exists an a ∈ N such that M |� ϕ[a/x]. [Hint: use induction on LN -sentences.
Convince yourself that only the cases ∃, ∧ and ¬ have to be considered.]

Note that, if N � M then in particular both structures satisfy the same L-sentences;
hence for every L-theory T , the structure N is a model of T if and only if M is.

2.7 Quantifier Elimination

Definition 2.7.1 Let T be a theory in a language L. We say that T admits
elimination of quantifiers, or has quantifier elimination, if for every L-formula ϕ

with free variables x1, . . . , xn there is a quantifier-free L-formula ψ with at most
the free variables x1, . . . , xn, such that

T |� ∀x1 · · · xn(ϕ ↔ ψ).

We also say that ϕ and ψ are T - equivalent.

In particular, if ϕ is a sentence, there will be a quantifier-free L-sentence ψ such
that T |� ϕ ↔ ψ .

Exercise 98 Suppose the theory T admits elimination of quantifiers. Suppose M

and N are models of T and N ⊆ M . Then N is an elementary substructure of M .

Exercise 99 Let L be a language, T an L-theory, M a model of T and A a
substructure of M . Assume that the theory T admits quantifier elimination.

(a) Show that for every LA-sentence φ there is an LA-sentence ψ such that the
following equivalence holds:

M |� φ ⇔ A |� ψ.

(b) Now suppose that M1 and M2 are models of T , and A a substructure both of
M1 and M2. Show that M1 and M2 satisfy the same LA-sentences.

Applications of quantifier elimination often concern completeness of the theory
T . We say that a theory T is complete if for every L-sentence ϕ, either T |� ϕ or
T |� ¬ϕ holds. Clearly, if T admits quantifier elimination, then this condition only
has to be checked for quantifier-free L-sentences ϕ.

Exercise 100 Show that T is complete if and only if any two models of T satisfy
the same L-sentences.
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The following lemma says that in order to check whether T has quantifier
elimination, we may restrict ourselves to very simple formulas. Call a formula
simple if it is of the form

∃x(ψ1 ∧ · · · ∧ ψn ∧ ¬χ1 ∧ · · · ∧ ¬χm),

where ψ1, . . . , ψn, χ1, . . . , χm are atomic formulas.

Lemma 2.7.2 T admits elimination of quantifiers if and only if every simple
formula is T -equivalent to a quantifier-free formula in at most the same free
variables.

Proof. Clearly, the given condition is necessary. In order to see that it is also
sufficient, we argue by induction on ϕ to show that every ϕ is T -equivalent to a
quantifier-free formula.

This is plainly true for atomic ϕ, and it is left to you to see that the set of formulas
which are T -equivalent to a quantifier-free formula is closed under the operations
∧, ∨,→ and ¬.

For the quantifier case we use Exercise 63, which states that every quantifier-free
formula is equivalent to a formula of the form

ψ1 ∨ · · · ∨ ψn,

where each ψi is a conjunction of atomic formulas and negated atomic formulas.
Hence, if ϕ is T -equivalent to a quantifier-free formula, it is T -equivalent to one in
this form, whence ∃xϕ is equivalent to (∃xψ1) ∨ · · · ∨ (∃xψn), that is: a disjunction
of simple formulas. Now the condition in the lemma tells us that each of these is T -
equivalent to a quantifier-free formula, and therefore so is ∃xϕ.
For the case ∀xϕ one simply uses that this is equivalent to ¬∃x¬ϕ. �
In this section, by way of example, we shall prove for one theory that it has quantifier
elimination: the theory of algebraically closed fields Tacf. Recall that a field k is
algebraically closed if every monic polynomial with coefficients in k has a root (a
zero) in k. That this theory has quantifier elimination was proved by Alfred Tarski
in 1948.

Let us use L for the language Lrings: the language of commutative rings with 1.
The L-theory Tacf has, besides the axioms for commutative rings with 1, the axioms:

∀x(¬(x = 0)→ ∃y(x·y = 1))

∀y1 · · · yn∃x(xn + y1·xn−1 · · · + yn−1·x + yn = 0).

Here xn abbreviates the term x· · · · ·x︸ ︷︷ ︸
n times

.

The second line in the axioms for Tacf describes an axiom for each n ≥ 1, so there
are infinitely many axioms.
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These axioms express that we have a field in which every monic polynomial has
a root. In other words, an algebraically closed field.

Note that every term t (x, y1, . . . , yn) of L in variables x, y1, . . . , yn denotes
a polynomial in the same variables with coefficients in N, so with every atomic
formula t = s in these variables we can associate a polynomial P with coefficients
in Z such that for every ring R and for all a, b1, . . . , bn ∈ R,

R |� (t = s)(a, b1, . . . , bn) iff P(a, b1, . . . , bn) = 0 in R.

Furthermore, we notice that since every field is an integral domain, a conjunction
r1 �= 0 ∧ · · · ∧ rk �= 0 is equivalent to r1 · · · rk �= 0. So we can write every simple
L-formula as

∃x(P1(x, y1, . . . , yn) = 0 ∧ · · · ∧ Pk(x, y1, . . . , yn) = 0 ∧Q(x, y1, . . . , yn) �= 0).

Definition 2.7.3 Let L be a language, � a set of L-formulas, M and N L-structures
and "a = a1, . . . , an and "b = b1, . . . , bn tuples of elements of M and N , respectively.
Write "a ≡�

"b if for every formula φ(x1, . . . , xn) from � we have:

M |� φ(a1, . . . , an) ⇔ N |� φ(b1, . . . , bn).

We shall apply this for � the set of quantifier-free L-formulas and for � the set of
simple L-formulas; in which case we write "a ≡qf "b, "a ≡simple "b, respectively.

Lemma 2.7.4 Let L be an arbitrary language. Suppose that an L-theory T has the
following property:

Whenever M and N are models of T , and "a = a1, . . . , an, "b = b1, . . . , bn are
tuples of elements of M and N , respectively, then "a ≡qf "b implies "a ≡simple "b.

Then T has quantifier elimination.

Proof. Assume that T has the property in the statement of the Lemma. By
Lemma 2.7.2 we have to show that every simple L-formula is T -equivalent to a
quantifier-free formula in the same free variables. So, let ∃vφ(v, w̄) be a simple
formula, with "w = w1, . . . , wn the free variables. Let "c = c1, . . . , cn be new
constants; we write L"c for L ∪ {c1, . . . , cn}.

Let � be the set of all quantifier-free L-formulas ψ( "w) such that

T |� (∃vφ(v, "c))→ ψ("c)

and write �("c) for {ψ("c) |ψ( "w) ∈ �}.
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Claim 1 T ∪ �("c) |� ∃vφ(v, "c).
Let us first show that Claim 1 implies that the formula ∃vφ(v, "w) is T -equivalent
to a quantifier-free formula. We apply the Compactness Theorem and see that there
must be finitely many γ1("c), . . . , γm("c) ∈ �("c) such that

T |�
m∧

i=1

γi("c)→ ∃vφ(v, "c).

This means, since the constants "c do not appear in T , that

T |� ∀ "w(

m∧

i=1

γi( "w)→ ∃vφ(v, "w)).

Since all γi are elements of �, we see that the formula ∃vφ(v, "w) is T -equivalent to
the quantifier-free formula

∧m
i=1 γi( "w), as desired.

To prove Claim 1, suppose for a contradiction that M is a model of T ∪ �("c) and
M |� ¬∃vφ(v, "c). Let � be the set of all quantifier-free L"c -sentences which are
true in M .

Claim 2 The theory T ∪� ∪ {∃vφ(v, "c)} is consistent.

Proof of Claim 2: suppose that this theory is inconsistent, then by the Compactness
Theorem there are finitely many elements δ1("c), . . . , δk("c) of � such that

T ∪ {δ1("c), . . . , δk("c)} ∪ {∃vφ(v, "c)}

is inconsistent. This means that

T |� ∃vφ(v, "c)→ ¬δ1("c) ∨ · · · ∨ ¬δk("c)

and therefore by definition of �, that the formula ¬δ1( "w) ∨ · · · ∨ ¬δk( "w) is an
element of �.

Now M is, by assumption, a model of �("c), so we have

M |� ¬δ1("c) ∨ · · · ∨ ¬δk("c).

On the other hand, the sentences δ1("c), . . . , δk("c) are elements of � and are
therefore true in M by definition of �. Clearly, we have a contradiction now, which
proves Claim 2.

Having proved Claim 2, we return to the proof of Claim 1. By Claim 2, let N be a
model of T ∪� ∪ {∃vφ(v, "c)}.
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Let "a = "cM and "b = "cN . We have now, for every quantifier-free L-formula ψ( "w):

M |� ψ("a)⇔ M |� ψ("c)
⇔ ψ("c) ∈ �

⇔ N |� ψ("c)
⇔ N |� ψ("b).

We conclude that "a ≡qf "b. However, M |� ¬∃vφ(v, "a) whereas N |� ∃vφ(v, "b).
Since ∃vφ(v, "w) was assumed to be a simple formula, we see that "a �≡simple "b.

But M and N are models of T . So we see that T does not have the property in
the statement of the Lemma. This contradiction proves Claim 1. �
In order to prove that the theory Tacf has quantifier elimination, we need one
ingredient from algebra:

Fact. For any field k there is an algebraically closed field k, the algebraic closure
of k, such that k ⊂ k and moreover, whenever k is embedded in an algebraically
closed field l, there is a (non-unique) extension of this embedding to an embedding
of k into l. In that case, the image of k in l consists precisely of those elements
which are zeros of polynomials with coefficients in k.

Theorem 2.7.5 (Tarski) The theory Tacf has quantifier elimination.

Proof. We wish to apply Lemma 2.7.4. Suppose k and k′ are algebraically closed
fields and "a ∈ k and "b ∈ k′ are such that for every quantifier-free L = Lrings-formula
ψ( "w) we have k |� ψ("a) if and only if k′ |� ψ("b). Then the subring of k generated
by "a is isomorphic to the subring of k′ generated by "b, so we may as well assume
that "a = "b ∈ k ∩ k′. Let R ⊂ k ∩ k′ be the quotient field of the subring of k ∩ k′
generated by "a.

Now let ∃vφ(v, "w) be a simple L-formula, which we have seen may be taken to
be of the form

∃v(P1(v, "w) = 0 ∧ · · · ∧ Pk(v, "w) = 0 ∧Q(v, "w) �= 0),

where P1, . . . , Pk,Q are polynomials with coefficients in Z. We have to prove: if
k |� ∃vφ(v, "a) then k′ |� ∃vφ(v, "a).

If all the polynomials Pi(v, "a) are identically zero, then this reduces to the
following statement: if k |� ∃vQ(v, "a) �= 0 then k′ |� ∃vQ(v, "a) �= 0. But if
k |� ∃vQ(v, "a) �= 0, then the polynomial Q(v, "a) is not identically zero, and
therefore has only finitely many zeros. On the other hand k′, being algebraically
closed, is infinite; hence k′ |� ∃vQ(v, "a) �= 0 as desired.

If not all polynomials Pi are identically zero, and c ∈ k satisfies k |� φ(c, "a),
then c is algebraic over "a and therefore an element of the algebraic closure of R.
Since this algebraic closure embeds into k′, we also have an element d of k′ such
that k′ |� φ(d, "a). We have verified the hypothesis of Lemma 2.7.4 and conclude
that Tacf has quantifier elimination. �
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Remark 2.7.6 In our quantifier elimination proof for Tacf we have made use of
the Axiom of Choice: Lemma 2.7.4 relies on the Compactness Theorem, which
needs Zorn’s Lemma; and also the statement that every field has an algebraic closure
cannot be proved without Choice. It is possible to prove quantifier elimination for
Tacf without using Choice, as is done in the book [45]. However, Lemma 2.7.4 is
also very useful for other quantifier elimination proofs.

Exercise 101 Let φ be the Lrings-sentence

∃x(x2 + 1 = 0 ∧ x + 1 �= 0).

Give a quantifier-free Lrings-sentence ψ which is Tacf-equivalent to φ.

Exercise 102 Let k be an algebraically closed field, and φ(v) an Lrings-formula in
one free variable v. Prove that the set {a ∈ k | k |� φ(a)} is either finite or cofinite.

In the book [49] you will find many more proofs of quantifier elimination for various
theories.

Applications of Quantifier Elimination for Tacf

In this subsection we present a few mathematical applications of quantifier elimina-
tion for algebraically closed fields.

The theory Tacf is not complete, because it does not settle all quantifier-free
sentences of Lrings: for example, the sentence 1+ 1+ 1 = 0. However, once we
specify the characteristic of the field, the theory becomes complete. Let φn be the
sentence 1+ · · · + 1︸ ︷︷ ︸

n times

= 0. Define the following theories:

T
p

acf = Tacf ∪ {φp}, for a prime number p, is the theory of algebraically closed fields
of characteristic p.
T 0

acf = Tacf ∪ {¬φn | n > 0} is the theory of algebraically closed fields of character-
istic zero.

Then the theories T
p

acf and T 0
acf are complete since, by quantifier elimination, we

only have to look at quantifier-free sentences. These are combinations (using ∧, ∨,
¬ and →) of sentences t = s, with t and s closed terms. Then t and s represent
elements of Z, and t = s is a consequence of T

p
acf precisely when their difference is

a multiple of p. For characteristic 0 we have: the equality t = s is a consequence of
T 0

acf precisely when this sentence is true in Z.

The completeness of these theories has the following consequence. We write Fp for
the field of p elements, and Fp for its algebraic closure. C is the field of complex
numbers.
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Lemma 2.7.7 Let φ be a sentence of Lrings. The following assertions are equiva-
lent:

(i) C |� φ.
(ii) There is a natural number m such that for all primes p > m, Fp |� φ.

Proof. The field C is algebraically closed and of characteristic zero, so if C |� φ

then by completeness of T 0
acf, T 0

acf |� φ. By the Compactness Theorem, there is a
number m such that Tacf ∪ {¬φn | n ≤ m} |� φ. It follows that for every p > m,
Fp |� φ. This proves (i)⇒(ii); the converse implication is proved in the same way,
considering ¬φ instead of φ. �
The following theorem is a nice application of this lemma.

Theorem 2.7.8 Let F1, . . . , Fn be polynomials in n variables Y1, . . . , Yn and with
complex coefficients. Consider the function f : Cn → C

n defined by

f (z1, . . . , zn) = (F1(z1, . . . , zn), . . . , Fn(z1, . . . , zn)).

Then if f is injective, it is also surjective.

Proof. Convince yourself that for every natural number d > 0 there exists an Lrings-
sentence �d which expresses: “for every n-tuple of polynomials of degree ≤ d , if
the associated function f of n variables is injective, then it is surjective”.

For an application of Lemma 2.7.7, we show that �d is true in every field Fp.
Indeed, suppose we have n polynomials F1, . . . , Fn of degree ≤ d and coefficients
in Fp such that the function f : (Fp)n → (Fp)n is injective. Consider an n-tuple
(a1, . . . , an) ∈ (Fp)n. Let b1, . . . , bk be the list of coefficients which occur in the
Fi . There is a least subfield F of Fp which contains all ai and all bj . Then F is a
finite extension of Fp, hence finite. Moreover, f restricts to a function Fn → Fn

which is still injective. But every injective function from a finite set to itself is also
surjective. We conclude that (a1, . . . , an) is in the image of f . Therefore, Fp |� �d .

By Lemma 2.7.7 we have C |� �d , which was what we had to prove. �
Another application of quantifier elimination for algebraically closed fields concerns
Hilbert’s Nullstellensatz. We have to invoke a result from algebra.

Lemma 2.7.9 (Hilbert’s Basis Theorem) For every field K , every ideal of the
polynomial ring K[X1, . . . , Xn] is finitely generated.

Proof. See, e.g., [47]. �
We can now prove the following part of Hilbert’s classical Nullstellensatz (called
the “weak form” in [11]).

Theorem 2.7.10 (Hilbert’s Nullstellensatz, weak form) Suppose k is an alge-
braically closed field and k[X1, . . . , Xn] the polynomial ring over k in n variables.
Suppose I is an ideal in K[X1, . . . , Xn]. Then either 1 ∈ I or there are elements
a1, . . . , an in k such that g(a1, . . . , an) = 0 for every g ∈ I .
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Proof. Suppose 1 �∈ I . Then I is contained in a maximal ideal M of k[X1, . . . , Xn].
Let k′ be the algebraic closure of the quotient field

k[X1, . . . , Xn]/M.

In k′, the elements X1, . . . , Xn have the property that g(X1, . . . , Xn) = 0 for every
g ∈ I . Here Xi denotes the residue class of Xi modulo M .

Now k is a subring of k′ and both are algebraically closed fields; by quantifier
elimination, k is an elementary substructure of k′. It follows that for any finite
number g1, . . . , gm of elements of I ,

k |� ∃y1 · · · yn(g1("y) = 0 ∧ · · · ∧ gm("y) = 0).

But by Hilbert’s Basis Theorem (Lemma 2.7.9) every ideal of k[X1, . . . , Xn] is
finitely generated, so we are done. �
There are many more applications of Logic (Model Theory) to Algebra. For a
modern introduction to this area, see [51]. See also the Appendix.

2.8 The Löwenheim–Skolem Theorems

The theorems in this section concern the question of how “big” a model of a
consistent first-order L-theory T can be. Of course, it can happen that T contains a
sentence which forces every model of T to have cardinality≤ n for some n ∈ N, as
we have seen. It is also possible that a theory forces models to be at least as big as
a given set C: for example if L has constants for each element of C, and the theory
has axioms

¬(c = d)

for each pair (c, d) of distinct constants.
The upshot of this section will be that this is basically all a theory can say. If there

is an infinite model of T , there will, in general, be models of T of every infinite
cardinality greater than a certain cardinal number associated with the language
L. The following result is due to Leopold Löwenheim (1878–1957) and Thoralf
Skolem (1887–1963).

Theorem 2.8.1 (Upward Löwenheim–Skolem Theorem) Suppose T has an
infinite model. Then for any set C there is a model M of T such that |C| ≤ |M|.
Proof. Let LC be the language L of the theory T , together with new constants c for
every c ∈ C. We consider the LC -theory TC , which has all the axioms of T , together
with the axioms

¬(c = d)

for every pair of distinct elements c, d of C.
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If M is a model of TC , then M is a model of T , and moreover, the assignment
c �→ cM specifies a function from C into M , which is injective since M |� ¬(c = d)

(which means cM �= dM ) whenever c �= d . So all we have to do is show that TC is
consistent. This is done with the Compactness Theorem.

Let T ′ ⊆ TC be a finite subtheory. Then in T ′, only finitely many constants from
C occur, say c1, . . . , cn. Now by assumption T has an infinite model N ; take n

distinct elements a1, . . . , an from N and make N into an LC -structure by putting
(ci)

N = ai for i = 1, . . . , n and, for c �= c1, . . . , cn, let cN be an arbitrary element
of N .

Then N is an LC -structure which is a model of T ′. Hence, every finite subtheory
T ′ of TC has a model; so TC has a model by the Compactness Theorem. �
The proof can be refined to obtain “large” models of T with certain extra properties.
For example, if N is an infinite model of T and C is any set, then there is a model
M of T such that there is an injective function C → M and moreover, M satisfies
exactly the same L-sentences as N .

Exercise 103 Prove this last statement. [Hint: instead of T , use the set of L-
sentences which are true in N .]

The following corollary is a strengthening of Theorem 2.8.1.

Corollary 2.8.2 Let N be an infinite model of a theory T , and C an arbitrary set.
Then there exists a model M of T which contains N as an elementary substructure
and allows an injective function: C → M .

Proof. Apply Theorem 2.8.1 to the theory E(N) (see Exercise 96) and note that
T ⊆ E(N). �
We now state the “downward Löwenheim–Skolem Theorem”. Its formulation uses
the notion of cardinality of the language L, notation ‖L‖, which is by definition
the cardinality of the set of L-formulas. Since L is also defined as a set (the set of
all constants, function symbols and relation symbols), we also have the ‘ordinary
cardinality’ |L|; the following exercise compares the two.

Exercise 104 Show that ‖L‖ = |L| if L is infinite, and that ‖L‖ = ω if L is finite.

Theorem 2.8.3 (Downward Löwenheim–Skolem Theorem) Let M be an infi-
nite model of a theory T in a language L, and let C ⊆ M be a subset with
|C| ≤ ‖L‖. Then there is an elementary substructure N �M which contains C as
a subset, and has the property that |N | ≤ ‖L‖.
Proof. Let C ⊆ M be given. If C = ∅, pick an arbitrary element a ∈ M and put
C0 = {a}; otherwise, let C0 = C.

The submodel N will be constructed as the union of a chain of subsets of M of
cardinality ≤ ‖L‖:

C = C0 ⊆ C1 ⊆ C2 ⊆ · · ·
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This chain is constructed inductively as follows. The set C0 is given. Suppose we
have constructed Ck (and it is part of the induction hypothesis that |Ck| ≤ ‖L‖). Let
Nk be the substructure of M generated by Ck . Then |Nk| ≤ ‖L‖ by Exercise 95.
Now for each L-formula of the form ∃xϕ with free variables y1, . . . , yn and each
n-tuple m1, . . . ,mn of elements of Nk such that M |� ∃xϕ(x,m1, . . . ,mn), choose
an element m of M such that M |� ϕ(m,m1, . . . ,mn). Let Ck+1 be Nk together
with all elements m so chosen. Since |Nk| ≤ ‖L‖ and there are only ‖L‖ many
L-formulas, |Ck+1| ≤ ‖L‖ too. This completes the construction of the chain.

Let N be the union
⋃∞

i=0 Ci . Then N is a substructure of M , because N contains
cM for every constant c of L (check!), and if f is an n-place function symbol of L

and m1, . . . ,mn ∈ N , then for some k the elements m1, . . . ,mn are already in Ck ,
so f M(m1, . . . ,mn) ∈ Nk ⊆ Ck+1 ⊆ N . And N is the union of a countable family
of subsets of M of cardinality ≤ ‖L‖, so |N | ≤ ‖L‖ as desired.

It remains to prove that N is an elementary substructure of M . For this, we
use the characterization given in Exercise 97. Suppose ∃xϕ(x, y1, . . . , yn) is an L-
formula and m1, . . . ,mn ∈ N are such that M |� ∃xϕ(x,m1, . . . ,mn). Then there
is a natural number k such that already m1, . . . ,mn ∈ Ck . By construction of Ck+1,
there is an m ∈ Ck+1 such that M |� ϕ(m,m1, . . . ,mn); this m is also an element
of N . By Exercise 97, N is an elementary substructure of M . �
We wrap up this section by putting together Corollary 2.8.2 and Theorem 2.8.3 to
obtain the following useful conclusion:

Corollary 2.8.4 Let M be an infinite model of an L-theory T , and let C be a
set such that |C| ≥ ‖L‖. Then there is a model N of T such that |N | = |C| and,
moreover, N and M satisfy the same L-sentences.

Proof. First we apply Corollary 2.8.2 to obtain a model M ′ which contains M as an
elementary substructure and allows an embedding C → M ′. Then M and M ′ satisfy
the same L-sentences; in particular, M ′ is infinite.

Next, consider the language LC which has an extra constant for every element of
C. The injective function C → M ′ makes M ′ into an LC -structure. Clearly |C| ≤
‖LC‖. Applying Theorem 2.8.3 with LC in the role of L, we see that M ′ contains
an elementary substructure N with C ⊆ N and |N | = |C|. Then M and N satisfy
the same L-sentences. �

2.9 Categorical Theories

Let us consider, as an example, the theory of k-vector spaces discussed in
Section 2.4.3.

If k is a finite field, any two k-vector spaces of the same cardinality are
isomorphic as k-vector spaces, for if |V | = |W | then any basis for V and any basis
for W must have the same cardinality (if B is a finite basis for V , then |V | = |k||B|;
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if B is infinite, then |V | = |B|). And any bijection between bases extends uniquely
to a k-linear map which is an isomorphism of k-vector spaces.

If k is infinite, this is no longer true: let k = Q. The Q-vector space Q[X] is
countable and therefore of the same cardinality as Q, but it has infinite dimension
over Q and hence cannot be isomorphic to Q as a vector space over itself.

However, it is true (and follows by much the same reasoning as for finite k) that
if |V | = |W | > |k|, then V and W are isomorphic as k-vector spaces.

Let Lk be the language of k-vector spaces, and let T∞k be the theory of infinite
k-vector spaces. That is, T∞k has the axioms for a k-vector space together with all
the sentences ¬φn from Example 2.5.2.

Theorem 2.9.1 The theory T∞k is complete.

Proof. Suppose that T∞k �|� ϕ and T∞k �|� ¬ϕ, for some Lk-sentence ϕ. Then there
are infinite k-vector spaces V and W with V |� ¬ϕ and W |� ϕ. But then, if C is
any set such that |C| > ‖Lk‖, Corollary 2.8.4 gives us k-vector spaces V ′ and W ′
such that:

(i) V ′ satisfies the same Lk-sentences as V ;
(ii) W ′ satisfies the same Lk-sentences as W ;

(iii) |V ′| = |W ′| = |C|.
Then as we have just argued, V ′ and W ′ must be isomorphic as k-vector spaces, yet
V ′ |� ¬ϕ by (i), and W ′ |� ϕ by (ii). But this is clearly impossible, by Exercises 91
and 92. �
Exercise 105 For another proof of the fact that T∞k is complete: prove that T∞k has
quantifier elimination.

Definition 2.9.2 Let κ be a cardinal number. An L-theory T is called κ-categorical
if for every pair M,N of models of T of cardinality κ , there is an isomorphism
between M and N .

As we have seen, the theory of infinite k-vector spaces is κ-categorical if κ > |k|.
The proof of the following theorem is a straightforward generalization of the

argument above that the theory T∞k must be complete; it is therefore left as an
exercise.

Theorem 2.9.3 (Łoś–Vaught Test) Suppose T is an L-theory which only has
infinite models, and suppose T is κ-categorical for some κ ≥ ‖L‖. Then T is
complete.

Exercise 106 Prove Theorem 2.9.3.

We conclude this chapter by giving an example of a theory which is ω-categorical;
the theory of dense linear orders without end-points. In this example it is the
technique of the proof, rather than the result, which is important. This technique
is known as Cantor’s back-and-forth argument.
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Definition 2.9.4 The theory Td of dense linear orders without end-points is formu-
lated in a language with just one binary relation symbol <, and has the following
axioms:

∀x¬(x < x) irreflexivity
∀xyz(x < y ∧ y < z→ x < z) transitivity
∀xy(x < y ∨ x = y ∨ y < x) linearity

∀xy(x < y → ∃z(x < z ∧ z < y)) density
∀x∃yz(y < x ∧ x < z) no end points

Theorem 2.9.5 (Cantor) The theory Td is ω-categorical.

Proof. We have to show that any two countably infinite models M and N of Td are
isomorphic.

Start by choosing enumerations M = {m0,m1, . . .} and N = {n0, n1, . . .} of M

and N .
We shall construct an isomorphism β : M → N as the union of a chain of order-

preserving bijective functions between finite sets:

0

β0

1

β1

2

β2

N N N

such that the horizontal arrows are inclusions Mk ⊆ Mk+1, Nk ⊆ Nk+1, and βk is
the restriction of βk+1 to Mk . Moreover, we shall make sure that for each k we
have {m0, . . . ,mk} ⊆ Mk and {n0, . . . , nk} ⊆ Nk , so at the end we obtain a bijective
function from M to N .

Let M0 = {m0}, N0 = {n0} and let β0 be the unique bijection.
Suppose βk : Mk → Nk has been constructed, as an order-preserving bijection.

We construct Mk+1, Nk+1 and βk+1 in two stages:

Stage 1. If mk+1 ∈ Mk , we do nothing in this stage and proceed to stage 2. If
mk+1 �∈ Mk there are two possibilities:

• Either mk+1 lies below all elements of Mk , or above all these elements. In this
case, we use the axiom “no end-points” to find an element n ∈ N which has
the same relative position with respect to Nk ; we add mk+1 to Mk and n to
Nk . Then we put βk+1(mk+1) = n.

• mk+1 lies somewhere between the elements of Mk . Then by the axiom
“linearity” and the fact that Mk is finite, there is a greatest element mj ∈ Mk

and a least ml ∈ Mk such that mj < mk+1 < ml . We use the axiom “density”
to pick an element n of N with βk(mj ) < n < βk(ml); we add mk+1 to Mk

and n to Nk . Then we put βk+1(mk+1) = n.
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Stage 2. Here we do the symmetric thing with nk+1 and the inverse of the finite
bijective function we obtained after Stage 1. After completing Stage 2 we let
βk+1 : Mk+1 → Nk+1 be the union of βk and what we have added in Stages 1
and 2.

This completes the construction of βk+1 and hence, inductively, of our chain of finite
bijective order-preserving functions. �
Exercise 107 Show that the theory Td is complete.

Exercise 108 Use Lemma 2.7.4 to prove that the theory Td has quantifier
elimination.

Exercise 109 Show that the theory Td is not 2ω-categorical.

Exercise 110 Let Td(a, b) be the theory with the same axioms as Td , but now
formulated in a language with two extra constants a, b. Prove that Td(a, b) has
exactly three non-isomorphic countable models.

Exercise 111 Give an example of a theory which has exactly four non-isomorphic
countably infinite models.

Exercise 112 Use Theorem 2.9.5 for another proof that R is not countable.

Exercise 113 Let L be the language {R}, where R is a binary relation symbol. Let
T be the L-theory whose models are precisely those L-structures (M,RM) in which
RM is an equivalence relation on M with infinitely many equivalence classes, and
every equivalence class is infinite.

(a) Give a system of axioms for T .
(b) Prove that T is ω-categorical.
(c) Prove that T has quantifier elimination.



Chapter 3
Proofs

In Chapter 2 we introduced languages and formulas as mathematical objects:
formulas are just certain finite sequences of elements of a certain set. Given a
specific structure for a language, such formulas become mathematical statements
via the definition of truth in that structure.

In mathematical reasoning, one often observes that one statement “follows” from
another, without reference to specific models or truth, as a purely “logical” infer-
ence. More generally, statements can be conjectures, assumptions or intermediate
conclusions in a mathematical argument.

In this chapter we shall give a formal, abstract definition of a concept called
“proof”. A proof will be a finite object which has a number of assumptions which
are formulas, and a conclusion which is a formula. Given a fixed language L, there
will be a set of all proofs in L, and we shall be able to prove the Completeness
Theorem:

For a set � of L-sentences and an L-sentence φ, the relation � |� φ holds if
and only if there exists a proof in L with conclusion φ and assumptions from
the set �.

Recall that � |� φ was defined as: for every L-structure M which is a model of �,
it holds that M |� φ.

Therefore, the Completeness Theorem reduces a universal (“for all”) statement
about a large class of structures, to an existential (“there is”) statement about one set
(the set of proofs). Furthermore, we shall see that proofs are built up by rules that can
be interpreted as elementary reasoning steps (we shall not go into the philosophical
significance of this). Finally, we wish to remark that it can be effectively tested
whether or not an object of the appropriate kind is a “proof”, and that the set of
all sentences φ such that � |� φ can be effectively generated by a computer (see
Section A.1 in the Appendix for a precise interpretation of this).

Mathematicians who devised definitions of a notion of “formal proof” include
Frege, Russell and Hilbert; but by far the most influential one is due to Gerhard
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Kurt Gödel

Gentzen (1909–1945). In fact, Gentzen gave two widely used systems, of which
we present the first one below. He called his system “natural deduction” (Kalkül
des natürlichen Schließens [21]). For biographical information about Gentzen (who
was a member of the SA and the Nazi Party, and died in a prison camp in 1945) see
[54].

The Completeness Theorem (the cornerstone of first-order logic) was proved by
Kurt Gödel in 1929 ([22]). Gödel was arguably the most important logician of the
20th century. For a biography, see [14]; for an overview of Gödel’s work, see the
book [83]. Our treatment in Section 3.2 is based on a proof by Leon Henkin (1921–
2006) given in [32].

3.1 Proof Trees

In a well-structured mathematical argument, it is clear at every point what the
conclusion reached so far is, what the current assumptions are and on which
intermediate results each step depends.

We model this mathematically with the concept of a tree.
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Definition 3.1.1 A tree is a partial order (T ,≤) which has a least element, and is
such that for every x ∈ T , the set

↓(x) ≡ {y ∈ T | y ≤ x}

is well-ordered by the relation ≤.

We shall only be concerned with finite trees; that is, finite posets T with least
element, such that each ↓(x) is linearly ordered.

This is an example of a tree:

b c d ◦

a ◦ ◦

We use the following dendrological language when dealing with trees: the least
element is called the root (in the example above, the element marked r), and the
maximal elements are called the leaves (in the example, the elements marked a,
b, c, d , e). The lines indicate the order (going upwards), and the ◦’s are unnamed
elements.

When we see a proof as a tree, the leaves are the places for the assumptions, and
the root is the place for the conclusion. The information that the assumptions give
may be compared to the carbon dioxide in real trees, which finds its way from the
leaves to the root.

The following exercise gives some alternative ways of characterizing trees.

Exercise 114

(a) Show that a finite tree is the same thing as a finite sequence of nonempty finite
sets and functions

An→ · · · → A1 → A0

where A0 is a one-element set.
(b) Show that a finite tree is the same thing as a finite set V together with a function

f : V → V which has the properties that f has exactly one fixed point r =
f (r), and there are no elements x �= r such that x = f n(x) for some n ∈ N>0.

(c) If V is a finite set, a hierarchy on V is a collection C of subsets of V such that
V ∈ C, and for any two elements C1 �= C2 of C, we have C1 ⊂ C2 or C2 ⊂ C1
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or C1 ∩ C2 = ∅. Let us call a hierarchy C a T0-hierarchy if for each x, y ∈ V

with x �= y, there is a C ∈ C such that either x ∈ C and y �∈ C, or y ∈ C and
x �∈ C. Call C connected if there is an element r ∈ V such that the only element
C ∈ C such that r ∈ C is V itself.

(i) Show that if C is a connected T0-hierarchy on V , then the relation

x ≤ y if and only if for all C ∈ C, x ∈ C implies y ∈ C

defines a partial order on V which is a tree; and moreover, for every x ∈ V ,
the set {y ∈ V | x ≤ y} is an element of C.

(ii) Show also that if ≤ is a partial order on a finite set V which is a tree, then
the set of subsets of V

{{y ∈ V | x ≤ y} | x ∈ V }
is a connected T0-hierarchy on V .

We shall be interested in L-labelled trees; that is: trees where the elements have
‘names’ which are L-formulas or formulas marked with a symbol † (pronounced
“dagger”). For example:

φ ψ †ρ ∃yψ

†χ χ ∧ ψ φ ∨ ψ

The following definition formalizes this.

Definition 3.1.2 Let L be a language. We fix an extra symbol †. A marked L-
formula is a pair (†, ϕ); we shall write †ϕ for (†, ϕ). Let F(L) be the set of L-
formulas, and let †F(L) be the disjoint union of F(L) and the set {†} × F(L) of
marked L-formulas.

An L-labelled tree is a finite tree T together with a function f from T to the set
†F(L) such that the only elements x of T such that f (x) is a marked formula are
leaves of T .

The function f is called the labelling function, and f (x) is called the label of x.

Remark 3.1.3 In other contexts in mathematics the notion of “planar tree” is
important. A planar tree is a tree together with a specific embedding of the tree



3.1 Proof Trees 85

into the plane. Every picture of a tree can be viewed as such an embedding. Our
trees are not planar: we regard the pictures

χχ

as two embeddings of the same tree.
Moreover, we call two labelled trees equivalent if the underlying partial orders

are isomorphic via an isomorphism which commutes with the labelling functions.

Among the L-labelled trees, we shall single out the set of proof trees. The
definition (Definition 3.1.4 below) uses the following two operations on L-labelled
trees:

(1) Joining a number of labelled trees by adding a new root labelled φ

Suppose we have a finite number of labelled trees T1, . . . , Tk with labelling
functions f1, . . . , fk . Let T be the disjoint union T1 + · · · + Tk together with a
new element r , and ordered as follows: x ≤ y if and only if either x = r or x

and y belong to the same Ti and x ≤ y holds in Ti .
Let the labelling function f on T be such that it extends each fi on Ti and

has f (r) = φ.
We denote this construction by �(T1, . . . , Tk;φ). A picture:

T1 · · · Tk

◦ ◦

(2) Adding some markings
Suppose T is a labelled tree with labelling function f . If V is a set of leaves
of T , we may modify f to f ′ as follows: f ′(x) = f (x) if x �∈ V or f (x) is a
marked formula; otherwise, f ′(x) = (†, f (x)).

We denote this construction by Mk(T ;V ).

Exercise 115 Show that, up to equivalence of labelled trees (see Remark 3.1.3),
every L-labelled tree can be constructed by a finite number of applications of these
two constructions, starting from one-element trees with unmarked labels.
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For the rest of this section, we shall assume that we have a fixed language L which
we won’t mention (we say ‘labelled’ and ‘formula’ instead of ‘L-labelled’, ‘L-
formula’ etc.).

If T is a labelled tree with labelling function f , root r and leaves a1, . . . , an, we
shall call the formula f (r) (if it is a formula, that is: unmarked) the conclusion of
T and the formulas f (ai) the assumptions of T . Assumptions of the form †ϕ are
called eliminated assumptions.

We can now give the promised definition of ‘proof tree’. Instead of reading
through the definition in one go, you are advised to work through a few clauses
at a time and then have a look at the examples, referring back to the definition when
necessary.

Definition 3.1.4 The set P of proof trees is the smallest set of labelled trees,
satisfying:

Ass For every formula ϕ, the tree with one element r and labelling function
f (r) = ϕ is an element of P . Note that ϕ is both an assumption and the
conclusion of this tree. We call this tree an assumption tree.

∧I If T1 and T2 are elements of P with conclusions ϕ1 and ϕ2, respectively, then
�(T1, T2; ϕ1 ∧ ϕ2) is an element of P . We say this tree was formed by ∧-
introduction.

∧E If T is an element of P with conclusion φ ∧ ψ then both �(T ;φ) and
�(T ;ψ) are elements of P . These are said to be formed by ∧-elimination.

∨I If T is an element of P with conclusion ϕ or ψ then �(T ; ϕ ∨ ψ) is an
element of P . We say this tree is formed by ∨-introduction.

∨E Suppose that T , S1, S2 are elements of P such that the conclusion of T is ϕ ∨
ψ and the conclusions of S1 and S2 are the same (say, χ). Let V1 be the subset
of the leaves of S1 labelled ϕ, and let V2 be the subset of the leaves of S2
labelled ψ . Let S′1 = Mk(S1;V1), S′2 = Mk(S2;V2). Then �(T , S′1, S′2;χ)

is an element of P (∨-elimination).
→ I Suppose T is an element of P with conclusion ϕ, and let ψ be any formula.

Let V be the subset of the set of leaves of T with label ψ , and T ′ =
Mk(T ;V ). Then �(T ′;ψ → ϕ) is an element of P (→-introduction).

→ E Suppose T and S are elements of P with conclusions ϕ→ ψ and ϕ,
respectively. Then �(T , S;ψ) is an element of P (→-elimination).

¬I Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula, and
V be the subset of the set of leaves of T labelled ϕ. Let T ′ = Mk(T ;V ).
Then �(T ′; ¬ϕ) is an element of P (¬-introduction).

¬E Suppose T and S are elements of P with conclusions ϕ and¬ϕ, respectively.
Then �(T , S; ⊥) is an element of P (¬-elimination).

⊥E Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula,
and V the subset of the set of leaves of T labelled ¬ϕ. Let T ′ = Mk(T ;V ).
Then �(T ′; ϕ) is an element of P (⊥-elimination; one also hears reductio ad
absurdum or proof by contradiction).
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Subst Suppose T and S are elements of P such that the conclusion of T is
ϕ[t/x] and the conclusion of S is (t = s). Suppose furthermore that the
substitutions ϕ[t/x] and ϕ[s/x] are legitimate (see Definition 2.2.14). Then
�(T , S; ϕ[s/x]) is an element of P (Substitution).

∀I Suppose T is an element of P with conclusion ϕ[u/v], where u is a variable
which does not occur in any unmarked assumption of T or in the formula ∀vϕ

(and is not bound in ϕ). Then �(T ; ∀vϕ) is an element of P (∀-introduction).
∀E Suppose T is an element of P with conclusion ∀uϕ, and t is a term such that

the substitution ϕ[t/u] is legitimate. Then �(T ; ϕ[t/u]) is an element of P
(∀-elimination).

∃I Suppose T is an element of P with conclusion ϕ[t/u], and suppose the
substitution ϕ[t/u] is legitimate. Then �(T ; ∃uϕ) is an element of P (∃-
introduction).

∃E Suppose T and S are elements of P with conclusions ∃xϕ and χ , respec-
tively. Let u be a variable which doesn’t occur in ϕ or χ , and is such that the
only unmarked assumptions of S in which u occurs are of the form ϕ[u/x].
Let V be the set of leaves of S with label ϕ[u/x], and S′ =Mk(S;V ). Then
�(T , S′;χ) is an element of P (∃-elimination).

Examples. The following labelled trees are proof trees. Convince yourself of this,
and find out at which stage labels have been marked:

(a)

ϕ ∧ ψ

ϕ

ψ ϕ

ϕ
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(b)

(ϕ ∧ ψ) (ϕ ∧ ψ)

ψ ϕ

ψ ∧ ϕ

(c)

“Ex falso sequitur quodlibet”
(d)

(¬ϕ) (¬ψ)

†(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ †(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ

⊥ ⊥

ϕ ψ

†(¬(ϕ ∧ ϕ))ψ ∧ ψ

⊥

¬ϕ ∨ ¬ψ
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(e)

(ϕ ∧ ψ) (ϕ ∧ ψ)

†(¬ϕ) ϕ †(¬ψ) ψ

⊥ ⊥

†(¬ϕ ∨ ¬ψ) ¬(ϕ ∧ ψ) ¬(ϕ ∧ ψ)

¬(ϕ ∧ ψ)

(f) The following example illustrates why, in formulating the rule ∀I , we have
required that the variable u does not occur in the formula ∀vϕ. For, let ϕ be
the formula u = v. Consider that (u = v)[u/v] is u = u, so were it not for this
requirement, the following tree would be a valid proof tree:

u = u

Clearly, we would not like to accept this as a valid proof!

Definition 3.1.5 We define the relation

� % ϕ

as: there is a proof tree with conclusion ϕ and whose unmarked assumptions are
either elements of � or of the form ∀x(x = x) for some variable x. We abbreviate
{ϕ} % ψ as ϕ % ψ , we write % ψ for ∅ % ψ , and �, ϕ % ψ for � ∪ {ϕ} % ψ .

Exercise 116 (Deduction Theorem) Prove that the statement �, ϕ % ψ is equiva-
lent to � % ϕ→ ψ .
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3.1.1 Variations and Examples

One variation in the notation of proof trees is to write the name of each construction
step next to the labels in the proof tree.

For example, the proof tree

ϕ

ϕ ϕ

is constructed from the assumption tree ϕ by→-introduction (at which moment the
assumption ϕ is marked). One could make this explicit by writing

ϕ

I ϕ ϕ

Another notational variation is one that is common in the literature: the ordering
is indicated by horizontal bars instead of vertical or skew lines, and next to these bars
it is written by which of the constructions of Definition 3.1.4 the new tree results
from the old one(s). Assumptions are numbered so that different assumptions have
different numbers, but distinct occurrences of the same assumption may get the
same number. The assumptions which are marked in the construction are indicated
by their numbers next to the name of the construction. In this style, the proof tree

ϕ

ϕ ϕ

appears as follows:

†ϕ1

I, 1ϕ ϕ

We shall call this a decorated proof tree. Although (or maybe: because!) they contain
some redundant material, decorated proof trees are easier to read and better for
practising the construction of proof trees.
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In decorated style, examples (a)–(e) of the previous section are as follows:

(a)

†ϕ1 †ψ2

∧I
ϕ ∧ ψ ∧Eϕ

I, 2
ψ ϕ

I, 1
ϕ (ψ ϕ)

The assumption ϕ, numbered 1, gets marked when construction → I with
number 1 is performed; etcetera.

(b)

†ϕ ∧ ψ1

∧E
ψ

†ϕ ∧ ψ1

∧Eϕ ∧I
ψ ∧ ϕ

I, 1
(ϕ ψ) (ψ ϕ)

(c)

(d)

†¬(ϕ ∧ ψ)4

†¬(¬ϕ ∨ ¬ψ)3

†¬ϕ1

∨I ∨I¬ϕ ∨ ¬ψ ¬E⊥ ⊥E, 1ϕ

†¬(¬ϕ ∨ ¬ψ)3
¬ψ

¬ϕ ∨ ¬ψ

⊥ ⊥E, 2
ψ ∧I

ϕ ∧ ψ ¬E

¬E

⊥ ⊥E, 3¬ϕ ∨ ¬ψ
I, 4

(e)

†¬ϕ ∨ ¬ψ5

†¬ϕ3

†ϕ ∧ ψ1

∧Eϕ ¬E⊥ ¬I, 1¬(ϕ ∧ ψ)

†¬ψ4

ϕ ∧ ψ ∧E
ψ ¬E⊥ ¬I, 2¬(ϕ ∧ ψ) ∨E, 3, 4

(ϕ ψ)
I, 5
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Some more examples:

(f) A proof tree for t = s % s = t:

∀Et t t s
Subst

The use of Subtitution is justified since t = t is (u = t)[t/u]. Quite similarly,
we have a proof tree for {t = s, s = r} % t = r:

(g)

†¬∃xϕ(x)2

†ϕ(y)1 ∃I∃xϕ(x) ¬E⊥ ¬I, 1¬ϕ(y) ∀I
x ϕ(x)

I, 2

You should check why the application of ∀I is justified in this tree.
(h) The following tree gives an example of the ∃E-construction:

†∃xϕ(x)2

†∀x¬ϕ(x)3 ∀E¬ϕ(y) †ϕ(y)1 ¬E⊥ ∃E, 1⊥ ¬I, 2¬∃xϕ(x)
I, 3

x ϕ(x) xϕ(x)

(i)

†¬∀x¬ϕ(x)3

†¬∃xϕ(x)2

†ϕ(y)1 ∃I∃xϕ(x) ¬E⊥ ¬I, 1¬ϕ(y) ∀I∀x¬ϕ(x) ¬E⊥ ⊥E, 2
xϕ(x)

I, 2
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(j) The following tree is given in undecorated style; it is a good exercise to decorate
it. It is assumed that the variables x and u do not occur in φ; check that without
this condition, it is not a correct proof tree:

†¬ψ(u) †ψ(u)

†∀x(φ ∨ ψ(x)) ⊥ †φ †¬φ

φ ∨ ψ(u) ⊥

⊥

ψ(u)

∀xψ(x)

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

φ

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

φ ∨ ∀xψ(x)

Remark 3.1.6 Some heuristics: when faced with the problem of constructing a
proof tree which has a specified set of unmarked assumptions � and a prescribed
conclusion φ (often formulated as: “construct a proof tree for � % φ”), it is advisable
to use the following heuristics.
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If φ is a conjunction φ1 ∧ φ2, break up the problem into two problems � % φ1
and � % φ2.
If φ is an implication φ1 → φ2, transform the problem into �, φ1 % φ2.
If φ is a negation ¬ψ , transform into �,ψ % ⊥.
If φ is of the form ∀xψ(x), transform into � % ψ(u).
If φ is a disjunction φ1 ∨ φ2, one may try the transformation into �,¬φ1 % φ2 or
�,¬φ2 % φ1. From both of these one arrives at φ1 ∨ φ2 by ⊥E (assume ¬(φ1 ∨
φ2)).
In all other (non-obvious) cases, try � ∪ {¬φ} % ⊥.

There is, however, no guarantee that these methods work, or that they produce the
most efficient proof. A famous theorem by Alonzo Church (1903–1995) states that
there is no algorithm to decide whether or not � % φ holds (see Section A.1 for a
precise meaning of this).

Exercise 117 Construct proof trees for the equivalences of Exercise 59. Recall that
↔ is an abbreviation: for example, a proof tree for % (ϕ→ ψ)↔ (¬ϕ ∨ ψ) will
be constructed out of two proof trees, one for {ϕ→ ψ} % ¬ϕ ∨ ψ , and one for
{¬ϕ ∨ ψ} % ϕ→ ψ , by applying→-introduction and ∧-introduction.

3.1.2 Induction on Proof Trees

Since the set P of proof trees is defined as the least set of labelled trees which
contains the assumption trees ϕ and is closed under a number of constructions
(Definition 3.1.4), P is susceptible to arguments by induction over proof trees:
if A is any set of labelled trees which contains all such ϕ and is closed under the
constructions, then A contains P as a subset.

Here are some examples of properties of proof trees one can prove by this
method. Later, in the proof of the Soundness Theorem (Lemma 3.2.1) we shall also
apply induction over proof trees.

1. No proof tree has a marked formula at the root.
2. In every proof tree T , for every x ∈ T there are at most 3 elements of T directly

above x.
3. If T is a proof tree for � % ϕ[c/u], where c is a constant that does not occur in

�, and v is a variable which doesn’t occur anywhere in T , then there is a proof
tree for � % ϕ[v/u]. It then follows by ∀I that there is a proof tree for � % ∀uϕ.

Exercise 118 Carry out the proofs of these statements. For 3, prove the following:
if T , c and v are as in the hypothesis, and T [v/c] results from T by replacing c by
v throughout, then T [v/c] is also a proof tree, and is a proof tree for � % ϕ[v/u].
Exercise 119 Let � %H ϕ be defined as the least relation between sets of
L-formulas � and L-formulas ϕ such that the following conditions are satisfied:

(i) � %H ∀x(x = x) always;
(ii) if ϕ ∈ �, then � %H ϕ;
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(iii) if � %H ϕ and � %H ψ , then � %H (ϕ ∧ ψ), and conversely;
(iv) if � %H ϕ or � %H ψ , then � %H (ϕ ∨ ψ);
(v) if � ∪ {ϕ} %H χ and � ∪ {ψ} %H χ , then � ∪ {ϕ ∨ ψ} %H χ ;

(vi) if � ∪ {ϕ} %H ⊥, then � %H ¬ϕ;
(vii) if � %H ϕ and � %H ¬ϕ, then � %H ⊥;

(viii) if � ∪ {¬ϕ} %H ⊥, then � %H ϕ;
(ix) if � ∪ {ϕ} %H ψ , then � %H ϕ→ ψ;
(x) if � %H ϕ and � %H ϕ→ ψ , then � %H ψ;

(xi) if � %H ψ(u) and u does not occur in � or in ∀xψ(x), then � %H ∀xψ(x);
(xii) if � %H ∀xψ(x) and the substitution ψ[t/x] is legitimate, then � %H

ψ[t/x];
(xiii) if � %H ψ[t/x] and the substitution ψ[t/x] is legitimate, then � %H ∃xψ(x);
(xiv) if � ∪ {ψ(u)} %H χ and u does not occur in �, χ or ∃xψ(x), then � ∪

{∃xψ(x)} %H χ ;
(xv) if � %H ϕ[t/x] and � %H t = s while the substitutions ϕ[s/x] and ϕ[t/x]

are legitimate, then � %H ϕ[s/x].
Show that the relation � %H ϕ coincides with the relation � % ϕ from Defini-
tion 3.1.5.

3.2 Soundness and Completeness

We compare the relation � % φ from Definition 3.1.5 to the relation � |� φ from
Chapter 2; recall that the latter means: in every model M of �, the sentence φ holds.

In this section we shall prove that the statements � |� φ and � % φ are
equivalent. This is the Completeness Theorem as announced in the beginning of
this chapter. The Completeness Theorem says two important things about our proof
system in relation to our notion of truth: our proof system is

sound, that is: whatever can be proved is always true;
complete, that is: whatever is always true can be proved.

Often, the term “Completeness Theorem” is used for the second of these statements,
which is also the harder of the two.

Lemma 3.2.1 Suppose T is an L-labelled proof tree with unmarked assumptions
ϕ1, . . . , ϕn and conclusion ψ; let u1, . . . , uk be a list of all variables that are free
in at least one of ϕ1, . . . , ϕn, ψ . Then for every L-structure M and any k-tuple
m1, . . . ,mk of elements of M , we have:

If for all i, 1 ≤ i ≤ n, M |� ϕi[m1/u1, . . . ,mk/uk], then

M |� ψ[m1/u1, . . . ,mk/uk].

Proof. Lemma 3.2.1 is proved by a straightforward induction on proof trees: let A
be the set of L-labelled proof trees which satisfy the condition of the lemma for
every L-structure M .
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Clearly, A contains every assumption tree ϕ. Now we need to show that A
is closed under all the constructions of Definition 3.1.4. In most cases, a quick
inspection suffices. We shall treat a few cases, leaving the others for you to check.

Let us write ϕi[ "m/"u] for ϕi[m1/u1, . . . ,mk/uk].
Suppose T is formed by→-introduction from S ∈ A; say S has conclusion ψ

and T has conclusion φ→ ψ . Suppose the unmarked assumptions of S other than φ

are ϕ1, . . . , ϕn, and let u1, . . . , uk be a list of variables as in the lemma, for S. Then
if M is an L-structure and m1, . . . ,mk ∈ M , the induction hypothesis (viz, S ∈ A)
gives us that if M |� φ[ "m/"u] and M |� ϕi[ "m/"u] for all i ≤ n then M |� ψ[ "m/"u].
Now clearly, if M |� ϕi[ "m/"u] for each i ≤ n, also M |� (φ→ ψ)[ "m/"u]. So T ∈ A.

Suppose T is formed by ∀-introduction from S ∈ A. Suppose S has unmarked
assumptions ϕ1, . . . , ϕn and conclusion ψ(v), and v does not occur in ϕ1, . . . , ϕn.
The induction hypothesis gives us that for any L-structure M and any tuple "m,p

from M , if M |� ϕi[ "m/"u] for each i ≤ n then M |� ψ[ "m/"u, p/v]. Therefore, if
M |� ϕi[ "m/"u] for each i ≤ n, then M |� ψ[ "m/"u, p/v] for all p ∈ M . In other
words, M |� (∀xψ[x/v])[ "m/"u]. Hence T ∈ A.

Suppose T is formed by ∃-elimination from elements S, S′ of A. So the
conclusion of S is ∃vφ, the conclusion of S′ is χ , and S′ has possibly unmarked
assumptions of the form φ[w/x], where w does not occur in any other unmarked
assumption of S′, nor in φ, nor in χ . Let "u be the list of free variables appearing
in an unmarked assumption of T or in χ . Let "m be a tuple of elements of M of the
same length as "u.

Suppose that M |� ϕ[ "m/"u] for each unmarked assumption ϕ of T . We need
to show that M |� χ[ "m]. A little care is needed, for when we wish to apply the
induction hypothesis to the trees S and S′ we face the apparent problem that the
formula ∃vφ, which need not occur as an unmarked assumption or as the conclusion
of T , may contain free variables "y not among the "u. So let’s write ∃vφ("u, "y, v),
displaying all the variables. Now the induction hypothesis for S tells us that for
every tuple "n of M of the same length as "y, M |� ∃vφ( "m, "n, v). Since M is
nonempty, just pick any such tuple "n0 from M . Then, choose a ∈ M such that
M |� φ( "m, "n0, a). Now the induction hypothesis for S′ (with the tuple "m, "n0, a for
the variables "u, "y,w) tells us that M |� χ( "m), as desired. �
Exercise 120 Supply the induction step for the case of ∨-elimination, in the proof
above.

Corollary 3.2.2 (Soundness Theorem) Let � be an L-theory and φ an L-
sentence. If � % φ then � |� φ.

Proof. Immediate from Lemma 3.2.1. �
Definition 3.2.3

(i) An L-theory � is called formally consistent if � �% ⊥.
(ii) An L-theory � is called maximally formally consistent if � is formally

consistent but no proper extension of � is.
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(iii) An L-theory is said to have enough constants if for every L-formula ϕ(x) with
one free variable x, there is a constant c such that

� % ∃xϕ(x)→ ϕ(c).

Exercise 121

(a) Show that the statement � �% φ is equivalent to the statement that � ∪ {¬φ} is
formally consistent.

(b) Suppose � is a maximally formally consistent set of L-sentences. Show that
for any two L-sentences φ and ψ it holds that � % φ ∨ ψ if and only if either
� % φ or � % ψ .

(c) Suppose � is maximally formally consistent. Prove that for any L-sentence φ,
either φ ∈ � or ¬φ ∈ �.

Lemma 3.2.4 Let � be a maximally formally consistent set of L-sentences such
that � has enough constants. Then � has a model.

Proof. Let C be the set of constants of L. Then C �= ∅ (why?). We define an
equivalence relation ∼ on C by:

c ∼ d if and only if � % (c = d).

It is easily verified (see Example (f) of Section 3.1.1) that ∼ is an equivalence
relation. The set M = C/ ∼ of equivalence classes is made into an L-structure as
follows.

If F is an n-ary function symbol of L and c1, . . . , cn are elements of C, then
� % ∃x(F (c1, . . . , cn) = x); since � has enough constants, there is a constant c

such that � % F(c1, . . . , cn) = c; define FM by FM([c1], . . . , [cn]) = [c]. This is
independent of the choices for c and the representatives c1, . . . , cn, for if ci ∼ di

for i = 1, . . . , n and c ∼ d , we have easily � % F(d1, . . . , dn) = d by a number of
Substitution constructions on the corresponding proof trees.

Similarly, if R is an n-place relation symbol we put

RM = {([c1], . . . , [cn]) |� % R(c1, . . . , cn)}

and again one checks that this is well-defined.
Finally, if c is a constant of L we let cM = [c]. This completes the definition of

M as an L-structure.
Now let t be a closed L-term. It is easily seen by induction on t that if c is

a constant such that � % (t = c) (and such a constant exists, since � has enough
constants), then tM = [c]. Therefore, if s and t are closed L-terms, we have:

M |� (t = s) if and only if � % (t = s).
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We shall now prove that for every L-sentence φ,

M |� φ if and only if � % φ

by induction on φ.
If φ is R(c1, . . . , cn), this holds by definition. Hence, since every closed term is
equal to some constant, as we have just seen, the claim also holds for sentences
R(t1, . . . , tn) where the ti are closed terms.
Suppose φ is ψ ∨ χ . Then M |� φ if and only if (by definition of |�) M |� ψ or
M |� χ , if and only if (by induction hypothesis) � % ψ or � % χ , if and only if (by
Exercise 121, since � is maximally formally consistent) � % ψ ∨ χ .
The step for ¬ψ is similar, and the steps for ∧ and→ are left to you.
Now suppose φ is ∀xψ(x). We see that M |� φ is equivalent to: for all constants c of
L, M |� ψ(c). By induction hypothesis, this is equivalent to: for all constants c of L,
� % ψ(c). This obviously follows from � % ∀xψ(x). For the converse, using that
� has enough constants, pick a c such that � % ∃x¬ψ(x)→ ¬ψ(c). Then since
� % ψ(c), we must have � % ¬∃x¬ψ(x). By one of the items of Exercise 117,
� % ∀xψ(x).
Again, the case for φ of the form ∃xψ(x) is similar, and is omitted.

We see that M is a model of �, which was to be proved. �
Lemma 3.2.5 Let � be a formally consistent set of L-sentences. Then there is an
extension L′ of L by constants, and a set � of L′-sentences which extends � and
moreover is maximally formally consistent and has enough constants.

Proof. Fix a set C which is disjoint from C∗L (recall that this is the set of all symbols
which can occur in L-formulas) and moreover satisfies |C| = ||L|| = max(ω, |L|).
Then C is infinite, so by Exercise 26 (a), |C| = ω × |C|; therefore, we can write C

as a disjoint union:

C =
⋃

n∈N
Cn

such that for each n ∈ N, |Cn| = |C|.
Let L0 be L, and Ln+1 = Ln ∪ Cn, where the elements of Cn are new constants.

By induction, one sees that ||Ln|| = ||L|| = |C|. It follows, that for each n, there is
an injective function from the set

Fn = {ϕ(x) | ϕ(x) is an Ln-formula with one free variable x}
to the set Cn; we denote this map by ϕ(x) �→ cϕ(x).

We let L′ be
⋃

n∈N Ln. We construct �′ as
⋃

n∈N �n, where �0 = � and

�n+1 = �n ∪ {∃xϕ(x)→ ϕ(cϕ(x)) | ϕ(x) ∈ Fn}.
First, we prove the following fact:

(*) If �n+1 % φ, where φ is an Ln-sentence, then also �n % φ.
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Since every proof tree has only finitely many assumptions, we see that if �n+1 % φ

there are ϕ1(x), . . . , ϕm(x) ∈ Fn such that

�n ∪ {∃xϕi(x)→ ϕi(cϕi (x)) | 1 ≤ i ≤ m} % φ.

Combining Exercise 116 and the equivalences of Exercise 117, one checks that this
is equivalent to:

�n %
m∨

i=1

¬(∃xϕi(x)→ ϕi(cϕi (x))) ∨ φ.

Now the constants cϕi (x) are not in Ln, hence don’t occur in �n or in φ. It follows
from Section 3.1.2 that

�n % ∀u1 · · ·um[(
m∨

i=1

¬(∃xϕi(x)→ ϕi(ui)) ∨ φ].

By repeated use of % ∀x(χ ∨ ψ(x))→ (χ ∨ ∀xψ(x)) (see Example (j) of Sec-
tion 3.1.1), and % ¬(α→ β)→ (α ∧ ¬β),

�n %
m∨

i=1

(∃xϕi(x) ∧ ∀ui¬ϕi(ui)) ∨ φ.

It follows, since % (∃xϕi(x) ∧ ∀ui¬ϕi(ui))→⊥ (check!), that �n % ⊥ ∨ φ, hence
�n % φ. This proves (*).

From (*) it follows that �′ is formally consistent. For suppose �′ % ⊥. Again
using that every proof tree is finite, one finds that already �n % ⊥ for some n; then
by induction, using (*) one finds that � % ⊥, which contradicts the assumption that
� is formally consistent.

It is easy to see that �′ has enough constants; every formula contains only finitely
many constants, so every L′-formula is an Ln-formula for some n. So a required
constant for it will be in Ln+1 by construction.

Now clearly, if a set of sentences has enough constants, then every bigger set
also has enough constants. Therefore it suffices to show that �′ can be extended to
a maximally formally consistent set of L′-sentences; this is done with the help of
Zorn’s Lemma (Definition 1.3.4). Let P be the set of those sets of L′-sentences that
contain �′ and are formally consistent; P is ordered by inclusion. P is nonempty
since �′ ∈ P , as we have seen. If K is a chain in P then

⋃K is formally consistent.
Indeed, if

⋃K % ⊥ then already Z % ⊥ for some Z ∈ K (compare with the proof
above that �′ is formally consistent). By Zorn’s Lemma, P has a maximal element
�. Then � is maximally formally consistent, as is left for you to check; which
finishes the proof. �
Corollary 3.2.6 (Completeness Theorem) Let � be an L-theory and φ an L-
sentence. If � |� φ then � % φ.
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Proof. We argue by contraposition. Suppose � �% φ. Then L-theory � ∪ {¬φ} is
formally consistent. By Lemma 3.2.5 there is an extension L′ of the language L and
an L′-theory � such that � ∪ {¬φ} ⊆ � and moreover � is maximally formally
consistent and has enough constants. By Lemma 3.2.4 then, � has a model M . Now
M is an L-structure which is a model of � ∪ {¬φ}. It follows that � �|� φ. �

We can now give the promised proof of the Compactness Theorem from the
Completeness Theorem (a proof which is independent of the theory of formal proofs
was given in Section 2.5.1).

Corollary 3.2.7 (Compactness Theorem (2.5.1)) If � is a set of sentences in a
given language, and every finite subset of � has a model, then � has a model.

Proof. Suppose � does not have a model. Then � |� ⊥ so by the Completeness
Theorem we have � % ⊥. Then, since proofs are finite, as we have already used
a few times before, already �′ % ⊥ for some finite �′ ⊆ �. By the Soundness
Theorem, �′ |� ⊥. This means that �′ does not have a model, which contradicts
our assumption that every finite subset of � has a model. �
Exercise 122 Show that our proof of the Completeness Theorem has the corollary
that every formally consistent set of L-sentences has a model of cardinality at most
||L||. Compare this to Theorem 2.8.3.

3.3 Skolem Functions

Definition 3.3.1 Let L be a language. A Skolem Theory is an L-theory � with
the property that for every L-formula ϕ("x, y) with n+ 1 free variables, there is a
function symbol F such that

� % ∀"x (∃yϕ("x, y)→ ϕ("x, F ("x))).

In the case n = 0, we take this to mean that for ϕ(y) there is a constant c such that
� % ∃yϕ(y)→ ϕ(c). So in particular, a Skolem theory has enough constants.

Definition 3.3.2 Suppose we have two languages L ⊆ L′ and two theories T ⊆ T ′
such that T is an L-theory and T ′ is an L′-theory. Then T ′ is said to be conservative
over T if every L-sentence φ which is a consequence of T ′ is already a consequence
of T . In other words, T ′ % φ implies T % φ for every L-sentence φ.

Note that this notion already occurred in the proof of Lemma 3.2.5 where (*) states
that �n+1 is conservative over �n.

Exercise 123 Suppose that we have an infinite chain

L1 ⊆ L2 ⊆ · · ·
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of languages, and also a chain

T1 ⊆ T2 ⊆ · · ·

of theories, such that for each n, Tn is an Ln-theory. Let L =⋃
n≥1 Ln, and T =⋃

n≥1 Tn. Then T is an L-theory. Prove, that if Tn+1 is conservative over Tn for each
n ≥ 1, then T is conservative over T1.

Theorem 3.3.3 Let � be an L-theory. Then there is an extension L′ of L, and a
Skolem theory � in L′ extending �, which is conservative over �.

Proof. First, we show the following: for every L-theory � there is an extension L′
of L and an L′-theory � such that � ⊆ � and � is conservative over � while for
every L-formula ϕ("x, y) with n+ 1 free variables, there is a function symbol F in
L′ such that

� % ∀"x (∃yϕ("x, y)→ ϕ("x, F ("x))).

Let L′ be the extension of L obtained in the following way: for every L-formula ϕ

and every string (x1, . . . , xk, y) = ("x, y) of variables such that all free variables of
ϕ occur in "x, y, add a k-ary function symbol F

ϕ

"x,y
. Let � be the set of L′-sentences

defined as the union of � and the set of all L′-sentences of the form

∀"x(∃yϕ→ ϕ[Fϕ

"x,y
("x)/y]),

where ϕ is an L-formula and ("x, y) as above (the set � is said to be an extension of
� by Skolem functions).

Exercise 124 Show that every model of � can be made into an L′-structure which
is a model of �, by choosing appropriate functions as interpretations for the F

ϕ

"x,y
.

Then use the Completeness Theorem to conclude that � is conservative over �.

In order to prove the theorem, we iterate this construction infinitely often: let L1 =
L, and T1 = �. Suppose Ln and Tn have been defined; let Ln+1 and Tn+1 then be
the extended language and the extended theory which are obtained from Ln and Tn

by the construction above.
Finally, let L′ =⋃

n≥1 Ln and � =⋃
n≥1 Tn. By Exercise 123, � is conservative

over �. The proof that � is a Skolem theory is left to you as the following exercise.
�

Exercise 125 Finish the proof of Theorem 3.3.3: prove that the constructed theory
� is in fact a Skolem theory.

Exercise 126 Let � be a Skolem theory, M |� �. Show that every substructure of
M is an elementary substructure; in particular, � has quantifier elimination.
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Exercise 127 Let L = {R, f } where R is a binary relation symbol and f a unary
function symbol. The L-theory T has the following axioms:

Axioms saying that R is an equivalence relation;
∀xR(x, f (x));
∀xy(R(x, y)→ f (x) = f (y)).

(a) Let TR be the theory in the language {R} with only the axioms i). Is T

conservative over TR? Justify your answer.
(b) Let Tf be the theory in the language {f }with no axioms. Is T conservative over

Tf ? Again, justify your answer.

Exercise 128 (This exercise was suggested to us by Jetze Zoethout.) In Exer-
cise 124 we had an L-theory �, an extension of languages L ⊆ L′ and an L′-theory
� extending �. We proved that � was conservative over � by showing that every
model of � could be expanded (by finding suitable interpretations for the symbols
in L′ − L) to an L′-structure which was a model of �. Let us say that � is
strongly conservative over � if this is the case. This exercise shows that not every
conservative extension is strongly conservative.

Let L consist of just one binary relation symbol R and let � be the L-theory
which has for each natural number n ≥ 2 an axiom

∃x1 · · · ∃xn(R(x1, x2) ∧ R(x2, x3) ∧ · · · ∧ R(xn−1, xn)).

Let L′ extend L by a set of constants c0, c1, . . . and let � be the L′-theory which
extends � by the axioms

{R(ci, ci+1) | i ≥ 0}.

(a) Show that � is conservative over �. [Hint: use the Compactness Theorem.]
(b) Show that � is not strongly conservative over �. [Hint: consider an infinite

well-order, and interpret R as >.]

Exercise 129 Let L be a language, T an L-theory and L′ an extension of the
language L.

(a) Show that the poset of all L′-theories which are conservative extensions of T ,
ordered by inclusion, satisfies the hypothesis of Zorn’s Lemma.

(b) By Zorn’s Lemma, there is a maximal L′-theory U which is conservative over
T . Show that for every L′-sentence ψ �∈ U , there are an L-sentence φ and an
L′-sentence γ ∈ U such that γ ∧ ψ |� φ and T �|� φ.



Chapter 4
Sets Again

This short chapter aims to give you a nodding acquaintance with the formal theory
of sets. Most mathematicians accept this theory as a foundation for mathematics (see
Remark 4.1.1 for what this might mean).

Set theory, as we saw in the introduction to Chapter 1, started with Cantor. We
have already seen many of Cantor’s results in this book: the Schröder–Cantor–
Bernstein Theorem, the uncountability of R, the diagonal argument, the Cantor Set,
the notion of cardinal number and the Continuum Hypothesis, and in Chapter 2 the
ω-categoricity of the theory of dense linear orders. The notion of “ordinal number”,
which we shall see in this chapter, is also due to him, and there is lots more.

Cantor was not a logician, and from a twentieth and twenty-first centuries
perspective his theory was rather informal. Basically, a set could be formed by
grouping together all objects sharing a certain property. This approach was also
taken by Frege, who had a notion similar to Cantor’s. However, Frege was one of
the pioneers of modern logic and he added formal definitions for his constructions.
It was precisely this that made his work susceptible to paradoxes, and one of these
was pinpointed by Bertrand Russell in 1903 (this is the “antinomy” we alluded to in
the introduction to Chapter 2). Consider the set N of natural numbers. Clearly, N is
not a natural number, so it is not an element of N. In symbols: N �∈ N. Now, Russell
continued, let us ‘group together’ into a set all those sets which are not elements of
themselves: let

R = {x | x �∈ x}.
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Ernst Zermelo

Suppose R is a set. Then the question as to whether or not R ∈ R makes sense.
But by definition of R we find that R ∈ R precisely when R �∈ R! This is clearly a
contradiction, which is known as “Russell’s Paradox”.1

4.1 The Axioms of ZF(C)

Mindful of Russell’s paradox, Ernst Zermelo, whom we know from the Axiom of
Choice and the Well-Ordering Theorem, took some care in formulating a system of
axioms for sets in [86] (1908). One of the basic ideas is that one can group together
all objects from a given set which have a certain property, to form a new set: instead
of allowing {x |P(x)} to be a set, we declare that {x ∈ X |P(x)} is always a set
provided X is a set (this is the Axiom Scheme of Separation below).

Zermelo’s set theory (often denoted Z) is still an interesting object of study, but
for mathematical purposes it is too weak, as was soon discovered. For example, it
does not allow the construction of the union of an infinite family of sets in general.

1There is a real life version of the same paradox, about the “village barber, who shaves every
villager who does not shave himself”. Does the barber shave himself?
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In 1922 the additional Axiom Scheme of Replacement was proposed by Abraham
Fraenkel (1891–1965). The resulting system is called Zermelo–Fraenkel set theory,
and denoted ZF. When the Axiom of Choice is added, we write ZFC.

The theory ZFC is formulated in the language {∈}, where ∈ is a 2-place relation
symbol expressing ‘is an element of’. We only talk about sets and elementhood. We
now list the axioms.

1. Axiom of Extensionality
∀x∀y(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Sets are equal if they have the same elements.
2. Axiom of Pairing
∀x∀y∃z∀w(w ∈ z↔ (w = x ∨w = y))

For each x and y, {x, y} is a set.
3. Axiom Scheme of Separation

For every formula φ not containing the variable y, we have an axiom
∀x∃y∀w(w ∈ y ↔ (w ∈ x ∧ φ))

For each set x and property φ, {w ∈ x |φ} is a set.
4. Axiom of Union
∀x∃y∀w(w ∈ y ↔ ∃z(z ∈ x ∧ w ∈ z))

For every set x,
⋃

x (or
⋃

z∈x z) is a set.
5. Axiom of Power Set
∀x∃y∀w(w ∈ y ↔ ∀z(z ∈ w→ z ∈ x))

For every set x, P(x) is a set.
6. Axiom of Infinity

Since ∃x(x = x) is a valid sentence, there is a set. If x is a set then by Separation
there is a set {w ∈ x | ⊥} which has no elements; and this set is unique by
Extensionality. We denote this empty set by ∅. Also, for any set x we have a
set {x} = {x, x} by Pairing, and x ∪ {x} =⋃{x, {x}} using Pairing and Union.
With these notations, the axiom of Infinity is now

∃x(∅ ∈ x ∧ ∀y(y ∈ x → (y ∪ {y}) ∈ x)).

Suppose x is such a set as postulated by the axiom of Infinity. Then ∅ ∈ x; let us
write 0 for ∅. Then, also 0 ∪ {0} ∈ x; we write 1 for this set. Inductively, we write
n+ 1 for n ∪ {n}. We can prove that n has exactly n elements, and therefore, that
the set x “is infinite” in the sense that we can write down infinitely many elements
of x (which are pairwise distinct).

7. Axiom Scheme of Replacement
For any formula φ which does not contain the variable y:

∀a∃b∀c(φ(a, c)↔ c = b) →
∀x∃y∀v(v ∈ x → ∃u(u ∈ y ∧ φ(v, u)))
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The premiss expresses that φ defines an operation F on sets. The axiom says
that for any such operation F and any set x, there is a set y which contains
{F(v) | v ∈ x} (it follows then by Separation that the latter is in fact a set).

8. Axiom of Regularity
∀x(x �= ∅ → ∃y(y ∈ x ∧ ∀z¬(z ∈ y ∧ z ∈ x)))

Every nonempty set x has an element that is disjoint from x.

The regularity axiom (together with Pairing) implies that no set can be an element
of itself, for if x ∈ x then the set {x} does not contain an element disjoint from itself.
This has the following consequence:

There can be no “set of all sets” because such a set would be an element of itself.
We see that the Russell paradox is resolved: the “set” R = {x | x �∈ x}would have
to be the set of all sets! Therefore, R is not a set.

Remark 4.1.1 What does it mean to say that this theory is a “foundation for math-
ematics”? It means that all constructions from the basic set theory we developed in
Chapter 1 can be defined in ZFC, and that all sets and functions used in mathematics
can be regarded as elements of any model of ZFC. It is therefore possible to pretend
that every mathematical theorem is a theorem about sets.

In principle, we could now translate every informal statement about sets in
Chapter 1 into a formula of ZFC, and prove it from the ZFC-axioms by natural
deduction trees. This is long and tedious but possible. Let us just stress these two
points here:

1. The theory ZF, augmented by the Axiom of Choice where necessary, suffices to
prove all the theorems and propositions of Chapter 1.

2. Now that we have formulated ZF(C) as a first-order theory, the question of
whether or not a particular statement can be proved from it acquires a precise
mathematical meaning.

Classes and Sets A class is a collection of all sets satisfying a given property. For
us, a class is given by a formula φ(x) with one free variable x. Such a class is a set
if ∃y∀x(φ(x)↔ x ∈ y) holds. Note that, by Separation, every subclass of a set is a
set.

Using Pairing, we have for each set x and each set y the set

{{x}, {x, y}}

which we denote by (x, y) and call the ordered pair of x and y.

Exercise 130 Show:

(a) (x, y) = (u, v)↔ x = u ∧ y = v.
(b) x × y = {(u, v) | u ∈ x ∧ v ∈ y} is a set. [Hint: use that for u ∈ x and v ∈ y,

the ordered pair (u, v) is a subset of P(x ∪ y).]



4.2 Ordinal Numbers and Cardinal Numbers 107

The formulas ∃x(x ∈ y ∧ φ) and ∀x(x ∈ y → φ) will be abbreviated to ∃x ∈ yφ

and ∀x ∈ yφ, respectively.

A relation from x to y is a subset of the set x × y. Such a relation R is a function if
∀u ∈ x∃v ∈ y∀w ∈ y((u,w) ∈ R↔ v = w) holds.

Exercise 131 Show that for every pair of sets x, y there is a set yx of all functions
from x to y.

The Axiom of Choice can now be formulated:

∀x∀y∀f ∈ yx[∀v ∈ y∃u ∈ x((u, v) ∈ f ) →
∃g ∈ xy∀v ∈ y∀u ∈ x((v, u) ∈ g→ (u, v) ∈ f )].

A poset is an ordered pair (x, r) such that r ∈ P(x × x) is a relation which partially
orders x: i.e. ∀u ∈ x((u, u) ∈ r), etcetera. Similarly, we can define the notions of a
linear order and of a well-order.

Exercise 132 Carry this out.

Remark on Notation We have started to use a lot of symbols which are not part
of the language {∈}: P(x),

⋃
x, {y ∈ x | . . .}, x ⊆ y, etc. You should view these

as abbreviations. Everything we express with these symbols can, equivalently, be
said without them. For example, if φ(v) is a formula then the expression φ(P(x))

is short for:

∃y[∀v(v ∈ y ↔ ∀w(w ∈ v→ w ∈ x)) ∧ φ(y)]

or equivalently

∀y[∀v(v ∈ y ↔ ∀w(w ∈ v→ w ∈ x))→ φ(y)].

Exercise 133 The list of axioms we have given is not the shortest possible. Show
that the axiom of Pairing follows from Separation, Power Set and Replacement.

4.2 Ordinal Numbers and Cardinal Numbers

A set x is transitive if ∀y ∈ x∀u ∈ y(u ∈ x) holds.

Exercise 134 Prove that x is transitive iff ∀y ∈ x(P(y) ⊂ P(x)); and also that x is
transitive iff x ⊂ P(x).

Examples. ∅ is transitive; {∅} too. {{∅}} is not transitive. If x and y are transitive,
so is x ∪ y, and if x is transitive, so is x ∪ {x}.
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A set x is an ordinal number (or just ordinal) if x is transitive and well-ordered by
the relation ∈. This means: x is an ordinal if the conditions

∀y ∈ x∀v ∈ y(v ∈ x)

∀y ⊆ x(y �= ∅ → ∃v ∈ y∀w ∈ y(v �= w→ v ∈ w))

hold.

Exercise 135 Check that these conditions indeed imply that ∈ is a linear order on
x, and that it is a well-order.

Normally, we use Greek lower-case characters in the first half of the alphabet: α, β,
γ ,. . . for ordinals.

Theorem 4.2.1

(a) ∅ is an ordinal.
(b) If α is an ordinal then every β ∈ α is an ordinal.
(c) If α and β are ordinals then α ⊆ β → α = β ∨ α ∈ β.
(d) If α and β are ordinals then α ⊆ β or β ⊆ α.

Proof. (a) is immediate and (b) is left as an exercise.
For (c), suppose α ⊆ β and α �= β. Let γ be the ∈-least element of β − α.

Then γ ⊆ α. On the other hand, if x ∈ α then x = γ and γ ∈ x are impossible
by definition of γ and the fact that α is transitive. Therefore, since β is an ordinal,
x ∈ γ must hold. So α ⊆ γ ; hence α = γ and so α ∈ β as required.

Part (d) is proved by similar reasoning: suppose α �⊆ β. Let γ be an ∈-minimal
element of α − β. Then γ ⊆ β. If γ = β then β ∈ α hence β � α by transitivity of
α. If γ � β then γ ∈ β by (c), which contradicts the choice of γ . �
Exercise 136 Prove part (b) of Theorem 4.2.1. Prove also that if α and β are
ordinals, then one of the following three possibilities must hold: α ∈ β, α = β,
β ∈ α.

Let Ord be the class of ordinal numbers. For ordinals α, β we write α < β for α ∈ β.
By Theorem 4.2.1, < is a linear order on Ord. It is, actually, in a sense a well-order,
as follows from the next theorem.

Theorem 4.2.2

(a) Every nonempty subclass of Ord has a <-least element; in fact, if C is a
nonempty class of ordinals, then

⋂
C belongs to C.

(b) For every set x of ordinals,
⋃

x is an ordinal, and it is the least ordinal α such
that β ≤ α for all β ∈ x.

(c) For every ordinal α, the set α ∪ {α} is an ordinal, and it is the least ordinal > α.
This set is denoted α + 1.

Proof. For (a), let C be defined by the formula φ(x) so we have ∀x(φ(x)→
x is an ordinal). Since C is nonempty, pick an x such that φ(x) holds. Then x is
an ordinal and x ∩ C = {y ∈ x |φ(y)} is a set, a subset of x. If x ∩ C = ∅, then



4.2 Ordinal Numbers and Cardinal Numbers 109

x is the least element of C. Otherwise, since x is an ordinal, x ∩ C has an ∈-least
element in x. Then that element is the least element of C, as is left for you to check.
We leave the remainder of the proof as an exercise. �
Exercise 137 Fill in the details of the proof above for part (a); prove parts (b) and
(c) of Theorem 4.2.2.

Theorem 4.2.2 suggests that, in analogy with Theorem 1.4.6, there might also be a
principle of “definition by recursion on Ord”. This is in fact the case, but requires a
little care in formulating.

Recall (from the introduction to the axiom of Replacement) that a formula
φ(x, y) defines an operation on sets if

∀x∃y∀z(φ(x, z)↔ y = z)

holds. We say that φ(x, y) defines an operation on ordinals if

∀x(x ∈ Ord→ ∃y∀z(φ(x, z)↔ y = z))

holds, where “x ∈ Ord” is the formula expressing that x is an ordinal.
Suppose φ(x, y) defines an operation on sets, which we call F . Then we use

expressions like {F(x) | x ∈ y} as shorthand; if ψ is a formula, the expression
ψ({F(x) | x ∈ y}) should be taken to mean

∃z(∀w(w ∈ z↔ ∃x(x ∈ y ∧ φ(x,w))) ∧ ψ(z)).

Theorem 4.2.3 (Transfinite recursion on Ord) For every operation F on sets
there is a unique operation G on Ord such that for all ordinals α the following
holds:

G(α) = F({G(β) | βεα}).

Proof. Given an ordinal β, a set y and an element f of the set yβ of functions
β → y, we write f [β] for the set {f (γ ) | γ ∈ β}. Now define G by the following
formula ψ(α, x):

∃y∃f ∈ yα[∀ξ ∈ α(f (ξ) = F(f [ξ ])) ∧ x = F(f [α])].
The proof that ψ defines an operation G on Ord with the stated property is left to
you. �
Examples of Ordinals. 0=∅, 1={0}= {∅}, 2={∅, {∅}}= {0, 1}, 3={0, 1, 2},. . .
are ordinals. Let x be a set as postulated by the axiom of Infinity, so ∅ ∈ x ∧ ∀y(y ∈
x → y ∪ {y} ∈ x). Let ω be the intersection of all subsets of x which contain ∅ and
are closed under the operation y �→ y ∪ {y}:

ω = {u ∈ x | ∀r ∈ P(x)((∅ ∈ r ∧ ∀v(v ∈ r → v ∪ {v} ∈ r))→ u ∈ r)}.



110 4 Sets Again

Exercise 138

(a) Prove that ω is transitive.
(b) Prove that ω is an ordinal.

We think of the ordinal ω as the set of natural numbers:

ω = {0, 1, 2, . . .}.

By Theorem 4.2.2(c), we then also have the ordinals ω + 1, ω + 2,. . . . One can
show (using Replacement) that there is a set of ordinals {ω + n | n ∈ ω} and hence
(by Theorem 4.2.2(b)) an ordinal

⋃{ω + n | n ∈ ω}, which we denote by ω + ω or
ω·2.
Similarly we have ω·3, ω·4,. . . and

⋃{ω·n | n ∈ ω}, which we write as ω·ω = ω2.
Next, we get ω3, ω4,. . . and

⋃{ωn | n ∈ ω} which we write as ωω. Note that we have
a certain ambiguity in notation here: ωω is not the set of all functions from ω to ω,
but a countable ordinal.
We can continue: we have ωωω

which is
⋃{ωωn | n ∈ ω}, and so forth, leading to

ε0 = ωω··
·
.

All these ordinals are countable!

Exercise 139 (Addition and Multiplication of ordinals) By transfinite recursion
(Theorem 4.2.3) we define operations of addition and multiplication on Ord, as
follows:

α + β =
{

α if β = 0
⋃{(α + γ )+ 1 | γ ∈ β} otherwise

and

α·β =
{

0 if β = 0
⋃{(α·γ )+ α | γ ∈ β} otherwise.

(a) Show that γ < β implies α + γ < α + β, and (if α �= 0) α·γ < α·β.

(b) Show: 0+ β = β and 0·β = 0.
(c) Show: α + (β + 1) = (α + β)+ 1 and α·(β + 1) = (α·β)+ α.
(d) Show that for any nonempty set of ordinals x,

α +
⋃

x =
⋃
{α + β | β ∈ x}.

(e) Show that for any set of ordinals x,

α·
⋃

x =
⋃
{α·β | β ∈ x}.
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(f) Show that 1+ ω = ω �= ω + 1, and 2·ω = ω �= ω·2.
(g) Show that α·(β + γ ) = α·β + α·γ .
(h) Give a counterexample to the statement (α + β)·γ = α·γ + β·γ .

Exercise 140 We can also define the operation of exponentiation of ordinals, as
follows:

αβ =
{

1 if β = 0
⋃{αγ ·α | γ ∈ β} otherwise.

(a) Show that the notation ωω used before is actually an example of ordinal
exponentiation.

(b) Show that αβ+γ = αβ ·αγ .
(c) Show that (αβ)γ = αβ·γ .

Theorem 4.2.4 Every well-ordered set is isomorphic (as well-ordered set) to a
unique ordinal number.

Proof. Let (X,<) be a well-ordered set. We use the principle of induction over X to
show that for each x ∈ X there is a unique ordinal F(x) such that {y ∈ X | y < x} ∼=
F(x). For successor elements x + 1, let F(x + 1) = F(x)+ 1 = F(x) ∪ {F(x)}. If
l is a limit element, one proves that {F(x) | x < l} is an ordinal which is isomorphic
to {y ∈ X | y < l}. By similar reasoning, {F(x) | x ∈ X} is an ordinal (it is a set by
the Replacement scheme) which is isomorphic to (X,<). �
Now recall Hartogs’ Lemma, which states that for any set X there is a well-order
(W,<) such that W cannot be mapped injectively into X; by Theorem 4.2.4 there
is an ordinal which cannot be mapped injectively into X, and by Theorem 4.2.2(a),
there is a least such ordinal. Taking X = ω, we see that there is a least uncountable
ordinal, which we denote by ω1.

The ordinals 0, 1, 2, . . . , ω and ω1 are examples of cardinal numbers. A cardinal
number is an ordinal κ such that for every α ∈ κ , there is no bijection between α

and κ .
If one assumes the Axiom of Choice, every set X can be well-ordered and is

therefore in bijective correspondence with an ordinal; taking the least such ordinal,
one associates to every set X a unique cardinal number κ such that there is a
bijection between X and κ ; we may write |X| for κ . If we write 2κ for |P(κ)| then
the Continuum Hypothesis has a compact formulation:

2ω = ω1.

Without the Axiom of Choice one can still formulate the Continuum Hypothesis
but one can no longer ascribe to every set a unique cardinal number as above.

There is a 1–1, surjective mapping from the class Ord of ordinals into the class
of all infinite cardinal numbers, defined as follows: ℵ0 (pronounced “aleph–zero”)
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is ω. If ℵα is defined, ℵα+1 is the least cardinal number greater than ℵα. If λ is a
limit ordinal (that is, an ordinal not of the form α + 1), then ℵλ =⋃{ℵβ | β < λ}.
Exercise 141 Show that ℵα is a cardinal for each α. Show also that for each infinite
cardinal κ there is a unique ordinal α such that κ = ℵα .

One can prove, without the Axiom of Choice, that |ℵα × ℵα| = ℵα for each α. You
should compare this to Proposition 1.3.9(iii).

4.2.1 The Cumulative Hierarchy

By Transfinite Induction on Ord, we define for every ordinal α a set Vα:

V0 = ∅
Vα+1 = P(Vα)

Vλ = ⋃
αελ Vα for a limit ordinal λ.

Exercise 142 Prove the following facts:

(a) The set Vα is transitive, for every ordinal number α.
(b) For α ≤ β, we have Vα ⊆ Vβ .
(c) For α < β, we have Vα ∈ Vβ .
(d) For every ordinal α, we have α ⊆ Vα.
(e) For every ordinal α, we have α = Vα ∩ Ord.

Exercise 143 Prove, using the axioms of Regularity and Replacement, that every
set is an element of some Vα.

Using Exercise 143 (and the fact that each Vα is transitive), we have that for every
set x there is an α such that x ⊆ Vα and therefore there is a least such α. This ordinal
is called the rank of x. Many statements about sets can be proved by induction on
the rank of a set.

Exercise 144

(a) Suppose the rank of a set x is an infinite limit ordinal. Show that x is infinite.
(b) Suppose the rank of x is ω1, the first uncountable ordinal. Show that x is

uncountable.
(c) Prove that the converses of (a) and (b) do not hold.

Exercise 145 An ordinal number α is called regular if for no ordinal β < α there
is a function f : β → α with the property that ∀y ∈ α∃x ∈ β(y ⊆ f (x)).

(a) Show that every regular ordinal is a cardinal number.
(b) Show that ω1 is regular.
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4.3 The Real Numbers

The real numbers are constructed as follows. From ω, construct Z as the set of
equivalence classes of ω × ω under the equivalence relation: (n,m) ∼ (k, l) iff n+
l = m+ k. Then there are well-defined operations of addition and multiplication on
Z. Define an equivalence relation on the set of those pairs (k, l) of elements of Z
such that l �= 0, by putting (k, l) ∼ (r, s) iff ks = lr . The set of equivalence classes
is Q, the set of rational numbers. Q is an ordered field, that is, a field with a linear
order < such that

(i) r > s → r + t > s + t

(ii) r > s > 0, t > 0→ rt > st

hold.
A Dedekind cut in Q (Richard Dedekind, 1831–1916) is a nonempty subset A ⊂

Q such that:

(i) a ∈ A, a′ < a→ a′ ∈ A

(ii) Q− A �= ∅
(iii) ∀a ∈ A∃b ∈ A(a < b)

R is the set of Dedekind cuts in Q, ordered by inclusion. Q is included in R via the
embedding ι : q �→ {r ∈ Q | r < q}.
Exercise 146 Show that there are operations +, · on R, making R into an ordered
field which extends the ordered field Q.

Suppose A is a set of elements of R which has an upper bound. Then
⋃A is an

element of R: it is the least upper bound of A. So R is complete. Moreover, Q
is dense in R: if A,B ∈ R and A � B, there is a q ∈ Q such that A � ι(q) � B.
From this, it follows that R is a so-called Archimedean ordered field: that is, an
ordered field such that for each a there is a natural number n such that a < ι(n). The
following theorem, stated without proof (but the proof is not hard), characterizes the
real numbers up to isomorphism.

Theorem 4.3.1 There exists, up to order-isomorphism, exactly one complete
Archimedean ordered field, the field of real numbers.

We hope to have convinced you that everything we did in Chapter 1 can, at least in
principle, be defined (and proved) within ZFC.



Appendix
Topics for Further Study

A.1 Incompleteness and Computability

The theory PA (see Example 2.5.4) might be seen as the theory of those truths
that can be established by “finitary” (simple, constructive) methods. This gives it
some philosophical significance. In studying PA, the class of “primitive recursive
functions” is important. A function F of n+ 1 variables is said to be defined by
primitive recursion over functions G and H if for all numbers x1, . . . , xn, y we
have

F(x1, . . . , xn, 0) = G(x1, . . . , xn)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, F (x1, . . . , xn, y), y).

We have basic functions: the constant zero function, the successor function and
projections (x, . . . , xn) �→ xi . A function is called primitive recursive if it can be
obtained from the basic functions in a finite number of definitions by primitive
recursion and substitution.

The relevance of primitive recursive functions for PA resides in the following
two facts, both established by Gödel.

(i) Every primitive recursive function F(x1, . . . , xn) is representable in PA, that is:
there is a formula φF (x1, . . . xn) such that for each n+ 1-tuple m1, . . . ,mn, k

of natural numbers, the sentence φF (m1, . . . ,mn, k) is provable in PA exactly
when F(m1, . . . ,mn) = k. Here k stands for the PA-term 1+ · · · + 1︸ ︷︷ ︸

k times

.

(ii) It is possible to encode terms, formulas and proof trees by natural numbers in
such a way that all relevant information can be extracted by primitive recursive
functions acting on the codes. We have a formula Prf(y, x) which says: x is the
code of a PA-sentence φ and y is the code of a proof tree for φ.
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Alan Turing

Next, Gödel established that for every formula φ(x) in one free variable x there is a
sentence ψ such that, if we write �ψ� for the code of ψ ,

PA % ψ ↔ φ(�ψ�).

Now, apply this to the formula ¬∃yPrf(y, x). We obtain a sentence G (the famous
“Gödel sentence”) which satisfies

PA % G↔ ¬∃yPrf(y, �G�).

In particular, the equivalence G↔ ¬∃yPrf(y, �G�) is true in the standard model N;
so G is true precisely when there is no proof for G. It follows that there can be no
proof for G (otherwise, G would be false, and PA would prove false things), hence
G is true, and PA is incomplete as a theory. This is Gödel’s First Incompleteness
Theorem, published in [23].

Gödel’s Second Incompleteness Theorem is the statement that the Gödel sentence
G, as given above, is equivalent (in PA) to the sentence ¬∃yPrf(y, �⊥�), a
sentence which expresses that the theory PA is formally consistent. This result, in
combination with the fact that the sentence G has no proof, is often paraphrased
by saying “PA does not prove its own consistency”. Good technical treatments of
Gödel’s Theorems are in [4] and [27]. An amusing book, dealing with the sense and
nonsense that have been made out of Gödel’s theorems in philosophy and the arts,
is [20].
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Tarski noted that Gödel’s proof admitted the following corollary: there cannot be
a formula Tr(x) in one free variable which defines those sentences which are true
in N (that is: for every sentence φ we would have the equivalence φ ↔ Tr(�φ�)),
because by Gödel’s observation there would be a sentence ψ such that ψ ↔
¬Tr(�ψ�) would be a theorem of PA. One says: “truth is not definable” (and it is a
running joke that Tarski both gave a definition of truth and proved the undefinability
of truth).

In the wake of Gödel’s results, people started thinking about what it means to
calculate something according to an algorithm. Definitions were proposed almost
simultaneously by several authors, but the most imaginative and convincing paper
was written by Alan Turing: [78]. [Alan Mathison Turing (1912–1954) was a
brilliant mathematician who also gained fame during the second world war due
to his work on deciphering the German “Enigma” coding machine. His life ended
tragically. For a biography, see [35].] Turing envisages a “computer” (which is, for
him, a person who calculates) and argues that such an individual must be in one
of only finitely many “states of mind”. He scans a notebook which has places for
symbols from a finite alphabet, and at each place, his state of mind together with the
symbol he reads determine his action (erase the symbol or replace it by another, and
move to the next place or the previous one) and the next state of mind he is in. One
state of mind has particular importance: the halting state. The computer stops, and
the contents of the notebook at that point are the result of the computation. Later,
this informal description led to the formal definition of a Turing machine, a finite
automaton. Turing argues cogently for the Church–Turing Thesis, which asserts
that anything that can be calculated algorithmically at all, can be calculated by a
Turing machine. A function f : Nk → N is called computable if there exists one
Turing machine which computes f (n1, . . . , nk) for every input n1, . . . , nk .

An equivalent definition is the following. A function f : Nk → N is said to
be defined from g : Nk+1 → N by minimalization (or μ-recursion) if for all
inputs n1, . . . , nk , we have that f (n1, . . . , nk) is the least number m such that
g(n1, . . . , nk,m) = 0. A function f is called general recursive if it can be defined
by minimalization and substitution from primitive recursive functions. A set X of k-
tuples of natural numbers is called decidable if its characteristic function is general
recursive. Turing gave the following example of a non-decidable set: the Halting
Set. This is the set of those pairs (a, b) of natural numbers which satisfy: the b-
th Turing machine with input a reaches the halting state. There is no algorithm to
decide, for an arbitrary algorithm and arbitrary input, whether the computation ever
ends!

Of course, mathematicians have known and used algorithms since antiquity
(think of long division, Euclid’s algorithm for the greatest common divisor, bisection
of an angle, etcetera); but the formal definition can be used to explore the boundaries
of the subject, and to prove that for particular problems, there can be no algorithm
to solve them. As an example, consider the Tenth Problem posed by Hilbert in 1900
(as quoted in the Introduction of this book):

10. Find an algorithm to determine whether a polynomial equation with integer
coefficients has a solution in the integers.
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After decades of effort and much preparatory work by M. Davis, H. Putnam and
J. Robinson, it was finally the young Russian Yuri Matiyasevich (he was 23 at the
time!) who proved, in 1970, the following theorem (we give a simplified form):

Theorem A.1.1 There is a natural number k ≥ 1 and a polynomial

H(X1,X2, Y1, . . . , Yk)

in k + 2 variables and with integer coefficients which has the following property:
for a pair of natural numbers (a, b), (a, b) is in Turing’s Halting Set if and only if
the polynomial equation H(a, b, Y1, . . . , Yk) = 0 has a solution in the integers.

From this theorem, in combination with the fact that the Halting Set is undecidable,
we see that an algorithm such as asked for in Hilbert’s Tenth Problem cannot
exist. For an exposition of Theorem A.1.1, see the book [53] or (better) the lecture
notes [52].

Matiyasevich’s result has given rise to a whole branch of research, which started
by proving or disproving Theorem A.1.1 when Z is replaced by the ring of integers
of a number field. This is a happy marriage of the theory of computable functions
and algebraic number theory. For an overview of recent results, see [61].

Another offshoot of Gödel’s and Turing’s work concerns the Entscheidungsprob-
lem (Decision Problem) posed by Hilbert: determine whether an arbitrary formula
of first-order logic is valid. Church’s Theorem states that this cannot be done by an
algorithm.

The theory of recursive functions has branched in several directions. There is the
theory of “relative computability” (what is algorithmically computable if a – non-
computable – function is “given to us by an oracle”?); there is the theory of “higher-
type computability” (what does it mean to say that a functional – i.e., a function
acting on functions – is computable). One of the most authoritative textbooks is still
[65]. Other good books are [56, 57, 72].

The incompleteness of PA has triggered the study of nonstandard models of PA.
This is a rich area of research, in which Computability Theory, Number Theory and
Model Theory come together in a wonderful blend. For an introduction in this field,
see [40].

A.2 Proof Theory

Let us recall Hilbert’s Programme (HP) from the Introduction to this book.
Hilbert distinguished an actual mathematical world of finite (or finite-dimensional,
combinatory) things, and an ideal world of infinitary abstractions. He proposed
constructing a logical system S capable of describing the actual world, which
includes proofs about the ideal world.

With the knowledge we have gained in this course we can now formulate a
mathematical implementation of HP as follows: for the system S we take the theory
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Gerhard Gentzen

PA. By Chapter 4 we can assume that the infinitary world is adequately represented
in the system ZF (or ZFC). In this interpretation we have the following mathematical
reformulation of HP:

The weak version states that PA proves the consistency of ZF(C).
The strong version states that ZF(C) is conservative over PA, and hence that
PA is complete.1

In Section A.1 we saw that Gödel’s First Incompleteness Theorem says that PA is
not complete; therefore this theorem refutes the strong version of HP. Moreover, PA
can be seen as a subsystem of ZF(C), so the consistency of ZF(C) implies that of PA.
This means that Gödel’s Second Incompleteness Theorem refutes the weak version
of HP. It would thus appear that Hilbert’s Programme was sunk by Gödel’s results
and this is indeed the common view among logicians, although [16] disagrees. For
a comprehensive historical and philosophical exposition of HP, see [69]; see also
[44, 71].

1Suppose that the formula φ represents an arithmetical truth. If the truth of φ can be established by
ordinary mathematical reasoning, then φ is a theorem of ZF(C); by the conservativity, φ must be
provable in PA.
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All this does not mean that Hilbert’s idea of Proof Theory, the combinatorial
study of formal proofs, was an idle fantasy.

The first substantial advances were made by Gerhard Gentzen. First he showed
that any formal proof can be brought into so-called Normal Form. Gentzen’s system
is different from our natural deduction trees in Chapter 3, so we will not go into
details of what this normal form looks like; we just state two facts which can
be seen as straightforward consequences of the Normal Form Theorem (or “Cut
Elimination”).

Theorem A.2.1 (Herbrand’s Theorem) Let L be a language with at least one
constant and let T be an L-theory consisting of sentences of the form ∀x1 · · · ∀xkφ,
with φ quantifier-free. Suppose that

T % ∀x1 · · · ∀xn∃y1 · · · ∃ymψ("x, "y)

with ψ quantifier-free. Then there is a double sequence (tij | 1 ≤ i ≤ r, 1 ≤ j ≤ m)

of L-terms such that the formula

r∨

i=1

ψ("x, ti1, . . . , tin)

is a consequence of T .

[Jacques Herbrand (1908–1931), who just lived for 23 years, was a mathematical
prodigy. He had results in several mathematical fields: the Herbrand quotient in
homological algebra, the Herbrand–Ribet theorem in number theory. He was an
avid mountaineer and died by a fall in the Massif des Écrins.]

Theorem A.2.2 (Craig’s Interpolation Theorem) Given two languages L and
L′, let φ be an L-sentence and ψ an L′-sentence. If % φ→ ψ then there exists an
(L ∩ L′)-sentence χ such that % φ→ χ and % χ → ψ .

[William Craig, 1918–2016] It should be said that this particular result can also be
proved by model-theoretical means (although this was not how the original proof
went).

Gentzen did important work in the proof theory of PA as well. Since the
consistency of PA cannot be proved from the PA-axioms alone, any proof of it must
have some “infinitary content”. Gentzen set out to isolate and make explicit this
infinitary part. Consider a primitive recursive binary relation ≺ (that is, a relation
whose characteristic function is primitive recursive) on N such that (N,≺) is a well-
order. Then (N,≺) is isomorphic to a unique ordinal number α; say that the relation
≺ represents α. Moreover, the relation ≺ is definable in PA by a formula φ(x, y).
We say that “PA proves transfinite induction along α” (PA % TI(α)) if there exists a
primitive recursive relation ≺ which represents α and a formula φ which defines ≺
such that for every formula ψ(x) we have:

PA % [∀x(∀y(φ(y, x)→ ψ(y))→ ψ(x))] → ∀xψ(x).
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Gentzen was able to prove the following statements about PA and the ordinal

number ε0 = ωω··
·
:

Theorem A.2.3 (Gentzen) Let Con(PA) be the statement which expresses the
consistency of PA. Then the following hold:

(i) For any countable ordinal α we have PA % TI(α) if and only if α < ε0.
(ii) PA+ TI(ε0) % Con(PA).

Item (i) of the theorem above is often expressed by saying that ε0 is the proof-
theoretic ordinal of PA. For many arithmetical theories (subsystems of PA or
extensions of PA) such an “ordinal analysis” has been carried out, although there
are also systems which have defied every attempt. For good introductions to the
field of ordinal analysis, see [60, 63].

We conclude this section by pointing out two modern developments where
genuine mathematical applications arise out of the study of formal proofs: Proof
Mining and Formal Proof Verification. In both cases, one studies completely
formalized mathematical proofs (proofs which are written out in natural deduction
trees or some other format).

In Proof Mining, such proofs undergo a judiciously chosen transformation (a
so-called proof interpretation) after which it is often possible to extract extra infor-
mation from the formal proof. The extra information can be a previously unknown
algorithm, or sharper bounds for approximation theorems. The applications are
mostly in Analysis or Functional Analysis. This field, initially proposed by Georg
Kreisel (1923–2015), was brought to fruition by Ulrich Kohlenbach; the book [43]
is an excellent exposition.

Formal Proof Verification exploits the (already mentioned) finitary character of
proof systems to let the computer assist in constructing and validating completely
formalized proofs. The program which checks that a given formal proof is correct
is small (since a proof system consists of a set of proof rules that can very
often be displayed on two A4 pages) and can therefore be verified “by hand”.
Therefore, if we have constructed a formal proof and have it checked, we can
be certain that the result is correct, even if the original mathematical proof is so
enormous that checking by hand is too time-consuming and error-prone to lead
to anything trustworthy. For example, a proof of the Four-Colour Theorem was
completely formalized and verified in 2004. Formal Proof Verification is now almost
a mathematical topic in its own right, and it is practised in many places. For good,
intuitive introductions, see the papers by Tom Hales and Freek Wiedijk: [28, 29, 84].
To quote Hales: It has been necessary to [. . . ] retool the foundations of mathematics
for practical efficiency, while preserving its reliability and austere beauty.

Two general introductions to Proof Theory (beyond ordinal analysis) are [68, 77].
Especially recommended are Buss’ chapters [6, 7] in the Handbook of Proof Theory.
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A.3 Model Theory

In Chapter 2 we have discussed models of first-order theories. The chapter ended
with a few glimpses into the subject of model theory, a rapidly developing subfield
of logic, with many connections to algebra and algebraic geometry. We discussed
elimination of quantifiers.

One example of quantifier elimination that we skipped, but which is also very
important, is the theory of real closed fields: the theory says that we have an ordered
ring which is a field, that x < y if and only if y − x is a square and that every monic
polynomial of odd degree has a root – in short, the theory of the ordered field R.
The fact that this theory satisfies the condition of Lemma 2.7.4 is essentially the
same as what is known as the Tarski–Seidenberg Principle, which is the cornerstone
of the field of Real Algebraic Geometry (see [3]). One of the early pioneers of
Model Theory, Abraham Robinson, used this quantifier-elimination result to reprove
Hilbert’s 17th Problem (see the Introduction). An earlier proof of the same result had
been given by Emil Artin (1898–1962) in 1927 [1].

We also discussed elementary embeddings between models, and we proved that
any two countable models of the theory of dense linear orders without end points are
isomorphic. The proof we presented used a back-and-forth argument relating finite

Abraham Robinson
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subsets of two different linear orders, a first example of the much more general
(Fraïssé) method of constructing isomorphisms between models. In Chapter 2 the
formulation was that the theory of dense linear orders is “ω-categorical”.

A famous theorem of Michael D. Morley (1930–) states that if a countable
theory is categorical in some uncountable cardinal, then it is categorical in every
uncountable cardinal. All these topics, including Morley’s theorem, form just a
small part of “classical” model theory. The book Saturated Model Theory by G.
Sacks [67] is a classic, and provides a concise introduction. Among the more
comprehensive introductions to classical model theory, we recommend the book
by Tent and Ziegler [76].

One of the central notions in model theory that we did not cover is that of a
“type”. If M is a model of a first-order L-theory and A is a subset of M , consider
sets of formulas in the free variables x1, . . . , xn, in the language LA. Such a set
may be realized in the model, meaning that there are elements b1, . . . , bn in M for
which these formulas are all true. An n-type with parameters from A is a maximally
consistent such set (consistent with the theory). Such a type may or may not be
realized. The saturated models to which the title of Sacks’ book refers are those
models which realize all their types. But the dual notion of a model which only
realizes the types it has to (such a model is called atomic) is equally important,
and existence theorems for such models go under the name of the Omitting Types
Theorem.

Morley’s theorem leads to the question of understanding the countable models
of a countable theory and the structure between these, and to the question to what
extent these results hold for uncountable theories. The subject of Stability Theory,
now one of the main areas within model theory, developed out of these questions.
Based on the early work of Morley, this subject really came off the ground through
the work of S. Shelah, who proved an analogue of Morley’s result for uncountable
theories and introduced several central notions, such as that of a stable theory –
a theory for which the number of types with parameters in A is controlled by
the size of A. For any L-theory T one can also consider n-types of T : maximal
sets of L-formulas φ(x1, . . . , xn) which are consistent with T . An example of
how the number of types interacts with other model-theoretic structure is the Ryll-
Nardzewski Theorem, which says that a countable theory is ω-categorical if and only
if it has only finitely many n-types, for each n.

Good first introductions to Stability Theory are Pillay’s notes [58] and the Tent–
Ziegler book already mentioned.

For a structure M of a particular language L, the collection of definable subsets
of Mn for various n has a lot of structure. For example, it is closed under the boolean
operations and under taking the image of a projection Mn → Mn−1. One can study
families of subsets of Euclidean spaces having such a structure, leading to the theory
of o-minimal structures, which can be viewed as one way of doing topology of these
Euclidean spaces in a more controlled way, thus fitting into Grothendieck’s program
of topologie modérée [26]. The book [81] by Van den Dries is a very accessible
introduction to this area. The use of such first-order definable sets is also central
in the approach to Motivic Integration via Model Theory, developed by Denef
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and Loeser, see e.g. [80]. Related ideas lie at the origins of the theory of Zariski
geometries developed by Hrushovski and Zilber. Here one starts with a collection of
subsets of powers of an abstractly given set X satisfying closure conditions similar
to those of the definable sets, and tries to find the underlying field for which these
sets are the closed sets in a Zariski topology in associated algebraic varieties. We
refer the interested reader to the book [87] of Zilber. The work of Hrushovski and
Zilber forms part of an area called Geometric Stability Theory, where ideas from
Model Theory and Algebraic Geometry naturally blend. We refer the interested
reader to [5] for an accessible survey, and to [59] for a systematic exposition. A
hallmark result in this area is Hrushovski’s model-theoretic proof of the Mordell–
Lang Conjecture in Algebraic Geometry; an exposition of this result can be found
in [5].

A.4 Set Theory

In our first chapter we discussed several aspects of what is often termed “naïve”
set theory, the theory of sets as used by working mathematicians on a day to day
basis. Naïve set theory includes the study and use of various forms of the Axiom of
Choice, but lacks a precise decision on the axiomatisation of the theory itself. The
most common way to be more explicit about this is to adopt the axioms of ZFC,
Zermelo–Fraenkel Set Theory with the Axiom of Choice, as presented in Chapter 4.
Once one has agreed on an explicit axiomatization as a first-order theory it becomes
possible to study the models (in the sense of Chapter 2) of this theory. In reasoning
about these models one might use naïve set theory as one’s ambient framework (the
“meta-theory”), or one might prefer some more formal meta-theory such as ZFC
itself. In the latter case, this leads to the study of models of ZFC inside ZFC, or of
models of ZFC which are themselves elements of another model of ZFC. Different
methods of constructing such models have led to the famous early independence
and consistency results in set theory. One of the first examples is Gödel’s method
of constructing a very “thin” model inside any model of ZF. This thin model, called
the universe L of constructible sets, always satisfies the Axiom of Choice and also
the Continuum Hypothesis, which shows the consistency of these axioms (relative
to ZF). A good book about the constructible sets is [17].

In the opposite direction, Cohen’s method of forcing constructs a “wide” model
of ZFC having many subsets of the natural numbers, in which the Continuum
Hypothesis fails. Another way to think of Cohen’s model is as a universe of
sets parametrized by a large complete Boolean algebra. This parametrisation then
provides enough room for there to be a set whose cardinality lies strictly in between
the cardinality of the natural numbers and that of the real numbers. Yet another
method to construct models is to study sets parametrized by a Boolean algebra on
which a group acts. The sets given by parametrisations which are invariant under the
group action form a model of ZF, but the choice functions provided by the ambient
theory ZFC need not be invariant under the group action, and this leads to models
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in which the Axiom of Choice is false. For a concise introduction to this kind of
“model theory” of ZF(C), see [2].

These methods of constructing models can be iterated and combined in various
ways, leading to many more consistency and independence results. Many of these
methods of constructing models of set theory also have a more geometric, sheaf-
theoretic interpretation, see [48].

The method of forcing rests on finding suitable “generic” filters in partially
ordered sets. An axiom ensuring the existence of suitable generic sets is Martin’s
Axiom: it states that in a partially ordered set satisfying the countable chain
condition, one can always find a filter intersecting any family of dense subsets
as long as the cardinality of that family is strictly less than 2ω, the cardinality
of the set of real numbers. The notion of density here is the usual topological
one for the Alexandrov topology on the partially ordered set; this is the topology
where the open sets are the downward-closed ones. For this topology the countable
chain condition says that any family of pairwise disjoint open subsets is (at most)
countable. An equivalent formulation, more familiar to topologists, states that a
compact Hausdorff space satisfying the countable chain condition cannot be the
union of less than 2ω many nowhere dense subsets. This is reminiscent of the Baire
Category Theorem, which implies that in a separable compact Hausdorff space, the
union of countably many nowhere dense open sets is still nowhere dense ([55],
Theorem 48.2). In particular, Martin’s Axiom is a consquence of the Continuum
Hypothesis. But it is also consistent with the Axiom of Choice and the negation
of the Continuum Hypothesis, so that Martin’s Axiom can refer to larger than
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countable families of dense subsets. Martin’s Axiom is also relevant in the study
of non-principal ultrafilters of subsets of the natural numbers, i.e. of points of the
Čech–Stone compactification of the natural numbers (for a survey on this space,
see [82]).

The Axiom of Choice enables one to prove the existence of “strange” mathe-
matical objects such as non-measurable subsets of the real line. One may wonder
whether such mathematical objects “should” really be there, in particular since they
cannot be explicitly be defined in ZFC [73]. An axiom which avoids the existence
of such objects is the Axiom of Determinacy. This axiom plays an important role
in the field of Descriptive Set Theory which studies “hierarchies” of definable
subsets of Baire space or more general complete separable metric spaces. The most
authoritative introduction to this field is [41].

The existence of so many different models of extensions of Zermelo-Fraenkel set
theory all validating different properties of infinite cardinal numbers is somewhat at
odds with the idea that naïve set theory forms a commonly agreed (“intersubjective”,
philosophers might say) basis for mathematics. This leads to the search for an
extension of ZF, or of ZFC if one accepts the axiom of choice, given by axioms
which can be justified on the basis of our mathematical intuition concerning
the real line. Partly motivated by this, Set Theory has come up with a wealth
of “large cardinal axioms” which assert the existence of infinite cardinals with
specific properties: inaccessible cardinals, measurable cardinals, Woodin cardinals
and many more. One can then investigate the effect that extensions of ZFC by
axioms stating the existence of such “types of infinity” have on the consistency
and proof theoretic strength of each other, and on the construction and properties of
particular subsets of the real line. The literature on these large cardinals is vast and
growing steadily. The reader might consult [39] for a first impression.

A.5 Alternative Logics

In this book we have restricted ourselves to languages of first-order logic, their
models and their proof theory. We have seen that many mathematically interesting
theories can be formulated in a first-order language, such as the theories of groups or
rings, the theory Peano Arithmetic for the natural numbers, and Zermelo–Fraenkel
set theory. We have only considered what are called “single-sorted” languages and
their theories. A minor linguistic variation is that of many-sorted languages. Such
a language has a set of “sorts” or “types” Si (indexed by i ∈ I ), infinitely many
variables of each sort, and function symbols having a specified finite sequence
of sorts as their domain and a specified sort as their codomain, and similarly for
relation symbols. It is sometimes more natural to use such a multi-sorted language
to formulate a mathematical theory: for example, the theory of graphs, or the theory
of vector spaces. On the other hand, one can always reformulate a multi-sorted first-
order theory as a single-sorted one, using unary relation symbols for the sorts.
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Bertrand Russell

Another variation of first-order logic is where one allows infinite strings of
quantifiers, and/or infinite disjunctions or conjunctions, as for example in the
formula

∃x0∃x1 · · ·
∞∧

i=0

xi+1 < xi,

which makes it possible to define well-orders (we have seen in Exercise 81 that by
the Compactness Theorem this is not possible in ordinary first-order logic). A recent
source for more on such infinitary languages and their model theory is [50].

On the other hand, there are many mathematical subjects which do not immedi-
ately allow a first-order formulation. For example, in the description of a topological
space one uses quantification over points of the space as well as over (open and
closed) subsets of the space. Similarly, in Peano arithmetic one cannot formulate
induction over arbitrary subsets of the natural numbers, but only over definable
ones. These are examples where one can effectively use second-order languages,
which do allow quantification over elements as well as over subsets (of the natural
numbers, in the latter case). Motivated by Gödel’s Incompleteness Theorems and
questions about proof-theoretic strength, this “second-order Peano arithmetic” has
been studied in detail, see e.g. [70].
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A different approach to quantifying over subsets is to work in a many-sorted
language and specify for each type X another type P(X) and a binary membership
relation symbol ∈X (taking arguments of type X and P(X)), while introducing a
so-called Comprehension Axiom to express that P(X) acts as the power set of X:

∃A:P(X)∀x:X(x ∈X A↔ φ(x))

for every formula φ(x). Of course this can be iterated: one may have types
P(P(X)), etcetera, leading to higher-order logic. Logics of this kind are closely
related to logical interpretations of topos theory, see [46].

One can do something similar with regards to quantification over functions, and
introduce for any two types X and Y a function type YX together with a function
symbol evY,X : YX ×X→ Y for the evaluation of functions at arguments in X,
accompanied by a function comprehension axiom of the form

∀x:X∃!y:Yφ(x, y) → ∃f :YX∀x:Xφ(x, evY,X(f, x)),

where the quantifier ∃!y means “there exists exactly one y”.
This formalism is closely related to theories in the so-called typed lambda

calculus.
An example theory of the latter kind is the theory PAω (“Peano Arithmetic in all

finite types”) of the natural numbers, functions from numbers to numbers, etcetera.
It has a type N for the natural numbers, and for any two types X and Y a function
type YX, so in particular a type NN for number theoretic functions. Among the
models are the topological models (interpreting NN as Baire space and N(NN ) as the
space of continuous functions NN → N), and computable models interpreting NN

as computable functions. Theories of this kind have been studied in the references
on Proof Theory given above.

The examples above of higher-order theories or type theories are really multi-
sorted first-order theories in disguise, where one adds comprehension axioms to
impose a relation between the types. A completely different approach to type theory
is the one usually referred to as Martin-Löf Type Theory. Here the language has
no formulas or sentences, but only types and terms (possibly depending on free
variables) of specified types. The idea is that the types also express propositions,
and each term of a given type witnesses that the type is non-empty: one can think of
such a term as a proof of the proposition expressed by the type. Types can depend on
variables ranging over another type, and quantification is formulated by operations
on types. For example, if Y (x) is a family of types depending on a variable x of type
X, then the product type

∏

x∈X
Y (x)
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plays the role of universal quantification over X. This formalism, sometimes referred
to as “propositions-as-types”, is very close to functional programming languages
such as Agda. Theories of this kind have interesting topological models, where one
interprets proofs of an equality between terms as homotopies between functions.
We refer the reader to [79] for an exposition of Martin-Löf Type Theory and these
“homotopical models”.
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Inverse of a function, 4
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Lambda calculus, typed, 128
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1-1 function, 3
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Set Theory, xi
Sheaf-theoretic interpretation, 125
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Stable theory, 123
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Subset, 2
Substitution

in formulas, 46
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of strings, 42
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generated by a subset, 65

Successor element in a well-order, 26
Surjective, 3

T
Tarski, 37, 67, 68, 71, 117
Tarski–Seidenberg Principle, 122
Tarski–Vaught Test, 67
T -equivalent, 67
Terms of a language, 41
Ternary function (relation), 40
Theory, 56
Topologie modérée, 123
Total order, 17
Transcendental real number, 23
Transfinite induction, 120
Transitive relation, 17
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Turing, 117
Turing machine, 117
Tychonoff, 32
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Typed lambda calculus, 128
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Ultrafilter, 62
Ultraproduct, 63
Unary function (relation), 40
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Upper bound, 17
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Well-founded induction, 32
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Well-ordered set, 25
Well-Ordering Theorem, 32, 33
Whitehead, 37
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