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Preface

This is a compact introduction to somce ol the principal topics of
mathematical logic. In the belief that beginners should be exposed to the
casiest and most natural proofs. I have used free-swinging sct-theoretic
methods. The significance of a demand for constructive prools can be
cvaluated only after a certain amount of experience with mathematical logic
has been obtained. If we are to be expelled from “Cantor’s paradise” (as non-
constructive set theory was called by Hilbert). at least we should know what
we dare missing.

The major changes in this new edition are the following.

I. In Chapter 2, a section has been added on logic with empty domains, that
is, on what happens when we allow interpretations with an empty domain.
2. In Chapter 4, Section 4.6 has been extended to include an outline of an
axiomatic set theory with urelements.

3. The subjects of register machines and random access machines have been
dropped from Section 5.5 Chapter 5.

4. An appendix on second-order logic will give the reader an idea of the
advantages and limitations of the systems of first-order logic used in
Chapters 2—4, and will provide an introduction to an area of much current
interest.

~. The exposition has been further streamlined, more exercises have been
added, and the bibliography has been revised and brought up to date.

The material of the book can be covered in two semesters, but, for a one-
semester course, Chapters 1-3 are quite adequate (omitting, if hurried,
Scetions 1.5, 1.6 and 2.10-2.16). I have adopted the convention of prefixing
1 1) to any section or exercise that will probably be difficult for a beginner,
.nd an A to any section or exercise that presupposes familiarity with a topic
that has not been carefully explained in the text. Bibliographic references are
piven to the best source of information, which is not always the earliest
paper: hence these references give no indication as to priority.

I believe that the essential parts of the book can be read with ease by
anyone with some experience in abstract mathematical thinking. There is,
however, no specific prerequisite.

This book owes an obvious debt to the standard works of Hilbert and
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Introduction

One of the popular definitions of logic is that it is the analvsis of methods of
reasoning. In studying these methods, logic is interested in the form rather
than the content of the argument. For example, consider the two arguments:

i. All men are mortal. Socrates is a man. Hencee. Socrates is mortal.
2. All cats like fish. Silvy is a cat. Hence. Silvy likes fish.

Both have the same form: All 4 are B. S is an 4. Hence, S is a 8. The truth or
lalsity of the particular premisses and conclusions is of no concern to lo-
vicians. They want to know only whether the premisses imply the conclu-
sion. The systematic formalization and cataloguing of valid methods of
reasoning are a main task of logicians. If the work uses mathematical
techniques or if it is primarily devoted to the study of mathematical rea-
soning, then it may be called mathematical logic. We can narrow the domain
ol mathematical logic if we define its principal aim to be a precise and
adequate understanding of the notion of mathematical proof.

Impeccable definitions have little value at the beginning of the study of a
subject. The best way to find out what mathematical logic is about is to start
Jdoing it, and students are advised to begin reading the book even though (or
especially if) they have qualms about the meaning and purpose of the
~ubject.

Although logic is basic to all other studies, its fundamental and appar-
ently self-evident character discouraged any deep logical investigations until
the late 19th century. Then, under the impetus of the discovery of non-
I uclidean geometry and the desire to provide a rigorous foundation for
calculus and higher analysis, interest in logic revived. This new interest,
however, was still rather unenthusiastic until, around the turn of the cen-
tury, the mathematical world was shocked by the discovery of the paradoxes

that is. arguments that lead to contradictions. The most important
paradoxes are described here.

I Russell’s paradox (1902). By a set, we mean any collection of objects - for
example, the set of all even integers or the sct of all saxophone players in
Brooklyn. The objects that make up a set are called its members or
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clements Sets may themselves be members of sets: for example. the set ol
all sets of mtegers has sels as its members, Most sets are nor members of
themselves: the set of cats, Tor example. s not a member of el because
the set o cats s not i cat. However, there may be sets that do belong to
themselves  for example, the set of all sets. Now. consider the set 1 ot all
those sets Vosuch that X is not a member of X. Clearly. by definition, A is
amember of firand only if 4 is not a member of 4. So. il 1 ix o member
ol 1o then s also not a member of A: and if 4 is not a member of 1. then
isaomember of 4. Inany case, 4 1s a member of 4 and A is not o member
ol

2 Camtor's paradox (1899). This paradox involves the theory ol cardinal
numbers and may be skipped by those readers having no previous ac-
quaintance with that theory. The cardinal number ¥ of a sct Y is a
mcasure of the size of the set: Y = Z if and only if ¥ is equinumerous with
Z (that is, there is a one-one correspondence between ¥ and Z). We define
Y <7 to mean that Y is equinumerous with a subset of Z; by ¥ < Z we
mean ¥ <Z and Y # Z. Cantor proved that, if 2(Y) is the set of all
subsets of Y. then Y < #2(Y). Let V be the universal set - that is, the set of
all sets. Now. 2(V) is a subsct of V: 50 it follows easily that 2(V) < V. On
the other hand. by Cantor’s theorem. ¥ < .2(V). Bernstein’s theorem
asserts that. if Y<Z and Z<Y. then Y = Z. Hence, V = 2(V). contra-
dicting V < 2(V).

. Burali-Forti's paradox (1897). This paradox is the analogue in the theory
of ordinal numbers of Cantor's paradox and requires familiarity with
ordinal number theory. Given any ordinal number, there is a still larger
ordinal number. But the ordinal number determined by the set of all
ordinal numbers 1s the largest ordinal number.

4. The liar paradox. A man says, ‘1 am lying’, If he is lying, then what he
says is true and so he is not lying. If he is not lying, then what he says is
true, and so he is lying. In any case, he is lying and he is not lying.

5. Richard’s paradox (1905). Some phrases of the English language denote
real numbers; for example, ‘the ratio between the circumference and
diameter of a circle’ denotes the number n. All the phrases of the English
language can be enumerated in a standard way: order all phrases that
have & letters lexicographically (as in a dictionary) and then place all
phrases with £ letters before all phrases with a larger number of letters.
Hence, all phrases of the English language that denote real numbers can

(98]

"The Cretan ‘*paradox’, known in antiquity, is similar to the liar paradox. The
Cretan philosopher Epimenides said, ‘All Cretans are liars’. If what he said is true,
then, since Epimenides is a Cretan, it must be false. Henee, what he said is false.
Thus, there must be some Cretan who s not a liar. This s not logically impossible: so
we do not have a genuine paradox. However, the fact that the utierance by Epi-
menides of that false sentence could mply the existence of some Cretan who is not a
har s rather unsetthng.

e = —
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be enumerated merely by omitting all other phrases in the given standard
enumeration. Call the nth real number in this enumeration the ath Ri-
chard number. Consider the phrase: “the real number whose nth decimal
place is | if the nth decimal place of the nth Richard number is not 1. and
whose nth decimal place is 2 il the nth decimal place of the nth Richard
number is 1. This phrase defines a Richard number - say. the kth Ri-
chard number; but. by its definition. it difters from the kth Richard
number in the kth decimal place.

6. Berry's paradox (1906). There are only a finite number of symbols (letters,
punctuation signs. etc.) in the English language. Hence. there are only a
finite number of English expressions that contain fewer than 200 occur-
rences of symbols (allowing repetitions). There are. therefore, only a finite
number of positive integers that are denoted by an Lnglish expression
containing fewer than 200 occurrences of symbols. Let & be the least
positive integer that is not denoted by an English expression containing
Jewer than 200 occurrences of symbols. The italicized  English phrase
contains fewer than 200 occurrences of symbols and denotes the integer k.

. Grelling's paradox (1908). An adjective is called autological if the property
denoted by the adjective holds for the adjective itself. An adjective is
called heterological if the property denoted by the adjective does not
apply to the adjective itself. For example, ‘polysyllabic” and “English” are
autological, whereas ‘monosyllabic’ and “French’ are heterological.
Consider the adjective ‘heterological’. If ‘heterological® is heterological,
then it is not heterological. If *heterological’ is not heterological, then it is
heterological. In either case, ‘heterological’ is both heterological and not
heterological.

S, Lob's paradox (1955). Let 4 be any sentence. Let B be the sentence: *If this
sentence is true, then A’. So, B asserts: ‘If B is true, then 4’. Now consider
the following argument: Assume B is true; then, by B, since B is true, 4
holds. This argument shows that, if B is true, then 4. Bul this is exactly
what B asserts. Hence, B is true. Therefore, by B, since B is true, 4 is true.
Thus, every sentence is true.

~d

All of these paradoxes are genuine in the sense that they contain no
nbvious logical flaws. The logical paradoxes (1-3) involve only notions from
the theory of sets, whereas the semantic paradoxes (4-8) also make use of
coneepts like ‘denote’, ‘true’ and ‘adjective’, which need not occur within
our standard mathematical language. For this reason, the logical paradoxes
are a much greater threat to a mathematician’s peace of mind than the
semantic paradoxes.

Analysis of the paradoxes has led 1o various proposals for avoiding them.
Al of these proposals are restrictive in one way or another of the ‘naive’
coneepts that enter into the derivation of the paradoxes. Russell noted the
welf-reference present in all the paradoxes and suggested that every object
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must have o detmite non negative mteger as ats tope . Then an expression v

i o member ol the set v as o be considered  mceaning il F and ondy Sl the

Ivpe of vos one preater than the type of .
his approach. known as the theory of types and systenmitized and de-
veloped e Prmcipia Mathematica Whitchead and Russell (19107 13), s

suceesstud e chmmating the known paradoxes.” but it is clumsy in practice
and has certam other drawbacks as well. A different criticism of the logical
paradoses s aimed at their assumption that, for every property (v). there
envists o corresponding set of all objects v that satisfy P(x). It we reject this
assumption. then the logical paradoxes are no longer derivable.! Tt is ne-
cessary. however. 1o provide new postulates that will enable us to prove the
existence of those sets that are needed by the practising mathematician. The
first such axiomatic set theory was invented by Zermelo (1908). [n Chapter 4
we shall present an axiomatic theory of scts that is a descendant of Zer-
melo’s system (with some new twists given to 1t by von Neumann, R. Ro-
binson, Bernays. and Goédel). There are also various hybrid theorics
combining some aspects of type theory and axiomatic set theory - for ex-
ample, Quine’s system NF.

A more radical interpretation of the paradoxes has been advocated by
Brouwer and his intuitionist school (sec Heyting, 1956). They refuse to
accept the universality of certain basic logical laws, such as the law of
excluded middle: P or not-P. Such a law. they claim. is true for finite sets,
but it is invalid to extend it on a wholesale basis to all sets. Likewise, they
say it is invalid to conclude that “There exists an object x such that not-P(x)
follows from the negation of “For all x, P(x)’; we are justified in asserting the
existence of an objcct having a certain property only if we know an effective
method for constructing (or finding) such an object. The paradoxes are not
derivable (or even meaningful) if we obey the intuitionist strictures, but so
are many important theorems of everyday mathematics, and, for this rea-
son, intuitionism has found few converts among mathematicians.

Whatever approach one takes to the paradoxes, it is necessary first to
examine the language of logic and mathematics to see what symbols may be
used, to determine the ways in which these symbols are put together to form
terms, formulas, sentences and proofs, and to find out what can and cannot
be proved if certain axioms and rules of inference are assumed. This is one of
the tasks of mathematical logic, and, until it is done, there is no basis for

'Russells's paradox, for example, depends on the existence of the set 4 of all sets
that are not members of themselves. Because, according to the theory of types, it is
meaningless to say that a set belongs to itself, there is no such set 4.

IRussell's paradox then proves that there is no set A4 of all sets that do not
belong to themselves. The paradoxes of Cantor and Burali-Forti show that there is
no umiversal set and no set that contains all ordinal numbers, The semanhie para-
doxes cannot even be formulated. since they involve notions not expressible wathin
the system.
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comparing rival foundations of logic and mathematics. The decp and de-
vastating results of Gédel. Tarski. Church. Rosser. Kleene, and many others
pave been ample reward for the labour invested and have earned for
mathematical logic its status as an independent branch of mathematics.

For the absolute novice a summary will be given here of some of the basic
notation. ideas. and results used in the text. The reader is urged to skip these
cxplanations now and. if necessary, to refer to them later on.

A set is a collection of objecls.‘ The objects in the collection are called
clements or members of the set. We shall write v ¢+ [or the statement that
v is 2 member of v. (Synonymous ¢xpressions are “v belongs to v’ and 'y
contains x.) The negation of “x € y* will be written “v¢ 1.

By "x € ¥ we mean that every member of v is also o member of y (sy-
nonymously. that x is a subset of y, or that x is included v v). We shall write
¥ = & o mean that ¢ and s denote the same object. As usual, 7 # 57 1s the
negation of ' = s*. For sets x and v. we assume thaty  vifand only it x C v
and y € x - that is, if and only if x and » have the same members. A set x s
called a proper subset of a sct v, written "x C ¥ il x C v but x £ v. (The
notation x Z y is often used instead of x C y.)

The union x U y of sets x and y is defined to be the set of all objects that are
members of x or y or both. Hence, xUx =x,xUy=yUx, and (xUy)Uz =
VU (yUz). The intersection x Ny is the set of objects that x and y have in
common. Therefore, xNx =x, xOy=yNx, and (xNy)Nz=xN(yNz).
Moreover, xN (yUz) = (xOy)U(xNz) and xU(yNz)=(xUy)N(xUz).
I'he relative complement x —y is the set of members of x that are not
members of y. We also postulate the existence of the empty set (or null set)
¥ that is, a set that has no members at all. Then xN @ =0, xU® = x,
Vo P=x. 0—x=10, and x—x=0. Sets x and y are called disjoint if
vily = 0.

Given any objects by, ..., b, the set that contains by, ..., b as its only
members is denoted {by, ..., b }. In particular, {x,y} is a set having x and y
as its only members and, if x # y, is called the unordered pair of x and y. The
st {x,x} is identical with {x} and is called the unit ser of x. Notice that
v.v} = {y,x}. By (b1, ..., b) we mean the ordered k-tuple of by, . .., by. The
hasic property of ordered k-tuples is that (by,...,b) = {(c1,...,c) if and
nnly if b] =y, bz =C2,.- .,b/\- = Cf- ThUS, <b;,b2> = <b2,b|> if and only if
hy = ba. Ordered 2-tuples are called ordered pairs. The ordered 1-tuple (b) is
taken 1o be b itself. If X is a set and & is a positive integer, we denote by X*
the set of all ordered k-tuples (by,...,b) of elements by,... by of X. In

"Which collections of objects form sets will not be specified here. Care will be
evercised to avoid using any ideas or procedures thal may lead to the paradoxes; all
ihe results can be formalized in the axiomatic set theory of Chapter 4. The term
class” s sometimes used as a synonym for ‘set’, bul it will be avoided here because it
has a different meaning in Chapter 4. I a property P(x) does determine a set, that set
v often denoted {x | Plx)}.

‘N
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s Vasedl 1) and Zare setsc then by ) -/ we denote the set
such that v Y and = /.y - /s called the
Cartesian product of )y and /.

An n-place relation (or a relation with n arguments) on a set V' is a subsct
of V" that isc o set ol ordered n-tuples of clements of V. For example. the
I-place relation ol betweenness for points on a line is the set ol all 3-tuples
“voveososuch that the point x lies between the points v and = A 2-place
relation s called o binary relation; for example. the binary relation of la-
therhood on the set of human beings is the set of all ordered pairs (v, v) such
that v and v are human beings and x is the father of y. A I-place relation on
A s o subset of X and is called a properry on X.

Given a binary relation R on a set X. the domuain of R is defined to be the
set of all v such that {v.z) € R for some z; the range of R is the sct ol all z
such that {y.z) € R for some y: and the fie/d of R is the union of the domain
and range of R. The inverse relation R ™' of R is the set of all ordered pairs
(v.2) such that (z,y) € R. For example, the domain of the relation < on the
set m of non-negative integers' is w. its range is » — {0}, and the inverse of
< is >. Notation: Very often xRy is written instead of (x,v) € R. Thus, in the
example just given. we usually write x <y instead of (x.y) € <.

A binary relation R is said to be reflexive if xRx for all x in the field of R; R
is svnmerric i xRy implies vRx: and R s iransitive iF xRy and yRz imply xRz.
Examples: The relation < on the set ol integers is reflexive and transitive
but not symmetric. The relation “having at least one parent in common” on
the set of human beings is reflexive and symmetric, but not transitive.

A binary relation that is reflexive, symmetric and transitive is called an
equivalence relarion. Examples of equivalence relations are: (1) the identity
relation Iy on a set X, consisting of all pairs (x,x), where x € X; (2) given a
fixed positive integer n, the relation x = y (mod n), which holds when x and y
are integers and x — y is divisible by n; (3) the congruence relation on the set
of triangles in a plane; (4) the similarity relation on the set of triangles in a
plane. Given an equivalence relation R whose field is X, and given any
v € X, define [ y] as the set of all z in X such that yRz. Then [y] is called the
R- equivalence class of y. Clearly, [u] = [v] if and only if ¥Rv. Moreover, if
[u] # [v], then [u] N [v] = 0; that is, different R-equivalence classes have no
elements in common. Hence, the set X is completely partitioned into the
R-equivalence classes. In example (1) above, the equivalence classes are just
the unit sets {x}, where x € X. In example (2), there are n equivalcnce
classes, the kth equivalence class (k =0,1,...,n — 1) being the set of all
integers that leave the remainder £ upon division by .

A function [ is a binary relation such that (x,v) € f and (x.z) € f imply
v =z Thus, for any element x of the domain of a function /. there is a
unique v such that (x,y) € /7 this unique y is denoted f(x). If v is in the

particular, v
of alb ordered paes v,

Yo will also be referred 1o s the set of natural mumbers
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domain of /', then /(x) is said to be defined. A function / with domain .X and
range Y is said (o be a tunction from X onro V. It/ is a function from X onto
a subset of Z, then /' is said to be a function rom X into Z. For example. if
the domain of /' is the set of integers and f(x)  2v for every integer x, then
{ is a function from the set of integers onto the set of even integers. and f 1s
a function from the set of integers into the sct of integers. A function whose
domain consists of n-tuples is said to be a function of n argumenis. A total
function of n arguments on a ser X is a function / whose domain is X7, It is
customary to write f(xy...... v, ) instead of /({xn).... ., ) and we refer to
[0 v,) as the value of f for the arguments xy.....x,. A partial function
of n arguments on a set X is a function whose domain is a subset of X”. For
example. ordinary division is a partial, but not total. function of two ar-
guments on the set of integers, since division by 0 is not defined. If /s a
lunction with domain X and range Y, then the restriction [, of f 1o aset Z s
the function f N (Z x Y). Then fy(v) = citand only it v ¢ Zand f{u) = ¢
The image of the set Z under the function /" is the range ol /. The inverse
image of a set W under the function f is the set of all w in the domain of /
such that f (1) € W. We say that /" maps X onto (into) ¥ if X is a subset of
the domain of f/ and the image of X under / is (a subset of ) Y. By an n-place
aperation (or operation with n arguments) on a set X we mean a function
lrom X" into X. For example, ordinary addition is a binary (i.e.. 2-place)
operation on the set of natural numbers {0,1.2,.--}. But ordinary sub-
1raction is not a binary operation on the set of natural numbers.

The composition [ o g (sometimes denoted fg) of functions f and g is the
function such that (/o ¢g)(x) = f(g(x)); (f og)(x) is defined if and only if
g(x) is defined and f(g(x)) is defined. For example. if ¢(x) =x*> and
f(x) =x+ | for every integer x, then (f og)(x) =x?+ | and (go [)(x) =
v+ D)2 Also, if h(x) = —x for every real number x and /(x) = /x for every
non-negative real number x, then (f o A)(x) is defined only for x <0, and, for
such x. (f o h)(x) = /—x. A function f such that /'(x) = f(y) implies x = y is
called a /-1 (one—one) function. For example, the identity relation /y on a set
\"is a 11 function, since Iy (y) = y for every y € X; the function g with
Jdomain w, such that g(x) = 2x for every x € w, is 1-1: but the function A
whose domain is the set of integers and such that h(x) = x? for every integer
visnot 1-1, since A(—1) = A(1). Notice that a function f is 1-1 if and only if
its inverse relation f~! is a function. If the domain and range of a 1-1
function f are X and Y, then f is said to be a | — 1 (one—one) correspondence
henween X and Y then 71 is a 1-1 correspondence between Y and X, and
o/ Yofy=1Iyand (fof 'y =1Iy. If fis a 1-1 correspondence between X
and Y and ¢ is a 1-1 correspondence between Y and Z, then go [ is a 1-1
correspondence between X and Z. Sets X and Y are said to be equinumerous
(written X 2 Y) if and only if there is a 1-1 correspondence between X and
Y. Clearly. X >~ X, X = Y implies ¥ = X, and X =Y and Y = Z implies
\' ~ /. 1t is somewhat harder to show that, it X > ¥, C Yand ¥ = X, C X,

~1
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then A Y tsee Bernstein's theorem in Chapter ). 100 boone savs that
\oand Y have the same cardinal number, and N s cqummnumerons with
subset ol Y but Y is not equinumerous with a subsct of Vo one savs that the
cardinal number of X is smaller than the cardinal number of ) -

A set X a8 denumerable if it is equinumerous with the set ol positive
mtegers. A denumerable set is said to have cardinal number ¥, and any sct
cquinumerous with the set of all subsets of a denumerable set i~ sind to have
the cardinal number 2% (or to have the power of the contimuni). A set X is
Sinite if it is empty or if 1t is equinumerous with the set {1.2.... . u} ol all
positive integers that are less than or cqual to some positive integer . A set
that is not finite is said to be /mfinite. A sct is countable if it is cither linite or
denumerable. Clearly, any subset of a denumerable set is countable. A
denumerable sequence is a function s whose domain is the set of positive
integers; one usually writes s, instcad of s(n). A finite sequence is a function
whose domain is the empty set or {1.2..... n} for some positive integer u.

Let P(x.yy... ., W} be some relation on the set of non-negative integers. In
particular, P may involve only the variable x and thus be a property. If
PO, y;.....%) holds, and, if. for every n. Pln.y....,y) implies
Pln+ 1, v .. ). then Plx, yr, ..., ) is true for all non-negative integers x
(principle of mathematical induction). In applying this principle. one usually
proves that, for every n, P(n.v... .. vy ) implies P(n+ l.v,..., v) by as-
suming P(n.vy,.... v ) and then deducing P(n+ L.ovy. ..., ¥ ): in the course
of this deduction, P(n.y,...,y) is called the inductive hypothesis. 1f the
relation P actually involves variables yy, . ... v other than x, then the proof is
said to proceed by induction on x. A similar induction principle holds for the
set of integers greater than some fixed integer j. An example is: to prove by
mathematical induction that the sum of the first » odd integers
1 +34+5+...4+(2n—1)is n%, first show that | = 12 (that is, P(1)). and
then, that if 1 +3+5+ ...+ (2n—1)=n’ then | +3+ 5+ ...+ (2n— 1)
+(2n+1)=(n+ 1)? (that is, if P(n) then P(n +1)). From the principle of
mathematical induction one can prove the principle of complete induction: If,
for every non-negative integer x the assumption that P(u,y;,..., ) is true
for all u < x implies that P(x,y,...,w) holds, then, for all non-negative
integers x, P(x,y,..., ) is true, (Exercise: Show by complete induction
that every integer greater than 1 is divisible by a prime number.)

A partial order is a binary relation R such that R is transitive and, for
cvery x in the field of R, xRx is false. If R is a partial order, then the relation
R’ that is the union of R and the set of all ordered pairs {x, x), where x is in
the field of R, we shall call a reflexive partial order; in the literature, “partial
order” is used for cither partial order or reflexive partial order. Notice that

'One can attempt to define the cardinal number of i set s the collection [V of
all sets equimumerous with V. However, in certiun aaomatic set theores, 'V does
not cast, whereas i others [ V] exasts but s not aset
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(xRy and yRx) 1s impossible if R is a partial order, whercas (xRy and vRx)
implies x = v if R is a reflexive partial ovder. A (reflexive) rotal order is a
(reflexive) partial order such that. for any x and y in the field of R, either
v =y or xRy or yRx. Examples: (1) the relation < on the set of integers is a
total order, whereas < is a retlexive total order; (2) the relation C on the set
of all subscts of the set of positive integers is a partial order but not a total
order, whereas the relation C is a reflexive partial order but not a reflexive
total order. If B is a subset of the field of a binary rclation R, then an element
vof Bis called an R-least element of B if vRz for every element = of B different
lrom y. A well-order (or a well-ordering relation) is a total order R such that
cvery non-emipty subset of the field of R has an R-lcast clement. Examples:
(1) the relation < on the set of non-negative integers is a well-order: (2) the
relation < on the set of non-negative rational numbers is a total order but
not a well-order; (3) the relation < on the set of integers is a total order but
not a well-order. Associated with cvery well-order R having ficld X thereis a
complete induction principle: 1f P is a property such that. for any o in X.
whenever all z in X such that zRu have the property P, then w has the
property P, then it follows that all members of X have the property P. If the
~«¢l X 1s infinite, a proof using this principle is called a proof by transfinite
induction. One says that a set X can be well-ordered if there exists a well-
order whose field is X. An assumption that is useful in modern mathematics
but about the validity of which there has been considerable controversy is
the well-ordering principle: every set can be well-ordered. The well-ordering

principle 1s equivalent (given the usual axioms of set theory) to the axiom of

choice: for any set X of non-empty pairwise disjoint sets, there is a set Y
(called a choice ser) that contains exactly one element in common with cach
setin X,

Let B be a non-empty set, / a function from B into B, and ¢ a function
from B? into B. Write x’ for f(x) and x Ny for g(x, y). Then (B, f, g) is called
A Boolean algebra if B contains at least two elements and the following
conditions are satisfied:

l.xNy=yNxforall xand y in B
2 {xny)nz=xnN(yNz) for all x,y,zin B
Laxny'=znz' ifand only if xNy =x for all x,y, z in B.

I.et x Uy stand for (x’ Ny’)’, and write x<y for x Ny = x. It is easily proved
that zNz’ = wNw for any w and z in B; we denote the value of zNz' by 0.
Iet 1 stand for /. Then zuz’ =1 for all z in B. Note also that < is a
reflexive partial order on B, and (B, /', U) is a Boolean algebra. (The symbols

1.11,0, 1 should not be confused with the corresponding symbols used in set
theory and arithmetic.) An ideal J in (B, f,g) is a non-empty subset of B
such that (1) ifx€J and ye J, thenxUy e J,and (2) if x €J and y € B,
thenx My € /. Clearly, {0} and Bare ideals. An ideal different from B is called
a proper ideal. A maximal ideal is a proper ideal that is included in no other



{ INTRODUCTION

proper ideal. 1t can be shown that a proper ideat ./ s maximal o and only if.
forany wm Bo Jov e’ o J From the axiom ol choiee 1t can be proved
that cvery Boolean algebra contains a maximal deal. orc equivalently. that
cvery proper deal is included in some maximal ideal. For example. let 8 be
the set ot all subsets ofaset X for Y e Bolet Y =X — Y.oand for Y and Zin
B.let Y1/ be the ordinary set-theoretic intersection of ¥ and /. Then
‘B is o Boolean algebra. The 0 of B is the empty set (. and 118 V. IFor
cach clement o in X, the set ./, of all subsets of X that do not contain wis a
maximal ideal. For a detailed study of Boolean algebras, see Sikorski (1960).
Halmos (1963) and Mendelson (1970).

The Propositional Calculus

I.1 PROPOSITIONAL CONNECTIVES. TRUTII TABLES

Sentences may be combined in various ways to form more complicated
sentences. We shall consider only truth-functional combinations, in which
the truth or falsity of the new sentence is determined by the truth or falsity
of its component sentences.

Negation is one of the simplest operations on sentences. Although a sen-
lence in a natural language may be negated in many ways, we shall adopt a
uniform procedure: placing a sign for negation, the symbol —, in front of the
entire sentence. Thus, if 4 is a sentence, then —4 denotes the negation of 4.

The truth-functional character of negation is made apparent in the fol-
lowing rruth table:

A —A
T F
F T

When 4 is true, —4 is false; when A is false, =4 is true. We use T and F to
denote the truth values true and false.

Another common truth-functional operation is the conjunction: *and’. The
conjunction of sentences 4 and B will be designated by 4 A B and has the

following truth table:

ANB

M=
MM AW
T T >

1 A B is true when and only when both 4 and B are true. 4 and B are called
the conjuncts of A A B. Note that there are four rows in the table, corre-
sponding to the number of possible assignments of truth values to 4 and B.

In natural languages, there are two distinct uses of ‘or’: the inclusive and
the exclusive. According to the inclusive usage, ‘4 or B> means ‘4 or B or
both’. whercas according to the exclusive usage, the meaning is ‘4 or B, but
not both®. We shall introduce a special sign, V, for the inclusive connective.
Its truth table is as follows:
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A B AvEB
I T T
T T
T F T
F F F

Fhus. o« B s Lalse when and only when both 4 and B are false. *1 v BT s
called a disametion. with the disjuncts A and B.

Another important truth-functional operation is the  conditional: “if" A.
then 7. Ordinary usage is unclear here. Surely, “if 4. then B is false when
the antecedent A is true and the consequent B is false. However, in other
cases. there is no well-defined truth value. For example, the following sen-
tenees would be considered neither true nor false:

I. If 1 4+ 1 = 2, then Paris is the capital of France.
2,001 + 1 # 2, then Paris is the capital of France.
3.1 + 1 # 2, then Rome is the capital of France.

Their meaning is unclear, since we are accustomed to the assertion of some
sort of relationship (usually causal) between the antecedent and the con-
sequent. We shall make the convention that ‘if 4, then B’ is false when and
only when A is true and B is false. Thus, sentences 1 3 are assumed to be
true. Let us denote “if 4, then B by "4 = B”. An expression *4 = B is called
a conditional. Then = has the following truth table:

A B A=8B
T T T
F T T
T F F
F F T

This sharpening of the meaning of ‘if 4, then B’ involves no conflict with
ordinary usage, but rather only an extension of that usage.

A justification of the truth table for = is the fact that we wish ‘if 4 and B,
then B’ to be true in all cases. Thus, the case in which 4 and B are true justifies
the first line of our truth table for =, since (4 and B) and B are both true. If 4 is

"Thereisa common non-truth-functional interpretation of ‘if 4, then B’ connected
with causal laws. The sentence ‘if this piece of iron is placed in water at time 7, then the
iwron will dissolve” is regarded as false even in the case that the piece of iron is not placed
i water at time ¢ that is. even when the antecedent is false. Another non-truth-
Tunctional usage occurs in so-called counterfactual conditionals, such as ‘if Sir Walter
Scott had not written any novels, then there would have been no War Between the
States” (This was Mark Twain's contention in Life on the Mississippi: *Sir Walter had
so darge o handon makimg Southern character, as it existed before the war, that heis in
great measuie responsible for the war',) This sentence might be asserted to be false even
though the antecedent s adittedly false. However, causal Taws and counterfactual
condiions seem not to be needed in mathematies and logie. Fora clear treatment of
conditionals and other connectives, see Quine (1951). ( The quotation trom Life on the
Maosisppe was brought to my attention by Professor J.O Owimgs, Ji )

PROPOSITIONAL CONNECTIVES, TRUTH TABLES

lalse and B true. then (4 and B) is false while Bis true. This corresponds to the
~«econd line of the truth table, Finally. if 4 1s false and Bis false. (4 and B) isfalse
and Bis false. This gives the fourth line of the table. Still more support for our
definition comes from the meaning of statements such as “forevery v, if v is an
odd positive integer, then x7 is an odd positive intcger’. This asserts that. for
cvery x. the statement if x is an odd positive integer. then ¥2 is an odd positive
mteger’is true. Now we certainly do not want to consider cases in which xis not
an odd positive integer as counterexamples to our general assertion. This
supports the second and fourth lines of our truth table. In addition, any case in
whichxis an odd positive integer and x? is an odd positive integer confirms our
seneral assertion. This corresponds to the first line of the table.

Let us denote *4 i and only if B” by "4 < B°. Such an expression is called
a hiconditional. Clearly, A < B is true when and only when 4 and B have the
same truth value. Its truth table, therefore is:

A B A« B
T 1 T
FT F
T F E
F F T

The symbols =.A,V, = and & will be called propositional connectives.!
\nyv sentence built up by application of these connectives has a truth value
1t depends on the truth values of the constituent sentences. In order to
make this dependence apparent, let us apply the name starenient form to an
“apression built up from the starement letters A, B, C, and so on by appro-
pate applications of the propositional connectives.

I All statement letters (capital italic letters) and such letters with numerical
subscripts! are statement forms.

"I 4 and % are statement forms, then so are (—4). (A NE).
(AVE) (B = %) and (# < F).

¢ Only those expressions are statement forms that are determined to be so
by means of conditions | and 2.}

Some examples of statement forms arc B, (—=C3), (D3 A (—B)),
BV By) = (A AC)), and (((—4) & 4) & (C = (BV ())).

'"We have been avoiding and shall in the future avoid the use of quotation marks

1o torm names whenever this is not likely to cause confusion. The given sentence
hould have quotation marks around each of the connectives. See Quine (1951, pp.
27

"For example, 4y,42,417,B3,Ca, . ..

*T'his can be rephrased as follows: 4 is a statement form if and only if there is a
tate sequence A, ..., #,(n > 1) such that 8, = % and, if 1 <i<n, % is cither a
atement letter or a negation, conjunction, disjunction, conditional or biconditional
constructed from previous expressions in the sequence. Nolice that we use script
fetters o/, 4. ... 1o stand for arbitrary expressions, whereas italic letters are used
as statement letters,
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I-or every assignment of truth values T or I to the statement fetters that
oceur m oa statement torm. there corresponds. by virtue of the truth tables
for the propositional connectives, a truth value for the statement form.
Thus, cach statement torm determines a trurh function. which can be gra-
phically represented by a truth table for the statement form. FFor example,
the statement form (((=4) v B) = C) has the following truth table:

4 B C (~d) (~A)VB) (~A)VB) =+ C)
T T T F T T
FT T T T T
TFT F F T
FFT T T T
T TF F T F
FTF T T F
T FF F F T
F FF T T F

Each row represents an assignment of truth values to the statement letters
A.B and C and the corresponding truth values assumed by the statement
forms that appear in the construction of (((—=4) v B) = C).

The truth table for ((4 < B) = ((~4) A B)) is as follows:

(4 B) (~4) (~4)AB) (4 B) = ((~4) AB))

R IS
mTmHA
=7
=7
T AT
R I e

If there are n distinct letters in a statement form, then there are 2" possible
assignments of truth values to the statement letters and, hence, 2" rows in
the truth table.

A truth table can be abbreviated by writing only the full statement form,
putting the truth values of the statement letters underneath all occurrences
of these letters, and writing, step by step, the truth values of each component
statement form under the principal connective of the form!. As an example,
tor ((4 <> B) = ((=4) A B)), we obtain:

(4 = B) = ((4) A B)
T T T F FT F T
F F T T TF T T
T F F T FT F F
' T F F TF F F

, . . .
Vhe promcipal connective of o statement form s the one that as apphied last in
constiucting the torm

TAUTOLOGIES

L.xercises

1.1 Write the truth table for the exclusive usage of “or’.

1.2 Construct truth tables for the statement forms ((4 = B) V (~A4}) and
A= (B=>C)) = (A= B)= (4= C)))

1.3 Write abbreviated truth tables for ((4 =» B) A1) and ((4 v (-C)) = B).
1.4 Write the following sentences as statement forms. using statement letters
(o stand for the aromic sentences - that is. those sentences that are not built
up out of other sentences.

(a) If Mr Jones is happy. Mrs Jones is not happy. and it Mr Jones is not
happy. Mrs Jones is not happy.

(by Either Sam will come to the party and Max will not. or Sam will not
come to the party and Max will enjoy himself.

ic) A sufficient condition for x to be odd is that v 1s prime.

(d) A necessary condition for a sequence s to converge is that s be bounded.

() A necessary and sufficient condition for the sheikh to be happy is that he
has wine, women and song.

(1) Fiorello goes to the movies only if a comedy is playing.

() The bribe will be paid if and only if the goods are delivered.

(h) 1f x is positive, x is positive.

(1) Karpov will win the chess tournament unless Kasparov wins today.

1.2 TAUTOLOGIES

\ truth function of n arguments is defined to be a function of n arguments,
ihe arguments and values of which are the truth values T or F. As we have
.cen, any statement form containing n distinct statement letters determines a
corresponding truth function of » arguments.

To be precise, enumerate all statement letters as follows: A, B,....
/. A.By....,Z\; Ay, ..., If a statement form contains the ipn,....0,n statement let-
iers in this enumeration, where i) < ... < i,, then the corresponding truth function is
1o have x;,,...,x;, in that order, as its arguments, where x; corresponds to the 7
Jatement letter. For example, (4 = B) generates the truth function

X X2 f(xl,xz)

T T T
F T T
T F F
F F T

whereas (B = A) generates the truth function

X x2 glxx)
T T T
F T F
T ¥ 7
| RN £ T
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A statement form that is always true. no matter what the truth values off

its statement letters may be. 1s called a  rawrology. A statement form s a
tawtology if and only if its corresponding truth function takes only the value
T. or cquivalently. if. in its truth table. the column under the statement form
contains only 7's. An example of a tautology is (A v (- ++1}). the so-called faw
of the excluded middle.  Other simple examples are (A (i),
(4w (~(~4)). (AAB)=A4)and (4 = (4V B)).

A s sad Lo logically imply % (or, synonymously. % is a logical con-
sequence of A) if and only if every truth assignment to the statement fetters
of .4 and ¢ that makes 4 true also makes % true. For cxample. (4 A B)
logically implies 4. 4 logically implies (4 v B), and (4 A (4 = B)) logically
implies B.

# and ¢ are said to be logically equivalent if and only if .4 and % receive
the same truth value under every assignment of truth values to the statement
letters of 4 and %. For example, 4 and (—(—4)) are logically equivalent, as
are (A A B) and (BAA4).

PROPOSITION 1.1

(1) 4 logically implies 7 if and only if (4 = %) is a tautology.
(by 4 and 7 are logically equivalent if and onlv il (4 < ) is a tautology.

Proof

(a) (1) Assume #4 logically implies 4. Hence. every truth assignment that
makes 4 true also makes % true. Thus, no truth asssignment makes 4
true and ¢ false. Therefore, no truth assignment makes (# = %) false,
that is, every truth assignment makes (4 = €) true. In other words,
(4 = €) is a tautology. (i) Assume (# = %) is a tautology. Then, for
every truth assignment, (4 = %) is true, and, therefore, it is not the case
that 2 is true and % false. Hence, every truth assignment that makes %
true makes % true, that is, # logically implies %.

(b) (4 & %) 1s a tautology if and only if every truth assignment makes
(4 < €) true, which is equivalent to saying that every truth assignment
gives # and % the same truth value, that is, 4 and % are logically
equivalent.

By means of a truth table, we have an effective procedure for determining
whether a statement form is a tautology. Hence, by Proposition .1, we have
cffective procedures for determining whether a given statement form logi-
cally implies another given statement form and whether two given statement
forms are logically equivalent.

To see whether a statement form is a tautology, there is another method
that is often shorter than the construction of a truth table.

TAUTOLOGIES

Lxamples

1. Determine whether ({4 = ((=8) V ()
Assume that the statement form

sometimes is F (line 1). Then (4 < (A<= ((B) v O))=((T14) = B))

((=B) v C))is Tand ((~4) = B)is F

I (line 2). Since {(—4) = B} is F. T F

{(-4) is T and B is F (line 3). Since T F

{-=A4)is T. A is F (line 4). Since 4 is F F

I and (4= ((-B)v () is T, E

((-B)v C) is F (linc 5). Since F F

((=B) v C)is F, (-B) and C are F T

(line 6). Since (—B)is F, Bis T (line

7). But B is both T and F (lines 7

and 3). Hence, it is impossible for

the form to be false.

= ((—4) = B)) s a tautology.

2. Determine whether ({4 = (BV C)) v (4 > B)) is a tautology.
Assume that the form is F (linc ).
Then (4 = (BvC)) and (4 = B) are F
(line 2). Since (4 = B)is F. Ais Tand Bis
1" (line 3). Since (4 = (BVC))isF, Ais T
and (BV C) is F (line 4). Since (BV C) is
B and C are F (line 5). Thus, when 4 1s
I'. Bis F, and C is F, the form is F.
I'herefore, it is not a tautology.

(A= (B v C)) v {4A=B))

I'xercises
1.5 Determine whether the following are tautologies.

(1) (({(4 = B) = B)= B) N (4= (B=(B=4)))

(h) (((4 = B) = B) = A) () (AAB)= (4V ()

() (((4=B)=4) = A4) (h) ({4 & B)

ul) (B=C)= (4= B))=(4=18)) (i) (4= B)V (B = A))
) ((AV (~(BAC))) = ((4 e C)VB)) (i) ((-(4=B)) = 4)

1.6 Determine whether the following pairs are logically equivalent.

() ((A=B)=>4)and 4

(b) (4 < B) and ((4 = B) A (B = A))

(¢) ((-A4)V B) and ((—B) V 4)

(d) (~(4 & B)) and (4 & (—B))

(¢) (AV(Be C))and ((AVB) & (4V ()

() (4= (Be())and (A=>B)<:> A=>C))
() (AA(B <)) and (AAB) & (ANC))

& (A e (Be4))

~N N R W N -
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1.7 Prove:

() (= Bias logically equivalent to ((—4) v B).

(by (4 = By as logically equivalent to (=(A4 A (-8))).

1.8 Prove that 4 is logically equivalent to % it and only 1" 4 logically
implies 7 and ¢ logically implies 4.

1.9 Show that .4 and ¢ are logically equivalent if and only if. in their truth
tables. the columns under 4 and % arc the same.

1.10 Prove that 4 and ¢ are logically equivalent il and only if ( 4) and
() are logically equivalent.

L.11 Which of the following statement forms are logically implicd by
(ANBY?

(a) A4 (d) ((=4) v B) (g) (4= B)
(b) B e) ((=B) = 4) (h) ((=B) = (—4))
(¢) (4VB) (D (4 < B) (i) (4A(-B))

1.12 Repeat Exercise 1.11 with (4 A B) replaced by (4 = B) and by
(=(4 = B)), respectively.

1.13 Repeat Exercise 1.11 with (4 A B) replaced by (4 Vv B).

1.14 Repeat Exercise 1.11 with (4 A B) replaced by (4 < B) and by
(—~(4 < B)). respectively.

A statement form that is false for all possible truth values of its statement
letters 1s said to be contradictory. Its truth table has only Fs in the column
under the statement form. Onc example is (4 < (—4)):

A4 (=4) (A= (-4))

T F F

F T F
Another is (4 A (—4)).

Notice that a statement form # 1s a tautology if and only if (—4) is
contradictory, and vice versa.

A sentence (in some natural language like English or in a formal theory) f
that arises from a tautology by the substitution of sentences for all the
statement letters, with occurrences of the same statement letter being re-
placed by the same sentence, is said to be logically true (according to the
propositional calculus). Such a sentence may be said to be true by virtue of
its truth-functional structure alone. An example is the English sentence, “If it
is raining or it is snowing, and it is not snowing, then it is raining’, which
arises by substitution from the tautology (((4V B) A (=B)) = A). A sen-
tence that comes from a contradictory statement form by means of sub-
stitution is said to be logically false (according to the propositional calculus).

Now let us prove a few general facts about tautologies.

"By a formal theory we mean an artificial language in which the notions of
meaningful expressions, axioms and rules of inference are precisely deseribed (see page
34).

TAUT ()LOGILS

PROPOSITION 1.2

I 4 and (4 = %) are tautologies, then so is 7.

Proof

Assume that .2 and (4 = %) are tautologics. 1'% took the value F for some

assignment of truth values to the statement letters of 4 and %, then, since .4

s a tautology, # would take the value T and. thercfore, (/f = %) would
have the value F for that assignment. This contradicts the assumption that
4 = ¢) is a tautology. Hence, % never takes the value b

PROPOSITION 1.3

[I".7 is a tautology containing as statement letters Ay Axo.. . 4,. and 4
.n‘iseﬂ l"rom 7 by substituting statement forms &1, ..., v, Tor
. A>.....A,, respectively, then 4 is a tautology; that is, substitution in a

l.nulology ylelds a tautology.

I xample
Let.7 be ((4) Ady) = A1), let. &y be (BV C) and let ¥, be (C A D). Then 4
N ((BVC)YA(CAD))= (BVC()).

Proof

Assume that .7 is a tautology. For any assignment of truth values to the
<tatement letters in 4, the forms %y, ...,.%, have truth values x,... x,
iwhere each x, is T or F). If we assign the values x|,....x, to 4;,....4,,
respectively, then the resulting truth value of 7 is the truth value of # for
the given assignment of truth values. Since .7 is a tautology, this truth value
must be T. Thus, Z always takes the value T.

PROPOSITION 1.4

It ¢, arises from £, by substitution of 4 for one or more occurrences of %4,
then ((4 e C) = (4, © €))) is a tautology. Hence, if # and € are logi-
cally equivalent, then so are %, and €.

I'xample

let 4 be (CVD), let 4 be C, and let ¥ be (—~(=C)). Then %, is
1Y) v D). Since C and (=(=C)) are logically equivalent, (C v D) and
(o)) VD) are also logically equivalent.
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Proof

Consider any assignment of truth values to the statement letters, 1 4 and ¢
have opposite truth values under this assignment. then (4 ¢ ) takes the
vidoe Boand. henee. (A= %6) = (4, < %)) s T 1IN 4 and 7 uke the
same truth values: then so do 4y and %, since ¢ diters from 4 only in
containing 7 m some places where 4 contains 4. Therelore. in this case.
(Aovv)is T (4 < ¢)is T, and, thus, (B =€) (4, <708 T

Parentheses

It is profitable at this point to agree on some conventions to avoid the use of
so many parentheses in writing formulas. This will make the reading of
complicated expressions easier.

First, we may omit the outer pair of parentheses of a statement form, (In
the case of statement letters, there is no outer pair of parentheses.)

Second, we arbitrarily establish the following decreasing order of strength
of the connectives: —. AV, =, <. Now we shall cxplain a step-by-step
process for restoring parentheses to an expression obtained by chiminating
some or all parentheses {tom a statement form. Find the leltmost occurrence
of the strongest connective that has not yet been processed.

(1) If the conncctive is — and it precedes a statement form 4. restore left
and right parentheses to obtain (—:4).

(i1) If the connective is a binary connective C and it is preceded by a
statement form 4 and followed by a statement form %, restore left and
right parentheses to obtain (4 C %).

(i) If neither (i) nor (ii) holds, ignore the connective temporarily and find
the leftmost occurrence of the strongest of the remaining unprocessed
connectives and repeat (i)-(iii) for that connective.

Examples
Parentheses are restored to the expression in the first line of each of the
following in the steps shown:

. A (-B)vVC=>4
As (FB)VC)=> A
A< (((-B)VC) = A4)
(4 ((-B) V() = 4))
A=>-B=C
A= (-B)=C
(A= (-B)) = C
(4 = (-B)) = ()
3B A

B > ()

o

1 L\L 'I()L()(;lf\

Not every form can be represented without the use ol purcnlhexcs For
svample. parentheses cannot be further eliminated from A == (B = ). since
I » B = Cstands tor ((4 = B) = (). Likcwisc. the remaiming pdunlhmes
cannot be removed from —(4 Vv B) or from AA (B > ).

I.xercises

1.15 Eliminate as many parentheses as possible from the following forms.

1) {(B=(—4))AC) (¢) (4 B)« ((vnn

A 4V (BVO)) m(((((Bv(n B,(n

O AACB)ACIVD)  (g) (~(~(~(BV ) & (B = O))

W BY(SONVAAB)  (h) (4= B) = (C = >> () v C)

I.16 Restore parentheses to the following forms.

) OV —ANB
) B==——ANC

(¢) C=—-ANB=>C)NA & B
d C=>A4=4< AVB

1.17 Determine whether the following expressions are abbreviations of

ratement forms and, if so, restore all parentheses.

(A (~AVB)= (AN (BVC(C)))
() =AVBVCAD S AN-A
() ((4=BA(CVD)N(AV D))

) A e A4S BYC
) (A e Ad) s BVC
1 (4d=>B)VCVD=B

118 If we write —# instead of (—4), = A% instead of (4 = ¥) , A\4%
mstead of (4 A €), VAE instead of (B V €), and < A% instead of (4 & %),
thien there is no need for parentheses. For example, ((=4) A (B = (=D))),
atich is ordinarily abbreviated as —4 A (B = —D), becomes A -4 = B-D.
I'his way of writing forms is called Polish notation.

1) Write ((C = (=4)) v B) and (CV ((B A (=D)) = C)) in this notation.

thy I we count =, A, V, and < each as +1, each statement letter as — 1 and
as 0, prove that an expression 4 in this parenthesis-free notation is a
statement form if and only if (i) the sum of the symbols of # 1s —1 and
(i1) the sum of the symbols in any proper initial segment of 4 is non-
negative. (If an expression 4 can be written in the form 4%, where
‘“ / A then % is called a proper initial segment of A.)

() Write the statement forms of Exercise 1.15 in Polish notation.

2
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() Determine whether the following expressions are statement Torms in
Polish notation. 1 so, write the statement Torms i the standard way.
(1) CABC L AR ¢ (M) VANV o BCAVACY
(i) B BC = 240 (V) VABABBB

119 Deternnine whether cach of the following is a tautology, s contra-
dictory. or neither.

Gy B (BvB)
(b) (11 = B)AB) = 4

() AN (VB
() (A4 =» B) <0 ([ 1)V B)

() ()= (4AB) (h) (4= B)«+ (1A{ B))
(D (4 =B)y=((B=C)=(4=(C)) () (B (B ) 4
(¢) (A& ~B)=AVB () AAN-A =B

1.20 If 4 and B are true and C is false, what are the truth vualues of the
following statement forms?

(a) AVC () BV-C =4
(b)y ANC () (BVA)= (B= —C)
(c) ~AA-C (g) (B=—-4) & (4« ()

(d) 4 -BVC (hy (B=4) = (4= -C) = (-C = B))
1.21 If 4 = B i1s T. what can be deduced about the truth values of the
following?
Q) AVC=BVC
by ANC=BAC
(c) ~AANB & AVB
1.22 What further truth values can be deduced from those shown?
(a) "4V (4= B) (c) (4 VB)=(4 = -C)
F F
(b) -(4AB) < -4 = —-B (d)(4©B)=(C = —4)

T F T
1.23 If 4 & B is F, what can be deduced about the truth values of the
following?

(@) ANB (b)AVB ()A=B (d)AANCSBAC
1.24 Repeat Exercise 1.23, but assume that 4 & Bis T.
1.25 What further truth values can be deduced from those given?
(a) (ANB)=(4AVB)

F F
(b) (4= -B)=(C= B)

F
1.26 (a) Apply Proposition 1.3 when .7 is 4, = 4, V 4A>. is BAD, and
Sy is 1B,
(b) Apply Proposition 1.4 when 4, is (B > CYAD, Bis B » Coand 4 is
N AVA QS

TAUTOLOGIES ‘ ‘ 23

et iy | |

1.27 Show that cach statement form in column I is logically equivalent to
dhe form next to it in column .

/ 1
) A= (B=C) (ArB)=C
hy AN (BVC) (ANB)V(AANC) (Distributive faw)
) AV (BAO) (AV BN (AVC) (Distributive law)
)} (AANB)V B AV -8B
)y (AVB)AN-B AN—B
N A=8B -B = -4
() A= B B A
) e B)eC As (Be )

(Law ol the contrapositive)
(Biconditional commutativity)
(Biconditional associativity)

i AeB (ANB)V (=4 N —-B)

m (4 < B) As B

hy (A V B) (—=A4) A (—B) (De Morgan's Taw)

o (4 AB) (—=A4)V (—B) (De Morgan’s law)

o) AV (A4 AB) A

my AN(AYB) A

c ANB BAA (Commutativity of conjunction)
im AVEB BV A (Commutativity of disjunction)
) (AANB)ANC AN(BAC) (Associativity of conjunction)

9 (AVvB)vVC AV (BVC) (Associativity of disjunction)

1.28 Show the logical equivalence of the following pairs.

A A and 4, where .7 is a tautology.
Vv # and .77, where .7 is a tautology.
VvV 4 and # ., where % is contradictory.
VvV 4 and 4, where % is contradictory.

7
7
Vo
T

1.29

11 Show the logical equivalence of =(4 = B) and 4 A —B.

‘i Show the logical equivalence of =(4 < B) and (4 A —=B) V (=4 A B).

1 FFor each of the following statement forms, find a statement form that is
logically equivalent to its negation and in which negation signs apply
only to statement letters.

s (Be —-0)

n AV (B = C)

) A A (BVAC)

1 (Dualiry)

c If .4 s a statement form involving only —, A, and V, and 4’ results from
4 by replacing each A by vV and each vV by A, show that 4 is a tautology
Wand only it 4" is a tautology. Then prove that, if .4 = % is a tau-
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toloev. then so as 2" 5 4 and iU 4 <> 7% s o Lautology. then so s
A"l (Here 40as also assumed to involve only LA and Vo)

(b Among the logical equivalences in Exercise 1.270 derive (¢) Irom (b). (e)
from (. (1) from (k). (p) from (o). and (1) [rom ().

(¢ 1 72as a statement form involving only A and v.oand 4" results from
A by ainterchanging A and v oand replacing every statement letter by its
negation. show that 4" is logically equivalent to 4. I'ind a statement
form that s logically equivalent to the negation of (4 v BV C)
v BV D)L in which = applies only to statement fetters,

1.31

(i) Prove that a statement form that contains & as its only conncective is a
tautology if and only if cach statement letter occurs an cven number of
times.

(b) Prove that a statement form that contains — and < as its only con-
nectives is a tautology if and only if — and cach statement letter occur an
even number of times.

1.32 (Shannon. 1938) An electric circuit containing only on ofl" switches
(when a switch is on. it passes current: otherwise it does not) can be re-
presented by a diagram in which. next to each switch. we put a letter re-
presenting a necessary and suflicient condition for the switch to be on (see
Figure 1.1). The condition that a current flows through this network can be
given by the statement form (4 AB)V (C A —4). A statement form re-
presentating the circuit shown in Figure 1.2 is (A AB)V ((CV A) A —B),
which is logically equivalent to each of the following forms by virtuc of the
indicated logical equivalence of Exercise 1.27.

((AAB)V(CVA)A((AAB)V =B) (c)
((AAB)V(CVA)A(AV -B) (d)
(AAB)V(AVC)A(4V —=B) (p)
((AABYVA)VCYA(AV —B) (r)

(4V CYA (4 V—B) (p). (m)
AV (C A—B) (c)

Hence. the given circuit is equivalent to the simpler circuit shown in Fig-
ure 1.3. (Two circuits are said to be equivalent if current flows through one if
and only if it flows through the other, and one circuit is simpler if it contains
fewer switches.)

AN B\

C . A\

9

Figure, 1.1

TAUTOLOGIHES

A\ B\—
] — CN\—— _—
AN
a\
Figure. 1.2
AN o
c\ BNy ) W—

Figure. 1.3

AN
C\
Ry —
A AN
N
Lo
‘18\
Figure. 1.4
B\ c\
A\ AN e\
—1A\ 13\ C\
Figure. 1.5
Y —
A A
e
IC)‘-—— L L

Figure. 1.6

1 Find simpler equivalent circuits for those shown in Figures 1.4, 1.5 and
l.6.

by Assume that each of the three members of a committee votes yes on a
proposal by pressing a button. Devise as simple a circuit as you can that
will allow current to pass when and only when at least two of the
members vote in the aflirmative.
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(¢} Wewisha light (o be controlled by two different wall switches in a room
i such o way that fhicking cither one ol these switehes will turn the hight
onilitis ol and turn it offifitis on. Construct a simple civeuit o do the

required job.

1.33 Determime whether the following arguments are logically correct by
representing cach sentence as a statement form and checking whether the
concluston s logically implied by the conjunction ol the assumptions. (To
do thissassign T to each assumption and F to the conclusion. and determine
whether a contradiction results.)

() I Jones is a communist. Jones is an atheist. Jones is an atheist.
Therctore. Jones is a communist.

(b) It the temperature and air pressure remained constant. there was no
rain. The temperature did remain constant. Thercforc. il there was rain,
then the air pressure did not remain constant.

(¢) If Gorton wins the election, then taxes will increase i the deficit will
remain high. If Gorton wins the clection. the delicit will remain high.
Therefore, if Gorton wins the clection, taxes will increase.

(d) If the number x ends in 0, it is divisible by 5. x docs not end in 0. Hence,
x is not divisible by 5.

(¢) If the number x ends in 0. it is divisible by 5. v is not divisible by 5.
Hence, ¥ docs not end in 0.

() Ifa=0o0rh=0.then ub = 0. But ub # 0. Hence. a # 0 and b £ 0.

(g) A sufficient condition for f to be integrable is that ¢ be bounded. A
necessary condition for 4 to be continuous is that / is integrable. Hence,
if ¢ 1s bounded or 4 is continuous, then f is integrable.

(h) Smith cannot both be a running star and smoke cigarettes. Smith is not
a running star. Therefore, Smith smokes cigarettes.

(1) If Jones drove the car, Smith is innocent. If Brown fired the gun, then
Smith is not innocent. Hence, if Brown fired the gun, then Jones did not
drive the car.

1.34 Which of the following sets of statement forms are satisfiable, in the
sense that there is an assignment of truth values to the statement letters that
makes all the forms in the set true?

(a) A =B
B=C
CVvVD& -B

(b) ~(=BV4)
AV =0C)

B = -C

(¢) D=8
AV B
(DA A)

D

ADEQUATE SE'TS OF CONNECTIVES

1.35 Checek cach of the following sets of statements for consistency by re-
presenting the sentences as statement lovms and then testing their con-
aunction to sce whether it is contradictory.

'y Either the witness was intimidated or. if Doherty committed suicide. a
note was found. If the witness was intimidated. then Doherty did not
commit suicide. f a note was found. then Doherty committed suicide.
The contract is satisfied if and only if the building s completed by 30
November. The building is completed by 30 November if and only if the
clectrical subcontractor completes his work by 10 November. The bank
loses money if and only if the contract 1s not satislicd. Yet the electrical
subcontractor completes his work by 10 November i and only if the
bank loses money.

1.3 ADEQUATE SETS OF CONNECTIVES

I vory statement form containing n statement letters generates a corre-
ponding truth function of n arguments. The arguments and values of the
qinction are T or F. Logically equivalent forms generate the same truth
anction. A natural question is whether all truth functions are so generated.

PROPOSITION 1.5

I very truth function is generated by a statement form involving the con-
sectives o, A and V.

Proof

(Refer to Examples 1 and 2 below for clarification.) Let f{x), ..... x,) be a
auth function. Clearly f can be represented by a truth table of 2" rows,
here cach row represents some assignment of truth values to the variables
.. x,. followed by the corresponding value of f(xy,....x,). If
172" let C; be the conjunction U] A US A ... AUJ, where Uj is 4; if, in
fiesth row of the truth table, x; takes the value T, and U is =4, if x; takes
‘ie value Fin that row. Let D be the disjunction of all those C;s such that /'
s the value T for the ith row of the truth table. (If there are no such rows,
then / always takes the value F, and we let D be 4; A =4, which satisfies the
rhearem.) Notice that D involves only =, A and V. To see that D has [ as its
~orresponding truth function, let there be given an assignment of truth
walues 1o the statement letters 4, ..., A,, and assume that the corrre-
pondimg assignment to the variables x|, ..., x, is row & of the truth table for
¢t Then ¢4 has the value T for this assignment, whereas every other C; has
the vadue L IE / has the value T for row &, then Gy ois a disjunct of D. Hence,
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D would also have the value T for this assignment. 1/ has the value - for
row A. then € s nota disjunct of D and all the disjuncts take the vaiue 17 for
this assignment. Therefore. D would also have the value 10 Thus, 1) gen-
crates the truth function /.

xamples

I

X flan)
T T F
FToT
I F T

F F T

Dis (ﬁ/’] /\Az) vV (A] A —Ar) Vv (*‘A] AN *'Ag).

2.
Xy Xy gl
T T T T
F T T F
T F T T
I F T T
T T F F
FoT F F
T b ¥ E
boror T

Dis (A ANAxs AA3) V(A1 A —As ANA) V(A4 A —ds A Ay)
\% (ﬁ/ﬁ A “\.43 A '1A3).
Exercise

1.36 Find statement forms in the connectives =, A and V that have the
following truth functions.

xiox oxy flxnxo,xs) gleyxe,xz) Al xg,xa)

mamadmamd
TR Hm g
T = 4
d4mmmm a4
mMaTm Mo
H4ma-ammaT

COROLLARY 1.6

Every truth function can bhe gencrated by a statement form contaiming as
connectives only A and s oronly Vand L oronly s oand

ADEQUATE SETS OF CONNLECTIVES

Proof

Notice that 4 v 7 s fogically equivalent to (4~ ~%). Henee. by the
wond part of Proposition 1.4, any statement form in AL v and = is logically
Jquivalent to a statement form in only A and -« Jobtained by replacing all
wpressions 4V 4 by —(=4 A =¢)]. The other parts of the corollary are
anilar consequences of the following tautologices:

BNG = (B )
AN = (A= 1)
BNG = (B = )
We have just seen that there are certain pairs ol connectives  for ex-
anple; Aand = - in terms of which all truth functions are definable. It turns

i that there is a single connective, | (Joint denial). that will do the same
b Its truth table s

A B A|B

T F
F T F
TF F
F F T

# s true when and only when neither 4 nor B is true. Clearly.
(M Ayand (AAB) < ((4 | 4) | (B] B)) arc tautologies. Hence, the
dequacy of | for the construction of all truth functions follows from
Coaollary 1.6.
\nother connective, | (alternative denial), is also adequate for this pur-
< s truth table is

A B A|B
T T F
FT T
TF T
F F T

¢ 1s true when and only when not both 4 and B are true. The adequacy of
tollows from  the tautologies —A4 < (4| A4) and (AVB) & ((4]4) |
B,

I'ROPOSITION 1.7

e only binary connectives that alone are adequate for the construction of
dl tuth functions are | and |.

Proof

Aume that A(A. B) is an adequate connective. Now, if A(T.T) were T, then
vy statement form built up using A alone would take the value T when all
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I

A4 would not be definable in
T. Thus. we have the partial

its statement fetters take the value 1. Henee.
terms of o So Ach Ty 1L Likewise, Al )
truth table

A B h(AB)
T T K
FoT
T F
Fr T

It the second and third entries in the last column arc F, F or T, T, then A s |
or At they are F, T, then h(4, B) < =B is a tautology: and if they are T, F.
then /i(1.B) & —4 is a tautology. In both cases, /i would be definable in
terms of . But = is not adequate by itself because the only truth functions
ol one variable definable from it are the identity function and negation itself,
whereas the truth function that is always T would not be definable.

Exercises

1.37 Prove that each of the pairs =, V and -, < is not alone adequate to
express all truth functions.

1.38

(a) Prove that 4 v B can be expressed in terms of = alone.

(b) Prove that 4 A B cannot be expressed in terms of = alone.
(¢) Prove that A4 & B cannot be expressed in terms of = alone.

1.39 Show that any two of the connectives {A, =, <} serve to define the
remaining one.
1.40 With one variable A, there are four truth functions:
A A AV-A4 AN-A
T F T F
F T T F
(a) With two variable 4 and B, how many truth functions are there ?
(b) How many truth functions of n variables are there ?

1.41 Show that the truth function 4 determined by (4 V B) = —~C generates
all truth functions.

1.42 By a literal we mean a statement letter or a negation of a statement
letter. A statement form is said to be in disjunctive normal form (dnf) if 1t is
a disjunction consisting of one or more disjuncts, each of which is a
conjunction of one or more literals — for example, (4 AB)V (=4 A C),
(AANBA-A)V(CA-B)V(AAN-C), A,ANB, and AV (BV C). A form is
in conjunetive norial form (cnf) if it is a conjunction of one or more conjuncts,
each of which s a disjunction of one or more hterals  for cxample,
(BVONAVB), (BV ACYAAV D)., AANBVAVA( BV A). AV B, AN
B.A. Note that our terminology considers a literal 1o be a (degenerate) con-

junction and a (degencerate) disjunction.

ADEQUATE SETS OF CONNECTIVES

~1) The proof of Proposition 1.5 shows that cvery statement form 4 is

logically cquivalent to one in disjunctive normal form. By applving this

result to .4, prove that 4 is also logically equivalent to a form in
conjunctive normal form.

Find logically equivalent dnfs and cnfs for (4 = B) VvV (=4 A () and

< ((BA-A4)v C). [Hine Instead of relving on Proposition 1.5, it is
usually easier to use Exercise 1.27(b) and (c¢).|

A dnf (cnf) is called fu/l if no disjunct (conjunct) contains two occur-

rences of literals with the same letter and it a letter that occurs in one

disjunct (conjunct) also occurs in all the others. For example,

(AN=AANB)V(AAB). (BABANC)V(BAC) and (BAC)V B are not

lull, whereas (AABA-CYV(AABAC)V (AN BA C)and (A A -B)

V(B A 4) are full dnfs.

(i) Find full dnfs and ecnfs logically equivalent to (4 A B) Vv 4 and
(4= B)V(-4AANC).

(i1) Prove that every non-contradictory (non-tautologous) statement
form 4 is logically equivalent to a full dnf (cnl) 4. and, if @ contains
cxactly n letters, then 4 is a tautology (is contradictory) if and only
if ¢ has 2" disjuncts (conjuncts).

I'or each of the following. find a logically equivalent dnf (cnf), and then

find a logically equivalent full dnf (cnf),

() (AVB)A(-BV () (i) (AN-B)yV(4AAC)

my -4V (B = () (iv) (4 VvV B) < -C

1 Construct statement forms in - and A (respectively, in = and V or in -

and =) logically equivalent to the statement forms n (d).

I 43 A statement form is said to be satisfiuble if it is true for some as-
~ument of truth values to its statement letters. The problem of determining

atisfiability of an arbitrary enf plays an important role in the theory of

smputational complexity; it 1s an example of a so-called . 1 .2-complete

~oblem (see Garey and Johnson, 1978).

0 Show that 4 is satisfiable if and only if =4 is not a tautology.

1 Determine whether the following are satisfiable:
(1) (AVB)A(mAV BV C)A(=4V BV -C)
() (4=B)VC) & (-BA(4V())

1 Cnven a disjunction % of four or more literals: Ly VI, V...V L,, let
. ....C, > be statement letters that do not occur in ¢, and construct
the enf &

(A VI VC)A(-CI VL3V C)A(—CV LgV G AL
A (_‘ n-3 \/L,,,,| \ Cn—2) A (_‘ w2V Ln \4 _‘Cl)

Show that any truth assignment satis{fying & can be extended to a truth
assipnmient satisfying & and. conversely, any truth assignment satisfying
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A 1san eatension of a truth assignment satisfving 7. (This permits the
reduction ol the problem of satisfying enfs to the corresponding pro-
blem Tor enfs with cach conjunct contaming at most three literals.)
(dy Fora disjunction 77 of three hiterals L, v 1> v L show that a Torm that
has the properties of 4 in (¢) cannot be constructed. with ¢ a enf in
which cach conjunct contains at most two hiterals (R. Cowen).

L44 (Resolurion) Let 4 be a enl and let C be a statement letter. 1€ C is a
disjunct ol adisjunction 7y in .4 and —~C is a disjunct ol another disjunction
s> 4. then a non-empty disjunction obtained by climinating ¢ from 7/,
and o Irom 5 and forming the disjunction of the remaining literals
(dropping repetitions) is said to be obtained from .4 by resolution on C. For
example, i .4 s

(AN OV -BYAN(~ANVDV-B)A(CVDVA).

the first and third conjuncts yield 4 v =B Vv D by resolution on €. In addi-
tion. the first and second conjuncts yicld ~C VvV =B Vv ) by resolution on A,
and the second and third conjuncts yield DV =B Vv (" by resolution on 4. If
we conjoin to .4 any new disjunctions obtained by resolution on all vari-
ables, and if’ we apply the same procedure to the new enl” und keep on
iterating this operation, the process must eventually stop. and the final result
is denoted Zc,(4). In the example. #,(4) is:

(AN OV BYA(=AVDV =BYA(CVDYAYA(CV BV D)
ADY BV CYAAY -BYD)YA(DY B)

(Notice that we have not been careful about specifying the order in which
conjuncts or disjuncts arc written, since any two arrangements will be lo-
gically equivalent.)

(a) Find #cs(#) when 4 is each of the following:
() (AV—-B)AB
(M) (AVBVC)A(AV-BVC)
(i) (AVC)A(~AVB)A(AV =C) A (=AV =B)

(b) Show that # logically implies Zes(24).

(c) If A is a cnf, let 4 be the cnf obtained from # by deleting those
conjuncts that contain C or =C. Let r¢(4) be the cnf that is the con-
junction of #¢ and all those disjunctions obtained from # by resolution
on C. For example, if 4 is the cnf in the example above, then r¢(.4) is
(mAV DV =B)A(AV =BV D). Prove that, if rc(4) is satisfiable, then so
is 4. (R. Cowen)

A cnf 4 is said to be a blatant contradiction if it contains some letter ¢
and its negation —C an conjuncts. An example of a blatant contradiction
is (AVB)ABA(CVD)A-B. Prove that if 4 is unsatisfiable, then
Aos(4)1s a blatant contradiction. [#ine: Use induction on the number »
ol letters that occur in 4. In the induction step, use (c) |

(d

~
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(¢) Prove that .4 is unsatisfable if and only 1l #..(.4}) is a blatant contra-
diction.

1.45 Let .4 and & be statement forms such that 4 3 & is a lautology.

) If .24 and 7 have no statement letters in common. show that either 4 is
contradictory or 7 is a tautology.
(h) (Craig's interpolation theorem) 16 4 and ' have the statement letters

By..... B, in common, prove that there is a statement form % having
By. ..., B, asits only statement letters such that 4 % and 4 = &/ arc
tautologies.

(¢) Solve the special case of (b) in which A is (B = A) 2 (.1 = Bx) and &/ 1s
(ByAC) = (Bz AC).

1.46

(1) A certain country is inhabited only by rruth-rellers (people who always
tell the truth) and fiars (people who always lic). Morcover. the in-
habitants will respond only to ves or no questions. A tourist comes 1o a
fork in a road where one branch leads to the capital and the other does
not. There is no sign indicating which branch to take. but there is a
native standing at the fork. What yes or no question should the tourist
ask in order to determine which branch to take ? [Hinr: Let 4 stand for
*You are a truth-teller’ and lct B stand for “The left-hand branch leads to
the capital’. Construct, by mcans of a suitable truth table, a statement
form involving 4 and B such that the native’s answer to the question as
1o whether this statement form is true will be yes when and only when B
18 true.)

by In a certain country, there are three kinds of people: workers (who
always tell the truth), businessmen (who always lie). and students (who
sometimes tell the truth and sometimes lie). At a fork in the road, one
branch leads to the capital. A worker, a businessman and a student are
stunding at the side of the road but are not identifiable in any obvious
way. By asking two yes or no questions, find out which fork leads to the
capital (Each question may be addressed to any of the three.)

More puzzles of this kind may be found in Smullyan (1978. chap. 3; 1985,
haps 2, 4--8).

14 AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULUS

Ituth tables enable us to answer many of the significant questions con-
<vrning the truth-functional connectives, such as whether a given statement
form s a tautology, is contradictory, or neither, and whether it logically
miphies or is logically equivalent to some other given statement form. The
more complex parts of fogic we shall treat later cannot be handled by truth
tables or by any other similar effective procedure. Consequently, another

|
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approach. by means of formal axiomatic theories. will have to be tried.
Although. as we have seen. the propositional calculus surrenders compietely
to the trath table method. it will be instructive to illustrate the axiomatic
method m this simple branch ol logic.

A formal theory /s defined when the following conditions are sutistied:

1. A countable set of symbols is given as the symbols ol /' A hnite se-

quence ol symbols of & is called an expression of /.

20 There is a subset of the set of expressions of ¥ called the sct of well-
formed formulas (wfs) of /. There 1s usually an effective procedure to
determine whether a given expression is a wf.

There is a set of wis called the set of axioms of %". Most often. one can
clfectively decide whether a given wf is an axiom: in such a case. ¥ is
called an axiomatic theory.

v

4. There is a finite set Ry, ... R, of relations among wis, called rufes of

inference. For each R;, there is a unique positive integer / such that, for
every set of j wfs and each wf 4, one can effectively decide whether the
given j wis are in the relation R; to 4. and. if so, 4 is said to follow from
or 1o be a direct consequence of the given wis by virtue of R}.

A proofin /' is a sequence Ay, ... . A, of wis such that. for cach i, cither
A, s an axiom of Y or 4, is a direct conscquence of some of the preceding
wis in the sequence by virtue of one of the rules of inference of /.

A theorem of /is a wi 4 of .7 such that .4 is the last wf of some proot'in
9. Such a proof is called a proof of 4 in .

Even if . is axiomatic — that is, if there is an eflective procedure for
checking any given wl (o see whether it is an axiom - the notion of ‘theorem’
is not necessarily effective since, in general, there is no effective procedure
for determining, given any wf 4, whether there is a proof of 4. A theory for
which there is such an effective procedure is said to be decidable; otherwise,
the theory is said to be undecidable.

From an intuitive standpoint, a decidable theory is one for which a
machine can be devised to test wfs for theoremhood, whereas, for an un-
decidable theory, ingenuity is required to determine whether wfs are theo-
rems.

A wf % is said to be a consequence in . of a set of I' of wfs if and only if
there is a sequence %,, ..., %; of wfs such that ¥ is 4, and, for each i/,
either %, is an axiom or %4; is in I', or %; is a direct consequence by somc rule

fThese ‘symbols’ may be thought of as arbitrary objects rather than just lin-
guistic objects. This will become absolutely necessary when we deal with theories
with uncountably many symbols in Section 2.12.

'An example of a rule of inference will be the rule madus ponens (MPY: 4 follows
from .4 and 4 > %. According (o our precise definition, this rule s the relation
consisting of all ordered triples (4. 4 = 4. % ). where 4 and ¢ are arbitrary wis
ol the Tormal system.

|
i
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of inference of some of the preceding wis in the sequence. Such a sequence is
called a0 proof (or deductiony of ¢ from 1. The members of T are called the
Inepotheses or premisses of the prool. We use I'H 7 as an abbreviation for ¢
15 a conscquence of I In order to avoid confusion when dealing with more
than one theory. we write T'F,, ¢, adding the subscript ¢ to indicate the
theory in question.

,

I s a Anite set { ). ... A ). we write # . ... 4, % instead of

Ao A B I T s the empty set O then v 2 i and only i 4 is a
theorem. It is customary to omit the sign 0" and simply write! 7. Thus, - %
is another way of asserting that 4 is a theorem.

The following are simple properties of the notion of consequence:

ILIfI'CAand '+ 4. then AR 7.
" I’ % if and only if there is a finite subsct A of " such that A+ 7.
S HARY, and forcach 2 m A I'F 4 then T 7.

\ssertion | represents the fact that it % is provable from a set T of pre-
misses, then, if we add still more premisses. % is still provable. Half of 2
tollows from 1. The other half is obvious when we notice that any proof of %
lrom I" uses only a finitc number of premisses {rom I'. Proposition 3 is also
quite simple: if ¢ is provable from premisses in A, and cach premiss in A is
provable from premisses in I', then % is provable from premisses in I'.

We now introduce a formal axiomatic theory L for the propositional
caleulus.

| The symbols of L are =, =, (,), and the letters 4; with positive integers
i as subscripts: Ay. A, Az, .... The symbols = and = are called pri-
mitive connectives, and the letters A; are called statement letters.
(a) All statement letters are wfs.
(b) If A and % are wfs, then so are (=#4) and (4 = %).!
Thus, a wf of L is just a statement form built up from the statement
letters 4; by means of the connectives = and =.
4. % and & are wfs of L, then the following are axioms of L:
(AD) (4 = (6= %))
A (A= (C=>2)=> (B =>%)=> (8= D))
(A3) (=%) = (=4)) = (%) = #) = ¢))
! The only rule of inference of L is modus ponens: € is a direct con-
sequence of 4 and (4 = ). We shall abbreviate applications of this
rule by MP

We shall use our conventions for eliminating parentheses.

I'o be precise. we should add the so called extremal clause: (¢) An expression is
awtbifand only it it can be shown to be a wi on the basis of clauses (a) and (b). This
can be made rigorous using as o model the definition in footnote § on page 13,

"A common Enghish svnonvm for modus ponens is the detachment rule
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Notice that the mhnite set ol axioms ol . is given by means of three
axiom schemas AT (A3 with each schema standing for an infinite number
ol axioms. One can casily cheek for any given wl whether or not it is an
axtom: therefore. Tis axiomatic. In setting up the system L, it is our in-
tention to obtam as theorems precisely the class of all tautologics.

We mtroduee other connectives by definition:

(DD (22 0) Tor =(4 = %)
(D (Avylor (=4) =4
(D3) 14 7) for (B=C)N(C = A)

The meaning of (D1). for example. is that, for any wfs Aand 4. (A A %) is
an abbreviation for *=(4 = %)
LEMMA 1.8 4 = 4 for all wls 4.

Proof’
We shall construct a proof in L of 4 = 4.

I (4= ({4=48)= 4)) - Instance of axiom schema (A2)
(3= (A= ) = (4= A)

2. A= (4= 98)=> 4) Axiom schema (Al)

3. (b= (4= 48)) = (4= 49) From | and 2 by MP

4. = (4= 4) Axiom schema (Al)

"The word ‘proof™ is used in two distinct senses. First, it has a precise meaning
defined above as a certain kind of finite sequence of wfs of L. However, in another
sense, it also designates certain sequences of the English language (supplemented by
various technical terms) that are supposed to serve as an argument justifying some
assertion about the language L (or other formal theories). In general, the language
we are studying (in this case, L) is called the object lunguage, while the language in
which we formulate and prove statements about the object language is called the
metalanguage. The metalanguage might also be formalized and made the subject of
study, which we would carry out in a metametalanguage, and so on. However, we
shall use the English language as our (unformalized) metalanguage, although. for a
substantial part of this book, we use only a mathematically weak portion of the
English language. The contrast between object language and metalanguage is also
present in the study of a foreign language: for example, in a Sanskrit class, Sanskrit is
the object language, while the metalanguage, the language we use, is English. The
distinction between proof and metaproof (i.e., a proof in the metalanguage) leads to a
distinction between theorems of the object language and metatheorems of the me-
talanguage. To avoid confusion, we gencrally use “proposition’ instead of “me-
tatheorem’. The word ‘metamathematics’ refers to the study of logical and
mathematical object kinguages: sometimes the word is restricted to those mvestiga-
tons that use what appear to the metamathematicin to be constructive (or so-called
timitary) methods.

/\V /\\I()\/l SYSTE\A l()R THIEE PROPOSITIONAL CALCULUS

oA = From 3 und 4 by MP

I xereise

1.47 Prove:
(V)L (=4 = B)= 4
(b) 4—* C.6 =T B
() B =(6=U) | C= (4= )
(

L (R = a8) = (S =>9)

In mathematical arguments, one often proves a statement 7 on the as-
sumption of some other statement .4 and then concludes that if 4, then 47
i~ true. This procedure is justified for the system b by the following theorem.

PROPOSITION 1.9 (DEDUCTION THEORIEMY

Hlsasetofwisand Zand ¢ are wis,and I'. A% . thenT'E 4 = 7. In
particular, if 4 = %, then - .4 = % (Herbrand. 1930).

I'roof

Lerty. ..., %, beaproof of @ form I'u{.4}, where ¢, is 4. Let us prove, by
unluclion on j, that I'F 4 = 4, for 1 <j<na. First of all. 7| must be cither
v 1 oran axiom of L or 4 itself. By axiom schema (Al), 4} = (4 = ) is
maxiom. Hence, in the first two cases, by MP, '+ .4 = 4. For the third
case. when % is 4, we have 4 = %, by Lemma 1.8, and. thercfore.
I 4= %,. This takes care of the case j=1. Assumc now that
I 4 = % forall k < j. Either % is an axiom, or %, isin I'. or %, is .4, or
+ lollows by modus ponens {rom some % and %,,, where ¢ < j. m < j, and
+, has the form %, = 4. In the first three cases, I' = .4 = 4 as in the case
| above. In the last case, we have, by inductive hypolhesns I'E% =%,

md I'F 4 = (6, = ¢;). But, by axiom schema (A2), - (4 = (6, = %))
(A= %)= (#=%;). Hence, by MP, ' (%4 = €,) = (4 = %),
md. again by MP, ' 4 = €. Thus, the prool by induction is complete.
I he case j = nis the desired result. [Notice that, given a deduction of % from
I and .4, the proof just given enables us to construct a deduction of 4 = %

“The reader should not be discouraged by the apparently unmotivated step 1 of
‘he proof. As in most proofs, we actually begin with the desired result, 4 = #. and
‘hen Jook for an appropriate axiom that may lead by MP to that result. A mixture of
mvenuity and experimentation leads to a suitable instance of axiom (A2).

“For the remainder of the chapter, unless something is said to the contrary, we
Al omit the subseript Loin b, In addition, we shall use T, 4+ % to stand for
Iop A Ingeneral, we let T 4y .0 4, 0 6 stand for T4, ... .4,} 1 .
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from 1. Also note that axiom schema (A3) was not used in proving the
deduction theorem, ]

COROLLARY 1.10

(W) 4 =% 6= U+ 4B= U
by A=(0 =) 0 4=10U

Proof
For part (a):

1. 4 =% Hyp (abbreviation for “hypothesis’)
2.0=v Hyp

3.4 Hyp

4. I, 3. MP

5. v 2, 4. MP

Thus, 4= %, ¢ = «. AF /. So. by the deduction theorem,
AB=>C.0C=>UFERB= "7
To prove (b), use the deduction theorem.

LEMMA 1.11

For any wifs 4 and %, the following wfs are theorems of L.

(a) B =%

(b) # = A

() ~ 4= (B=%)

d) (-6 = A4)=> (4B =>9%)

(€) (4=%)=>(-%= ~4)
() B = (6= -(4=%))
e (B=>%)=((~4=9%)=%)

Proof

() F % = 3
l. (-4 = —B) = (~-# = ~B) = #A) Axiom (A3)
-B = B Lemma 1.8 1
(-8 = ~~B)=> A I, 2, Corollary 1.10(b)
—f = (B = ——B) Axiom (Al)
B = A 3. 4, Corollary 1.10(a)

APl il

"Enstead of writing a complete proof of w4 > .4, we simply cite Lenima 1.8,
In this way. we indicate how the proof of 4 -+ 4 could be written if we wished to
titke the time and space to do so. This is, of course, nothing more than the ordinary
application of previously proved theorems.

AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULUS

(by - 4= 4
L (74 = - 4) = Axiom (A3)
(=28 = 4) = —4)
2. B = h Part (a)
3. (ﬁﬂ—'.ﬁ = ﬁ) = -4 1. 2. MP
4. 4= (-4 = 4) Axiom (Al)
5.4 = 4 3.4, Corollary 1.10(a)
() F-B = (4=17)
(- Hyp
2.4 Hyp
3. 4= (%= 4) Axiom (Al)
4. A = (6 = ~8) Axiom (A1)
5. ¢ = 4 2.3.MP
6. =% = -4 1. 4. MP
7. (=6 = ~AB) = (0 = B)=17) Axiom (A3)
8. (—¢ = A)=C 6. 7. MP
9. % 5.8, MP
10. 48, A+% 1-9

1. -4+ %=%
12. F -4 = (A= %)

10. Deduction theorem
11, Deduction theorem

)y - (=% = -4)= (B=>9)

. =% = -4 Hyp

2. (0% = -AB)= (-6 = 4) = 6) Axiom (A3)

A= (> A) Axiom (Al)

4. (=6 =>A)=1 1,2, MP

5. 8=>% 3, 4, Corollary 1.10(a)

6. -6 = -AB+-AB=>C 1-5

T F (=6 =-%B)=> (#=>%) 6, deduction theorem
)y B (’ﬂ = (g) = (ﬁ(ﬂ = —'.@)

. =€ Hyp

2. #=> A Part (a)

RSP A 1, 2, Corollary 1.10(a)

4. C = —-—C¢ Part (b)

5. A = =% 3, 4, Corollary 1.10(a)

6. (4 = —C) = (€ = ~B) Part (d)

7. 6 = -4 S, 6, MP

8. A=>CF 6= -4 1-7

9. F(A=%)= (€= %) 8, deduction theorem

(A= (-%=~(8=9%)).
Clearly, .4, 4 = €+ % by MP. Hence, - # = ((# = %)= %)) by
two uses of the deduction theorem. Now, by (e), F ((Z = %)
L) o (26 = (4= F)). Hence, by  Corollary 1.10(a),
bg s (6 > (4= 7))
()t (B ) s (B ) )



.2 Hyp
208 Hyp

A ) A A Part (e)

o R I. 3. MP
SUA ) s (6 = ) Part (e)
6. g 2. 5. MP
T s )= (26 = ~4) = ) Axiom (A3)
S0 3 =8)= 6. 7. MP

9. % 4. 8. MP
0. =% - A=C+C 1-9

. B=CH(-#=%)=1% 10, deduction thcorem
2. F(B=%)= (8= %)= %) 11, deduction theorem

Exercises

1.48 Show that the following wfs are theorems of L.

(a) B = (4VE) (€) BANE = %C

(b) % = (CV A) N (B= D)= ((C=9)= (AVE = )
(€) 6V B =BV (@ ((B=590)= B)= 4

W INEY (hy 4= (% = (47%))

1.49 Exhibit a complete proof in L of Lemma 1.11(c). [Hin: Apply the
procedure used in the proof of the deduction theorem to the demonstration
given earlier of Lemma 1.11(c).] Greater fondness for the deduction theorem
will result if the reader tries to prove all of Lemma 1.11 without using the
deduction theorem.

It is our purpose to show that a wl of L is a theorem of L if and only if it
is a tautology. Half of this is very easy.

PROPOSITION 1.12

Every theorem of L is a tautology.

Proof

As an exercise, verify that all the axioms of L are tautologies. By Proposi-
tion 1.2, modus ponens leads from tautologies to other tautologices. Henee.
every theorem of L is a tautology.

The following lemma is to be used in the proof that every tautology 1s a
theorem of 1.

S

AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULLUS

LEMMA 1.13

Let 4 be a wl and et By, .... By be the statement letters that occur in 4.
For a given assignment of truth values to By. .... B,.let B/ be B, il' B, takes
the value T:and let B/ be =B, if B, takes the value I Let 4 be .4 il .4 takes
the value T under the assignment. and let 4" be 21" 4 takes the value I,
Then B, .... Bj + 4.

For example. let 4 be (=42 = As). Then for cach row ol the truth table

Ay As (oA = A5
T T F
F T F
T F F
F F 1

Lemma 1.13 asserts a corresponding deducibility relation. For imstance.
corresponding to the third row thereis 4>, A<t (v = ds)oand Lo the
fourth row, —4>. —dsF (=4, = As).

Proof

The proof is by induction on the number » of occurrences of = and = in 4.
(We assume .2 written without abbreviations.) If n = 0, 4 is just a statement
letter By, and then the lemma reduces to By + B and -8, + —B;. Assume
now that the lemma holds for all j < n.

Cuase 1. #1s =€. Then % has fewer than n occurrences of - and =,

Subcase la. Let ¢ take the value T under the given truth value assign-
ment. Then 4 takes the value F. So, ¥’ is 4 and .4’ is —4. By the inductive
hypothesis applied to %, we have B|, .... B, - %. Then. by Lemma 1.11(b)
and MP, B}, ..., B, + —=%. But =% is 4.

Subcase 1h. Let % take the value F. Then .4 takes the value T. So, 4" is %
and 4’ is 4, By inductive hypothesis, B}, .... B,  —%. But =% is 4.

Case 2. #1s € = %. Then 4 and & have fewer occurrences of — and =
than 4. So, by inductive hypothesis, B|, ..., B, = %" and B}, ..., B, F &'

Subcase 2a. € takes the value F. Then 4 takes the value T. So, %" is = ¢
and 4" is 4. Hence, B, ...,B,F—-%. By Lemma I.11(c) and MP,

By.....,Bir-% =% Bul% = Zis 4.

Subcase 2b. & takes the value T. Then # takes the value T. So, %’ is &
and 4" is 4. Hence, B, ..., B, = %. Then, by axiom (Al) and MP,
B.... B b-¢=>%. But%=2is #.

Subcase 2¢. ¢ takes the value T and % takes the value F. Then 4 takes
the value F. So, 6" is 4, %' is =%, and 4’ is —4. Therefore, B, ..., By - €
and Bi..... B+ —%. Hence, by Lemma LI11(f) and MP, B}, ..., By
o s ) But A% = @) is A
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PROPOSITION 114 (COMPLETENESS THEOREM)

IFawl 2 of s a tautology. then it is a theorem ol 1.

Proof

(Kalmar, 1935) Assume 2 is a tautology. and let By. ..., 3, be the state-
ment letters in 4. For any truth value assignment to By, ... B;. we have. by
Lemma 1130 B, ... By = 4. (4 is 4 because 4 always takes the value T.)
Ience, when B) is given the value T, we obtain BY. .... B Bl 4. and,
when By is given the value F, we obtain B, ..., B; |. B4 | 4. So. by the

deduction theorem, By, ..., Bj_F By = # and B|,.... B, |+ B, = 4.
Then by Lemma 1.11(g) and MP. B, ..., B, | F .#4. Similarly. B, | may be
chosen to be T or F and, again applying the deduction thecorem. Lemma
I.11(g) and MP, we can eliminate B;_, just as we eliminated 8. After & such
steps, we finally obtain = 4.

COROLLARY 1.15

If @ is an expression involving the signs -, =+, A, V and < that is an
abbreviation for a wi 2 of L. then % is a tautology if and only if 4 is a
theorem of L.

Proof

In definitions (D1)+(D3), the abbreviating formulas replace wfs to which
they are logically equivalent. Hence, by Proposition 1.4, 4 and % are lo-
gically equivalent, and % is a tautology if and only if 4 is a tautology. The
corollary now follows from Propositions 1.12 and 1.14.

COROLLARY 1.16

The system L is consistent; that is, there is no wf # such that both % and
-4 are theorems of L.

Proof

By Proposition 1.12, every theorem of L is a tautology. The negation of a
tautology cannot be a tautology and, therefore, it is impossible for both .4
and =4 to be theorems of L.

Notice that L is consistent if and only if not all wis of L. arc theorems. In
fact. if L s consistent, then there are wis that are not theorems (c.g., the
negations  of  theorems). On the other hand, by Lemima T1I(0).
by o = (4 = %) and soaf Lowere inconsistent, that s, if some wi 4 and

INDEPENDENCE. MANY-VALUED LOGICS

its negation —.4 were provable, then by MP any wf % would be provable.
(This cquivalence holds tor any theory that has modus ponens as a rule of
inference and in which Lemma 1.11(¢) is provable.) A theory in which not all
wls are theorems is said to be absolutely consistent. and this definition is
applicable even to theories that do not contain a negation sign.

Exercise

1.50 Let 4 be a statement form that is not a tautology. Let LT be the formal
theory obtained from L by adding as new axioms all wis obtainable from .24
by substituting arbitrary statement forms for the statement letters in 4, with
the same lorm being substituted for all occurrences of a statement letter.
Show that L' is inconsistent.

1.5 INDEPENDENCE. MANY-VALUED LOGICS
A subsct ¥ of the set of axioms of a theory is said to be independent if some

wf in ¥ cannot be proved by means of the rules of inference from the set of
those axioms not in Y.

PROPOSITION 1.17
lach of the axiom schemes (A1)—~(A3) is independent.

Proof

l'o prove the independence of axiom schema (Al), consider the following
libles:

4 -4 A B A=1B
0 1 0 0 0
11 I 0 2
2 0 2.0 0
0 1 2
11 2
2 1 0
0 2 2
1 2 0
2 2 0

bor any assignment of the values 0, 1 and 2 to the statement letters of a wf
4. these tables determine a corresponding value of 4. If 4 always takes the
value 0, .4 1s called select. Modus ponens preserves selectness, since it is easy
to check that if 4 and .4+ % are select, sois % One can also verify that all
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mstances ol axiom schemas (A2) and (A3) are select. Hence. any wt deri-
vable rom (A2y and (A3) by modus ponens is select.  However,
Aol oo which s an mstance of (A1), 1s not select. since 1t takes the
value 2 when s T and A-0s 2.

I'o prove the mdependence of axiom schema (A2). consider the following
tables:

1 A A B A=8B
0 1 0 0 ()
I 0 L0 0
21 2.0 0
0 1 2
[ 2
2 0
0 2 1
12 0
22 0

Let us call a wi that always takes the value 0 according to these tables
grotesque. Modus ponens preserves grotesqueness and it is casy to venfy
that all instances of (A1) and (A3) are grotesque. However. the instance
(A} = (Ay = Ax)) = (4 = 43) = (4] = 41)) of (A2) takes the value 2
when Ay is 004> 0s 00 and Ay is 1 and. therelore, is not grotesque.

The following argument proves the independence of (A3). Let us call a wf

A super if the wi /(.4) obtained by crasing all negation signs in .4 is a
tautology. Each instance of axiom schemas (Al) and (A2) is super. Also,
modus ponens preserves the property of being super: for if A(# = %) and
h(#) are tautologies, then A(%) is a tautology. (Just note that A(4 = €) is
h(#A) = h(%) and use Proposition 1.2.) Hence, every wf 4 derivable from
(A1) and (A2) by modus ponens is super. But A{((-4, = —4,) =
(4 = 4)=41)) is (4, =4,)= ((4, = 4,) = 4,). which is not a
tautology. Therefore, (=4, = —4,) = ((—~4, = 4,) = 4)), an instance of
(A3), is not super and is thereby not derivable from (A1) and (A2) by modus
ponens.

The idea used in the proof of the independence of axiom schemas (A1)
and (A2) may be generalized to the notion of a many-valued logic. Select a
positive integer n, call the numbers 0, 1, ..., »n truth values, and choose a
number m such that 0<m < n. The numbers 0,1, ..., m are called desig-
nated values. Take a finite number of ‘truth tables’ representing functions
from sets of the form {0, 1, ..., n}* into {0, 1, ..., n}. For each truth table,
introduces a sign, called the corresponding connective. Using these con-
nectives and statement letters, we may construct ‘statement forms’, and
every such statement form containing j distinet letters determines a “truth
function” from {01, ....#} into {0.1. ... n}. A statement form whose
corresponding truth function takes only designated values 1s said to be
exceptional, 'The numbers o and 7oand the basic truth tables are sad 1o
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define a (finite) manv-valued logic M. A formal theory involving statement
letters and the connectives of M is said to be suitable for M if and only if the
theorems of the theory coincide with the exceptional statement forms of M.
All these notions obviously can be generalized to the case of an infinite
number of truth values. If 7 = 1 and m = 0 and the truth tables are those
given for = and = in section 1.1, then the corresponding two-valued logic is
that studied in this chapter. The exceptional wis 1 this case were called
tautologies. The system L is suitable for this logic. as proved in Propositions
1.12 and 1.14. In the proofs of the independence of axiom schemas (A1) and
(A2). two three-valued logics were used.

Exercises

1.51 Prove the independence of axiom schema (A3) by constructing ap-
propriate “truth tables’ for = and =-.
1.52 (McKinsey and Tarski, 1948) Consider the axiomatic theory P in which
there is exactly one binary connective %, the only rule of inference is modus
ponens (that is, ¢ follows from 4 and 4 * ¢), and the axioms are all wfs of
the form % «.4. Show that P is not suitable for any (finite) many-valued
logic.
1.53 For any (finite) many-valued logic M, prove that there is an axiomatic
theory suitable for M.

Further information about many-valued logics can be found in Rosser
and Turquette (1952), Rescher (1969), Bolc and Borowik (1992) and Mal-
inowski (1993).

1.6 OTHER AXIOMATIZATIONS

Afthough the axiom system L is quite simple, there are many other systems
that would do as well. We can use, instead of — and =, any collection of
primitive connectives as long as these are adequate for the definition of all
other truth-functional connectives.

xamples
1.;: V and — are the primitive conectives. We use #4 = % as an abbreviation
for —4Vv%. We have four axiom schemas: (1) #V %A = 4, (2)
A= AVEG 3) AVE=>6VHA, and 1) (= 2)= (BVE=>
A v &). The only rule of inference is modus ponens. Here and below we
usc the usual rules for eliminating parentheses. This system is developed
i Hilbert and Ackermann (1950).
1o A and - are the primitive connectives. 4 = % is an abbreviation for
(A4 A ). There are three axiom schemas: (1) 4 = (4 A .4).
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2y At = Aand (3) (4= 6) = (~(CANY)= (7 A A)). Modus
ponens s the only rule of inference. Consult Rosser (1953) for a detailed
study.

L5: This s just ke our original system L except that, instead of the axiom
schemas (A1) (A3), we have three specific axioms: (1) 4 = (4> = A):
() ) 2 (4= Az)) = ((A] = A:) = (A) = Az)): and (3) (> =

) s (A4 = 4)) = A42). In addition to modus ponens. we have a
substitution rule: we may substitute any wf for all occurrences of a
statement letter in a given wf.

[.4: The primitive connectives are =, A, V and —. Modus ponens is the only
rule. and we have ten axiom schemas: (1) 4 = (¢ = 4). (2) (4=
(¢ =7)=>(B=0C)=(B=>9),3) ANC = 4. () AN =6
(SY B=(6C= (BNEC))(6) B = (BVE)(T)EC = (BVE)(R) (4=
N=2(C=>%) = (BVE=D)(N(A=C)= (4= )3 ~4):

and (10) =4 = A. This system is discussed in Kleenc (1952).

Axiomatizations can be found for the propositional calculus that contain
only one axiom schema. For example. if = and = are the primitive con-
nectives and modus ponens the only rule of inference. then the axiom
schema

[((#B =)= (7 = &) 2 ) » Fl v [(F - 4) » (& 8)]

is sufficient (Meredith, 1953). Another single-axiom formulation, due to
Nicod (1917). uses only alternative denial | . Its rule of inference is: &
follows from .4 | (¢ | ) and 4, and its axiom schema is

(A1) | {11 [ IFIONAZ (A7)

Further information, including historical background, may be found in
Church (1956) and in a paper by Lukasiewicz and Tarski in Tarski (1956, 1V).

Exercises

1.54 (Hilbert and Ackermann, 1950) Prove the following results about the
theory L.

Q) B=>6+ 1L, IVB=>DVE
b)yF,(4=>%) = ((2=>9) =
) =B, B=>C+,2=>%
(d) H Ll'% = X4 (i.e., = L -4 \/”ﬂ)
(C) [ LI.%\/ ﬁ%

(D = l.y” = A

(2) by~ A= (4= )

(Wt , BV(EVY)= 6V (BYV D))V .4)
) by (CNV(ABVINYV A =GV (BY Y
Dt BV(ENV ) 2 AN (YY)

(2 = 6))

()lHFR /\XIO\/IATI7/\ Tl()\JS
K) - (= (6= Y)=> (0= (4=V))

) L (vy=4)=(8=>10)= (_‘ = ‘/,))

(m).ﬁ =2 (0= Y) B0 8= (4= )

(n) - (’(;ﬁf/'\ A= B>

(0) ll . AF % then I+ 4 = % (deduction theorem)

p) © = 4. 6= A1, 4

(q) + 1,2 if and only if .4 Is a tautology.

1.55 (Rosser. 1953) Prove the following facts about the theory L.
(@) =%, C= U ~(=YNA)
(b) b L. ~(= 28 A H)
(L) b Ls 4 = A
(d) F L, ~(AANC) =
() F . 8= A
N Fi(8=>C)=(—6=~4)

(g) 4= —CH =4

(hy 4= CH . ONB—=>TCNY

(i) B4=C. C=>U. T=6F1.8=6

(]) = L:l% = A

(K) FLLBANC=>CNA

h 2=%C. €=U+, 4=9

MB=%C r=>,.BNI=CNE

m) €=Ut ABNC=RBNY

(V) b L,(4= (¢ 7)) = (BNC) = )

M FL{BANC)=2)= (B=(C= 7))

() A=C A= (6= )1, B= T

(ry FL,8=(6=>5N7)

(5) 1,8 = (6= %)

() If T, A+ ,%, then I' b, 4 = % (deduction theorem)
(W) b, (~4=>4)=>28

V) A=C, ~HB=>CF 1,6

(w) 1,2 if and only if 4 is a tautology.

(6 = ~4)

1.56 Show that the theory Li has the same theorems as the theory L.

1.57 (Kleene, 1952) Derive the following facts about the theory Lj.
(a) F L_;'?‘? = 4
(hy If ', B+ LJ((" then [+ 1,2 = % (deduction theorem)

) =%, €= 9  HB=>9D
Wy +,(4=%)=> (ﬁfg:> —A)

() A Ab L%

) b, 4= A

() i, 4= (4= )

(Mt (8= (€= ~(F=>F))

Wy 1y, A= (6= -(BVE))

) b oL (6 = 8) = (6 = B) = B)
(k) 1,4 and only it 4 is a tautology.
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[

158V Consider the following axiomatization of the propositional calculus
" (due to Lukasiewicz). 7 has the same wis as our system L. Its only rule
ol inference s modus ponens. Its axiom schemas are:

() (4 - By 4
(by %4 = ( A4 = 7)
() (4 =) »((C=Y)= (4= 7))

Prove that a w4 of ¢ 1s provable in ¢ il and only if 4 is a tautology.

[/Minr: Show that L and ¥ have the same theorems. However. remember

that none of the results proved about L (such as Propositions 1.8 1.13)

automatically carries over to & In particular, the deduction theorem is not

available until it is proved for .¢.]

1.59  Show that axiom schema (A3) of L can be replaced by the schema

(=4 = =€) = (¢ = ) without altering the class of thcorems.

1.60 If axiom schema (10) of Ly is replaced by the schema (10):

-4 = (4 = ). then the new system Ly is called the inrvitionistic propo-

sitional calculus.” Prove the following results about L;.

(a) Consider an (n + |)-valued logic with these connectives: .4 is 0 when .4
is i, and otherwise it is a: 4 A% has the maximum of the values of .4
and 7. whereas .4 Vv ¢ has the mimimum ol these values: and .4 = % is 0
i .4 has a value not less than that of 7. and otherwise it has the same
value as ¢, If we take 0 as the only designated value. all theorems of Ly
are exceptional.

(b) 4V -4, and =—4, = A, are not theorems of L;.

(¢) For any m, the wl

(A] <:>A2)V...\/(A1 @A,,,)\/(Az@A_;)\/...
Y (Az < A,,,) V...V (A,,,,[ ~ A,,,)

is not a theorem of L
(d) (Gd&del, 1933) L; is not suitable for any finite many-valued logic.
(e) () IfT, #F %6, then I' F  # = % (deduction theorem)
(i) =6, C=>I -, B=>92
(iii) F 1, # = 4
(iv) FL(#=%) = (-¢=> ~B)
V) FL2=(~B=>%)
(Vl) F L,_‘_‘(_‘—"@ = @)
(vii) (B = 6), B L,~F

"The principal origin of intuitionistic logic was L.E.J. Brouwer’s belief that
classical logic is wrong. According Lo Brouwer, 4 V ¢ is proved only when a proof of
A or a proof of 4 has been found. As a consequence, various tautologies, such as
AV A, are not generally acceptable. For further information, consult Brouwer
(1976). Heyting (1956), Kleene (1952), Troelstra (1969), and Dummett (1977). Jas-
kowski (1936) showed that Lp is suitable for a many-valued logic with denumerably
many values.

OTHER AXTOMATIZATIONS

(Viil) oy = A
(Y =, =4 if and only if .4 is a tautology.
(2) F o, and only if =4 is a tautology.
(MY IT 4 has A and = as its only connectives. then # 4 if and only il" 4
Is a tautology.
1.61" Let 4 and % be in the relation Rifand onlyv if'i .4 = . Show that B
is an cquivalence relation. Given equivalence classes 14 and [7]. et
AUl = [4VG). BIne]l = [AAC]. and (4 = 4 Show that the
cquivalence classes under R form a Boolean algebra with respect to . U

and . called the Lindenbaum algebra L- determined by 1. The element O of
1." is the equivalence class consisting of all contradictions (i.e.. negations of
tautologies). The unit element | of L' is the equivalence class censisting of

all tautologies. Notice that b .4 = % il and only il [ 4] < %] in L.". and thal
V12 < @ ifand only if [ 4] = [%]. Show that a Boolean Tunction /" (built up
from variables . 0, and 1. using U. mnand )is cqual to the constant function
I in all Boolean algebras it and only i+ /7. where /7 is obtained from f
by changing v, ». . 0 and 1 to V. A, =, Ay A=Ay and Ay v -4, re-
spectively.



Quantification Theory

2.1 QUANTIFIERS

There are various kinds of logical inference that cannot be justified on the
basis of the propositional calculus; for example:
1. Any friend of Martin is a friend of John.
Peter is not John's friend.
Hence, Peter is not Martin's friend.
All human beings are rational.
Some animals are human beings.
Hence, some animals are rational.
3. The successor of an even integer is odd.

2 is an even integer.

Hence, the successor of 2 is odd.

(89

The correctness of these inferences rests not only upon the meanings of the
truth-functional connectives, but also upon the meaning of such expressions
as ‘any’, ‘all’ and ‘some’, and other linguistic constructions.

In order to make the structure of complex sentences more transparent, it
is convenient to introduce special notation to represent frequently occurring
expressions. If P(x) asserts that x has the property P, then (Vx)P(x) means
that property P holds for all x or, in other words, that everything has the
property P. On the other hand, (3x)P(x) means that some x has the property
P — that is, that there is at least one object having the property P. In
(Vx)P(x),(Vx)" is called a universal quantifier; in (3x)P(x), ‘(3x)’ is called an
existential quantifier. The study of quantifiers and related concepts is the
principal subject of this chapter.

Examples
1I’. Inference 1 above can be represented symbolically:

(VO(F(xom) > FF(x )
Fip)

Fpom)

QUANTIFIERS

Here, F(x.y) means that x is a friend of v. while m.j and p denote
Martin, John, and Peter. respectively.
2" Inference 2 becomes:
(V) (H(x) = R(x))
(3x)(A(x) A H{x))

() (A(x) A R(x);
Here. H. R and A designate the properties of being human, rational. and
an animal. respectively.
V. Inference 3 can be symbolized as follows:
(Vx)(1{x) A E(x) = D(s(x)))
1(h) NE(b)

D(s(h))
Here, /, E and D designate respectively the properties of being an integer.
even and odd: s(x) denotes the successor ol v and A denotes the integer 2.

Notice that the validity of these inferences docs not depend upon the
particular meamngs of #.m, j,p. H, R.A.1.E,D,s and b.

Just as statement forms were used to indicate logical structure dependent
upon the logical connectives, so also the form of inferences involving
quantifiers, such as inferences 1-3, can be represented abstractly, as in
I" 3". For this purpose, we shall use commas. parentheses, the symbols —
and = of the propositional calculus, the universal quantifier symbol v, and
the following groups of symbols:

Individual variables: xy, x>, ..., x,....
Individual constants: ay,az,....q,,...
Predicate letters: A} (n and k are any positive integers)
Function letters: f* (n and & are any positive integers)

I'he positive integer n that is a superscript of a predicate letter 4] or of a
tunction letter /' indicates the number of arguments, whereas the subscript
A s just an indexing number to distinguish different predicate or function
letters with the same number of arguments.f

In the preceding examples, x plays the role of an individual variable;
m.j.p and b play the role of individual constants; F is a binary predicate
letter (i.e.. a predicate letter with two arguments); H,R,4,/,E and D are
monadic predicate letters (i.e., predicate letters with one argument); and s is
A tunction letter with one argument.

I'he lunction letters applied to the variables and individual constants
penerate the rerms:

"For example, in arithmetic both addition and multiplication take two argu-
ments. So, we would use one function letrer. say /7. for addition, and a different
tuncuion letter, say /5, Tor multplication,
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1. Vanables and imdividual constants are terms.

200 s a tuncion fetter and 4o 1, are terms, then (1 6000 1) 08
atern.

A Ad expression s a term only if it can be shown to be a term on the bisis
ol conditions 1 and 2.

Ferms correspond to what in ordinary languages are nouns and noun
phrases  for example, "two™. “two plus three’, and ‘two plus 1.

The predicate letters applied to terms yield the aromic formudas: that is, if
A s o predicate letter and 1,1, 1, are terms, then A (.60 1) is an
atomic formulea.

The seell-formed formufas (wfs) of quantification theory arce delined as
follows:

i. Every atomic formula is a wf.

2. 14 and © are wis and v is a variable, then (—.4). (4 = 7). and ((Vv).4)
are wis.

3. An expression is a wi only if it can be shown to be a wi on the basis of
conditions 1 and 2.

In ((vv).4). 4" 1s called the scope of the quantifier (V). Notice that .4 need
not contain the variable v, In that case. we understand ((Vy).4) to mean the
same thing as 4.

The cxpressions (A AGC). (A V). and (4 < ¢ ) are defined as in system
L (see page 36). 1t was unnecessary for us to use the symbol 3 as a primitive
symbol because we can define existential guantification as follows:

({(3x)4) stands for  (~((Vx)(—4)))

This definition is faithful to the meaning of the quantifiers: #(x) i‘s true for
some x if and only if it is not the case that £(x) is false for all x.7

Parentheses

The same conventions as made in Chapter | (page 20) about the omission of
parentheses are made here, with the additional convention that quantifiers
(Vy) and (Jy) rank in strength between —, A,V and =, &.

Examples
Parentheses are restored in the following steps.

Hxy) = A3 (Yz xy)
(x1)) = A}(x2. \l)
)A(x)) );"A( x1))

'"We could have taken 1 oas primitive and then detined ((V).4) as an ab-
breviation for ( (( W) «4))). sinee A4(x) s true for all it and only it s not the
case that #v) is falbse for some v

QU/\NT]I IERS

2. (V)4 ! (x1) Vv Af(x_nxl )

(T ) (A (v1) VA (xo.x))

(Ve (A](x1)) V AT (x2.x1))
3. (V,\’i )(3.\'3 )4?(\] ‘.\’W)

(7 ) ((Ixa) AT (x1.x2))

(Y (347 (x1.x2)))
Exercises

2.1 Restore parentheses to the following.

(1) ()1 (x1) A = ] (x2)

(b) (Vr2)A](x2) & A](x)

(€)  (Vxz)(xp)di(x) Xz)

() (Vx1)(Vx3)(Vea) ) (1) = A} (x2) A= Ay (xi)
() (3YJ)(VX2)(3V3)A}( 1)V (Jxa)- (Vh)ll (\z xa)
(N (Vx2)=A](x1) = 4 (x), X1 X))V (V\l A}(xr)

A
(2) —\(Vxl)A}(\',) (3)7) (.\‘3) = Ay (,\’)..\3)/\/4}(,\‘2)
2.2 Eliminate parentheses flom the 1'ollowing wfs as far as is possible.
(@) (((Vx)(A}(x1) = 4] ( ) V(B4 (x)
(b) ((~((3x2)(A](x2) v 4] ((/1))))¢$A|'(Xz))
(c) (((V-Yn)(ﬂ(ﬂA (az)))) = (A1(x1) = 4{(x2)))

An occurrence of a variable x is said to be bound in a wf 4 if either it is
the occurrence of x in a quantifier *(Vx)” in 2 or it lies within the scope of a
quantifier *(Vx)" in .4. Otherwise, the occurrence is said to be fiee in 4.

Lxamples

I A}(r, x2)

2o AT, ;) = (V)4 (x)
(Ve )( Tvx2) = (Vo)A (x1)
4 (3x)4] (X|~,X2)

In Example 1, the single occurrence of x is free. In Example 2, the first
occurrence of x; 1s free. but the second and third occurrences are bound. In
Fxample 3, all occurrences of x; are bound, and in Example 4 both oc-
currences of x; are bound. (Remember that (E!xl)Af(xl,xg) is an abbrevia-
non of ﬂ(‘V/,\‘l)—\A%(xl,xz).) In all four wfs, every occurrence of x; is free.
Notice that, as in Example 2, a variable may have both free and bound
occurrences in the same wf. Also observe that an occurrence of a variable
may be bound in some wf 4 but free in a subformula of 4. For example, the
first occurrence of xy is free in the wf of Example 2 but bound in the larger
wi of Example 3.

A variable is said to be free (bound) in a wf 2 if it has a free (bound)
oceurrence in 4. Thus, a variable may be both free and bound in the same
wh for example, v is free and bound in the wf of Example 2
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Exercises

2.3 Pick out the free and bound occurrences of variables in the following
wis.

(@) (V) (V)4 2(xy.x2)) = A (x3,ar))

(b) ( 7)A (\1.Xw) = (Vn) ’(n,xw)

(c) ((vx :)H\u) Yxpxa fRxnx2))) Voo (VA (2, ) () ‘
2.4 Indicate the heu and bound occurrences of all variables in the wfs of
Excrcises 2.1 and 2.2.

2.5 Indicate the frec and bound variables in the wfs of Exercises 2.1 2.3,

We shall often indicate that some of the variables Xj o v, are free

variables in a wf 4 by writing 4 as A(x; .....x;). This does not mean that
4 contains these variables as free v.mdbleq nor does it mean that # does
not contain other free variables. This notation is convenient because we can
then agree to write as #(f;....,4) the result of substituting in .4 the terms
fi.... .t for all free occurrences (lfany) of x; .....x,. respectively.

ll /,? is a wland ¢ is a term, then 7 is said lo be free for x, in 4 if no free
occurrence of x; in .4 lies within the scope of any quantifier (Vx;). w here x; is
a variable in 7. This concept of 1 being free for x; in a wi .4(x;) will have
certain technical applications later on. 1t means that.if 7 1s substituted for all
free occurrences (il any) of y, in A(y,). no ocecurrence ol a variable in ¢
becomes a bound occurrence n .//i(l)<

Examples ' ' |

. The term x> is free for x; in A'( ), but x3 is not free for x; in (V.lxg)A,(.\'l ).

2. The term f?(xy,x3) is free for x in (Vx2)A ( 1.x2) = A}(x)) butis not free
for x in (3x3)(Vx2)A43(x1,x2) ) = Al(xy).

The following facts are obvious.

A term that contains no variables is free for any variable in any wl.

2. A term ! is free for any variable in 4 if none of the variables of 1 is bound
in 4.

. x; is free for x; in any wf.

4. Any term is free for x; in 4 if 2 contains no free occurrences of x;.

(9%

Exercises

2.6 Is the term f2(x,x2) free for x; in the following wfs?
(a) A (x1.x) = (V)4](x)

) (Vx2)A7(x2 (11))\/( 2)AT(xpx2)
((—) (Vx1) |(‘
(
(x

I-I r.a

(d) er)/fx
(¢) (Ve (xo) 4 o)

QUANTIFIERS
2.7 Justify Tacts 1 4 above.

When English sentences are translated into formulas, certain general
suidehnes will be useful:

1. A sentence of the form “All As are Bs® becomes (Vyi(A(x) = B(x)). For
example.  Every  mathematician — loves  music s translated  as
(V) (M (x) = L(x)). where M(x) means x is a mathematician and L{x)
means x loves music.

2. A sentence ol the form “Some As are Bs® becomes (dx)(4(xv) A B(x)). For
example, Some New Yorkers are friendlvy becomes (Ix)}(N(x) A F(x)).
where N(x) means x iy @ New Yorker and F(x) mecans x iy friendly.

3. A sentence of the form ‘No 4s are Bs” becomes (Vx)(A4(x) = =B(x)).! For
example,  No  philosopher understands — politics becomes (V) (P(x)
= =U(x)). where P(x) means x is a philosopher and U(x) means x wn-
derstands politics.

Let us consider a more complicated example: Some people respect ev-
crvone. This can be translated as () (P(x) A (Vy)(P(y) = R(x.»))). where
P(x) means x is « person and R(x,v) means x respects v,

Notice that, in informal discussions, to make formulas easter to read we
may usc lower-case letters w. v, x, v,z mnstead of our official notation x; for
mdividual variables. capital letters 4. B, C. .. . instead of our official notation

17 for predicate letters, lower-case letters fg, A.... instcad of our official
ll()ldllOn S for function letters, and lower-case lulnrs a.h.c....instead of
our official notation a; for individual constants.

I'xercises

2.8 Translate the following sentences into wis.

{1} Anyone who is persistent can learn logic.

th) No politician is honest.

(v)  Not all birds can fly.

td)  All birds cannot fly.

t¢) v is transcendental only if it is irrational.

1y Scniors date only juniors.

() Il anyone can solve the problem, Hilary can.

thy Nobody loves a loser.

1) Nobody in the statistics class is smarter than everyone in the logic class.

(1) John hates all people who do not hate themselves.

(k) Everyone loves somebody and no one loves everybody, or somebody
loves everybody and someone loves nobody.

(h You can ool some of the people all of the time, and you can fool all the
people some of the time, but you can’t fool all the people all the time.

As we shall see Tater, this s equivalent to o Wi{A(x) A B(x)).

55
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(m) Any sets that have the same members are cqual.

{n) Anvonce who knows Julia Joves her.

(0) There is no set belonging to preciscly those sets that do not belong to
themselves.

(p) There is no barber who shaves preciscly those men who do not shave
themselves. .

2.9 Translate the following into everyday English. Note that cveryday

English docs not use variables. '

(@) (Vx)(M{x) A (V)= (x.y) = U(0). where M(x) means x is «a man,
W (x.v) means x is mairied 1o v, and U (x) means x iy wnhappy.

(b) (Vx)(V(x) A P(x) = A(x.b)). where V' (x) means x iy an even integer, P(x)
means x is @ prime integer, A(x.y) means x = v. and b denotes 2.

(¢) —=(3)(1(y) A (Vx)(I(x) = L(x.y))). where J(v) means v iy an integer and
L(x.v) means x<y. .

(d) 1In the following wfs. Al(x) means x is ¢ person and Ay (xoy) means x

hates v.
(i) (30)(A}(x) A (D) (4] (y) = A7)
(i) (¥)(A] (1) = (W)l (r) = A ()
(i) (30 (4] (x) A (V,">("”§(,\') > (/ﬁ(_\’..r)¢'>.4',(_\'..\'))))
() (VO (I(x) = (W0 A ) A VP x) &> (A vy VvV A (0.2))))).
where F1{x) means v is ¢ person, AQg. r) means i ¢and P(u, x) means

wis a parent of x.

2.2 FIRST-ORDER LANGUAGES AND THEIR INTERPRETATIONS.
SATISFIABILITY AND TRUTH. MODELS

Well-formed formulas have meaning only when an interpretation is given
for the symbols. We usually are interested in interpreting wfs whose syrpbols
come from a specific language. For that reason, we shall define the notion of
a first-order languaget

"The adjective ‘first-order’ is used to distinguish the langgages we ‘Shulll study
here from those in which there are predicates having other predicates or functions as
arguments or in which predicate quantifiers or function quapliﬁcrs are permitted. or
both. Most mathematical theories can be formalized within first-order languages,
although there may be a loss of some of the intuitive content of those theories,
Sccond-order languages are discussed in the ;\ppcn_dix on sccoml-orld'cr Io_glc. Fx-
amples of higher-order languages are studied also in Gadel (1931), Tarski (1933),
Church (1940). Hasenjaeger and Scholz (1961) and Van Bentham and Docets (1983),
Dilterences between first-order and higher-order theonies are exanuned m Corcoran
(19%0)

FIRST ORDER LANGUAGES. SATISHIABILITY. MODUELS

DEFINITION

A first-order language ¢’ contains the following symbols.

(a) The propositional connectives - and =+, and the universal quantifier
symbol V.

(b) Punctuation marks: the left parenthesis (. the right parenthesis). and the
comma.’

(¢) Denumerably many individual variables xp. vy, ..

(d) A finite or denumerable. possibly empty. sct of function letters.

(e) A finite or denumerable, possibly empty. set of individual constants.

() A non-empty set of predicate letters.

By a term of ¥ we mean a term whose symbols are symbols of &

By a wf of ¥ we mean a wf whose symbols arc symbols of ¢

Thus, in a language ¢ some or all of the function letters and individual
constants may be absent, and some (but not ally ol the predicate letters may
be absent.” The individual constants. function letters and predicate letters of
a language ¥ are called the non-fogical constants of . Languages are
designed in accordance with the subject matter we wish to study. A language
for arithmetic might contain function letters for addition and multiplication
and a predicate letter for equality. whereas a language for gecometry is likely
to have predicate letters for equality and the notions of point and fine but no
function letters at all.

DEFINITION

lLet & be a first-order language. An interpretation M of & consists of the
lollowing ingredients.

(1) A non-empty set D, called the domain of the interpretation.

(h) For each predicate letter A7 of ¢, an assignment of an n-place relation
(4™ in D.

() For cach function letter /7" of . an assignment of an n-place operation
(‘/';’)M in D (that is, a function from D" into D).

() l‘or cach individual constant ¢; of ¢, an assignment of some fixed

clement (a;)™ of D.

Given such an interpretation, variables are thought of as ranging over the
set 1. and -, = and quantifiers are given their usual meaning. Remember
that an a-place relation in D can be thought of as a subset of D”, the set of all

"The punctuation marks are not strictly necessary; they can be avoided by
redefimng the notions of term and wi, However, their use makes it easier to read and
comprehend formulas,

I there were no predicate letters, there would be no wis,
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n-tuples of clements of 1. For example. if' D is the set of human beings. then
the relation “father of " can be identified with the set of all ordered pairs (v. 1)
such that v is the father of y.

l'or a given interpretation of a language ¥, a wi ol Z” without free
variables (called a closed wf or a sentence) represents a propostion that is
true or false. whereas a wi with free variables may be satisficd (i.c.. true) for
some values in the domain and not satisfied (i.c.. false) for the others.

Examples
Consider the following wfs:

L A7(xi.x2)
2. (W)A (v )
3. (Hxl)( X2 (h,,\’z)

Let us take as domain the set of all positive integers and interpret A7(v.z) as

v<z. Then wf 1 represents the expression “x; <x2', which is satisfied by all

the ordered pairs (a,b) of positive integers such that ¢ <h. WI 2 represents
the expression "For all positive integers x2. v <xa2.f which is satisfied only
by the integer 1. Wf 3 is a true sentence asserting that there is a smallest
positive integer. 11 we were to take as domain the set of albintegers. then wi 3
would be false.

Exercises

2.10 For the following wfs and for the given interpretations, indicate for

what values the wfs are satisfied (if they contain free variables) or whether

they are true or false (if they are closed wfs).

() A SPx1x2), @)

(i) Ai(x,x2) = Af(x2.x))

(ii1) (Vo)) (Vo) (¥x3) (A3 (x1, x2) A A2 (x2,x3) = AF(x1,x3))

(a) The domain is the set of positive integers, 43(v,z) is y=z, f2(y,2) is
y-z,and a) is 2.

(b) The domain is the set of integers, 43( y,z) is y = z, f(y.2) is y + z, and
ay is 0.

(c) The domain is the set of all sets of integers, 47(y.z) if y C
yNz, and a; is the empty set .

2.11 Describe in everyday English the assertions determined by the fol-

lowing wfs and interpretations.

(@) (Vx)(¥p) (43 (x, ) = (32)(41(2) A AT(x,2) A A7(z.p))). where the domain
D is the set of real numbers, 43(x.v) means x < y.and Al(z) means = is ¢
rational number.

2, [Ap2) is

"In ordinary English, one would say vy s dess than or equal to all positive
miegers’

-

; HRSI ()RDLR L/\\(JUA()[—S SATISE lABlLIIY \l()[)ELS

(b) (W) (A (x) = (A (A0 A A7 (0
people. A} {x) means x is a (/(l).
means y is horn on day x.

(©) (VO)()(A](x) A 4] (v) = AY/F(x.v))). where D is the set of integers.
AL(x) means v is odd, A} (x) means x iy even. and f7(x.y) denotes x + v.

(d) For the following wfs. D is the set of all people and A7 (x. v) means u

xX))). where D is the set of all days and
ANy) means v is a sucker, and A7 (v.x)

loves v
(1) /1\\’\/\)(/113 (x.
(i) (Vy)(3x)A7(x.v)
(1i1) (]\)( V) ((V2) (A3 (v.2) = A7(x,p))
(i) (T0)(Vy) 43 (x. v)

The concepts of satisfiability and truth are intuitively clear, but. following
Tarski (1936), we also can provide a rigorous definition. Such a definition is
necessary for carrying oul precise proofs of many metamathematical results.

Satisfiability will be the fundamental notion. on the basis of which the
notion of truth will be defined. Morcover, instead of talking about the
n-tuples of objects that satisfy a wf that has » free variables. it is much more
convenient from a technical standpoint to deal uniformly with denumerable
sequences. What we have in mind is that a denumerable sequence
s = (s1.82.53....) Is to be thought of as satisfying a wf 4 that has
N, Xj,....x; as free vdriables (where ji < j» < ... <j,) if the n-tuple
(5,2 8/, - ..8;,) satisfies 4 in the usual sense. For example, a denumecrable
sequence (sy.s2,53,...) of objccts in the domain of an interpretation M will
turn out to satisfy lhc wf 4%(x3,xs) if and only lfthe ordered pair, (s;.5) isin
the relation (A%)"V assngned to the predicate letter A7 by the interpretation M.

Lct M be an interpretation of a language .¢ Llnd let D be the domain of
M. Let Z be the set of all denumerable sequences of elements of D. For a wf
A of ¥, we shall define what it means for a sequence s = (s.52,...) in Z to
satisfy 2 in M. As a preliminary step, for a given s in £ we shall define a
function s* that assigns to each term ¢ of & an element s*(¢) in D.

I. If ¢is a variable x;, let s*(f) be s,
2. If ¢ is an individual constant a;, then s*(¢) is the interpretation (a,)

this constant.
3. 1f /) is a function letter, f’) is the corresponding operation in D, and

oo, 1, are terms, then

SR 0)) = O )8 (1)

Intuitively, s*(¢) is the element of D obtained by substituting, for each j, a
name of s, for all occurrences of x; in ¢ and then performing the operations
of the interpretation corresponding to the function letters of 1. For instance,
s ‘/f(.\'x.‘/"f(.\'|.u| )) and if the interpretation has the set of integers as its
domain, /7 and /7 are interpreted as ordinary multiplication and addition,
respectively, and ay s interpreted as 2, then, for any sequence s - (s).80,..0)
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i
of integers. 7171 is the integer sy () + 2). This is really nothing more than
the ordinan wayv of reading mathematical expressions.
Now we proceed to the definition ol satisfaction. which will be an in-
ductive delinition,

11 4 s an atomic wb A7(n. ... 1) and (,4")1“ is the corresponding
n-place relation of the 1mupul‘11mn then a scquence s = (s1.52....)
satishes .4 i and only if (4”\ (s (). s (1,)) - that is. if the a-tuple
(s (1) ' (1,)) is in the relation (A’A’)N N

2. s satislies = 4 if and only if s does not satisfy 4.

3. ¢ salisfies 4 = % if and only if s does not satisfy .4 or s salisfies %.

4. s satisfies (Vx,).4 if and only if every sequence that differs from s in at

most the ith component satisfics 4.

Intuitively, a sequence s = (sy.52. .. .) satisfies a wi 4 il and only if. when,
for cach i, we replace all free occurrences of x; (if any) in 4 by a symbol
representing s,. the resulting proposition is true under the given interpreta-
tion.

Now we can define the notions of truth and falsity of wfs for a given
interpretation.

DEFINITIONS

1. A wl.4is true for the interpretation M (writien [y 4) il and only 1f every
sequence in X satisfies 4.

2. 4 is said to be Jalse for M if and only if no sequence in I satisfies 4.

3. An interpretation M is said to be a model for a set T" of wfs if and only if
every wl in I" is true for M.

The plausibility of our definition of truth will be strengthened by the fact
that we can derive all of the following expected properties I-XI of the
notions of truth, falsity and satisfaction. Proofs that are not explicitly given
are left to the reader (or may be found in the answer to Exercise 2.12). Most

tFor example, if the domain of the interpretation is the set of real numbers, lhc
interpretation of 47 is the relation <. and the mlerpreldllon of/| is the function ¢
then a sequence s = (v.,vz 3 of real numbers satisfies 42 2(f1 (x2),x5) lf and only |f
e <s5. If the domain is lhe set of mlegers the mterpretallon of A¥(x,y.u.v) 1s‘
x-v=u-y and the interpretation of @ is 3, then a sequence s = (sl $3,...) of
integers satisfies A3 (xy,a1,x;.x3) if and only if (51)7 = 3s). B

"In other words‘ asequence s = (.80 08 ) S wisfies (Vy,).4 1t and only f,
for every element ¢ of the dnmalin. the sequence (spo8r. .. o) salslies 4. llgrc.
(51,8, ..c...) denotes the sequence obtained from (s, 8. .y, ) by replacing
the ith component s, by . Note also that, it s satisfies (Vy, ) o, then, as a specti] cise, s
silishies 4

FIRST ORDER LANGUAGES. SATISFIABILITY. MODELS

of the results are also obvious if one wishes to use only the ordinary intuitive
understanding of the notions of truth. falsity and satistaction.

(nH (a) A 1s false for an interpretation M if and only il =4 is true for M.
(b) .4 is true for M il and only if =4 is false for M.

(I It is not the case that both £y 4 and By +4: that is. no wi can be
both true and false for M.

(11D Ir‘:“ 4 and }:\,1 A = . then Ewm 4.

(1V) 4 = % is false for M il and only it En 4 and iy 9.

(V)!' Consider an interpretation M with domain D.

(a) A scquence s salisfies A A% if and only if s satisfies 4 and s
satisfies 4.

(b) s satisfies .4 v @ if and only if s satisfies .4 or s satifies %.

(¢) s satisfies 4 < % if and only if s satisfics both 4 and ¢ or s
satisfies neither 4 nor %.

(d) s satisfies (dx;).2 if and only il there is a sequence &' that differs
from s in at most the /ith component such that " satisfies 4. (In
other words s = (s).52... .. s,o...) satisfies (dy,).4 il and only il
there 1s an element ¢ in the domain D such that the sequence
(51,82, ....¢,...) satisfies .4.)

(V)  Ewm 4 if and only if Ey (Vx;).4. We can extend this result in the
following way. By the closure! of 4 we mean the closed wf obtained
from % by prefixing in universal quantifiers those variables. in order
of descending subscripts, that are free in .4. If 4 has no free vari-
ables, the closure of % is defined to be 4 itself. For example. if 4 is
A (x2,x5) = =(Fx2)AT (x1,x2,x3), its  closure is  (Vxs)(Vx3)(Vxa)
(Vxy)#. Tt follows trom (VD) that a wf Z is true if and only if its
closure is true.

{VID) Every instance of a tautology is true for any interpretation. (An
instance of a statement form is a wf obtained from the statement
form by substituting wfs for all statement letters, with all occurrences
of the same statement letter being replaced by the same wf. Thus, an
instance of A; = —A4y V 4 is Al(x2) = (=(Vx)4}(x))) V 4] (x2).) To
prove (VII), show that all instances of the axioms of the system L are
true and then use (II1) and Proposition 1.14.

(V1T If the free variables (if any) of a wf 2 occur in the list x;,,...,x; and
if the sequences s and s have the same components in the
iitho. .., irth places, then s satisfies # if and only if s satisfies 4
[Hint: Use induction on the number of connectives and quantifiers in
A. I'irst prove this lemma: If the variables in a term ¢ occur in the list
X,.....x,, and if s and s’ have the same components in the

‘Remember that AAG. .4V 6.4 % and ()4 are abbreviations for
cA ) el (B Y A(G  4) and (V) 4. respectively.
A better term tor closuwre would be wuniversal closure.
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ith, . ... ipth places. then v (1) = () {45 In particufar, 11 7 contains
no variables at all. s7(1) = () (1) or any sequences s and +" |

Although. by (VIID). a particular wf .4 with & free variables is essentially
satishied or not only by k-tuples, rather than by denumerable sequences. 1Lis
more convenient lor a general treatment of satisfaction to deal with intinite
rather than finite sequences. If we were to define satisfaction using finite
sequences. conditions 3 and 4 of the definition of satisfaction would become
much more complicated.

Letx, . ..... v, be k distinct variables in order of increasing subscripts. Let
Axj,.....x; ) bea wi that has x; ... . vi, as its only free vanables. The set of
k-tuples (hy.---.hy) of elements of the domain D such that any sequence
with by.---. b inits i1th, ... ixth places, respectively, satisties A{x;.....x;,)
is called the refation (or property’y of the interpretation defined by 4. Ex-
tending our terminology. we shall say that every k-tuple {(hy,....bg) in this
relation satisfies B(xq. ... .0 v, ) in the interpretation M: this will be written
By Abr. ... by]. This extended notion of satislaction corresponds to the
original intuitive notion.

Examples

1. 1f the domain 7 of M is the set of human beings, 47(x.y) is interpreted
as x is a brother of v. and A3(v.y) is interpreted as X is a parent of r,
then the binary relation on D corresponding to the wf Ax).x2)
(Ava) (A7 (xy.x03) A As(xi.xn)) is the relation of unclehood. =\ 4b. ]
when and only when 5 is an uncle of ¢.

2. If the domain is the set of positive integers. A7 is interpreted as =, fiis
interpreted as multiplication, and a) is interpreted as 1, then the wf
,%(X])‘.

ﬁA%(.\’hul) A (V.\’z)((ﬂr3)A|2(x| ,_/‘,2(,\’2,,\’3)) = A%(,\’z,.\q ) \/A%(n.,m))

determines the property of being a prime number. Thus =y #k] if and
only if & is a prime number.

(IX) If Zis a closed wf of a language ¢, then, for any interpretation M,
either ey 4 or =y 7 — that is, either 4 is true for M or 4 is false
for M. [Hint: Use (VIII).] Of course, # may be true for some in-
terpretations and false for others. (As an example, consider A} (a)). If
M is an interpretation whose domain is the set of positive integers, Al
is interpreted as the property of being a prime, and the interpretation
of a, is 2, then 4!(a)) is true. If we change the interpretation by
interpreting a, as 4, then 4](a) becomes false.)

If % is not closed - that is, if .4 contains free variables - .4 may be neither
true nor false for some interpretation. For example. if 4 is Af(.\‘l L) and we
consider an interpretation in which the domain is the set of integers and

"A property s defined when k1L

FIRST ORDER LANGUAGES. S!\'l‘lSl’l/\Bll,.lTY, MODELS

A7(v.z) is interpreted as v < 2. then 4 s satisfied by only those sequences
s = (s1.82....) olintegers in which s) <7 s>, Henee. 4 is neither true nor false
for this interpretation. On the other hand. there are wis that are not closed
but that nevertheless are true or lalse for cvery interpretation. A simpie
example is the wi 4} (x;) vV =4 (x)). which is true for every interpretation.

(X) Assume ¢ 1s free for x, in 24(x;). Then (Vxy,).4(x,} = 4(1) is true for all
interpretations.

The proof of (X) is based upon the following lemmas.

LEMMA 1

I r and w are terms, s is a sequence in . ¢ results from ¢ by replacing all
occurrences of x; by u. and " results from s by replacing the ith component

M. Lt A AN Y A . , . . L
of s by s7(u), then s* (") = (") (). [Hine: Use induction on the length of 1.7]

LLEMMA 2

et 1 be free for x; in A(x;). Then:

) A scquence s = (s1,81,...) satisfies (1) if and only if the sequence &/,
obtained from s by substituting s*(r) for s; in the sth place. satisfies
A(x;). [Hint: Use induction on the number of occurrences of con-
nectives and quantfiers in 4(x;), applying Lemma 1]

thy I (Vx;)A(x;) 1s satisfied by the sequence s, then 4(7) also is satistied by s.

(NI If 4 does not contain x; free, then (Vx;)(4 = ©) = (8 = (Vx;))%) is
true for all interpretations.

P’roof

\ssume (X1) is not correct. Then (Vx;)(% = €) = (# = (Vx;)€) is not true
tor some interpretation. By condition 3 of the definition of satisfication,
there is a sequence s such that s satisfies (Vx;)(# = %) and s does not satisfy
4 (Vx,)%. From the latter and condition 3, s satisfies # and s does not
sty (Vx,)%. Hence, by condition 4, there is a sequence s, differing from s
m at most the jth place, such that s’ does not satisfy . Since x; is free in
noither (Vv )(.4 = @) nor .4, and since s satisfies both of these wfs, it follows
by (VI that & also satisfies both (Vx;)(4 = %) and 4. Since s’ satisfies

I'he Jengih of an expression is the number of occurrences of symbols in the
CAPIOssion.
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(Vx,)( 4 = 4). it follows by condition 4 that &' satisfies 4 = . Since '
/

satislies 4 = % and 4. condition 3 implics that & satisfies 4. which con-
tradicts the fact that " does not satisfy 7. Hence. (X1) is established.

Exercises

2.12 Vel () (X).
2.13  Prove that a closed wi .4 is true for M if and only if .4 is satisficd by
some sequence s in Z. (Remember that X is the set of denumerable sequences
of clements in the domain of M)
2.14 Find the properties or relations determined by the following wis and
interpretations.
(@) [(Fu)A; (/i xou) )] A (3e)4 ’(/',7(r r).z)]. where the domain D is the set
of integers, A7 is =. and j, is multiplication.
(b) Here, D is the set of non-negative integers, AI is =. «) denotes 0, /, IS
addition. and /5 is multiplication.
() (34 a) A4 2). )]
(i) (3 )A“( 13(vy)
(€) (Fx)4i(f7 (X, v1).x2). where D is the set of positive integers. Al s =.
and /7 is multiplication,
(d) Al(x1) A (Vxo)=43(x.x0). where D is the set of all living people, A (x)
means v is d umn and A’( ) means x is married 10 y.
(© () (Fa)(F)(4 Pl 03) A A A (x2oxa) A A3(x1.x2))
(i) (Ge) (430r1.10) A ATx2.x2))
where D is lhe sct of all people. 43(x.y) means x is a parent of y. and
A3(x.y) means x and y are siblings.
(1) (V) ((Fra) (A7 (/7 (xa.x3). 1) A (Fra) (4 (fl(w ﬁ) 2)) = Aj (@),
where D is the set of positive integers, A, is =, /7 is IﬂultlpllCdllOn and
a, denotes 1.
(2) A x2.x1) A (39)(AT (0, x) A A3 (v, y))
where D is the set of all people, 4%(u,v) means u is a parent of v. and
A3(u,v) means u is a wife of v.
2.15 For each of the following sentences and interpretations, write a
translation into ordinary English and determine its truth or falsuy
(a) The domain D is the set of non-negative integers, A} is = , fE is addi-
tion, /3 is multlpll(:dtlon a; denotes 0 and a; denotes l.
() ()(B) (A x /2000 VA U 00),02))
(i) ( Vx)(Vy)(A (fF(x.p) @) = Af(x,a)) V Ai (v, 1))
(i) (34T y) @)
(b) Here, D is the set of inlegers A% is =, and /? is addition.
() (V) (V) AT(f] (v1.22) fy ( X))
(1) (V\n)(V\ﬂ)(V\z) A (\n S X)) ST () )
(i) (V) (Vao)( l\l)l (/i (x.x0)a0)

- lRSI ()RI)LR LANGUAGLES, SATISFIABILITY. MODELS

(¢) The wfs are the same as in part (b). but the doniain 1s the set of positive
integers. A7 is =, and fF(x.v) is ¥'.

(d) The domain is the set of rational numbers. A7 is =. A3 is <. f] is
multiplication. f)'(x) is x + . and «; denotes 0.

() (AT xx) @)
(i) (vx)(Vp)(43(x ,>¢< 2)(43(x.2) A A 3z
(1ii) (\’./x)(ﬁAf(.\f.a]) = (3 f(/ (xov) [y (a i

(¢) The domain is the sct of non-n lll\t. lnlu_ux If w.or)y means w <. and
Aj(u. v, w) means u + v = w.

() (W) (V) (Vz) (A7 (x. v _) = A{(v.x.2))
(i) (Wx)(Vv)(4 l( x._v) = 4;7(x.v))
(nl (V) (V) (45 (x. v) = A7 (xoxo )
(iv) (o) (D)4 (x.py)
) (Fv) (Vx) 43 (x, )
) (Vx) (‘v‘y)(A%( V)& (32)4{(x.200))

() Thc domain is lhc sct ol natural numbers. ,rlf(u.r) means o=,
Si(uv) =u+v.and f5(u.v) = u-
(V) (3y) B2)AF (x ST S5 (0 0) 17 (,._)))

DEFINITIONS

\ wi # 1s said to be logically valid if and only il .4 is true for every
mterpretation.’

# 1s saud to be satisfiuble if and only if there is an interpretation for which
4 is satisfied by at least one sequence.

It is obvious that 4 is logically valid if and only il —.# is not satisfiable,
.nd 4 1s satisfiable if and only if =4 1s not logically valid.

I .4 is a closed wf, then we know that .4 is cither true or false for any
¢ven interpretation; that is, 4 is satisfied by all sequences or by none.
I herefore, if 2 is closed, then A4 is satisfiable if and only if 4 is true for some
mierpretation.

A set ' of wfs is said to be satisfiuble if and only if there is an inter-
pretation in which there is a sequence that satisfies every wf of T'.

It is impossible for both a wf 2 and its negation —# to be logically valid.
b orit 2 1s true for an interpretation, then —4 is false for that interpretation.

We say that 4 is contradictory if and only if 4 is false for every inter-
pretation, or, cquivalently, if and only if =4 is logically valid.

41y said to logically imply 4 if and only if, in every interpretation, every
wovquence that satisfies 4 also satisfies 4. More generally, € is said to be a

“The mathematician and philosopher G.W. Leibniz (1646 -1716) gave a similar
detimtion: 4 s logically vahid if and only .4 s true in all “possible worlds™.
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logical consequence of a set T of wis il and only if. in every interpretation.,
cvery sequence that satisties every wi in I also satisfies ©.

A and 4 are said to be logically equivalent it and only if they logically
imply cach other.

The following assertions arc easy consequences of these definitions.

A logically implies ¢ il and only if .4 = ¢ is logically vald.

# and % arc logically equivalent if and only if .4 < % is logically valid.
I .4 logically implies ¢ and .4 is true in a given interpretation, then so1s 4.
If % is a logical consequence of a sct [ of wfs and all wis in ["are true in a
given interpretation, then so is %.

Bl =

Exercise 2.16
Prove assertions | -4.

Examples

1. Every instance of a tautology is logically vahd (VII).

2. If 1 is frec for x in A(x), then (Vx).4(x) = (1) is logically valid (X).

3. If # does not contain x free, then (Vx)(.4 => %) = (4 = (Vx)¥) is logi-
cally valid (XD).

4. ABis lo,‘:iulllv valid if and only 1f (V) .. (Vl,,) # 1s logically valid (V).

5. The wi (Vx2)(3x) )43 (x1.x2) = (3 )(Vxa)A7(x).x2) is not logically valid.
As a countcrexample, let the domain D he the sct of integers and let
A3 (y,z) mean y < z. Then (Vx2)(Ix))A7(x;.x2) is true but (Ix))(Vx2)
A%(xl,xz) is false.

Exercises

2.17 Show that the following wfs are not logically valid.
(@) [(Vx)A}(x1) = (Vx)A4(x1)] = [( V\l )AL (x)) = A'(M))}
(b) [(var) (AL (x1) v AL (r)] = (V)] (1)) V (1)L
2.18 Show that the following wfs are logically valid.T

(@) B(1) = () B(x;) il 1 is free for x; in B(x;)

(b) (Vx)B = ()2

(©)  (Vx;)(Vx;)B = (Vx;)(Vx;) B

(d) (Vx)% < —(3x,)~#

(e) (Yx) (2 = %)= (Vx)B = (Vx;)F)
(0 ((Vx)B) A (Vx)€ < (Vxi) (B NE)
(g) (Yx)B)V (Vx;)6 = (Vx;)(B V ¥)
(h) (2x)(3x;)2 < (x,)(Ax) 2B

Al this poinl, one can use intuitive arguments or one can use the rigorous
definitions of satisfaction and truth, as in the argument above for (XD, Later on, we
shall discover another method Tor showing logical vihdny

P lRST ()RDFR L/\\J(vb/\(:ES SA l ISF I/\BlLl TY. Vl()l)f LS ‘
(1) () (¥x,) 8 = (Vx,))(Ay) 2
2.19 (a) If.4isa closed wi. show that .4 logically implies % il and only if %
is true for every imcrpretulion for which .2 is true.

(b) Although. by (VI). (Vx,)4 ( vi) is true whenever 4’( 1) s true,
find an interpretation for which Al(v)) = (Vx))4])(x|) is not
truc. (Hence. the hypothesis that 4 is a closed wt is essential
n (a).)

2.20  Prove that.if the free variables of A are vy. .. .. 1. then 4 1s satishable
il and only if (3v)...(3y,)4 is satisfiable.

2.21 Produce counterexamples to show that the following wis arc not
fogically valid (that is. in each case, find an interpretation for which the wf is
not true).

(@) [(V) (VA (0. 0) A A](522) = AT (02) A (V) el ()]
= (V) (v 1)

(b) (v\><av)A%<v V) = ()41 00)
(©) (A (I)4i(x,y) = ()47 (v.y)
W 1( 9} (x) & (A0AY)] = (B4l (x) & AY))
@ (@] (6) = AL0) = (2 () = (204Y)

( (
(1 (V) (W) (A7 () = AT (0, %)) A (Vo) (V) (V2) (A5 (x, ) A AT (,2)
= A}(x,2))] = (Vx)4;(x,x)

() (A (W) (A(x,0) A AT (r.x) = [4F(x.x) & 4T (r, )
(hy (V) (Yp) (¥2) (A7 (x, ) A (A%(x, z) = A%(x,y) \Y A%(y,z)))
= (Jy)(V2)4i (v.z2)

o (@E))(E)(A02) = AXx2) = (A(xx) = Ap.x))

2.22 By introducing appropriate notation, write the sentences of each of

the following arguments as wfs and determine whether the argument is

correct, that is, determine whether the conclusion is logically implied by the

conjunction of the premisses

ta) All scientists are neurotic. No vegetarians are neurotic. Therefore, no
vegetlarians are scientists.

thy  All men are animals. Some animals are carnivorous. Therefore, some
Men are carnivorous.

() Some geniuses are celibate. Some students are not celibate. Therefore,
some students are not geniuses.

id) Any barber in Jonesville shaves exactly those men in Jonesville who do
not shave themselves, Hence., there is no barber in Jonesville.

) Forany numbers x. vz if x > vand v >z then x > z. x > x is false for
all numbers x, Therefore, for any numbers x and y. if x > v, then it is
not the case that v - v,
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(1 No student in the statistics class is smarter than every student in the
logic class. Henee. some student in the logie class 1s smarter than every
student i the statistics class.

(2} Everyone who s sane can understand mathematics. None ol Hegel's
sons can understand mathematies. No madmen are it to vote. Hence,
none ol Hegel's sons is fit to vote.

(h) For cvery set v there is a set v such that the cardinality of v is greater
than the cardinality of x. If x is included in y. the cardinality of x is not
grcater than the cardinality of y. Every setis included in V. Hence, V' is
not a set.

(i) For all positive integers x.x<x. For all positive integers x,y.z, if ¥ <
and y <z, then x<z. For all positive integers x and y. x<y or v<r
Therefore. there is a positive integer v such that, for all positive integers
X, y<a.

(j) For any integers x. v, z, if v > y and y > z, then x > z. x > x is false for
all integers x. Thercfore, for any integers v and y. if x > y. then it is not
the case that y > x.

2.23  Determine whether the following scts of wis are compatible - that is,
whether lheir u)njunclion Is satisfiable.
(@) (3)(D (x ») .
(VA)(V\ 3z)(A ( YA A (zr)
(b) (vx)(3v) A (\
(Vx)(Vy)( ) =~y ( X))
(V) (V) V~ ( Plxy )/\A (0.2) = Aj(x.2))
(c) All unicorns are animals.
No unicorns are animals.

2.24 Determine whether the following wfs are logically valid.
(@) —~(3)("x)(4](x,y) & =47(x,x))

(b) [(F)4}(x) = Q)4 (x)] = (Ix)(4(x) = 4}(x))
(©) (F)(A](x) = ()4} ()

(d) (V)(4i(x) V 43(x)) = ((V0)4](x)) V (Ax)43(x))
() ()E)Af(x,y) = (V2)A1(z.¥))

(O (@)@ x) = 43(») = (L)(4) (x) = 45(x))
(g) (Vx)(4](x) = 45(x)) = ~(¥x)(4](x) = ~45(x))

(h) (F)4](x.x) = (30 (I)4i(x,y)

2.25 Exhibit a logically valid wf that is not an instance of a tautology.
However, show that any logically valid open wf (that is, a wf without
quantificrs) must be an instance of a tautology.

2.26 (a) Find a satisfiable closed wi that is not true in any interpretation
whose domain has only one member.
(b) Find a satistiable closed wi that is not true inany mterpretation
whose domain has fewer than three members.

FIRST-ORDER IIH()RII S

2.3 FIRST-ORDER THEORIES

In the case of the propositional calculus, the method of truth tables provides
an effective test as to whether any given statement form is a tautology.
However, there does not scem to be any effective process for determining
whether a given wi is logically valid, since, in general. one has to c¢heck the
truth of a wf for interpretations with arbitrarily large finite or infinite do-
mains. In fact. we shall sec later that, according to a plausible definition of
‘effective’. it may actually be proved that there is no cflective way to test for
logical validity. The axiomatic method, which was a luxury in the study of
the propositional calculus, thus appears (o be a necessity in the study of wis
mvolving quantifiers,! and we therefore turn now to the consideration of
first-order theories.

Let ¢ be a first-order language. A first-order theoryin the language ¢ will
he a formal theory K whose symbols and wis arce the symbols and wis of &
and whose axioms and rules ol inlerence are specified in the following way. !

The axioms of K are divided into two classes: the logical axioms and the
proper (or non-logical) axioms.

1LOGICAL AXIOMS

It 4.4 and Z are wfs of ¥, then the following are logical axioms of K:

A\l A= (T = B)

t\2) (B=(C=>2)=>{(4=>%) = (4= 7))

(N3 (A = -AB)=> (6 = B)= %)

D) (V) B(x) = () if Ax;) is a wlof ¥ and ris a term of & that is
free for x; in #(x;). Note here that f may be identical with x; so that
all wis (Vx;)%4 = # are axioms by virtue of axiom (A4).

(AN (V) (4 = 6) = (4 = (Vx;)@) if A contains no [ree occurrences of
X

"T'here is still another reason for a formal axiomatic approach. Concepts and
propositions that involve the notion of interpretation and related ideas such as truth
mid model are often called semantical to distinguish them from synractical concepts,
wlich refer to simple relations among symbols and expressions of precise formal
tinpuages. Since semantical notions are set-theoretic in character, and since set
theory, because of the paradoxes, is considered a rather shaky foundation for the
tudy of mathematical logic, many logicians consider a syntactical approach, con-
asting of a study of formal axiomatic theories using only rather weak number-
theoretic methods, to be much safer. For further discussions, see the pioneering study
cnosemanties by Tarski (1936), as well as Kleene (1952), Church (1956) and Hilbert
md Bernays (1934),

“The reader might wish to review the definition of formal theory in Section 1.4,
Weshall use the termimology (proof, theorem, consequence, axiomatie. b .4 ete.) and
notation (I'F 4.t #) introduced there

6 |
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PROPER AXIONMS

These cannot be specilied. since they vary from theory o theory. A first-
order theory in which there arc no proper axioms is called a first-order
predicate caleulis.

RULES OF INFERENCE

The rules of inference of any first-order theory are:

I. Modus ponens: 4 follows from 4 and 4 = .
2. Generalization: (Vx;).4 follows from 4.

We shall use the abbreviations MP and Gen. respectively. to indicate ap-
plications of these rules.

DEFINITION

Let K be a first-order theory in the language . By a model of K we mican
an interpretation of” ¥ for which all the axioms of K are true.

By (II1) and (V1) on page 61. it the rules of modus ponens and gen-
eralization arc applied to wis that are true for a given interpretation, then
the results of these applications are also true. Hence every theorem of K is
true in every model of K.

As we shall see, the logical axioms are so designed that the logical con-
sequences (in the sense defined on pages 65-6) of the closures of the axioms
of K are precisely the theorems of K. In particular, if K is a first-order
predicate calculus, it turns out that the theorems of K are just those wfs of K
that are logically valid.

Some explanation is needed for the restrictions in axiom schemas (A4)
and (A5). In the case of (A4), if t were not frec for x; in #(x;), the following
unpleasant result would arise: let 4(x;) be —(Vx2)47(x1,x2) and let 1 be x;.
Notice that ¢ is not frec for x; in #(x,). Consider the following pscudo-
instance of axiom (A4):

(V) (I (=(¥x2)A5 (x1,x2)) => ~(¥x2)4T(x2,x2)

Now take as interpretation any domain with at least two members and let
A7 stand for the identity relation. Then the antecedent of (V) is true and the
consequent false. Thus, (V) is false for this interpretation.

In the case of axiom (AS). relaxation of the restriction that x, not be free
in .4 would lead to the following disaster. Let.4 and % both be A (x). Thus,
vy s tree in 4. Consider the following pscudo-instance of axiom (AS):

(CT) A ig) s A 000 = L) s Yy ()

PROPLERTIES OF FIRST-ORDER THEORIES

The antecedent of (VV) is logically valid. Now take as domain the set of
integers and let 4} (x) mean that x is even. Then (V)4 (x)) is false. So. any
scquence s = (s).5....) for which sy is even does not satisfy the consequent
of (VV)." Hence, (VV) is not true for this interpretation.

Examples of first-order theories

1. Partial order. Let the language ¢ have a single predicate letter 13 and no
function letters and individual constants. We shall write x, <. v, instead of
A%(x;.x;). The theory K has two proper axioms.
(2) (Vx)(—x) < xp) (irretlexivity)
(b) (Vx)) (Va2 (V) (x) < xa Axa < xy = vy < xvy)  (Lransitivity)

A model of the theory is called a partially ordered structure.

(89

. Group theoryv. Let the language 2 have one predicate letter A7, one
function letter /7, and onc individual constant a;. To conform with or-
dinary notation, we shall write 1 = 5 instead of A35(r.5).1 + s instead of
S2(1.s), and 0 instead of «;. The proper axioms of K arc:

(a) (Vx) (V) (Wa)(x) + (2 + x3) = (0 +x2) +x3) (associativity)
(b) (¥x1)(0+x; =x1) (identity)
(€) (Vxp)(Hxa)(x2 +x; = 0) (inverse)
(d) (¥xy)(x) =xy) (reflexivity of =)
(€) (W ){(Vx2)(x; =x2 => x2 = xy) (symmetry of =)
(0 (Vx)(Vxa)(Wx3)(x) = x2 Axa = X3 = x| = x3) (transitivity of =
(g) (V,\‘|)(VX3) Vx;)(}‘z = X3 =

X1+x=x +x3AX2+x =x3+xy) {(substitutivity of =)
\ model for this theory, in which the interprctation of = is the identity
relation, is called a group. A group is said to be ahelian if, in addition, the wf
i/ ) (Vx)(x) +x2 = x + ) Is true.

The theories of partial order and of groups are both axiomatic. In gen-
cral. any theory with a finite number of proper axioms is axiomatic, since it
i~ obvious that one can effectively decide whether any given wf is a logical
aniom.

2.4 PROPERTIES OF FIRST-ORDER THEORIES

Al the results in this section refer to an arbitrary first-order theory K.
Instead of writing Fg 4, we shall sometimes simply write - #. Moreover,
we shall refer to first-order theories simply as theories, unless something is
siid 1o the contrary.

'Such a sequence would satisfy 4] (x;). since s; is even, but would not satisty
Vg ).'l}( V) SINCE Do sequenee sitisfies (Vi ).‘l:(\l ).
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PROPOSITION 2.1

Lvery wi 4 of K that is an instance of a tautology is a theorem of K. and it
may be proved using only axioms (Al)-(A3) and MP.

Proof

2 arises [rom a tautology .7~ by substitution. By Proposition 1.14, there is a
proof of .7 in L. In such a proof, make the same substitution of wfs of K for
statement letters as were used in obtaining 4 from .7 | and, for all statement
letters in the proof that do not occur in .7, substitute an arbitrary wf of K.
Then the resulting sequence of wis is a proof of 4, and this proof uses only
axiom schemes (A1)-(A3) and MP.

The application of Proposition 2.1 in a proof will be indicated by writing
“Tautology’.

PROPOSITION 2.2

Every theorem of a first-order predicate caleulus is logically valid.

Proof

Axioms (Al)-(A3) arc logically valid by property (V1) of the notion of
truth (see page 61), and axioms (A4) and (A5) are logically valid by prop-
erties (X) and (XI). By properties (111) and (VI), the rules of inference MP
and Gen preserve logical validity. Hence, every theorem of a predicate
calculus is logically valid.

Example

The wi (Vx2)(3x))42(x1,x2) = (Fx))(Vx2)47(x1,x2) is not a theorem of any
first-order predicate calculus, since it is not logically valid (by Example 5,
p. 66).

DEFINITION

A theory K is consistent if no wf 2 and its negation =2 are both provable in
K. A theory is inconsistent if it is not consistent.

COROLLARY 2.3

Any first-order predicate caleulus is consistent.

[ — e R

PROPERTIES OF FIRST-ORDER THEORIES
Proof

It a wf .2 and its ncgation —.4 were both theorems ot a first-order predicate
calculus, then, by Proposition 2.2, both .4 and -.4 would be logically vahd.
which is impossible.

Notice that, in an inconsistent theory K. every wi % of K is provable in
K. In fact, assume that .4 and -.%4 arc both provable in K. Since the wi
A = (—4 = ) is an instance of a tautology. that wi'is, by Proposition 2.1,
provable in K. Then two applications of MP would yicld - 4.

It follows from this remark that, if some wi of a thecory K is not a
theorem of K, then K is consistent.

The deduction thecorem (Proposition 1.9) for the propositional calculus
cannot be carried over without modification to first-order theories. For
example, for any wf 4, 4 g (Vx;).4. but it is not always the case that
ik A = (Vx;)4. Consider a domain containing at least two ¢lements ¢ and
d. Let K be a predicate calculus and let .4 be 4j(v). Interpret 4] as a
property that holds only for ¢. Then A}(x) is satisfied by any sequence
v = (s1,82,...) in which s; = ¢, but (Vx))4](x]) is satisfied by no sequence at
all. Hence, 4] (x;) = (Vx;)41(x)) is not true in this interpretation, and so it is
not logically valid. Therefore, by Proposition 2.2, Al(x) = (Vx|)4}(x|) is
not a theorem of K.

A modified, but still useful, form of the deduction theorem may be de-
rved, however. Let .4 be a wl in a set I of wfs and assume that we are given
a deduction %, .... %, from I', together with justification for each step in
the deduction. We shall say that %, depends upon %4 in this proof if and
only if:

(1) «;is Z and the justification for &; is that it belongs to I', or

(2) ;s justified as a direct consequence by MP or Gen of some preceding
wfs of the sequence, where at least one of these preceding wfs depends
upon 4.

Ixamiple
A V)4 = 6 - (Vxl){ﬂ

ay A Hyp
) (Vx) )4 (%)), Gen
) (Vx )% =€ Hyp

NI (%2), (23),MP
) (V) (Z4),Gen

Heve, (7)) depends upon 4, (7,) depends upon 4, (#3) depends upon
)46 (7y) depends upon 4 and (Vay).4 = %, and (¥s) depends
upon 4 and (V)4 = .
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PROPOSITION 2.4

If 7 docs not depend upon £ in a deduction showing that T'. .4+ % then
e .

Proof

Let vy -7, be a deduction of 4 from I' and 4. in which 7 does not
depend upon 4. (In this deduction, %, is %.) As an inductive hypothesis, let
us assume that the proposition is true for all deductions of length less than ».

If ¢ belongs to I or is an axiom, then I' = . I % is a direet consequence of

one or two preceding wis by Gen or MP, then, since ¢ does not depend
upon 4, neither do these preceding wfs. By the inductive hypothesis, these
preceding wfs are deducible from I' alone. Consequently, so is .

PROPOSITION 2.5 (DEDUCTION THEOREM)

Assume that, in some deduction showing that I'. .4+ 4. no application of

Gen to a wi that depends upon £ has as its quantified variable a {ree
variable of 4. The '+ .4 = 4.

Proof

Let %,...,%, be a deduction of % from I" and 4, satisfying the assumption
of our proposition. (In this deduction, %, i1s %.) Lct us show by induction
that I'H % = ¢, for each i<n. Il %; is an axiom or belongs to I', then
't 2= %, since %;= (A= %;) is an axiom. If 9; is #4. then
' % = %,, since, by Proposition 2.1, - % = 4. If there exist j and k less
than i such that %; is %; = %;, then, by inductive hypothesis, ['t- # = &;
and 'F# = (¥%;,= %;). Now, by axiom (A2), F (4= (%;= 7))
= (8= %;) = (# = 2,)). Hence, by MP twice, I' - # = %;. Finally,
suppose that there is some j < i such that %, is (Vx;)2;. By the inductive
hypothesis, I' - 2 = &, and, by the hypothesis of the theorem, either &,
does not depend upon # or x; is not a free variable of 4. If %; does not
depend upon 4, then, by Proposition 2.4, I' - %; and, consequently. by
Gen, '+ (Vx;)2,. Thus, I' - ;. Now, by axiom (Al), - %; = (4 = ;).
So. '+ % = 2; by MP. If, on the other hand, x; is not a free variable of .4,
then, by axiom (AS), - (Vo (# = %,) = (# = (Vxx)%;). Since '+ 4 =
;. we have, by Gen, I' - (Vx; ) (# = %), and so, by MP, ' 4 = (Vxi) &/ 2
that is, '+ .4 = &,. This completes the induction, and our proposition is

just the special case i = n.

The hypothesis of Proposition 2.5 s rather cumbersome; the following
weitker corollaries often prove to be more useful

PROPERTIES OF FIRST-ORDER THEORIES

COROLLARY 2.6

Il a deduction showing that I, 4+ % involves no application of Gen of

which the quantified variables is free in 4. then I' 48 = 4.
COROLLARY 2.7

If Zisaclosedwlfand I', 2+ %, then ' 4 = 4.
EXTENSION OF PROPOSITIONS 2.4-2.7

In Propositions 2.4-2.7, the following additional conclusion can be drawn
from the proofs. The new proof of I' - .4 = % (in Proposition 2.4, of I' - %)

involves an application of Gen to a wf depending upon a wi & of T only if

there is an application of Gen in the given proof of T'. .4 - % that involves
the same quantified variable and is applicd to a wi that depends upon &. (In
the proof of Proposition 2.5, onc should observe that &, depends upon a
premiss & of I" in the original proof if and only if 4 = ’//l,- depends upon &
in the new proof.)

This supplementary conclusion will be useful when we wish to apply the
deduction theorem several times in a row to a given deduction — for ex-
ample, toobtainI'+ ¥ = (4 = %) from [, 2,4+ ¢; from now on. it is to
be considered an integral part of the statements of Propositions 2.4-2.7.

Lxample
(Vx1)(Vx2) B = (Vx2)(Vx)) 4

Proof

L (Vxy) (V)4 Hyp

Y (Yny)(Vx) 2 = (Vxy) B (A4)

Y (Vx) B 1,2, MP
(V0B = B (A4)
NA 3, 4, MP
O, (VX]).% 5, Gen
(V) (VX)) 6, Gen

Ihus. by 1-7, we have (Vx| )(Vx2)% b (Vx2)(Vx; )4, where, in the deduction,
no application of Gen has as a quantified variable a free variable of
/1) (Vxa).4. Hence, by Corollary 2.6, b (Vx| )(Vx2)% = (Vx2)(Vx))4.

Fxercises

2.27  Derive the following theorems.
() (V) ) s (V)4 (V)7
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(by (VN ) s (W4 = (3x)7)

(C) 1+ (VA ALY s (V) 4) A (V)%

(U I N AT I AV VR I

(c) I (VN4 s ()4

2.28"” Let K be a first-order theory and let K7 be an axiomatic theory

having the following axioms:

() (Vvpho (Y4 where 4 s any axiom of K oand ... Yu(n20) are
any variables (none at all when # = 0):

(b) (V). . (Ve ) (B = C) = [(Yn) ... (V)4 = (V) ... (Vy,)%] where 4
and 7 are any wis and v, ..., y, are any variables.

Moreover. K* has modus ponens as its only rule of inference. Show that K#
has the same theorems as K. Thus, at the expense of adding more axioms,
the generalization rule can be dispensed with.

2.29 Carry out the proof of the Extension of Propositions 2.4-2.7 above.

2.5 ADDITIONAL METATHEOREMS AND DERIVED RULES

For the sake of simoothness in working with particular theories later, we
shall introduce various techniques for constructing proofs. In this section it
is assumed that we are dealing with an arbitray theory K.

Often one wants to obtain A(1) from (Vx).4(x), where 1 is a term free {or x
in A(x). This is allowed by the following derived rule.

PARTICULARIZATION RULE A4

If ¢ is free for x in #(x), then (¥x)#(x) - A(1).!

Proof

From (¥x)#4(x) and the instance (Vx)#(x) = #4(¢) of axiom (A4), we obtain
#(1) by modus ponens.
Since x is free for x in #(x), a special case of rule A4 is: (Vx)# + 4.
There is another very useful derived rule, which is essentially the con-
trapositive of rule A4.

"From a strict point of view, (Vx).4(x) F 4(1) states a fact about derivability.
Rule A4 should be taken to mean that, if (¥x).4(x) occurs as a step in a prool, we
may write 4(7) as a later step (if 71s free for xin . 4(x)). As i this case, we shall often
state a derived rule an the form of the corresponding derivability result that justifies
the rule.

ADDITIONAL METATHEOREMS AND DERIVED RULES

EXISTENTIAL RULE E4

Let 7 be a term that is free for v in a wl #(x.t), and let A(r. 1) arise from
A(x, 1) by replacing all free occurrences of x by 1. (4(x.r) may or may not
contain occurrences of ;) Then, .A(r.1) b (Ix).4(x.1).

Proof

It suflices to show that F A(r.1) = (3x)4(x.1). But. by axiom (A4).
B (Vx)=A(x.1) = ~4(1.1). Hence, by the tautology (4 = —-B) = (B = —4)
and MP_F 4(1.1) = —(Vx)=A(x, 1), which, in abbreviated form. is + 4(s.1)
= (Ax)A4(x.1).

A special case of rule E4 is A{1) b (dv)#(x). whenever 1 is free for x in
A(x). In particular, when 1 is x itself, A(x) F (dx).4(x).

Example
- (Vx)4 = (A4

. (Vx)4 Hyp
2.4 1, rule A4
3 (Ax)# 2, rule E4
4. (V) A+ (A0) 4 1-3

‘I

B (W) 4 = (Ix).8 1-4, Corollary 2.6

The following derived rules are extremely useful.

Negation elimination: =——# + 4
Negation introduction: 4 - ——%4
Conjunction elimination: # A4+ 4
BNCHE
~ABNC)F —ABN 6
Conjunction introduction: Z, 6+ B N%E
Disjunction elimination: ZV ¢, ~#+ €
BNVEC, 6+ A
—~(BVE) - =B N—E)
B=>DC=2D,BVC-D
Disjunction introduction: 8+~ #V €
CHABVE
Conditional elimination: 4 = €,—~¢ + —~%4
B=—€C€ECH A
-B=C€ b+ B
A= CC-RB
(B =%+ B
~(# = C)F %
Conditional introduction: 4, =6+ —~(4 = %)
Conditonal contrapositive: 4 > 4+ %4 > -4
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6= A B
Biconditional climination: 4 = ¢ . 4+ % BB
B C. 04 A A W/
ASCHABA=>0 B CHGC=4
Biconditional introduction: 4 = %4.% = 4+ 4 <
Biconditional negation: B CE B &
e A o BN

Proof by contradiction: If a proof of I'. =4 - % A —% involves no applica-
tion of Gen using a variable free in .4, then '+ 4. (Similarly. one obtains
' =g from .4 % A-%)

Exercises

2.30  Justify the derived rules listed above.

2.31  Prove the following.

(a) F (Vx)(Yn)A7(x.v) = (Vx)47(x.x)

(by F {(vx).%]\/[(Vr Y6 = (W) (A4 vV 6)

(¢) F ~(3x)8 = (Vx)=4

(d) b (vx)4 = (V) (4 V1)

(e) F (Vx)(V )( T(vx) = i (rx)) = (V)4 ()
() % 1 (34 ()] > (V)4 = %)

(g) )(/)’\/’/) > (V) /9]\/ (Av)e

(h) (VT)( Tvx) = (347 (x.r)

(i F (Vx)(//i = ’/ [(Vr) =4 = (Vx)- 4]

O @A) = Vl)A ()]

(k) + (V)8 = (¥ xﬁvw

O E () (I)(Ax,y) = By, x)) A (V) (V) (Y2)(B(x, y)A

B(y.z) = Bx.2))] = (V) (V) (B(x,y) = HB(x,x)).
2.32  Assume that % and % are wfs and that x is not free in %4. Prove the
following.
(@) F% = (Wx)4
(by W% = (3x)#
() H (4= (Wx)%6) < (W)(B = %)
(d) (3% = %) & ()€ = 2)

We need a derived rule that will allow us to replace a part % of a wf 4 by
a wi that is provably equivalent to %. For this purpose, we first must prove
the following auxiliary result.

LEMMA 2.8

Forany wis #and e 1 (Vo4 <2 %) » ((Ve).4 <3 (V)4 )

ADDITIONAL METATHEOREMS AND DERIVED RULES

Proof

I (Vx4 = C) Hyp

2. (vx) 4 Hyp

R I. rule A4

4. 4 2. rule A4

5. % 3.4, biconditional elimination
6. (Vx)€ 5. Gen

7. (Yx)(4 & 0). (Yx) B - (Yx)E 1-6

8. (Yx)( 4 & C)F (V)4 = (V)% 1-7. Corollary 2.6

9. (Wx)(4 & %) (V)6 = (V)4 Proof like that of 8
10. (Vx)(4 < 6)F (Vx)48 < (Vx)6 8. 9. Bioconditional introduction
1. E(Vx)(B & %)= (V)8 < (¥x)6) | 10, Corollary 2.6

PROPOSITION 2.9

Il % is a subformula of 4, .4’ is the result of replacing zero or more oc-
currences of ¢ in 4 by a wt &, and every free varnable of 4 or ¢ that is also
a bound variable of .4 occurs in the list yy,. ... ;.. then:

() F () ... (V)% < 7)| = (4 < #4') (Equivalence theorem)
(by If-% < &, then - 4 < 4’ (Replacement theorem)
() If-% < & and - 4, then - .4

Iivample
() F (W) (A (x) & (45 (x) = (34} (x) & (Fx) 43(x)]

Proof

(.1} We use induction on the number of connectives and quantifiers in 4.
Note that, if zero occurrences are replaced, 2’ is %4 and the wf to be proved
v an instance of the tautology 4 = (B < B). Note also that, if 4 is identical
with .4 and this occurrence of 4 is replaced by 2, the wl to be proved,
CA) (Y6 & D)) = (B < #), is derivable by Exercise 2.27(d).
I'hus. we may assume that % is a proper part of # and that at least one
occurrence of 4 1s replaced. Our inductive hypothesis is that the result holds
tor all wis with fewer connectives and quantifiers than 4.

Case . .4 is an atomic wf. Then ¥ cannot be a proper part of 4.

Cuse 2. A1s =6, Let 4’ be =&’. By inductive hypothesis, I [(Vy) ... (V)
itoax /) (4« &), Hence, by a suitable instance of the tautology
(e (A4 B)) o (C 3 (-4 & =B)) and MP, we obtain F [(Vv) ... (V)
Choir ) s (4 A

79
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Case 3. .4 is & = 7. Let 4" be ¢ > 7' By inductive hypothesis.
Ve (Vg (6 w0 )i = (6 & & and t [V (V) (@ < O = (F
<» 7). Using a suitable instance of the tautology

(> Be CYAA= (DSE) = (4 s 1B D)< (C=E))

we obtain b [(Vi) ... (Vi) (6 < 7)) = (4o 4).

Case 4. A is (vx)6. Let 4" be (Vx)&'. By inductive hypothesis,
o). (V) (e = &) = (&= &"). Now. v does not oceur free in
(Vvy) ... (V) (% <= &) because, if it did. it would be Iree in 4 or % and,
since 1t is bound in 4. it would be one of ... .. v and it would not be free
in (Vyr) ... (Vi )(% < ). Hence, using axiom (AS). we obtain = (V) ...
(Vy )6 = ) = (Vx)(& & &'). However. by Lemma 2.8, - (¥x)(4 < &)
= ((Vx)é < (Vx)é&'). Then. by a suitable tautology and MP. = [(Vy))

L & D) = (B e A).

(b) From F% < %. by several applications of Gen. we obtain
F(Yw) ... (Vw)(¢ < &). Then, by (a) and MP, + 4 < 4.

(c) Use part (b) and biconditional elimination.

Exercises

2.33 Prove the following:
() F (Ix)~A = ~(Vx).4
(by F (Vx).4 < —(3x)~4
() H(ExNAB = (VP = (I)NA = —C A
(d) - (X)(INL = %) & (W)(E)(~2 V)
() F(Vx) (4= -%)c -(3)BAE)
2.34 Show by a counterexample that we cannot omit the quantifiers
(¥y1) ... (¥y) in Proposition 2.9(a).
2.35 If ¥ is obtained from £ by erasing all quantifiers (Vx) or (3x) whose
scope does not contain x free, prove that - % < €.
2.36 For each wf 2 below, find a wl ¢ such that - % < =2 and negation
signs in % apply only to atomic wfs.
() (V) (%) (F)A3(x, v, )
(hy (Ve)(e > 0= (30)(6 > 0A (Vx)(lx —c| < 0= |f(x) — f(c)] < &)
() (Vey(e ~ 0= 3n)(Ym)(m > n=la, — b| <¢))
2.37 Lt .4 be a wi that does not contain = and <. Exchange universal
and existential quantifiers and exchange A and V. The result 4" is called the
dual of 4.
Gy Inany predicate caleulus, prove the following.
m v Aaband oniy 't 4°
) v st and only ittt 4 o 40,
() b aaland only it 4 <0t
(v) (i v ey <x (08 V(e [Hine Use Bxeraise 2.27(c)

RULE C

(b) Show that the duality results of part (a).
bitrary theories.

(i} (1) do not hold for ar-

2.6 RULEC

It is very common in mathematics to reason in the following way. Assume
that we have proved a wt of the form (3x).#4(x). Then we say. let » be an
object such that 4(h). We continue the proof. finally arriving at a formula
that does not involve the arbitrarily chosen element h.

For example. let us say that we wish to show that

(A)(A(x) = C(x)). (Vx)AB(x) I- (Fe)E (x).

I (30)(Ax) = %(x) Hyp
20 (Wx)A(x) Hyp

3. #B(b) = “(b) for some b |

4. .4(D) 2. rule A4
S %(b) 3. 4. MP

6. (F)%/(x) 5. rule E4

Such a proof seems to be perfectly legitimate on an intuitive basis. In fact,
we can achieve the same result without making an arbitrary choice of an
clement A as in step 3. This can be done as follows:

I (Vx)A(x) Hyp
2 (V)% (x) Hyp
A A(x) 1. rule A4
4. % (x) 2. rule A4
S (#(x) = C(x)) 3. 4, conditional introduction
0. (Vx)~(AB(x) = C(x)) 5, Gen
7. (Vx)A(x), (vx)=6(x) +

(V) ~(B(x) = 6(x)) -6
N (V) 4(x) B (Vx) =% (x)

= (Vx)(4(x) = C(x)) 1-7, corollary 2.6
0. (¥x)B(x) b (%) ~(#(x)

2 %(x)) = ~(Vx)=€(x) 8, contrapositive
10, (Vx).4(x) b (3x)(B(x) =

‘“(x)) = (I)E(x) Abbreviation of 9
H () (A4(x) = 4(x)),

(Vv).A(x) B (3x)%(x) 10, MP

In general, any wf that can be proved using a finite number of arbitrary
chowes can also be proved without such acts of choice. We shall call the rule
that permits us to go from (Ax).4(x) to .4(h). rule C (*C’ for ‘choice’). More
precisely, a rule C deduction in a tirst-order theory K is defined in the

31
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following manner: I ¢ .4 i and only 1f there is a sequence of wis & .-+,
such that &, is 2 and the following four conditions hold:

. For each i < n. cither
(a) ;i 1s an axtom of K, or
(by »;isin T or
(¢) 7; follows by MP or Gen from preceding wis in the sequence., or
(d) thereis a preceding wi (4x)% (x) such that &/, is 7 (d). where d is a new

individual constant (rule C).

. As axioms in condition 1(a), we also can use all logical axioms that
involve the new individual constants already introduced in the sequence
by applications of rule C.

3. No application of Gen is made using a variable that is free in some

(dx)%(x) to which rule C has been previously applicd.
4. 4 contains none of the new individual constants introduced in the se-
quence in any application of rule C.

I~

A word should be said about the reason for including condition 3. If an
application of rule C to a wf (dx)%(x) yields % (d). then the object referred to
by ¢ may depend on the values of the free variables in ()7 (x). So that onc
object may not satisfy % (x) for a/l values of the free variables in (Jx)%(x).
For example, without clause 3. we could proceed as follows:

L (Vx)(39) A7 (x.x) Hyp

2. (3p)Ai(x.y) I. rule A4
3. Aj(x.d) 2. rule C
4. (Vx)A}(x,d) 3. Gen

5. (3y)(Vx)43(x.y) 4, rule E4

However, there is an interpretation for which (Vx)(3y)42(x.y) is true but
(3y)(¥x)43(x,p) is false. Take the domain to be the set of integers and let
A3}(x.y) mean that x < y.

PROPOSITION 2.10

If I' F¢ 4. then T+ 2. Moreover, from the following proof it is easy to
verify that, if there is an application of Gen in the new proof of # from I'
using a certain variable and applied to a wf depending upon a certain wi of
I". then there was such an application of Gen in the original proof.'

"The first formulaion o i version of rule C similar to that given here seems 1o
be due to Rosser (1983)

RULE €

Proof

Let (111)’/,(\1) ..... ()6 (1) be the WIS in order of occurrence to which
rule C is applied in the proof of T'F¢ 4, and let ... .. dy be the corre-
sponding new individual constants. Then I, 4 {d})..... % (d) - 4. Now.
by condition 3 of the definition above. Corollary 2.6 is applicable, vielding
oe(dy). .. .. Cr 1(de 1) F Crldi) = A We replace dy everywhere by a
variable = that does not occur in the proof.

Then

Loty (dy).. ... i 1(dy ) = 04(z) = 4
and, by Gen,
U Gi(dy)e . by 1 (de )b (V)4 (2) -+ A)
Hence, by Exercise 2.32(d),
Cobi(d).... . Gh o(di ) F ()0 l) > 4
But,
Foay(d).. ... Go 1 (di 1) E (D) @k )
Hence, by MP,
Co60(dy),.... G 1(de ) F 2

Repeating this argument, we can eliminate 64y (di 1)... .. % (dy) one after
the other, finally obtaining I' - 4.

Lxample

(V) (A(x) = 4(x)) = ((F)4(x) = ()%(x))

I (Vx)(4x) = €(x)) Hyp

20 (A A(x) Hyp

3. A4(d) 2, rule C

4. 4(d) = €(d) 1, rule A4

s, 7(d) 3, 4, MP

0. ()6 (x) 5, rule E4

7 (W)(B(x) = €(x)), (A)#(x) Fc (Ix)E(x) I-6

8. (VX)(AB(x) = €(x)), ()B(x) F ()€ (x) 7, Proposition 2.10
D (Vx)(AB(x) = F(x) F () B(x) = (3x)E(x) 1 — 8, corollary 2.6
0. B (Vx)(4(x) = €(x)) = (T)B(x) = (I)E(x)) | —9,corollary 2.6

Fxercises

L se rule C and Proposition 2.10 to prove Exercises 2.38-2.45.

238 1 {\')4(\') ’/( 1) = ((¥x)4(x) = ()7 (x))
2.39 1 (B (Vi (\ ) e 'Af(x.\'))
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240 0 (Vx)(A] (\) AUV ALY A (VAL () = AN
:\'\“)( (‘ A ‘\(,))

2.41 ! \)?f(\)f V() ()] = (A (4(x) AY(Y))

2.42 - (E N6 (x) = () (A(x) V4 (x))

243 (A (Av)Asxy) & (Fv) () F(xy)

2.44 F () (W) )/)’\\ = (Vy)(Ix).A (v v)

245 B () A AC(x)) = ((T)4(x)) A (Dv)e ()

2.46  What is wrong with the following alleged derivations?

() L. (Zx)4(x) Hyp
2. A(d) 1. rule C
3. (A (x) Hyp
4. 6(d) 3, rule C
5. 8(d)NE(d) 2. 4. conjunction introduction
6. (I)(A(x) A (x)) S. rule E4
7. (Ix)A(x). (A0)% (x)
F (30 (A(x) AC(x) 16, Proposition 2.10
(b) 1. (Av)(A(x) = 6(x)) Hyp
2. (3x).4(x) Hyp
R VAR NAS 1. rule C
4. Bl 2.rule C©
5. %(d) 3. 4. MP
6. (Ix)hix) 5. rule E4
7. (AW Ax) > (X))
(Tx)A(x) = ()6 () I 6. Proposition 2.10

2.7 COMPLETENESS THEOREMS

We intend to show that the theorems of a first-order predicate calculus K are
precisely the same as the logically valid wfs of K. Half of this result was proved
in Proposition 2.2. The other half will follow from a much more general
proposition established later. First we must prove a few preliminary lemmas.

If x; and x; are distinct, then #(x;) and #(x;) are said to be similar if and
only if x; is free for x; in Z(x;) and #(x;) has no free occurrences of x;. It is
assumed here that J(xj) arises from #(x;) by substituting x; for all free
occurrences of x;. [t is easy 1o see that, if Z(x;) and #(x;) are similar, then x,
is free for x; in 2(x;) and #(x;) has no free occurrences of x;. Thus. if .4(x;)
and .4(x;) are similar, then #(x;) and #(x;) are similar. Intuitively. .4(x;)
and #(x;) are similar if and only if 4(x;) and #(x;) are the same except that
A(x,) has free occurrences of x; in exactly thosc places where 4(v,) has free
oceurrences of v,

Fxample
(V\.)!,-l{(\,.\\)\/ul:(\';) and (\/\\) A7 (\» Vi) vt AR V)are smlar

( OMPLETE \JESS TI—” ORE \/IS

LEMMA 2.11

It #A(x,) and A(x;) are similar, then = (V) 4(v,) <= (Vx;)4(x;).

Proof

(Vr,) A(x;) = A(x;) by axiom (A4). Then. by Gen, F (Vx;) (V) A(x;)

#A(x;)). and so. by axiom (A5) and MP. I (Vx,).24(x,) = (Vx;).4(x;). Si-
m|larly F( ) A(x;) = (Vx;).4(x;). Hence. by biconditional introduction.
(Vi) A(x;) = (Vo) A(x;).

I-xercises

247 If A(x;) and A(x;) are similar. prove that b (3v,).4(x;) < (dx,)4(x;).
248  Change of bound variables. 1 A(x) s similar to .2( ). (Vx).4(x) is a

sublormula of %, and %" is the result of replacing one or more occurrences off

)A4(x) in 4 by (Vy)4(y). prove that - ¢ & €.

ILIEMMA 2.12

1o closed wf =4 of a theory K is not provable in K, and if K is the theory
obtained {from K by adding 2 as a new axiom, then K’ is consistent.

Proof

\ssume K’ inconsistent. Then, for some wf %, F¢: % and by =%, Now,
w6 = (=% = —#) by Proposition 2.1. So. by two applications of MP.
v 4. Now, any use of # as an axiom in a proof in K’ can be regarded as

2 hyvpothesis in a proof in K. Hence, 4 ¢ —#4. Since 4 is closed, we have
v 4 =>4 by Corollary 2.7. However, by Proposition 2.1,
w14 3 —A4) = =4, Therefore, by MP, ¢ —4, contradicting our hy-

pothests.

I vercise

249 11 a closed wi 4 of a theory K is not provable in K, and if K’ is the
theory obtained from K by adding =4 as a new axiom, then K’ is consistent.

I ENMIMVIA 213

Ihe set of expressions of a language ¢ s denumerable. Hence, the same is
trae of the set of terms, the set of wis and the set of closed wfs.
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Proof

First assign a distinct positive integer ¢g{u) to cach symbol u as follows:
gl() =3 90) =5 gl.)=7.9(=)=9. gl )= 11. g(¥) =13, glxx) =
134 8k, glag) =T+ 8k g(f") = 1+8(2"3*) and  g(4]) = 3 +8(2"3*).
Then. 1o an expression ugu, . ... u, associate the number 20¢00) 39ted 0007
where p; s the jth prime number, starting with g, = 2. (Example: the
number of A|(xa) is 2M3%5%7%) We can cnumcerate all expressions in
the order of their associated numbers: so. the set of expressions is denu-
merable.

If we can effectively tell whether any given symbol is a symbol of ¥, then
this cnumeration can be effectively carried out. and. in addition, we can
effectively decide whether any given number is the number ol an expression
of ¢, The same holds truc for terms, wfs and closed wis. If a theory K in
the language & is axiomatic, that is, if we can effectively decide whether
any given wf is an axiom of K. then we can effectively cnumerate the
theorems of K in the following manner. Starting with a list consisting of the
first axiom of K in the enumeration just specified, add to the list all the
direct consequences of this axiom by MP and by Gen used only once and
with x; as quantified variable. Add the second axiom to this new list and
write all new direet consequences by MP and Gen ol the wis in this aug-
mented list. with Gen used only once and with v, and x> as quantified
variables, I at the Ath step we add the Ath axiom and apply MP and Gen to
the wis in the new list (with Gen apphed only once for each of the variables
Xloonnd ). we eventually obtain in this manner all theorems of K. However.
in contradistinction to the casc of expressions, terms. wfs and closed wfs, it
turns out that there are axiomatic theories K for which we cannot tell in
advance whether any given wf of K will eventually appear in the list of
theorems.

DEFINITIONS

(1) A theory K is said to be complete if, for every closed wf 4 of K, either
Fk A or ;_K -A.

(i) A theory K’ is said to be an extension of a theory K il every theorem of

K is a theorem of K'. (We also say in such a case that K is a subthcory
of K")
PROPOSITION 2.14 (LINDENBAUM'S .LEMMA)

If K s o consistent theory, then there is o consistent. complete extension

ol K.

COMPLETEFNESS THEORLEMS

Proof

Let 4.4, be an enumeration ol all closed wis of the language of K. by
H 2 . N e W) Y Y . -1 ¥ 1 A
f.emma 2.13. Define a sequence Jo. 11, Js. ... of theories in the following way.

Jo is K. Assume J, is defined. with #20. If it is not the case that Fy, By,
then let J,,;; be obtained from J, by adding 4, . as an additional axiom. On
the other hand. if =y —4, 1. let 1, == J,. Let 3 be the theory obtained by
taking as axioms all the axioms of all the J;s. Clearly. J, | is an extension of
1. and J is an exiension of all the ;s including Jy =~ K. To show that J is
consistent. it suflices 1o prove that every J; is consistent because a proof of a
contradiction in J, involving as it does only a finite number of axioms, is also
a proof of a contradition in some J,. We prove the consistency of the J;s. by
induction. By hypothesis. Jo = K is consistent. Assume that J, is consistent.
H" J,., =J;, then J; is consistent. If J, #J,, . and therefore. by the defi-
nition of Ji 1. =4, is not provable in J,. then. by Lemmia 2,12, J,.4 is also
consistent. So. we have proved that all the J,s arc consistent and. therefore.
that J is consistent. To prove the completeness of J. let 4 be any closed wi of
K. Then % = 4, lor some j>0. Now, cither Fi, ~# 1 orky AL sinee.
@ itis not the case that by =41, then 4, . is added as an axiom in J
I'herelore, either Fy =4, or - A1 Thus, Jis complete.

Note that even if one can effectively determine whether any wf is an
aviom of K. it may not be possible to do the same with (or even to enu-
merate effectively) the axioms of J; that is, J may not be axiomatic even if K
i~ This is due to the possibility of not being able to determine., at each step,
whether or not =4, is provable in J,,.

JARE

I'xercises

249 Show that a theory K is complete if and only if. for any closed wis .4
nd 6 of KU if g 4V %, then ¢ 4 or bg €.

250" Prove that every consistent decidable theory has a consistent, decid-
able. complete extension.

DEFINITIONS
I N closed term is a term without variables.

\ theory K is a scapegoat theory if, for any wf (x) that has x as its only
free variable, there is a closed term ¢ such that

Fi (3x) ~AB(x) = ~4B(1)
I ENIMA 2,15

Ivery consistent theory K has a consistent extension K’ such that K’ is a
wapepoat theory and K’ contains denumerably many closed terms,
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Proof

Add to the symbols of K a denumerable set {hy.ha. ...} of new individual
constants. Call this new theory K. Its axioms are those of K plus those
logical axioms that involve the symbols of K and the new constants. Ky is
consistent. For. if not. there is a proofin Ky of a wi' .4 A =4, Replace cach
h; appearing in this proof by a variable that does not appear in the proof.
This transforms axioms into axioms and preserves the correctness of the
apphlications of the rules of inference. The final wi in the proof is still a
contradiction. but now the proof does not involve any of the ;s und
thercfore is a proof in K. This contradicts the consistency of K. Hence. K,
1s consistent.

By Lemma 2.13, let Fi(x;), Fa(xi,)..... Fi(x;).... be an enumeration of
all wfs of K that have one free variable. Choose a sequence b, by,.... of

some of the new individual constants such that each by, is not contained in

any of the wis Fi(v;)..... Fi(x;,) and such that b, is different from ecach of

b b . Consider the wif
(Se) () ofilv,) > ofilby)

Let K, be the theory obtamed by adding (5))... .. {S,) to the axioms of Ky,
and let K| be the theoryv obtained by adding all the (S)s as axioms to Kg.
Any proof in K| contains only a finite number ol the (S;)s and. therefore,
will also be a proot in some K,,. Hence. it all the K,,s are consistent, so is
K. To demonstrate that all the K,;s are counsistent, proceed by induction.
We know that K, is consistent. Assume that K,, ;| is consistent but that K,, is
inconsistent (72 1). Then, as we know, any wf is provable in K, (by the
tautology -4 = (4 = B)., Proposition 2.1 and MP). In particular,
Fk, —(S,). Hence, (S,) Fk, , —(S,). Since (S,) is closed, we have, by Cor-
ollary 2.7, tx, , (Sy) = —(S,). But, by the tautology (4 = —4)= -4,
Proposition 2.1 and MP, we then have Fg, |, —(S,); that s,
Fx, , —[(3xi,)~F(x;,) = —F,(b;)]. Now, by conditional elimination, we
obtain kg, (Ix;,)-F,(x;,) and kg, ——F,(b;,), and then, by negation
elimination, - K F,(b;, ). From the latter and the fact that b;, does not occur
in (Sp).....(Sy-1), we conclude Fg, | F,(x,). where x, 1s a variable that does
not occur in the proof of F,(b;,). (Simply replace in the proof all occurrences
of b; by x,.) By Gen, kg, (Vx,) F,(x.), and then, by Lemma 2.1 and
biconditional elimination, kg, , (Vx; )Fy(x;,). (We use the fact that F,(x,)
and F,(x;,) are similar.) But we already have F¢, | (Ix;, )—F,(x; ). which is an
abbreviation of kg, , =(Vx;, )——F,(x;,), whence. by the replacement theorem,
Fk, , ~(Vx;, )F(x;,), contradicting the hypothesis that K, | is consistent.
Hence. K, must also be consistent. Thus K 1s consistent, it is an extension
of K. and 1t 1s clearly a scapegoat theory.

COMPLETENESS THFOREMS

LEMMA 2.16

Let J be a consistent. complete scapegoat theory. Then 1 has a model M
whose domain is the set D of closed terms ol b,

Proof

s . .. - \ . N . N
Forany individual constant ¢, of J. let (a)™ - a,. For any functon letter f;”
of J and for any closed terms /... .1, of 1. Il ({/’["‘,n\'(/] ..... 1) =
.. ... 1) (Notice that f"(r,..... 4,) 1s a closed term. Henee, (.fk”)'\'1 is an
n-ary operation on D.) For any predicate fetter A7 of 1, et (,VI’A‘)‘“ consist of
all  n-tuples {r...., Ly of closed terms ... .. t, of 1 such that
AN (n..oo ). It now sulfices to show that. for any closed wi' 7 of J:

(O) Fa? ifand onlv it i 7

(I this is established and .2 is any axiom of J. let % he the closure of 4. By
Gen by @By (00). Fum 6. By (V1) on page 61, |y 4. Henee. M would be a
model of 1) The proof of ([7) is by induction on the number r of con-
neetives and quantifiers in 4. Assume that () holds for all closed wis with
fewer than r connectives and quantifiers.

Case 1.6 is a closed atomic wl A7 (1. .. .. 1,). Then (1) is a direct con-
~equence of the definition of (A;’)M.

Case 2.4 1s =% 1f ¢ is true for M, then & is false for M and so. by
mductive hypothesis, not-t, & Since J is complete and 7 is closed. I, ~<
thatis. By €. Conversely, if % is not true for M. then & is true for M. Henee.

1 /. Since J is consistent, not-F; =% that is, not-k; 7.
Case 3.6'is & = &. Since 6 is closed. so arc &/ and &. ' is false Tor M.,
then /s true and & is false. Hence. by inductive hypothesis. b, & and not-
1. By the completeness of J. Fy —&. Therefore. by an instance of the
Luitology - D= (mE = —~(D = E)) and (wo applications of MP,
7 = &), that is, by =%, and so, by the consistency of J, not-k, %.
Conversely, if not-k; 4, then, by the completeness of J, ; ~%. that is,
1 (/= &). By conditional elimination, F; & and +, —~&. Hence, by (1)
ton /. s true for M. By the consistency of J, not-+; & and. therefore, by
Vfor &.¢ is false for M. Thus, since  is true for M and & is false for M,
/s false tor M.

Case 4. % is (Vx,) 2.

Case 4a. 7 is a closed wf. By inductive hypothesis, =y 2 if and only
/0 By Exercise 2.32(a), by 2 < (Vx,,)2. So, by @ if and only if

1Y)/ by biconditional elimination. Moreover, Em 2 if and only
Ny (V)7 by property (V1) on page 61. Hence, Em @ if and only if
Ll

Cuse b, 7 is not i closed wit Since % is closed. 7 has x, as its only free

vartable, say /s Fiv,) Then 4 oas (Ve ) (v,,).
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() Assume =y ¢ and not-Hy 4. By the completeness of 3. By =%, that is.
by (V) F(x,,). Then, by Exercise 2.33(a) and biconditional climina-
tion, =y (3x,)~F(x,,). Since J is a scapegoat theory. by =F{t) for some
closed term ¢ of J. But fam 4. that s, Fa (Vx,)F(x,). Since
(VX ) F(x,) = F(t) is true for M by property (X) on page 63, =y £(/).
Hence. by ([J) for F(r). F, £(¢). This contradicts the consistency of J.
Thus, if |y . then. By %.

(i) Assume b % and not-Eym %. Thus,
(#) ‘hl (VV\.IH)F(-\'/H)(##> not — }jw\'l (v-\’/n)""(»\'m)-

By (##). some sequence of elements of the domain D docs not satisty
(Vx,)F{x,). Hence, some sequence s does not satisfy F(x,). Let ¢ be the ith
component of 5. Notice that s*(¢) = v for all closed terms u of J (by the
definition of (¢;)™ and (/}"’)M). Observe also that £(7) has fewer connectives
and quantifiers than % and, therefore, the inductive hypothesis applies 1o
F(1). that is, ([J) holds for F(r). Hence. by Lemma 2(a) on page 63. s does
not satisly #(r). So. F(1) is false for M. But. by (#) and rule Ad. - F(r), and
so. by () for (). |Ewm F(r). This contradiction shows that. if ;4. then
Fm 6.

Now we can prove the fundamental theorem of quantification theory.
By a denumerable model we mcean a model in which the domain is de-
numerable.

PROPOSITION 2.17!

Every consistent theory K has a denumerable model.

Proof

By Lemma 2.15, K has a consistent extension K’ such that K’ is a scapegoat
theory and has denumerably many closed terms. By Lindenbaum’s lemma,
K’ has a consistent, complete extension J that has the same symbols at K'.
Hence, J is also a scapegoat theory. By Lemma 2.16, J has a model M whose

domain is the denumerable set of closed terms of J. Since J is an extension of

K, M is a denumerable model of K.

IThe proof given here is cssentially due to Henkin (1949), as simplified by
Hasenjacger (1953). The result was originally proved by Gadel (1930). Other proofs
have been published by Rasiowa and Sikorski (1951 1952) and Beth (1951), using
(Boolean) algebraic and topological methods, respectively: Sull other proofs may be
found i Hintkka (19554, b) and in Beth (1959)

COMPLETENESS THEOR EMVS

COROLLARY 2.18
Any logically valid wi .2 of a theory K is a thecorem of K.

Proof

We need consider only closed wis 4. since a wi */ is logically valid if and
only if its closure is logically valid. and & is provable in K if and only if its
closure is provable in K. So, let 4 be a logically vahid closed wl of K.
Assume that not-Fg .4. By Lemma 2.12, if we add 4 as a new axiom to K,
the new theory K’ is consistent. Hence, by Proposition 2.17. K’ has a model
M. Since =4 is an axiom of K', ~.# is true for M. Bul. since .4 is logically
valid. 4 is true for M. Hence, 4 is both truc and false for M. which is
impossible (by (II) on page 61). Thus, .2 must be a theorem of K.

COROLLARY 2.19. (GODEL’S COMPLETENESS THEOREM, 1930)
In any predicate calculus, the theorems are precisely the logically valid wis.

Proof

I'his follows from Proposition 2.2 and Corollary 2.18. (Gddel’s original
proof runs along quite different lines. For other proofs, see Beth (195]),
Dreben (1952). Hintikka (19554, b) and Rasiowa and Sikorski (1951; 1952).)

COROLLARY 2.20

I et K be any theory.

) A wf 4 is true in every denumerable model of K if and only if ¢ 4.

(hy If. in every model of K, every sequence that satisfies all wfs in a set I of
wfs also satisfies a wf 4, then I' b %.

) Iha wf 2 of K is a logical consequence of a set I' of wfs of K, then
['g 4.

tdy I a wl 4 of K is a logical consequence of a wf 4 of K, then 4 g %.

Proof

0 We may assume 4 is closed. If not-kx 4, then the theory
K’ - K + {~4)} is consistent.! Hence, by Proposition 2.17, K’ has a
denumerable model M. However, =4, being an axiom of K', is true for

1K s o theory and A s aset of wis of K, then K+ A denotes the theory
cabramed from K by adding the wis of A as axioms.
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M. By hypothesis. since M is a denumerable model of K. .4 is true for
M. Therefore. 4 is true and talse for M. which is impossible.

(b) Consider the theory K+ I™. By the hypothesis. .4 is truc for every model!
of this theory. Hence. by (a). Fx 1 4. So. Ty 4.

Part (¢) is a consequence ol (b). and part (d) is a special case ol (©).

Corollaries 2,18 2.20 show that the “syntactical” approach to quantifi-
cation theory by means of first-order theorics is equivalent to the ‘seman-
tical’ approach through the notions of interpretations, models, logical
validity. and so on. For the propositional calculus. Corollary 1.15 demon-
strated the analogous equivalence between the semantical notion (tautology)
and the syntactical notion (theorem of L). Notice also that, in the propo-
sitional calculus. the completeness of the system L (see Proposition 1.14) led
10 a solution of the decision problem. However. for first-order theories, we
cannot obtain a decision procedure for logical validity or. equivalently, for
provability in first-order predicate calculi. We shall prove this and related
results in Section 3.6.

COROLLARY 2.21. (SKOLEM-LOWENHEIM THEOREM, 1920, 1915)

Any theory that has a model has a denumerable model.

Proof

If K has a model, then K is consistent. since no wf can be both true and false
for the same model M. Hence, by Proposition 2.17, K has a denumerable

model.
The following stronger consequence of Proposition 2.17 is derivable.

COROLLARY 2.22%

For any cardinal number m >R, any consistent theory K has a model of
cardinality m.

Proof

By Proposition 2.17, we know that K has a denumerable model. Therefore,
it suffices to prove the following lemma.

LEMMA

I m and nare two cardinal numbers such that m< wand if K has o model of

cardinality m. then K has a model of cardinahity n.

COMPLETENESS THEOREMS

Proof

Let M be a model of K with domain D of cardinality . Let 1Y be a set of
cardinality n that contains D. Extend the model M to an interpretation M’
that has D" as domain in the following way. Let ¢ be a fixed clement of 1.
We stipulate that the clements of D" — D behave like ¢ For example. if 87 is
the interpretation in M of the predicate letter A7 and (’B’/’)' is the new in-
terpretation in M'. then for any dy.....d, in D', (B7) holds for (d). . ... d,) il
and only if B} holds for (u),....u,). where v, - d 1l d, < D and w, = cf
d; € D' — D. The mterpretation of the function fetters is extended i an
analogous way, and the individual constants have the same interpretations
as in M. It is an casy exercise to show. by induction on the number of
conncctives and quantifiers in a wi™.4, that .4 is true for M il and only (it is
truc for M. Hence, M’ is a mode! of K of cardinality n.

I.xercises

2.51 For any theory K. if I' Fg 4 and each wf in I is true for a model M

of K. show that % is true for M.

2,52 I awl 4 without quantifiers is provable in a predicate caleulus, prove

that 4 1s an instance of a tautology and, hence, by Proposition 2.1, has a

proof” without quantifiers using only axioms (A1)-(A3) and MP. [Hint: if .4

were not a tautology, one could construct an interpretation, having the set

ol terms that occur in 4 as its domain, for which 2 is not true, contradicting

Proposition 2.2.] Note that this implies the consistency of the predicate

calculus and also provides a decision procedure for the provability of wfs

without quantifiers.

253  Show that ¢ 4 if and only if there is a wf % that is the closure of the

conjunction of some axioms of K such that 4 = 4 is logically valid.

254 Compactness. If all finite subsets of the set of axioms of a theory K

have models, prove that K has a model.

255 (a) For any wf 4, prove that there is only a finite number of inter-
pretations of 4 on a given domain of finite cardinality 4.

(b) For any wf 4, prove that there is an effective way of determining
whether 4 is true for all interpretations with domain of some fixed
cardinality 4.

(¢) Letawh g be called k-valid if it is true for all interpretations that
have a domain of & elements. Call Z precisely k-valid if it is k-valid
but not (k + 1)-valid. Show that (k + 1)-validity implies k-validity
and give an example of a wf that is precisely k-valid. (See Hilbert
and Bernays (1934, § 4 5) and Wajsberg (1933).)

2.56  Show that the following wif is true for all finite domains but is false
tor some infimite domain,
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2.57  Prove that there is no theory K whose models are exactly the inter-

pretations with finite domains.

2.58 Let 24 be any wi that contains no quantificrs, function letters. or

mdividual constants.

(a) Show that a closed presmex wi (Vxp) ... (Vx,)(3v) ... (Av,) A with m =0
and #=1.is logically valid if and only if it is true for every inter-
pretation with a domain of # objects.

(b) Prove that a closed prenex wi (Jyy)...(3v,)4 is logically vahd if and
only if it is true for all interpretations with a domain of one clement.

(¢) Show that there is an cflective procedurc to determine the logical va-
lidity of all wfs of the forms given in (a) and (b).

2.59 Let K; and K be theories in the same language ¢, Assume that any

interpretation M of ¢ is a modcl of K if and only if M is not a model of

K. Prove that K, and K- are finitely axiomatizable, that is, there are finite

sets of sentences I and A such that, for any sentence 4. by, 4 ifand only if

't 4, and Fg, #if and only iff At- .41

2.60 A sct I' of sentences is called an  independent axiomatization of a

theory K if (a) all sentences in 7 are theorems of K. (b) I' = 4 for every

theorem 4 ol K. and (¢) Tor every sentence 7 of T it is not the case that

[ - {7} 1% ' Prove that every theory K has an independent axiomatiza-

tion.

2.61" If, for some cardinal m 2Ry, a wi .4 is true for every interpretation of

cardinality m, prove that .4 is logically valid.

2.62" If a wl A is true for all interpretations of cardinality w1 prove that .4 is

true for all interpretations of cardinality less than or equal to .

2.63 (a) Prove that a theory K is a scapegoat theory if and only if, for any

wil #8(x) with x as its only free variable, there is a closed term s such
that kg () A(x) = B(1).

(b) Prove that a theory K is a scapegoat theory if and only if, for any
wi #(x) with x as its only free variable such that Fg (Ix)4(x),
there is a closed term ¢ such that Fg 4(s).

(¢c) Prove that no predicate calculus is a scapegoat theory.

2.8 FIRST-ORDER THEORIES WITH EQUALITY

Let K be a theory that has as one of its predicate letters A7. Let us write 7 = s
as an abbreviation for A%(l,s). and ¢ # s as an abbreviation for 47 (1.s).

"Here, an expression 171 .4, without any subseript attached to b means that .4
is dertvable from T using only Jogical axioms, that s withan the predicate calealus,

FIRST-ORDER THEORIES WITH EQUALITY

Then K is called a firse-order theory with equality (or simply a theory with
equality) it the following are theorems ol K:

(A6) (Vx))x) = v
(A7) x =y = (AB(x.x) = A(x.v))

/

(reflexivity of cquahty)
(substitutivity of equality)

where ¥ and v are any variables, 4(x.v) is any wl. and 4(x. y) arises from
A(x.x) by replacing some. but not necessarily all. free oceurrences of x by y.
with the proviso that v is free for v in 4(x.x). Thus. 4(x. vl may or may not
contain [ree occurrences of v, . i

The numbering (A6) and (A7) is a continuation of the numbering of the
logical axioms.

PROPOSITION 2.23

Inany theory with equality.

ta) = =1 forany term r;
(h) Fr=ys=s5=1forany terms r and s:
W) Fr=s=(s=r=1=r)forany terms 7.5 and r.

Proof

t1) By (A6), F (Vx;) x; = x;. Hence. by rule A4, -1 =1,

th) Let x and y be variables not occurring in ¢ or s. Letting A(x,x) be x = x
and A(x.y) be y = x in schema (A7). b x = p = (x =x= y=yx). But,
by (a). Fx =x. So, by an instance of the tautology (A4 = (B=C))
= (B= (4= ()) and two applications of MP. we have b v =y
>y =x. Two applications of Gen yield - (V) (W) (x =y = y =),
and then two applications of rule A4 give F 1 =5 = 5 — /. .

) Let x,v and z be three variables not occurring in 1,5, or r. Letting
A(v.v) be y =z and #4(y,x) be x =z in (A7), with x and y inter-
changed, we obtain Fy=v= (y=z=x= z). But, by (b),
"v=v=y=ux Hence, using an instance of the tautology
(1 5 B)=((8B=C)= (4= C)) and two applications of MP, we
obtain Fx =y = (y=z=x=2z). By three applications of Gen,

(V) (Vz)(x =y = (y =z = x =2z)), and then, by three uses of
e Ad Fr=s=(s=r=1=r).

I xercises

2,94\1 Sll(s\\' that (A6) and (A7) are true for any interpretation M in which
I s the identity refation on the domain of the interpretation.

265 Prove the following in any theory with cquality.
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(1) 1 CAA 4 (o) (x = v AL4(x)) iy does not oceur in A (x)

(by I (V) AW) £ DAy = v = A4()) if v does not occur in A(x)

(cy b (Vv =3

(d) T x v = f{x) = f{»). where [is any function letter of one argument
(©) I A Ax - v A(v). il pis free for xin . 4(x)

(Fy 1+ Ax) A A(v) = x # v il yis free lor xin A(xy)

We can reduce schema (A7) to a few simpler cascs.

PROPOSITION 2.24

Let K be a theory for which (A6) holds and (A7) holds for all atomic wfs
#(x.x) in which there are no individual constants. Then K is a theory with
equality. that is, (A7) holds for all wfs A(x.x).

Proof

We must prove (A7) for all wis #(x.x). It holds for atomic wis by as-
sumption. Note that we have the results of Proposition 2.23. since its proof
used (A7) only with atomic wis without individual constants. Note also that
we have (A7) Tor all atomic wis .A(x.x). Lor il A(x.x) contains individual
constants. we can replace those individual constants by new variables, ob-
taining a wl 24" (x.x) without individual constants. By hypothesis, the cor-
responding instance of (A7) with 4" (x.x) is a theorem: we can then apply
Gen with respect to the new variables, and finally apply rule A4 one or more
times 1o obtain (A7) with respect to 4(x,x).

Proceeding by induction on the number n of connectives and quantifiers
in #(x,x), we assume that (A7) holds for all & < n.

Case 1. #(x,x) is —%(x,x). By inductive hypothesis, we have
Fy=x= (¢(x,y) = 6(x,x)), since €(x,x) arises from %(x, y) by replacing
some occurrences of y by x. Hence, by Proposition 2.23(b), instances of the
tautologies (4 = B) = (-4 = ~4) and (4= B) = ((B= C) = (4 = ()
and MP, we obtain - x = y = (Z(x,x) = 4(x,»)).

Case 2. #(x,x) is €(x,x) = %(x,x). By inductive hypothesis and Pro-
position 2.23(b), Fx=y= (6(x,y) = €(x,x)) and Fx=y= (¥(xx)
= %(x,y)). Hence, by the tautology (4 = (C, = C)) = [(4 = (D = Dy))
= (4= ((C= D)= (C, = D))))], we have - x = y = (B(x.x) = 4(x,v)).

Cuse 3. B(x,x) is (V2)%(x,x,z). By inductive hypothesis, Fx=y =
(6(x,x,z) = €(x,y,z)). Now, by Gen and axiom (A5). Fx=1y=
(Vz)(%(x,x,2) = €(x,v,2)). By Exercise 2.27(a). = (Vz) (4 (x.x,2) » % (x.v.2)
= [(V2)6(x,x,2) = (V2)6(x,y.z)]. and so, by the tautology (A = B) »
(B=C)= (A=) Fx=y=(4Bxx) » 4{xy)).

The instances of (A7) can be still further reduced.

FIRST-ORDER THEORIES WIETH FQUALTITY
PROPOSITION 2.25

Let K be a theory in which (A6) holds and the following are truc.

(a) Schema (A7) holds for all atomic wis A(x.x) such that no function
letters or individual constants occur in .4 (x.v) and 4(x.v) comes from
Ax.x) by replacing exactly one occurrence ol v by .

(b) Fx :_v:\/'/”(z, ..... zo) = f] (v wy). where /7 is any function
letter of K. zj.....,z, arc variables, and f/(wy.. ... w, ) arises from
Sz z,) by replacing exactly one occurrence of v by v.

Then K is a theory with equality.

Proof

By repeated application, our assumptions can be extended to replacements
of more than one occurrence of x by v. Also. Proposition 2.23 is still deri-
vable. By Proposition 2.24_ it suffices to prove (A7) for only atomic wfs
without individual constants. But. hypothesis (a) enables us casily to prove

= (,)"I =N AY, = Zu) = (‘”(A\’I ----- Ya) = ‘”(:I""‘ZH))

for all variables y..... - TR z, and any atomic wi A(y...., V)
without function letters or individual constants. Hence, it suflices to show

\

t+) If r(x,x) is a term without individual constants and 7(x, y) comes from
t(x,x) by replacing some occurrences of x by y, then Fx =y = 1(x,x)
=1(x, ).

But (*) can be proved, using hypothesis (b), by induction on the number of
tunction letters in #(x,x). and we leave this as an exercise.

It is easy to see from Proposition 2.25 that, when the language of K has
only finitely many predicate and function letters, it is only necessary to
verify (A7) for a finite list of special cases (in fact, n wis for each 47 and »n
wis for each /7).

I xereises

266 lct Ky be a theory whose language has only = as a predicate letter
and no function letters or individual constants. Let its proper axioms be
TRV X7, (V.Y])(VXQ)(X| =X = X :x,) and (VX1)(VX2)(VX3)(X| =X

Xy o2 =x)). Show that K is a theory with equality. [Hint: It

The reader can dmtv how () is applied by using it to prove the following
matance of (AT 1 vy VA = AT Oe)) Let r(v.x) be £ (x) and let
1) be /,'( V).
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sutlices 1o prove that Fyj=x3= (v = v =x=x) and Fx=mn
= (v = x> =y = xa)] Kyis called the pure first-order theory of equaliry.
2.67 Lct Ko be a theory whose language has only == and < as predicate
letters and no function letters or individual constants. Let K, have the
following proper axioms.

(1) (Vx)) x; =x

(b) (Vx)(Voe2) () = x2 = x2 = 1)

() (V\'l)(v.\’z)(vrx)(\ﬂ =Xy = (.\’2 =X3 = X = .\’1))
(d) (Vo) (Fe2)(Fes) (v <2 Axz <)

(€) (Vx)(Va2)(Vx3)(x) < x3Axa < x3 = x; < X3)
(O (Vx)(Va2) () =x2 = ~ 0 <x2)

(2) (Vx)(Vax)(xi <xa VX =xVap <xyp)

(h)y (Vx)) (V) (x) <x2 = (3x3)(x) < x3 Ax3 < x2))

Using Proposition 2.25, show that K, is a theory with equality. K is called
the theory of densely ordered sets with neither first nor last element.

2.68 Let K be any theory with equality. Prove the following.

(@) Fxi=n A A=y =X, x) =H V.. V) where
..., v,) arises from the term 1(xy.....: v,) by substitution of
Ve for gyl respectively.

(h)y Fxy = A Ax =y, = (B v,) e Al W) where
Blvio... 1) 1s obtained by substituting yy.. ... v, for one or more
occurrences of xp.... .0 v,. respectively. in the wf #(x,...,x,). and
Viyoons yu are frec for x;, ... x,. respectively, in the wl Z(x;,....x,).

Examples.

(In the literature, ‘elementary’ is sometimes used instead of ‘first-order’.)

1. Elementary theory G of groups: predicate letter =, function letter 2, and
individual constant a;. We abbreviate f? (1,s) by ¢ +s and a; by 0. The
proper axioms are the following.

(@) x; + (2 +x3) = (x; +x2) +x3

(b) x; +0 =x
(©) (vx))(@x)x1 +x2 =0
d) xi =x

(&) xi=x2=x2=x
() x1=x2= (x2=x3=>x =x3)
@ xi=x;= (X1 +x3=x2+xX3Ax3+x =x3+x2)
That G is a theory with equality follows easily from Proposition 2.25. If
one adds to the axioms the following wf:
(h) x; +x2 =22 +x
the new theory is called the elementary theory of abelian groups.
2. Elementary theory ¥ of fields: predicate letter —, function letters /7 and
/3. and individual constants a; and wy. Abbreviate /7(1.5) by

FIRST- ()R[)P R THE()RIFS WI T H EQU/\LI I Y

(4 5. f5(.s) by -5, and a; and as by 0 and 1. As proper axioms. take
(a) (h) of Example i plus the following.

n x =x = (\‘| CXF =0 XIANT X = XX

G) - (v2 s = (g o x) -

(k) xp - (2 +xa) = (v - x) + (xr - x)

() x;-x =x-x

(Jﬂ) Y| -l = X)
m) vy #0 = () xp-x2 =1
(0) 0 # 1

Fis a theory with equality. Axioms (a)—(m) define the clementary theory
R¢ of commutative rings with unit. If we add to I the predicate letter 43,
abbreviate A43(r.s) by <5, and add axioms (¢). () and (g) of
Exercise  2.67, as well as xy<x>=x +x3i<x+xy and
X; < x2 A0 < x3 = x1 13 <xz-x3. then the new theory Foois called the
clementary theory of ordered fields.

I.xercise

2.09 (a) What formulas must be derived in order to use Proposition 2.25 to
conclude that the theory G of Example | 1s a theory with equality?
(b) Show that the axioms (d)—(f') of equality mentioned in Example 1
can be replaced by (d) and
(f’) X :YZ:"( (3 = X2 = X| = X3).

One often encounters theories K in which = may be defined; that is, there
is i wi &(x,y) with two free variables x and y, such that, if we abbreviate
A {1.8) by 1 =, then axioms (A6) and (A7) are provable in K. We make the
convention that, if 7 and s are terms that are not free for x and y, respec-
nvely. in &(x,y), then, by suitable changes of bound variables (sce Exercise
2A8)  we replace &(x, ) by a logically equivalent wf & (x, y) such that s and s
are free for x and y, respectively, in &*(x,y); then 1 =5 is to be the ab-
hreviation of &7(¢,s). Proposition 2.23 and analogues of Propositions 2.24
and 2.25 hold for such theories. There is no harm in extending the term
theory with equality to cover such theories.

In theories with equality it is possible to define in the following way
phrases that use the expression ‘There exists one and only one x such
that. .

DEFINITION

1 A(x) for ( 1O).4(x) A (V)W) (B(x)NB(y) =>x=y)
In tins definition, the new variable v is assumed to be the first variable that
Jdoes not oceur in A(x). A similar convention 18 to be made in all other
Jetmitions where new variables are introduced.
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Exercise

2.70 In any theory with equality. prove the following.

(ay T (Mot dpy)v=y
(b) 1 (10A(v) & (V) = v & A1)
)AL e 0 (x)) = (3104 & 07 ()]

¢)

I
|
) |
() ()4 VE) = ((Hx)4)V(3ix)e
(¢) F (hx)Ax) = (Av)(4) A (V) A4(y) = v = X))

In any model for a theory K with equality, the relation E in the model
‘orre\'ponding to the predicate letter = is an equivalence relation (by Pro-
position 2.23). If this relation E is the identity relation in the domain of the
model, then the model is said to be normal.

Any model M for K can be contracted to a normal model M”™ for K by
taking the domain D* of M" to be the set of equivalence classes determined
by the relation E in the domain D of M. For a predicate letter A7 and for any

cquivalence classes [h],. ... [h,) in D" determined by Llemtnls by.....b, In
D, we let (4 ,)\' hold for ([h]..... {bn]) if and only if (4 ”)M hold@ for
(br,.... h,). Notice that it makes no difference which representatives
by..... b, we select in the given cquivalence classes because, from (A7),
Foxy=m A A x, =y -5 (AT ox) & AT v,)). Likewise. for
any lumlmn letter /7" and .m> Lqun.llunu Ll(l\\(,\ (] .. [hy] in D, let
(/ ) (] b)) f(/ ) (/;1 ..... b,)]. Again note that this is in-
dcpendum of the choice of the representatives by, . ... b, since, from (A7),
we can prove Fxp =y AL AY =y, = )] (xl ...... %) = 7))

For any individual constant a, let (a,)M. = [(a) } The reldtlon E' corre-
sponding to = in the model M" is the identity relation in D*: E*([by], [b2]) if
and only if E(by,b), that is, if and only if [b] = [h2]. Now one can easily
prove by induction the following lemma: 1f s = (b, b, ...) is a denumerable
sequence of elements of D, and s" = ([/],[b],...) is the corresponding se-
quence of equivalence classes, then a wf 2 is satisfied by s in M if and only if
A is satisfied by s in M*. It follows that, for any wf %, 4 is true for M if and
only if 4 is true for M*. Hence, because M is a model of K, M* is a normal
model of K.

PROPOSITION 2.26 (EXTENSION OF PROPOSITION 2.17)

(Godel, 1930) Any consistent theory with equality K has a finite or denu-
merable normal model.

Proof

By Proposition 2.17. K has a denumerable model M. Henee, the contraction
of M to a normal model yields a finite or denumerable normal model M?

HRﬂ ()Rl)LR llH()RlPS WITH EQUAL ll\

because the set of equivalence classes in a denumerable set D s either finite
or denunicrable.

COROLLARY 2.27 (EXTENSION OF THE SKOLEM-LOWENHEIM
THEOREM)

Any theory with equality K that has an infinite normal model M has a
denumerable normal model.

I’roof

Add to K the denumerably many new individual constants by . b, ... together
with the axioms b; # b; for i # j. Then the new theory K’ is consistent. If K
were inconsistent, there would be a proof in K’ ol a contradiction 4 A -7,
where we may assume that % is a wl of K. But this prool uses only a finite
number of the new axioms: b, # b;,..... b, # b, Now, M can be extended
1o a model M# of K plus the axioms b;, # bj,.. ... bi, # b;,in fact, since M is
aninfinite normal model, we cun choose interpretations ol b; . b, ... b . b; .
sothat the wis by # by, 1 b, # b, are true. But, since 4 A % is derivable
ltom these wfs and the axioms of K, it would follow that @ A =% is true for
\“. which is impossible. Hence, K’ must be consistent. Now. by Proposi-
non 2.26, K’ has a finite or denumerable normal model N. But, since, for
¢ 7 j. the wfs h; # b; are axioms of K'. they are true for N. Thus. the
clements in the domain of N that are the interpretations of by, b5, ... must be
distinet, which implies that the domain of N is infinite and. therefore, de-
numerable.

I \ereises

271 We define (3,x)4(x) by induction on n>1. The case n =1 has al-
ready been taken care of. Let (3, 1x)%(x) stand for
DA v) A(Fux)(x # ¥y A B(x))).

«.rr Show that (3,x)#(x) asserts that there are exactly n objects for which #
holds. in the sense that in any normal model for (3,x)4(x) there are
exactly n objects for which the property corresponding to #(x) holds.

thy (1) For cach positive integer n, write a closed wf 4, such that %, is

true in a normal model when and only when that model contains at
least # clements.

(n) Prove that the theory K, whose axioms are those of the pure theory
of cquality K (see Exercise 2.66), plus the axioms 4, #4,,..., 18
not finitely .\xmm.lllmblc. that is, there is no theory K’ with a finite
number of axioms such that K and K’ have the same theorems.
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(in) For a normal model, state 1 ordinary English the meaning of

By
(¢) Let nobe a positive integer and consider the wl' (&£,) (d,vjv = v Let L,
be the theory Ky + {&,}. where K is the pure theory of equality.
(i)  Show that a normal model M is a model of L, if and only il there
arc exactly # elements in the domain of M.
(i1) Define @ procedure for determining whether any given sentence is a
theorem of L, and show that L, is a complete theory.
2.72 (a) Prove that. if a theory with cquality K has arbitrarily large finite
normal models, then it has a denumerable normal model.
(b) Prove that there is no theory with equality whose normal models
are precisely all finite normal interpretations.
2.73 Prove that any predicate calculus with cquality is consistent. (A
predicate calculus with equality is assumed to have (A1) (A7) as its only
axioms.)
2.74P Prove the independence of axioms (Al)-(A7) in any predicate cal-
culus with equality.
2.75 If #is a wi that does not contain the = symbol and 4 is provable in a
predicate calculus with equality K. show that .4 is provable in K without
using (A6) or (A7).
2.76" Show that = can be defined in any theory whose language has only a
finite number of predicate letters and no function letters.
2.77 (u)’\ Find a non-normal model of the elementary theory of groups G.
(b) Show that any model M of a theory with equality K can be ex-
tended to a non-normal model of K. [Hinr: Use the argument in
the proof of the lemma within the proof of Corollary 2.22]
2.78 Let 4 be a wf of a theory with equality. Show that .4 is true in every
normal model of K if and only if Fg 4.
2.79 Write the following as wfs of a theory with equality.
(a) There are at least three moons of Jupiter.
(b) At most two people know everyone in the class.
2.80 If P(u) means u is a person, G(u,v) means u is a grandparent of v, and
u = v means that v and v are identical, translate the following wf into or-
dinary English:
(Vx)(P(x) = (2x ) (T2} (3xa)(Dea) (x1 £ x2 Ay # X3 Axp # A
X2 FX3AX2 FXgAXy F X A\ G(,\'|,x) A G(.Yz,.\’) A G(,\’g,x)/\
Glxa, x) A(WHG(y,x) = y=xiVy=xaVy=x3Vy=x)))

2.81 Consider the wf
() ()W) (F2)(z # x Az #£ v AAD))

Show that (x) is true in a normal model M of i theory with equality if and
only if there exist in the domain of M at least three things having property

A(2).

l)[l l\Hl()NS ()l NEW FUNC FI()\ Ll‘l l[RS

2.82  Let the language ¥ have the four predicate letters =. P. S and L.
Read w — vas wand v are identical, P(u) as w is « point. S(u) as u is a line. and
L{u.v) as u lies on . Let the theory of equality G of planar incidence geo-
mewry have. in addition to axioms (A1) (A7). the following non-logical
axioms.

(n r
(2) L
(3) S@
4) P !
(5) (20(3r)(3

where (v, y.z) 1s the wf (3u)(S(u) A L{x.u) A v i) AL(z 1)), which is
read as x, v, z are collinear.

A

3=y v 76 AL(y.x)AL(z.x))
Xx#Ev=(z2USE) A Lx.s) A L(v.2)
WP)AP(v)ANP(z) A% (x.v.2))

(a) Translate (1)—(5) into ordinary geometric language.

(b) Prove Fq (Vu)(Ve) (S(u) AS(e) Au# v = (VoI(Ve) (L{x )y A L(x. o)A
L(v.u) NL(y.v) = x =y)). and translate this thecorem into ordinary
geometric language.

(¢y Let R(u.v) stand for S(u) AS(e) A =(Iw)(L(w.u) A L(w.r)). Read
R(u, ) as w and v are distinct parallel lines.

(i) Prove: bg R(u,v) = u#v
(i1) Show that theve exists a normal model of G with a finite domain in
which the following sentence is true:

(V) (W) (SC) A P(y) A —L(v.x) = (Zi2)(L(y.2) A R(z.x)))

td) Show that there exists a model of G in which the following sentence is
true:

(VX)(IY)S) AS(y) Ax # y = =R(x.v))

2.9 DEFINITIONS OF NEW FUNCTION LETTERS
AND INDIVIDUAL CONSTANTS

In mathematics, once we have proved, for any yy,....y,, the existence of a
unique object v that has a property #(u, yy,...,y,), we often introduce a
new function letter f( yr,....y,) such that Z(/(», ..., ), ¥ ..., ) holds
forall vy, . In cases where we have proved the existence of a unique
object o that satisfies a wif %4(u) and 4(u) contains 1 as its only free variable,
then we introduce a new individual constant b such that #(b) holds. It is
venerally acknowledged that such definitions, though convenient, add
nothing really new to the theory. This can be made precise in the following
nuinner,
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PROPOSITION 2.28

Let K be a theory with equality. Assume that b (Fya) A v ... ). Let
K" be the theory with cquality obtained by adding to K a new function letter
/ of i arguments and the proper axiom A( /(.. ... V)V ). as well

as all instances ol axioms (A1)-(A7) that involve /. Then there is an eflective
transformation mapping each wf % of K*# into a wi % % of K such that:

(a) 1f £ does not occur in %, then %7 is .
(b) (~¢)" is =(6H).

(©) (4= a)ise! = o*

() (V)eN? is (vx)(6H).

(e) byi (6 @™

(0 If g %, then by ¢#.

Hence. if % does not contain f/ and k., 6. then ¢ 4.

Proof

By a simple f~rerm we mean an expression f(1).. .., ) in which ry. .. | 1, are
terms that do not contain /. Given an atomic wl % of K#, let 4" be the
result of replacing the leftmost occurrence of a simple term /{(n.. ... 1,)in%
by the first variable ¢ not in 6 or 4. Call the wt (de)(A(ev. 4. .. .. LN

the f~transform ol ¢. If ¢ does not contain /| then let %4 be its own f-
transform. Clearly. . (3o)(A(e.ry ... 1,) NC) < C. (Here, we use
Fr () B(u, ... p,) and the axiom AB( f (3. ... 0)- 11, .- o) Of K#.)
Since the /-transform %’ of ¢ contains one less / than ¢ and by ¢ & €. if
we take successive f-transforms, eventually we obtain a wf %# that does not
contain / and such that Fy» 6% & %. Call €% the f-less transform of €.
Extend the definition to all wfs of K# by letting (-%)* be ~(2#), (¥ = &)*
be ¢* = &%, and ((Vx)2)* be (Vx)@%. Properties (a)-(e) of Proposition
2.28 are then obvious. To prove property (f), it suffices, by property (e), to
show that, if ¢ does not contain / and F« %, then -+ 4. We may assume
that € is a closed wf, since a wf and its closure are deducible from each
other.

Assume that M is a model of K. Let M| be the normal model obtained by
contracting M. We know that a wf is true for M if and only if it is true for
M;. Since bk (31u)B(u, y1. ..., ), then, for any by, ..., b, in the domain of
M, there is a unique ¢ in the domain of M, such that Enm, Blc, by, ... b, If
we define f(b,. .., b,) to be ¢, then, taking /) to be the interpretation of the
function letter /', we obtain from M, a model M* of K¥. For the logical
axioms of K* (including the equality axioms of K#) are truc in any normal

It is better to  take this axiom in the form  (Vidlu /(v .. v)
P F TR IR, Vo)) smee £y, v ) might not be tree Tor wn 8y Vol

DUEFINITIONS OF NEW IFUNCTTON LETITERS

interpretation. and the axiom A( /(... .. Ve lov 1y also holds in M7
by virtue of the definition of /. Since the other proper axioms of K7 do not
contain f and since they are true for M. they are also true for M7, But
"« ‘. Therefore, ¢ is true for M # but since % does not contain f.% is true
for M, and hence also for M. Thus. % is true lor every model of K.
Therefore. by Corollary 2.20(a). Fx 4. (In the case where b g (yju)-4(u) and
A(u) contains only n as a free variable. we form K* by adding a new
individual constant 5 and the axiom .#4{h). Then the analogue of Proposition
2.28 follows from practically the same prool as the one just given.)

lixercise
2.83 Find the /-less transforms of the following wis.

() (V) 3v) (A7 (v S (v ) = [ yove )W)
by A S ey S (e BN Ay i)

Note that Proposition 2.28 also applies when we have introduced several
new symbols £}, . ... f,, because we can assume that we have added cach f; to
the theory already obtained by the addition of /... .. /i 1z then m successive
applications of Proposition 2.28 are necessary. The resulting wf %% of K can
be considered an ( fj,. .., fm)-free transform ol 4 into the language of K.

Fyamples

[. In the elementary thcory G of groups, one can prove (Jv) x+y = 0.
Then introduce a new function / of one argument, abbreviate /(7) by
(1), and add the new axiom x + (—x) = 0. By Proposition 2.28. we now
are not able to prove any wf of G that we could not prove before. Thus,
the definition of (—¢) adds no really new power to the original theory.

Y. In the elementary theory F of fields, onc can prove that
(I ((x £0Ax-y=1)V{x=0and y=0)). We then introduce a new
function letter ¢ of one argument, abbreviate g(r) by + ', and add the
axiom (x #O0Ax-x ' =1)V(x=0and x ' =0), from which one can
provex A0 =x-x ' = 1.

'rom Proposition 2.28 we can see that, in theories with equality, only
predicate letters are needed; function letters and individual constants are
dispensable. If /7" is a function letter, we can replace it by a new predicate
letter 471 if we add the axiom (31u)A;* (u, 1, ..., ys). An individual con-
<Lant is to be replaced by a new predicate letter 4; if we add the axiom
)AL (n).

Ivamiple

In the clementary theory G of groups, we can replace + and 0 by predicate
letters A,‘ and A} i we add the axioms (Vx))(Vxa) (31.r3)A"?(,r1,xz,x,;) and
Chv)AL (), and if we repliace axioms (a). (b), (¢) and (g) by the following:
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(a’) 41‘(\\ X3 u) A /l]‘(,\q.u ) A A (\| Xaow) /\/1';(\\'..\‘3.}') ==y
(b") AT () AL (\ v _) R

(¢) (V) (V)] (\ )= =u)

(¢/) v = xa AL l (n \.A /\A T ) AAT (v o) A AT (vovaw)]

f>:*—'ll/\l—\\

Notice that the proof of Proposition 2.28 is highly non-constructive, since
it uses semantical notions (model, truth) and is based upon Corollary
2.20(a). which was proved in a non-constructive way. Constructive syntac-
tical proofs have been given for Proposition 2.28 (sce Kleene. 1952, § 74),
but. in general, they are quite complex.

Descriptive phrases of the kind “the « such that A(u. v..... yu)'arc very
common in ordinary language and in mathematics. Such phrases are called
definite descriptions. We let w(A(u. y. ..., ,¥x)) denotc the unique object u
such that A(u.y;..... v, ) if there is such a unique object. If there is no such
unique object, either we may let w(A(u,y,...,y,)) stand for some fixed
object, or we may consider it meaningless. (For example, we may say that
the phrases ‘the present king of France' and ‘the smallest integer’ are
meaningless or we may arbitrarily make the convention that they denote 0.)
There are various ways of incorporating these i-terms in formalized theories,
but since in most cases the same results are obtained by using new function
letters or ndividual constants as above, and since they all lead to theorems
similar to Proposition 2.28. we shall not discuss them any further here. For
details, see Hilbert and Bernays (1934) and Rosser (1939; 1953).

2.10 PRENEX NORMAL FORMS

A wf (O) ... (Quyn) A, where each (Q;, ;) is either (Vy;) or (3y),y; 1s dif-
ferent from y; for i # j, and 4 contains no quantifiers, is said to be in prenex
normal form. (We include the case » = 0, when there are no quantifiers at
all.) We shall prove that, for every wf, we can construct an equivalent prenex
normal form.

LEMMA 2.29

In any theory, if y is not free in %, and %(x) and %( y) are similar, then the

following hold.

(@) F((W)€(x)= 2) < (I)(E(y) = 2)
(b) F((E)%(x) = 2) & (W)(E(y) = 2)
(©) H(Z = (WF(x) & (V)2 = E(y))
(d) H(7 = (I)C(x)) & (F)(Z = E(v)
(¢) F ~(Vx)6 & (Fx)%
)y b (H)e ¢ (V) @

l’RENEX \JOR\A/\L FORMS

[

Proof

For part (a):

I (W)e(x) = & Hyp

2. (NG y) = ) Hyp

3. a(Ve) (G (v) = 7) 2, abbreviation

4. (Vy)-(6(v) = 7) 3. negation climination

5. (MNT(y) A7) 4, tautology. Proposition 2.9(c)

6. C(y) N7 S, rule A4

7. %(v) 6, conjunction climination

8. (V)@ () 7, Gen

9. (V)% (x) 8. Lemma 2.11. biconditional
climination

10. & 1.9, MP

[ 6. conjunction climination

12, Y A=Y 10. 11, conjunction introduction

13. (‘v’x)’/(r)
=3Iy () ) f)f-é/'/\—W/) =12

14. (‘V’r)(((\’) = Y
F3On(@(y) = ) 1-13, proof by contradiction
15+ ( )6 (x) =

= (W40 )—* 7) 1-14, Corollary 2.6

I'he converse is proven in the following manner.

(3)(6(y) = 7) Hyp
2. (V)% (x ) Hyp
(b)) = 9 I, rule C
4 (b) 2, rule A4
AR 3,4, MP
o, (I(E(y) = 2),
(V)E(x) be @ 1-5
()% y) = 9)
(W6 (x) - @ 6, Proposition 2.10
N (OvNE

s ((Vx)6(x) = @) 1-7, Corollary 2.6 twice
Purt (a) follows from the two proofs above by biconditional introduction.
Parts (b) () are proved easily and left as an exercise. (Part (f) is trivial, and
() appeared as Exercise 2.33(a); (c) and (d) follow easily from (b) and (a),
respectively.)

Lemma 2.29 allows us to move interior quantifiers to the front of a wf.
This as the essential process in the proof of the following proposition.
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PROPOSITION 2.30

There is an effective procedure for transforming any wi 4 into a wf 4 in
prenex normal form such that - 4 < 7.

Proof

We deseribe the procedure by induction on the number 4 of occurrences of
connectives and quantifiers in 4. (By Exercise 2.32(a. b). we may assume
that the quantified variables in the prefix that we shall obtain are distinet.) if

= (). then let % be 4 itself. Assume that we can find a corresponding % for
all wis with & < ». and assume that .4 has n occurrences of connectives and
quantifiers.

Case 1. 1f 4 1+ ~%. then, by inductive hypothesis, we can construct a
wf & in prenex normal Tform such that = & & &, Hence, F =% < =& by
biconditional negation. Thus, - 4 & &, and. by applying parts (¢) and
(f) of Lemma 2.29 and the replacement theorem (Proposition 2.9(b)), we
can find a wi %4 in prenex normal lorm such that = -4 & %, Hence,
A0

Case 2. W #is 7 > & thens by inductive hypothesis, we can find wfs &7
and 4 in prenex normal form such that b/ < & and - & < &,. Hence,
by a suitable tautology and MP. b (v = &) < (7, = &), that is,
F 4 < (7 = &1). Now, applying parts (a) (d) of Lemma 2.29 and the
replacement theorem, we can move the quantifiers in the prefixes of %, and
&1 to the front, obtaining a wf % in prenex normal form such that
F# e 9.

Case 3. If # 1s (Vx)%, then, by inductive hypothesis, there is a wf % in
prenex normal form such that - & < 9,; hence, -+ 4 < (Vx)%, by Gen,
Lemma 2.8, and MP. But (¥x)% is in prenex normal form.

Examples

I. Let 2 be (Vx)(4](x) = (Vy)(43(x,y) = =(Vz)43(y,2))). By part () of
Lemma 2.29: (Vx)(4!(x) = (Vy)[43(x,y) = (Hz)ﬂAz(y,Z)J)
By part (d): (Vx)(Af(r) = (Vv)(E]u)[A%(x y) = ~A3(y,u)]).
By part ( C) (Vx) (Vo )( 1) = Fu)[A5(x,v) = -43 ( )]

).
v) = 42 (v w)
v

By part (d): (Vx)(Vv) Elw) (A1( ( ).
Changing bound variables: (Vx)(Vy)(3z)(A}(x)= ( (r ) = A3 (v.2))).
2. Let 2 be 4i(x,y) = ( V)41(y) = ([(304](x)] = 43(v))]-
By part (b): 47(x,y) = (I)(4](v) = (Vu)[Al}(u) = A%( ).
' I

By part (¢): 43(x, ) (?iv)(Vl)(A{(_v) = Al () = AN,
By part (d): (4»1)( Heoy) > (Ve)dl(w) s (A:(r) s AL ).
By part (¢): ( ) (Vz)(. 1 (xvov) > IA[(w) ANz s AN )

PRE NPX NORMAL P()RVIS 1

F.xercise

2.84 Find prenex normal forms Lk]lliV ent to the l‘ollowing wis.
(a) [(V«\‘)(;‘l}(x) = A ()] = ( HV)A (] = (I2)47(v.2))
(b) ()] (v v) = (4] (x) = ~(3u)4;(x.u))

A predicate calculus in which there are no function letters or individual
constants and in which. for any positive integer . there are infiitely many
predicate Ietters with 7 arguments, will be called a pure predicate calculus.
l-or pure predicate calculi we can find a very simple prenex normal form
theorem. A wf in prenex normal form such that all existential quantifiers (if
any) precede all universal quantifiers (if any) is said to be in Skolem normal
form.

PROPOSITION 2.31

In a pure predicate calculus, there is an effective procedure assigning to cach
wi .4 another wf % in Skolem normal form such that + .4 if and only if - .’
(or, equivalently, by Gédel's completeness theorem, such that .4 is logically
valid if and only if ./ is logically valid).

Proof

First we may assume that 2 is a closed wf, since a wf is provable if and only
("its closure is provable. By Proposition 2.30 we may also assume that .4 is
i prenex normal form. Let the rank r of # be the number of universal
quantifiers in 4 that precede existential quantifiers. By induction on the
rank, we shall describe the process for finding Skolem normal forms.
Clearly, when the rank is 0, we already have the Skolem normal form. Let us
assume that we can construct Skolem normal forms when the rank is less
than r, and let r be the rank of #. % can be written as follows:

W) oo (v (YW)E (v, ooy, u),  where  @(y1,...,y.u)  has  only
Ve Va, 4 as its free varldbles. Let A;'“ be the first predicate letter of n + 1
arguments that does not occur in 4. Construct the wi

A () @) G (s ym) = A7 ey w))

= (FA (1, )

I ¢t us show that + .4 if and only if - 2. Assume + 4. In the proof of %4,
replace all occurrences of A""( lvee-ZmyW) by €*(z1,...,2s,w)), where *
iv obtained from % by replacing all bound variables having free occurrences
in the proof by new variables not occurring in the proof. The result is a

proof off

——
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(7" was used instead of % so that applications of axiom (A4) would remain

applications ol the same axiom.) Now. by changing the bound variables
back agaim. we see that

E e (e (M) (e Npotd) =R V. ut))
= (Vuya{v..... V. i)
Since F (Vu)(C(v..... ),, u) =>%(y..... Wy-1)). we obtain, by the re-
placement  theorem, + (dy))... (3),,)(%1)({(_1] ..... yy.u). that is, B4
Conversely, assume that b 4. By rule C. we obtain (Vu)%(by.. ... by ).
But. b (V)7 = (Vu)(“ = &) = (Vu)é) (see Exercise 2.27 (a)) for any
wis & and 4. Hence. F¢ (Vu)(%(b)..... b,. u) :\A’/-’*'(bl ..... by u)) =
(Vu)AY U (by,... by.u). So, by rule E4, ¢ (3,)...3n) ([(Vu)(% (b,
ohyou) = A}” oo Yot))] = (VL{)A»';'} Yy o)), that is, Fe 4.

By Proposition 2.10, + .4,. A prenex normal form of .4, has thc form
Ay (3w (B (Fu)(Or21) .. (Osz,) (V)% . where % has no quantifiers and
(O1.21) ... (Qz,) is the prefix of 4. [In deriving the prenex normal form,
first. by Lemma 2.29¢a). we pull out the first (V). which changes to (Ju):
then we pull out of the first conditional the quantifiers in the prefix of 4. By
Lemma 229, b). this exchanges existential and universal quantifiers, but
then we again pull these out of the second conditional of 4. which brings
the prefix back to its original form. Finally. by Lemma 2.29(c). we bring the
second (Vu) out to the prefix, changing it to a new quantifier (Ve).] Clearly.
#> has rank one less than the rank of %4 and, by Proposition 2.30,
F %) < %4, But,~ 4 if and only if - 8,. Hence, - 4 if and only if - 45. By
inductive hypothesis, we can find a Skolem normal form for %, which is
also a Skolem normal form for 4.

Example
AB(¥x)(Vy)(32)%(x,y,z), where & contains no quantifiers
Br:(¥x)(Vy)(32)E(x,y,2) = A_l'- (x)) = (Vx)A}(x), where A; is not in %.

We obtain the prenex normal form of 4:

B ((v)(F2)E (x,p.2) = A}(r)] = (Vx)A_:. (x)) 2.29(a)
E(@ENE)b(x.5,2) = A/(¥)] = (04! (x)) 2.29(a)
(NG (V) (x,y,2) = 4](x)] = (¥x)4;(x)) 2.29(b)
() () [(V2)(F(x.y,2) = A}.(.\‘)) = (Vo)A (x)] 2 '“)( )
(20) (V) (32)([ (x. v. :) S At > (w0 () ()
(W)WY (evez) = Aala) s Al 2.29(0)
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We repeat this process again: Let “(x.v.zr) be (4(x.v.z) = A (x)
= AN(r). Let 47 not oceur in /. Form:

G (Ve (v 2y s AL )] s (7 (v )

([ (o) (7 (v o)) = Ape )] = (Fep] (o] 2.29(a)
(T3S (el 7 x.vz.r) wl v = (V) l (x. ) 2.29(a.b)
() ) () (Ve v ([ vz = A (vov)] = A\\ W) 2.29(¢)

I'hus. a Skolem normal form of .4 is:

(AN I (32 (Vo) (Iw) (J((6 (v v 2) = A}(.\')) = /l/](r)) s Af(x, w))

I xercises

2.85 Find Skolem normal forms for the following wis.

G (Al (x) = (Vu)(ﬂv)( V)4 (uox.y)

(h) (V) () (Vu) (Fe) AT (xo v v)

2.86  Show that there is an effective procedure that gives. for cach wi .#4 of a
pure predicate calculus, another wi & of this calculus of the form
) () (Fz2)) - (Fz)%, such that % is quantifier-free. n,m =0, and 4 is

watishable if and only if % is satisfiable. [Hint: Apply Proposition 2.31 to —.4.]
287 Find a Skolem normal form ¢ for (Vx)(3y)4%(x.y) and show that it is
not the case that - .9 & (Vx)(3y)4%(x,y). Hence, a Skolem normal form for
1 wi4 is not necessarily logically equivalent to 4. in contradistinction to the
prenex normal form given by Proposition 2.30.

2.11 ISOMORPHISM OF INTERPRETATIONS.
CATEGORICITY OF THEORIES

We shall say that an interpretation M of some language & is isomorphic
with an interpretation M* of .¢ if and only if there is a one-one corres-
pondence ¢ (called an isomorphism) of the domain D of M with the domain
/1 of M" such that:

I For any predicate letter A}’ of & and for any by,...,b, In
Dobwm AUy, ... by] if and only if - A;.'[g(bl),...,g(b,,)].

' For uany function letter f” of % and for any by,....b, in
. ‘((/ ) (h1,... by )):(/,) ( (bl) "vg(bn))‘

U For any individual constant a; of &, z/((aj)M) = (a;)
1 he notation M =~ M* will be used to indicate that M is isomorphic with
M*. Notice that, if M = M", then the domains of M and M* must be of
the same cardinality.

11
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PROPOSITION 2.32

If ¢ is an isomorphism of M with M” | then:

(a) Tor any w4 of ¥, any scquence s (hy.ho....) of elements of

the domain D of M, and the corresponding scquence  ¢(s) =
(g(hy).g(ha). . ). ssausfies 4 in M if and only if ¢(s) satisfies 4 in M":
(b) hence, Fy 4 if and only if |y 4.

Proof

Part (b) follows directly from part (a). The proof of part (a) is by induction
on the number of connectives and quantifiers in .4 and is left as an exercise.

From the definition of isomorphic interpretations and Proposition 2.32
we see that isomorphic interpretations have the same “structure” and. thus,
differ in no essential way.

Exercises

2.88 Prove that, if M is an interpretation with domain D and D' is a set
that has the same cardinality as D. then one can define an interpretation M
with domain 2 such that M is isomorphic with M*.

2.89  Prove the following: (1) M is isomorphic with M. (b) If M, is iso-
morphic with M, then My is isomorphic with M. (¢) If M, is isomorphic
with M, and M; is isomorphic with Ms, then M, is isomorphic with M3,

A theory with equality K is said to be m — categorical. where m is a
cardinal number, if and only if: any two normal models of K of cardinality
m are isomorphic; and K has at least one normal model of cardinality m (see
Los, 1954c¢).

Examples

I. Let K? be the pure theory of equality K; (see page 98) 1o which has been
added axiom (E2): (3,\’])(3)[2)(,\’1 #x2 A (V.Y}) (,\'3 =x1Vx3 = X2)). Then
K? is 2-categorical. Every normal model of K? has exactly two elements.
More generally, define (En) to be:

(3) .».(axn)< N wAGAEG =3V vy —m)

I<i<jg<n
where A\ ;.ic, Xi # x; is the conjunction of all wfs x; #x; with
I <i < j<n. Then, if K" is obtained from K; by adding (En) as an
axiom, K" is n-categorical, and every normal model of K" has exactly n
elements.
2. The theory Kj (see page 98) of densely ordered sets with neither first nor
last element is Ry - categorical (see Kamke, 1950, p. 71: every denumer-

GENERALIZED FIRST-ORDER FHEORIES

able normal model of Ko is isomorphic with the model consisting ol the
set of rational numbers under their natural ordering). But onc can prove
that Ko is not m- categorical for any nr diflerent from .

Exercises

290" Find a theory with equality that is not ¥, categorical but is nmi—ca-
tegorical for all mu = Ny, [Hint: Consider the theory Ge of abeliun groups
(see page 98). For cach integer a. let ny stand for the term (v 4+ y) -0+ v
consisting of the sum of n ¥s. Add to G¢ the axioms ( 4, ) (Vx){Jv){ny = x)
lfor all n2=2. The new theory 1s the theory of uniquely divisible abelian
groups. Its normal models are essentially vector spaces over the field of
rational numbers. However, any two vector spaces over the rational num-
bers of the same non-denumerable cardinality are isomorphic, and there are
denumerable vector spaces over the rational numbers that are not iso-
morphic (see Bourbaki, 1947).]

291" Find a theory with cquality that is m-categorical for all infinite
cardinals m. [Hini: Add to the theory Ge of abelian groups the axiom
(Vx;}(2¥; = 0). The normal models of this theory arc just the vector spaces
over the field of integers modulo 2. Any two such vector spaces of the same
cardinality are isomorphic (see Bourbaki. 1947).]

2.92  Show that the theorems of the theory K" in Example [ above are
precisely the set of all wfs of K that arce true in all normal models of
cardinality #.

293" Find two non-isomorphic densely ordered sets of cardinality 2™ with
neither first nor last element. (This shows that the theory K, of Example 2 is
not 2% —categorical.)

Is there a theory with equality that is m—categorical for some non-
countable cardinal m but not n—categorical for some other non-countable
cardinal n? In Example 2 we found a theory that is only ¥,-categorical; in
I'xercise 2.90 we found a theory that is m—categorical for all infinite mt > N
but not Ny—categorical, and in Exercise 2.91. a theory that is m—categorical
tor all infinite m. The elementary theory G of groups is not m—categorical
for any infinite nm. The problem is whether these four cases exhaust all the
possibilities. That this is so was proved by Morley (1965).

2.12 GENERALIZED FIRST-ORDER THEORIES.
COMPLETENESS AND DECIDABILITY!

it. in the definition of the notion of first-order language. we allow a non-
countable number of predicate letters, function letters, and individual

"Presupposed in parts of this section is a slender acquaintance with ordinal and
cardimal numbers (see Chapter 4; or Kamke, 19500 or Sierpinski. 1958).
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constants. we arrive at the notion of a generalized first-order language. The
notions of inrerpretation and model extend in an obvious way to a gen-
eralized first-order language. A generalized first-order theory in such a lan-
guage is obtained by taking as proper axioms any set of wis of the language.
Ordinary first-order theories are special cases ol generahized first-order
theories, The recader may easily check that all the results for first-order
theories. through Lemma 2.12, hold also for generalized first-order theories
without any changes in the proofs. Lemma 2.13 becomes Lemma 2,13 if the
sct of symbols of a generalized theory K has cardinality ®,. then the set of
cxpressions of K also can be well-ordered and has cardinality X,,. (First. fix a
well-ordering of the symbols of K. Second, order the cxpressions by their
length, which is some positive integer. and then stipulate that if ¢) and ¢, are
two distinct expressions of the same length &, amd j is the first place in which
they differ, then e; precedes e, if the jth symbol of e, precedes the jth
symbol of ¢; according to the given well-ordering of the symbols of K.)
Now. under the same assumption as for Lemma 2.13', Lindenbaum’s
Lemma 2.14' can be proved for gencralized theories much as before, except
that all the enumerations (of the wfs %; and of the theories J;) are transfinite,
and the proof that I is consistent and complete uses transfinite induction.
The analogue of Henkin's Proposition 2.17 runs as follows.

PROPOSITION 2.33

If the set of symbols of a consistent generalized theory K has cardinality ¥,
then K has a model of cardinality N,.

Proof

The original proof of Lemma 2.15 is modified in the following way. Add X,
new individual constants by, b>,....b;,... . As before, the new theory K is
consistent. Let F1(x;,), ..., Fi(x;,),... (4 < wy) be a sequence consisting of all
wfs of Ky with exactly one free variable. Let (S;) be the sentence
(3x;,)~Fi(x;,) = —Fi(b;,), where the sequence b, ,b;,,...b;,,... of distinct
individual constants is chosen so that b;, does not occur in Fy(x;,) for f<A.
The new theory K., obtained by adding all the wfs (S;) as axioms, is proved

to be consistent by a transfinite induction analogous to the inductive proof

in Lemma 2.15. K is a scapegoat theory that is an extension of K and
contains R, closed terms. By the extended Lindenbaum Lemma 2.14', K |
can be extended to a consistent, complete scapegoat theory J with R, closed

terms. The same proof as in Lemma 2.16 provides a model M of J of

cardinality X,

(}ENER/\L]ZEI; FIRST:;E;R[)EI{ VTi'HE()Rllég’
COROLLARY 2.34

(a) I the set of symbols of a consistent gencralized theory with equality K
has cardinality ®,, then K has a normal model of cardinality less than
or cqual to N,

(b) If. in addition, K has an infinite normal model (or if K has arbitrarily
large finite normal models), then K has a normal model of any car-
dinality R, =R,

(¢} In particular, if K is an ordinary theory with cquality (i.c.. 8, = Ng) and
K has an infinite normal model (or if K has arbitrarily large finite
normal models), then K has a normal model of any cardinality
Ny (f=0).

Proof

(a) The model guaranteed by Proposition 2.33 can be contracted 1o a normal
model consisting of equivalence classes in a set of cardinality X,. Such a sct
of cquivalence classes has cardinality less than or equal to ,.

(b) Assume Nz =N,. Let by, b,, ... be a set of new individual constants of
cardinality ®g, and add the axioms b; # b, for 2 # u. As in the proof of
Corollary 2.27, this new theory is consistent and so, by (a). has a normal
model of cardinality less than or equal to Ny (since the new theory has Ny
new symbols). But. because of the axioms b, # b,, the normal model has
exactly Ny clements.

(¢) This is a special case of (b).

I xercise

2.94 If the set of symbols of a predicate calculus with equality K has
cardinality N,, prove that there is an extension K’ of K (with the same
symbols as K) such that K’ has normal model of cardinality X,, but K’ has
no normal model of cardinality less than ¥,.

I'rom Lemma 2.12 and Corollary 2.34(a, b), it follows easily that, if a
rencralized theory with equality K has N, symbols, is Ng-categorical for
some fiza, and has no finite models, then K is complete, in the sense that,
torany closed wf 4, either ¢ % or b —2 (Vaught, 1954). If not -+¢ 4 and
not-t k. =4, then the theories K' =K + {~#} and K" =K + {#)} are
consistent by Lemma 2.12, and so, by Corollary 2.34(a), there are normal
models M and M” of K" and K", respectively, of cardinality less than or
cqual to Ry Since K has no finite models, M" and M” are infinite. Hence, by
Corollary 2.34(b). there are normal models N’ and N” of K’ and K", re-
spectively, of cardinality Ry, By the Rg-categoricity of K, N’ and N” must be
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isomorphic. But,since 4 is truc m N and .4 is truc in N”. this is impossible
by Proposition 2.32(b). Thercelore. cither b g 4 or i-g —4.

In particular. i K is an ordinary theory with equality that has no finite
models and 1s Ng-categorical for some 20, then K is complete. As an
example. consider the theory Ks ol densely ordered sets with neither first nor
last element (sce page 98). K» has no finite modcls and is ¥y-cateogrical.

[ an ordinary theory K is axiomatic (i.c.. one can effectively decide
whether any wiis an axiom) and complete, then Kois decidable. that is. there
is an cflective procedure to determine whether any given wi'is a thcorem. To
sce this. remember (see page &6) that if a theory is axiomatic, one can
cflectively enumerate the theorems. Any wi .4 is provable if and only if its
closure is provable. Hence, we may confine our attention to closed wis 4.
Since K is complete, either 4 is a theorem or —.4 is a theorem. and,
therefore, one or the other will eventually turn up in our enumeration of
theorems. This provides an cflective test for theoremhood. Notice, that iff K
is inconsistent, then every wf is a theorem and there is an obvious decision
procedure; if K is consistent, then not both 4 and -4 can show up as
theorems and we need only wait until onc or the other appears.

I an ordinary axiomatic theory with equality K has no finite models and
is Ng-categorical for some 200 then. by what we have proved, K is de-
cidable. In particular. the theory K discussed above is decidable.

In certain cases. there s amore direet method of proving completeness or
decidability. Let us take as an example the theory Ks of densely ordered sets
with neither first nor last clemient. Langford (1927) has given the following
procedure for K,. Consider any closed wi 4. By proposition 2.30, we can
assume that 4 is in prenex normal form (Q) w) ... (O, ¥,)%, where ¢ con-
tains no quantifiers. If (Q,v,) is (¥y,). replace (vy,)% by =(3y,)~%. In all
cases, then, we have, at the right side of the wf, (3y,)%. where % has no
quantifiers. Any negation x # y can be replaced by x < yVy <ux, and
—(x < y) can be replaced by x =y Vv y < x. Hence, all negation signs can be
eliminated from 7. We can now put % into disjunctive normal form. that is, a
disjunction of conjunctions of atomic wfs (see Exercise 1.42). Now
(T 2\ V 22V ...V %) isequivalentto (3y,) 2 V (3yy) Z2 V...V () %k
Consider each (3y,)%; separately. %, is a conjunction of atomic wfs of the
form ¢ < s and 1 = 5. If %; does not contain y,, just erase (3y,). Note that, if
a wf & does not contain y,, then (3y,)(6 A %) may be replaced by
& A (3y,)# . Hence, we are reduced to the consideration of (3y,).#. where
F is a conjunction of atomic wfs of the form ¢ < s or 1 = s, each of which
contains y,. Now, if one of the conjuncts is y, = z for some z different from
vu. then replace in # all occurrences of y, by = and crase (3v,). If we have
v, = v, alone, then just crasc (3y,). If we have v, v, as one conjunct
among others, then crase v, = v,. If .# has a conjunct v, - v, then replace
all of (W) # by oy, < wy IE & consists of v, - o, AL Ay, - g
Aty < v A A, - v, then replace ( hy).# by the comunction of all the
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wisu, <z, for I<sism and 1< p<j. Ifall the us or all the z,5 are missing,
replace (Ay,)-# by v, = v, This exhausts all possibilitics and. in every case,
wa have replaced (dv,).# by a wil containing no quantifiers, that is. we have
climinated the quantifier (3v,). We are left with (QO1vy) ... (Qn 1y 1)%.
where 4 contains no quantifiers. Now we apply the saume procedure suc-
cessively to (Q, vy 1) (Qyy1). Finally we are left with a wl” without
quantifiers. built up of wis of the form x = x and x < x. If we replace x = x
by v =x = x=x and x < x by =(x = x = x = x). the result is ecither an
mstance of a tautology or the negation of such an instance. Hence, by
Proposition 2.1, either the result or its negation is provable. Now, one can
casily check that all the replacements we have made in this whole reduction
procedure applied to 4 have been replacements of wis .# by other wfs #
such that Fg . < 7. Hence, by the replacement theorem. il our final result
7 is provable. then so is the original wi 4. and. it =7 is provable, then so is

4. Thus, K» is complete and decidable.

The method used in this proof. the successive climination of ¢xistential
quantifiers. has becn applied to other theories. It yields a decision procedure
i~cee Hilbert and Bernays. 1934, § 5) for the pure theory of equality K, (sce
naee 98). 1t has been applied by Tarski (1951) to prove the completeness and
decidability of elementary algebra (i.e.. of the theory of real-closed fields: see
van der Waerden, 1949) and by Szmielew (1955) to prove the decidability of
the theory G of abelian groups.

I \creises

295 (Henkin. 1955) If an ordinary theory with equality K is finitely ax-
ratizable and Wy-categorical for some o, prove that K is decidable.
296 (a) Prove the decidability of the pure theory K, of equality.
(b) Give an example of a theory with equality that is ¥,-categorical
for some «, but is incomplete.

VMathematical applications

i 1ct 1 be the elementary theory of fields (see page 98). We let n stand for
the term 1+ 1+ ...+ 1, consisting of the sum of »n Is. Then the assertion
that i hicld has characteristic p can be expressed by the wf %),: p = 0. A field
has characteristic 0 if and only if it does not have characteristic p for any
proime p. Then for any closed wf 2 of F that is true for all fields of char-
wteristic 0, there is a prime number g such that 4 is true for all fields of
Sharacteristic greater than or equal to ¢g. To see this, notice that, if Fy is
obtauned from ' by adding as axioms —%5, =%3,.... =%, ... (for all primes
p1 the normal models of 14, arce the fields of characteristic 0. Hence, by
Paeraise 2770 1y, 40 But then, for some finite set of new  axioms
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Wy o g oy, . we have =6, o, o =, A Let g be a
prime greater thanall g, ... .. g.. In cvery ficld of charactenstic greater than
or equal o ¢g. the wis ﬁ%ql Gy, —6,, arc true; hence, 4 1s also true.

(Other applications in algebra may be found in A. Robinson (1951) and
Cherlin (1976).)

2. A graph may be considered as a set with a symnietric binary relation R
(i.c.. the relation that holds between two vertices if and only if they are
conneeted by an edge). Call a graph k-colourable it and only if the graph can
be divided into & disjoint (possibly empty) sets such that no two elements in
the same sel are in the relation R. (Intuitively, these sets correspond o &
colours. each colour being painted on the points in the corresponding set,
with the proviso that two points connected by an edge arc painted diflerent
colours.) Notice that any subgraph of a k-colourable graph is k-colourable.
Now we can show that, if every finite subgraph of a graph % is k-colourable,
and if % can be well-ordered. then the whole graph % is k-colourable. To
prove this, construct the following generalized theory with cquality K (Beth,
1953). There are two binary predicate letters, A3 (=) and A% (corresponding
to the relation R on %): there are & monadic predicate letters Al A)
(corresponding to the & subsets into which we hope to divide the graph): and
there are individual constants a, . one for cach clement ¢ of the graph 4. As
proper axioms. in addition to the usual assumptions (A6) and (A7), we have
the following wils:

(irreflexivity of R)

(symmetry of R)

(division into k classes)

(disjointness of the &

classes)

(V) (Vo)) (x) AA)(y) = —A43(x,p)) for | <i<k (two elements of the
same class are not in the relation R)

(VD)  a, # a., for any two distinct elements b and ¢ of ¥

(VII) A5(ap,a.), if R(b,c) holds in ¥

(I  —dA3xy)

(1) A3(x.y) = A3(y.x)

(1) (Vx) (A} (x) VAL (x) V.V A (x)
avy

Now, any finite set of these axioms involves only a finite number of the
individual constants a,....,d.. and since the corresponding subgraph
{ci,...,cq} is, by assumption, k-colourable, the given finite set of axioms
has a model and is, therefore, consistent. Since any finite set of axioms is

consistent, K is consistent. By Corollary 2.34(a), K has a normal model of

cardinality less than or equal to the cardinality of 4. This model is a k-
colourable graph and, by (VI)-(V1I), has % as a subgraph. Hence 4 is also A-
colourable. (Compare this proof with a standard mathematical proof of the
same result by Bruijn and Erdds (1951). Generally. use of the method above
replaces complicated applications of Tychonoft's theorem or Konig's Un-
endlichkeits lemma.)

GENERALIZED FIRST-ORDER THEORITES
F.xereises

297" (Lo&. 1954b) A group B s said o be orderable il there exists a binary
relation R on B that totally orders B such that, o vRy. then (x + 2)R(y +:J)
and (z + x)R(z -+ v). Show, by a method similar to that used in Exanvlplc 2
above. that a group B i1s orderable if and only it every Anitely generated
subgroup is orderable (if we assume that the set £ can be well-ordered).
298" Set up a theory for algebraically closed ficlds ol characteristic p (= 0)
by adding to the theory F of ficlds the new axioms £, where £, states that
cvery non-constant polynomial of degree # has a root. as well as axioms that
determine the characteristic. Show that every wi of | that holds for one
algebraically closed field of characteristic O holds for all of them. [Hint: This
theory is Rg-categorical for f# > 0. is axiomatizable. and has no finite
models. Sec A. Robinson (1952).]

2.99 By ordinary mathematical reasoning. solve the finire marriage problem.
Given a finite set M of m men and a sct N of women such that cach man
knows only a finite number of women and. for 1 <& < .m. any subsct of M
having & elements knows at least & women of NV (i.e.. there are at least &
women in ¥ who know at least one of the & given men), then it is possible to
marry (monogamously) all the men of M to women in N so that every man is
married to a women whom he knows. [Hint (Halmos and Vaughn, 1950):
»r Lastrival. For m > 1, use induction, considering the cases: (1) For all A
anth 1<k < m, every set of £ men knows at least & + 1 women; and (il) for
ome & with 1<k < m, there is a set of £ men knowing exactly £ women.]
I vtend this result to the infinite case, that is, when M is infinite and well-
~rderable and the assumptions above hold for all finite k. [Hint: Construct
m appropriate generalized theory with equality. analogous to that in Ex-
mple 2 above, and use Corollary 2.34(a).}

2100 Prove that there is no generalized theory with equality K., having one
predicate letter < in addition to =, such that the normal models of K are
victly those normal interpretations in which the interpretation of < is a
~ell-ordering of the domain of the interpretation.

I ¢t .4 be a wiin prenex normal form. If 4 is not closed, form its closure
antead.  Suppose,  for  example, Z is  (3y)(V12)(Vys) (Fya) (Fys ) (Vye)
‘ \;.‘\'y,_\:z._u;.ys.,y(,), where % contains no quantifiers. Erase (3y;) and re-
place vpin % by a new individual constant by (Vi) (V33)(3ys) 3ys)(Vye)
© hyovoviy.vs, ). Erase (Vyn) and  (Vy3), obtaining  (3ys)(Fys)(Vye)
o hyova vy, vs.vs). Now erase (3yy) and replace yy in € by g(32,13), where
e new function letter: (3ys) (V)6 (b1, v2, v, 9(32, 13), Vs, V6) - Erase (Fys)
and replace vs by A(v.vz), where A is another new function letter: (V)
o byovsoveg(mon) Ao vs). v ). Finally, erase (Vy,). The resulting wf
e byovaovig(mom) (m. v v ) contains no quantifiers and will be denoted
by A" Thus, by introducing new function letters and individual constants,
we can chininate the quantifiers from a wt,
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Fixamples . ;
L0 A s o ns OVro (e (3% (v v v s ) where % is quantifier-
Iree. then 4° is ol the form gy yovvova (v g)). N

10 4 0s (e e ) V) (W) (s )4 (v vou 1y v ). where % is quantifier-
free. then 4" is of the form by, e g (v )

2

Notice that #' = 4. since we can put the quantiliers back by applications
of Gen and rule E4. (To be more precise. in the process ol obtaining 4", we
drop all quantifiers and. for cach existentially quantificd variable y,. we

substitute a term g(zy. .. .. z1). where ¢ is a new function letter and z... 2k
are the variables that were universally quantified in the prefix preccdllng
(Fvy). It there are no such variables zp..... 2. we replace 3y by a new in-

dividual constant.)

PROPOSITION 2.35 (SECOND ¢-THEOREM)

(Rasiowa. 1956; Hilbert and Bernays. 1939) Let K be a generalizc—;d t.h.cory.
Replace cach axiom 4 of K by 4" (The new funclign letters and mdwudl'lal
constants introduced Tor one axiom are to be diffevent from those in-
rroduced for another axiont.) Let K be the generalized theory with the
proper axioms 4°. Them:

(a) 1t isawlol Kand 'y 7. then b g 7.
(b) K is consistent if and only i K is consistent.

Proof

(a) Let # be a wf of K such that F- . Consider the 01'dinu1"y theory K”
whose axioms 4, .... 4, are such that B, ... B, are the axioms used in
the proof of &. Let K be the theory whose axioms are 4], ....4,. Hence
Fye %. Assume that M is a denumerable model of K°. Wg may assume that
the domain of M is the set P of positive integers (see Exercise 2.88). Let % be
any axiom of K° For example, suppose that. A has t‘he form
(Fv)(Vy2) (V) (Fva) € (01, 32, 3, va), Where € is quanuﬁer-fr.ee. Z has ic
form % (b, y2,y3,9(»2,y3)). Extend the model M step by step in the toll‘owmg
way (noting that the domain always remains P); since B s true for .M.‘
(1) (Vr2) (Vy3) (Fva) 6 (3 .2, y3,va) is true for M. Let the interpretation h QI
b be the least positive integer y; such that (Vy) (Vy3)(ya) 6 (o va vao vy )‘ 18
true for M. Hence, (3y)%6 (b, )2, y3,ya) is true in this ?xlcndc(i model. For
any posilive integers y; and 3. let the inlcrprclulion. of g(¥.y1) be the least
positive integer yg such that 6 (b ya, vr.vy) is true 1 lhc‘cxlcndcd. m'ndcl.
Henee. 4 (h. 1, v, g2 m)) s truein the extended model. 1 we do this jm' all
the axioms 4 of K . we obtain a model M™ ol K *oSimee iy - 707 s true

GENERALIZED 'IRST-ORDER THEORIES

for M*. Since M" dilters from M only in having mierpretations of the new
individual constants and tunction fetters, and sinee 7 does not contain any
of those symbols, & 1s true Tor M. Thus. 7 15 1rue in every denumerable
model of K™, Hence. Fx . by Coroilary 2.20¢a). Since the axioms of K are
axioms of K, we have by . (For a constructive proof of an cquivalent
result, see Hitbert and Bernays (1939),)

b) Clearly. K" is un extension of K. since 40 4 Henceeo if K7 is con-

sistent, so is K. Conversely. assume K s consistent. Let 77 be any wi of K. If

K' is inconsistent, Fg- & A =70 By (a). i 7~ /. contradicting the
consistency of K.

Let us usc the term generalized complereness theoren tor the proposition
that every consistent gencralized theory has a model. Howe assume that every
set can be well-ordered (or, cquivalently. the axiom of choice). then the
seneralized completeness theorem is a consequencee ol Proposition 2.33.

By the maximal ideal theorem (M) we mean the proposttion that every
proper ideal of a Boolcan algebra can be extended 1o a maximal ideal.’ This
is cquivalent to the Boolean representation theorem. which states that every
Boolean algebra is isomorphic to a Boolean algebra of sets. (Compare Stone
11936). For the theory of Boolean algebras. see Sikorski (1960) or Men-
delson (1970).) The usual proofs of the MI theorem use the axiom of choice.
hut it is a remarkable fact that the MI theorem is equivalent to the gen-
cralized completeness theorem. and this cquivalence can be proved without
using the axiom of choice.

PROPOSITION 2.36

tlos. 1954a; Rasiowa and Sikorski. 1951: 1952) The generalized complete-
ness theorem is equivalent to the maximal ideal theorem.

Proof

.11 Assume the generalized completeness theorem. Let B be a Boolean al-
vebra. Construct a generalized theory with equality K having the binary
tunction letters U and N, the singulary function letter /} [we denote f](¢) by
¢ |. predicate letters = and 4!, and, for each element b in B, an individual
constant ¢y, By the complete description of B, we mean the following
antences: (1) ap # a. if b and ¢ are distinct elements of B; (ii) @), Ua,. = a4 if

oo are elements of B such that hUc =d in B, (i) ap Na. =a, il b,c,e

are clements of b such that e = ¢ in B; and (iv) @, = a. if b and ¢ are
clements of Bosuch that b = ¢ in B. where b denotes the complement of A, As

Since {0} is a properideal of a Boolean algebra, this imphes (and is implied by)
the proposttion that every Boolean algebra has o maximal ideal.
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axioms of K we take a set of axioms for a Boolean algebra. axioms (A6) and
(A7) for equality. the complete description ol B. and axioms asserting that
A} determines o maximal ideal (i.e.. Ay i), A A4 () = AUy
ALy = Alvny). AN(x) V4 (¥). and =] (x Ux)). Now K is consistent. for.
if there were a proof in K of a contradiction. this proof would contain only

a finite number of the symbols ap.ac.... Say. dp... - ap,. The clements
hy..... b, generate a finite subalgebra B of B. Lvery finite Boolean algebra

clearly has a maximal ideal. Hence, B’ is a model for the wis thut occur in
the proof of the contradiction, and therefore the contradiction is true in B'.
which is impossible. Thus. K is consistent and. by the generalized com-
pleteness theorem, K has a model. That model can be contracted to a
normal model of K. which is a Boolean algebra A with a maximal ideal 1.
Since the complete description of B is included in the axioms of K.Bisa
subalgebra of A, and then 1B is a maximal ideal in B.

(b) Assume the maximal ideal theorem. Let K be a consistent generalized
theory. For each axiom 4 of K, form the wf %" obtained by constructing a
prencx normal form for .4 and then climinating the quantifiers through the
addition of new individual constants and function letters (see the example
preceding the proot of Proposition 2.35). Let K* be a new theory having the
wils 4. plus all instances of tautologies, as its axioms. such that its wls
contain no quantifiers and its rules ol inlerence are modus ponens and a rule
of substitution for variables (namely. substitution of terms for variables).
Now. K is consistent. since the theorems of K# are also theorems of the
consistent K* of Proposition 2.35. Let B be the Lindenbaum algebra de-
termined by K# (ie.. for any wfs ¢ and . let ¥ Eq % mean that
Fys @ < 7: Eqis an equivalence relation: let {¢] be the equivalence class of
¢, define [¢|U[2] = [4 Vv 9], [6]N[Z] = [6 2] [6] = [~%]: under these
operations, the set of equivalence classes is a Boolean algebra, called the
Lindenbaum algebra of K#). By the maximal ideal theorem, let T be a
maximal ideal in B. Define a model M of K# having the set of terms of K#
as its domain; the individual constants and function letters are their own
interpretations, and, for any predicate letter 47, we say that 47 (11, .. AT
true in M if and only if [A;?(ll,. ..,t,)] is not in 1. One can show easily that a
wl ¢ of K¥ is true in M if and only if [#] is not in I. But, for any theorem ¢
of K#, [#] = 1, which is not in 1. Hence, M is a model for K#. For any
axiom Z of K, every substitution instance of 2 (yi,...,¥) is a theorem in
K#: therefore, Z~(y1, ..., ¥,) is true for all yi, ...,y in the model. It follows
easily, by reversing the process through which #" arose from 4. that 4 is
true in the model. Hence, M is a model for K.

The maximal ideal theorem (and. therefore, also the generalized com-
pleteness theorem) turns out to be strictly weaker than the axiom of choice
(see Halpern, 1964).

ELEMENTARY EQUIVALENCE., ELEMENTARY EXTILNSIONS
Excrcise

2.101 Show that the gencralized completeness theorem implies that every
set can be totally ordered (and. therctore. that the axtom of choice holds for
any set of non-empty disjoint finite scts).

The natural algebraic structures corresponding Lo the propositional cal-
culus are Boolean algebras (sce Exercise 1.60. and Rosenbloom. 1950,
chaps I and 2). For first-order theories. the presence ol gquantifiers in-
troduces more algebraic structure. For example. il K is a first-order theory,
then. in the corresponding Lindenbaum algebra B. {( Iv).4(x)] = Z,M(/ﬁ,
where Z, indicates the Ieast upper bound in B. and 7 runges over all terms of
K that are free for x mm A(x). Two types of algebraic structure have been
proposed to serve as algebraic counterparts ol quantification theory. The
lirst. cylindrical algebras, have been studied  extensively by Tarski.
[hompson, Henkin, Monk and others (see Henkin, Monk and Tarski.
1971). The other approach is the theory of polyadic algebras. invented and
developed by Halmos (1962).

213 ELEMENTARY EQUIVALENCE. ELEMENTARY EXTENSIONS

Iwo interpretations M) and M, of a generalized first-order language ¢ are
said to be elementarily equivalent (written M) = M,) if the sentences of ¥
irue for My are the same as the sentences true for M. Intuitively, M, = M,
i and only it M| and M3 cannot be distinguished by means of the language
/. Of course, since < is a generalized first-order language, ¢ may have
non-denumerably many symbols.

Clearly, (1) M = M; (2) if M| = M;, then M, = My; (3) if M| = M; and
AV M_}, then M| EM}.

I'wo models of a complete theory K must be elementarily equivalent,
wnee the sentences true in these models are precisely the sentences provable
m K. This applies, for example, to any two densely ordered sets without first
o1 last elements (see page 116).

W alrcady know, by Proposition 2.32(b), that isomorphic models are
clementarily equivalent. The converse, however, i1s not true. Consider, for
cvample, any complete theory K that has an infinite normal model. By
Corollary 2.34(b), K has normal models of any infinite cardinality R,. If we
rahe two normal models of K of different cardinality, they are elementarily
m.||1|\';|lcnl but not isomorphic. A concrete example is the complete theory
K of densely ordered sets that have neither first nor last element. The
ritional numbers and the real numbers, under their natural orderings, are
clementarily equivalent non-isomorphic models of K.
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Exercises

2.102 Lot K .. the theory of infinite sets. consist of the pure theory K, of
cquality plus the axioms 4. where 4, asserts that there are at jeast n
clements. Show that ary two models of K  are elementarily equivalent (sce

Exercises 2.66 and 2.96(a)).

- 2.103" 1t M, and M> arc elementarily cquivalent normal models and My is

finite. prove that My and M, are isomorphic.

2.104 Let K be o theory with cquality having ¥, symbols.

() Prove that there are at most ™, models of K. no two of which are
clementarily equivalent.

(b) Prove that there are at most 2% mutually non-isomorphic models of K
of cardinality Ry, where 7 is the maximum of o and f.

2.105 Let M be any infinitc normal model of theory with equality K

having ¥, symbols. Prove that. for any cardinal X, = R,. there is a normal

model M* of K of cardinality X, such that M = M".

A model Ms of u language ¢ is said (o be an extension of a model My of
o (written M, € M:)' il the following conditions hold:

1. The domain 72 of My is i subset of the domain 1> of M.

2. For any individual constant ¢ ol 77, A M where M and M

are
the interpretations ol ¢ in M and M.

3. For any lunction letter /) of v and any hy.o. b, in D,
Uy by by = () b hy).

4. For any predicate letter A} of ¥ and any by,....b, in D.
=M Aby, .. ,b,] if und only if Ewm, A;f[bl,...,b,,]‘

When M, € M>, one also says that M, is a substructure (Or submaodel) of M.

Examples

1. If & contains only the predicate letters = and <, then the set of rational
numbers under its natural ordering is an extension of the set of integers
under its natural ordering.

2. If & is the language of field theory (with the predicate letter =, function
letters + and x, and individual constants 0 and 1), then the field of real
numbers is an extension of the field of rational numbers, the field of
rational numbers is an extension of the ring of integers, and the ring of
integers is an extension of the ‘semiring’ of non-negative integers. l-or
any fields Fy and Fa, Fy € F, if and only if F is a subfield of F> in the
usual algebraic sense.

Fhe reader will have no occasion to contuse this use of © with that for the

iclusion relation.

ELEMENTARY EQUIVALENCE, ELEMENTARY ENTENSIONS

Exercises

2.106 Prove:
(1) M C M:
(by if My} € M, and M, C Ms. then My € Mz
(¢cy IfM; € My and M, € M. then M| . M.
2.107 Assume M; € Mo, A

(a) Let ABlx...... v,) be a wl of the form (Yvy). o (¥y,)% (.. . x,.
V1< ). where % is quantifier-free. Show that. for '.m", by .. h, iy;n
the .domuin of My, if =m. Ahy. ... byt then |y, fol;l.j.._/),,]_l In
p.urllculur. any sentence (Vvy) ... (V)% (v, ... v). where 74 is quan-
tifier-free, 1s true in My if it is true in Ms. '

(by Let Alxi.....x,) be a wf of the form (). () ey,
L P V). Where ¢ is quantifier-free. Show lh;iL lor ;m\ Dy h, i;l
the domain of M. if =y, 4. .. hyithen 1y 7}\/)\...,./),.‘.1 In
particular, any sentence (v ... ( fy,) '/,(_.n V), \\'h‘crc ‘s q‘u;m—

tifier-free. is true in M il 1t is truc in M.
2.108 (a) Let K be the predicate calculus of the language of ficld theory.
Find a model M of K and a non-empty subsel X of the domui’n
e of M such that there is no substructure of M having domain

(b) !(’ K-is a predicate calculus with no individual constants or
function letters, show that, if M is a model of K and X is a subset
of the domain D of M, then there is one and only one sub-
structure of M having domain X.

(¢) Let K be any predicate calculus. Let M be any model of K and
let X be any subset of the domain D of M. Let Y be the inter-
section of the domains of all submodels M* of M such that X is a
subset of the domain Dy;- of M*. Show that there is one and only
one submodel of M having domain Y. (This submodel is called
the submodel generated by X.)

A somewhat stronger relation between interpretations than ‘extension’ is
uselul in model theory. Let M| and M, be models of some language ¥. We
~av that My is an elementary extension of M (written M, <, My) if
(M| € Ms and (2) for any wf B(y, ...,y,) of & and for any by,...,b, in
the (’()l]]:lil] D of M], b:MI :%[bl RN J),,] if and only if 'ZM, .%[b], . N b,’,]."(ln
particular, for any sentence 4 of ¢, 4 is true for M if and only if,% is true
tor M>.) When M| €.M,, we shall also say that M is an elementary sub-
siructire (or - elementary submaodel) of M. )

I l\ obvious that, if M| < .M, then M|, C M, and M|, = M5. The con-
verse Is not true. as the following example shows. Let G be the elementary
mmr:\f of groups (see page 98). G has the predicate letter =
tunction letter +, and individual constant 0. Let 7 be the group of inlcgcr;
and £ the group of even integers, Then £ ¢ [ and [~ £ (The function ¢
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cuch that gix) - 2¢for all vin 7 is an isomorphism of 7 with /) Consider the
wi A0y (e + v vl Then By 41200 but not-tey A:21 Thus, 7 is not an
clementary extension of £. (This example shows the stronger result that even
;lssuminu.Ml ¢ M>and M, = M; does not imply M, < .M>)

The k!iwlln\\'iﬂg theorem provides an casy method for showing that
M, < M-,

|
¢

PROPOSITION 2.37 (Tarski and Vaught. 1957)

Let My € Ma. Assume the following condition:

($) For every wl 4(x....x;) ol the form (3y)® (Y. X v) and Tor all
bro.... by in the domain Dy of My il o, Albr.o bil.

then there is some d in Dy such that . %lb1-. . by d].

Then M] QQMQ.

Proof
l.ct us prove:
(+) T, b Al and only il s s hy] Tor any wlf

Ay ) and any byl by in Dy,

The proof is by induction on the number m of connt‘cti\fC§ e.md quantifiers in
. 1f m =0, then (x) follows {rom clause 4 of the definition of M, C M:
Now assume that (%) holds true for all wfs having fewer than m connectives
and quantifiers. . . '

Case 1. 7 is ~&. By inductive hypothesis. E, S, ..., b/(].lf and only !f
Ewm, €1b1, ..., bi]. Using the fact that not - v, c‘;"[bl,. .., h] if and only if
Ewm, ~€lb1, ..., b, and similarly for M,, we obFalh (). ’ .

Case 2. & is & = #. By inductive hypothesis, EM, é’[b‘,...,h.k] if and
only if Ewm, &[b1,- .., bk and similarly for F. (¥) then fo!lows easily.

Case 3. 7 is (I)&(x1, ... X, ). By inductive hypothesis,

(x<) Fwm, €lb1,.... b d] il and only if' Fm; &by, ... b, dl.
for any by,...,bx,d in Dy.

Case 3a. Assume [=m, (3)E(xy, ... xi, ¥)[bry - bA] for some hy,....h in
D,. Then |k, &(by,... bs,d] for some d n D;. So, by (##),
':M, éb[bl, N bk,d]. Hence, ’:M: (3}/’)(5”(.\’|, . .xk,y)[hl e /7/,] ’

Case 3b. Assume Ewm, (I9)6(xr - xe 0 [bre. . by] for some by... .. by in
D,. By assumption (8). there exists d in Dy such that =y, &by by d).
Hence, by (x#). Fwm, &lbyo.. . by d] and theretose |oag, () (v oxw)
i/)‘ ..... /)‘1.

ELEMENTARY EQUIVALENCE ELEMENTARY EXTENSIONS
This compilctes the induction proof. since any wiis logically equivalent to
a wi that can be built up from atomic wis by forming negations. condi-
tionals and existential quantifications.

Exercises
2.109 Provc:

(0) M < M:
(by if My <. M> and M2 < .M;s. then M, < My:
(¢y ifM; <M and M, <M and M; € M>. then M| = M>.

2.110 Let K be the theory ol totally ordered scis with cquality (axioms
(a)--(¢c) and (e) (g) of Exercise 2.67). Let My and M be the models for K
with domains the set of positive integers and the set of non-negative integers,
respectively (under their natural orderings o both cuses). Prove that
M| € M, and M| ~ M., but M| £ M-,

Let M be an interpretation of a language ¥, Extend ¢ 10 a language ¥
by adding a new individual constant ¢, for cvery member ¢ of the domain of
M. We can extend M to an interpretation of ' by taking d as the inter-
pretation of ay. By the diagram of M we mean the set of all true sentences of
M ol the forms 47 (ay, . - . ... aq,)s ~AN(au,. . . .. ag,)s and fI'(aq, ... aq,) = aq,.
In particular, ay, # a4, belongs to the diagram if d) # dy. By the complete
diagrant of M we mean the set of all sentences of " that are true for M.

Clearly, any model M# of the complete diagram of M determines an
clementary extension M## of M. and vice versa.

I.xercise

2111 (a) Let My be a denumerable normal model of an ordinary theory K
with equality such that every element of the domain of M is the
interpretation of some closed term of K.

(i) Show that, if M|, C M, and M| = M», then M; < .M,.
(it) Prove that there is a denumerable normal elementary ex-
tension M3 of M, such that M, and M3 are not isomorphic.
(b) Let K be a predicate calculus with equality having two function
letters + and x and two individual constants 0 and 1. Let M be
the standard model of arithmetic with domain the set of natural
numbers, and +,x,0 and | having their ordinary meaning.
Prove that M has a denumerable normal elementary extension
that is not isomorphic to M, that is, there is a denumerable
nonstandard model of arithmetic.

“1he elementary extension M”77 of M is obtained from M# by lorgetting about
the mterpretiations of the ags.

2
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PROPOSITION 2.38 (UPWARD SKOLEM-LOWENHEIM-TARSKI
THLEOREM)

L.et K be a theory with equality having ¥, symbols. and let M be a normal
model of K with domain of cardinality ¥j. Let ; be the maximum of « and f.
Then. for any o = there is a model M* of cardinality Rs such that M # M*
and M << M".

Proof

Add to the complete diagram of M a set of cardinality ¥, of new individual
constants b, together with axioms b, # b, for distinct T and p and axioms
bh. # ay for all individual constants a4 corresponding to members d of the
domain of M. This new theory K is consistent. since M can be used as a
model for any finite number of axioms of KA (I byye ooy byaq,. ... aq, are
the new individual constants in these axioms, interpret by ... .. b, as distinct
elements of the domain of M different from d,, ..., d,.) Hence, by Corollary
2.34 (a). K# has a normal model M# of cardinality ¥; such that M C M,
M £ M7, and M < M7,

PROPOSITION 2.39 (DOWNWARD SKOLEM-LOWENHEIM-
TARSKI THEOREM)

Let K be a theory having X, symbols, and let M be a model of K with
domain of cardinality R, = R,. Assume 4 is a subset of the domain D of M
having cardinality 1, and assume Ry is such that X, >Nz > max (¥, ). Then
there is an elementary submodel M* of M of cardinality Ry and with domain
D* including 4.

Proof

Since n <R <R, we can add Ry elements of D to A4 to obtain a larger set B
of cardinality R;. Consider any subset C of D having cardinality ®y. For
every wf #(y,....y,,z) of K, and any cj,...,¢, in C such that
Eum (32)B0n, ...,y 2)[cr, ..., 4], add to C the first element d of D (with
respect to some fixed well-ordering of D) such that Fum (F2)Blcy, ... cn.d).
Denote the so-enlarged set by C#. Since K has R, symbols, there are R, wis.
Since ¥, <Np, there are at most Rp new elements in C# and, therefore, the
cardinality of C*# is X4, Form by induction a sequence of sets Cy. (... by
setting Cy = Band C,,, = C¥*. Let D* = |, ,, Cu. Then the cardinality of £
is Ry, In addition, D* s closed under all the functions (,/',")M. {Assume
di..... d, in D', We may assume d)...., d, in C; for some k. Now
P (I (e W) oood d,]. Henee (,/,")M(d, ..... d,). bemg the

ULTRAPOWERS, NON-STANDARID ANALYSIS

first and only member  of D such that gy (/7 (v Vol ooidy oo d,. d'.

inust belong to (f == Cy o € D7) Slardy. all interpretations ({l,)‘\l of in-
dividual constants are in D7, Hence, D' determines o substructure M of M.

To show that M < M. consider any wi #(1v. ... veyandany dy d, in
1 such that |y (32) 800 ..oy 2)dh. o d, . There exists ¢ such that
dyooo, d, arc in Cp. Let o be the first clement ol 1 such  that

v Ald d,.d]. Then d & (f',\'“' =y < D Soo by the Tarski Vaught
theorem (Proposition 2.37) M' < M.

2.14 ULTRAPOWERS. NON-STANDARD ANALYSIS

By a filter' on a non-empty set A we mean a set 7 ol subscts o A such that:

. AeF
> BeFaAnCe. 7 =>BnNnCe 7
VBeFABCC=Ce 7

I'xamples

Tet BC A Theset F 5 ={C|BC CC A}isafilter on 4. 75 consists of all
subsets of A4 that include B. Any filter of the form .7 4 is called a principal
nlier. In particular. 7 ; = {4} and #y = .2(4) are principal filters. The filter
#(1) is said to be improper and every other filter is said to be proper.

I'xereises

2112 Show that a filter .7 on A4 is proper if and only it # ¢ 7.

2113 Show that a filter .# on 4 is a principal filter if and only if the
mtersection of all sets in % i1s a member of .7.

2114 Prove that every finite filter is a principal filter. In particular, any
nhier on a finite set 4 is a principal filter.

2115 Let A be infinite and let % be the set of all subsets of A that are
complements of finite sets: . % = {C|(IW)(C =4 - W A Fin(W)}, where
bty means that W is finite. Show that .# is a non-principal filter on 4.
2116 Assume 4 has cardinality Ng. Let N, <Ry Let # be the set of all
absets of 4 whose complements have cardinality < X,. Show that .# is a
aon principal filter on A.

2117 A collection % of sets is said to have the finite intersection property if
i By N By # O for any sets By, By, ..., By in 4. If 4 is a collection of

he notion of a filter is related to that of an ideal. A subset % of 2(A4) is a filter
ao il and only if the set1 4 {4 B | B¢ .#} of complements of sels in % is an
whealm the Boolean algebra  2(.1). Remember that .2(A) denotes the set of all subsets
I
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subscts of A having the finite intersection property and # is the set of all
finite intersections By N B> ... By of sets in %, show  that
Fo=ADIACHB < ACCDC A} s a proper filter on A.

DEFINITION

A filter # on a set 4 is called an wlrrafifter on A1 .7 is @ maximal proper
filter on 4. that is, .# is a proper filter on 4 and there is no proper filter % on
A such that # C 7.

Example

Letd € A. The principal filter 74 = {B|d € BA B C A} s an ultrafilter on A.
Assume that % is a filter on 4 such that #, C %. Let C€ % — .7, Then
CCAandd¢ C Hence,deA—C.Thus, 4 —Ce€ .7, C% Since ¥ is a
fitter and C and 4 — C are both in %. theu ) = Cn (4 — C) € 4. Hence, 4 is
not a proper filter.

Exercises

2.118 Lct .7 bea proper filter on A and assume that BC Aand 4 - B ¢ 7.
Prove that there is a proper filter .7 D . # such that B € 7',
2.119 Let .7 be a proper filter on A. Prove that .# is an ultrafilter on 4 if
and only if, for every B C A, either B€ .7 ord —Be 7.
2.120 Let.Z# be a proper filter on 4. Show that .# is an ultrafilter on 4 if and
only if, for all B and C in #(4).if B¢ # and C ¢ #, then BUC ¢ 7.
2.121 (a) Show that every principal ultrafilter on 4 is of the form
Fq=1{Bld € BABC 4} for some d in 4.

(b) Show that a non-principal ultrafilter on 4 contains no finite sets.
2.122 Let .# be a filter on 4 and let .# be the corresponding ideal: B € .7 if
and only if 4 — B € #. Prove that % is an ultrafilter on 4 if and only if .7 is
a maximal ideal.
2.123 Let X be a chain of proper filters on A4, that is, for any B and C in X.
eithr B C C or C C B. Prove that the union |JX = {a|(3B)(B € X ANa € B)}
is a proper filter on 4, and B C |JX for all B in X.

PROPOSITION 2.40 (ULTRAFILTER THEOREM)

Every proper filter % on a set 4 can be extended to an ultrafilter on '

'We assume the generalized completeness theorem.

W
|
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Proof

Let 7 be a proper filter on 4. Let 7 be the corresponding proper ideal:
B = 7 i and only it 4 - B € #. By Proposition 2.36, cvery idcal can be
extended to a maximal ideal. In particular. # can be extended to a maximal
wdeal . If we let # = {B|4 - B & # }. then # is casily seen to be an ul-
trafilter and .7 C 7.

Alternatively. the existence of an ultrafilter including # can be proved
casily on the basis of Zorn™s lemma. (In fact. consider the set X of all proper
filters .7 such that # C #'. X is partially ordered by <. and any C-chain in
X has an upper bound in X, namely. by Lxercise 2.123, the union of all
lilters in the chain. Hence. by Zorn's lemma. there is a maximal clement .7 *
in X. which is the required ultrafilter.) However. Zorn's lemma is equivalent
to the axiom of choice, which is a stronger assumption than the generalized
completeness theorem.

COROLLARY 2.41

I 4 is an infinite set, there exists a non-principal ultrafilter on A.

Proof

lct .7 be the filter on A4 consisting of all complements 4 — B of finite
subsets B of 4 (sece Exercise 2.115). By Proposition 2.40, there is an ul-
trafilter % 2 % . Assume “ is a principal ultrafilter. By Exercise 2.121(a),
# - .74 for some d € A. Then 4 — {d} € # C «. Also, {d} € #. Hence,
0 {d}n(4—{d}) € %, contradicting the fact that an ultrafilter is
proper.

Reduced direct products

We shall now study an important way of constructing models. Let K be any
predicate caleulus with equality. Let J be a non-empty set and, for each j in
I Iet M, be some normal model of K. In other words, consider a function F
assipning to each jin J some normal model. We denote F{( /) by M;.

Let . # be a filter on J. For each jin J, let D; denote the domain of the
model M, By the Cartesian product I'l;c,D; we mean the set of all functions
r with domain J such that f(j) € D; for all j in J. If /" € Il;c,D;, we shall
reter to f(f) as the jth component of f. Let us define a binary relation =z in
1, /D, as follows:

S s gitand only it {jI/ (/) = ¢(/)} € F

I we think of the sets in .# as being “large’ sets, then, borrowing a phrase
lrom measure theory, we read /0« g as /(j)  ¢g(/) almost everywhere’
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ICis casy to see that -, s an equivalence relation: (1) f =, f: (2) it
, hothen [/ =z h. For the proof
of (3). observe that {ji/1/) - g{j)y v ii (/( R ALY = h) ) I
UlrGgy gty and {ilgG) = A0)} are in # . then so is their intersection
and. theretore, also {1 = h{j)}.

On the basis of the cquivalence relation . we can divide Il ,D; into
cquivalence classes: forany fin T, D, we deline its equivalence class /7 as
{glf s g} Clearly. (WY f € f,02) f 7 = h, itand only il f =5 h;and (3)
il /7, # hy.then [ 0 h e =0, We denote the set of equivalence classes /5
by MM, ,D;/.7 . Intuitively 11, D,/ # is obtained [rom I, , D, by identifying
(or merging) elements of T, ,D; that are equal almost everywhere.

Now we shall define a model M of K with domain I, ,D,/.7#.

I. Let ¢ be any individual constant of K and let ¢; be the interpretation of ¢

in M,. Then the interpretation of ¢ in M will be /. where [ is the
funumn such that /() = ¢; for all j in J. We denote f by {c¢;}

2. Let /" be any function letter ol K and Iel A be any predicate Ietter of K.
Their interpretations (/' )" and (A”) are dcfined in the following
manner. Let (gy), .....(y,), be any members of ﬂ, D/ 7.

@ UM, e, ) b owherc hGY (Y (g1 ()- - gal))) Tor

all jin /. ’

by Mgy, (¢,), ) holds il and only il

{/I FM, 42{‘/](/) s (/H{/J‘} ( ’//T'

Intuitively, (‘/)\f’) is calculated componentwise, and (4 holds if and only
ift A7 holds in almost all components. Definitions (d) and (b) have to be
shown to be independent of the choice of the representatives ¢,..., ¢, In
the equivalence classes (g)) 7, - .. Ayn) g0 0 gy =2 g7, gy =7 g, and
BU) = UV (G10). .. gy then () h» = 5 by and (i) (] o, 42010,
gD} € F il and only if {j| Em, 4701 (), - gn()]} € F.

Part (i) follows from the inclusion

)M

U1y =gy} 0o ilgaU) = 9,00} C
UM G G- guG)) = UM (910G an D)}

Part (ii) follows from the inclusions:
Ul U) = g1} 0 ilea ) = 9,00 €
(Ul Ewm, 4910)s - -+ g.()] if and only if Fwm, 4[g70),- .. 9, (D]}
and

{il Ewm, A ). - - gD O s, A ga( /)] 1 and
ondy it boay, A{yr () N UHE s ALdg O gt}

In the case of the equality relition . which s an abbreviation for A3,

UL TRAPOWERS., NON-STANDARID ANALYSIS

(,Alf)'“(g;.lz ) iland only il {/] |y - “uu NI IS
itand only it {jigl/i hijih o 7
itand only it g - . 4

that is. i and only if g+ = /. Hence, the inlerpretation (Af)‘\I

identity relation and the model M is normal.

The model M just defined will be denoted T1, M, /.7 and will be called a
reduced direct producr. When .# is an ultraliler. Tl /M, /.7" 15 called an
wltraproduct. When .# is an ultrafilter and all the M s are the same model N.
then T1;,M, /.7 is denoted N’ /.7 and is called un w/trapower.

1s the

Examples

I. Choose a fixed element » of the index set /. and let # be the principal
ultrafilter #, = {Blr e BAB C J}. Then forany foginll, 1, f = gif
and only i {1/ (/) = g(j)} € 7. thatis. it and only il f(+)  ¢(r). Hence.
a member of I, D,/ 7 consists of all f in 1, ,/, that have the same rth

component. For any predicate letter 47 of K and any ¢g... .. gp in T, D,
Em A1) oo .(gn) 7] if and only if {/| ]: s, A1 () du()]} € F.
that is, if and only if Em, A7 (g1 (). . ... gnlj)]- Heme it is easy to verify

that the function ¢ : M;e,D;/ 7 — D,. dchned by ¢(gsz) =g(r) is an
isomorphism of ITje;M;/.# with M,. Thus, when .7 is a principal ultra-
filter, the ultraproduct T1;c,M;/.7 is essentially the same as one of its
components and yields nothing new.

*. Let.# be the filter {1} Then, forany f.ginIl,,D;. f =5 gif and onlyf
{/|/( i) =g(j)} € Z, thatis, if and only if /(j) = ¢g(j) forall jin J. orif
and only if /' =g¢. Thuq every member of I1,.,D;/-7 is a singlcton {y}
for some g in e, D;. Moreovel A )M((gl)j ..... (gn) z) = {g}. where g
ix such that g(y) = (/] ) (i), .- ga()) for all j in J. Also,
Sar A(91) 40 -0 (gn) ] i and only 11 }:\4 An ). .. .. gu())] for all jin
J. Hence, ITjc;M;/ z is, in this case, essentially the same as the ordinary
“dircet product’ IT;.,M;, in which the operations and relations are de-
fined componentwise.

v let.# be the improper filter 2(J). Then, forany /. ginI,c,D;, f =7 g if
and only if {jIf () =9()} € #, that is, if and only if {j|f()) =
atjit ¢ #2(J). Thus, f =z ¢ for all f and ¢, and I1,.,D;/% consists of
only one clement. For any predicate letter A7, =v AL[f#. ..., f#] il and
only il {j v, AU, -, L))} € 2(J); that is, every atomic wl is true.

[ he basic theorem on ultraproducts is due to Lo$ (1955b).

PROPOSITION 2.42 (LOS’S THEOREM)

et/ beanultrafiteronasetJand ket M 11, M, /7 be an ultraproduct.




134

QUANTIFICATION THEORY

() Let sy, (y2), ... be a denumerable sequence of elements of
U, /D, 7. Lor cach j in J. let s, be the denumerable sequence
(gr(71.g=(7). ... m D, Then. for any wi 4 of K. v satislics 4 in M il
and only i { /iy, satisfies 4 in M} ¢

(by For any sentence 2 ol Ko 4 s true in I, ,M,; /.7 if and only if
{ii bom, 4} € 7. (Thus. (b) asserts that a sentence 4 is true in an
ultraproduct ll and only i 1t is true in almost ail components.)

Proof

(a) We shall use induction on the number m of connectives and quantitiers in
4. We can reduce the case m =0 to the following subcases:’ (i)
Al (xi oo vi, )t (1) x; = f'(x;.....x,); and (iii) x/ = a;. For snbc(mc (1), s
satisfies A7 (x;,,....x;,) il and only if v A{(94) z-. .. (g;,) 7], which is
cquivalent to  {j| Em, ALyi (). .- g, (D} € #0 that is  {j] s; salisfies
AL (o0 v;,)in M;} € 7. Subcases (ii) and (i) are handled in similar
fashion.

Now. let us assume the result holds for all wfs that have fewer than m
connectives and quantifiers.

Case 1. Ais 4. By inductive hypothesis, s satishies 4 in M if and only if
{jls, satisfics % in M}« #. 5 satisties % in M il and only if
{Jls; satisfies 4 in M, } ¢ #. But.since . # is an ultrafilter, the last condition
is equivalent, by exercise 2,119, to {/]y, sutislies =% in M;} € #.

Case 2. A1s € A . By inductive hypothesis, s satisfies 4 in M if and only
ift {/|s; satisties % in M,;} € 7. and s satisfies “ in M if and only if
{j]s; salisfies & in M} € .#. Therefore s satisfies 6 A & if and only if both
of the indicated sets bClOl’lé to .7 . Bul, this is equivalent to their mlersecllon
belonging to #. which, in turn. is equivalent to {j|s; satisfies € A
n M,} c 7.

Cuse 3. # is (Jx;)%. Assume s satisfies (Av;)%. Then there exists 4 in
[1,c,D; such that s satisfies ¥ in M, where s is the same as s except that 4z
is the ith component of s’. By inductive hypothesis, 5" satisfies % in M if and
only if {/]s} satisfies % in M;} € #. Hence, {jls; satisfies (x;)% in M;}
€ #, since, 1f s’ satisfies ¢ in M; then s; satisfies (Ix;)% in M.

Conversely, assume W = {jl.Sj satisfies(3x;)% in M} € 7. For each j in
W, choose some s’ such that ¢, is the same as s; except in at most the ith
component and s’ satisfies 4. Now define 4 in I1,c,D; as follows: for jin W,
let h(j) be the ith component of 57, and , for j¢ W, choose h(j) to be an

TA wl Af(n..... 1) can be replaced by (Vuy)... (Vu,)(u; AL A
Uy =ty = Ay, ... u)), and a wlh x= /(... t,) can  be  repliced by
(Vzi) ... (Vzo)(z =i AL Az =ty = x = [z ...z,)). In this way, every wi s

equivalent to a wi built up from wis of the forms (i) (i) by applving connectives and
quantifiers.

[ I
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arbitrary element of D;. Let s” be the sume as s except that its ith component
is hyz. Then W C {jls7 satisfies 6 in M;} € #. Hence, by the inductive
hypothesis, s” satisfies % in M. Therefore, s satisfies (Iv;)% in M.

(b) This follows from part (a) by noting that a sentence 4 is true in a
model if and only if some sequence satisfics 4.

COROLLARY 243

I M is a model and .7 is an ultrafilter on ./, and it M is the ultrapower
M7/ Z  then M* = M.

Proof

Let 4 be any sentence. Then, by Proposition 2.42(b). .4 is truc in M* if and
only if {jl4istruein M } €.7. i .4 is truc in M. {j|4 1s truc in M }
=Je 7. UWAisfalse in M, {j|#istrucinM } =0 ¢ 7.

Corollary 2.43 can be strengthened considerably. For each ¢ in the domain
D of M, let ¢ stand for the constant function such that ¢#(j) = ¢ for all jin
J. Define the function y such that, for each ¢ in D, y(¢) = (¢*); € D'/ F
and denote the range of i by M#. M# obviously contains the mterprclalnons
in M* of lhe 1nd1v1dual consldnts Moreover, M# is closed under the OR/‘
crations (/7)™ for (M ((c l).,,-,...,(cff)j;) is hr, where h(j) = (/}")
IO cy) fot allj inJ, and (/7 M™((er,....¢,) is a fixed element b of D. So.
h, = (b#)i € M*. Thus, M# is a substructure of M*.

COROLLARY 2.44

i is an isomorphism of M with M# and M# < M™.

Proof

) By definition of M7, the range of y is M#.

(b) ¥ is one-one. (For any ¢, d in D, (¢#),; = (d*#), if “and only if
< sd*, which is equivalent to {jlc#(j) =d*(j)} € #; that is,
{i/le dye F. fc#d {jlc=d)} _Q)¢ F, and, therefore, %(c) ( ).

(¢) Forany ¢y,...,¢, in D, (./ ( ( ) ) (H))_(_/k) ((
i) ,) = hse. where h(j) = (f”)M (... () = (f”)M(c
Ihus, by = ((UDOM(ern . en))™ | F = l//( M (1, ).

(e Alen) o (en)] i and only i {j] w AR () (). -
yiea)(f))} ¢ # . which is equivalent to {j| Em A (ci..... ¢y)} € .7, that is,
CoaAfer o ccoea]s Thus, ois anisomorphism of M with M7

1 C")
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To see that M7 < M". let 4 be any wi and (¢]) ;..... (cg), e M¥,
Theno by proposition 2.42(a). - Al(¢) ) ..o (¢f) ;] i and only if
Ul s Ble/ ). ()]} € 7. which is cquivalent to {jl v Aler.. ...

clb e which. in turn. is equivalent to fiy Aley.. ... eyl that is, to
Fae Al ) 5 (¢77) 7). since  is an isomorphism of M with M*.
Exercises

2.124 (The compactness theorem again; see Exercise 2.54) It all finite sub-
scts of a set of sentences I' have a model. then I' has a model.

2.125

(a) A class ¥ of interpretations of a language & is called elementary it
there is a set [ of sentences of ¥ such that # "is the class of all models
of I'. Prove that #" is elementary if and only if # is closed under
elementary equivalence and the formation of ultraproducts.

(b) A class 77 of interpretations of a language ¥ will be called sentential if
there is a sentence 4 of ¥ such that % is the class of all models of 4.
Prove that a class # " is sentential if and only if both # " and its com-
plement # * (all interpretations of ¥ not in ¥ ) are closed with respect
to clementary cquivalence and ultraproducts.

(¢) Prove that theory K of ficlds of characteristic © (see page 117) is
axiomatizable but not finitely axiomatizable.

Non-standard analysis

From the invention of the calculus until relatively recent times the idea of
infinitesimals has been an intuitively meaningful tool for finding new results
in analysis. The fact that there was no rigourous foundation for in-
finitesimals was a source of embarrassment and led mathematicians to
discard them in favour of the rigorous limit ideas of Cauchy and Weier-
strass. However, about forty years ago, Abraham Robinson discovered that
it was possible to resurrect infinitesimals in an entirely legitimate and precise
way. This can be done by constructing models that are elementarily
equivalent to, but not isomorphic to, the ordered field of real numbers. Such
models can be produced either by using Proposition 2.33 or as ultrapowers.
We shall sketch here the method based on ultrapowers.

Let R be the set of real numbers. Let K be a generalized predicate calculus
with equality having the following symbols:

1. For each real number r, there is an individual constant a,.
2. For every n-ary operation ¢ on R, there is a function letter f,,.
3. For every n-ary relation ® on R, there is a predicate letter Ay,

We can think of R as forming the domain of a model 4 for K we simply let
(@) = r (f)" - poand (4g)" D

ULTRAPOWERS, NON-STANDARD ANALYSIS

Let .7 be a non-principal ultrafifter on the set o of natural numbers. We

can then form the ultrapower #° = 2 /.7 . W denote the domain R/ .7 of

A by R, By Corollary 2430 2" = # and. therefore. 2 has all the prop-
erties formalizable in K that .2 possesses. Morcover. by Corollary 2.44. #°
has an elementary submodel 27 that is an somorphic image of 2. The
domain R ol A" consists of all elements (¢, corresponding to the
constant functions ¢ (i) = ¢ for all 7 in . We shall sometimes refer to the
members ol R* also as rcal numbers; the clements of R7 R will be called
non-standard reals.

That there exist non-standard reals can be shown by explicitly exhibiting
one. Let «(j) = jforall jinm. Then v, € R Howevero (¢“y, < 1, foralle
in R, by wvirtue of Lo$s theorem and  the  fact  that
{1 () <D} = {Jle < j}. being the set ol all natural numbers greater
than a fixed real number, is the complement of o finite set and is. thercfore.
in the non-principal ultrafilter .7 . 1, is an “inlinitely Targe” non-standard
real. (The relation < used in the assertion (¢”) , - 1, is the refation on the
ultrapower .#" corresponding to the predicate letter = of K. We use the
svmbol < instead of (<)” in order to avoid excessive notation, and we shall
often do the same with other relations and functions, such as w + v, v x ¢,
and i)

Since A possesses all the properties of .# formalizable in K, A" s an
ordered field having the real number field #% as a proper subfield. (#£° is
non-Archimedean: the clement 1, detined above is greater than all the
natural numbers (n#) . of #'.) Let R, the sct of “finite’ elements of R".
contain those elements z such that |z| < u for some real number v in R¥. (R,
15 casily seen to form a subring of R*.) Let Ry consist of 0 and the “in-
linitesimals’ of R*, that is, those elements z # 0 such that |z| < u for all
positive real numbers u in R*. The reciprocal 1/7; is an infinitesimal.) It is
not difficult to verify that Ry is an ideal in the ring R). In fact. since
vo Ry — Ry implies that 1/x € Ry — Ry, it can be easily proved that Ry is a
maximal ideal in R,.

Fxercises

2.126 Prove that the cardinality of R* is 2%.
2.127 Prove that the set Rq is closed under the operations of +, — and x.
2.128 Prove that.iff x € R and y € Ry, then xy € Ry.
2.129 Prove that. if x € Ry — Ry. then 1/x € Ry — Ry.
letv ¢ Ry Letd = {ulu € R* Au < x} and B = {ulu € R* Au > x}. Then
{.1) is a ‘cut” and. therefore, determines a unique real number r such that
(D (Vv ¢ A > v<r)and (2) (Vo)(x € B3 x=r).! The difference x - 715 0

"See Mendelson (1973, chap. S).
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or an mlinitesimal. (Proofl: Assume x —  is not 0 or an inhnitesimal. Then
[x = #] =y Tor some positive real number ». I x = . then x —» > . So

X >4 o But then s+ o € A, contradicting condition (1), Iff v < r,

then » x>, and so r > r— 1y > x. Thus, - r, € B, contradicting con-
dition (2).) The real number » such that x — ris 0 or an infinitesimal 1s called
the siandard pari of x and is denoted st(x). Note that, if x is itself a real
number. then st(x) =x. We shall use the notation x =y (o mcan
st{x) = st(y). Clearly. x
x =y, we say that x and y are infinitely close.

Exercises

2.130 If x € Ry, show that there 1s a umque real number » such that x — ris
0 or an infinitesimal. (1t is necessary to check this to ensure that st(x) is well-
defined.)

2.131 If x and y are in Ry, prove the following.

(a) st{x -+ ) = st{x) 4 st(v)
(b) st{xv) = st{x)st(y)

(c) st -x) < stv)Ast(y o x) - sty st(y)
(d) ,\>() = ost{v) =0
(&) x<y = stx)<st{y)

-

The set of natural nuimbers is a subset of the real numbers. Thercfore, in
the theory K there is a predicate letter N corresponding to the property
x € w. Hence, in R", there is a set w* of elements satisfying the wf N(x). An
element fz of R* satisfies N(x)ifand only if {j|/ () € w} € Z. In particular,
the elements nf;, for n € w, are the ‘standard’” members of w*, whereas 15,
for example, is a ‘non-standard’ natural number in R*.

Many of the properties of the real number system can be studied from the
viewpoint of non-standard analysis. For example, if s is an ordinary denu-
merable sequence of real numbers and ¢ is a real number, one ordinarily says
that lim s, = ¢ if

(&) (Ye)(e>0= En)(necwnVk)(k€c o Nkzn= |5 — | <&)))

Since s € R“, s is a relation and, therefore, the theory K contains a predicate
letter S(n,x) corresponding to the relation s, = x. Hence, R* will have a
relation of all pairs (n,x) satisfying S(n,x). Since Z* = 4, this relation will
be a function that is an extension of the given sequence to the larger domain
»*. Then we have the following result.

~ y if and only if x — 1y is 00 or an infinitesimal. If

l LlRAl’()WFRS \O'\J ST A\ll)ﬁ\RD /\\I/\L\ SIS

PROPOSITION 2.45

Let s be a denumerable sequence of real numbers and ¢ a real number. Let s
denote the function from o into R' corresponding to s in #°. Then
lims, = ¢ il and only if s*(n) =~ ¢ for all n in «m* - . (The latter condition
can be paraphrased by saying that s'(n) is infinitely close to ¢ when # is
infinitely large.)

Proof

Assume lims, = ¢. Consider any positive real . By (&), there is a natural
number sy such that (VA)(k € o Ak=ny = |s; ¢ = &) holds in .2, Hence,
the corresponding sentence (VA)(k € &' Ak =my s (k) ¢ < «) holds in
#". For any nin o — . n > ny and. therefore, [ (n)  ¢f < . Since this
holds for all positive real €. s (1) - ¢ is 0 or an infinitesimal.

Conversely, assume s* (n) = ¢ for all n ¢ ' — . Take any positive real «.
I'ix some ny in ' — . Then (Vhk)(k=n) = |s" (k) - ¢| < ¢). So the sentence
(In)y(ne mn(Vhk)k€ wNk=n=|sy —c| <)) is true for #* and. there-
lore. also for #. So therc must be a natural number ny such that
k) k€ o Nk=ng = [sp — ¢ <&). Since ¢ was an arbitrary positive real
number, we have proved lim s, = ¢.

Fxercise

2.132 Using Proposition 2.45, prove the following limit theorems for the
real number system. If s and « are denumerable sequences of real num-
bers and ¢; and ¢; are real numbers such that lims, = ¢; and limu, = >,
then:

e hm(s, +u,) = ¢ + ¢z;
() hm(s,u,) = ce;
() I er #0and all w, #0, lim(s, /u,) = ¢ /ca.

l.ct us now consider another important notion of analysis, continuity. Let
1t be aset of real numbers, let ¢ € B, and let f be a function defined on B and
taking real values. One says that f is continuous at ¢ if

(O (Ve > 0= (30)(6 > OA (Va)(x € BAlx —c| < 6 = |flx) — (c)] < #)))
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PROPOSITION 2.46

Let / be a real-valued function on a set B of real numbers. Let ¢ ¢ B. Let 87
be the subsct of R corresponding to B, and Iet /* be the function corre-
sponding to /" Then /s continuous at ¢ if and only i {(Vix)(x € B
Ax e ) = ().

Excreises

2.133  Prove Proposition 2.46.

2.134  Assume / and g are real-valued functions defined on a set B of real
numbers and assume that / and ¢ are continuous at a point ¢ in B. Using
Proposition 2.46. prove the following.

(a) [ + ¢ is continuous at c.
(b) /¢ is continuous at c¢.

2.135 Let / be a real-valued function defined on a set B of real numbers
and continuous at a point ¢ in B. and let ¢ be a real-valued function defined
on a sct 4 ol real numbers containing the image of B under /. Assume that gy
is continuous at the point /(). Prove, by Proposition 2.46. that the com-
position go f is continuous at ¢.

2136 Let CC R

(a) C is said 10 be closed i (Vx)((Ve)le > 0= By} re CAlx—ypl <
¢)] = x € ). Show that C is closed if and only if every real number that
is infinitely close to a member of € is in C. (b) C is said to be open if
(Vx)x e C = (F0)(0 > 0N (V)(|ly — x| <0 = ye C))). Show that Cis
open if and only if every non-standard real number that is infinitely
close to a member of C is « member of C*.

Many standard theorems of analysis turn out to have much simpler
proofs within non-standard analysis. Even stronger results can be obtained
by starting with a theory K that has symbols, not only for the elements.
operations and relations on R, but also for sets of subsets of R, sets of sets of
subsets of R, and so on. In this way, the methods of non-standard analysis
can be applied to all areas of modern analysis, sometimes with original and
striking results. For further development and applications, see A. Robinson
(1966), Luxemburg (1969), Bernstein (1973), Stroyan and Luxemburg
(1976), and Davis (1977a). A calculus textbook based on non-standard
analysis has been written by Keisler (1976) and has been used in some
experimental undergraduate courses.

'To be more precise. / is represented in the theory K by o predicate letter A,
where A, (x. ) corresponds to the relation f(v) v Then the corresponding relation
A R determines a function /0 with domain 4

SEMANTIC TREES

Exercises

2137 A rcal-valued function / defined on a closed interval [a.h)
= {rxla <x< b} is said to be wniformiy continuons if

(Vej(e > 0 > (30)(0 > OA (W) (Vy)(a<yshhasysh Ay -] <0
= ) = SO0 <))

Prove that /" is uniformly continuous if and only if. for all x and v in [a. b]".

Ny = ) & ().

2.138 Prove by non-standard methods that any function continuous on
la.b] 1s uniformly continuous on [u, b].

2.15 SEMANTIC TREES

Remember that a wi is logically valid if and only if it 1s true for all inter-
pretations. Since there are uncountably many interpretations, there is no
simple direct way to determine logical validity. Godel's completeness the-
orem (Corollary 2.19) showed that logical validity is equivalent to deriva-
bility in a predicate calculus. But, to find out whether a wf is provable in a
predicate calculus, we have only a very clumsy method: start generating the
theorems and watch to see whether the given wf ever appears. Our aim here
15 to outline a more intuitive and usable approach in the case of wfs without
lunction letters. Throughout this section, we assume that no function letters
oceur in our wfs,

A wf is logically valid if and only if its negation is not satisfiable. We shall
now explain a simple procedure for trying to determine satisfiability of a
closed wf 4.1 Our purpose is either to show that 4 is not satisfiable or (o
find a model for 4.

We shall construct a figure in the shape of an inverted tree. Start with the
wi.# at the top (the ‘root’ of the tree). We apply certain rules for writing wfs
below those already obtained. These rules replace complicated wfs by sim-
pler ones in a way that corresponds to the meaning of the connectives and
quantifiers.

"Remember that a wi'is logically valid if and only if its closure is logically valid.
Soot suthices 1o consider only closed wls,
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Negation:  ~=% (6 V7)) (%6 = 7)) ()6 ()7

SEMANTIC TREES

BASIC PRINCIPLE OF SEMANTIC TREES

If all branches become closed. the original wi is unsatisfiable. If. however. a
branch remains unclosed. that branch can be used (o construct a model in
which the original wf is true; the domain of the model consists of the in-
dividual constants that appear in that branch.

We shall discuss the justification of this principle later on. First. we shall
eive cxamples of its use.

Examples
I. To prove that (Vx)% (x) = ¢(b) is logically valid. we build a semantic trec
starting from its negation.

143

| l l ! i
%, ~% < () (V)%
- -
(6 N7 (0 = /)
7N VRN
—% - “ V6
-y
Conjunction: % A &  Disjunction: 4V~
| 7N\
a “ v
Conditional: % = ¢  Biconditional: (R
7N 7N
-6 @ (4 -
& -
Universal quantifier:  (¥x)%(x) (Rule U)
| [Here. A is any individual
“(h) constant already present.]
Existential quantifier: ( )% (v)
| | iy @ new individual
A constant not already in

the figure.]

Note that some of the rules require a fork or branching. This occurs when
the given wf implies that one of two possible situations holds.

A branch is a sequence of wfs starting at the top and proceeding down the
figure by applications of the rules. When a wf and its negation appear in a
branch, that branch becomes closed and no further rules need be applied to
the wf at the end of the branch. Closure of a branch will be indicated by a
large cross X.

Inspection of the rules shows that, when a rule is applied to a wf, the
usefulness of that wf has been exhausted (the formula will be said to be
discharged) and that formula need never be subject to a rule again, except in
the case of a universally quantified wf. In the latter case, whenever a new
individual constant appears in a branch below the wf, rule U can be appliced
with that new constant. In addition, if no further rule applications are possible
along a branch and no individual constant occurs in that branch, then we mnust
introduce a new individual constant for use in possible applications of rule U
along that branch. (The idea behind this requirement is that, if we are trying
to build a model, we must introduce a symbol for at least one object that can
belong to the domain of the model.)

() ()b (x) = €(h))

(i) (vo)e(x) (i
(iii) —~%(h) (i)
(iv)  C(b) (i)

X

The number to the right of a given wi indicates the number of the line of the
wf from which the given wf is derived. Since the only branch in this tree is
closed, —~((¥x)%(x) =%(b)) is unsatisfiable and. therefore, (Vx)¢(x) = % (b))

is logically valid.

20 SV (E(x) = 2(x) = (Vx)E(x) = (Vx)Z(x))]

(
(i) (Wx)(%(x) = Z(x)

) (i)

(i) ~((vx)%(x) = (vx)7(x)) (1)
(iv)  (Vx)€(x) (iii)
(V) (V)7 () (ii)
(vi) (I)~2(x) (v)
(Vi) —~%(b) (vi)
(viii) %(b) (iv)
(ix) G(b) = 2(b) (i)

7N
(x) 6y 2(b) (ix)

X X

Since both branches are closed, the original wf (i) is unsatisfiable and,
therefore, (Vx)(4(x) = 2(x)) = ((vx)%(x) = (Vx)Z(x)) is logically valid.

V) (@04 () = (Vo4 (x)]

(i) (204 (x) (1)
(i) ~(Vx)4!(x) (i)
(iv) Aj(h) (i)
(v) ()i () (iii)
(vi) Aj(c) (v)
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No further applications of rules arc possible and there is still an open

branch. Dctine o model M with domain {5, ¢} such that the interpretation ol

A} holds for 5 but not for ¢. Thus, (3x)—=A4](v) is truc in M but (¥4} (x) is
false in M. Hence. ()41 (x) = (Vx)4](v) is false in M and is. therefore. not
logically valid.

4.() (3 (v)Z(x.v) = (V) (Ev)4(x.v)]

(i) () (Vx)A(x. p) (i)
Gil) (V) (30) 4(x. ) (i)
(iv) (Vv)4(x.b) (i)
(v)  (Ix)~(Iv)A(x,v) (iii)
(Vi) #(b,b) (iv)
(vil) ~(Iy)A(c. ) W)
(viii) Z(c.b) @iv)
(ix)  (Vy)=4(c.y) (vii)
(x) —Alce.b) (ix)
X

Hence, (3v)(Vx) A (x,y) = (¥x)(Jy)4(x.v) is logically valid.

Notice that. in the last tree. step (vi) served no purposc but was required
by our method of constructing trees. We should be a little more precise in
describing that method. At cach step. we apply the appropriate rule to cach
undischarged wi (except universally quantified wis). starting from the top of
the tree. Then, to every universally quantified wf on a given branch we apply
rule U with every individual constant that has appeared on that branch since
the last step. In every application of a rule to a given wi, we write the
resulting wi(s) below the branch that contains that wf.

5.G0)  [(vx)#
(i) (¥x)%4(x) Q)

X
(i) —(dx)2(x) (1)
(iv) (Vx)—48(x) (iii)
) #(b) (i)t
(vi) ~#(b) (iv)
X

Hence, (Vx)4(x) = (3x)#A(x) is logically valid.
6. () —[(vx)=4i(x,x) = (3x) (V)47 (x, )]

(i) (Vx)=A4%(x,x) (i)
(iil) —~(3x)(Vy)~4i(x,y) (ii)
(iv) (Vx)~(vy)-47(x,¥) (iif)
) —A}(ay,a)) (ii)!
(vi) ~(Vy)-4i(a1,y) (iv)

'Here. we must introduce a new individual constant for use with rule U since,
otherwise, the branch would end and would not contam any indvadual constanis

SEMANTIC TRELES

(vi) (dv) ~ﬁ./4f(a|,\') (vi)
(viii) —~=utila). az) (vil)
(ix) /lf(m.ug) (vinn)
(x) ﬂ/ﬁ(u;.ag) (i)
(xi) =Yy =45 {aa. v) (iv)
(xii) (dv) —Af(ar.v) (xi)
(xiii) A5 (a0 ar) (xii)
(xiv) Af(ar.ar) (xili)

We can see that the branch will never end and that we will obtain a sequence
. ~ bl N . RS
with wis A7 (a,. a,. ) and e, ay). Thus. we con-

of constants ay.anr. . .. Th .
band we defime (A7) to contain
1

struct a model M with domain {aj.aa. ...
only the pairs {ay,ay,1). Then, (Vx)-.
(5x)(¥yv)=43(x. ) is false in M. Hence, (V) o
not logically valid.

(v.x) is true in M, whereas
R

() V) A () s

Fxercises
2.139 Use semantic trees to determine whether the following wis are logi-
cally valid.

@) (V) (A (x) VAL () = (V0)A](x) V (x)45(x)
(hy  ((¥x)A4(x)) A (Vx)€(x) = (¥x)(ABx) A E(x))

() (V) (B(x) AG(x)) = ((Vx)A(x)) A (Vx)C(x)

(W) (F)(A] (x) = 45(x) = (F)4](x) = (A)A43(x))
() ()34 (x.y) = (3z)43(z.2)

() ((Wx)AH(x)) V (Vx)AY(x) = (Vx) (A4} (x) v AL (x))
(@) (@)@ (A (x,p) = (V2)4i(z.9)

(h) The wfs of Exercises 2.24, 2.31(a. e. j). 2.39 and 2.40.
(i) The wis of Exercise 2.21(a, b, g).

PROPOSITION 2.47

Assume that T is a set of closed wfs that satisfy the following closure con-
ditions: (a) if == is in T, then # is in I'; (b) if —(#Vv€)isinT, then %
and ~% are in T (¢) if =(# = %) is in T, then 4 and —% are in [; (d) if
)4 is in T, then (Ix)-Z is in T; (e) if ~(dx)Z isin [, then (Vx)~4 is in
I (D) if =(4A%)isin T, then at least one of =% and ~% is in I'; (g) if

(.4 « %) is in I, then either % and =% are in I', or =% and % are in [; (h)
- A A isin T, then so are & and €; (i) if Z Vv € is in [, then at least one of
#and ¢ isin T.(j)if 4 = % isin I, then at least one of =% and @ is in I';
(k) il .4 <> % is in [, then either .4 and € are in T or =4 and =% are in I'; )]
V). 4(x) is in T, then 4(h) isin T (where b is any individual constant that
occurs in some wi of Ty (m)if ().4(x) is in T then A(h) isin I for some

[45
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individual constant A1 no wi and its negation both belong to I' and some
wils i I contain individual constants. then there is a model for I whose
domain is the set D of individual constants that occur in wis of T,

Proof

Define i model M with domain D by specifying that the interpretation of any

predicate letter A} in I' contains an n-tuple {(hy.....h,) if and only if

ALy h,) 1s in I'. By induction on the number of connectives and
quantifiers in any closed wf ¢, itis casy to prove: (1) if & is in I', then & is true
in M:and (i) if =&, is in ', then & is false in M. Hence. M is a modecl for I

If a branch of a semantic tree remains open, the set I' of wis of that
branch satisfies the hypotheses of Proposition 2.47. If follows that, if a
branch of a semantic tree remains open, then the set I' of wfs of that branch
has a model M whose domain is the set of individual constants that appear
in that branch. This yields half of the basic principle of semantic trees.

PROPOSITION 2.48

LI all the branches of a semantic tree are closed. then the wt .4 at the root of
the tree is unsatishable.

Proof

From the derivation rules it is clear that, if a sequence of wfs starts at 4 and
continues down the tree through the applications of the rules, and if the wfs
in that sequence are simultaneously satisfiable in some model M, then that
sequence can be extended by another application of a rule so that the added
wf(s) would also be true in M. Otherwise, the sequence would form an
unclosed branch, contrary to our hypothesis. Assume now that # is sa-
tisfiable in a model M. Then, starting with 4, we could construct an infinite
branch in which all the wfs are true in M. (In the case of a branching rule, if
there are two ways to extend the sequence, we choose the left-hand wf.)
Therefore, the branch would not be closed, contrary to our hypothesis.
Hence, Z is unsatisfiable.

This completes the proof of the basic principle of semantic trees. Notice
that this principle does not yield a decision procedure for logical validity. If
a closed wf 4 is not logically valid, the semantic tree of =4 may (and often
does) contain an infinite unclosed branch. At any stage of the construction
of this tree, we have no general procedure for deciding whether or not, at
some later stage, all branches of the tree will have become closed. Thus, we
have no general way of knowing whether .4 is unsatisfiable.

QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS

For the sake of brevity, our exposition has been Joose and imprecise. A
clear and masterful study of semantic trees and related matters can be found
in Smullyan (1968).

2.16 QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS

Our definition in Scction 2.2 of inierpretations ol a language assumed that
ihe domain of an interpretation is non-empty. This was done for the sake of
simplicity. 1f we allow the empty domain. questions arise as to the right way
of defining the truth of a formula in such a domain.” Once that is decided.
the corresponding class of valid formulas (that is. formulas true in all in-
terpretations, including the one with an empty domain) becomes smaller.
and it is difficult to find an axiom system that will have all such formulas as
its theorems. Finally, an interpretation with an emipty domain has little or
no importance in applications of logic.

Nevertheless, the problem of finding a suitable treatment ol such a more
mclusive logic has aroused some curiosity and we shall present one possible
approach. In order to do so, we shall have to restrict the scope of the
mvestigation in the following ways.

First, our languages will contain no individual constants or function
letters. The reason for this restriction is that it is not clear how to interpret
mdividual constants or function letters when the domain of the interpreta-
on is empty. Moreover, in first-order theories with equality, individual
constants and function letters always can be replaced by new predicate
letters. together with suitable axioms.*

Second, we shall take every formula of the form (¥x).#4(x) to be true in the
cmpty domain. This is based on parallelism with the case of a non-empty
Jdomain. To say that (Vx)#(x) holds in a non-empty domain D amounts to
asserting

(+) for any object ¢,if ¢ € D, then 4(c)

When D is empty. ‘¢ € D’ is false and, therefore, ‘if ¢ € D, then #(c)’ is true.
sice this holds for arbitrary ¢, (x) is true in the empty domain D, that is,
\)4(x) is true in an empty domain. Not unexpectedly, (Ix)#(x) will be
false in an empty domain, since (3x)#(x) is equivalent to —(¥x)—#4(x).
I'hese two conventions enable us to calculate the truth value of any closed
formula in an empty domain. Every such formula is a truth-functional
combination of formulas of the form (Vx)#(x). Replace every subformula

“FFor example, should a formula of the form (¥x)(4} (x) A =41 (x)) be considered
true e the empty domain?
For example. an individual constant b can be replaced by a new monadic
predicate letter 22, together with the axiom (W) (Ve)(P(x) ¢> x — v). Any axiom 4(h)
should be replaced by (VO(P(v) = #(v)).
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(¥x).24(x) by the truth value T and then compute the truth value of the whole
formula.

1t 15 not clear how we should define the truth value i the emipty domain
ol a formula containing free variables. We might imitate what we do in the
case ol non-empty domains and take such a formula 1o have the same truth
values as its universal closure. Since the universal closure is autematically
truc in the empty domain. this would have the uncomtortable consequence
of declaring the formula 4} (x) A —4}(x) to be true in the empty domain. For
this rcason. we shall confine our attention to sentences, that is. formulas
without free variables.

A sentence will be suid to be inclusively valid if 1t 1s true in all inter-
pretations. including the interpretation with an empty domain. Every in-
clusively valid sentence is logically valid, but the converse does not hold. To
sce this, let f stand for a sentence % A —%. where % is some fixed sentence.
Now. fis false in the empty domain but (Vx)f is true in the empty domain
(since it begins with a universal quantifier). Thus the sentence (Vx)f = f is
false in the empty domain and, therefore. not inclusively valid. However, it
is logically valid, since every formula of the form (Vx).4 = 4 is logically
vahd.

The problem ol determining the inclusive validity of a sentence 1s re-
ducible to that of determining its logical vahidity, since we know how to
determine whether a sentence is true in the empty domain. Since the problem
of determining logical validity will turn out to be unsolvable (by Proposition
3.54). the same applies to mclusive vahdity.

Now let us turn to the problem of finding an axiom system whose the-
orems are the inclusively valid sentences. We shall adapt for this purpose an
axiom system PP¥ based on Exercise 2.28. As axioms we take all the fol-
lowing formulas (see the Logical Axioms on p. 69):

(Al) B = (¢ = 4)

(A2) A= (C=9)=((B=%)=(B=>9))

(A3) (—% = %)= ((-% = AB)= )

(Ad)  (vx)B(x) = B(y) if B(x)isa wlof ¥ and y is a variable that is free
for x in #(x). (Recall that, if y is x itself, then the axiom has the form
(Vx)% = 2. In addition, x need not be free in A(x).)

(A5) (Vx)(#B = €) = (% = (Vx)%) if # contains no free occurrences of x.

(A6) (W) ... (Vw)(# = C) = [(In)... (D)4 = (V). (I0)%]

together with all formulas obtained by prefixing any sequence of universal
quantifiers to instances of (A1)-(A6).

Modus ponens (MP) will be the only rule of inference.

PP denotes the pure first-order predicate calculus, whose axioms are
(A1) (AS), whose rules of inference are MP and Gen, and whose language
contains no individual constants or function letters. By Gadel's complete-
ness theorem (Corollary 2.19), the theorems of PP are the same as the

QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS
logically valid formulas in PP. Exercise 2.28 shows first that Gen is a derived
rule of inference of PP thatis. if Fpp. &, then Fppe (Wx)7. and sccond that
PP and PP” have the same theorems. Hence. the theorems of PP” are the
logically valid formulas.

Let PPS? be the same system as PP except that, as axioms. we take only
the axioms of PP# that arc sentences. Since MP takes sentences into sen-
tences. all theorems of PPS¥ are sentences. Since all axioms of PPS* are
axioms of PP*_ all theorems of PPS" are logically valid sentences. Let us
show that the converse holds.

PROPOSITION 2.49

very logically valid sentence is a thcorem of PPS”.

Proof

I ot 4 be any logically valid sentence. We know that 4 is a theorem of PP
i ¢t us show that .4 is a theorem of PPS*. In a proof of .4 in PP¥. let
A u, be the free variables (if any) in the proof, and prefix (Vu) ... (Vu,)
1o all steps of the proof. Then each step goes into a theorem of PPS*. To sec
this. first note that axioms of PP# go into axioms of PPS¥. Second. assume
that & comes from @ and 4 = & by MP in the original proof and that
). (Vup)6 and (Vuy) ... (Yu,)(% = Z) are provable in PPS* . Since
i (Nu € = P) = (Vi) ... (Yu,)€ = Vuy) ... (Vu,)#] is an in-
sance of axiom (A6) of PPS* | it follows that (Yuy) ... (Vu, )% is provable in
PPSY. Thus, (Vuy) ... (Yu,)# is a theorem of PPS*. Then »n applications of
niom (A4) and MP show that 4 is a theorem of PPS*.
Not all axioms of PPS* are inclusively valid. For example, the sentence
Vf = f discussed earlier is an instance of axiom (A4) that is not in-
usively valid. So, in order to find an axiom system for inclusive validity, we
dst modify PPS#.

It P is a sequence of variables u),...,u,, then by VP we shall mean the
Apression (Vuy) ... (Yuy,).

I et the axiom system ETH be obtained from PPS# by changing axiom
A into:

A4 All sentences of the form VP[(Vx)%(x) = #(y)], where y is free for x
in .#A(x) and x is free in 4(x), and P is a sequence of variables that
imcludes all vanables frec in .4 (and possibly others).

AP s the only rule of inference.
It s obvious that all axioms of ETH are inclusively valid.
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LEMMA 2.50

It 7 s an instance of a tautology and P is a sequence ol variables that
contamns all free variables in .7, then by VP.7 .

Proof

By the completeness of axioms (Al)-(A3) for the propositional calculus,
therc is a proof of .7 using MP and instances of (Al)-(A3). If we prefix VP
to all steps of that proof. the resulting sentences are all theorems of ETH. In
the case when an original step 4 was an instance of (Al1)-(A3), VP4 is an
axiom of ETH. For steps that result from MP. we use axiom (AG6).

LEMMA 2.51

If P is a sequence of variables that includes all free variables of 4 = %, and
Feru VP A and FiTh VP[’A = ((/}. then FF.TH VPY.

Proof
Use axiom (A6) and MP.

LEMMA 2.52

If P 1s a sequence of variables that includes all free variables of 4, %, %, and
FETH VP[% = (g] and FgtH VP[(g = (’/7] then FETHVP[:% = 9|

Proof

Use the tautology (4 = €)= ((¢ = 2) = (# = 2)), Lemma 2.50, and
Lemma 2.51 twice.

LEMMA 2.53

If x 1s not free in 4 and P is a sequence of variables that contains all free
variables of 4, Fpry VP[4 = (Vx)4).

Proof

By axiom (AS), by VP|(Vx)(B = B) = (B = (Vx)B)]. By Lemma 2.50,

B VP|(Vx)(4 = .4)]. Now use Lemma 2,51,

QUANTIFICATION THEORY ALLOWING EMPT\; [)()MAIN.;

COROLI.ARY 2.54

If .4 has no free variables, then Fppy 4 = (V)4

LEMMA 2.55

If x is not frec in 4 and P is a sequence ol variables that includes all
variables free in .4, then Fpry VP[=(Vi)f = ((Vx).4 » A)).

Proof

’h.-'rH VP-4 = (4 =1)] by Lemma 2.50. By Lemma 2530 + 4, VP
(A = 1) = (Vx)(4 = {)]. Hence, by Lemma 2.52, pin VP = (Vi)
(4 =1)]. By axiom (A6). Fqy VPI(Yx) (4 = ) = (Vx) 4 = (V)f)].
Hence, by Lemma 2.52. bypy VP[4 = ((Vx)4 = (Vx)f)]. Since (-4 =
((Vn) 4 = (Y)f)] = [=(Vo)f = ((Vx)4 = A)] is an instance of a tautology,
Lemmas 2.50 and 2.51 yield Fpyy VP[=(Vx)f = ((Yx)4 = 4)].

PROPOSITION 2.56

F'TH + {.ﬁ(Vx).f} is a complete axiom system for logical validity. that is, a
sentence is logically valid if and only if it is a theorem of the system.

Proof

A\l axioms of the system are logically valid. (Note that (Vx)f is false in all
imterpretations with a non-empty domain and, therefore, =(Vx)fis true in all
such domains.) By Proposition 2.49, all logically valid sentences are pro-
vable in PPS#. The only axioms of PPS# missing from ETH are those of the
torm VP[(Vx)# = %], where x is not free in %4 and P is any sequence of
variables  that include all free variables of 4. By Lemma 2.55,
i VP[=(Vx)f = ((Vx)% = 4)]. By Corollary 2.54, VP[-(Vx)f] will be
derivable in ETH + {=(vx)f}. Hence, VP[(vVx)% = 4] is obtained by using
aom (A6).

1L EMMA 2.57

WP is a sequence of variables that include all free variables of A,
pin VPIVOSF s (V)4 <> 1)}, where tis of,
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Proof

Since f = .4 is an instance of a tautology. Lemma 2,50 yiclds
RIS '\/I)(\/.\‘\)“- = y]\ By axiom (A()).. T V/"[(V\)[f = )/)’] - {(V\‘)f
= (Vx)#41l. Hence. bern YP[(Vx)f = (Vx).4] by Lemma 2.51. Since
(¥x)4 = [(Va)4 < t] is an instance of a tautology. Lemma 2.50 yields
b YPI(VX)4 = (V)4 < t]]. Now. by Lemma 2.52, Fprn VPV
= [(vx) 4 & ).

Given a formula .%, construct a formula .#" in the following way. Moving
from left to right, replace each universal quantifier and its scope by t.

LEMMA 2.58

If P is a sequence of variables that include all free variables of 4. then
Fery VPV = [4 & A

Proof

Apply Lemma 2.57 successively to the formulas obtained in the stepwise
construction of 4. We leave the details to the reader.

PROPOSITION 2.59

ETH is a complete axiom system for inclusive validity, that is, a sentence %
is inclusively valid if and only if it is a theorem of ETH.

Proof

Assume 4 is a sentence valid for all interpretations. We must show thut
Fern 4. Since 4 is valid in all non-empty domains, Proposition 2.56 implies
that 2 is provable in ETH + {~(vx)f}. Hence, by the deduction theorem.

(+) Fern —(Vx)f = A.
Now, by Lemma 2.58,

(%) ‘e (Wf= [8 & 47

(Since 4 has no free variables, we can take P in Lemma 2.58 to be empty.)
Hence, [(vx)f = (4 & 4']] is valid for all interpretations. Since (VOf is
valid in the empty domain and .4 is valid for all interpretations, 4% is
valid in the empty domain. But .4 is a truth-functional combination of ts.

 QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS

So, 4" must be truth-functionally equivalent to either t or f. Since it 1s
valid in the empty domain, it is truth-functionally equivalent to t. Hence,
Fern 47, Therefore by (%). Fery (Vo)f = 4. This, together with (+).
yields FE']'H A.

The ideas and methods used in this section stem largely, but not entirely.
from a paper by Hailperin (1953).F That paper also made use of an idea in
Mostowski (1951b). the idea that underlies the proof of Proposition 2.59.
Mostowski’s approach to the logic of the empty domain is quite different
.from Hailperin’s and results in a substantially dilferent axiom system for
inclusive validity. For example, when 4 does not contain x free. Mostowski
interprets (Vx)# and (3x)4 to be .4 itself. This makes (V)f equivalent to f,
rather than to t, as in our development.

"The e 8 D . aw ) . n ¢ 1 n’
I'he name ETH comes from “empty domain™ and ‘Theodore Hailperin'. My

amplification of Hailperin's axiom system was suggested by a similar simplification
m Quine (1954).



Formal Number Theory

3.1 AN AXIOM SYSTEM

Together with geometry, the theory of numbers is the m'o\_ql immediately
intuitive of all branches of mathematics. It is not surprising. then. lhal
attempts to formalize mathematics and to establish a ri‘g,orous 'four_ldallo'n
for mathematics should begin with number theory. The first semn-axnomalnc
presentation of this subject was given by Dedekind in 1879 and, in a shightly
modified form. has come to be known as Peano’s postulates.” It can be

formulated as follows:

(P1) 0 is a natural number.!

(P2) If x is a natural number, there is another natural number denoted by x'
(and called the successor of x)}

(P3) 0 # x' for every natural number x.

(P4) If X' =)/, then x = y. _

(P5) If Q is a property that may or may not hold for any given natural

number, and if (I) 0 has the property Q and (1) whenever a natural number

x has the property Q, then x’ has the property Q, then all natural numbers

have the property Q (mathematical induction principle).

These axioms, together with a certain amount of set lheor.y, can be used
to develop not only number theory but also the theory of ratnqnal. rf:al and
complex numbers (see Mendelson, 1973). However, the axioms involve
certain intuitive notions, such as ‘property’, that prevent this system from
being a rigorous formalization. We therefore shall build a first-order theory
S that is based upon Peano’s postulates and seems to be adequate for the
proofs of all the basic results of elementary number theory. o ‘

The language £, of our theory S will be called the /anguage of fzrl/h:m'/:('.
%, has a single predicate letter A%, As usual, we shall write t = s for A-,(/,..x-).
¢4 has one individual constant a. We shall use 0 as an alternative notation

For historical information, see Wang (1957). i
"I'he natural numbers are supposed to be the non-negative mtegers 01,2
he mtmtive meaming of Vs vl
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for ay. Finally. ¢4 has three function letters. /). /7 and /7. We shall
write(r') instead of f(r). (1 +s) instead of f7(r.5). and (1-s) instead of
J5(1.s). However, we shall write /.7 + s, and 7 - 5 instead of (/') (1 + ). and
(r-s) whenever this will cause no confusion.

The proper axioms of S are:

(S) vy =x2= () =x3 = x2=x3)
(S2) xy=xx=x) =x)

(S3) 0#£x,

($4) ¥\=xi=x=x

(S5) x 40 =y,

(S6) x4 x5 = (x) +x2)

(ST) x1-0=0

(S8) xi-(x2) = (v -x

cx) +
(S9) 4(0) = ((vx)(A(x

) = A(X)) = (Yx).A () tor any wi 4(x) of S.

We shall call (S9) the principle of mathematical induction. Notice that
axioms (S1)—(S8) are particular wfs, whereas (S9) is an axiom schema pro-
viding an infinite number of axioms.'

Axioms (S3) and (S4) correspond to Peano postulates (P3) and (P4),
respectively. Peano’s axioms (P1) and (P2) are taken care of by the presence
of 0 as an individual constant and f,‘ as a function letter. Our axioms (S1)
and (S2) furnish some needed properties of equality; they would have been
assumed as intuitively obvious by Dedekind and Peano. Axioms (S5)-(S8)
are the recursion equations for addition and multiplication. They were not
assumed by Dedekind and Peano because the existence of operations + and
-satisfying (S5)-(S8) is derivable by means of intuitive set theory, which was
presupposed as a background theory (see Mendelson, 1973, chapter 2,
I'heorems 3.1 and 5.1).

Any theory that has the same theorems as S is often referred to in the
literature as Peano arithmetic, or simply PA.

From (S9) by MP, we can obtain the induction rule:

B(0), (Vx)(B(x) = B(X)) b, (¥x)B(x).

It will be our immediate aim to establish the usual rules of equality; that
in. we shall show that the properties (A6) and (A7) of equality (sec page 95)
are derivable in S and, hence, that S is a first-order theory with equality.

birst, for convenience and brevity in carrying out proofs, we cite some
immediate, trivial consequences of the axioms.

"However, (S9) cannot tully correspond to Peano’s postulate (PS5), since the
Latter refers intuitively 1o the 2% properties of natural numbers, whereas (S9) can
tahe cire of only the denumberable number of properties defined by wis ol ¥y
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LEMMA 3.1

For any terms t.s.» of ¢, the following wis are theorems of S.

(SU) 1=r=(1=5s=r=y)
(S2") 1=r=1=/

(S3) 0%/

(S4) 1=r=1=r

(S5') t+0=1t

(S6') ﬁ+/:(1+ﬂl

() 1:0=0

(S8) -/ =(-r)+1¢

Proof

(S1)~(S¥’) follow from (S1)-(S8), respectively. First form the closure by
means of Gen, use Exercise 2.48 to change all the bound variables to vari-
ables not occuring in terms .r.s. and then apply rule A4 with the appro-
priate terms .7, s.1

PROPOSITION 3.2.

For any terms ¢, s, r, the following wfs are theorems of S.

(a) t=1t

b)) t=r=r=t

() t=r=(r=s=1t=y)
(d) r=t=>G=t=>r=ys)
() t=r=t+s=r+s
) t=0+1¢

@ +r=(+r)

h) t+r=r+1t

(1) t=r=>s+t=s+r
G (+r)+s=t+(r+ys)
k) t=r=t-s=r-s

I 0-t=0
m)d-r=t-r+r

The change of bound variables is necessary in some cases. For example. if we
want 1o obtain x; =x; = x) =x] from x =x;=x] =x{. we first obtain
(Vx1)(Vx2)(x) = x2 = x| = x4). We cannot apply rule A4 to drop (Vx;) and replace x,
by x3, since x3 is not free for x; in (Vx2)(x) = x> > x}  x5). From now on, we shall
assume without explicit mention that the reader is aware that we sometimes have to
change bound variables when we use Gen and rule A4,

.b

() Apply the induction rule to #(z) :

(1 1.
2.

Sk

1+0=1
((+0=0)=(+0=1=1=1)
+0=1t=1=
=1
l=r={=t=r=1)
=t=>(t=r=r=1)
t=r=r=t
r=t=(r=s=1t=s)
t=r=vr=1¢
t=r=(r=s=1=y)
r=i=(l=s=r=y)
l=s=(r=t=r=s)
S=t=t=y

s=t=(r=1=r=y)

x+0=x
y+0=y
xX=y
x+0=y
X+0=yp+0

Fsx=y=x4+0=yp+0

Thus, -5 2(0).

(i)

!
2
3.
4.
S

Thus, bg 4(z) =

Y=y=x+z=y+z

x=y
x+7Z=(x+z)
v+ =(y+z2)
X+z=ypy+4+z

Cx+2) = +2)

x+7Z=(y+z)

Y+ =y+7

Fsix=y=>x+z=y+2)=
(x=y=>x+Z=y+7)

/\\J /\Xl()M SYS [LM

(S5")
(S1")

2. Mp
1. 3. MP
(S19
I tautology. MP
2. part (a). MP
(S1")
Part (b)
[. 2. tautology. MP
Part (¢)
I, tautology. MP
Part (b)
2, 3, tautology, MP

X =y =>X+tz=y+z

(S5)

(S5")

Hyp

I, 3, part (c), MP

4, 2, part (d), MP

1-5, deduction theorem

Hyp

Hyp

(S6')

(S6')

1, 2, MP

5, (S2"), MP

3, 6, part (c), MP

4, 7, part (d), MP

1-8, deduction theorem (wice

= #(<), and, by Gen, ks (Vz)(# (z) = 8(Z')). Hence,

f's (Vz).4(z) by the induction rule. Therefore, by Gen and rule A4,

Ny
(1 Iet
(1)

el y=r4+s.

A(x) be x =0+ x.

Fs O - 040 by (S5), part (b) and MP: thus. s .4(0).
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l. vy=0+x Hyp

2 () +x = (04 x ) (S6")

3 a0+ 1. (S2'). MP

4. x' =0+ 3. 2, part (d). MP

5. bgx=0+x=x =0+ I-4. deduction theorcm

Y

Thus, Fg 4(x) = A(x') and, by Gen. 5 (Vx)(4(x) = A(xX'}). So. by (i),
(i) and the induction rule, Fg (Vx)(x =04 x). and then. by rule A4,

gt = 0+t
(g) Let 4(y) be X' +y = (x-+ vy
M 1. X+0=1x (S5)
x+0=x (S3)

2, (S2"), MP

2
3. (x+0) =Y
4 1, 3, part (d), MP

X 40=(x+0)

Thus, Fs 4(0).

() 1. X +y=x+yp) Hyp
2. X v =y (S6")
34 =) 1. (S2'). MP
4. X4+ = (v + \)” 2. 3, part (¢), MP
5. x+v :(rr\) (S6")
6. (x+¥) =@+ 5.(S2"). MP
7. X4y =+ 4, 6, part (d), MP
8. FsxX+y=(+y) = 1-7, deduction theorem

X4y =(+y)

Thus, bs 4(y) = #()), and, by Gen, s (Vy)(2(y) = #(y")). Hence, by
(i), (i) and the induction rule, ks (Vy)(x' +y = (x + ) "). By Gen and rule
A4, bg ! +r —(l+r)

(h) Let Z(y) bex+y=y+x.
H 1. x+0=x (S5")
2. x=0+x Part (f)
3. x+0=0+x 1, 2, part (c), MP

Thus, Fs 2(0).

@l x+y=y+x Hyp
2. x4y =(@x+y) (S6)
3. Y 4x=(+x) Part (g)
4. (x+y) =W+x) 1, (S2'), MP
5. x+y =(+x) 2. 4, part (¢), MP
6. x+yvV =y +x 5. 3. part (d), MP
7. Fs x +vy = vt+x= 1 6, deduction theorem

X+V =y b
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Thus. bs A(v) = 4()) and. by Gen. bg (Vy)}(4(v) = 4(v')). So. by (i). (ii)
and the induction rule. =g (Vy)(x + v = y +x). Then, by rule A4, Gen and

rulc Ad. b r4r=r+1

Ml.t=r=t+s=r+s
2.1+ s=5+1
3 rd+s=s4r
4. t=vr
St+s=r+ws
6.s+1t=r+y
T.s+t=s+r

. bkst=r=s+t=s+r

() Let A(z) be (x+y) +z=x+ (v +2

) Lx+y)+0=x+y
2.v+0=y
3x+(p+0)=x+v

4. x+y)+0=x+(v+0)
Thus, kg #(0).

() l. (x+y)+z=x+(y+2)
2. (x4 +Z =((x+y) +2)
3 (x+y) +')' =
4. x+y) + (r+(y+z))
S.v+zZ = (y+z)
6. x+(y+2)=x++z)
Tx+(y+2) =@+ +2)
8.x+(y+2Z)=(x+(+2)
9. (x+y)+Z =x+(y+7)

0. Fs (x+y)+z=x+(y+2) =

x+y)+Z=x+(y+72)

(r+ (r+2)

Part (¢)
Part (h)
Part (h)
Hyp
I.4. MP
2.5.(S1"y MP
6. 3. part (¢). MP
I 7. deduction theorem

(S5")
SS)
2. part (J). M
l 3, part (d), \/IP

_

Hyp

(S6")

1, (S2"), MP

2, 3, part (¢c), MP

(S6")

S, part (i), MP

(S6)

6, 7, part (c), MP

4, 8, part (d), MP

1-9, deduction theorem

Thus, ks 4(z) = 4(Z') and, by Gen, Fs (Vz)(%#(z) = (4()). So, by (i),
(i) and the induction rule, kg (Vz)#4(z), and then, by Gen and rule A4,

bs(+r)+s=t+(r+s).

Parts (k)-(o) are left as exercises.

COROLLARY 3.3

S s a theory with equality.

Proof

By Proposition 2.25, this reduces to parts (a) (), (i), (k) and (o) of pro-

position 3.2, and (S2').
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Notice that the interpretation in which:

(a) the set of non-negative integers is the domain

(b) the integer 0 is the interpretation of the symbol 0

(¢) the successor operation (addition of 1) is the interpretation of the
function (that is, of f}")

(d) ordinary addition and multiplication are the interpretations of + and -

(¢) the interpretation of the predicate letter = is the identity relation

!

is a normal model for S. This model is called the standard interpretation or
standard model. Any normal model for S that is not isomorphic to the
standard model will be called a non-standard model for S.

If we recognize the standard interpretation to be a model for S, then, of
course, S is consistent. However, this kind of semantic argument. involving
as it does a certain amount of set-theoretic reasoning, is regarded by some as
oo precarious o serve as a basis for consistency proofs. Moreover, we have
not proved in a rigorous way that the axioms of S are true under the
standard interpretation, but we have taken it as intuitively obvious. For
these and other reasons, when the consistency of S enters into the argument
of a proof, it is common practice to take the statement of the consistency of
S as an explicit unproved assumption.

Some important additional properties of addition and multiplication are
covered by the following result.

PROPOSITION 3.4

For any terms ¢, r, s, the following wfs are theorems of S.

(@) t-(r+s)={(t-r)+ (1) (distributivity)

(b) (r+ts)-t={(r-1)+ (s-t) (distributivity)

(¢) (t-r)-s=1-(r-s) (associativity of -)

(d) t+s=r+s=t=r(cancellation law for +)

Proof

(a) Prove s x-(y+z) = (x-y) + (x-z) by induction on z.

(b) Use part (a) and Proposition 3.2(n).

(c) Prove kg (x-y)-z=x-(y-z) by induction on z.

(d) Provels x+z = y+z = x=yby induction on z. This requires, for the
first time, use of (S4').

The terms 0,0',0”7,0”,... we shall call numerals and denote by
0.1,2,3,.... More precisely. 0 is 0 and, for any natural number n.n + I is
(7). In general, if n is a natural number, 7 stands for the numeral consisting
of 0 followed by n strokes. The numerals can be defined recursively by
stating that O is a numeral and, i w is a numeral, then o s also a numeral,

AN AXIOM SYSTEM

PROPOSITION 3.5

The following are theorems of S.

(@) t+1="¢

(by t-1T=1

(€) t-2=1t+1

d) t+s=0=1=0As5=0

() t#0=(s-1=0=y5=0)

O t+s=T=2U=0As=1)v(t=1As=0)
(g t-s=1=(t=1As=1)

(hy t#0= (I)(t=Y)

(W) s£0=(t-s=r-s=1t=r)

) t#£0=(t#1= (=)

Proof

(@) 1. t40 =(t+0) (S6")
t+0=1 (S5")
(140 =+ 2, (82", MP
0=/ 1. 3, Proposition 3.2(c). MP
1= 4, abbreviation
0 =1-0+1 (S8
0=0 (S7)

(b)

(Y =141 1, 3, Proposition 3.2(c), MP

St 2=t+1¢ 4, abbreviation

() Let A(y)bex +y=0=x=0Ay=0.Itis easy to prove that s Z(0).
Also, since s (x + )" # 0 by (S3') and Proposition 3.2(b), it follows by
(S6'y that Fgx+3 #0. Hence, Fs#(y) by the tautology

4 = (4= B). So, ks #(y) = #()) by the tautology 4 = (B = 4).

Then, by the induction rule, s (Vy)%(y) and then, by rule A4, Gen and

~rule A4, we obtain the theorem.

(¢) The proof is similar to that for part (d) and is left as an exercise.

() Use induction on vy in the wf x4+y=1=(x=0Ay=1)V
(v TAy=0).

(1) Useinductionon vinx-y  T-3(x  TAy=1).

l.
2.
3
4
5
|
2
3
4.1-00=0+1¢
5
6
7
|
2
3
4
g

-0+t =0+1¢ 2, Proposition 3.2(e), MP
1, 3, Proposition 3.2(c), MP
04t =1 Proposition 3.2(f,b), MP
-0 =1t 4, 5, Proposition 3.2(c), MP
(- 1T=1 6, abbreviation
() e (1) = (- T) +1 (S8")
1=t Part (b)
(D +r=t+t 2, Proposition 3.2(e), MP
t
!
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(h) Perform induction on x in x # 0 = (3w){x = w').
(1) Let Z(v) be (Vx)(z£ 0= (x-z=y -z = x=y)).

(1) 1.z#0 Hyp
2.xv-z=0-z Hyp
30:z=0 Proposition 3.2(1)
4. x-2=0 2. 3 Proposition 3.2(c). MP
S5.x =0 I. 4. part(e), MP
6.bsz#0= (x-z=0-z=x=0) 1-5. deduction thcorem
T hs (Vz2)(z#0= (x-2=0-z 6. Gen

=x=0))

Thus, Fg #(0).

(i) I (W)(z#0= (x-z=y-z=x=y))Hyp (4(y))
2.z40 Hyp
Jx-z=y -z Hyp
4.y #0 (S3"), Proposition 3.2(b), MP
5.V -z#0 2.4, part (e), a tautology. MP
6.x-z#0 3. 5. (S1"), tautologies, MP
7.x#0 6. (S7'). Proposition 3.2(o,n),

(S1")., tautologies, MP
. 7. part (h), MP
9. x =4 8. rule C

0.6 -z=y -z 3.9, (A7), MP

b ztz=yv z+z 10, Proposition 3.2(m.d). MP

12.h-z=y-z 11, Proposition 3.4(d), MP

13.240= (b-z=y-z=b=y) 1, rule A4

4. bh-z=y-z=b=y 2, 13, MP

15.b=y 12, 14, MP

16. ' =5/ 15, (S2"), MP

17. x =/ 9, 16, Proposition 3.2(c), MP

18. #(y),z#0,x - z=y -z Fsx =)' 1-17, Proposition 2.10

19. () Fsz#£ 0= 18, deduction theorem twice
(x-z=y - z=>x=))

20. B(y) Fs (Vx)(z £ 0 = 19, Gen

(x-z=y - z=>x=)))
21. ks B(y) = B()
Hence, by (i), (ii), Gen, and the induction rule, we obtain g (Vv).4(v)
and then, by Gen and rule A4, we have the desired result.
(J) This is left as an exercise.

20, deduction theorem

PROPOSITION 3.6

(a)Let moand # be any natural numbers,

/\\4 /\Xl()\/l SYST I M

(1) i m # n, then b m # 7.
(Wtsmtn=m+nand g w1 =mn-n.
(b) Any model for S is infinite.
(¢) For any cardinal number Ry, S has a normal model of cardinality Xg.

Proof
(a)(1) Assume m # n. Either m < n or n < m. Say. m < n.
l.m=n ) Hyp
moumes o himes

2.0 =0". ) I is an abbreviation of 2

Ho-motimes

3. Apply (S4') and MP m times in a row. We get 0 =0"...- Let 1 be
n—m—1.Since n >m.n—m— 1=0. Thus, we obtain () = 7.

4.0+ 1 (S3)

SSO=LNAN0#T 3. 4, conjunction introduction
6. m=nakls0=0rN0#/r 15

T.Fsm#7 -6, proof by contradiction

A similar proof holds in the case when n < m. (A more rigorous proof can
be given by induction in the metalanguage with respect to n.)

(i) We use induction in the metalanguage. First, m + 0 is m. Hence,
Pem+0=m+0 by (85). Now assume Fs m+n=m+7n Then
s (m+n) =m+ () by (S2') and (S6'). But m+ (n+ 1) is (m + )" and
wt1is (7). Hence, Fsm+ (n+ 1) =m+n+ 1. Thus, Fs m + 1 = m + 7.
I'he proof that Fg m -7 = m -7 is left as an exercise.

(b) By part (a). (1), in a model for S the objects corresponding to the nu-
merals must be distinct. But there are denumberably many numerals.

(¢) This follows from Corollary 2.34(c¢) and the fact that the standard model
i an infinite normal model.

An order relation can be introduced by definition in S.

DEFINITIONS

t <sfor (Iw)w#OAw+1=5)
i<sfort<sVi=s
t>sfors <t

t=s for s<t

t £ s for =t < s), and so on

In the first definition. as usual, we choose w to be the first variable not in

[ ory,
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PROPOSITION 3.7

For any terms £.r.s, the following are thecorems.

(a) t £t

by r<s=(s<r=1<r)
() r<s=s4t
dt<setr+rs+r
(¢c) 1<t

(N 1<s = (s<r=1<r)
() ISs & 1+r<s+r
h1<s=(s<r=1<r)
(i) 0=t

o</

kK t<rel<r

) (<rer<v

(m)yr </
nNo0<T1.1<2.2<3....

Proof
(a)

1.t <t

2. (Aw)y(wH#OAwW+ L =1)

3.b#AO0OAND+ =1

4. b+t1=1

S.t=0+1

6.b+1=0+41

7.5=0

8.b#0

9.b=0Ab#0
10.0=0A0#0
Il.1<tFs0=0A0#0
12. st £t

(b) lL.r<s
2.5 <r
3.(AwW)wH£OAwW+1=5)
4. () #£0Av+s=r)
SSb#0Ab+1t=s
6.c#O0Nc+s=r
T.b+t=s
8.ct+s=r

9 c+b+t)=c+s

100.c+(b+1t)=r

Il (c+h) vt =7

12h /0

() t#£r=(<rvr<it)
(p)yt=rvi<rvr<l

(q) t<rvr<t

(ry t+r=t

() r#0=1+r>1

() r#0=1-rz=t

(W r£20<=r>0

WM r>0=0>0=r-t>0)
W r#0=(>1=1-r>r)
X) rE0=(I<seot1-r<s-r)
(y) r#0= (1<so1-r<s-r)
(z) t£0

@ 1<rAr<t=1t=r

Hyp

| is an abbreviation of 2

2, rule C

3, conjunction rule
Proposition 3.2(f)

3, 4, Proposition 3.2(c), MP
6, Proposition 3.4(d), MP

3, conjunction elimination

7, 8, conjunction elimination
9, tautology: BA -8B = C, MP
1-10, Proposition 2.10

1-11, proof by contradiction
Hyp

Hyp

| is an abbreviation of 3

2 is an abbreviation of 4

3, rule C

4, rule C

5, conjunction elimination
6, conjunction elimination

7. Proposition 3.2(i), MP

9. 8. Proposition 3.2(c). MP
10, Proposition 3.2().c). MP
S, conjunction climmation
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13.c4+h#0 12, Proposition 3.5(d).
tautology. MP

13, 11, conjunction introduction
14, rule E4

Abbreviation of 15

I--15, Proposition 2.10,
deduction theorem

14 c+bhb#O0ON(c+b)+1=r
1S, (Fu)(u #O0Nu+1=r)
16.t < r

7. Fgt<s=(s<r=1<r)

Parts (¢) (Z) are left as exercises.

PROPOSITION 3.8

(a) For any natural number k.Fgx =0V ... Vx =k < v<k.

(a’) For any natural number & and any wi .4, =g .4(0) A A1
& (V) (x <k = 4(x)).

(b) For any natural number & > 0, Fgx =0V... vy =(k 1) e x <k

(b') For any natural number & > 0 and any wf .4, s 4(0) A A(1) A ...
ANAk — 1) & (V) (x < k = A(x)).

() Fs (Vx)(x <y = Ax)) A (¥x)(x=y = Cx))) = (Vx)(4(x) V E(x))

YA ABK)

Proof

(1) We prove Fsx =0V ... Vx =k < x<k by induction in the metalan-
suage on k. The case for k = 0,Fgx =0 < x<0, is obvious from the defi-
mtions and Proposition 3.7, Assume as inductive hypothesis Fg x =0V ...
v=k o x<k Now assume x=0V...Vx=kVx=k+1. But Fgx=
A1 1=x<k+1 and, by the inductive hypothesis, Fsx=0V...Vx=
ko> x<k. Also Fsx<k = x<k+ 1. Thus, x<k+1. So, Fsx=0V...
A kVx=k+1=x<k+1I. Conversely, assume x<k+ 1. Then
W hk+lvx<k+ 1. Ifx=k+1,thenx=0V...Vx=kVx=k+1.If
vk + I, then since £ + 1 is (k)’, we have x<k by Proposition 3.7(1). By the
mductive hypothesis, x =0V ...Vx ==k, and, therefore, x=0V...Vx =
k'vx =k + 1. In either case, x=0V...Vx=kVx=k+ 1. This proves
W<k fI=x=0V...Vx=kVx=k+ 1. From the inductive hypoth-

osis, we have derived Fsx=0V...Vx=Fk + 1 @ x<k + | and this com-
pletes the proof. (This proof has been given in an informal manner that we
~hall generally use from now on. In particular, the deduction theorem, the
climinability of rule C, the replacement theorem, and various derived rules
and tautologies will be applied without being explicitly mentioned.)

Puarts (a’). (b). and (b') follow easily from part (a). Part (¢) follows almost
immediately from Proposition 3.7(0). using obvious tautologies.

There are several stronger forms of the induction principle that we can
prove at this point.
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PROPOSITION 3.9

() Complete induction. Fg (Vx)((Vz)(z < x = #(2)) = A(x)) = (Vx)4(x).
In ordinary language. consider a property P such that, for any x, if P
holds for all natural numbers less than x. then P holds for x also. Then P
holds for all natural numbers.

(b) Least-number principle. Fs(3x).48(x)= () (A(V)A(Vz)(z<y=—~4(2))).
I a property P holds for some natural number, then there 1s a least
number satisfying P.

Proof
(a) Let %(x) be (Vz)(z<x = 4(z2)).
(1) 1. (vV)((V2)(z < x = #(z)) = 4(x)) Hyp
2. (Vz)(z < 0 = 4(z)) = 4(0) I, rule A4
3240 Proposition 3.7(y)
4. (Vz)(z < 0 = 4(2)) 3, tautology, Gen
5. 4(0) 2.4, MP
6. (V2)(z<0 = 4(z)) i.e.. 6(0) 5. Proposition 3.8(a’)
7. (V)((V2)(z < x = A4(2))
= A(x)) s €(0) 16
(i) 1. (vo)((V2)(z < x = A(z)) = 4(x)) Hyp
2. 6(x), Le., (V2)(z<x = A(z)) Hyp
3. (V2)(z < X' = A(2)) 2, Proposition 3.7(f)
4. (V2)(z < x' = A(z)) = B(x") 1, rule A4
5. B(x') 3, 4, MP
6.z<X =>z<xXvz=x Definition, tautology
7. z<x' = A(2) 3, rule A4
8. z=u" = 4(2) 5, axiom (A7), Proposition

2.23(b), tautologies
9. (V2)(z<x¥ = 4(2)) ie.. C(X) 6, 7, 8, Tautology, Gen
10. (\/v (V2)z < x = %z )) = A(x))
Fs (Vx)(%(x) = €(x')) 1-9, deduction theorem. Gen

By (i), (ii) and the induction rule, we obtain % kg (Vx)%(x), that is,
D ks (¥x)(Vz)(z<x = A(z)), where 2 is (Vx)((Vz)(z < x = #(2)) = A(x)).
Hence, by rule A4 twice, 2 s x<x = #(x). But ks x<x. So, ¥ Fg .4(x),
and, by Gen and the deduction theorem, kg % = (Vx)#(x).

(b)1. =(3y)(#(y) A (V2)(z <y = ~#(2))) Hyp
2. (V) (4() A (Vz)(z < y = =#(z))) . derived rule for negation
3.V ((V2)(z < v = ~4(z)) = ~4(y)) 2. tautology. replacement
4. (Vy)—-A(v) 3, part (a) with .4 instead of .4
Sooo( hv)A(y) 4, denved rule for negation

6. —(dx)4(x) 5. change of bound variable

T s (A A (V2)(z < v =

~4(2))) = —(3x)A(x) 1-6. deduction theorem
8. Fs () 4(x) = () (A1)

(\'/ Mz <y = —4(2))) 7. derived rule

Exercise

3.1 (Method of infinite descent)
Prove g (Vx)(4(x) = (I)(y < x A A1) = (Vx)~4(x)

Another important notion in number theory is divisibility, which we now
define.

DEFINITION 1{s for (3z)(s = - z). (Here, zis the first variable not in 7 or s.)

PROPOSITION 3.10

The following wfs are theorems for any terms 1. s. r.

()

(h) 1)t

(c) 70

(dy tls Aslr = 1|r

(¢) s#O0ANtls =>1<s
N tsAsit=>s=1
() tls = 1|(r-s)

(h) tisAtlr = tl(s+r)

Proof

(1) t=1t-

{h) t=1-1. Hence, I}t

() 0 = ¢-0. Hence, /0.

() Ifs=t-zand r=s-w, thenr=1¢-(z-w).

() If s en s = ¢ -z for some z. If z = 0, then s = 0. Hence,
z#0.S0,z=u forsome u. Thens=1¢ (&) =t -u+1>1.

(1) (h) These proofs are left as exercises.

F.xercises

3.2 Provety I|T =1,
33 Provebg (s A"y > L.

167
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It will be useful for later purposes to prove the existence of a unique
quoticnt and remainder upon division of one number x by another nonzero
number y.

PROPOSITION 3.11

Fov£0= (Fu) Ae)x=y-u+vAv<yAMuy) (Vo) (x =y -u 4+ A
v <y)=u=u Av=u)

Proof

Let Z(x) be y #0 = Bu)(Fv)(x =y -u+vAv <y).

(i) L.

N

[

o

)]

(i) 1.

10.
1.

13.
14.

y#0

0=y»-040

0<y

0=y-0+0A0<y

(B (IO =v-u+vArv<y)

v FEO0 S (A(EHN0 =vout e

ATy
Ax) e v A0 = (o))
(x=v-utrArv<y)

y#0

(A @) x=y-ut+vAv<y)
x=y-a+bAb<y

b<y

<y

B <yvb =y

<y @ =ya+rbAb <y)
B <y= Cu)(@n) =y-u
+uvAv<y)
P=y=>x=y-a+y-1
P=y= =y (a+]1)
+0A0<y)

=y (F@E) (X =y u+t
vAL <Yy)

(Fu)(B) (X' =y -ut+vAv<y)
B(x) = (y #0 = (3u)(3v)
(X=y-utvAv<y))

ile., #B(x) = B(x')

Hyp

(S5, (S7)

I, Proposition 3.7(1)
2, 3, conjunction rule
4. rule E4 twice

I 5. deduction theorem

Hyp

Hyp

l, 2, MP

3, rule C twice

4, conjunction elimination
5, Proposition 3.7(k)

6, definition

4, (S6), derived rules

8, rule E4, deduction theorem
4, (S86'), Proposition 3.5(b)

10, Proposition 3.4, 2,
Proposition 3.7(t), (S5)

11, rule E4 twice, deduction
theorem

7,9, 12, disjunction elimination
1-13, deduction theorem

By (1), (ii), Gen and the induction rule, kg (Vx).#4(x). This establishes the
existence of a quotient « and a remainder r. Fo prove uniqueness. proceed
as follows. Assume v / 0. Assume v

veou b e A v and vy g

1 AN AXIOM SYSTEM

oy Avp < v Now, w=uy or u<u or uy < u I u=u.then vt =) by
Proposition 3.4(d). If w < wy. then wuy = u+w for some w # 0. Then
veut+re=v-(ut+w)+ry=ry-u+y-w+r,. Hence, v =yv-w+ ;. Since
w#0,v-w2y So. r=yv- w42y contradicting v < v. Hence. u £ uy.
Similarly. w; £ u. Thus. w = wy. Since y-w -+ v =x=1v-u +r;. it folows
that v = v).

From this point on, one can gencrally translate into S and prove the
results from any text on elementary number theory. There arc certain
number-theoretic functions, such as ¥ and x!. that we have to be able to
define in S, and this we shall do later in this chapter. Some standard results
of number theory, such as Dirichlet’s thcorem. are proved with the aid of the
theory of complex variables. and it is often not known whether clementary
proofs (or proofs in S) can be given for such thecorems. The statement of
some results in number theory involves non-clementary concepts, such as
the logarithmic function, and. except in special cases. cannot ¢ven be for-
mulated in S. More information about the strength and expressive powers of
S will be revealed later. For example. it will be shown that there are closed
wis that are neither provable nor disprovable in S, if' S is consistent: hence
there is a wf that is true under the standuard interpretation but is not pro-
vable in S. We also will see that this incompleteness of S cannot be attrib-
uted to omission of some essential axiom but has deeper underlying causes
that apply to other theories as well.

F.xercises

3.4  Show that the induction principle (S9) is independent of the other

axioms of S.

3.80

(z1) Show that there exist non-standard models for S of any cardinality X,.

by Lhrenfeucht (1958) has shown the existence of at least 2% mutually non-
isomorphic models of cardinality R,. Prove the special case that there
are 2% mutually non-isomorphic denumerable models of S.

36" Give a standard mathematical proof of the categoricity of Peano’s

postulates, in the sense that any two ‘models’ are isomorphic. Explain why

this proof does not apply to the first-order theory S.

3.7 (Presburger, 1929) If we eliminate from S the function letter f7 for

multiphcation and the axioms (S7) and (S8), show that the new system S, is

complete and decidable (in the sense of Chapter 1, p. 34).

38

(1) Show that, for every closed term ¢ of S, we can find a natural number n
such that g7 = 1.

(h) Show that every closed atomic wi r = s of Sis decidable - that is, either
bgt sorbgt /s

(v) Show that every closed wi of S without quantifiers is deaidable.

\{ 169 |
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3.2 NUMBER-THEORETIC FUNCTIONS AND RELATIONS

A number-theoretic function s a function whose arguments and values are
natural numbers. Addition and multuplication are familiar examples of
number-theoretic functions of two arguments. By a number-theoretic rela-
tionr we mean a relation whose arguments are natural numbers. For example,

and < are binary number-theorctic relations. and the expression

X + v <z determines a number-theoretic relation of three arguments.’

Number-theoretic functions and relations are intuitive and are not bound up
with any formal system.

Let K be any theory in the language ¢4 of arithmetic. We say that a
number-theoretic relation R of » arguments is expressible in K if and only if
there is a wf A(x,.....x,) of K with the free variables x,....,x, such that,
for any natural numbers k., ..., k,, the following hold:

I. If Rk, ... k) is true, then g .'/f(zl,_. k).
2 I R(ki.....k,) is false. then F g ~4(Ki.... k).

FFor example. the number-theoretic relation of identity is expressed in S
by the wixy = xa. In fact. it &y == k>. then &, is the same term as k> and so. by
Proposition 3.2(a). t-s k| = k. Morcover. if k; # k». then, by Proposition
3.6(a), ks k) # k>.

Likewise, the relation ‘less than’ is expressed in S by the wf x; < x;. Recall
that x; < x; is (EI.\”})(,\'] FO0AX3 +x) =x2). If k, < k, then there is some
non-zero number n such that 4y = n + k,. Now, by Proposition 3.6(a)(ii),
Fsky =7+ ky. Also, by (S3'), since n # 0, s 7 # 0. Hence, by rule E4, one
can prove in S the wf (Jw)(w # 0 Aw + k| = ky): that is, ks k| < k3. On the
other hand, if &, ;é ko, then ky < ky or kr = k. If k> < k;, then, as we have
just seen, Fs k> < ki. If ko = ky, then Fs k» = k,. In cither case, Fg k) <k,
and then, by Proposition 3.7(a,c), s k1 & ka.

Observe that, if a relation is cxpressnble in a theory K, then it is ex-
pressible in any extension of K.

Exercises

3.9 Show that the negation, disjunction, and conjunction of relations that
are expressible in K are also expressible in K.
3.10 Show that the relation x + y = z is expressible in S.

"We Tollow the custom of regarding a number-theoretic property, such as the

yroperty of being even, as a ‘relation’ of one argument
I ) B

}' Nl \/IBbR THE()RETI( l—l \J( Tl()\IS /\ND RbLAllONS

Let K be any theory with equality in the language %, of arithmetic. A
number-theoretic function / of » arguments is said to be representable in K
if and only if there is a wl 4(x,.....x,.v) of K with the free variables

T x,. v such that. for any naluml numbers ... .. ky.m. the following
hold
LA f k.. ko) = m. then by Alky.... k,.75).

2. FK (5‘|\‘)ﬁ(k| /\,,,))
I, in this definition, we replace condition 2 by
2, FK (il;y).%(.k‘] ...... \”,,,_V)

then the function f is said to be strongly representable in K. Notice that 2’
mmplies 2, by Gen and rule A4. Hence. strong representability implies re-
presentability. The converse is also true. as we now prove.

PROPOSITION 3.12 (V.H. DYSON)

I f(xy,. ... xy) s representable in K. then it is strongly representable in K.

Proof

\ssume / representable in K by a wf #(x,....x,,y). Let us show that fis
strongly representable in K by the following wf %(x|,... x,.y):

([(Z)A(xy, ... B, X3 Ay=0)

I Assume f(ki,... ,k,) =m. Then Fg B(k,... k,,m) and | K (1)
Aky. ... ke, y). So, by conjunction introduction and dlsJuncnon mlroduc-
non, we get bk €k, ... Kk, m).

2. We must show I—K (Ehv)‘{’(xl X, V).

Case 1. Take (31y)48(x),. .., x ,,,y) as hypothesis. (i) It is easy, using rule
€. to obtain A(x,...,x,,b) from our hypothesis, where b is a new in-
dnvidual constant. Together with our hypothesis and conjunction and dis-
iunction introduction, this yields %(x1,...,x,,b) and then, by rule E4,

V(X ). (i) Assume G(xy, .., x,,u) AG(x, ... X0, 0). From

X WA B xe ) V(=3

Oy v,.u) and our hypothesis, we obtain H(xi....,x5,u), and, from
CIN L v,.v) and our hypothesis, we obtain B(x1,...,x5,v). Now, from
Alvy 0 xp ) and A(xy,...,x,,v) and our hypothesis, we get u = v. The

deduction theorem yields €(xy, ..., x,,u) A€(x,,..., x,, v) = u=v. From
(and (i), (31v)%(x1, ..., x,,y). Thus, we have proved Fk (Giy) B(x, ...,
) (X ).

Cuse 20 Take —~(3)v)4(x). ... .. v,.y) as hypothesis. (i) Our hypothesis,
topether with the theorem 0 = 0, yields. by conjunction introduction.
Chv)B(xy, e v) A0 00 By disjunction introduction, % (x. ... .. v, 0).
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and. by rule B4 (Av)a (v Y,o vy (i) Assume 6(xp. ... V. U (A)(H ) ) (A (. Ve VA AN B (XX ) A Ve tt))
oy v,. ). From @ (x.... .. v,.u) and our hypothesis, it follows easily and
that i« = 0. Likewise. from % (xp... .. v,. ) and our hypothesis, r = (. Hence. -

u - r. By the deduction theorem., % (x... ... o ) AG(Xy X, 8) = u = (L) - Bl (Ao A A Au(¥y. V) NGy Y U))
From (1) and (ii). (1 »)6(x).... 0 v,.v). Thus we have proved kg —(3y) By(A). using rule C m times
BXp. V) = (A6 (xy. Vo) ’

By casc 1 and case 2 and an instance of the tautology [(D = AN X PO N N B(x1 X by ) NGBy - 11)
EYN (=D = E)l = E. We can obtain Fi (J1v)7(xy,. ... x,.v). By() uvsing rule C again,

Since we have proved them to be equivalent, from now on we shall use '
representability and strong representability interchangeably. A - C) N A () A0 Cup 1)

Qbservc that a function representable in K is representable in any ex- Sipce Fr (Fiy) 8, (xy, ... Y. ¥;). we obtain from 4,(x,. . xp.b;) and
tension of K. x Bi(xio..xyn¢p). that by = ¢, From %(hy.... b, u) and by =¢p....,

bw = ¢m. we have 4(cy, ... ¢, u). This. with Fk ()% (x.. ... X, z) and

Examples “(c1,....cmr) yields u=r. Thus. we have shown FK Z(x.. ...
In these examples. let K be any theory with equality in the language & ,. X ) N Z(xy, ... X ) = w=r. It is casy to show that Fg (3=2)v

I. The zero function, Z(x) =0, is representable in K by the wf x| = (1 %.2). Hence. b (312)7 (v Vi 2).

xyAv=0. For any k& and m, if Z(k)=m, then m=0 and

bk & =k A0 = 0: that is, condition | holds. Also, it is easy to show that Fxercises
Fr (3 = x1 Av = 0). Thus, condition 2 holds.
2. The successor function. M(x) = v + I, is representable in K by the wf 3.'” !431 K be. a theory with equality in the language ;. Show that the
v =x,. Forany k and m.it N(k) = m. then m = k + |: hence. m is k. Then following functions are representable in K.
Fg m= K. T casy to verity that fc (3)(v = x}). i) Zr:(-Yl s Xy) = 0 [Hint 2 Z,(x),... . x,) = Z(UM(x1.....x,)) ]
3. The projection function, U/(x;.... .2 Y,) = x,. is representable in K by (h) Ckl("‘“""vf"") =k, "f’her? k is a fixed natural number. [Hins: Use
N EXAX =N AX, =X, Ay = x,-._lf U;’_(kl o ‘kﬁ) — m. then m = mathematical Ind.U'CIlOI] in the metalanguage with respect to k.]
k. Hence, Fg ki =k Aky=kiA... Ak, =, AT = k;. Thus, condi- 312 Prove that addition and multiplication are representable in S.
tion I holds. Also, Fg (3iy)(x; =xj Axa =2 A AX, =X, Ay =1X;),
that is. condition 2’ holds. If R is a relation of » arguments, then the characteristic function Cy is
4. Assume that the functions g(xi, ..., xu), A1(X1, . X0), ooy Bp(X1, .00 X0) defined as follows:
arc strongly representable in the theory with equality K by the wfis

(g(X| T vxmzz)v é%l (-Xl vy X M )1 e '%Ill(xls e -,—\Tm,Vm), respecﬁvely'
Define a new function f/ by the equation
A/(Xla .- -«\f") = g(hl(xla LR ,.\’,,), v 7hm(X11 v wxn))

fis said to be obtained from g, hy, ..., h, by substitution. Then fis also
strongly representable in K by the following wf Z(x,,...,x,,2):

_— 0 if R(xy,...x,) is true
Co e Xy) = . s n
k(X1 Xn) { I if R(xy,....x,) is false

PROPOSITION 3.13

[et K be a theory with equality in the language ., such that Fk 0# 1.

() By (B3, X YD A A B(x1 e X Ym) AE DA Y 2)) I'hen a4 number-theoretic relation R is expressible in K if and only if Cg is
To prove condition 1, let f(ky,... k,) =p. Let hj(k,... k,) =r; for representable in K.
1 <j<m; then g(r,,.;.,r,,,) =p. Since €, 4%,, ..., %8, represent g, hy,...,
Hs WE ha.ve '—.K '%if(klw -~»,kn,71') fqr l§j<”’_anfj Fg 2R s P)- Proof
§o by conjunction introduction, k¢ % (k... .. k,,.r,r)‘ Ao N By, hkyo...,
knyFu)NG(Fy ... Fwop). Hence, by rule Ed.b g (k... ky.p). Thus, It R s expressible in K by a wf A(x),....x,). it is easy to verify that Cy is
condition 1 holds. Now we shall prove condition 2. Assumie 7 (xy. ..., representable in Ko by the wf (A(x).... . ) Ay =0)V (=8(x1.....x,)

N ) A Z(Xp v, ). that is ‘v ) Conversely, i Cy is representable in K by a wi “(x,...... Y, 1),
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then, using the assumption that i 0 # T. we can easily show that R is
expressible in K by the wih 4 (xy.... . x,.0).

Exercises

3.13 The graph of a function f{xj...... v,) is the relation

FAC T %) = X1 Show that f(x)...... v,,) is representable in S if and only

il its graph is expressible in S.
3.14 1f O and R are relations of n arguments, prove that Chor g = | = Cg,
ClQ or R) = C(_) . CR. and C((_)amIR) = CQ + CR — CQ . CR.

3.15 Show that f(x...... v,) is representable in a theory with equality K in
the language ¢, if and only if there is a wf Z(xy, ... x,. y) such that, for any
k..., k. m. lf/(/(] . ,1\’,,) = m, then |—K (V_y)(//j’(k, L. Ak"..\,') Sy = m).

3.3 PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS

The study of representability of functions in S leads to a class of number-
theoretic functions that turn out to be of great importance in mathematical
logic and computer science.

DEFINITION

1. The following functions are called initial functions.
(1) The zero function, Z(x) = 0 for all x.
(11) The successor function, N(x) = x + 1 for all x.
(I111) The projection functions, Ul (x1,...,xy) =x; forall xj.... . x,.
2. The following are rules for obtaining new functions from given functions.
(1V) Substitution:

].(xlw-':xn) :g(hl(xlv----,xn)a"':hm(xl-,"'1xn))
f is said (o be obtained by substitution from the functions

g()’lx---,)’m),hl(xlvu-,—‘fn)----,hm(xl-~- .,X")

(V) Recursion:
flxr, ., %0, 0) = glxr, ..., x,)
S xy D) =hlxy, xS X Y)
Here, we allow n = 0, in which case we have

f(0) =k where & is a fixed natural number

S+ =hy ()

PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS

We shall say that / 1s obtained from g and 4 (or. in the case n == 0. [rom

i alone) by recursion. The paramerers of the recursion are xp. ... .. v,
Notice that /" is well defined: f(x.... .. v,.0) is given by the first equa-
tion, and if we alrcady know /f{(x;..... x,.v). then we can obtain
f(x1.....x,. v+ 1) by the second equation.

(VD) Restiicted p-Operator. Assume that g(yy...... Y, v) is a function such
that for any x...... v, there is at least omnc » such that
glxp. o0 v,.y) = 0. We denote by v(glx...... v,.v) = 0) the least
number v such that g(x.....x,,v) == 0. In general, for any relation
R(xy.....x,,»), we denote by pyR(xy.....x,.y) the least y such that
R{xp,....0 x,,y) is true, if there is any v at all such that R(x,....x,.»)

holds. Let f(xy.....x,) = wglxy,....x,.v) = 0). Then / is said to be
obtained from ¢ by means of the restricted p-operator if the given
assumption about g holds, namely. for any v;...... v,. there is at least
one y such that g{x;,....x,.v) = 0.

3. A function f is said 1o be primitive recursive il and only il it can be
obtained from the initial functions by any finitc number of substitutions
(I1V) and recursions (V) - that is, if there 1s a finite sequence of functions
Jo. .. fnsuch that £, = f and, for 0 </<n. either /; is an initial function
or f; comes from preceding functions in the sequence by an application of
rule (IV) or rule (V).

1. A function f is said to be recursive if and only if it can be obtained from
the initial functions by any finite number of applications of substitution
(1V), recursion (V) and the restricted p-operator (VI). This differs {rom
the definition above of primitive recursive functions only in the addition
of possible applications of the restricted i -operator. Hence, every pri-
mitive recursive function is recursive. We shall see later that the converse
is false.

We shall show that the class of recursive functions is identical with the
class of functions representable in S. (In the literature, the phrase ‘general
recursive’ is sometimes used instead of ‘recursive’.)

Iirst, let us prove that we can add ‘"dummy variables’ to and also permute
and identify variables in any primitive recursive or recursive function, ob-
raming a function of the same type.

PROPOSITION 3.14
Fetg(m... ., ) be primitive recursive (or recursive). Let xy, ... x, be distinct

varnibles and, for 1 <i<k, let z; be one of xy,...,x,. Then the function f
such that f(x),...,x,) = ¢g(z),...,2z) Is primitive recursive (or recursive).
I

N
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Proof

Levz oy, owhere T<jy<n Then z, = Ul(xy. ... v, ). Thus,

and thercfore / is primitive recursive (or recursive), since it arises from
g U U} by substitution.

Exampleys

l. Adding dunumy variables. 1 g(xy.x3) is primitive recursive and il
Sx1.x0.03) = g(x),x3). then f(x),x2,x3) 15 also primitive recursive. In
Proposition 3.14, let z) = x; and z> = x3. The new variable x> is called a
‘dummy variable’ since its value has no influence on the value of
S (x1,x2,x3).

2. Permuting variables. 1 g(x),x2,x3) is primitive recursive and if
S(xy,x2,x3) = g(x3.x1.x2), then f(x;,x2.x3) is also primitive recursive. In
Proposition 3.14, let z; = x3,z; = x; and z3 = x;.

3. Identifying  variables. 1f g(xy,x3,x3) is primitive recursive and if
S(x1,x2) = glxy,x2,x1), then f(x;,x2) i1s primitive recursive. In Proposi-
tion 3.14. let n =2 and z; = x;.2> = x> and z3 = x|.

COROLLARY 3.15

(a) The zero function Z,(x),...,x,) = 0 1s primitive recursive.
(b) The constant function C}(x,....x,) = k, where k is some fixed natural

number, is primitive recursive.

(¢) The substitution rule (IV) can be extended to the case where each #; may
be a function of some but not necessarily all of the variables. Likewise,
in the recursion rule (V), the function g may not involve all of the
variables x|, ...,x,, y, or f(x],....x,,y) and h may not involve all of the
variables x|, ..., x,,y, or f(x1,...,x,, ).

Proof

(a) In Proposition 3.14, let g be the zero function Z; then £ = |. Take z, to be
X].

(b) Use mathematical induction. For k& = 0, this is part (a). Assume 7}
primitve recursive. Then C}_ (xy,...,x,) is primitive recursive by the sub-
stitution C, \ (x1,...,x,) = N(C{(x1,...,x,)).

(c) By Proposition 3.14, any variables among x;.....x, not present in a
function can be added as dummy variables. 'or example, i A(x;.x:) is
primitive recursive, then A*(xj.x2.x) = Alxi ) AU 0 ). Uy,
x2.03)) I8 also primitive recursive, since it s obtiined by a substitution.

PRIMITIVLE RECURSIVE AND RECURSIVE FUNCTIONS

PROPOSITION 3.16

The following functions are primitive recursive,

(a) x+y

(b) x-v

(c) x"

T R

o 1s called the predecessor function.

() xip= XY fx=y
0 ifx <y

) ey = {7y x>y
YTy —x ifx <y

0 ifx=0
te) Sg(x):{l ir,:¢o

_ I ifx—0
th) sglx) = {0 ;f_:¢o

m x!

() min{x,y) = minimum of x and y
(h) min(x,. ... Xn)

th max(x,y) = maximum of x and y
) max(xy,...,x,)

() rm(x.y) = remainder upon division of y by x
to) qt(x,») = quotient upon division of y by x

I’roof

(.1} Recursion ruie (V)

x+0=x or S(x,0) = U/l (x)
Y+t 1) =Nx+y) Sy +1) = N(/(x.y))
thy x-0=0 or g(x,0) = Z(x)

D)=yt vy +1) = fly(x,y),x)

where f is the addition function

) X =1
N = () - x
i) o0y =0
oy 1) = v
() X0 =x

i -,\*I - {xy) —F'(v—'x)
() sp(v) v o)

(substitution)
(substitution)
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(hy sg(x) - 1-sg(y) (substitution)
(1) 0 -1
(e D=0+ D)
() min(x.v) = x> (x>y)
(k) Assume min(xy,..... v, ) already shown primitive recursive,

min(x,. ... Ny Xy ) = min(min(xy. ... 0 V) Xnrt1)

(H  max(x,y) =v+ (x-p)
(m) max(x,....x,;, %) = max(max(x;. ..., x,).x,; 1)
(n) rm(x.0) =0

rm(x,y + 1) = Nirm(x,»)) - sg(|x — N(rm(x,v))|)
(0) qt(x,0) =0

qtx,y + 1) = qt(x, ) + 5g(lx = N(rm(x. y))|)

In justification of (n) and (o). note that, if ¢ and » denote the quotient
qt(x, y) and remainder rm(x, y) upon division of y by x, then y = gx + » and
0<r<x. So, y+1l=gx+ (r+1). If r+1<x (that is, if |x - N(rm
(x.y))| > 0). then the quotient gt{x,y + |) and remainder rm(x, v + 1) upon
division of v + 1 by x are ¢ and r + 1, respectively. If r+ 1 = x (that is, if
x = Nm(x.v)) = 0). then v+ 1= (¢+x and qt(x.y+1) and
rmix. v+ [) are ¢ + 1 and 0. respectively.!

DEFINITIONS
- 0 iWz=20
;f(xh'”’x"’y)7{,/'(x|.,...,x,,,0)+~-~r#_/'(.\',,...,.\fn,z——l_) ifz>0
DS Gxyy = Y S, )
v<z y<z+l
n _ 1ifz=0
MO ) = 0 Sz = 1) (250
I f(xp,. o oxny) = I fxr,...x0,9)
y¥<zZ vzl
These bounded sums and products are functions of x|, ...,x,,z. We can also

define doubly bounded sums and products in terms of the ones already
given; for example,

ST Sy =S e D S e = 1)

u<y<e

= Z Sy, xy+ut 1)

v<o(v-u)

tSince one cannot divide by 0. the values of rm(0.v) and gt(0.v) have no in-
tuitive significance. 1t can be ecasily shown by induction that the given detinitions
yield rm(0.v) v and qt(0.y) 0.

PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS

PROPOSITION 3.17

I f ey v,.¥) Is primitive recursive (or recursive). then all the bounded
sums and products defined above are also primitive recursive (or recursive).

Proof
et gy, ... vy.z) = Y. flxp . xn,v). Then we have the following recur-
sion: re
gxio....x,.0) =0
g{x) o+ 1) =gl Ve Zhot Sl X,.2)
M A(xy, ... .0 v, 2) = Y. f(x1, ..., x,.v). then
hix; g %.z.x,,.:) =g(vy..... V.ot ) (substitution)

I'he proofs for bounded products and doubly bounded sums and products
are left as exercises.

I vample

I et 7(x) be the number of divisors of x, if x > 0, and let £(0) = . (Thus, 7(x)
v the number of divisors of x that are less than or equal to x.) Then 7 is
primitive recursive, since

t(x) = ) _sg(rm(y,x))
yE=y

Given expressions for number-theoretic relations, we can apply the
connectives of the propositional calculus to them to obtain new expressions
tor relations. For example, if Ri(x,y) and Ra(x,u,v) are relations, then
Riiv,v) A Ry(x,u, v) is a new relation that holds for x, y, u, v when and only
when both Ry (x,y) and Ry(x, u,v) hold. We shall use (Vy), _.R(x1....,x,, )
lo express the relation: for all y, if y is less than z, then R(xy,...,x,,y) holds.
We shall use (Vy), o, (3y), ., and (Jy), ., in an analogous way; for ex-
ample. (E!y)‘,/\zR(xl,...,x,,,y) means that there is some y < z such that
R x,.p) holds. We shall call (Vy), _,,(¥y), < .(3y),., and (3y)
“wninded quantifiers. In addition, we define a bounded p-operator:

y <z

the least y < z for which R(x,....,x,.»)

jv:R(Xp. ... Xa, ¥) = < holds if there is such a y
z otherwise
I'he value z is chosen in the second case because it is more convenient in later
proots;  this choice has no intuitive significance. We also define
v, SRy . ¥) Lo be v ez R(xy L X, ).

A relation R(xy. ... .. v, ) is said to be primitive recursive (or recursive) if and
only it its characteristic function Cg(xy. ... .x,) is primitive recursive (or re-
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cursive). In particular, a set 4 of natural numbers is primitive recursive (or
recursive) il and only ifits characteristic function Cy(x) is primitive reeursive
(OF TeCursive).

Lxamples

1. The relation x; = x> is primitive recursive. Its characteristic function is

sg(lvy - val). which is primitive recursive. by Proposition 3.16(f.g).

The relation x; < x» is primitive recursive. since its characteristic function

is sg(x2--x;). which is primitive recursive, by Proposition 3.16(¢.h).

3. The relation x,lx» is primitive recursive, since its characteristic function is
sg(rm(x;.xy)).

4. The relation Pr(x).(x) is a prime, is primitive recursive, since
€, (x) = sg(|t{x) — 2|). Note that an integer is a prime if and only if it has
exactly two divisors; recall that t(0) = 1.

[

PROPOSITION 3.18

Relations obtained from primitive recursive (or recursive) relations by
means of the propositional connectives and the bounded quantifiers are also
primitive recursive (or recursive). Also, applications of the bounded pu-op-
erators gy - and g - lead from primitive recursive (or recursive) rela-
tions to primitive recursive (or recursive) functions.

Prool

Assume Ry(x)....,x,) and R(xy,...,x,) are primitive recursive (or re-
cursive) relations. Then the characteristic functions Cg, and Cg, are primi-
tive recursive (or recursive). But C_g, (x1,...,x,) = 1=Cg,(x1,...,%,); hence
R, is primitive recursive (or recursive). Also, Cgva, (X150 0y Xn)
= Cg,(x1,.. %) - Cry(¥1,...,Xy); 50, Ry V Ry is primitive recursive (or re-
cursive). Since all propositional connectives are definable in terms of = and
v, this takes care of them. Now, assume R(xy, ..., x,,y) is primitive recursive
(or recursive). If O(x1, ..., x,,2) is the relation (3y), . .R(x1, ..., %, ¥). then it
is easy to verify that Cp(xy,..., X, z) = I, <.Cr(x1, ..., X, ). which. by
Proposition 3.17, is primitive recursive (or recursive). The bounded quan-
tifier (3y), ., is equivalent to (3y), . ., , which is obtainable from (Jv), .. b.y
substitution. Also, (Vy),., is equivalent to —(3y), .~ and (V»),. . is
equivalent to ﬁ(ﬂy)vs_,—". Doubly bounded quantifiers, such as (3v),. .. .
can be defined by substitution, using the bounded quantifiers already
mentioned. Finally, 1, - ,Cg(x).... . v,. 1) has the value 1 for all v such that
R(xj.....2 v,.u) is false for all w < yv: it has the value 0 as soon as there is some
u <y such that R(x,.... . v,. 1) holds. Hence, Y (1L, Celxy.o0, )

-

PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS [

i G |

counts the numbcer of integers from 0 up to but not including the first y < =
such that R(vy...... v,. 1) holds and is z if there is no such v: thus. it is equal
o gy Rx. 0 v,.v) and so the latter function is primitive recursive (or
recursive) by Proposition 3.17.

Examples

1. Let p(x) be the x4 prime number in ascending order. Thus,
p(0) =2, p(1) =3, p(2) = 5. and so on. We shall write p, instead of
plx). Then py is a primitive recursive function. In fact,

Po = 2

Puil = MV (pon: I(/)\ R A PI'(_\'))

Notice that the relation u < y A Pr(v) is primitive recursive. Hence, by
Proposition 3.18, the function gy, . (i < v APr(v}) i1s a primitive re-
cursive function g(u, v). If we substitute the primitive recursive functions
zand 2!+ 1 for w and v, respectively, in g(u. ¢), we obtain the primitive
recursive function

h(z) = vy <21 (z < y APr(v))

and the right-hand side of the second equation above is #(p,): hence, we

have an apphcation of the recursion rule (V). The bound (p,)! + | on the

first prume after p, is obtained from Euclid’s proof of the infinitude of

primes (see Exercise 3.23).

Every positive integer x has a unique factorization into prime powers:

v =p'pyt .. p. Let us denote by (x); the exponent a; in this factor-

ization. If x =1, (x), = 1 for all j. If x = 0, we arbitrarily let (x); = 0 for

all j. Then the function (x), is primitive recursive, since (x);, =

WPl lx A=t [x). '

U For x > 0, let ¢A(x) be the number of non-zero exponents in the factor-
ization of x into powers of primes, or, equivalently, the number of dis-
tinct primes that divide x. Let ¢4(0) = 0. Then ¢4 is primitive recursive.
To see this, let R(x,y) be the primitive recursive relation
Pr(v) Aylx Ax#0. Then Ch(x) =3, . S8(Cr(x,y)). Note that this
vields the special cases ¢h(0) = ¢h(1) = 0. The expression ‘¢h(x)’ should
be read “length of x°.

boIf the number x = 2%3% . p* is used to ‘represent’ or ‘encode’ the
sequence of positive integers ag,ay,...,a, and y= 20301 pbr ‘re.

presents” the sequence of positive integers bg, by, ...,b,, then the

number

_ ~aga i pbo fm
Xy =203 pl Pt Pry2 - Prytam

‘represents’ the new sequence ag.ay, . ... ax, bo, by, ..., b, obtained by
juxtaposing the two sequences. Note that fA(x) = & 4 1, which s the
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length of the first sequence. (h(v) = m+ L. which is the length of the
weond sequence, and bj = (v),- Hence.

Nk y =X H (I’/mm/)\\lr

1o Thy)
and. thus, = is a primitive recursive function. called the juxtaposition
function. It is not difficult to show that x # (y*z) = (x # y) x z as long as
v # 0 (which will be the only case of interest 10 us). Therefore, there is no
harm in omitting parentheses when writing two or more applications of
+. Also observe that x 0 = x * 1 =x.

Exercises

3.16 Assume that R(xl‘,.,.,x,,,y) is a primitive recursive (or recursive) re-
jation. Prove the following:

(@) (3Y) e Rixy, . XnsV)s (V)4 ey RV ,xp.y) and (EID R (x1.
.. .x,.v) are primitive (or recursive) relations.

(b) vy v PREXT Ve V) s vs CR(xpo0 v V) and pv s R(xg L Xns V)
are primitive recursive (o1 recursive) functions.

(¢) If. for all natural numbers xpo.o. v,.. there exists a natural number y such
that R(xy.... .- v,,.v). then the function f(xy.....2 ) = wR(xi, Yy, V) 1S

recursive. [Hint: Apply the restricted p-operator to CR(’“’""X”"V)'}

3.17

(a) Show that the intersection, union and complement of primitive recursive
(or recursive) sets are also primitive recursive (or recursive).

(b) Show that every finite set is primitive recursive.

3.18 Prove that a function FX1y oo Xn) 18 recursive if and only if its re-

presenting relation f(x1,. .. %2) =Y is a recursive relation.

3.19 Let [/n] denote the greatest integer less than or equal to V/n, and let

T1(n) denote the number of primes less than or equal to n. Show that [Vn)

and TI(n) are primitive recursive.

320 Let e be the base of the natural logarithms. Show that [ne], the greatest

integer less than or equal to ne, is a primitive recursive function.

3.21 Let RP(y,z) hold if and only if y and z are relatively prime, that is, y

and z have no common factor greater than 1. Let ¢(n) be the number of

positive integers less than or equal to n that are relatively prime to n. Prove

that RP and ¢ are primitive recursive.

3.22 Show that, in the definition of the primitive recursive functions, one

need not assume that Z(x) = 0 is one of the initial functions.

3.23 Prove that pry1 < (pop - - px) + L Conclude that g <pt v b

For use in the further study of recursive functions, we prove the following
theorem on definition by cases.

.PRIMITIVE RECURSIVE AND RECURSIVE ljliN(ll()TViS

PROPOSITION 3.19

l.ct
grlvr...o v,) Ry x, ) holdy
o o) = gr(xpeo o v,) R x, s holds
gplxio. oo ) Ry v, ) holds

If the functions ¢,. .. .. gx and the relations R,

- gk and the refations Ry R, are primitive recursi
(or recursive), and if. for any x A PoF the relutions

...... v,. cxactly one of the relations

Ry (.\’| R X ,) R i
Pty Iz PR AV 1 (PP ' S “UC > TS -1 i 1
i), ( 1 x,,) 1s truc. then /18 primitive recursive (or re-
Proof
/(\']....,.\’,,) :!]I(xl ...... X ,,) -:\‘:?(('/(I(_\‘, ,,,,,, \'”)) b4
gr(xy... .. Xy) - SE(Cr vy ).

F.xercises

3.24 Show thatin P it it

24 ! roposition 3.19 it is not necess: ¢ i
primitive recursive (or recursive). cesmany Lo qssume that &
25 Let

if xis even

Sx) = {"'2
x4 1 ifxis odd

Prove that /' is primitive recursive.

.26 Let

hix) = {2 if Goldbach'’s conjecture is true
1 if Goldbach's conjecture is false

I~ /i primitive recursive?

[¢] p
| l\( ften lmportdnt to hd\/C dleldblC a rimitive recursive one—one
¢ Usp )llanCC bet\'\cen 1he set OfOldel Cd pd"s Oi ”dtuldl IlUIllelS d“d tll(.,
L \)l ndturdl numbels. VVC Sha” enumerate the pclllS as f()“()WS

(0,0, (0.1).(1,0),(1. 1), (0,2),(2,0),(1,2),(2,1),(2.2),

‘.\\::::] t\(\iuk h;\l/\t/‘n,ﬂfennu'rr(ljec;'z?ted all the pairs having components less than or
o .m ! uu]dl 2 new group of all th'e new pairs having components
SO I(: | 0 k+l in the following order: (0,k + 1), (k+ 1,0),
e hcﬁ.)r‘.(.: (' K1) (k+ LY. (k+ 1,k+1). If x<y, then
o poveur belo ¢ .\,..\) and both are in the (v + 1)th group. (Note that we
ot from T u)ulnlmg gxl'nulps.) The first v groups contain y* pairs, and

2y Dith pair in the (v Dth group. Hence, (xv) is the
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(v 1 2v 1 Lith pairin the ordering. and (y.v) is the (v= + 2v + 2)th pair. On
the other hand. if x = y. (x.v) is the (v + 1)7)th pair. This justifies the fol-
lowing definition. in which @ (x. ) denotes the place of the pair (x.v) in the
above enumeration. with (0.0) considered to be in the Oth place:

o) = sglesy) - (x4 2v 1)+ Sglv ) (7 + 2v)
Clearly. a* is primitive recursive.

Let wus define inverse functions o7 and o3 such  that
0;( 2v.) =x, 03(a (x.v) =y and ¢*(6i(2).03(2)) = = Thus. a1 (z) and
a3(z) are the first and sccond components of the zth ordered pair in the given
enumeration. Note first that a7(0) = 0.63(0) =

ai(n) it ai(n) < a3(n)
ain) = ¢ ) + 1 il af(n) > a3(n)
0 il o3(n) = a3(n)
and
7 (n) il a3 (n) # o3(n)
asn+1) = {af(n) + 1 ifai(n) = ax(n)
Hence.

Gt 1) e (selat(n) atn)) 1 (e3ln) ¢ 1) (se(ai(o n)=a3(n))

G+ 1) = arn) - (selladn) aim]) + (ar(n) + 1) - (5E(|ai(n) — ax(m])

= Y(ai(n). 73(n))

where ¢ and i are primitive recursive functions. Thus ol dnd 3 are defined
recursively at the same time. We can show that a? and 02 are primitive

recursive in the following devious way Lel h(u) = 2910393 Now, 4 is
primitive recursive, smce h(O) —2" 133000 = 20.30 = |, and h(n+ 1)

— o N 3a3(nt ) — pelaiinmy(n) 3w (e Y3 (n)) — pe((him)y. (h(m)y) 3 {(h(n)g-(h(n) ) )
Remembering that the funcuon (x), is primitive recursive (sece Example 2 on
page 181), we conclude by recursion rule (V) that his prlmmve recurswe
But ¢3(x) = (h(x)), and o3(x) = (h(x)),. By substitution, o’ and o3 are
primitive recursive.

One-one primitive recursive correspondences between all n-tuples of
natural numbers and all natural numbers can be defined step — by - step.
using induction on n. For n = 2, it has already becn done. Assume that, for
n = k, we have primitive recursive functions o (x1, . x), b (X)L ot (x)
such that ¢ (o*(x,...,x)) = x; for 1<i<k, and o"'(a‘,’(x),...,aﬁ(x) =x.
Now, for n= k+1, define o** ' (xy,... . x5 x 1) = a2 (0" (x1, o ox0) )

it l(x) = ot (ai(x)) for 1<i<k dnd oA (x) = 63(x). Then o*''.a)’ L
(rm are all primitive recursive, and we leave it as an exercise to verify
lhal P AR C TP o)) =xforl<i<k v Land  o*(ah'(v).

1

o)

PRIMITIVEE RECURSIVE AND RECURSIVE FUNCTIONS

1 will be essential in fater work (o define Tunctions by a recursion in
which the value of /{x;..v,. v+ 1) depends not ondy upon fi{y,.... .. X, V)
but also upon several or all values of /(v . .y, u) with « < v. This type of
recursion i.\‘_ called a cowrse-of-vafues rvecursion. bLet [#(vy.... . x,.v) =
I1. )Ap,’,'\""”"""“). Note that / can be obtaimed from f# as follows:

TR y) = Wy 1),

PROPOSITION 3.20 (COURSE-OF-VALULES RECURSION)

I ACe ... .x,. v, 2) 1s primitive recursive (or recursive) and [y, ... X,. V)
=h(xy,..., Xy v [ (0oL v,.v)). then /7 as prinmitve recursive (or re-
cursive).

Proof

SHE L 0)
SHG oy ) s S ) )
= [H#len Xy V) .I)’l’l\-- [P AETRN PR

Jla o

Phus. by the recursion rule. f# is primtive recursive (or recursive), and

POvieo o xmey) = (f#(xp, ..o X, v l))y

I'vample
Ihe Fibonacer sequence is defined as follows: f(0) =1./(1) =1. and
Jth +2) = f(k)y+ [(k+ 1) for k=0. Then / is primitive recursive, since

Sn) =sg(n) +5g(n — 1) + ((SH0), - + (f#(n), ) -sg(n=1)
I he function
h(y,z) = Sg(v) +5&8(ly — 1) + ((2),., + (2),5) -sglv-1)

s primitive recursive, and f(n) = h(n, f#(n)).

Fercise

V27 Let g(0) =2,¢9(1) =4, and g(k + 2) = 3g(k + 1) — (29(k) + 1). Show
that ¢ Is primitive recursive.

COROLLARY 3.21 (COURSE-OF-VALUES RECURSION

FOR RELATIONS)

" My, Y, v.2) Is @ primitive recursive (or recursive) relation and
Kiviooocovy) holds atf and only Gl Hiv v, v (Cr) A (v ov )
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where Cp is the characteristic function of R, then R s primitive recursive (or
recursive).,

Proof

Crlep....0 Yo v) = Culxy. ... Xy v (CrY## (oo x,,v) ). Since Cy s primi-
tive recursive (or recursive). Proposition 3.2() lmplles that Cp 1s primitive
recursive (or recursive) and, therefore, so is R.

Proposition 3.20 and Corollary 3.21 will be drawn upon heavily in what
follows. They are applicable whenever the value of a function or refation for

v is defined in terms of values for arguments less than y (by means of a

primitive recursive or recursive function or relation). Notice in this con-
nection that R(xy,...,x,, u) is equivalent to Cg(xy,....x,,u) = 0. which, in
turn, for v < y, is equivalent to ((Cg)#(x1.....x,,¥)), = 0.

Exercises

3.28 Prove that the set of recursive functions is denumerable.

3.29 If fo. /). />.... 18 an cnumeration of all primitive rccursive functions
(or all recursive lunctions) of one variable . prove that the function f(v) is
not primitive recursive (Or recursive).

LEMMA 3.22 (GODEL'’S -FUNCTION)
Let f(x;,x2,x3) = rm(1 + (x3 + 1) - x2,x;). Then f is primitive recursive, by
Proposition 3.16(n). Also , f§ is strongly representable in S by the following

wi Bt(xlax27-x37y):
AW)x =+ (x3+ 1) x) - w+yAy<l+(x3+ 1) x)

Proof

By Proposition 3.11 ks (3,y)Bt(x|,x2,x3,5). Assume f(k;,k2,k3) = m. Then
ki =(1+(ks+1)-k2)-k+m for some k, and m <1+ (ks +1) k. So.

bski = (14 (ks +1)-ky)-k+m, by Proposition 3.6(a). Moreover,
Fsm < 1+ (ks + 1) -k by the expressibility of < and Proposition 3.6(a).
Hence, Fs k) = (14 (k3 + 1) - ka) -k + m A 7w < 1+ (k3 + 1) - k2 from which
by rule E4,+s Bi(ky, k2, k3, m). Thus, Bt strongly represents f§ in S.
LEMMA 3.23

For any sequence of natural numbers ko ky.... . k,. there exist natural

numbers » and ¢ such that fi(h.c.i)  k lor O« i n.

PRI\/h]I\/I* Rl—L L;RSI\/F A\l[) RE( lJRglV[ I-UN(TI()NS |

Proof

Let /= max(n ko ky.... k,) and let ¢ == ' Consider the numbers
up = 14 (i + LjeTor 0 <i<n: no two of them have a factor in common other
than I. In fact. if' p were a prime dividing both 1 + (7 + Ucand 1 + (m + 1)
with 0<i < m < n, then p would divide their difference (m — i)e. Now. p
does not divide ¢, since. in that case p would divide both (i + 1)¢ and
I+ (i + 1)e. and so would divide 1. which is impossible. Hence, p also does
not divide (m —i): for m —i<n<jand so. m i divides j! = ¢. If p divided
m — i, then p would divide ¢. Therefore. p does not divide (m — i)e. which
yields a contradiction. Thus, the numbers ;. 0 < < n. are relatively prime
in pairs. Also. for0<i < n ki <j<! =c < 1 4-(i + e = that is, k; < ;.
Now, by the Chinese remainder theorem (sce Exercise 3.30). there is a
number b < wpuy...u, such that mm(u;.h) =4 for 0<i<n But
Blb.c.iy =rm(l + (i + e b) = rm(u,. b) = k,.

Lemmas 3.22 and 3.23 cnable us to express within S assertions about
linite sequences of natural numbers. and this ability is crucial in part of the
proof of the following fundamental theorem.

PROPOSITION 3.24

Every recursive function is representable in S.

Proof

I'he initial functions Z, N and U are representable in S, by Examples 1--3
on page 172, The substitution rule (IV) does not lead out of the class of
representable functions, by Example 4 on page 172.

For the recursion rule (V), assume that ¢g(x, ... Xp) and A(xy, ... x,,p,2)
are representable in S by wfs #(x,...,x,,) and @(xy,...,xp13), respec-
tively. and let

/) Sl x 0) = glxg, ..., x,)
./A(xl N T s I) = h(X|, . 7-"n-,y,f(xl s -,-\’n-,y))
Now. f(x)....,x,,y) = z if and only if there is a finite sequence of numbers
Do b, such that by =g(x;,....x,), bus1 =h(x),...,x,,w,b,) for

w o I voand by = z. But, by Lemma 3 23, reference to finite sequences can
be paraphrased in terms of the function f and, by Lemma 3.22, f is re-
presentable in S by the wf Bt(x;,x;,x3,y).

We shall show that f(x;,...,x,,x,.|) is representable in S by the fol-
Towimg wl & (x).... .. Vo)

Cho I b (B e, 00w) A A(xy
SV w e v,

X)) A B0 x, 10X, 00)
CICIN(Br(u eow o y) A B eow' 2) A (xy L vowov o))
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(1) st assume that fixy..o . vep) -om We wish to show  that
b stk oo kypony, 10 poo O then m gihy... .. k,). Consider the se-
quence consisting of malone. By Lemmia 3.230 there exist h and ¢ such that
fib.c.0) = m. Henee, by Lemma 3.22.

(X) L Buh.o.0omn
Also, since m = glky..... k). we have kg Biky. ... k,.m). Hence. by rule
L4,
(XX) Fo () (BUA.E 0wy A Blh .. ... ko))

In addition. since I-g w40, a tautology and Gen yield
(XXX) (Yw)(w < 0= (3)(F2)(BUb.éow IABUD.cow' )N Gk ... k.o w.v.2)))

Applying rule E4 1o the conjunction of (X).(XX) and (¥XX). we obtain
s ”/(k. vk 0.7). Now, for p > 0./ (k... k,.p) is calculated from the

equations (1) in p+ | steps. Let » = (k... .. k,,i). For the sequence of
numbers ry.. ... Fp. there are, by Lemma 3.23, numbers b and ¢ such
that f(h.c.i) = r, tor 0<i<p. Hence. by Lemma 3.22, k¢ Bt (b, 1.7).
In particular. fith.c.0) =y = (ki ... hy 0) = glky, . ... k,). Therefore,
Fo BU(h. e O.rg) A4k, ... k,.ro). and. by rule 4. (i) kg (3w)(BUA.Z, 0, w)
NAKY. ... kyow)). Since oo flhio. k,.p) =m, we have f(b.c.p)

=m. Hence. (i) by Bub.copom). Lor O<i<p—1. Blhei)y=r =/
(ky,--- k,, Hand ffb.oci+ 1) = iy = [k ki + 1) = /1(/\ ki,
/(kl ki) = h(l\l . ky.i.r)). Therefore. kg Bt(h.z. ; ‘) A Bt
(b,e. 7. IH|) (k.- I(,,[I,I”]) By Rule E4, kg (3v)(3z)(Bt (b,C,i,y)
ABt(b, ¢, 7, EYAG(ky.-- ke 1,v,2)) So. by Proposmon 3.8(b"), (iii) kg
(Vw)(w < p= (3»)(32)(Bl(h c.w,y) ABU(b.e,w 2)A (k. ... Kk, w.p,z))).
Then, applymg rule E4 twice to the conjunction of(l) (i1) dnd (iii), we obtain
Fs 2(k), - k,,,p m). Thus, we have verified clause 1 of the definition of
representability (see page 171).

(iiy We must show that g (Jyx,2)%(k\,....ky,P,x,2). The proof is
by induction on p in the metalanguage. Notice that, by what we have
proved above, it suffices to prove only uniqueness. The case of p = 0 is left
as an easy exercise. Assume s (31x,,2)Z(ki....,k,,P,Xni2). Let a=g
tkiyoo ko) =Jkieooo, kyyp). and vy = (k.. kop+1)=Hh (ki,...,
ku,p, B). Then

(1) Fs@lki,... . kn, D, B.7)
(2) ks Bk, ... .k, 3)

(3) rs Dk, ... .knp.f)

4) Fs (k... .. kpop £ 1.7)

(S) Fs(Fhxy.2)rlky. ... koo X 2)

Assume

PRIMI F l\/l" RE(l RSIVE AND RECURSIVIE FUNC lr()x\S

(6) 7k hyp < 1., o)
We must prove x,, 2 = % From (6). by rule C.
(@) () (Bu(boc. Oow) A Ak ..k w))
(b) Bt(hocopt Tox,.2)
(¢) (Dw)w < pi T

= () (F2)BUb.cow ) ABUb cow' sy Nk, k. Wy 2) )
From (c).
(VW) (w < p = (33 (BUb cow.y) ABUD. cow’ 2y Aa(E, ... kpowor2)))
I'rom (¢) by rule A4 and rule C.
(e) Bt(b.c.p.d) ABUDb.c.py [.¢) Atk ko pod. o)
t'rom (a). (d). and (e).
(k... Ky pod)
trom (f), (5) and (3).
(g) d=1
I'rom (e) and (g).
(h) ¢(ky..... ko.p.B.e)
Since f§ represents A, we obtain from (1) and (h),
(i) v=e
I-rom (e) and (i),
() Bt(h.c.p+ 1.7)
From (b), (j), and Lemma 3.22,
(k) 42 = T{
I 'his comipletes the induction.
The p-operator (VI). Let us assume, that, for any xj,...,x,. there is some
| \.uch that g(x1,...,x,,») = 0, and let us assume g is representable in S by a
wi é(xg. .. .‘.'x,Hz). Let f(x1,...,xy) = wy(g(x1,...,x,,») = 0). Then we shall
~how that f'is representable in S by the wf FXy e X))
A X ) Ay < Xy = =& (x), .., X, ¥, 0))
\ssume [k ky) = m. Then g(ky, ... ,k,,,m) =0 and, for k < m,
avhiooo knk) #0. So. ks é&(ky,... k,,m,0) and, for k <m,lg—&
- k,.k.0). By Proposition  3.8(b), ks (Vy)(y <m = —&(k,...,
Aoy 0)). Henee, by # (k.. ... ky, m). We must also show: g (Fyxua1)
Ak knoxyyr). IC suffices to prove  the uniqueness.  Assume

Sk kpott M)A (V) (v - > Bk, ko v 0)), By . Proposition

189
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3.7(00). bt u N A = u N u < m. Sinee g Elky.... kyom.0). we cannot
have 7 - w. Since g (Vy)(v < m = Sk ky.v.0)). we cannot have
w - i Henee. w = m. This shows the uniguencss.

Thus. we have proved that all recursive functions are representable in S.

COROLLARY 3.25
Every recursive relation is expressible in S.

Proof

Let R(xj.....x,) be a recursive relation. Then its chracteristic function Cg is
recursive. By Proposition 3.24. Cy is representable in S and. therefore, by
Proposition 3.13, R is expressible in S.

Exercises
3.30"

(a) Show that. if « and b are relatively prime natural numbers. then there is
4 natural number ¢ such that ¢ = 1(mod h). (Two numbers « and b are
said to be refatively prime if their greatest common divisor is 1. In
general, v = v (mod z) means that v and ¥ leave the same remainder upon
division by = or. cquivalently. that x - v is divisible by z. This exercise
amounts to showing that there exist integers v and v such that
| = au+ bv.) .
Prove the Chinese remainder theorem: i xy, ..., x; are relatively prime in
pairs and y, ...,y are any natural numbers, there is a natural number z
such that z = y;(modx), ...,z = y(modx;). Moreover. any two such zs
differ by a multiple of xj...x;. [Hinf: Let x=xp...x% and let
X = wx; = waxs = ... = wgxg. Then, for 1 <j<k, wjis relatively prime
to x; and s0, by (a), there is some z; such that w;z; = I(mod x;). Now let
z=wiz1y + wazaya + ..+ WkZek- Then z=wjzy; = y/(modx;). In
addition, the difference between any two such solutions is divisible by
each of xi,...,x; and hence by x; ...x;.]

~—

(b

3.31 Call a relation R(x),...,x,) arithmetical if it is the interpretation of
some wf #(x|,...,x,) in the language £, of arithmetic with respect to the
standard model. Show that every recursive relation is arithmetical. [Hint:
Use Corollary 3.25.]

3.4 ARITHMETIZATION. GODEL NUMBERS
For an arbitrary first-order theory K, we correlate with cach symbol 1 of K

an odd positive integer g(u). called the Gadel mamber of u, in the following
manner:

ARITHMETIZATION. GODEL NUMBIERS

glyg) = 13 + 8k tor 4221
glag) 7 + 8k for k=1
gUM =1 +8(2"3%) fork.nz|
ATy =34 8(2"3%) for k.on=1

gl = 3.90) =590 )= 7.gl=) - 9.90 ») = 1L.g(V) = 13.

Clearly. cvery Godel number of a symbol is an odd positive integer.
Moreover, when divided by 8.¢g(u) leaves a remainder of 5 when w is a
variable, a remainder of 7 when w is an individual constant. a remainder of |
when « 1s a function letter, and a remainder of 3 when s a predicate letter.
T'hus. different symbols have different Godel numbers.

Examples
glx2) =29, glas) =39. g(f7) = 97. g(h) 147

Given an expression upu . .. 1,. where cach v, 1s a svmbol of K. we define
its Godel number g(ugu, ... u,) by the equation

) {
g(uou, . .. u,) = 2400 39000 pe

where p; denotes the jth prime number and we assume that p, = 2. For
example,

(I(AI‘(-’(I Lxa)) = 2447) 34() §9lr1) 7903 | (ala) | 3900
= 273517118

Observe that different expressions have different Godel numbers, by virtue
ol the uniqueness of the factorization of integers into primes. In addition.
cxpressions have different Gédel numbers from symbols, since the former
have even Godel numbers and the latter odd Gédel numbers. Notice also
that a single symbol, considered as an expression, has a different Godel
number from its Goédel number as a symbol. For example, the symbol x, has
Giodel number 21, whereas the expression that consists of only the symbol x,
has Godel number 22!

If ey, ey, ..., e is any finite sequence of expressions of K, we can assign a

Ciodel number to this sequence by setting

gleo, er, ..., e) = 20e3dler) | pate)

Iitlerent sequences of expressions have different Goédel numbers. Since a
Gadel number of a sequence of expressions is even and the exponent of 2 in
its prime power factorization is also even, it differs from Goédel numbers of
svmbols and expressions. Remember that a proof in K is a certain kind of
hite sequence of expressions and, therefore, has a Godel number.

Thus, ¢ is a one one function from the set of symbols of K. expressions
of K, and finite sequences of expressions of K. into the set of positive
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integers. The range of ¢ is not the whole sct of positive integers. For ex-
ample. 10 is not a Goédel number,

Exercises
3.32 Determine the objects that have the following Godel numbers.
() 1944 (b) 49 (c) 15 (d) 13824 (¢) 2313115Y

3.33 Show that. if n is odd. 4# is not a Gddel number.
3.34 Find the Gédel numbers of the following expressions.

(@) /] () (b) (Vx3)(~Af(ar, x3)))

This method of associating numbers with symbols, expressions and se-
quences of expressions was originally devised by Godel (1931) in order to
arithmetize metamathematics.’ that is, to replace assertions about a formal
system by equivalent number-theoretic statements and then to express these
statements within the formal system itself. This idea turned out to be the key
to many significant problems in mathematical logic.

The assignment of Godel numbers given here i1s in no way unique. Other
methods are found in Kieene (1952, chap. X) and in Smullyan (1961. chap. |,
S 6).

DEFINITION

A theory K is said to have a primitive recursive vocabulary (or a recursive
vocabulary) if the following properties are primitive recursive (or recursive):

(a) IC(x): x is the Godel number of an individual constant of K;
(b) FL(x): x is the Gédel number of a function letter of K;
(c) PL(x): xis the Godel number of a predicate letter of K.

REMARK

Any theory K that has only a finite number of individual constants, function
letters, and predicate letters has a primitive recursive vocabulary. For ex-
ample, if the individual constants of K are a;,, a;,, ..., a;,, then IC(x) if and
onlyifx*=748; Vx=748,V...Vx=7+38, . In particular, any theory

YAn arithmetization of a theory K is a one—one function ¢ from the set of
symbols of K, expressions of K and finite sequences of expressions of K into the set
of positive integers. The following conditions are to be satistied by the function g: (1)
g is effectively computable; (2) there is an effective procedure that determines whether
any given positive integer m s in the range of g and, it m is in the range of gy, the
procedure finds the object v such that g(x) — m.

ARITHMETIZATION. GODYEL NUMBERS

K in the language 7, of arithmetic has a prinmitive recursive vocabulary. So.
S has a primitive recursive vocabulary.

PROPOSITION 3.26

Let K be a theory with a primitive recursive (or recursive) vocabulary. Then
the following relations and functions (1 16) are primitive recursive (or re-
cursive). In each case, we give first the notation and intuitive definition for
the relation or function. and then an cquivalent formula from which its
primitive recursiveness (or recursiveness) can be deduced.

(1) EVbl(x): xis the Gédel number of an expression consisting of a vari-
able, (Fz)._ (I<zAx=2"""%)0 By Proposition 3.1%. this is primitive
recursive.

EIC(x): x is the Godel number ol an expression consisting of an in-
dividual constant. (9 V), CCr) Ax = 2Y) (Proposition 3.18).

EFL(x): xis the Godel numhcl of an expression consisting of a func-
tion letter, (3v). (FL(y) Ax = 2") (Proposition 3.18).

EPL(x) : x is the GSdel number of an expression consisting of a pre-
dicate letter, (). . (PL(¥) Ax = 2") (Proposition 3.18).
(2) Argr(x) = (qt(8, x=1)),: If x is the Godel number of a function letter

Ji's then Argr(x) = n. Arge(x) is primitive recursive.

(x
Argp(x) = (qt(8, x=3)),: If x is the Godel number of a predicate letter
A7, then Argp(x) = n. Argp(x) is primitive recursive.

(3) Gd(x) : x is the Godel number of an expression of K, EVbl(x)v
EIC(x) V EFL(x) VEPL(x) Vx=2'vx=2vx=2Tvyx =2V x =
21 Vx = 2" v(3u),  (Fv),. (x = u+ v A Gd(u) A Gd(v)). Use Corollary
3.21. Here, * is the juxtaposition function defined in Example 4 on
page 181.

) MP(x, y, z): The expression with Gddel number z is a direct con-
sequence of the expressions with Godel numbers x and y by modus
ponens, y =23 xxx 211 % 2% 25 A Gd(x) A Gd(z).

(5) Gen(x, v): The expression with Gddel number y comes from the ex-
pression with Godel number x by the generalization rule:

(30),. (EVBI(0) Ay =274 2% 5 2 % 0« 2% 4 x 4 25 A Gd(x))

to)y Trm(x): xis the Godel number of a term of K. This holds when and
only when cither x is the Gddel number of an expression consisting of a
vartable or an individual constant, or there is a function letter f' and
terms 4y, ..., 1, such that x is the Godel number of f'{ny.....1,). The
Latter holds it and only if there is a sequenee of n ¢ 1 CXpressions

[
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the last of which, f(¢;. ... 1,). has Gddel number x. This sequence can
be represented by its Godel number v. Clearly, y < 293 ..
= (2230t < (pD < (pD)'. Note that 74(yv) =n+ 1 and dibo

that n = Argr((x),). since (x), is the Godel number of /. Hence.
Trm(x) is equivalent to the following relation:

EVbI(x) v EIC(x} V (3¥), 1y [x = (¥ a1 A

£h(y) = Argp((x)g) + TAFLI))g) A7)y = 3 A

74 ¥)y) = 2 A (Yu),. S S(A0) L (W) = (W) v 27 A Trm(v))A
(Hv)l,‘- ‘x'((y)///(_v‘)' )= ("v)//r(rl‘) ¥ 2 A Trm(u))]

Thus, Trm(x) is primitive recursive (or recursive) by Corollary 3.21,
since the formula above involves Trm(z) for only v < x. In fact, if we
replace both occurrences of Trm(v) in the formula by (z), = 0. then the
new formula defines a primitive recursive (or recursive) relation H(x. z),
and Trm(x) < H(x, (Crem)™ (x)). Therefore, Corollary 3.21 is applic-
able.
Atfml(x): x is the Godel number of an atomic wf of K. This holds if
and only if there are terms 4. .. .. 4, and a predicate letter A4} such that x
is the Godel number of A}(1;. ..., 1,). The latter holds if and only if
there is a sequence of s + | expressions

A Afn. AL 6.

the last of which, 4}(r, ..., 1,). has Godel number x. This sequence of
expressions can be represented by its Godel number y. Clearly,
y < (p!)" (as in (6) above) and n = Argp((x),). Thus, Atfml(x) is
equivalent to the following:

(39), e ¥ = O a1 A CAGY) = Argp((x)g) + 1 A

PL(((7)g)o) A (0)e)y = 3 ALA4(( y)u) =2A

(Vu)“\,,b 2(F0) e (O)sy = ) * px 2" ATrm(v)) A

(30) e (W) rpy1 = (—')_/ﬁ(y)il * Dk 25 A Trm(v))]

Hence, by Proposition 3.18, Atfml(x) is primitive recursive (or recursive)
Fmi(y): y is the Godel number of a formula of K:

Az([].....[,, B AIA_'(I|,....[,,,|.I,,)

Atfml(y) v (3z), ., [(Fml(z) Ay =27 x 27 x 24 2°) v

(Fmi((2)g) A Fmi((z),) Ay = 2" % (2), + 2" » (2) ) v
(Fml((z)y) AEVDBI((2),) Ay = 23523 % 213 k(2), % 27 * (2), * 2]

It is easy to verify that Corollary 3.21 is applicable.

Subst(x, y, u, v): xis the Godel number of the result of substituting in
the expression with Godel number v the term with Godel number u for
all free occurrences of the vanable with Godel number 1

ARITHME Fl/A FION. (x()l)PL \IUMBERS

Gd(W) ATrmu) AEVBIR2TY Ay =2 Ax = u) v
(), .-(" AV £ A =)V
Jz). W FmiGe) Ay = 286210 2V gvs A
(? %), ‘(\ 2V 212" 28 s 2 A Subst(z. 2o w. £))) V
(+(32)., (Bw), . (Fml(s) Ap = 27621504 2% sws 2)) A
( %), )y Fz) (I <zap - 2" A = gs I A
Subst(z. 2" w. r) A Subst(f. z. 1. 1))

Corollary 3.21 is applicable. The rcader should verify that this formula
actually captures the intuitive content of Subst(x. v.u. v).

(10) Sub(y, . v): the Gédel number of the result of substituting the term

with Goédel number u for all free occurrences in the expression with
Godel number v of the variable with Godel number

Sub(v.w, 1) wSubst(n. vow. )

Vel
Therefore, Sub is primitive recursive (or recursive) by Proposition 3.18.
(When the conditions on u, v and y are not met, Sub( v, u, v) is defined,
but its value is of no interest.)

(I'1) Fr(y, v): vis the Gédel number of a wf or term of K that contains free

occurrences of the variable with Godel number v:
(Fml(y) V Trm(»)) A EVbI(2") A =Subst(y, y. 2% )

(That is, substitution in the wf or term with Gédel number y of a certain
variable different from the variable with Godel number v for all free
occurrences of the variable with Goédel number v yields a different
expression.)

(12) Ff(u, v, w): u is the Godel number of a term that is free for the vari-

able with Godel number v in the wf with Godel number w:

Trm(u) A EVbI(2°) A Fml(w) A [Atfmi(w)
A(TY)yen(w = 22427 5y 2> A Ff(u, v, y))

VAI),ye(32),0, (v = 2wy 2wz’
A Fl(u, v, y) AFf(u, v, 2)) V
(B (F2), (W = 252352 225 P n a2
ANEVDI(2) A (z # v = Ff(u, v, y)
A (Fr(u, z) = —Fr(y, v))))]

Use Corollary 3.21 again.

(13 (1) Ax(x): x is the Godel number of an instance of axiom schema

(Al):
(), Cle) o ((Fmib(a) A Fmal(v)

. .
Av 2N e 22Nl 2 a2t 2Y
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(b)) Axo(v): ais the Godel number of an instance of axiom schema
(A2):

(), 300, ) (Bl A Fmil(e) A Fmlw)

i e

3 1 ] < | 3 3
Av =2 e 2 g 2V 2 e 2 e 28 Y 2 2 e DY ey

I R L R A ‘ﬁ)

(¢) Axi(x): v is the Godel number of an instance of axiom schema
(A3):
(Fu),.  (Z0),. (Fml(u) A Fml(r)
Av=2 02 e 2V 2w e 25 2 2 e 2 e 276 28 4 20
£ 20w 28w 2V 2w 28 2w w20 2 27 4 2

(d) Axg(x): xis the Godel number of an instance of axiom schema

(Ad):
(e, (3v) . (Fmi(y) ATrm(u) AEVDI2T) A Fl(u. v, y)

(Fu),. !
Av=2 42 22 62" 520227 % pa 21« Sub(v. 1, 1) x 2°)

(e) Axs(x): xis the Godel number of an instance of axiom schema

(AS):
(hey, Cae),  Ciwyy (EmidGe) A Tml(w) A EVBI2T) A =Fr(u, ©)

‘i

; : ; ! S s
N SR e A e A L L AR A P o LU LR R B

. . ; s 5,45, S
w2 e 2 s 2 e 2 e D 2 2 2 e * 27 % 27)

() LAX(v): yis the Godel number of a logical axiom of K
AX)(¥) VAX2 (V) V Axa(y) V Axg(1) V Axs(y)

(14) The following negation function is primitive recursive. Neg(x): the
Godel number of (=) if x is the Godel number of #:

Neg(x) = 2% % 2%+ x % 2°

(15) The following conditional function is primitive recursive. Cond(x, v):
the Godel number of (%4 = ) if x is the Gédel number of % and y is
the Godel number of €

Cond(x, y) = 2% x4 2! * N

(16) Clos(u): the Gédel number of the closure of 4 if u is the Godel number
of a wf 4. First, let V(u) = uv, <, (EVbI(2°) A Fr(u, v)). ¥ is primitive
recursive (or recursive). ¥ (u) is the least Godel number of a free vari-
able of u (if there are any). Let Sent(x) be Fml(u) A —~(3v), . ,Fr(u. v).
Sent is primitive recursive (or recursive). Sent(u) holds when and only
when u is the Gédel number of a sentence (i.c.. a closed wf). Now let

Gl 2V 2N T S e 2 W EmNlu) A SSent(n)
u otherwise

ARITHMETIZATION. GODEL NUMBERS

(s primitive recursive (or recursive). 1 is the Godel number of a wi™.#4
that is not a closed wi. then G(u) is the Godel number of (V). 4. where x
is the free variable of .4 that has the least Godel number. Otherwise,
Gu) = u. Now. let
H(u. 0) - Glu)

H(w. v o 1) - G(H{w. vi)

H is primitive recursive (or recursive). Finally.
Clos(u) = H{w. pove (H(uo vy Hte v 8 1))

Thus, Clos 1s primitive recursive (or recursive).

PROPOSITION 3.27

Let K be a theory having a primitive recursive (or recursive) vocabulary and
whose language contains the individual constant 0 and the function letter /!
ol & 4. (Thus, all the numerals are terms of K. In particular. K can be §
itself.) Then the following functions and relation are primitive recursive (or
recursive),

(17) Num(y): the Gédel number of the expression p
Num(0) = 23
Num(y + 1) = 2% % 2% = Num(y) « 2°
Num is primitive recursive by virtue of the recursion rule (V).
(18) Nu(x): x is the Godel number of a numeral
(), (x = Num(y))
Nu is primitive recursive by Proposition 3.18.
119) D(u): the Goédel number of #(i), if u is the Godel number of a wf
Axy):
D(u) = Sub(u, Num(u), 21)

Thus, D is primitive recursive (or recursive). D is called the diagonal
function.

DEFINITION
A theory K will be said to have a primitive recursive (or recursive) axiom set
it the following property PrAx is primitive recursive (or recursive):

PrAx(y) : v is the Godel number of a proper axiom of K

Notice that S has a primitive recursive axiom set. Let ay. a. .. .. ax be the
Godel numbers of axioms (S1) (S8). It is casy to sce that a number v is the
Godel number ol an mstance of axiom schema (A9) if and only if
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(Fr), (), \(EVhl(Z‘)/\lem)
Av o 2Va Subhe, 217 )« 2V *f‘vf‘:r pART AL I
# 2% e 2w Sub(e, 23 5 2 2T 2% r) 2w 2% 2N

: - s
P20 2 a2 20 2 e 20 4 27

Denote the displayed formula by Ag(v). Then v is the Godel number of a
proper axiom of S if and only if

Y=diVy=d: V... Vy=asVAy)

Thus, PrAx(y) is primitive recursive for S.

PROPOSITION 3.28

Let K be a theory having a primitive recursive (or recursive) vocabulary and
a primitive recursive (or recursive) axiom set. Then the following three re-
lations are primitive recursive (or recursive).
(20) Ax(v): v is the Godel number of an axiom of K:
LAX (1) vV PrAx(r)

(21) Prf(y): v is the Gadel number of a prool in K:

(), ,(Fv),(Fz2).. Ow), (b= 2" A AX()] Vv

[Prl(u) A le((u) /\y =u#*2" A Gen((u),.v)] v

[Pri(u) A Fml((u),) A Fml((w),) Ay = u* 2’ AMP((u)_. (), 0)]

Vv [Prf(u) Ay = 12" A AX(v)]

Apply Corollary 3.21.

(22) Pf(y,x): y is the Gédel number of a proof in K of the wf with Goédel
number x

Prf(y) A

The relations and functions of Propositions 3.26-3.28 should have the
subscript ‘K’ attached to the corresponding signs to indicate the dependence
on K. If we considered a different theory, then we would obtain different
relations and functions.

X = U’)/ﬂ(y) =1

Exercise
3.35
(a) If K is a theory for which the property I'ml(v) is primitive recursive (or
recursive). prove that K has a primitive recursive (or recursive) voca-
bulary.

!
!
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(b) Let K be a theory for which the property Ax(y) is primitive recursive (or
recursive).
(1) Show that K has a primitive recursive (or recursive) vocabulary.
(ii) Assuming also that no proper axiom of K is a logical axiom. prove
that K has a primitive recursive (or recursive) axiom set.

PROPOSITION 3.29

Let K be a theory with equality whose language contains the individual
constant 0 and the function letter /' and such that K has a primitive re-
cursive (or recursive) vocabulary and axiom sct. Also assume:

(%) For any natural numbers -and s.f 1 ¢ » sothen » = s,

Then any function f{x...... v,,) that is representable in K s recursive.

Proof

Let A(x|,....x.x,) be a wf of K that represents /. Let
Py(uy, . ... 1y, Uy 1,y) mean that yis the Godel number of a proof in K of the
wi AB(uy, ... 4,.1,,)). Note that, if Py(uy,...,uy,u,,y,y). then f(u.....
) = upyy. (In fact, let f(uy,...,u,) =r. Since 4 represents [ In

K. bk Bluy,....uy,r)and g (F1y)B(uy, ... 4y, y). By hypothesis, Py(u).

U tne1,y). Hence, by #(uy. ... u,,u4,,). Since K is a theory with
cquality, it follows that Fx F =,,1. By (%), r = u,,1.) Now let m be the
Godel number of #(xy,...,x,,%,,1). Then Py(uy. ... u, uppy,y) 18 equiva-
lent to:

Pf(y.Sub(...Sub(Sub(m, Num(x,),21), Num(u;),29) ..

So, by Propositions 3.26-3.28, Py(uy, ... Uy, u,y1,y) 1 primitive recursive

(or recursive). Now consider any natural numbers k....,4,. Let

f(ky....,k,) =r. Then g ABky,... k, 7). Let j be the Gédel number of a

proof in K of @(ky,... k,,7). Then Py(ky,....k,,r,j). Thus, for any

Vel x,, there is some y such that Py(x,,...,x,, (»)y, (»),). Then, by Ex-

creise 3.16(¢), wy(Py(x1, ... x0, (V)g, (v))) is recursive. But, f(xy,...,x,)
(o Pg(xi.. .. X, (). )1)))o and, therefore, /" is recursive.

Num(w, . y),21 + 8n))

I'xercise

3.36 L.ct K be a thcory whose language contains the predicate letter =, the

mdividual constant 0, and the function letter /.

G0 11 K satisties hypothesis (*) of Proposition 3.29, prove that K must be
consistent,

l ‘)‘)



3‘ FORMAL NUMBER THEORY

(b)If K is inconsistent. prove that every number-theoretic function is re-
presentable in K.

(¢) I K is consistent and the identity relation x = v is expressible in K. show
that K satisfies hypothesis (+) of Proposition 3.29.

COROLLARY 3.30

Assume S consistent. Then the class of recursive functions is identical with
the class of functions representable in S.

Proof

We have observed that S has a primitive recursive vocabulary and axiom set.
By Exercise 3.36(c) and the already noted fact that the identity relation is
expressible in S, we see that Proposition 3.29 entails that every function
representable in S is recursive. On the other hand, Proposition 3.24 tells us
that every recursive function is representable in S.

In Chapter 5. it will bc made plausible that the notion of rccursive
function is a precisc mathematical ecquivalent of the intuitive idea of effec-
tively computable function.

COROLLARY 3.31

A number-theoretic relation R(xy,....x,) is recursive if and only if it is
expressible in S.

Proof

By definition, R is recursive if and only if Cg is recursive. By Corollary 3.30,
Cg is recursive if and only if Cy is representable in S. But, by Proposition
3.13, Cy is representable in S if and only if R is expressible in S.

It will be helpful later to find weaker theories than S for which the
representable functions are identical with the recursive functions. Analysis
of the proof of Proposition 3.24 leads us to the following theory.

Robinson’s System

Consider the theory in the language &, with the following finite list of

proper axioms.

“)Xl = X)
(2).\'| RN ] Xy

ARITHMETIZATION. GODEL NUMBERS

3 =1 = (¥r =x3 >0, = i)

4y =x2 = x] =)

S)x) =x2 = (,\'1 FNy =0 AX X vy b))
(6)x] =x2 = (X] - 03 =X X3 AX3-X] = X340
Ny =xi=x =x

(8)0 # ¥

931 £ 0 = (3n)(x = 1b)

(10) x; + 0 = x, i

(1) x, +.\’/2 = (xy +,\’3)"

(12) x;,-0=0

(13) x) x5 = (& - x2) + x

(14) (2 =X X3+ x4 AXg <X AN = X -0 | Yo A g - V) =
X4 = X¢ (uniqueness of remainder)

We shall call this theory RR. Clearly. RR is a subtheory of S. since all the
axioms of RR are thecorems of S, In addition. it follows (rom Proposition

2.25 and axioms (1) (6) that RR is a theory with cquality. (The system Q of

axioms (1)-(13) is due to R.M. Robinson (1950). Axiom (14) has been added
to make one of the proofs below easier.) Notice that RR has only a finite
number of proper axioms.

LEMMA 3.32

In RR, the following are theorems.

(W) n+m=n+m for any natural numbers » and m

(h) n-m =m-m for any natural numbers » and m

(©) n # m for any natural numbers such that n # m

(d) n < m for any natural numbers # and m such that n < m

(¢) v£0

() x<hn=x=0Vvx=1V...Vx=nfor any natural number »
() x<nVna<x for any natural number »n

Proof
Parts (a) (c) are proved the same way as Proposition 3.6(a). Parts (d)-(g) are

feft as exercises.

PROPOSITION 3.33

All recursive functions are representable in RR,
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Proof

The initial functions Z. N, and U are representable in RR by the same wis
as in Exampies 1 3. pagel72. That the substitution rule does not fead out of
the class ol functions representable in RR is proved in the same way as in
Example 4 on page 172. For the recursion rule. first notice that the proof of
Lemma 3.22 is a demonstration that Goédel's beta function ff(x.xo.x3) 18
strongly representable in RR. (Axiom (14) is used {or the uniqueness part.)
Now. a careful examination of the treatment of the recursion rule in the
proof of Proposition 3.24 reveals that all the required theorems are the-
orems of RR. The argument given for the restricted p-operator rule
also remains valid for RR.

By Proposition 3.33, all recursive functions are representable in any ex-
tension of RR. Hence, by Proposition 3.29 and Exercise 3.36(c), in any
consistent extension of RR in the language ¥4 that has a recursive axiom
set, the class of representable functions is the same as the class of recursive
functions. Moreover, by Proposition 3.13. the relations expressiblc in such a
theory are the recursive relations,

Exercises

3.37° Show that RR is a proper subtheory of S. [Hini: Find a model for RR
thatis not a model for S.] (Remark: Not only s S different from RR, but it is
not finitely axiomatizable at all, that is, there is no theory K having only a
finite number of proper axioms, whose theorems are the same as those of S.
This was proved by Ryll-Nardzewski (1953).)

3.38 Show that axiom (14) of RR is not provable from axioms (1)—(13)

and, therefore, that Q is a proper subtheory of RR. [Hint: Find a model of

(1)—(13) for which (14) is not true.]

3.39 Let K be a theory in the language ¢4 with just one proper axiom:

(Vx ) (Vx2)x| = x2.

(a) Show that K is a consistent theory with equality.

(b) Prove that all number-theoretic functions are representable in K.

(¢) Which number-theoretic relations are expressible in K? [Hinr: Use
elimination of quantifiers.]

(d) Show that the hypothesis Fg 0 # | cannot be eliminated from Propo-
sition 3.13.

(e) Show that, in Proposition 3.29, the hypothesis (%) cannot be replaced by
the assumption that K is consistent.

3.40 Let R be the theory in the language ¥, having as proper axioms the

equality axioms (1)—(6) of RR as well as the following five axiom schemas, in

which 7 and m are arbitrary natural numbers;

(ROn+m=n+m

(R2ynm-m  n-m

THE FIXED-POINT THEOREM. GODEL'S IN('(’)MPLE"I:EJ;ESS ’l'Hl—j()R[;’M‘J

(R3Yyn#mitn+m

(RHYx<ii=x=0v.. . vy=1

(RS) v<nvii<x

Prove the following.

(1) Riis not finitely axiomatizable. [Hin: Show that every finite subset of
the axioms of R hus a model that is not a model of R ]

(b) R is a proper subthecory of Q.

()P Every recursive function is representable in R. (Sce Monk. 1976, p. 248.)

(d) The functions representable in R arc the recursive functions.

(e) The relations expressible in R are the recursive relations.

3.5 THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS
THEOREM

I K is a theory in the language ¢, recall that the diagonal function D has
the property that. if u is the Gédel number of a wf A(x1). then D(u) is the
Godel number of the wi . #(ir).

NOTATION

When % is an expression of a theory and the Gédel number of % is q. then
we shall denote the numeral g by "% 7. We can think of "% ' as being a
name’ for % within the language 2,;.

PROPOSITION 3.34 (DIAGONALIZATION LEMMA)

Assume that the diagonal function D is representable in a theory with
cquality K in the language 4. Then, for any wf &(x)) in which x| is the
only free variable, there exists a closed wf % such that

Fk G e &(" v
Proof

Let v (xy.x2) be a wf representing D in K. Construct the wf
(V) (V) (9(x1,x2) = &(x2))
Letm be the Gédel number of (V). Now substitute m for x, in (V):

() (V)7 (moxs) > E(0)
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Let ¢ be the Godel number of this wi' . So. ¢ is ' % . Clearly. D(m) = ¢. (In
fuct. mis the Godel number of a wi .4(x) ). namely, (V). and ¢ is the Godel
number ol .2{m).y Since 7 represents D in K.

() g (g}

(a) Let us show =¢ 4 =2 £(g).

(B2 Hyp

2 (V) (simexa) = A(x)) Same as |

ov(mog) = &(q)) 2, rule A4

4. 7(m.q) ()

5. 6(q) 3.4. MP

6. g &(q) -5

7. Fk 6 = &(q) 1-6, Corollary 2.6
(b) Let us prove g £(q) = €.

1. &(q) Hyp

2.9 (m.xy) Hyp

3. (Fixa )7 (m.xa) & represents D

4. ’_/(m q} ( ))

S50 =4 2 4, properties of =

6. /(\3) l 5. substitutivity of =

7. 8(q). 7(m x2) Fg &(x2) I 6

8. &(q) Fx “(m.xa) = &(xa) 1-7. Corollary 2.6

9. &(q )I—K (Vx))(“Z(m,x2) = &(x2)) 8. Gen

10. Fx E(q) = (V) (Z(m,x2) = &(x))  1-9, Corollary 2.6
1. kg 6(q) =6 Same as [0

From parts (a) and (b), by biconditional introduction, Fx % < &£(g).
PROPOSITION 3.35 (FIXED-POINT THEOREM)'
Assume that all recursive functions are representable in a theory with

equality K in the language ¥,. Then, for any wf &(x;) in which x; is the
only free variable, there is a closed wf 4 such that

Fe 6= &("%7)

fThe terms ‘fixed-point theorem’ and ‘diagonalization lemma’ are often used

interchangeably, but 1 have adopted the present terminology for convenience of

reference. The central idea seems to have first received explicit mention by Carnap
(1934). who pointed out that the result was implicit in the work of Godel (1931). The
use of indirect self-reference was the key idea in the explosion of progress in math-
cmatical logic that began in the 1930s

IHI— I ]Xl D I’()lNl ] Hk()RE\/l (;()DLL S I'\l( ()MPLFTL’\J[ SS THE()RI '\/1

Proof

By Proposition 3.27. [ is recursive.” Hence. D is representable in K and
Proposition 3.34 is applicable.

By Proposition 3.33. the fixed-point theorem holds when K is RR or any
extension of RR. In particular, it holds for S.

DEFINITIONS

Let K be any theory whose language contains the individual constant 0 and
the function letter f)'. Then K is said to be ao-consistent if. for every wi 4(x)
of K containing x as its only frec variable, it +4(n) for every natural
number n, then it is not the case that b ( Iv).24(v).

Let K be any theory in the language ¢, Kois said to be a rrue theory if all
proper axioms of K are true in the standard model. (Since all logical axioms
are true in all models and MP and Gen lead from wfs true in @ model to wfs
true in that model, all theorems of a true theory will be true in the standard
model.)

Any true theory K must be m-consistent. (In fact, if Fx —.4(7) for all
natural numbers n, then #A(x) is false for every natural number and.
therefore, (3x)4{(x) cannot be true for the standard model. Hence,
( 1¥).4(x) cannot be a theorem of K.) In particular, RR and S are w-
consistent.

PROPOSITION 3.36

11" K is w-consistent, then K is consistent.

Proof

let £(x) be any wf containing x as its only free variable. Let #(x) be
& {v) A =é(x). Then —~2(#n) is an instance of a tautology. Hence, Fx —4(n)
for every natural number #. By w-consistency, not-+g (3x)4%(x). Therefore,
K iy consistent. (Remember that every wf is provable in an inconsistent

"In fact. D s prinitive recursive, sinee K, being a theory in 74, has a primitive
recursive vocabulary.
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theory. by virtue of the tautology =4 = (4 = B). Hence, if at least one wi'is
not provable, the theory must be consistent.)

It will turn out later that the converse of Proposition 3.36 does not hold.

DEFINITION

An undecidable sentence of a theory K is a closed wi .4 of K such that neither
A nor .4 is a theorem ol K. that is. such that not-Fg .4 and not-F¢ —4.

Godel’s incompleteness theorem

Let K be a theory with equality in the language &, satisfying the following
three conditions:

I. K has a recursive axiom set (that is, PrAx(y) is recursive).
2.k 0 # 1.
3. Every recursive function is representable in K.

By assumption 1, Propositions 3.26 3.28 arc applicable. By assumptions 2
and 3 and Proposition 3.13. every recursive relation is expressible in K. By
assumption 3, the fixed-point theorem is applicable. Note that K can be
taken to be RR, S, or, more generally, any extension of RR having a re-
cursive axiom set. Recall that Pf(y, x) means that y is the Gédel number of a
proof in K of a wf with Gédel number x. By Proposition 3.28, Pf is re-
cursive. Hence, Pf is expressible in K by a wf 2/(xz,x;). Let £(x;) be the wf
(Vx2)—2/(x2,x1). By the fixed-point theorem, there must be a closed wf %
such that

($) }*K R (sz)ﬂjﬂ’/(_vaf’{ﬁﬁ) )

Observe that, in terms of the standard interpretation, (Vx;)—2/(x2," % ")
says that there is no natural number that is the Godel number of a proof in
K of the wf %, which is equivalent to asserting that there is no proof in K of
%. Hence, % is equivalent in K to an assertion that % is unprovable in K. In
other words, % says ‘I am not provable in K. This is an analogue of the liar
paradox: ‘I am lying’ (that is, ‘I am not true’). However, although the liar
paradox leads to a contradiction, Godel (1931) showed that % is an un-
decidable sentence of K. We shall refer to % as a Godel sentence for K.

PROPOSITION 3.37 (GODEL’S INCOMPLETENESS THEOREM)

Let K satisfy conditions 1 3. Then:
(a) If K 1s consistent, not-t-x 4.

‘THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS THEOREM
(b) If K is m-consistent, not--x =%.
Hence. I’ K is »m-consistent. % is an undecidable sentence of K.

Proof

Let g be the Gédel number of 4.

(a) Assume Fx %. Let » be the Godel number of a proofl in K of ¥.
Then Pf(r.¢q). Hence. b5 .2/(F.q), that is | x 2/(r% ). But. from ($)
above by biconditional elimination, Fy (Va2) ~2/(x,."% ). By rule A4,
Fx =2/ (774 ). Therefore, K is inconsistent.

(b) Assume K is w-consistent and Fyx 4. I'rom ($) by biconditional
elimination, Fx —(Vx2)—#/ (x2."% ). which abbreviates to

() B (o) )

On the other hand. since K is m-consistent. Proposition 3.36 implics that K
is consistent. But, Fx =%, Henee, not-t-¢ 4. that is. there is no proof in K of
4. So, Pf(n,q) is false for cvery natural number n and. therefore.
bk 2/ (h.” % ") for every natural number n. (Remember that © % ' is ¢.)
By w-consistency. not-Fy (Ix) 2/ (x2." 4 '), contradicting ().

REMARKS

(Godel’s incompleteness theorem has been established for any theory with
cquality K in the language ¢, that satisfies conditions 1-3 above. Assume
that K also satisfics the following condition:

(+) K is a true theory.

(In particular, K can be S or any subtheory of S.) Proposition 3.37(a) shows
that, if K is consistent, % is not provable in K. But, under the standard
interpretation, 4 asserts its own unprovability in K. Therefore, 4 is irue for
the standard interpretation.

Moreover, when K is a true theory, the following simple intuitive argu-
ment can be given for the undecidability of 4 in K.

(i) Assume kg 4. Since Fx ¥ & (Vx)~24(x2,” %4 ), it follows that
K (Vx2)m 2/ (x2," % ). Since K is a true theory, (Vx2)~2/(x2,” 4 ') is true
for the standard interpretation. But this wf says that % is not provable in K,
contradicting our original assumption. Hence, not-Fg 4.

(i) Assume Fk ~%. Since Fk @ & (V)= 2/ (x," 4 7),
Tk (V) n2/ (0" 9. So, bk (Tx)#4(x2," 7). Since K is a true
theory. this wf is true for the standard interpretation, that is, % is provable
in K. This contradicts the result of (i). Hence, not-kg —%.
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Exercises

341 bet s bea Godel sentence for S. Let S, be the extension of S obtained
by adding % as a new axiom. Prove that. if’ S is consistent, then S, is
consistent, but not m-consistent.

342 A theory K whose language has the individual constant (v and func-
tion letter /' is said to be w-incomplere if there is @ wi & (x) with one free
variable x such that Fg &(71) for every natural number #. but it 1s not the
case that Fg (Wx)& (x). If K is a consistent theory with equality in the lan-
guage ¢4 and satisfies conditions 1--3 on page 206. show that K is -
incomplete. (In particular. RR and S are m-incomplete.)

3.43 Let K be a theory whose language contains the individual constant
and function letter /{'. Show that, if K is a consistent and w-inconsistent,
then K is w-incomplete.

3.44 Prove that S, as well as any consistent extension of S having a re-
cursive axiom set, Is not a scapegoat theory. (See page 87.)

3.45 Show that there is an w-consistent extension K of S such that K is not
a true theory. [Hinr: Use the fixed point theorem.]

The Godel-Rosser incompleteness theorem

The proof of undecidability of a Godel sentence % required the assumption
of w-consistency. We will now prove a result of Rosser (1936) showing that,
at the cost of a slight increase in the complexity of the undecidable sentence,
the assumption of w-consistency can be replaced by consistency.

As before, let K be a theory with equality in the language &, satisfying
conditions 1-3 on page 206. In addition, assume:

4 Fgx<in=x=0Vx=1V...Vx=n for every natural number n.
5. kg x<n Vv n<x for every natural number #.

Thus, K can be any extension of RR with a recursive axiom set. In parti-
cular, K can be RR or S.

Recall that, by Proposition 3.26 (14), Neg is a primitive recursive func-
tion such that, if x is the Gédel number of a wf #4, then Neg(x) is the Gddel
number of (~4). Since all recursive functions are representable in K, let
Neg(x1,x2) be a wf that represents Neg in K. Now construct the following
wf &(x)):

(Vx2)(Py (x2,x1) = (x3) (Neglxr,x3) = (Fxg) (xa <32 AP (xa.%3))))
By the fixed-point theorem, there is a closed wf # such that
(%) Fk 2 &(' 4

A is called a Rosser sentence for K. Notice what the intuitive meaning of .4
1s under the standard interpretation. A asserts that, it # has a prootn K,

THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS THEOREM

say with Godel number x,. then =4 has a proof in K with Godel number
smalier than x>. This 15 a roundabout way for £ to claim its own un-
provability under the assumption of the consistency of K.

PROPOSITION 3.38 (GODEL-ROSSER THEOREM)

Let K satisly conditions 1 5. If K is consistent. then .4 is an undecidable
sentence of K.

Proof

Let p be the Godel number of #. Thus, " 42 is p. Let j be the Godel number
of —#.
(a) Assume bk 4. Since Fg A< 4004 ). biconditional climination
vields Fx &("4 7). that is:
Fi (W) (27 (x2.p) = (V) (Veg(poxa) = (Ba)asan A 2/ (xas))))
Let £ be the Godel number of a proot in K of #. Then Pi(k.p) and.

therefore, by 2/ (k,p). Applying rule Ad to &(" 4 ). we obtain
a4 (I;, p) = (VX‘;)(,V""}///(P, x3) = (Jxg)(xg <A A P (xs. x3)))
So. by MP,

(%) Fr (Yx2) (A ey P x3) = (Bxa) (g <k A 27 (1. x31))
since j is the Godel number of -4, we have Neg(p. j). and. therefore,
Lk Fey(ps ) Applying rule Ad to (%), we obtain ¢ . | cy(p, ) = (3xy)
vy <k AP/ (xa, j)). Hence, by MP, by (Txy)(xs <k A #/(x4. j)). whichis an
abbreviation for
(#) Pk =(Yxa)=(xs <k A2 (xa. )

Since - #, the consistency of K implies not- Fx —#. Hence, Pf(n, j) is false
for all natural numbers n. Therefore, Fx —#/(n, j) for all natural numbers
n. Since K is a theory with equality, Fx x4 = 1 = ~2/ (x4, j) for all natural
numbers n. By condition 4,

(f) f—K,\‘4<I;:>x4:O\/X4:IVY..VX4:k

(4)

So. by a suitable tautology, (§) and (¢ ¢) yield Fg xa <k = ~2/(xa. )
and then, by another  tautology, tx (va <k A2/ (x4 /). By Gen,

But

bk xa =n=-2/(xq. j) forn=0,1,... k

200
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P (Vv (g <k A2/ (g ). Thiso together with (#). contradicts the
consisteney ol K.
(b) Assume Fg 4. Let nr be the Godel number of a proof of =4 in K.

So. Ptim. j)is true and, therefore, g %/ (m. j). Hence. by an application of

rule E4 and the deduction theorem, Fy m <xs == (Jxg) (g <xa A2/ (. /).
By consistency of K. not-kx £ and. therefore. Pl(n. p) is false for all
natural numbers 7. Hence, by —#/(n. p) ltor all natural numbers
n. By condition 4. Fxxo<m=x; =0Vux=1Vv...Vxy=m Hence,
by xa<iit = —#/ (xa. p) . Consider the following derivation.

L. 2y (x2. p) Hyp

20 tig(p. x3) Hyp

I.os<mvm<x Condition 5

4. m<xy = () xg <2 A PY (xy. ) Proved above

5. xy<m = P/ (x, p) Proved above

6. ~Pf(x2, p) V (3xs)(xg <x2 A P/ (x4. j)) 3-5, tautology

7. (Axg) (g <x2 A2 (x4, ) 1. 6, disjunction rule

8. Aeglp. J) Proved in part (a)

9. (Fyx3)- 1 eg(p, x3) . ¥iy represents Neg

10, x3 =/ 2.8.9. properties of =

L (Ava g <va A2 (g x3)) 7. 10, substitutivity of =

12, 2/ (xa. p). Vig(px3) By (Fg) (I
(xs <x2 A2/ (x4 x3))

13. .-9’/(,\‘2, p) bk - l/'(';,//(p. X3)
= (Txg) (xg <2 A A4 (x4, X3))

14. :’//(XZ, p) bk (V,Y})(./VZ://(P, Xg) 13, Gen
= (3/\‘4)(.)(4 < A .77/(.\74., ,\‘3)))

15. Fk 9’/(,\”2, p) = (Vx;)(‘/(/a(g(p, ,\”3)
= (3xq) (x4 <x2 A 2Y (x4, X3)))

16. Fx (Vx2) (24 (x2, P) = (Vxa) 15, Gen
(Ney(D, x3) = (Dxg) (s <A
Pf (x4, x3))))

17. bk & (*1, biconditional elimination)

I 12, Corollary 2.6

1-14, Corollary 2.6

Thus, Fk % and Fg -4, contradicting the consistency of K.

The Godel and Rosser sentences for the theory S are undecidable sen-
tences of S. They have a certain intuitive metamathematical meaning; for
example, a Godel sentence ¥ asserts that ¢ is unprovable in 5. Until re-
cently, no undecidable sentences of S were known that had intrinsic math-

ematical interest. However, in 1977, a mathematically significant sentence of

combinatorics, related to the so-called finite Ramsey theorem, was shown to
be undecidable in S (see Kirby and Paris, 1977; Paris and Harrington, 1977;
and Paris, 1978).

THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS THEOREM
DEFINITION

A theory K is said to be recursively axiomatizable if there is a theory K°
having the same theorems as K such that K* has a recursive axiom set.

COROLLARY 3.39

Let K be a theory in the language ¢,. If K is a consistent. recursively
axiomatizable extension of RR. then K has an undecidable sentence.

Proof

Let K” be a theory having the same theorems as K and such that K* has a
recursive axiom set. Conditions 1 5 of Proposition 3.38 hold for K*. Hence,
a Rosser sentence for K* is undecidable in K* and. therefore, also un-
decidable in K.

An ceffectively decidable sct of objects is a set for which there is a me-
chanical procedure that determines, for any given object. whether or not
that object belongs o the set. By a mechanical procedure we mean a pro-
cedure that is carried out automatically without any need for originality or
imgenuity in its application. On the other hand, a set 4 of natural numbers is
~aid 1o be recursive if the property x € 4 is recursive.” The reader should be
convineced after Chapter 5 that the precise notion of recursive set corresponds
o the intuitive idea of an effectively decidable set of natural numbers. This
hypothesis s known as Church’s thesis.

Remember that a theory is said to be axiomatic if the set of its axioms is
clfectively decidable. Clearly, the set of axioms is effectively decidable if and
ouly if the set of Godel numbers of axioms is effectively decidable (since we
can pass effectively from a wf to its Gédel number and, conversely. from the
G;odel number to the wf). Hence, if we accept Church’s thesis, to say that K
has a recursive axiom set is equivalent to saying that K is an axiomatic
theory, and, therefore, Corollary 3.39 shows RR is essentially incomplete,
that is, that every consistent axiomatic extension of RR has an undecidable
sentence. This result is very disturbing; it tells us that there is no complete
asiomatization of arithmetic, that is, there is no way to set up an axiom
svstem on the basis of which we can decide all problems of number theory.

Fxercises

3.46 Church’s thesis is usually taken in the form that a number-theoretic
tunction is effectively computable if and only if it is recursive. Prove that this is
cquivalent to the form of Church’s thesis given above.

“Toosay that v oo A as recursive means that the characteristic function ¢y s a
recunstve function, where Cy(v) - O v e dtand Cov) o Tl v A4 (see page 180).
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347 Lot K obe a true theory that satisfies the hypotheses of the Godel
Rosser theoreny. Determine whether a Rosser sentence 4 for K is true for
the standard interpretation.
348 (Church. 1936b) Let 7r be the set of Godel numbers of all wfs in the
fanguage ¥, that are true for the standard mterpretation. Prove that 7r is
nol recursive. (Hence, under the assumption of Church’s thesis. there 1s no
ellective procedure for determining the truth or falsity of arbitrary sentences
ol arithmetic.)
3.49 Prove that there is no recursively axiomatizable theory that has 7i as
the set of Godel numbers of its theorems.
3.50 Let K be a theory with equality in the language ¢, that satisfies
conditions 4 and 5 on page 208. If cvery recursive relation is expressible in
K. prove that every recursive function is representable in K.

Godel’s Second Theorem

Let K be an extension of S in the language ¢, such that K has a recursive
axiom set. Let % ..k be the following closed wf of K:

(V\] )(V.\g)“?’\ \)(\/.\'4] ’(-//)/'(v\'| . .\'l) /'\-7’/(,\”3‘ .\'4) A .4//(.\’1- ,\'4))

For the standard interpretation, @ s asserts that there are no proofs in K
of a wf und its ncgation, that is, that K is consistent.
Consider the following sentence:

(G) Cong = 4

where % is a Gode! sentence for K. Remember that %4 asserts that ¥ is
unprovable in K. Hence, (G) states that, if K is consistent, then % is not
provable in K. But that is just the first half of Godel's incompleteness
theorem. The metamathematical reasoning used in the proof of that theo-
rem can be expressed and carried through within K itself, so that one ob-
tains a proof in K of (G) (see Hilbert & Bernays, 1939, pp. 285-328:
Feferman, 1960). Thus, g $sxx = %. But, by Godel’s incompleteness
theorem, if K is consistent, % is not provable in K. Hence, if K is consistent.
G onk is not provable in K.

This is Gddel’s second theorem (1931). One can paraphrase it by stating
that, if K is consistent, then the consistency of K cannot be proved within K,
or, equivalently, a consistency proof of K must use ideas and methods that
go beyond those available in K. Consistency proofs for S have been given by
Gentzen (1936; 1938) and Schiitte (1951), and these proofs do, in fact,
employ notions and methods (for example, a portion of the theory of de-
numerable ordinal numbers) that apparently are not formalizable in S,

Godel's second theorem is sometimes stated in the form that, it a “sufli-
ciently strong’ theory K is consistent, then the consistency ol K cannot be

FHE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS THEOREM;
proved within K. Aside from the vagueness ol the “sufliciently strong” (which
can be made precise without much difliculty). the way in which the con-
sistency of K is formulated is crucial. Feferman (1960, Cor. 5.10) has shown
that there is 4 way of formalizing the consistency of S say. 4./ - such
that =g % oxg. A precise formulation of Gadel second theorem may be found
in Feferman (1960). (Sce Jeroslow (1971: 1972: 1973) for further clarification
and development.)

In their proot of Godel's second theorem. Hilbert and Bernays (1939)
based their work on three so-called derivability conditions. For the sake of
definiteness. we shall imit ourselves to the theory S, although everything we
say also holds for recursively axiomatizable extensions of S, To formulate
the Hilbert-Bernays results, let Ao, (vy) stand for (4v2).2/(x2. v ). Thus.
under the standard interpretation, #.(x;) means that there is a proofin S
of the wf with Gdédel number v: that is, the wi with Godel number ¥ is
provable in S." Notice that a Gadel sentence % for S satisfies the fixed-point
condition: Fs 4 < — Ao ("6 ).

I'HE HILBERT-BERNAYS DERIVABILITY CONDITIONS!

(HB1) I s . then Fs Ao ("6 ).
(MUB2) b B 6 = G7) = (Bewr("67) = Beoe(" 7))
(HUB3) Fs Beorn" 6 ) = Beve" Ben("6 1))

Hereo 6 and & are arbitrary closed wfs of S. (HB1) is straightforward and
(F1B2) is an easy consequence of properties of .2/. However. (HB3) requires
acareful and difficult proof. (A clear treatment may also be found in Boolos
11993 chap. 2), and in Shoenfield (1967, pp. 211-213).)
A Godel sentence % for S asserts its own unprovability in S:
% &> Ao %), We also can apply the fixed-point theorem to obtain
asentence A such that Fg # & RBew(" #7). A is called a Henkin sentence
tor S, # asserts its own provability in S. On intuitive grounds, it is not clear
whether - is true for the standard interpretation, nor is it easy (o determine
whether # is provable, disprovable or undecidable in S. The problem was
«whved by Léb (1955) on the basis of Proposition 3.40 below. First, however,
let us introduce the following convenient abbreviation.

"Bew” consists of the first three letters of the German word beweishar. which
means “provable’

“These three conditions are simplifications by Léb (1955) of the original Hil-
hert Bernays conditions.
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NOTATION

Let [ stand for Ao ("6 ), where % is any wi. Then the Hilbert -Bernays
derivability conditions become:

(HB1) If Fs %. then ks (J%.
(HB2) rs (¢ = &) = (O% = [1%)
(HB3) bs O% = O 0O%

The Godel sentence % and the Henkin sentence # satisly the equivalences
b¢% e Q% and Fs # & O

PROPOSITION 3.40 (LOB’S THEOREM)

Let % be a sentence of S. If kg (J% = %, then k5 4.

Proof

Apply the fixed-point theorem to the wf Bee(x)) = % 1o obtain a sentence
o such that s @ & (A" ") = ). Thus. by & & (O = ¢). Then
we have the following derivation of 4.

Lk ¥ (O =) Obtained above

2.h ¥ = (OY = 7) 1. biconditional elimination
s (Y = (O = %)) 2. (HBI)

4.+ 0¥ = O(OZ = 6) 3, (HB2), MP

5.hs O(OY = %)= (OO = 0O%) (HB2)

6. Fs 0 = (00O¢Y = 0%) 4, 5 tautology

7. hs 0% =00 (HB3)

8. s ¥ = O% 6. 7, tautology

9.+ (0% =% Hypothesis of the theorem

10. ks ¥ = % 8, 9, tautology

1. kg & 1, 10, biconditional elimination
12. /¢ O 11, (HBI1)
13. - % 10, 12, MP

COROLLARY 341

Let # be a Henkin sentence for S. Then ks .# and # is true for the
standard interpretation.
Proof

g .# < [J.#. By biconditional climination, I y [1.# > .¥. So. by L.ob's
theorem. | s # . Since . # asserts that . is provable in S, . s true

THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS THEOREM

Lob's theorem also enables us to give a proof of Godel’s second theorem
for S.

PROPOSITION 3.42 (GODEL’S SECOND THEOREM)

1 S is consistent. then not--g % o .

Proof

Assume S consistent. Since s 0 # 1. the consistency of S implies not-
¢ 0= 1. By LO6b’s theorem. not-+¢ [J(0 = 1) = 0 = 1. Hence. by the
ltautology =4 = (4 = B}, we have:

(#) not-t g L]0 1)

But, since Fg 0 # 1, (HB1) yields =g [J(0 % 1), Then it is casy to show that
S Cong = "D(O = ) So. b_V (*), not-t=¢ 4 .

Boolos (1993) gives an clegant and extensive study of the fixed-point
theorem and L6b’s theorem in the context of an axiomatic treatment of
provability predicates. Such an axiomatic approach was first proposed and
developed by Magari (1975).

I'xercises

.51 Prove (HBI) and (HB2).

152 Give the details of the proof of g %rus = ~ A (" 0=17"), which

was used in the proof of Proposition 3.42.

353 If 4 is a Godel sentence of S, prove Fg % < ﬁ%uw('—() =1").

tHenee. any two Godel sentences for S are provably equivalent. This is an

instance of a more general phenomenon of equivalence of fixed-point sen-

tences. first noticed and verified independently by Bernardi (1975; 1976), De

longh. and Sambin (1976). See Smorynski (1979; 1982).)

3.54  In cach of the following cases, apply the fixed-point theorem for S to

obtain a sentence of the indicated kind; determine whether that sentence is

provable in S, disprovable in S, or undecidable in S; and determine the truth

o1 falsity of the sentence for the standard interpretation.

(1A sentence 4 that asserts its own decidability in S (that is, that g % or
IRERVAN

{h)A sentence that asserts its own undecidability in S.

1A sentence % asserting that not-Fg =%

(DA sentence 4 asserting that g =%

9
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3.6 RECURSIVE UNDECIDABILITY. CHURCH’S THEOREM

If K is o theory. let Tx be the set of Gadel numbers of theorems of K.

DEFINITIONS

K is said to be recursively decidable if Tx is a vecursive sct (that is, the
property x & T is recursive). K is said to be recursively undecidable if Ty is
not recursive. K is said to be essentially recursively undecidable it K and all
consistent extensions of K are recursively undecidable.

If we accept Church’s thesis. then recursive undecidability is equivalent to
eflective undecidability, that is. non-existence of a mechanical decision
procedure for theoremhood. The non-existence of such a mechanical pro-
cedure means that ingenuity is required for determining whether arbitrary
wfs arc theorems.

Exercise

3.55 Prove that an inconsistent theory having a recursive vocabulary is
recursively decidable.

PROPOSITION 3.43

Let K be a consistent theory with equality in the language ¢4 in which the
diagonal function D is representable. Then the property x € Tk is not ex-
pressible in K.

Proof
Assume x € Tk is expressible in K by a wf 7 (x;). Thus:

(a)If n € Tx, Fx .7/_(1_1).
(O)If n ¢ Tk, Fk —'9_(1_1).
By the diagonalization lemma applied to =7 (x}), there is a sentence % such
that Fx @ & -7 ("4 7). Let g be the Godel number of %. So:
)bk € & ~7(q).

Case 1:Fg 6. Then g € Tx. By (a), b .7 (¢). But, from | ¢ 4 and (c). by
biconditional elimination, Fx —.7 (¢). Hence K is inconsistent, contradicting
our hypothesis.

RECURSIVE UNDECIDABILIFY. CHURCH'S THEOREM

Case 2: not--x ¢. So. g ¢ Tx. By (b). t ¢ 7 (¢). Hence. by (¢) and
biconditional climination. ¢ .
Thus. in either case a contradiction is reached.

DEFINITION

A set B of natural numbers is said to be arithinctical if there is a wi . A(x) in
the language &4, with one free variable v, such that, for every natural

\

number n. n € B if and only if . 4(i) is true [or the standard interpretation.

COROLLARY 3.44 [TARSKI'S THFEOREM (1936)]

Let 7r be the set of Gadel numbers of wis of S that arc true for the standard
interpretation. Then 7 i1s not artthmetical.

Proof

Let. 17 be the extension of S that hus as proper axioms all those wfs that are
true for the standard interpretation. Since every theorem of .1 must be true
lor the standard interpretation, the theorems of .1 arc identical with the
axioms of 7. Hence. T = Tr. Thus. for any closed wi .4, 4 holds for the
standard interpretation if and only it + - 4. It tollows that a set B is ar-
ithmetical if and only if the property x & B is expressible in 1. We may
assume that .47 is consistent because it has the standard interpretation as a
model. Since every recursive function is representable in S, every recursive
l'unction is representable in ..# and. therefore. D is representable in 7. By
Proposition 3.43, x € Tr 1s not expressible in . ¥ Hence. 7r i1s not ar-
ithmetical. (This result can be roughly paraphrased by saying that the no-
non of arithmetical truth is not arithmetically definable.)

PROPOSITION 3.45

I ¢t K be a consistent theory with equality in the language ¥4 in which all
recursive functions are representable. Assume also that g 0 #£ 1. Then K is
recursively undecidable.

Proof

1) s primitive recursive and. thercfore, representable in K. By Proposition
VA3 the property v Tk ois not expressible in Ko By Proposition 3,13, the
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characteristic function 'y, is not representable in K. Hence. (' is not a
recursive function. Therefore. Tk is not a recursive set and so. by definition.
K is recursively undecidable.

COROLLARY 3.46

RR is essentially recursively undecidable.

Proof

RR and all consistent extensions of RR satisfy the conditions on K in
Proposition 3.45 and, therefore, are recursively undecidable. (We take for
granted that RR is consistent because it has the standard interpretation as a
model. More constructive consistency proofs can be given along the same
lines as the proofs by Beth (1959, § 84) or Kleene (1952, § 79).)

We shall now show how this result can be used to give another derivation
of the Godel-Rosser theorem.

PROPOSITION 3.47

Let K be a theory with u recursive vocabulary. If K is recursively ax-
iomatizable and recursively undecidable, then K is incomplete (i.e., K has an
undecidable sentence).

Proof

By the recursive axiomatizability of K, there is a theory J with a recursive
axiom set that has the same theorems as K. Since K and J have the same
theorems, Tx = T and, therefore, J is recursively undecidable, and K is
incomplete if and only if J is incomplete. So, it suffices to prove J incomplete.
Notice that, since K and J have the same theorems, J and K must have the
same individual constants, function letters, and predicate letters (because all
such symbols occur in logical axioms). Thus, the hypotheses of Propositions
3.26 an 3.28 hold for J. Moreover, J is consistent, since an inconsistent
theory with a recursive vocabulary is recursively decidable.

Assume J is complete. Remember that, if x is the Gédel number of a wf,
Clos(x) is the Godel number of the closure of that wf. By Proposition 3.26
(16), Clos is a recursive function. Define:

H(x) = py[(Fmi(x) A (P(y, Clos(x)) V Pf(y. Neg(Clos(x))))) V -Fml(x)]
Notice that, if x is not the Godel number of a wf, H(x) = 0. If x is the Godel

number of a wf 4, the closure of 4 1s a closed wt and, by the completeness
of J, there is a proof in J of either the closure of .4 or its negation. Hencee,

RECURSIVE UNDECIDABILITY. CHURCH'S THEOREM

H(x) is obtained by u legitimate application of the restricted p-operator and.

therefore. H s a recursive function. Recall that o wi'is provable if and only if

its closure is provable. So, x € 7y il and only it PI(H(x), Clos{x})). But
Pf{H(x). Clos(x)) is recursive. Thus, 7; is recursive, contradicting the re-
cursive undecidability of J.

The intuitive idea behind this prool'is the following. Given any wi .4, we
form its closure % and start listing all the theorems in J. (Since PrAx is
recursive. Church’s thesis tells us that J is an axiomatic theory and. there-
fore. by the argument on page 86. we have an cllective procedure for gen-
erating all the theorems.) If J is complete. cither 4 or =% will eventually
appear in the list of theorems. If 4 appcars. .4 is a thcorem. If =% appears.
then. by the consistency of J, ¢ will not appear among the theorems and,
therefore. .4 is not a theorem. Thus, we have a decision procedure for
theoremhood and, again by Church’s thesis, J would be recursively decidable.

COROLLARY 3.48 (GODEL-ROSSER THEOREM)

Any consistent recursively axiomatizable extension of RR has undecidable
sentences.

Proof

This is an immediate consequence of Corollary 3.46 and Proposition 3.47.

I.xercises

3.56 Prove that a recursively decidable theory must be recursively ax-
iomatizable.

3.57 Let K be any recursively axiomatizable true theory with equality. (So,
/v C Tr.) Prove that K has an undecidable sentence. [Hint: Use Proposition
3.47 and Exercise 3.48.]

3.58 Two sets 4 and B of natural numbers are said to be recursively in-
weparable if there is no recursive set C such that 4 € C and B C C. (C is the
complement @ — C.) Let K be any consistent theory with equality in the
Linguage ¢, in which all recursive functions are representable and such that
“x 0 # 1. Let Refg be the set of Godel numbers of refutable wfs of K, that
i~ {v[Neg(x) € Tk }. Prove that Tx and Refk are recursively inseparable.

DEFINITIONS

Let Kyand K be two theories in the same language.

ta) Ko as called a finite extension of Ky if and only if there is a set 4 of wfs
and a fimte set B of wis such that: (1) the theorems of Ky are precisely
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the wis derivable from Az and (23 the theorems of Ki are precisely the
wis derivable [rom Ao B

(b) T.ct K, K- denote the theory whose set ol axioms is the union of the set
of axioms ol K, and the set of axioms of Ka. We say that Ky and K are
compatible i KpOKs i consistent.

PROPOSITION 3.49
Let Ky and Ks be two theories in the sume language. If K is a finite

extension of K, and if K is recursively undecidable, then Ky is recursively
undecidable.

Proof
Let 4 be a set of axioms of K, and Au{4,...,4,} a set of axioms for K.
We may assume that 4;...., 4, are closed wfs. Then, by Corollary 2.7, 1t 1s

casy 1o see that a w4 is provable in Ky if and only if (41 A ... A Ay) = Cis
provable in K. Let ¢ be a Godel number of (4 A...A%4,). Then b is a
Godel number of a theorem of Ko when and only when 2% # ¢ % 2' « b « 2 s
4 Godel number of a theorem of K that is. A is in T, if and only if
2w e x 2' a2V isin Ty, Hence. if T, were recursive, Tx, would also be
recursive. contradicting the recursive undecidability of K.

PROPOSITION 3.50

Let K be a theory in the language .% 4. If K is compatible with RR, then K is
recursively undecidable.

Proof

Since K is comptatible with RR, the theory KRR is a consistent extension
of RR. Therefore, by Corollary 3.46, KURR is recursively undecidable.
Since RR has a finite number of axioms, KURR is a finite extension of K.
Hence, by Proposition 3.49, K is recursively undecidable.

COROLLARY 3.51

Every true theory K is recursively undecidable.

Proof

K U RR has the standard interpretation as a model and is, therefore, con-
sistent. Thus, K is compatible with RR. Now apply Proposition 3.50.

RECURSIVE UNDECIDABILITY. CHURCH'S THEOREM
COROLLARY 3.52

Let Pg be the predicate caleulus in the language &7, Then Py is recursively
undecidable.

Proof

P¢uURR = RR. Hence. Pg is compatibic with RR and. therefore, by Pro-
position 3.50, recursively undecidable.

By PF we mean the fu/l first-order predicate calculus containing all
predicate letters. function letters and mdividual constants. Let PP be the
pure first-order predicate calculus, containing all predicate letters but no
function letters or individual constants.

LEMMA 3.53

There is a recursive function /# such that, for any wt .4 of PI* having Gédel
number u, there is a w4’ of PP having Godel number A(u) such that .4 is
provable in PF if and only if /4 is provable in PP.

Proof

[.ct 4 be a wl of PF. With the distinet function letters /' in 4, associate
distinet predicate letters 4”'" not occurring in 4, and with the distinet
mdividual constants a; in 4, associate distinct predicate letters /\,l not oc-
curring in 4. Find the first individual constant a; in .4 (if any). Let = be the
first variable not in % and let 4" result from 4 by replacing all occurrences
ol a; by z. Form the wf %) : (32)4}(z) = (32)(4)(z) A #*), where 4] is the
predicate letter associated with a;. It is easy to check (see the proof of
I’roposition 2.28) that 4 is logically valid if and only if 4, is logically valid.
Keep on performing similar transformations until a wi % without individual
constants is reached; then 4 is logically valid if and only if %4 is logically
valid. Next, take the leftmost term f{(#,....4,) in %, where 1,,... .1, do not
contain function letters. Let w be the first variable not in 4, let €% result
lhom ¢ by replacing f/'(11,...,1,) by w, and let %, be the wf

w A wtyy ) = AW)A (wy . ) AGT), where 47! s the
predicate letter associated with /7. It is easy to verify that 4 is logically valid
it and only if % 1s logically valid. Repeat the same transformation on %,
and so on, until a wf 4’ is reached that contains no function letters. Then 4’
i wl of PP, and 4’ is logically valid if and only if 4 is logically valid. By
Giodel’s completeness theorem (Corollary 2.19), 4 is logically valid if and
only i py 4, and 4" is logically valid if and only it Fpp 4", Now, if 1 is the
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Godel number of 4. et A1) be the Godel number of 4. When « is not the
Gaodel number of a wi of PE. define A(u) to be 0. Clearly. & is effectively
computable because we have described un cllective procedure for obtaining
4’ Irom 4. Therefore. by Church’s thesis, A is recursive. Alternatively. an
extremely diligent reader could avoid the use of Church’s thesis by “ar-
ithmetizing” all the steps described above in the computation of 4.

PROPOSITION 3.54 (CHURCH’S THEOREM (1936a))
PF and PP are recursively undecidable.

Proof

(a) By Gédel's completeness theorem, a wf .4 of Py is provable in Pg if and
only if 4 is logically valid, and # is provable in PF if and only if .4 is
logically valid. Hence, bp_ 4 if and only il ~py 4. However, the set
Fmip, of Godel numbers of wfs of Pg is recursive. Then
Tp. = TprnFmlp,. where Tp, and Tpy: are. respectively. the sets of Godel
numbers of the theorems of P, and PE. I Tpp: were recursive, Tp, would
be recursive. contradicting Corollary 3.52. Therelore, PF is recursively
undecidable.

(b) By Lemma 3.53, u is in Ty if and only if a(u) is in Tpp. Since h is
recursive, the recursiveness of 7pp would imply the recursiveness of Tpr,
contradicting (a). Thus, Tpp is not recursive; that is, PP is recursively
undecidable.

If we accept Church’s thesis, then ‘recursively undecidable’ can be re-
placed everywhere by ‘effectively undecidable’. In particular, Proposition
3.54 states that there is no decision procedure for recognizing theoremhood,
either for the pure predicate calculus PP or the full predicate calculus PF. By
Gddel's completeness theorem, this implies that there is no effective method
for determining whether any given wf is logically valid.

Exercises

3.59

(a) By a wf of the pure monadic predicate calculus (PMP) we mean a wf of
the pure predicate calculus that does not contain predicate letters of
more than one argument. Show that, in contrast to Church’s theorem,
there is an effective procedure for determining whether a wi” of PMP is
logically valid. [Hint: Let By. B, . ... B; be the distinct predicate letters in
a wi 4. Then 4 is logically valid if and only if .4 is truc for cvery
interpretation with at most 2% elements. (In fact, assume 4 s true for

RECURSIVE UNDECIDABILITY. CHURCH'S THEOREM

every interpretation with at most 2% elements, and let M be any inter-
pretation. For any elements & and ¢ of the domain D of M. call b and ¢
equivalent 1f the truth values of Bi(b). B:2(h)..... B, (b) in M ure. re-
spectively. the same as thosc of B (¢). Balc). .. .. Bi(¢). This defines an
equivalence relation in D. and the corresponding set of equivalence
classes has al most 2% members and can be made the domain of an

interpretation M* by defining interpretations of By.. ... By, in the ob-
vious way. on the equivalence classes. By induction on the length of wis
¢ that contain no predicate letters other than By... .. By, one can show

that ¢ 1s true for M if and only 1f it is true for M. Since .4 is true for
M. itis also true for M. Hence. 4 is true for every interpretation.) Note
also that whether 4 is true for every interpretation that has at most 2
elements can be effectively determined. ]!

(b) Prove that a wf .4 of PMP is logically valid it and only if 4 is true for all
finite interpretations. (This contrasts with the situation in the pure
predicate calculus: see Excrcise 2.56 on page 93.)

3.60 If a theory K' is consistent, if every theorem of an essentially recur-

sively undccidable theory K is a theorem of K-, and if the property

I'mly, () 1s recursive, prove that K- is essentially recursively undecidable.

3.61 (Tarski, Mostowski and Robinson, 1953, 1)

ta) Let K be a theory with equality. If a predicate Iellcrz}ﬂ a function letter
/; and an individual constant @; are not symbols of K. then by possible
definitions of A7, /7 and a; in K we mean, respectively, expressions of the

form
(1 (Vx) ... (V,\’,,)(A'I.'(xl e Xy) & Bxy, . x,))
(1) (¥xy) ... (Vx,,)(Vy)(/'j”(,\’], LX) =y e G, Yo V)

(ii) (W) (a; = y & 9())
where 4., ¢ and 7 are wfs of K; moreover, in case (ii). we must also have
Fx (Vxy) .o (Yx) (Z1p)6 (x1, - .., xn, v). and, in case (i), Fx ()72 (v). If
K is consistent, prove that addition of any possible definitions to K as
new axioms (using only one possible definition for each symbol) yields a
consistent theory K’, and K’ is recursively undecidable if and only if K is.
(h) By a non-logical constant we mean a predicate letter, function letter or
individual constant. Let K, be a theory with equality that has a finite
number of non-logical constants. Then K is said to be interpretable in a
theory with equality K if we can associate with each non-logical con-
stant of K that is not a non-logical constant of K a possible definition

"T'he result in this exercise is, in a sense, the best possible. By a theorem of
Kalmar (1936), there is an effective procedure producing for each wi % of the pure
precheate caleutus another wi 4> of the pure predicate calculus such that %, contains
only one predicate letter, a binary one. and such that 4 is logically valid if and only if
A s Jogically vahd. (For another proof, sec Church, 1956, § 47.) Hence, by Church’s
theorem, there is no decision procedure for logical validity of wfs that contain only
hinary predicate letiers, (For another proof, see Exercise 4,68 on page 271))
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in K such that. if K™ is the theory obtained from K by adding these
possible definitions as axioms, then every axiom (and hence every the-
orem) of K is a thcorem of K'. Notice that. if K, is interpretable in K.
it is mterpretable in every extension of K. Prove that, il Ky is inter-
pretable in K and K is consistent. and if K is essentially recursively
undecidable, then K is essentially recursively undecidable.

3.62 let K be a theory with eqlmllly and Al a monadic predicate letter not
in K. Given a closed wf % . let ¢ (called lhu relativization of 4 with respect
to 4 ) be the wi obtained from % by replacing every subformula (starting
from the smallest subformulas) of the form (Vx):4(x) by (Vr)(A (x) = /ﬁ’(r))
Let the proper axioms of a new theory with equality K” be: (1) all ws 47,
where @ is the closure of any proper axiom of K; (ii) (2x)A4 ( ): (i) A! (a,,,)
for each individual constant a, of K; and (iv) Al i (xn) /\ A
A} (xn) = AN f{(x1.....x,)) for any function letter f;' of K. Prove the fol-
lowing.
(a) As proper axioms of K™ we could have taken all wfs %) , where ¢ is
the closure of any theorem of K.
(b) K is interpretable in K.
(¢) K" is consistent if and only il K is consistent.
(d) K™ s essentially recursively undecidable if and only if K is (Tarski,
Mostowski and Robinson. 1953, pp. 27 28).
3.63 K is said to be relarively IHI( rpretable in K' il there is some predicate
letter A' not in K such that K™ is interpretable in K'. If K is relatively
mlcrpleldble in a consistent theory K’ and K is essentially recursively un-
decidable. prove that K’ is essentially recursively undecidable.
3.64 Call a theory K in which RR is relatively interpretable sufficiently
strong. Prove that any sufficiently strong consistent theory K is essentially
recursively undecidable, and, if K is also recursively axiomatizable, prove
that K is incomplete. Roughly speaking, we may say that K is sufficiently
strong if the notions of natural number, 0, 1, addition and multiplication are
‘definable’ in K in such a way that the axioms of RR (relativized to thc
‘natural numbers’ of K) are provable in K. Clearly, any theory adequate for
present-day mathematics will be sufficiently strong and so, if it is consistent.
then it will be recursively undecidable and, if it is recursively axiomatizable,
then it will be incomplete. If we accept Church’s thesis, this implies that any
consistent sufficiently strong theory will be effectively undecidable and, if it
is axiomatic, it will have undecidable sentences. (Similar results also hold for
higher-order theories; for example, see Godel, 1931.) This destroys all hope

Jfor a consistent and complete axiomatization of mathematics.

Axiomatic Set Theory

4.1 AN AXIOM SYSTEM

A prime reason for the increase in importance of mathematical logic in the
twentieth century was the discovery of the paradoxes ol set theory and the
need for a revision of intuitive (and contradictory) sct theory. Many dil-
ferent axiomatic theories have been proposed to serve as a foundation for
sct theory but, no matter how they may differ at the fringes, they all have as
a common core the fundamental thcorcms that mathematicians require for
their daily work. We make no claim about the superiority of the system we
shall use except that, from a notational and conceptual standpoint, it is a
convenient basis for present-day mathematics.

We shall describe a first-order thcory NBG, which is basically a system of
the same type as one originally proposed by von Neumann (1925; 1928) and
later thoroughly revised and simplified by R. Robinson (1937), Bernays
(1937--1954); and Godel (1940) (We shall follow Godel's monograph to a
ercat extent, although there will be some significant differences.)

NBG has a single predicate letter 43 but no function letter, or individual
constants.! In order to conform to the notation in Bernays (1937-1954) and
Godel (1940), we shall use capital italic letters X;, X5, X, ... as variables
mmstead of xy, x2, x3, ... . (As usual, we shall use X, ¥, Z, ... to represent
arbitrary variables.) We shall abbreviate 43(X.Y) by X € Y, and ~43(X,Y)
bv X¢Y.

Intuitively, € is to be thought of as the membership relation and the
values of the variables are to be thought of as classes. Classes are certain
collections of objects. Some properties determine classes, in the sense that a
property P may determine a class of all those objects that possess that
property. This ‘interpretation’ is as imprecise as the notions of ‘collection’
and “property’. The axioms will reveal more about what we have in mind.
L hey will provide us with the classes we nced in mathematics and appear
maodest enough so that contradictions are not derivable from them.

Al : . Al . . .
"We use 43 instead of A7 because the Tatter was used previously for the equality
iclition
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Let us define equality in the following way.

DEFINITION

X=VYlor(VD)(ZeX e Zzey)

Thus. two classes are equal when and only when they have the same
members.

DEFINITIONS
XCY for (VZ)(ZeX=Ze€Y) (inclusion)
XcY for XCYAX#AY (proper inclusion)

When X C Y, we say that X is a subclass of Y. When X C Y, we say that X is
a proper subclass of Y.
As easy consequences of thesc definitions, we have the following.

PROPOSITION 4.1!

() FX=Ye XCYAYCx)
b) FX =X

() FX=Y=Y=X

d FX=Y=(Y=Z2=X=2)

We shall now present the proper axioms of NBG, interspersing among
the axioms some additional definitions and various consequences of the
axioms.

We shall define a class to be a ser if it is a member of some class. Those
classes that are not sets are called proper classes.

DEFINITIONS
M(X) for (AVN(X eY) (X is a set)
Pr(X) for -M(X) (X is a proper class)

It will be seen later that the usual derivations of the paradoxes now no
longer lead to contradictions but only yield the results that various classes
are proper classes, not sets. The sets are intended to be those safe, com-
fortable classes that are used by mathematicians in their daily work., whereas

'As usual, Z is (o be the first variable different from X and Y,
"The subseript NBG will be omitted from | NRBG ' the rest of this chapter.

AN AXIOM SYSTEM

proper classes are thought of as monstrously large collections that. if per-
mitted to be sets (1.e.. allowed to belong to other classes). would engender
contradictions.

Exercise 4.1 Prove F X € ¥ = M(X).

The system NBG is designed to handle classes. not concrete individuals.'
The rcason for this is that mathematics has no need for objects such as cows
and molecules; all mathematical objects and relations can be formulated in
terms of classes alone. If non-classes arce required for applications to other
sciences. then the system NBG can be modified slightly so as to apply to
both classes and non-classes alike (sce the system UR in Section 4.6 below).

Let us introduce lower-case letters vy, x>, ... as special restricted vari-
ables for sets. In other words. (Vx,).4(x;) stands for (VX)(M(X) = #(X)).
that is, .2 holds for all sets. and (3x;).4(x;) stands for (3X)(M{X) A .4(X)).
that is, 4 holds for some set. As usual, the vanable X used in these deti-
nitions should be the first one that does not occur in #(x;). We shall use
X. v, z, ... to stand for arbitrary set variables.

Ixample
(VX)) (V) (3y)(AX3)(X) € x Ay € X3) stands for
(VXD (VX2)(M(X2) = (X)) (M(X3) A (3XG3)(X) € X A Xy € X3)))

Exercise 4.2
Prove that FX =Y & (Vz)(z€ X & z € Y). This is the so-called exten-

sionality principle: two classes are equal when and only when they contain
the same sers as members.

AXIOM T
X=X = (X] cX; e X €X3)

I'his axiom tells us that equal classes belong to the same classes.
Fxereise
4.3 Prove that - M(Z) A Z =Y = M(Y).
"It there were conerete individuals (that is, objects that are not classes), then the

detimtion of equahity would have to be changed, since all such individuals have the
same members (namely, none at all).
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PROPOSITION 4.2

NBG s a first-order theory with equality.

Proof

Use Proposition 4.1, axiom T. the definition of cquality, and the discussion
on page 99,

AXIOM P (PAIRING AXIOM)

(VX)W 3y (Vu)(w ez u=xVu=y)

Thus, for any sets x and v, there is a set z that has x and y as its only
members.

Exercises

4.4 Prove b (Vo)) oy (Vu)( € 2= u = xVu=y). This asserts that
there is a unique sct 7, called the wnordered pair of x and y, such that z has x
and y as its only members. Use axiom P and the extensionality principle.
4.5 Prove - (VX)(M(X) = (I)(X € v)).

4.6 Prove - (3X)Pr(X) = -(YY)(VZ2)(3W)(VU)U e Z&U =X VU =Y

AXIOM N (NULL SET)

(H)(w){y € x)
Thus, there is a set that has no members. From axiom N and the ex-
tensionality principle, there is a unique set that has no members — that is,
F (31x)(¥y)(y ¢ x). Therefore, we can introduce a new individual constant {}
by means of the following condition.

DEFINITION
()¢ )

It then follows from axiom N and Exercise 4.3 that @ is a set.

Since we have (by Exercise 4.4) the uniqueness condition for the un-
ordered pair, we can introduce a new function letter g(x. v) to designate the
unordered pair of x and yv. In accordance with the traditional notation, we
shall write {x. v} instead of g(x.v). Notice that we have to define a unigque

AN AXIOM SYSTEM }
value for {X. Y} for any classes X and Y. not only for sets x and v. We shall
let {X.Y} be ¥ whenever X is not a set or Y is not a sct. One can prove:
DM Y MY AZ =0 v M) AMY)A Vu)(u € Z = u =
X Vu =Y)]). This justifies the introduction of a term {X. Y} satisfying the
following condition:

MX)AMY)A (Vu)(ue {X. Y} <o
VMYV SMY) ALY YL 0

Xvu= Y

One can then prove + (Va)(Vv)(Vu)(u ¢ {v.v} «>u=xVu=y) and
F (VX ) (VY IM{X. Y)).

DEFINITION
‘ (X} for {X.\}

For a set x. {x} is called the singleron of x. It is a set that has x as its only
member.

In connection with these definitions, the reader should review Section 2.9
and, in particular, Proposition 2.28, which assures us that the introduction
ol new individual constants and function letters, such as ) and {X, Y}. adds
nothing essentially new to the theory NBG.

kxercise
4.7 (a) Prove F {X.Y} ={Y,X}.

(b) Prove F (Vx)(Vy)({x} = {y} = x = y).
DEFINITION

ALY for ({X},{X,Y}}
bor sets x and y, (x,y) is called the ordered pair of x and y.

The definition of (X, Y) does not have any intrinsic intuitive meaning. It
Is just a convenient way (discovered by Kuratowski, 1921) to define ordered

pairs so that one can prove the characteristic property of ordered pairs
cxpressed in the following proposition.

PROPOSITION 4.3

EOO)YY(VI)(Ve)((xey) (i) s> X u Ay - )
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Proof

b} Since {x} € {{x}.

/£
} = {u. e} In either cuse.

Assume {vov) = (o). Then {{x}. {x.v}} = {{u}.{
{vovbb At e Qub {u.e} ) Henee, {x} = {u} or {x

v Now, {woeh € {{ub {u. o} }osos fue) € {{x}{x.v}}. Then {u.r} =
{xt oor {we} = {x.v}. Similarly. {x.y} = {u} or {vovt = {urh If

{u.ry = {x} and {x.y} = {u}. then x = v =u =il not. {u.r} = {x.v}.
Henee, {u. v} = {u.»}. So.if v # u, then v = ez if ¢ = w. then p = v. Thus, in
all cases, v = .

Notice that the converse of Proposition 4.3 holds by virtue of the sub-
stitutivity of equality.

Exercise

4.8 (a) Show that, instead of the definition of an ordered pair given in the
text, we could have used (X.Y) = {{0. X}.{{00}. Y} }: that is, Proposition 4.3
would still be provable with this new meaning of (X. Y},

(b) Show that the ordered pair also could be defined as {{#, {X}}.
{{Y}}}. (This was the first such definition, discovered by Wiener (1914). For
a thorough analysis of such definitions. sece A. Oberschelp (1991).)

We now extend the definition of ordered pairs to ordered a-tuples.

DEFINITIONS
(X)=x
<X| vvvvv /\/IHXH+|> = <X|:~-~w/\/n>t/\/n~l>

Thus, (X,Y,Z) =(X.Y),Z) and (X,Y,Z.U) = (((X,Y),Z).U).
It is easy to establish the following generalization of Proposition 4.3.

= (Vx,) . (V-\”,,)(V)’l)~ .- (Vy,,)((.ﬁ,» e ,,.Y,,> = <,Vl """ ’y"> =
X1 = AL AX, :yll)

AXIOMS OF CLASS EXISTENCE

(Bl) (ZX)(Vu)(Vo)({u,v) € X & u € v) (€ -relation)
(B2) (VX)(VVY(EFZ)Vu)ueZesueXAuecy) (intersection)
(B3) (VX)(3Z)(Vu)(u e Z = ugX) (complement)
(B4) (VX)(3Z)(Vu)(u € Z & (Fv)({u.v) € X)) (domain)
(BS) (VX)(3Z)(Vu)(Ve)({u.v) e Z S u e X)

(BO) (VX)) (A (V) (Vo) (W) ({u vow) ¢ Z <5 (rowon) ¢ X))

(B7) (VXY (Vi)Y Ve (VW) ({uoeow) ¢ Z e (uowor) € X))

AN AXIOM SYSTEM i

From axioms (BZ) (B4) and the extensionality principle. we obtain:
XYVYNHhZ)Vu)ne Z s ue X ANueY)

t- (\f/\’)(fl Z2)(Yu )(u cZsudX)

F VXN Z2) (V) € Z < (Fe)({u.v) € X))

These results justify the introduction of new function letters: n.  and <.

DEFINITIONS

Vu)ue XnY ucXAucy) (intersection of X and Y)
(Vu)uecX & ugX) (complement of X)
(Vu)(ue 2(X) < (Fo)((u.v) € X)) (domain of X))

Yoy = XnY (union of X and Y)
V==0 (universal class)’
X-Y=XnY (diffcrence of X and Y)
Exercises

4.9 Prove:

(@) F(Vu)(ue XuY S uecXvVuey)
(b) F (Vu)(ue V)
© FMVu)ueX —-Y<SueXAugy)
4.10 Prove:
() FXnY =YnX ) FXUV =V
(b) FXUY =YuXx (m)FXUY =XNY
) FXCYeXnY=X (n) FXNnY =XuY
(dFXCYeXuYr=Y () FX—-X=0
() FXnY)nZ=X~(YnZ) (p)FV-X=X
H FXuNuZ=Xu(Yuz) (@ FX-X-Y)=XnY

(@ FXnX=X n FYCX=2X-Y=X

(h) FXUX =X (s) FX=X

(i) FXnp=10 W F7V=90

() FXUB=X (u) FXN(YUuZ) = (XnY)u(XnZ)
Ky FXnV =X (V) FXu(YnZ) = (XuY)n(XuZz)

4.11 Prove the following wfs.
(a) B (YX)(3Z)(Vu) (Vo) ((u,0) € Z & (v,u) € X) [Hint: Apply axioms
(B5).(B7),(B6) and (B4) successively.]
(b) F(VX)(3Z)(Yu)(Vo)(Yw)({u,0,w) € Z & (u,w) € X) [Hint: Use
(BS) and (B7).]
() = (vX)(EZ)(Ve)(Wxr) .. () ((x1y e
[##int: Use (BS).]

Xy V)EZE (X1, ..., Xy €X)

"I will be shown bater that 17 s o proper class, that is, Fis not a set
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() 1 (VXA - (Ve ) (W) - (Y (e Xy e Uy) € 7
Sy v,) € X) [Hint: lteration of part (¢).}

(¢) I (VX)(IZ) (Vo). . (Ve ) (Wxy ) (W) (e X 1l U Xp)
€7 = (x),....x,) € X) [Hint: For m = 1. use (b), substituting
(... ,x, ) for wand x, for w; the general case then {ollows by
iteration.]

(O F (vX)Y3Z) (V) (Ve ). (Ve (- . X) € Z e xeX) [Hin:

Use (BS) and part (a).]

(g) F (VX)) (3Z) (¥x)) ... (Vx,) ({00 ) € Z < (3y) (o, cooxny)
€ X)) [Hint: In (B4), substitute {x,.....x,) for v and y for /]

(hy F (VX)(3Z)(Vu)(Vo)(Yw)({v,u,w) € Z < (u,w) € X) [Hint: Substi-
tute (u,w) for u in (B5) and apply (B6).]

(1) F(VX) (3Z) (Vo) ... (Vor) (Vi) (Yw) vy, . ek, w) € Z < (u,w)
€ X) [Hint: Substitute (vy,...,¢) for vin part (h)]

Now we can derive a general class existence theorem. By a predicative wf

we mean a wf o(X),....X,. Y,....Y,) whose variables occur among
Xy X, Yy, ..., Y,y and in which only set variables are quantified (i.e.. ¢

can be abbreviated in such a way that only set variables are quantified).

Examples
(Ax; )y € 1) as predicative, whereas (3Y,)(x; € ¥) is not predicative.

PROPOSITION 4.4 (CLASS EXISTENCE THEOREM)

Let o(X\,...,X,, Y1,...,Y,) be a predicative wf. Then
FAZ2)(Vx) ... (Vo) (X1, xn) EZ S @, eoxn Yo V).

Proof

We shall consider only wfs ¢ in which no wf of the form ¥; € W occurs, since
Y; € W can be replaced by (Ix)(x = ¥; A x € W), which is equivalent to (3x)
(Vz)(z € x & z € Vi) Ax € W]. Moreover, we may assume that ¢ contains
no wf of the form X € X, since this may be replaced by (3u)(v = X Au € X),
which is equivalent to (3u)[(Vz)(z € u & z € X) Au € X]. We shall proceed
now by induction on the number & of connectives and quantifiers in ¢
(written with restricted set variables).

Base: k=0. Then ¢ has the form x; € x; or x; €x; or x; € ;. where
1<i < j<n. For x; € x;, axiom (Bl) guarantees that there is some ¥ such
that (Vx;)(Vx;)((x;,x;) € Wi © x; € x;). For x; € x;, axiom (B1) implies that
there is some W5 such that (Vx;)(Vx;)({x;,x;) € W» & x; € x;) and then, by
Exercise 4.11(a), there is some W; such that (Vx,}(x,)({x,, x,) € Wi <> v, ¢ x,).
So. in both cases. there is some W such that (Va,)(Va,)({v,.v,) ¢ W <>
IR TR YD (RN Ym)). Then, by Lixercise 4.110) with B X', there is
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some Z; such that (Vx).. . (¥ ) (V) (W) ({x. .o Yo1.6.xp) € L1
¢ (x1,....x,. Y1..... Y,)). Hence. by Exercise 4.11(c) with Z; = X. there exists
Z> such that (¥x)). .. (Vo)) (Wxi0) o (V) (oo viy €Zr = el X,
Yi,....Y,)). Then. by Excrcise 4.11(d) with Z = X there exists Z such that
(Wxy) o () (e X)) EZ S oy v Yoo Y,))). In the remaining

case, x; € Y, the theorem follows by application of Exercise 4.11(1.d).

Induction step. Assume the theorem provable for all £ < r and assume
that ¢ has » connectives and quantifiers.

(1) ¢ is —y. By inductive hypothesis. there is some W such that
(Vx1) oo (V) (X)) €W S (X, .. Lo ST Y,)). Let Z = W.

(b) ¢ is = 9. By inductive hypothesis. there are classes Z; and Z; such
that (V). ..(Vx ) ((x), o x) €EZr (g oo ox, Yo Y,)) and (Vx;)

() xe)y € Zy S D, Y Y,)). Let Z = Z,nZs.

(€) ¢ is (¥x). By inductive hypothesis. there is some W such that
(V). (Vo ) (W) (ey e 0, X) CEWegix....x,. 0 Y o Y)) Apply
Exercise 4.11(g) with X =W to obtain a class 7 such that
(Vxy)e . (W) ({xys x,) € Zy <= (Ae) (g, NN ST Y,)) Now let

Z = Z,, noting that (Vx)y is equivalent to —(dx)—wp.

Examples

1. Let (X, Y, Y5) be (Fu)(Fv)(X = (u,) Aue Y, Avely). The only
quantifiers in ¢ involve set variables. Hence, by the class existence the-
orem, + (3Z)(Vx)(x € Z & (u)(3v)(x = (u,v) Auc Y AvE Ya)). By the

extensionality principle,
F(32)(vx)(x € Z & (3u)(A)(x = (u.v) Auec Yy Av e Ta),

So, we can introduce a new function letter x.

DEFINITION

(Cartesian product of Y) and 1)
(W) (x €Y x Ya & (Fu)( @) (x = () A\ue Y1 AvE 1))

DEFINITIONS
Y2 for¥xY

Y" forY"'xY when n > 2
Rel(x) for X € V?

+
i

(X 1s a relation)

1’2 is the class of all ordered pairs, and V" is the class of all ordered
n-tuples. In ordinary language, the word ‘relation’ indicates some kind of
connection between objects. For example, the parenthood relation holds

"More precisely, Rel(V) means that X as a hinary relation.
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between parents and their children. For our purposes. we interpret the

parenthood relation to be the class of all ordered pairs (w. v) such that v is a

parent of ¢

2. Let o(X.Y) be X C Y. By the class existence theorem and the cx-
tensionality principle, F (3 Z)(Vx)(x € Z < x C Y). Thus, there is a un-
ique class Z that has as its members all subsets of Y. Z is called the power
cluss of ¥ and is denoted .2(Y).

DEFINITION
(Wx)(xe 2(Y)=xCY)

3. Let (X, Y) be (3v)(X € vAv € 7Y)). By the class existence theorem and
the extensionality principle, + (3, Z2)(Vx)(x € Z < (Fv)(x € tA v CY)).

Thus. there is a unique class Z that contains all members of members of

Y. Z is called the sum class of Y and is denoted |J 7.

DEFINITION
(W) xelY e O)xerAvey))

4. Let o(X) be (Ju)(X = (v.u)). By the class existence theorem and the
exlensionality principle. there is a umque class Z such that (Vx)(x € Z
< (Ju)(x = (u,u))). Z is called the identity relation and is denoted /.

DEFINITION
(Wx)(x €1 < (Fu)(x = (u,u)))
COROLLARY 4.5

If o(X1,..., X 1,. .., ¥y) is a predicative wf, then
@YW C VAR (P (X X)) €W S o(xy, X Y Yo)))

Proof

By Proposition 4.4, there is some Z such that (Vxjy)...(Vx,)({x...... X )
€Ze @xi,...,x0, 1y, Ym)). Then W =ZnV" satisfies the corollary,
and the uniqueness follows from the extensionality principle.

DEFINITION
Given a predicative wf o(X,,... X, V... ., Y). let
{{x)...... el .. ... X Yoo Y,)} denote the class of all n-tuples

ST v, that satnsfy (... 6. Y. Yu): that s,

AN AXIOM SYSTEM

(V) (u e {{x)...... vlo(xyoo oo, Y Yul} &
(le ) ‘e (irn)(” - <.\’] e "-rll) A (P(»‘Al RN 'R YI ----- Ym)))

This definition s justificd by Corollary 4.5, In particular, when »n = 1.
B (Vu)(ue {xlo, Vo ) e e Y. Yu)).

Examples

i. Take ¢ to be {x.x)e€¥Y. Let Y be an  abbreviation for
{{x1.x2)|(x2,1) € Y}. Hence., ¥ C ¥7 A (V) (Ve ) ((v.xo) € ¥ & (x.x)
€ Y). Call Y the inverse relation of Y.

2. Take ¢ to be (Fv)({v.x) € ¥). Let £(Y) stand for {x[(1)({(r.x) € Y)}.
Then = (Vu)(u € Z(Y) < (Fe)({v.x) < Y)). A(Y) is called the range of Y.
Clearly, - 2(Y) = @(Y).

Notice that axioms (Bl) (B7) arc special cases ol the class existence
theorem, Proposition 4.4. Thus. instcad of the inlinite number of instances
of the axiom schema in Proposition 4.4, it sufficed to assume only a hnite
number of instances of that schema.

I.xercises

4.12 Prove:

() o =290
(b) {0} =0
© FUv=v

) - 2(V)=V

() FXCY=UXCUYA2X)C2(Y)

Hh +Uzx)=X

(8 FX C2(UX)

(h) F (XAY) x (WnZ) = (X x W) (Y X Z)

iy F(XUY)x (WuZ)= (X x W)u(X x Z)u(Y x W)n(Y x Z)

(j) F2XNY)=2(X)n2(Y)

(k) F 2(X)u2(Y) C 2(XUY)

(I) What simple condition on X and Y is equivalent to
PXOY) CPX)uP(Y)?

() Uror) = (U)oU)

) - UXAY) < (UX)nUY)

O FZ=Y=Z=YAV?

(p) F Rel(NAT =1

(@) F.2(0) = {0}

(1 2({0}) = {0.{0}}

(8) b (Vo)(Vn)x x v C2(2(x0y)))

()Y t Rel(Y) Y O s (Y)yx.#Y)
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Until now. although we can prove, using Proposition 4.4, the existence of
a greatl many classes, the existence of only a few sets, such as @, {#}, {0, {0} }.
and {{0}}, is known to us. To guarantee the existence of sets of greater
complexity, we require more axioms.

AXIOM U (SUM SET)

(V) (Fy)(Vu)(u € y < (Fe)(u e vArv €x))
This axiom asserts that the sum class | Jx of a set x is also a set, which we

shall call the sum ser of x, that is, F (Vx)M({Jx). The sum set | Jx is usually

referred to as the union of all the sets in the set x and is often denoted | J,., v.

Exercises

4.13 Prove:

(a) b (¥x}(Vy) U{r vl =xuy)
b) I (Vx (V)M rul)

F (v (ULx} = x)
(d) F (VX)) (Vy)( U(\\) = {x.y})

4.14 Define by induction {xi,....x,} to be {x;....,x, 1}u{x,}. Prove
B (Vxy) o () (Vu)(u € {x, .o ox, ) © u=xV...Vu=x,) Thus, for any
sets xy,...,x,, there is a set that has x,...,x, as its only members.

Another means of generating new sets from old is the formation of the set
of subsets of a given set.

AXIOM W (POWER SET)

(VX)@y)(Vu)u € y & u C x)
This axiom asserts that the power class 2(x) of a set x is itself a set, that is.
F (Vx)M(2(x)).
A much more general way to produce sets is the following axiom of
subsets.

AXIOM S (SUBSETS)

(VOUVY ) )V ¢ z<>uc xAuce Y)

w/V{N AXIOM SYSTEM o }
COROLLARY 4.6

(a) F (Yx)(VY)M(xnY) (The intersection ol a set and a class is a set.)
(b) F (Vx)(VY)(Y Cx = M(Y)) (A subclass of a set is a set.)
(¢) For any predicative wf 4(v), = (Vx)M{{vlv € x A 4(v)}).

Proof

(a) By axiom S, there is a set z such that (Vu)(uezes uexAuey),
which implies (Vu)(u € z < u € xnY). Thus. =z = x 'Y and. therefore,
xnY is a set.

(b)y If Y Cx, then xnY =Y and the result follows by part (a).

(¢) LetY ={yye x/\.%’(y)}‘. Since Y © x.part (b) implies that Y is a set.

Exercise

4.15 Prove:
(@ b (¥0)(M(7(x) A M(Ax))).

(b)y + (Vx)(Vyv)M(x x p). [Hint: Exercise 4.12(s).]

(c) FM(Z(Y)AM(A(Y)) ARel(Y) = M(Y). [ Hint: Exercise 4.12(1).]
(dy FPr(Y)AYCX = Pr(X).

On the basis of axiom S, we can show that the intersection of any non-
cmpty class of sets is a set.

DEFINITION
X for {y|(Vx){(x € X = y € x)} (intersection)

PROPOSITION 4.7

) F(Wx)xeX=NXCx)
(by FX #0=M(X)
(©) FOB=V

Proof

() Assumc u € X. Consider any y in [ X. Then (Vx)(x € X = vy € x).
Hence, y € u. Thus, (X C u.

(by Assume X # 0. Let x € X. By part (a), ()X C x. Hence, by Corollary
4.6(b). N X is a sct.

"More precisely, the wt' Y ¢ X A #(Y) is predicative, so that the class existence
theorem yields a class {vpyr ¢ XA #(v) ). In our case, X s a set v,
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(€) Since b (Vajx ¢ 0). = (Vy)(Vx)}(x € § = v € x). from which we obtain
[ (Ve)(v e (0). From F (Vy)(y € ¥) and the extensionality principle,
FOeoov.

Ixercise

4.16 Prove:
(@) F({xovh =xny

(b) F{x} =x
€ FXCY=NYCNX

A stronger axiom than axiom S will be necessary for the full development
of set theory. First, a few definitions are convenient.

DEFINITIONS

Fne(X)  for  Rel(X)A (Vx)(Vp)(Vz}({(x.)) €EX Alx,2) € X = y =2)
(X is a function)

XY —Z for Fnc(X)AU(X)=YANAX)CZ (X isa function from Y into Z)
Y. N lor XY x ¥) (restriction of X 1o the domain Y)
oo (X)) Tor Fnce(XN) AFne(X) (X s aone  one function)
XY = {: i (Yu((Yu)eX & u- 2)

¥ otherwise
XY = A(Y[X)

If there is a unique z such that (y,z) € X, then z = X‘y; otherwise,
X'y =0.If X is a function and y is a set in its domain, X‘y is the value of the
function applied to y. If X is a function, XY is the range of X restricted to
Y.t

Exercise

4.17 Prove:

(@) FFnc(X)Aye 2(X) = (V2)(X'y =z & (y,2) €X)

(b) FFnc(X)AY C 2(X) = Fnc(Y[X)ANZ(YIX)=YA (W) (yeV =
Xy =(Y[X)y)

(©) FFnc(X)= [Fnc,(X) & (Wy)(V2)(y € 2 X)Az€ Z(X)Ay#z=
X'y # X'z)]

(d) FFnc(X)AY C 9(X) = (V2)(z € XY & (3)(y € Y AX'y = 2))

_ "In traditional set-theoretic notation, if £ is a function and yisinits domain, Fy
Is written as F(v), and if ¥ is included in the domain of /7, F*Y is sometimes written
as MY

AN AXIOM SYSTEM

AX1IOM R (REPLACEMENT)

Fne(Y) = (Vx)(Fv)(Vu){u € y < (Fr)((vou) € Y Ar € x))

Axiom R asserts that, if Y is a function and x is a set, then the class of second
components of ordered pairs in ¥ whose first components are in x is a set
(or. equivalently. A(x[Y) is a sct).

Exercises

4.18 Show that. in the presence of the other axioms, the replacement axiom
(R) implies the axiom of subscts (S).

4.19 Prove F Fnc(Y) = (Vx)M(Yx)).

4.20 Show that axiom R is equivalent to the wi

Fnc(Y) AM(Z(Y)) = M(2(Y)).

4.21 Show that, in the presence of all axioms except R and S. axiom R is
equivalent to the conjunction of axiom S and the wf

Fney (Y) AM(%(Y)) = M(2(Y)).

To ensure the existence of an infinite set, we add the following axiom.

AXIOM I (AXIOM OF INFINITY)

(Ax)(B € x A (Vu)(u € x = uofu} € x))

Axiom I states that there is a set x that contains {) and such that, whenever a
set « belongs to x, then v U {u} also belongs to x. Hence, for such a set x,
{0} ex, {0,{0}} €x, {0,{0},{0,{0}}} € x, and so on. If we let | stand for
{0}. 2 for {@,1}, 3 for {0,1,2},...,nfor {0,1,2,...,n — 1}, etc., then, for
all ordinary integers n >0, n€x, and 0 A1, 0 #2, 1 #2, 0 #£3, | #3,
243,

Exercise

4.22 (a) Prove that any wf that implies (X)M(X) would, together with
axiom S, imply axiom N.
(b) Show that axiom I is equivalent to the following sentence (/*):

(W) (v ex A (Yu)(u g y)) A (Vu)(u € x = uo{u} €x))

Then prove that (7°) implies axiom N, (Hence, if we assumed (/*) instead of
(h. axiom N would become supertluous.)
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This completes the list of axioms of NBG. and we see that NBG has only a
finite number of axioms  namely. axiom T. axiom P (pairing). axiom N
(null sct). axiom U (sum set), axiom W (power sct). axiom S (subsets). axiom
R (veplacement), axiom I (infinity). and the scven class existence axioms
(Bl) (B7). We have also seen that axiom S is provable from the other

axioms: it has been included here because it is of interest in the study of

certain weaker subtheories of NBG.

Let us verily now that the usual argument for Russell’s paradox does not
hold in NBG. By the class existence theorem, there is a class ¥ = {xv|x & x}.
Then (Vx)(x € ¥ < x¢x). In unabbreviated notation this becomes
VX)M(X)= (X €Y< X¢X)). Assume M(Y). Then YeY o Y¢EY,
which, by the tautology (4 < —4) = (A A —d), yields Y € Y A Y ¢ Y. Hence,
by the derived rule of proof by contradiction, we obtain F =M (Y). Thus, in
NBG, the argument for Russell’s paradox merely shows that Russell’s class
Y is a proper class, not a set. NBG will avoid the paradoxes of Cantor and
Burali-Forti in a similar way.

Exercise

4.23 Prove b -M(V), that s, the universal class Vs not a set. [Hint: Apply
Corollary 4.6(b) with Russcll’s class Y]

4.2 ORDINAL NUMBERS

Let us first define some familiar notions concerning relations.

DEFINITIONS
X Irr Y for Rel(X) A (Wy)(y €Y = (y,y)EX)
(X is an irreflexive relation on Y)
X Tr Y for Rel(X) A (Vu)(Vo)(Vw)(ue Y Ave Y Awe YA
(u,v) €X AN {v,w) € X] = (u,w) € X)
(X is a transitive relation on Y)
X Part Y for (X Irr Y)A(X Tr Y) (X partially orders Y)
X Con Y for Rel(X) A (Yu)(Vo)(lue YAveE Y Au#v] =
{u,v) € X V (v,u) € X)
(X is a connected relation on Y)
X Tot Y for (X Irr Y)A (X Tr Y A(X Con Y) (X totally orders Y)
X We ¥ for (X Irt Y)A(VZ)([ZC YAZAW » (W)(re Z A
(Ve e e ZAv /oy > (vr) e YA ¢ X))

ORDINAL NUMBERS ‘

(X well-orders Y. that is. the relation X is irreflexive on ¥ and cvery non-
empty subclass of ¥ has a least element with respect to X)

Exercises

424 Prove - X We Y = X Tot Y. [Hint: To show X Con Y. letx € ¥ Ay
€ Y Ax # v. Then {x. v} has a least element. say x. Then (x.v) € X. To show
X TrY,assumex € YAyeYAzeE Y A(x.v)e XA (p.z) € X.Then {x,y.z}
has a least element, which must be x.]

4.25 Prove FX We YAZCY = X We Z.

Examples (rom intuitive set theory)

1. The relation < on the set P of positive integers well-orders P

2. The relation < on the set of all integers totally orders. but does not well-
order, this set. The set has no least element.

3. The relation C on the set W of all subsets of the sct of integers partially
orders W but does not totally order W. For example, {1} ¢ {2} and
{2} ¢ {1}.

DEFINITION

Simp(Z, W), Wy) for

(Av1)(3%2)(37)(3r2)(Rel(r1) A Rel(r2) AWy = (r1,x)) A W = (r.x2)

AFne (Z)ANZ(Z)=x1 ANR(Z) =x2 A(Vu)(Wo)(u € Xy Av € x) =

({lu.v) € ry & (Z'u, Z'v) € r2)))

(7 is a similarity mapping of the relation r on x; onto the relation 72 on xz.)

DEFINITION
Sim(W;, W5) for (3z)Simp(z, Wi, W»)
(W, and W, are similar ordered structures)
Fxample

l.ct 7, be the less-than relation < on the set 4 of non-negative integers
{0.1.2,...}, and let r, be the less-than relation < on the set B of positive

N ey

ntegers {1,2,3,...}. Let z be the set of all ordered pairs (x,x + 1) forx € 4.
I'hen z is a similarity mapping of (r,4) onto (2, B).

DEFINITION
Xy oXa for { (. 0)|()({u,z) € Xa Azor) € X))}

(the composition of X2 and X))

241
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Exercises

4.26 Prove:

(a) FSimp(Z.X.Y)= M(Z)AM(X)AM(Y)

(by © Simp(Z.X.Y) = Simp(Z.Y.X)

4.27

(1) Prove: - Rel(X)) A Rel(Xy) = Rel(X| o X)

(b) Let X and X; be the parent and brother relations on the set of human
beings. What are the relations X; o X, and X o0 X»?

(¢) Prove: + Fne(X)) A Fne(Xs) = Fne(X) o X3)

(d) Prove: F Fnc (X)) A Fne (X)) = Fne (X o X»)

(¢) ProveeH(Xj:Z—-WAXy:Y =2Z)=Xj0Xy:Y =W

DEFINITIONS

FId(X) for Z(X)UZ(X) (the field of X)
TOR(X) for Rel(X) A (X Tol (FId&(X))) (X is a total order)
WOR(X) for Rel(X) A (X We (FId(Y))) (X is a well — ordering relation)

Exercise
4.28 Prove:

(a) b Sim(W), Wy) = Sim(Ws, W)

(b) + Sim(W,. Wa) A Sim(Ws, W3) = Sim(W, W)

(© F Sim((X,FId(X)), (Y, Fld(Y))) = (TOR(X) ¢ TOR(Y)) A (WOR(X)
< WOR(Y))

If x is a total order, then the class of all total orders similar to x is called
the order type of x. We are especially interested in the order types of well-
ordering relations, but, since it turns out that all order types are proper
classes (except the order type {0} of 0), it will be convenient to find a class W
of well-ordered structures such that every well-ordering is similar to a un-
ique member of W. This leads us to the study of ordinal numbers.

DEFINITIONS

E for {{x,y)|x € y} (the membership relation)

Trans(X) for (Vu)(u € X = u C X)

Secty (X, Z) for
ZCXANM)VeNue XAve ZA(wr)y o Y] »uc 7)
(Z1s a Y-section of X, that is, Z1s o snbcelass of A and every

(X is transitive)

()RDINAL NU \ABFRS ‘

member of X that Y-precedes a member of Z is also a
member of Z.)

Segy(X. W) for {xlx € X A {(x. W} € Y}(the Y-segment of X determined
by W, that is, the class of all members of X" that Y-precede W)

Exercises

4.29 Prove:

(a) F Trans(X) & (Vu)(Vo) (e

(by FTrans(X) & JX CX

(¢) F Trans(
({0}
(

(d) b Trans({

(¢) F Trans(X) A Trans(Y) =
() = Trans(X) = Trans(|JX)
() B (Vu)(u e X) = Trans(u)) = Trans(|JX)

4.30 Prove:

(@) F (Vu)[Segp(X.u) = X nu A M(Segp (X, u)))

(b) F Trans(X) < (Vu)(u € X = Segg(X.u) = u)

(c) B EWeXASectp(X.Z)ANZ #£X = (Fu)(u € X NZ = Segp(X, u))

CuNueX = reX)
X)
0)
0

Trans(YuY) ATrans(XnY)

DEFINITIONS

Ord(X) for E We X ATrans(X) (X is an ordinal class if and
only if the ¢ -relation well-orders X and any member
of X is a subset of X)

On for {x]Ord(x)} (The class of ordinal numbers)

lhus, F (Vx)(x € On < Ord(x)). An ordinal class that is a set is called an
ordinal number, and Or is the class of all ordinal numbers. Notice that a wf
v« On is equivalent to a predicative wf — namely, the conjunction of the
tollowing wfs:

) (Yu)(u € x = ué u)
b (Vi) uCxAu#0= () veur(VwweuAw#v=vEWA
wv)))

() (Vu)(u€ex=ulx)

( I'he conjunction of (a) and (b) is equivalent to E We x, and (c¢) is Trans(x).)
In addition, any wf On €Y can be replaced by the wf (Iy)(y € YA
)z ¢ v ez € On)). Hence, any wf that is predicative except for the
presence of *On' is equivalent to a predicative wf and therefore can be used
in connection with the class existence theorem.

243
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Exercise

431 Prove: (ay b e On. (b) 1 € On, where | stands for {0},

We shall use lower-case Greek letters a. ff.7. 0. t.. .. as restricted variables
for ordinal numbers. Thus, (Vx)4(«) stands for (Vx)(x € On = 4(x)), and
(47).4(2) stands lor (3x)(x € On A A(x)).

PROPOSITION 4.8

(a) FOrd(X) = (X¢EX ANVu)(u € X = udu))

(b) FOrd(X)AY C X ATrans(Y) =Y eX

(¢) FOrd(X)AOrd(Y)= (Y CX &Y eX)

(d) FOrd(X)AOrd(Y)=[(XeYVX=YVYeX)A(XecYAY€X)
A(X €YVX=Y)

(e) FOrd(X)AY eX =Y €&On

() +=E We On

() F Ord(On)

(hy  M(On)

(n FOord(X) -+ X OnvX<On

() FyC OnATrans(yv) 5 v e On

(k) FxeOnAyveOn= (xCyVvyCux)

Proof

(@) If Ord(X), then E is irreflexive on X; so, (Vu)(u € X = ué¢ u): and, if
XeX, X¢X. Hence, X ¢ X.

(b) Assume Ord(X) A Y C X A Trans(Y). It is easy to see that Y is a proper
E-section of X. Hence, by Exercise 4.30(b,c), Y € X.

(c) Assume Ord(X) AOrd(Y). If Y € X, then ¥ C X, since X is transitive;
but ¥ # X by (a); so, Y C X. Conversely, if ¥ C X, then, since Y is
transitive, we have Y € X by (b).

(d) Assume Ord(X)AOrd(Y)AX # Y. Now, XnY CX and XnY CY.
Since X and Y are transitive, so1s XNY. If XnY C X and XnY C Y.
then, by (b), XnY € X and XnY € Y; hence, XnY € XnY, contra-
dicting the irreflexivity of E on X. Hence, either XnY =X or
XnY =Y;thatis, X CYorY C X.ButX # Y. Hence,by(c), X € Yor
Y€ X.Also,if X € Yand Y € X, then, by (c), X C Yand Y C X, which
is impossible. Clearly, X € Y A X =Y is impossible, by (a).

(e) Assume Ord(X) A Y € X. We must show E We Y and Trans(Y). Since
Y € X and Trans(X), ¥ C X. Hence. since E We X, E We Y. Morcover,
it we Y and v € u, then, by Trans(X), v ¢ X, Since E Con X and
YeXAvre X, thenrcYVe-YVYore Ifather e Y oor Yo,

ORDINAL NUMBERS

then, since E Tr X and v € Y Av € u. we would have v € u, contra-
dicting (a). Hence v € Y. So. il we V. then « € Y. that is, Trans(Y).

(N By (a). E Irr On. Now assume X € On A X # (. Let 2 € X. If % is the
least element of X. we arc done. (By least element of X we mean an
element ¢ in X" such that (Vu)(u € X Au# v = v €u).) If not. then E
We x and X # 0 let f§ be the least element of X~ a. It is obvious,
using (d). that f#is the least element of X.

(g) We must show E We On and Trans(On). The first part is (). For the
second. if w € On and v € u, then, by (¢), r € On. Hence, Trans(On).

th)y If M(On). then, by (g), On € On, contradicting (a).

(1) Assume Ord(X). Then X C On. Il X # On. then, by (¢), X € On.

(j))  Substitute On for X and v for Y in (b). By (h), v C On.

(k) Use parts (d) and (¢).

We sce from Proposition 4.8(1) that the only ordinal class that is not an
ordinal number is the class On itself.

DEFINITIONS

vagvforve OnAyeOnAxey

v forve OnA(x =y Vax <, )

I'hus, for ordinals. <, is the same as € so, <, well-orders On. In particular,
lrom Proposition 4.8(e) we see that any ordinal x is equal to the set of
staller ordinals.

PROPOSITION 4.9 (TRANSFINITE INDUCTION)

FB|(Va)oa e f=acX)=peX]|=>0nCX

(If_ for every f5. whenever all ordinals less than f are in X, f must also be in
\". then all ordinals are in X.)

Proof

Assume (V) [(Va)(x € f = a € X) = ff € X]. Assume there is an ordinal in
On Y. Then, since On is well-ordered by E, there is a least ordinal § in
On X. Hence, all ordinals less than f§ are in X. So, by hypothesis, fisin X,
which s a contradiction.

Proposition 4.9 is used to prove that all ordinals have a given property
Ax). We let X {x[4(x) Ax € On} and show that (VB)|(Va)(x e i =
A x)) = A
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DEFINITION

X for vy}

PROPOSITION 4.10

(1) b (Vx)(x € On & X' € On)
(by = (V) () (o <o B <o &)
€y F V)P = = a=p)

Proof

(a) x € x'. Hence, if X' € On, then x € On by Proposition 4.8(¢). Conversely,
assume x € On. We must prove E We (xu{x}) and Trans(xu{x}). Since
EWexandx ¢ x, E Irr (xu{x}). Also, if y # 0 A v C xu{x}, then either
r = {x}, in which case the least element of y is x. or y nx # ) and the
least element of y nx is then the least element of y. Hence, E We
(xu{x}). In addition, if vexu{x} and €y then u € x. Thus,
Trans(xu{x}).

(by Assumecx <, ff<, 2. Then.a € fAff€ o Sinceac . f¢gaand f#a
by Proposition 4.8(d). contradicting f§ € .

(¢) Assumc o' = ff'. Then ff <, « and. by part (b), i <.

Similarly, 2 <,ff. Hence, a = f8.

Exercise

4.32 Prove: - (Va)(o C o)

DEFINITIONS

Suc(X) for X € On A (o) (X = &) (X is a successor ordinal)

K, for {x|x = @ Vv Suc(x)} (the class of ordinals of the first kind)

 for {x|x € K| AVu)(u € x = u € K;)} (w is the class of all ordinals « of the first
kind such that all ordinals smaller
than « are also of the first kind)

Example
FOewAlew. (Recall that 1 = {0}.)

PROPOSITION 4.11

(a) F(V)(a€em e o €w)
(b) t M(w)

 ORDINAL NUMBERS
() FDeXAVuyueX=udcX)=>ulX
(dy F(va)(x€emAf <s2= € w

Proof

(a) Assume x € . Since Suc(x'), o' € K|. Also. if fc o, then fc 2 or
[ =« Hence, f € K. Thus. o' € o. Conversely, if «” € @, then. since
a2 €2 and (VB)(f € o = f € o). it follows that x € .

(b) By the axiom of infinity (I), therc is u sct x such that ¥ € x and
(Vu)(u € x = 1/ € x). We shall prove ¢ ¢ x. Assume not. Let « be the
least ordinal in w — x. Clearly. « # 0. since ¥ < x. Hence, Suc(a). So.
(3B)(x = ). Let & be an ordinal such that v o' Then & <, 2 and. by
part (a). & € w. Therefore, 8 € x. Hence, o ¢ x. But « - o', Therefore.
o € x, which yields a contradiction. Thus, ¢ ¢ x. So. M(m) by Corol-
lary 4.6(b).

(¢) This is proved by a procedure similar to that used for part (b).

(d) This is left as an exercise.

The elements of « are called finite ordinals. We shall use the standard
notation: 1 for . 2 for ', 3 for 2. and so on. Thus,

Nemlem2ewdewm,...

The non-zero ordinals that are not successor ordinals are called
limit ordinals.

DEFINITION

Lim(x) forx € OnAnx ¢ K|

kxercise

4.33 Prove:
() b Lim(w)
(hy b (Vo) (VB (Lim{a) A B <o 0 = B <o ).

PROPOSITION 4.12

b () (x COn=[Ux € OnA(Va)(a € x = a<, Jx) A (VB)((Va)
(x € x = a<,f) = Ux<op)]). (Ifx is a set of ordinals, then {Jx is an
ordinal that is the least upper bound of x.)
thy £ (Vv C OnAx#DAVa)(eex= (3B Exna <, f))]
» Lim(UJx)). (If x is a non-empty set of ordinals without a maximum,
then {J v s a limit ordinal.)

247 |
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Proof

(1) Assume x € On. [Jx. as a set of ordinals, is well-ordered by E. Also. if

e |JxAp e then there is some 7 with y €x and « € 7. Then
f e xna€y: since every ordinal is transitive, € 7. So. ffeUx.
Hence. (Jx is transitive and, therefore, [Jx € On. In addition, if « € x,
then « C [Jx: so, 2<,Jx, by Proposition 4.8(c). Assume now that
(Va) (o € x = 2<,f8). Clearly. if 6 € [Jx, then there is some 7 such that
3 €7 Ay € x. Hence, y<,off and so, 3 <, fi. Therefore, | Jx C ff and, by
Proposition 4.8(c), Jx<,f.

(b) Assume x C OnAx#PANVa)w € x = (AR)(Fexna <, ). If Jx =0,
then o € x implies & = #. So. x =@ or x = 1, which contradicts our
assumption. Hence, | Jx # . Assume Suc(| Jx). Then | Jx =y for some
v. By part (a), | Jx is a least upper bound of x. Therefore, y is not an
upper bound of x; there is some J in x with 7 <, J. But then ¢ =[x,
since | Jx is an upper bound of x. Thus, |Jx is « maximum element of x,
contradicting our hypothesis. Hence, —Suc(|Jx), and Lim(|Jx) is the
only possibility left.

Exercise

4.34 Prove:
(a) F (Va)([Suc(x) = (U=) = 2 A [Lim(z) = Ja = 2]).
(b) If 0 £ x C On, then (x is the least ordinal in x.

We can now state and prove another form of transfinite induction.

PROPOSITION 4.13 (TRANSFINITE INDUCTION: SECOND FORM)

(@ F[@eXAVa)reX=d € X)A (Va)(Lim(a) A(VS)(S <o a=f €X)
=aeX)=0nCX.

(b) (Induction upto )+ [0 € X A (Va)(a <o 6N EX
= o €X)A (Va)(a <o 0 A Lim(a) AVB)(f <o
=>peX)=aeX)=>0CKX.

(¢) (Induction up tow.)FPe XANa)(a <o whaeX =>d €X)=>wC X,

Proof

(a) Assume the antecedent. Let ¥ = {x|x € On A (Va)(a<ox = a € X)}. It
is easy to prove that (Va)(x <,y = a € Y)= 7y € Y. Hence. by Pro-
position 4.9, On C Y. But ¥ C X. Hence, On C X.

(b) The proof is left as an exercise.

(¢) This is a special case of part (b), noting that b (Vx)(x -, m >

Lim(x)).

Set theory depends hcavily upon definitions by transtinite induction,
which are justified by the tollowing theorem.

PROPOSITION 4.14

(@) F (VX)) Y)Fnc(Y)AZ(Y)=O0nA (Vo) (Yia =X (x[ Y))). (Given X,
there is a unique function Y defined on all ordinals such that the valuc
of ¥ at « is the value of X applied to the restriction of ¥ to the set of
ordinals less than «.)

(b) F (Vx)(VX) (VX)) (3 Y)(Fnc(Y)A A(Y) =O0n A YD =x ANV (Y(d) =
Xi4(Y'a)) A (Vo) (Lim(a) = YVia = Xa(xY))).

(¢) (Induction up to 0.) F (Vx)(VX YY) (I YHEnC(YYA S(Y) =AY =
xAVa)(of <o 0= YV (&) =X (V) AV (Lim(z)Ax g = Vi =
Xo (alY))).

Proof

(a) Let Y, = {ulFnc(u) A 7(u) € On A (Vo) (2 &€ ¥ (u) = wa =X (x[u))}.
Now, if wy € Y, and w, € ¥y, then u; Cu» or uy Cuy. In fact, let
71 = %(uy) and y; = “(u2). Either y; <oy, o1 75 <o7ys say, 7 <oy, Let
w be the set of ordinals « <, 7, such that u;x  uy'x; assume w # @ and
let i be the least ordinal in w. Then for all f <, n. u;*fi = u>'f3. Hence,
wo=nlu. Bul wy'n=X0mlw) and wrn=X(n.u):. and so.
u1‘n = uy'n, contradicting our assumption. Therefore, w = §); that is, for
all e<oyy, w1'e = wy'e. Hence, uy = 7, luy = 7,[uy C uy. Thus, any two
functions in Y} agree in their common domain. Let ¥ = | ¥;. We leave
it as an exercise to prove that Y is a function, the domain of which is
cither an ordinal or the class On, and (Va)(ax € %(Y)= Y'a = X(a[Y)).
That %(Y) = On follows easily from the observation that, if %(Y) =6
and if we let W =YuU{{3,X'Y)}, then WY, so, WCY and
o € #(Y) = o, which contradicts the fact that § ¢ . The uniqueness of
Y follows by a simple transfinite induction (Proposition 4.9).

‘The proof of part (b) is similar to that of (a), and part (c) follows from (b).
Using Proposition 4.14, one can introduce new function letters by
transfinite induction.

Fxamples
I Ordinal addition. In Proposition 4.14(b), take

v N {Geor ) o A o) U Au))

RN
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Hence, for cach ordinal f3, there is a unique function Yy such that
Y/;‘V) /)’/\ (‘V’D()(Y/;'(&I) = (Y/;'I)I AN lLill](X) = Y/;'d = U( Y/;"I)])

Henee there is a unique biary function +, with domain (On)” such that. for
any ordinals 8 and 3. +,(f8.7) = Yy'y. As usual. we write f§ +, 7 instead of
+.(f.7). Notice that:

Btod =14
ﬂ +o (}'l) - (/f +o ).),
Lim(x) = f+ex = [ J(B+o 1)
In particular,

ﬂ +ol = l{ +o (W) = (ﬂ +o (0)( = /‘I

2. Ordinal multiplication. In Proposition 4.14(b), take
w0 X = (e =u o B Xo = {(un)|o = A))

Then, as in Example 1. one obtains a function ff x,, 3 with the properties
fxad 0
Bxo ) =B xor)+tof
Liln(a) = /; KXo o = U (ﬁ Xo T)

Tl

Exercises

435 Prove: b xo |l =fABXe2=f40f.
4.36 Justify the following definition of ordinal exponentiation.!

exp(f,0) =1
exp(B,7) = exp(B,7) Xo
Lim(a) = exp(,0) = | exp(B,7)
P<at<on

For any class X, let Ex be the membership relation restricted to X; that is,
Ex ={(u,v)jluevrnucXAveX}.

"We use the notation exp(f8. 1) instead of fi% in order to avoid contusion with the
notation X' to be introduced later.

ORDINAL NUMBERS

PROPOSITION 4.15’

Let R be a well-ordering relation on a class Y that is, R We Y. Let F be a
function from Y into ¥ such that, for any & and ¢ in Y. if (u.¢) € R, then
(Fru.Frry € R.Then. for all win Y, u = Fu or (u. F'u) ¢ R.

Proof

Let X = {u|(F'u,u) € R}. We wish to show that X = ). Assume X # (). Since
X C Y and R well-orders Y. there is an R-least clement uy of X. Hence,
(Fuo,up) € R. Therefore (F(Fup), Frup) ¢ R. Thus, Fruy € X, but Fiuy is
R-smaller than wug, contradicting the delinition of .

COROLLARY 4.16

If Y is a class of ordinals, F: Y — Y. and F is increasing on Y (that is.
1EYANBEYANa<, = Fa<,Ff), then a<,F‘a for all « in Y.

Proof

In Proposition 4.15, let R be Ey. Note that Ey well-orders Y. by Proposition
4.8(f) and Exercise 4.25.

COROLLARY 4.17

Letx <, Band y C a; that s, let y be a subset of a segment of . Then (Ep, B)
is not similar to (E,. y).

Proof

Assume (Eg, f§) is similar to (E,, y). Then there is a function / from f onto y
such that, forany uand vin f,u <, v & f‘u <, f*v. Since the range of / is y,
/*x ¢ v. But y C o. Hence f‘a <, o. But, by Corollary 4.16, « <,f*«, which
viclds a contradiction.

"From this point on. we shall express many theorems of NBG in English by
using the corresponding informal English translations. This is done to avoid writing
fengthy wis that are diflicult to decipher and only in cases where the reader should be
able to produce from the Enghsh version the precise wi of NBG.
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COROLILARY 4.18

() For x # f. (k. 2) and (Egz f) are not similar.
(b) Forany . if / is a similarity mapping of (E,.2) with (E,, «), then f"is
the identity mapping. that is. /*f = ff for all f# <, «

Proof

(a) Since o # f3, it follows by Propo%ilion 4.8(d.c) that one of x and ffis a
segment of the other; say. « is a segment of 3. Then Corollary 4.17 tells
us that (Eg. f8) is not similar to (E,.x).

(b) By Corollary 4.10, [*B=op for all <, o But, noting by Exercise
4.26(b) that f is a similarity mapping of (E « 2y with (E,. o), we again
use Corollary 4.16 to conclude that (f)'f=.p for all f <, o Hence
B =)/ P)=of B=of and. therefore, [f = f.

PROPOSITION 4.19

Assume that a non-empty set i is the ficld of a well-ordering r. Then there is
a unique ordinal 7 and a unique similarity mapping of (E., ) with (r,u).

Proof

Let F = {(v,w)weE€u—-vA(Vz)(z€u—v= (z,w)¢r)}. F is a function
such that, if v is a subset of w and u — v # 0, then F*v is the r-least element of
u—v. Let X = {{v,w)|(#(v),w) € F}. Now we use a definition by transfinite
induction (Proposition 4.14) to obtain a function ¥ with On as its domain
such that (Ya)(Y'a=X‘(x[Y)). Let W= {aY*a Curu—Y a0}
Clearly, if x € W and 8 € «, then § € W. Hence, either W = On or W is some
ordinal y. (If W # On, let y be the least ordinal in On — W.) If « € W, then
Yo = X(a[Y) is the r-least element of u-Y*a; so, Yo € u and, if f € a,
Yia # Y'B. Thus, Y is a one—one function on W and the range of Y restricted
to W is a subset of u. Now, let A= (W[Y) and / = h; that is, let f be the
inverse of Y restricted to W. So, by the replacement axiom (R), /¥ is a set.
Hence, W is some ordinal y. Let g = y[ Y. Then g is a one—one function with
domain y and range a subset 1| of u. We must show that u; = u and that, if o
and f are in y and f§ <, a, then (g‘B,g‘a) € r. Assume « and f§ are in y and
B <o o. Then g“B C g“a and, since g‘a € u — g*o,g'a € u — g f. But ¢'f8 s
the r-least element of u — g**f. Hence, (¢*f8, ¢'at) € r. It remains to prove that
uy = u. Now, u; = Yy, Assume u — uy # 0. Then 3 € W. But W - 3. which
yiclds a contradiction, Hence, 1 = ;. That 3 is unique follows from Cor-
ollary 4.18(a).

EQUINU MER()SITY FINITE /\ND DF\JL MFR/\BLE SETS

Exercise

4.37 Show that the conclusion of Proposition 4.19 also holds when u = ()
and that the unique ordinal 7 is, in that case. §.

PROPOSITION 4.20

Let R be a well-ordering of a proper class X such that. for each y € X the
class of all R-predecessors of y in X (i.c., the R-scgment in X determined by
v)is a set. Then R is ‘similar’ to £,: that is, there is a (unique) one one
mapping H of On onto X such that « ¢ ff <> (', H'f§) € R.

Proof

Proceed as in the proof of Proposition 4.19. Here, however, W = On: also,

one proves that A(Y) = X by using the hypothesis that every R-segment of

Xisaset. (IFX — #(Y) # 0. then, il w is the R-least element of X — 2(Y),
the proper class On is the range of ¥, while the domain of ¥ is the R-segment
ol X determined by w, contradicting the replacement axiom.)

Exercise

4.38 Show that, if X is a proper class of ordinal numbers, then there is a
unique one-one mapping H of On onto X such that x € f§ & Hx € H*f3.

4.3 EQUINUMEROSITY. FINITE AND DENUMERABLE SETS

We say that two classes X and Y are equinumerous if and only if there is a
one one function F with domain X and range Y. We shall denote this by
[Nl &

DEFINITIONS
XY for Fne (F) A 9(F) = X A RAF)=7Y
X Y for (EF)(X%Y)

Notice that b (Y )(Ve)(x >3

(that is, is cquivalent to a wi using only set quantifiers).

¢ (Fz)(x=y)). Hence, a wf x = v is predicative

253
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Clearly. il X 2 Y. then ¥ 2 X. wherc G = F. Also. if X ;_¥ Y and Y ;:“7
- F G ol "
then X 7. where H is the composition > o Fj. Hence. we have the fol-
1

lowing result.

PROPOSITION 4.21

(0) FXA =X
by FXx2Y=VYx=X
() PX2YAYX2Z X227

1R

PROPOSITION 4.22

(a) P XXYANZE2WAXANZ=BDAYAW =)= XuZ>=YW
by (X 2YANZ2W)= X xZ=2Y X W

(€ FXx{y}=x

(d) FXxY=YxX

(&) HX XxY)xZ=Xx(YxZ)

Proof
(a) Let X @Y and Z = W. Then XuZ % YUW. where H = FuUG.
2 G

(b) Let X% Y and Z%: W. Let
H ={(u0)|(F)Cy)(x e XAy eZAu={xy)Nv=(FxG)))}
ThenXxZ%’ Y x W.

() Let F= {{u,v)|u e X Av=(u,y)}. Then X%Xx{y}.

(d) Let F={(u,v)|(Ix)Fy)(xe XAy Y Au={x,y) Av={(y,x))}.
Then X x Y%Y x X.

(e) Let F={{u,v)](3)3By)F)xeXAyeYANze€ZNu={{x,y),z) Av

= {x,(y,2)))}. Then (X x ¥) x Z % X x (Y x Z).
DEFINITION

XY for {uu: ¥ — X}
X7 is the class of all sets that are functions from Y into X.

EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 1 |

Exercises
Prove the following.

4.39 F(VX)(VY)(EX)EN)(X 2 X, AY 2 Y AX AY, =)
4.40 F .#(v) = 2" (Recall that 2 = {}. 1} and | = {#}.)
441 (@) F-M(Y)=x"=9

(b) B (Vx)(Vy)M(x")

(@) F X" =1

(b) F1¥ |

©FY#£0=0" =0

FX o xin

FX2YANZ2W = x4 yW

FXAY =0 = 2% =78 x 70

B (V) (V) (Vz) [(x")" = o]

F X x¥) = X7y’

F (Vx)(VR)(R We x = (dx)(x > «))

4.42

4.43
4.44
4.45
4.46
4.47
4.48

We can define a partial order =< on classes such that, intuitively, X<V iff
and only if ¥ has at least as many elements as X.

DEFINITIONS

NV for (ZNZCYAX =2)

(X is equinumerous with a subclass of Y)
N <Y flor XY A (X 27Y)

(Y is strictly greater in size than X)

F.xercises

Prove the following.

449 FXSY o (X <YVXxY)

450 F XY A-MX) = -M(Y)

451 XY A(FZ)(Z We Y) = (32)(Z We X)

4.52 b (Va)(VB)(a<< BV <) [Hint: Proposition 4.8(k).]

PROPOSITION 4.23

()
{h) |
() ¢
th

X=X A-(X < X)
XCVY =Xy
X<SYAY<Z » X<Z

N=YAY=X »X~Y (Bernstein's theorem)
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Proof

(a). (b) These proofs ure obvious.
(¢) Assume \”N)’ AYT CYA Y"Zl N7 C

Fand G. Thm A(H) C 7/\ \’N/?(H) So. X <Z.

(d) There are many proofs of lhls nonlrivial thecorem. The following one
was devised by Hellman (1961). First we derive a lemma.

Lemma. Assume XY =0, XnZ =@ and YnZ = 0, and let X’VXu YuZ.
Then there is a G such that XNXUY

Proof. Define a function H on a subclass of X x w as follows:
{{u. k), vy € H if and only if v € X and k € w and there is a function /" with
domain &’ such that /*0) = F'u and, if j € k, then /*j € X and f*(J') = F*(/*})
and [k =v. Thus, H*((u,0)) = Flu, H({u, 1)) = F*(F‘u) if Fr'ue X, and
H ({u,2)) = F(F(F*u)) if F'uand F*(F‘u) are in X, and so on. Let X* be the
class of all w in X such that (3y)(y € o A {u,y) € D(H) NH ({u.y)) € Z). Let
Y* be the class of all w in X such that (WW)(y € o A{u.y) € ¥(H)
= H'((u.y))¢ Z). Then X = X" UY*. Now define G as follows: #(G) = X
and. if we X, then G'w = u. whereas, if v €Y, then G'u = F'u. Then

X = XuY. (This is left as an cxercise.)
)

Now, to prove Bernstein's theorem. assume X 7:“ NAYCYAYZXA
3 G

Xi CX. Letd=GY CX, CX. Butdn(X) —A4) =0.An(X — X)) =D and
(X =Xi)n(X) —4) =0. Also, X = (X — X|)u(X| — 4)uAd, and the com-
positon H of F and G is a one-one function with domain X and range 4.
Hence, A=~X. So, by the lemma, there is a one—one function D such that
A %’ Xy (since (X} — 4)ud = X;). Let T be the composition of the functions
H,D and G; that is, T'u = (G)"(D*(H‘u)). Then X = Y, since X = 4 and
A= X and Xy 2 Y. 4 i

Exercises

4.53 Carry out the details of the following proof (due to J. Whitaker) of
Bernstein’s theorem in the case where X and Y are sets. Let
X%‘ NnaAnc Y/\Y%Xl/\/\’l C X. We wish to find a set Z C X such that
G, restricted to Y — F*Z, is a one—one function of ¥ — F*“Z onto X — Z. [If
we have such a set Z, let H = (Z[F)u((X — Z)[G); that is, H'x = F'x for
xeZ, and H'x=G'x for x€ X —Z. Then X=Y] Let Z = {x|(3u)(u
CXAx€EuNGY — Fu) C X —u)}. Notice that this proof does not
presuppose the definition of @ nor any other part of the theory of ordinals.
4.54 Prove: (a)F X < XUY(BD)FX <YV = (Y <X)(OF X <YAYZ
=X <7

Z. Let H be the composition of
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PROPOSITION 4.24 Assumce X <Y and 4=<B. Then:

(a) YnB=0 = XuA<YUB
(b) X x A<Y x B
(c) X'<YBifBisasetand ~(X =A =Y =0AB#W)

Proof

(a) Assume X“Y. C Y and A“Bl C B. Let #1 be a function with domain

X uA such thalH X = F HOI xcX.and Hx=Gxforxe 4—X.Then
XuA’/:jH (Xud) C YUB.

(b) and (c) are left as exercisces.

PROPOSITION 4.25

(a) =3 Fnc(/YANT(S)y=xNAS)=2x)). (There is no lunction
from x onto .#(x).)
(b) Fx =< 2(x) (Cantor’s theorem)

Proof

() Assume  Fnc(/)AZ(f)=xA"A([))=2(x). Let y={uuexA
ué¢ [“u}. Then y € Z(x). Hence, there is some z in x such that f*z = y.
But, (Vu)(uey < uexAug f*u). Hence, (Vu)(ue fz&uexiu
¢ f‘u). By rule Ad, z€ [z zexAz¢ [z, Since z € x, we oblain
z € f'z & z¢ [z, which yields a contradicition.

(b) Let / be the function with domain x such that f“u = {u} for each u in x.
Then f*x C 2(x) and f is one-one. Hence, x<X#(x). By part (a),
x = P(x) is impossible. Hence, x < 2(x).

In naive set theory, Proposition 4.25(b) gives rise to Cantor’s paradox. If
we let x =V, then V < 2(V). But 2(V) C V and, therefore, (V)< V.
From V < 2(V), we have V<2(V). By Bernstein’s theorem, V = 2(V),
contradicting ¥V < 2(V). In NBG, this argument is just another proof that
I s not a set.

Notice that we have not proved F (vx)(Vy)(x<XyVy=<x). This in-
tuitively plausible statement is, in fact, not provable, since it turns out to be
cquivalent to the axiom of choice (which will be discussed in Section 4.5).

The equinumerosity relation = has all the properties of an equivalence
relation. We are inclined, thercfore, to partition the class of all sets into
cquivalence classes under this relation. The equivalence class of a set x
would be the class of all sets equinumerous with x. The equivalence classes
are called Frege Russell cardinal numbers. For example, if « is a set and
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x = {u}, then the equivalence class of x is the class of all singletons {r} and is
referred to as the cardinal number 1. Likewise, if u # v and v = {u.v}. then
the cquivalence class of v is the class of all sets that contain exactly two
clements and would be the cardinal number 2. that 1s 2. is
{x|(Iw)(Fz)(w #£ zAx = {w,z})}. All the Frege -Russell cardinal numbers,
except the cardinal number O, of ¢ (which is {#}), turn out to be proper
classes. For example, V' = .. (Let Fx = {x} for all x. Then V= |..) But.
-M(¥). Hence. by the replacement axiom, ~M(l,). !

Exercise

4.55 Prove F =M(2,).

Because all the Frege—Russell cardinal numbers (except O.) are proper
classes, we cannot talk about classes of such cardinal numbers, and it is
difficult or impossible to say and prove many interesting things about them.
Most assertions one would like to make about cardinal numbers can be
paraphrased by the suitable use of 2, <X and <. However, we shall see later
that, given certain additional plausible axioms. there are other ways of de-
fining a notion that does essentially the same job as the Frege-Russell
cardinal numbers.

To see how everything we want to say about cardinal numbers can be
said without explicit mention of cardinal numbers. consider the following
treatment of the ‘sum” of cardinal numbers.

DEFINITION

X +c Y for (X x {P})u(Y x {1})

Note that =@ # [ (since | is {#}). Hence, X x {#} and ¥ x {1} are disjoint
and, therefore, their union is a class whose ‘size’ is the sum of the ‘sizes’ of X
and Y.

Exercise

4.56 Prove:

(@) FXASX+ YAY<X+.Y

by FX2AANY=2B=>X+.Y=A4A+.B

(c) FX+. Y=Y+ X

(d) FMX +.7Y) e MX)AM(Y)

e FX+. Y+ 2)=2X+.Y)+Z

) FASY=X+.ZLY+.Z

(8) FX+.X =X x2(Recall that 2is {#.1})
(h)y FXY' 4 x5 x?

() Fx>xipl 2224 02

EQUINUMEROSITY. I'INITE AND DENUMERABLE SETS

Finite sets

Remember that w is the set of all ordinals x such that % and all smaller
ordinals arc successor ordinals or §). The elements of o are called finite
ordinals, and the elements of On — o are called infinite ordinals. From an
intuitive standpoint. @ consists of . 1,2.3..... where each term in this
sequence after ¥ is the successor of the preceding term. Note that ¥ contains
no members, | = {#} and contains one member, 2 = {(. 1} and contains
two members, 3 = {0, 1,2} and contains three members, etc. Thus, it is
reasonable to think that, for each intuitive finite number #, there is exactly
one finite ordinal that contains exactly » members. So, if a class has »n
members, it should be equinumerous with a finite ordinal. Therefore, a class
will be called finite if and only if it is equinumerous with a finite ordinal.

DEFINITION

Fin(X) for (Ga}(z € o A X = 2) (X 1s finite)

Exercise

4.57 Prove:

(1) = Fin(X) = M(X) (Every finite class is a set)
(by + (Va)(x € w= Fin(z)) (Every finite ordinal is finite.)
(¢) +Fin(X) A X=2Y = Fin(Y)

PROPOSITION 4.26

)y F(Va) (o w=>a=ad).

(b)y = (Va)(Vh) (e € o A a# = ~(e=f)). (No finite ordinal is equinu-
merous with any other ordinal.)

(c) b (Va)(vx)(x € wAx Ca= —(x=x)). (No finite ordinal is equinu-
merous with a proper subset of itself.)

Proof

ta) Assume x ¢ . Define a function f with domain o as follows: f*6 = &’
ocw ffo=0ided Ad¢ wufa}: and [« =0. Then of ’T“ o

(h) Assume this is false, and let a be the least ordinal such that « € @ and
there s f§ / asuch that x ~ ff. Hencee, 2 <, fi. (Otherwise, ff would be a
smaller ordinal than x and f# would also be in wm, and ff would be
cquinumerous with another ordinal, namely, x.) Let 1‘,' g 0
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then /=0 and fi =0. contradicting = # ff. So. x# 0. Since
%€ .y = 0 for some ¢ € . We may assume that ff =5 for some . (If
f€ w, then f# 0 and i ¢ w. then, by part (a). = f and we can
take " instcad of f8.) Thus. o' = % ' Also. & #£ 7. since « # 3.
Case 1. f*0 = . Then o = where g = ol f.
Case 2. f*0 # . Then there i1s some p € o such that f*u=7y. Lel
h= L) —{Qen ol oyt that s, let hrr = f*r if t¢ {0, u}. and
I = f*0. Then ¢ ”i’ il

In both cases, 0 is a finite ordinal smaller than « that is equinumerous
with a different ordinal y. contradicting the minimality of a.

(¢) Assume ff € m Ax C A= x holds for some f. and let x be the least
such f8. Clearly, « # 0: hence, o = 7' for some 7. But, as in the proof of
part (b), one can then show that 7 is also equinumerous with a proper
subset of itself, contradicting the minimality of a.

Exercises

4.58 Prove: b (Va)(Fin(x) © 2 € m).
4.59 Prove that the axiom of infinity (1) is cquivalent to the following
sentence.

(#) (AN Eu)(w e x) ANy y ex = (Fz)(z€x Ay Cz)))

PROPOSITION 4.27

(a) + Fin(X)AY CX = Fin(Y)
(b) F Fin(X) = Fin(Xu{y})
(¢) F Fin(X)AFin(Y) = Fin(XuUY)

Proof

(a) Assume Fin(X)AY C X. Then X = «, where « € w. Let g = Y[/ and
W =g“Y C a. Wisaset of ordinals, and so, Ew is a well-ordering of W.
By Proposition 4.19, (Ey, W) is similar to (Eg, f) for some ordinal f.
Hence, W = . In addition, f<,a. (If « <, f, then the similarity of
(Eg,B) to (Ew,W) contradicts Corollary 4.17.) Since x € w,fs € w.
From Y % W AW =g, it follows that Fin(Y).

(b) If y € X, then Xu{y} =X and the result is trivial. So. assume v ¢ X.
From Fin(X) it follows that there is a finite ordinal z and a function f
such that x>~ X. Let g = fof{(x.v) ). Then o ~ Xu{v}. Hence.
Fin(Yu{v}). ! !

EQUINUMEROSITY. FINITE AND DENUMERABLE SETS L_

(¢) Let Z={uluec o (¥x)(Vy)(Vf)(x % uAFin(y) = Fin(x uy))}. We
must show that Z = . Clearly, # € Z, for it x =, then x =) and
xuy =y Assume that z € Z. Let x =% and Fin(y). Let w be such that
Sw=oand let xy =x—{w}. Then x| = x. Since « € Z. Fin(x; uv).
Butxuy = (x; uy)u{w}. Hence, by part (b), Fin(x uy). Thus. ' € Z.
Hence, by Proposition 4.11(c), Z = w.

DEFINITIONS

DedFin(X) for M(X) A (VY)Y C X = (X > V))
(X is Dedekind-finite. that is, X is a set that 1s nol equinumerous

with any proper subset ot itself)
DedInl(.X') for M(X) A =DedFin(X)

(X is Dedekind-infinite. that is, X is a sel that is equinumerous

with a proper subset of itsell)

COROLLARY 4.28

(vx)(Fin(x) = DedFin(x)) (Every finite set is Dedekind-finite)'

Proof

This follows casily from Proposition 4.26(c) and the definition of ‘finite’.

DEFINITIONS

Inf(X) for =Fin(X)

Den(X) for X 2w

Count(X) for Fin(X) V Den(X)

(X is infinite)
(X is denumerable)
(X is countable)

F.xercise

4.60 Prove:

FInf(X)AX =Y = Inf(Y)
F Den(X)AX =Y = Den(Y)
() | Den(X) = M(X)
b Count(X)AX ~ Y = Count(Y)
b Count(.Y) » M(X)

"Fhe converse s not provable without additional assumptions, such as the ax-
iom ol choee
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PROPOSITION 4.29

(a) FInf(X)AX C Y = Inf(Y)
(b) I-Inf(X) = Inl(/\u{f})
(¢) F DedInf(X) = Inf(X)

(d) F Inf{w)

Proof

(a) This follows from Proposition 4.27(a).

(b) FInf(X) = Inf(XU{y}) by part (a). and F Inf(X{y}) = Inf(X) by
Proposition 4.27(b)

(c) Use Corollary 4.28.

(d) Fod¢ w If Fin(wm), then w = « for some « in o, contradicting Propo-
sition 4.26(b).

PROPOSITION 4.30

E (Ve)(Vz)(Den(r) Az C v = Count(z)). (Every subsct of a denumerable set
is countable.)

Proof

It suffices to prove that z C w = Fin(z) V Den(z). Assume z C w A —Fin(z).
Since —Fin(z), for any o in z, there is some f§ in z with o < ,f. (Otherwise,
z C o and, since Fin(«'), Fin(z).), Let X be a function such that, for any « in
w, X‘a is the least ordinal f in z with a <, f§. Then, by Proposition 4.14(c)
(with § = w), there is a function Y with domain w such that Y*{} is the least
ordinal in z and, for any 7 in w, Y*(y') is the least ordinal f in z with
[} >o Yy, Clearly, Y is one—one, %(Y) = w, and Y"w C z. To show that
Den(z), it suffices to show that Y¢w = z. Assume z — Y*‘w # @. Let § be the
least ordinal in z — Y*"w, and let 7 be the least ordinal in Y“w with t >, J.
Then t = V' for some ¢ in w. Since § <, 1,6 # B. So, 6 = x' for some u in
w. Then t = Y's is the least ordinal in z that is greater than Y‘u. But
d >, Y, since 1 is the least ordinal in Y“w that is greater than J. Hence,
1<, which contradicts 6 <, t.

Exercises

4.61 Prove: - Count(X)A Y C X = Count(Y).
4.62 Prove:

(a) F IFm(X) » Fin(.2(X))

by + Fin(X)yA (v e X = in(y)y = FnJw)

H/\RT()(;Q THlORF\/l I\II'IAL()RI)IN/\LS ‘ ‘ 263 1

(©) FXYAFNn(Y) = Fin(X)
(d) F Fin(.2( /\’ = Fin(X)
(e) + Fin(UAX) = Fin(X)A (Vv)(y € X = Fin(y))
(H FFin(X)= (X\Y VY =X)
(g) FFn(X)AInf(Y)= X <7V
(h)y FFinX)AY CX = ¥ <X
(i) FFin(X)AFin(Y)= Fin(X xY)
() F Fin(X) A Fin(Y) = Fin(x")
(k) FFInXjAvg X = X <Xu{y}
4.63 Define X to be a minimal (respectively, maximal’y element of Y if and
only if X ey and (Yyv)(y € ¥ = —(v C X))(respectively. (Vv)(ve ¥ = =
(X C y))). Prove that a set Z is finite if and only if every non-empty set of
subsets of Z has a minimal (respectively, maximal) element (Tarski, 1925).
4.64 Prove:
(a) F Fin(X)A Den(Y) = Den(XuY)

(b) FFin(X)ADen(Y)AX # ) = Den(X x ¥)
(c) B (Vx)[DedInf(x) < (Fy)(v € x A Den(yv))]. (A set is Dedekind-infinite

i[' and only if it has a denumerable subset)

(d) Yx)[(Fy) (v € x A Den(v)) < o < x|
(c) F VJ (2 ¢ o= DedInf(a)) A (Va)(Inf(2) = 2 ¢ o)
H = ( ¥)(Vy)(v ¢ x = [DedInf(x) & x = xu{y}])
(g) F(W)(wo<xex+. 1 >x)
4.65 If NBG 1is consistent, then, by Proposition 2.17. NBG has a denu-
merable model. Explain why this does not contradict Cantor’s theorem,
which implies that there exist non-denumerable infinite sets (such as .2(w)).
This apparent, but not genuine, contradiction is sometimes called Skolem’s
paradox.

4.4 HARTOGS’ THEOREM. INITIAL ORDINALS.
ORDINAL ARITHMETIC

An unjustly neglected proposition with many uses in set theory is Hartogs’
theorem.

PROPOSITION 4.31 (HARTOGS, 1915)

VO (1) (V) (v © x = (2= v). (For any set x, there is an ordinal that is
not equinumerous with any subset of x.)
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Proof

Assume that every ordinal  is equinumcrous with some subsct v of x.
Hence, v 2 for some /. Define a relation » on y by stipulating that (u.tv) € r
it and m{ly il f~u € f*v. Then r is a well-ordering of v such that (r.y) is
similar to (E,.2). Now define a function £ with domain On such that, for
any 7. Fo is the set w of all pairs (z. y) such that y C x, z is a well-ordering of

voand (B, 2y is similar to (z.v). (wis a set. since w C .2(x X x) x .#(x).)

Since, F(On) C .2(2(x x x) x 2(x)). F**(On) is a set. I is one—onc; hence,
On = F<(F<(On)) is a set by the replacement axiom, contradicting Propo-
sition 4.8(h).

DEFINITION

Let # denote the function with domain ¥ such that. for every x, .#“x is the
least ordinal « that is not equinumerous with any subset of x. (# is called
Hartogs' function.)

COROLLARY 4.32

(VX) (A x < 2222(x))

Proof

With each f§ <, #x, associate the set of relations r such that r C x X x,risa
well-ordering of its field y, and (r, y) is similar to (Eg, f8). This defines a one—-
one function from .#x into 22(x x x). Hence, #‘x < #2(x X x). By Ex-
ercise 4.12(s), x x x C 22(x). So, 22 (x x x) C 2P P (x), and therefore,
Hx < PPPP(x).

DEFINITION
Init(X) for X € On A (VB)(f <o X = —(f = X))

(X is an initial ordinal)

An initial ordinal is an ordinal that is not equinumerous with any smaller
ordinal.

Exercises

4.66 (a) F (Va)(x ¢ o = Init(x)). (Every finite ordinal is an initial ordinal.)
(b) t Init{en). [Hint: Use Proposition 4.26(b) tor both parts.|

l HARTOGS THEOREM. INITIAL ORDINALS ‘

4.67 Prove:
(a) For every x. .# ‘x is an initial ordinal.
(b) For any ordinal «. .# ‘x is the least initial ordinal greater than x.
(¢) For any set x. # x = w if any only if x is infinite and x is Dedekind-
finite. [Hinr: Exercise 4.64(¢).]
Definition by transfinite induction (Proposition 4.14(b)) yiclds a function

G with domain On such that

GO =w

Gy = #°(G'a) lor every x
Gr= U(G"(/l)‘) for every limit ordinal 2

PROPOSITION 4.33

(@) F (Va)(Init(G'a) A < Ga A (YB)(f <o 2= Gff <, Ga))
(b)y F (Va)(a<,G'a)

(©) F (VB (< f Alnit(ff) = Ba)(Ga = fi))

Proof

(a) Let X = {o]|Init(G'a) AN <, Gan (V) <o x = Gfi <, Gx)}.

We must show that On C X. To do this, we use the second form of trans-
finite induction (Proposition 4.13(a)). First, §} € X. since G'() = w. Second,
assume o € X. We must show that o € X. Since « € X, G'« is an infinite
initial ordinal such that (Vf)(ff <, 2« = G*f <, G‘'a). By definition,
G (o) = #*(G'a), the least initial ordinal >, G*(a). Assume f§ <, o'. Then
f<oaVp=alf f<,a, then,since x € X, G'f <, G'a <, G(). If f = 2,
then G'fi = G'a <, G*(o). In either case, G'ff <, G‘(’), Hence, «' € X. Fi-
nally, assume Lim(a) A (Vf)(f <o ® = f € X). We must show that o € X,
By definition, G‘a =J(G*“(a)). Now consider any f<,a. Since
Lim(x2), f/ <, a. By assumption, ' € X, that is, G‘(f) is an infinite initial
ordinal such that, for any y <, f/, G'y <, G*(f). It follows that G“(2) is a
non-empty set of ordinals without a maximum and, therefore, by Proposi-
tion 4.12, G‘a, which is [ J(G*“(«)), is a limit ordinal that is the least upper
bound of G*(a). To conclude that G‘a € X, we must show that G‘o is an
mitial ordinal. For the sake of contradiction, assume that there exist § such
that & <, G*(a) and 6 2 G'a. Since G‘a is the least upper bound of G*(a),
there must exist some gin G (a) such that 6 <, p. Say, u = G*ff with f§ <, a.
So. dC o GpCGPHC Gad. Since dC G(f),6€G(f) and
O =L GH(f). On the other hand, since G(f) C Ga~3.G(f) =<4 By
Bernstein's theorem, 8~ G2 (ff), contradicting the fact that G*(f') is an in-
il ordinal.
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(b) This lollows from Corollary 4.16 and part (a).

(¢) Assume. for the sake of contradiction, that there is an infinite initial
ordinal that is not in the range of G, and let ¢ be the least such. By part (b),
g <,G g and, by part (a). G'a is an initial ordinal. Since ¢ is not in the range
of G.o <, G'o. Let ju be the least ordinal such that ¢ <, G*ji. Clearly., it # 0.
since G0 = w <, 6. Assume first that g 1s a successor ordinal ;’. Then. by
the minimality of ;. Gy <, . Since G*(3') = #°(G*7),G(3') is the least
initial ordinal greater than G*y. However, this contradicts the fact that ¢ is
an initial ordinal greater than Gy and o <, G*(;'). So. g must be a limit
ordinal Since G'p = |J(G*(p)). the least upper bound of G*(u), and

<o G, there is some O <, psuch that 0 <, G*0 <, Gy, contradicting the
mmlmallly of 1.

Thus, by Proposition 4.33, G is a one-one <,-preserving function from
On onto the class of all infinite initial ordinals.

NOTATION

mwy for G'a

Hence, (a) wy = @; (b) wy, is the least initial ordinal greater than w,; (¢) for a
limit ordinal 2., is the initial ordinal that is the least upper bound of the
set of all m. with y <, 2. Moreover. w, >, « for all «. In addition, any
infinite ordinal « is equinumerous with a unique initial ordinal wg <o,
namely, with the least ordinal equinumerous with a.

Let us return now to ordinal arithmetic. We already have defined ordinal
addition, multiplication and exponentiation (see Examples 1-2 on pages
249--50 and Exercise 4.36).

PROPOSITION 4.34

The following wfs are theorems.

@ S+l =)

(b) (04‘0[3:/3

(© D<oB=(a<oatofAP<oo+of)
d) f<oy=>a+of <ox+oy

e a+of=a+,0=>p=0

() a<of= (316)(a+o0=p)

(2) (O%XQOI‘I=>O(+O Uﬂ U(a_h\ﬂ)

fex fex
(h) D<canl <, f=a<,ax,f

(i) d<,and<,f=>a<,ax,p
(J) Y <o /”/\V)<n1:>ﬁ><u‘,‘ <o A Xy, /;

(k) xCOn »xx,Up Ulxx,p)
fli ficn

HAR'I‘OGS lHlOREM lNlTlAl ORDINALS ‘

Proof

("1) /; o I = /)) +o (W) - (,; +o m), = /fl

(b) Prove ® +, f = f by transfinite induction (Proposition 4.13(a)). Let
X={B0+,p= /f} l*n%t heXo since d+,0 =010 +,7 =17. then
D+, =0+, ;')' =" If Lim(%) and ® +, 17 =1 for all v <, 2, then
B +ox= U 0+, U T = 2, since U Tis the least upper bound of

o T
the set ol ‘lll T <y Ao WhICh IS .

(©) Let X = {p]0 <y = a<,a+, fi}. Prove X = On by transfinite in-
duction.  Clearly, @ex. If e€X, then a<.,x4,7; hence
AL ot +o Y <0 (x4,7) =24, 7. If Lim(4) and 7€ X for all t <, /.
then o <, o' =2+, 1<y U (2 +, 1) = 2+, 2. The second part is left
as an exercise. ot

(d) Let X = {7 (V)(Vf) (B <o 7 = % +o <o 2 +0 7)) and use transfinite
induction. Clmrly. feX. Assume € X and i<, 7. Then ff <, 1 or
/)’ = lf f <oy then, since ;€ X, a+,fl<,2+,7 <, (oz +o)
=a+,7. W=y thena+, f=a+, 7 <, (x4,7) =2 +, 3. Hence,
¥ eX. Aswme le (4)and T € X for all t <, 4. Assume f§ <, 4. Then
<ot for some 7t <,A since Lim(4i). Hence, since 1¢ X,
Lo ff <o oo 1< U ;{240 1) =+, 4 Hence, 2 € X.

{¢) Assume o+, f§ =x+,0. Now, ecither f <, or d <, ff or 6=f. If
<00, then a4, f <,2+,3 by part (d), and, if &<, f, then
o +o 0 <o %+, ff by part (d); in either case, we get a contradiction with
%4, ff = a+, 0. Hence, 6 = f5.

() The uniqueness follows from part (e). Prove the existence by induction
onfi. Let X = {Bla <, f = (310)(2 +, 5 = f§)}. Clearly, ¥ € X. Assume
yeX and a<,y. Hence, a=7y or a<,y If a=7y then
(H0)(a 4+ 6 =7"), namely, d=1. If x<,y then, since 7€ X,
(§10)(+o 6 =7y). Take an ordinal ¢ such that «+,0 =7y Then
% +o 0" = (04, 0) =7 thus, (36)(a +o 6 = 7'); hence, 7' € X. Assume
now that Lim(Z) and T € X forall t <, 4. Assume a <, .. Now define a
function f such that, for « <, p <, 4, f*u is the unique ordinal § such
that a+o0=p. But A=U, . it=U, ,c.(@+o /). Let
#=Uy, i (S'1). Notice that, if o <q pu <, 2, then fu <, f*(i);
hence, p is a limit ordinal. Then A= U, e, (0 Fo /1) =
U.. ”,,(a +o00) =0+ p.

(p) Assume @ #xCOn By part (f), there is some & such that
%t 6= Uy (2 +0 ). We must show that § = Uge. B I B € x, then
% +o f<ox+, d. Hence, f<,0 by part (d). Therefore,  is an upper
bound of the set of all §in x. So, Jye, B<od. On the other hand, if
e then a4, f<ox+oUy B Hence, a+,0= Upe. (@ +o B)

o o Up B Henee a0 = Uy, (2 +a /f) <o +o Upe B and so,
by part (d). o\..U/, . . Therefore, o Up ./

(hy (k) are Ieft as exercises.

—
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PROPOSITION 4.35 The folowing wis are theorems.

@) fxol =BAlxof=4

(b) Bxgfp=0

(© (o) o7 =240 (B+a?)

(d) (xx,f) xo7=aXq (B xo 7)

() axy (ftoy)=(axsf)+o(xx07)

(0 exp(p.1) = pAexp(l,f) = |

(2) exp(exp(ff,y).0) = exp(ff.7 X 0) .
(h) exp(ff.7 +o 0) = exp(f,7) xo exp(f.d)'
(i) x>0 LAS <oy = exploff) <oexp(a.y)

Proof

(@) Bxol=Fx,0 =(Bxo0) 4+, =0+, p=p. by Proposition 4.34(b).
Prove | x, f§ = f by transfinite induction.

(b) Prove ) x,, # = 0 by transfinite induction.

(¢) Let X ={y|(VO)(VB){(z+of) o7 =2+ (B+o7))}. 0 €X, since
(x40 ) 4o = (o040 ) = o+, (f +o ¥). Now assume y € X. Then
(O( +ao /;) +o 7”, - ((O( +o /;) +o 7), = (1 +o (/f +o 7)), =0 +o (/} +o :’)’ =
o +o (4o 7). Hence. ;" € X. Assume now that Lim(z) and t € X for
all 1<, 4 Then (a+,f) 4o r=U,. (4o ) +o1) = U s (2to
(B+o1) =2 +o Ur.,(f +o 1), by Proposition 4.34(g), and this is equal
10 o +o (ff 406 4)-

(d)—(1) are left as exercises.

We would like to consider for a moment the properties of ordinal addi-
tion, multiplication and exponentiation when restricted to w.

PROPOSITION 4.36
Assume «, 3,7 are in w. Then:

(a) a+ofew

(b) ax,few

(C) eXp(alﬁ) cw

(d) a+of=f+ou

(6) axof=fx%oa

D (x+oh) Xoy = (tXoy) +o (B Xo V)
(8) exp(a xo fi,7) = exp(2,7) xo exp(f,7)

fIn traditional notation, the results of () (h) would be written as i f,
[ P 0 A SR AL (AN

HARTOGS THEOREM. INITIAL ORDINALS ‘

Proof

(a) Usc induction up to @ (Proposition 4.13(c)). Let X = {f| € mA
(Va)(x € w) = 2+, f € w)}. Clearly. § € X. Assume ff € X. Consider
any € o. Then 2+, ff € . Hence, « +, ff = (2 +, ) € w by Prop-
osition 4.11(a). Thus, ' € X.

(b) and (c¢) are left as exercises.

(d) Lemma. Facwnfecom=d+,=a+,. Let Y={p|fecwm
AY2) (x€w= 4 4o =2+, )} Clearly, B €Y. Assume €Y.
Consider any 2 € . So, & +o =2+, f. Then o +, ff = (& 4+, ) =
(x4 ) =2+, (B). Hence, f/ € V.

To prove (d). let X ={f|fpconM)(zcw=u+,f=p+,2)}.
Then @ € X and it is easy to prove, using the lemma, that f € X = fff € X.

(e)—(g) are left as exercises.

The reader will have noticed that we have not asserted for ordinals cer-
tain well-known laws, such as the commutative laws for addition and
multiplication, that hold for other familiar number systems. In fact, these
laws fail for ordinals, as the following examples show.

Examples

Lo (Bo)(FP) (x40 B # B +o %)
l+ow=JU+o0) =w

A<

wt,l =0 >, 0
(B3P (2 %o fF#E P X )
22X, = U(ana):w

WXe2=m X (1 +41)= (a:<><(: 4o (@Xe 1) =w4s0 >,
3. (F)( 3B (EF)((x +o B) X0 7 # (2 X0 7) +0o (B X07))
T+ ) Xo=2%Xow=0w
(1 Xo ) 46 (I Xo) =w+ow > w
4. (3a)(3B)(Fy)(exp(x %o B, 7) # exp(a,7) Xo €xp(f, 7))
exp(2 X, 2,w) = exp(4,w) = U exp(4,2) = w

exp(2,w) = U exp(2,2) = w

A< @)

[69]

So. exp(2. ) X, exp(2, w) = 0 X 0 >4 0.

Given any wf 4 of formal number theory S (see Chapter 3), we can
associate with 4 a wf 4" of NBG as follows: first, replace every ‘*+’ by “+,’,
every by “x,, and every ‘f(#) by ‘tU {t}f’; then, if # is € = 2 or ~%,

In abbreviated notation for S, "f1(2)" is wrilten as ¢, and in abbreviated no-
tation in NBGL v {7} s written as £ So. no change will take place in these
abbreviated notations.
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respectively. and we have already found 4" and " . let 4" be ' = & or
=% respectivelys if 4 s (V)¢ (x), replace it by (Vx)(x € o = ¢’ (x)). This
completes the definition of .4". Now. if x...... v, arc the free variables (if
any) of 4. prefix (x) E AL Ax, € @) = 10 4", obtaining a wi A#. This
amounts to restricting all variables to « and interpreting addition. multi-
plication and the successor function on natural numbers as the corre-
sponding operations on ordinals. Then cvery axiom .4 of S is transformed
into a theorem A# of NBG. (Axioms (S1)(S3) are obviously transformed
into theorems, (S4)# is a theorem by Proposition 4.10(¢), and (S5)#-(S8)#
are properties of ordinal addition and multiplication.) Now. for any wf .4 of
S. 4# 1s predicative. Hence, by Proposition 4.4, all instances of (S9)# arc
provable by Proposition 4.13(c). (In fact. assume A#(}) A (Vx)}(x € o
= (B#(x) = B#())))). Let X = {y |y € w A B#(y)}. Then, by Proposi-
tion 4.13(c). (Vx)(x € m = A#(x)).) Applications of modus ponens
are easily seen to be preserved under the transformation of 4 into %4#.
As for the generalization rule, consider a wf #(x) and assume that
A#(x) 15 provable in NBG. But ##(x) is of the form
XEMAY EOA.. Ay, €= A (x). Hence. yy € A ... Ay, €w = (V)
(v € = A"(x))is provable in NBG. But this wf is just ((Vx).2(x))#. Hence.
application of Gen leads from theorems to theorems. Therefore, for every
theorem .4 of S. A# 1s a thcorem of NBG. and we can translate into NBG
all the thcorems of S proved in Chapter 3.

One can check that the number-theoretic function 4 such that. if x is the
Godel number of a wf 2 of S, then A(x) is the Godel number of %#, and if x
is not the Godel number of a wl of S, then A(x) = 0, is recursive (in fact,
primitive recursive). Let K be any consistent extension of NBG. As we saw
above, if x is the Godel number of a theorem of S. then A(x) is the Godel
number of a theorem of NBG and, hence, also a theorem of K. Let S(K) be

the extension of S obtained by taking as axioms all wfs # of the language of’

S such that 4# is a theorem of K. Since K is consistent, S(K) must be
consistent. Therefore, since S is essentially recursively undecidable (by
Corollary 3.46), S(K) is recursively undecidable. Now, assume K is recur-
sively decidable; that is, the set Tx of Godel numbers of theorems of K is
recursive. But Cr (x) = Cr (h(x)) for any x, where Cr, and Cr, are the
characteristic functions of Ty and Tx. Hence, Tk, would be recursive,
contradicting the recursive undecidability of S(K). Therefore, K is recur-
sively undecidable, and thus, if NBG is consistent, NBG is essentially re-
cursively undecidable. Recursive undecidability of a rccursively
axiomatizable theory implies incompleteness (see Proposition 3.47). Hence,

NBG is also essentially incomplete. Thus, we have the following result: if’

NBG is consistent, then NBG is esseatially recursively undecidable and es-
sentially incomplete. (1t s possible to prove this result directly in the same
way that the corresponding result was proved for § in Chapter 3.)
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Exercise

4.68 Prove that a predicate caleulus with a single binary predicate letter is
recursively undecidable. [Hine: Use Proposition 3.49 and the lact that NBG
has a finite number of proper axioms.]

There are a few lacts about the “cardinal arithmetic’ of ordinal numbers that
we would like to deal with now. By “cardinal arithmetic™ we mean propertics
connected with the operations of union (). Cartesian product (x) and X',
as opposed to the propertices of +,. x,, and exp. Observe that x is distinct
from x,: also notice that ordinal exponentiation exp(, f§) has nothing to do
with X7, the class of all functions from ¥ into X. (From Example 4 on page
269 we sce that exp(2,m) i1s m. whercas, from Cantor’s theorem, o < 2",
where 2 is the set of functions from m into 2.

PROPOSITION 4.37

Q) F wxom=w
(b) F 2=<X A2V =2 X UY<X xY
(¢) F Den(x) A Den(y) = Den(xUy)

Proof

(a) Let / be a function with domain w such that, if « € w, then f*x = (a. ().
Then f is a one—one function from « into a subset of w x w. Hence,
o< x w. Conversely, let g be a function with domain « x @ such
that, for any {(a, ) in o x w, g*(a, f) =exp(2,a) x,exp(3, ). We leave
it as an exercise to show that ¢ is a one-one function from o x o into
m. Hence, o x o<Xw. So, by Bernstein’s theorem, o x o = w.

(b) Assume a) € X,a; € X,a; # ay,by € Y, by € Y by # bs. Define

(a1,b)) fxeXx
fx=<{a.x) fxeY—-Xandx#bh
(ar,by) fx=bandxeY - X

Then f is a one-one function with domain X UY and range a subset of
N x Y. Hence, YUY<X x Y.

(¢)  Assume Den(x) and Den(y). Hence, each of x and y contains at least
two clements. Then, by part (b), xUy<xx y. But x>~ w and y & w.
Hence, v x v 2 o x . Therefore, x U y<w X w = w. By Proposition
4.30, cither Den (v U v) or Fin (x U y). But x € xU y and Den(x); hence,

Fangeu ).
For the further study of ordinal addition and multiplication, it is quite
usetul to obtain conerete interpretations of these operations.
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PROPOSITION 4.38 (ADDITION)

Assume that (r.x) 1s similar to (E.. 2). that (s y) is similar to (Ej;. ff). and that
xMy=0. Let 7 be the relation on x Uy consisting of all {v.¢) such that
(neyexxyoruexAvexA(urycrorucyAe ey (ury€s(thatis,
¢ is the same as 7 in the set x, the same as s in the set y, and cvery element of x
(-precedes every element of y). Then 7 is a well-ordering of x U v, and
(t,x U ) is similar to (E,, g, %+, f).

Proof

First. it is simple to verify that ¢ is a well-ordering of x U y, since r is a well-
ordering of x and s is a well-ordering of y. To show that (¢, x U y) is similar to
(Essop. o 4o f8), use transfinite induction on f. For ff=0. y = . Hence,
t=rxUy=x and a+,fi = o So, (1,2 f) is similar to (E, s 2+, ff).
Assume the proposition for y and let § = 3'. Since (s.y) is similar to (Eg, f5).
we have a function f with domain y and range f§ such that. for any u, v in

v. (u,v) € s if and only if f*u € fv. Let b= (f)7. let vy =y — {b} and let
s1 =50 x»). Since b is the s-maximum of y, it follows easily that s,
well-orders vy, Also. v [f is a similarity mapping of » onto 7. Let
N =t0((xUw) x (xUyw)). By inductive hypothesis, {(r;,x U y) is similar to
(Ey i, 246 7). by means of some similarity mapping g with domain x U y,
and range o+, 7. Extend ¢ to gy = gU {{h, =+, 1)}, which is a similarity
mapping of xUy onto (2% +,7) = a 4,7 = o+, . Finally, if Lim(f}) and
our proposition holds for all © <, 5, assume that / is a similarity mapping
of y onto 8. Now, for each 7 <, f3, let y, = (f')“r, st =sN(y X y), and
tr=1tN((xUy) x (xUy)). By inductive hypothesis and Corollary 4.18(b),
there is a unique similarity mapping g. of {(r;,xU y;) with (Ey , 04, 17):
also, if 71 <, 12 <o f3, then, since (x Uy, )[yg,, is a similarity mapping of
(tr,x Uy ) with (Euy 7,2+, 71) and, by the uniqueness of g, (xUy;,)
[g-, = ¢, that is, g, 1s an extension of g,,. Hence, if g = UK“/} g. and
2=, gla+,7), then g is a similarity mapping of (1., _s(xUy)) with
(E), 7). But, U, y(xUy) =xUy and .. g(a+o1)=a+, f. This com-
pletes the transfinite induction.

PROPOSITION 4.39 (MULTIPLICATION)

Assume that (r,x) is similar to (E,, «) and that (s, y) is similar to (Eg, f5). Let
the relation ¢ on x x y consist of all pairs ({u,v), (w,z)) such that » and w are
inxand vand z are in y, and either (v,z) € sor (v =z A (u,w) € r). Then 1 is
a well-ordering of x x y and (¢,x x y) is similar to (E,._p.a x, f8).!

fThe ordering ¢ is called an inverse lexicographical ordering because it orders
pairs as follows: first, according to the size of their second components and then, il
their second components are equal. according 10 the size of thewr first components,

Proof

This is left as an exercise. Proceed as in the proof of Proposition 4.38.

Examples
1.2 x,m=wm. Let (rx) = (Ey,

product 2 x w is well-ordered
(0,2).(1.2),....(0.n). (L. ><

2. By Proposmon 4.34(a), 2=1"= 1+, 1. Then by Proposition 4.35(c.a),
W Xe2=(mx,1)+, (0 x4 l) =w+,m  Let {rx) =(E, o) and
(s,¥) = (E2,2). Then the Cartesian product @ x 2 1s well-ordered as
follows: (0, 0), (1,0), 2.0), ..., (. ). (1, 1). (2. 1)....

2y and {s.v) = (E.,m). Then the Cartesian
as follows: (0, 0). (1.0). (0. 1). (1. 1).
(1),

PROPOSITION 4.40

For all o, w, X w, =2 ).

Proof

(Sierpinski, 1958) Assume this is false and let o be the least ordinal such that
Wy X y = w, is false. Then wp X wy = wg for all f <, 2. By Proposition
4.37(a), o >, 0. Now let P = w, x w, and, for f <, w,. let Py = {{p,0)]y
+o0 = fi}. First we wish to show that P=1J, , P Now, if
4o 0= B <, wy, then 7<f <o w, and 0<,ff <, wy: hence, (3.0) € w,
xwy = P. Thus, U, ., Ps € P. To show that P C ;. , Pp. it suffices to
show that, if y <, w, and é <, w,, then y +, d <, w,. This is clear when y or
d is finite. Hence, we may assume that y and 6 are equinumerous with initial
ordinals w, <,y and o, <,0, respectively. Let { be the larger of ¢ and p.
Since y <4 w, and & <, w,, then w; <, w,. Hence, by the minimality of
o X oy 2wy, Let x =7y x {0} and y =6 x {I}. Then, by Proposition
438, xUy==7y+4,0. Since y=w, and 6w, x=w,x {0} and
v 2w, x {1}. Hence, since xNy =0, xUy = (wy; x {0}) U (w, x {1}). But,
by Proposition 4.37(b), (w, x {0}) U (w, x {1})=<(ws x {0}) x(w,x
1) 2w, x m, <Ky x wr = wp. Hence, 74, 6<Xwy <, w,. It follows that
e 0 <o Wy (IM wy <4y 46 6, then o, <w;. Since oy <, Wy, w;<Xw,. So, by
Bernstein's theorem, w, 2 wy, contradicting the fact that w, is an initial
ordinal.) Thus, P = Ujy. ,,, Ps- Consider Py for any f <, w,. By Proposition
4.34(). for cach y<, /8, there is exactly one ordinal ¢ such that y +, 6 = .
Hence. there is a similarity mapping from 8 onto Py, where Pj is ordered
according to the size of the first component 5 of the pairs (y,d). Define the
following relation R on P. For any 3 <, 5.0 <, 0y, ft <o 0y, v <5 (0,
(o) guvy)y ¢ RO and only if cither ;1,0 <, pu+,v or (y+,0=
Hoha v Ay o). Thusat iy« s - oo, then the pairs in Py R-precede the

H/\RTO(;S THFORE\/I I\HTl/\L ORDI\I/\LS l ’
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pairs in Py, and, within cach Py. the pairs are R-ordered according to the size
of their first components. One easily verifics that K well-orders P. Since
P =, x u,. it suffices now 1o show that (R. P} is similar to (E,,.. w,). By
Proposition 4.19. (R.P) is similar to some (E.. <), where ¢ is an ordinal.
Hence, P = ¢ Assume that ¢ >, »,. Therc is a similarity mapping f bet-
ween (Eq &) and (R.P). Let b = f*(wy): then b is an ordered pair (3. 0) with
W<y g 0 <y wy. and m, [/ is a similarity mapping between (E,, . m,) and
the R-segment ¥ = Segg(P. {7, 0)) of P determined by (7. ). Then ¥ 2 w,. If
we let =7+, 9, then, if {g,p) € Y.we have o+, p<,7+, 0 = f}; hence,
6 < ff and p<.f5. Therefore, ¥ C ' x ff. But ff <, w,. Since f§ is obviously
not finite. 8 ¢ m, with j <, 2. By the minimality of o, w, X w, = ®,. So.
wy = Y <m,. contradicting w, < w,. Thus, {<,w, and, therefore, P<c,.
Let A be the function with domain w, such that A'f = (f8,#) for every
f§ <o wy. Then h is one-one correspondence between , and the subsel
w, x {#} of P and, therefore, w,<P. By Bernstein’s theorem, w, = P,
contradicting the definition of . Hence, wy x wg 2 wy for all fi.

COROLLARY 4.41

If x = w, and y 2 @y, and if 3 is the maximum of 2 and ff, then x x y = w,
and x Uy 2 w,. In particular, w, x wg = ..

Proof

By Propositions 4.40 and 4.37(b), 0, <x Uy=<x X y 2 0, X <, X 0, =
o,. Hence, by Bernstein’s theorem, x x y > w, and xUy =~ ..

Exercises

4.69 Prove that the following are theorems of NBG.

(a) x<Xw, = xUwy = o,

(b) Wy +c 0y = wy

©) O#xxwy = x X 0y =2y

(d) D#x <= (0,)" =w,

4.70. Prove that the following are theorems of NBG

(@) P(wy) X P(wy) = P(wy)

(b) x<XP(wy) = xUP(w,) = P(w,)

(©) 0 #x<XP(wy) = x X P(wy,) = P(wy)

(d) 0+#x<o, = (P(wy))" = P(wy)

(@) 1 <x<Xwy = x" 2 ()" 2= (P(0y))" = P(wy)

4.71 Assume v # O A v 2y 4, v. (This assumption holds for y -, by Cor-
ollary 4.41 and for v = .2(wy) by Lxcrcise 4.70(b). It will turn out to hold

- - 1
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for all infinite sets v if the axiom of choice holds.) Prove the lolowing
propertics of v.

(a) Inl‘(t

(b)y v 14,

(c) (31)( )( =uwUrAunNe=0Au=vAr>=y)
(d) {zlz=Cynz=y} =2

(¢) {zlzCyAlInf(z2)} =2 .2(v)

(N Gy A (Vu)(u ey = [u#u))

4.72 Assume v > v x y A 1 < y. (This holds when y = ), by Proposition
4.40 and for y = #(w,) by Exercise 4.70(a). It is true for all infinite scts y if
the axiom of choice holds.) Prove the following properties of y.

(@) y=ytey

(b)P Let Perm(y) denote {_/'[y’i{y}. Then Perm(y) = .2(y).

5 THE AXIOM OF CHOICE. THE AXIOM OF REGULARITY

The axiom of choice is one of the most celebrated and contested statements
of the theory of sets. We shall state it in the next proposition and show its
cquivalence to several other important assertions.

PROPOSITION 4.42

I'he following wfs are equivalent.

(1) Axiom of choice (AC). For any set x, there is a function / such that, for
any non-empty subset y of x, [y € y. (f is called a choice function for
X.)

(b)Y Multiplicative axiom (Mult). If x is a set of pairwise disjoint non-empty
sets, then there is a set y (called a choice set for x) such that y contains
exactly one element of each set in x:

Vi ucx=>u#0ANNo)vexNv£u=vNu=10))=
(I Vu)u € x = (Fiw)(w € uny))

() Well-ordering  principle (WO). Every set can be well-ordered:
(VxX)(3v)(v We x).

td)y  Trichotomy (Trich). (Vx)(Vv)(x<y \/y<x)1

PThisas equivalent to (Vo (Vie)(x <y VY ™~y Vi <
‘tnchotomy” for thas principle

v}, which explains the name
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(¢) Zorn's Lemma (Zorn). Any non-emply partially ordered set x, in which
cvery chain (iee.. every totally ordered subset) has an upper bound. has
a maximal element:

(Vo) (V) ({(v Part x) A (Vu)(u Cx Ay Tot u =
(F)(rexn(Vw)weu=w=rvV vy cy)) =
(Ar)(v e x A (Vwhw e x = (eow) ¢ y)))

Proof

I. = WO = Trich. Given sets x and y, then, by WO, x and y can be well-
ordered. Hence, by Proposition 4.19, x = o and y = 8 for some ordinals o
and fi. But, by Exercise 4.52, a<{f# or fi=<Xa. Therefore, x<y or y=<ux.

2.+ Trich = WO. Given a set x, Hartogs’ theorem yields an ordinal «
such that o is not equinumerous with any subset of x, that is, a=<Xx is false.
So, by Trich, x<x2, that is, x is equinumerous with some subset y of . Hence,
by translating the well-ordering E, of y to x.x can be well-ordered.

3. = WO= Mult. Let x be a sct of non-empty pairwise disjoint sets. By
WO, there is a well-ordering R of | Jx. Hence, there is a function f with
domain x such that. for any u in x, /*u is the R-least element of u. (Notice
that u is a subset of |Jx.)

4. = Mult = AC. For any set x, we can define a one—one function g such
that, for each non-empty subset u of x, g‘u = u x {u}. Let x; be the range of
¢. Then x| is a set of non-empty pairwise disjoint sets. Hence, by Mult, there
is a choice set y for x;. Therefore, if u is a non-empty subset of x, then
u x {u} isin xy, and so y contains exactly one element (v, u) in u x {u}. Then
the function f such that f“u = v i1s a choice function for x.

5.+ AC = Zorn. Let y partially order a non-empty sct x such that every
y-chain in x has an upper bound in x. By AC, there is a choice function f for
x. Let b be any element of x. By transfinite induction (Proposition 4.14(a)),
there is a function F such that F‘0 = b and, for any « >, 0, F*a is f*u, where
u is the set of y-upper bounds v in x of F*‘a such that v ¢ F*a. Let 8 be the
least ordinal such that the set of y-upper bounds in x of F*f§ that are not in
F*fis empty. (There must be such an ordinal. Otherwise, F would be a one
one function with domain Or and range a subset of x, which, by the re-
placement axiom R, would imply that On is a set.) Let g = f{{F. Then it is
easy to check that g is one-one and, if @ <, y <, B, {(¢‘x, ¢‘y) € y. Hence, ¢**f8
is a y-chain in x; by hypothesis, there is a y-upper bound w of ¢**f8. Since the
set of y-upper bounds of F*'fi(= g*‘f5) that ar¢c not in ¢ ff is emply, w € ¢*'f
and w is the only y-upper bound of ¢ ff (because a set can contain at most
one of its y-upper bounds). Hence, w is a yv-maximal element. (If (w.z) € v
and z € x, then = is a v-upper bound of ¢ . which s impossible.)

THE AXIOM OF CHOICE. THE AXIOM OF REGULARITY “

6. F Zorn = WO. Given a set z, let X be the class ol all one-one functions
with domain an ordinal and range a subset of z. By Hartogs™ thcorem. X is a
set. Clearly, h € X. X is partially ordered by the proper inclusion relation C.
Given any chain of functions in X, of any two, one is an extension of the
other. Hence, the union of all the functions in the chain is also a one-one
function from an ordinal into z, which is a C-upper bound of the chain.
Hence, by Zorn, X has a maximal element ¢. which is a one-one function
from an ordinal x into z. Assume z — g 2 # ) and let hcz — ¢“2 Let

S =gU{<af >} Then / € X and g C /., contradicting the maximality of

g. S0, g = z. Thus, « =z By means of g, we can transfer the well-ordering
L, of o to a well-ordering of z.

Exercises

4.73 Show that each of the following is equivalent to the axiom of choice.

(a) Any sct x is equinumerous with some ordinal.

(b) Special case of Zorn's lemma. If x 1s a non-empty set and if the union of
each non-empty C-chain in x is also in x, then x hus a C-maximal
clement.

(¢)  Hausdorff maximal principle. 1f x is a set, then every C-chain in x is a
subset of some maximal C-chain in x.

() Teichnuiller-Tukey Lemma. Any set of finite character has a C-maximal
clement. (A non-empty set x is said to be of finite character if and only
if: (1) every finite subset of an element of x is also an element of x: and
(ii) if every finite subset of a set y is a member of x, then y € x.)

(©) (vx)(Rel(x) = (3y)(Fne(y) A 9(x) = %(») Ay C x))

(I For any non-empty sets x and y, either there is a function with domain x
and range y or there is a function with domain y and range x.

4.74 Show that the following finite axiom of choice is provable in NBG: if x

v a finite set of nonempty disjoint sets, then there is a choice set y for x.

{/1inr: Assume x = a where o« € . Use induction on o.]

PROPOSITION 4.43

I he following are consequences of the axiom of choice.

1} Any infinite set has a denumerable subset.

th)y An infinite set is Dedekind-infinite.

(v) It xis a denumberable set whose elements are denumerable sets, then
U is denumerable.

|

277

|




AXIOMATIC SET THEORY \

Proof

Assume AC.

(a) Let x be an infinite set. By Exercise 4.73(a). x is equinumerous with
some ordinal 2. Since x is infinite. so is «. Hence, o <,a: thercfore, o is
equinumerous with some subset of x.

(b) The proofl is by part (a) and Exercise 4.64(c).

(¢) Assume x is a denumerable set of denumerable sets. Let / be a
function assigning 1o cach u in x the set of all one-one correspondences
between w and . Let z be the union of the range of /. Then, by AC applied
to z, there is a function ¢ such that g'v € v for each non-empty v C z. In
particular, if w € X, then ¢*(/"u) is a one-one correspondence between u and
. Let & be a one-one correspondence between o and x. Define a function F
on | Jx as follows: let v € | Jx and let n be the smallest element of o such that
y € h'n. Now, h'n € x: so. ¢*(f*(h'n)) is a onc-one correspondence between
h'n and . Define F'y = (n. (¢'(/“(h‘'n)))'y). Then F is a onc-one function
with domain |Jx and range a subset of »m x m. Hence, Jx<w x . But
® X 2= w and. therefore, | Jx<{w. If v € x, then ¢ C | Jx and v = w. Hence,
o= |Jx. By Bernstein’s theorem. {Jx = w.

Exercises

4.75 If x is a set, the Cartesian product I, . i 1s the set of functions /" with
domain x such that /*u € u for all ¥ € x. Show that AC is equivalent to the
proposition that the Cartesian product of any set x of non-empty sets is also
non-empty.
4.76 Show that AC implies that any partial ordering of a set x is included in
a total ordering of x.
4.77 Prove that the following is a consequence of AC: for any ordinal «, if x
is a set such that x<xw, and such that (Vu)(u € x = u=<w,), then Jx< w,.
[Hint: The proof is like that of Proposition 4.43(c).]
4.78 (a) Prove y<x = (3 )(Fnc(/YAN2Z(f) =xANRf) = y).
(b) Prove that AC implies the converse of part (a).
4.79P(a) Prove (u +¢ ) 2 u? +¢ (2 % (u % v)) +¢ 2.
(b) Assume y is a well-ordered set such that x x y =~ x4,y and
—(y=<x). Prove that x<\y.
(¢) Assume y =y x y for all infinite sets y. Prove that, if Inf(x) and
z=#"x,then x x z > x +.z.
(d) Prove that AC is equivalent to (Vy)(Inf(y) = y = y x v) (Tarski.
1923).

A stronger form of the axiom of choice is the following sentence (UCE):
(AX) (Fne(X) A (Vu)(u # O = X'u e w)). (Thereis a universal choice function
that is, a function that assigns to every non-empty set # an element of w.)
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UCT obviously implics AC, but W.B. Easton proved in 1964 that UCF is
not provable from AC it NBG is consistent. However. Felgner (1971h)
proved that. for any sentence .4 in which all quantifiers are restricted to scts.
if 4 is provable from NBG + (UCH). then 4 is provable in NBG +(AC).
(See Felgner (1976) for a thorough treatment of the relations between UCF
and AC.)

The theory of cardinal numbers can be simplified if we assume AC: for
AC implies that every set is cquinumerous with some ordinal and. therelore,
that every set x is equinumerous with a unique initial ordinal. which can be
designated as the cardinal numiber of x. Thus. the cardinal numbers would be
identified with the initial ordinals. To conform with the standard notation
lor ordinals. we let X, stand for «,. Proposition 4.40 and Corollary 4.41
establish some of the basic propertics of addition and multiplication of
cardinal numbers.

The status of the axiom of choice has become Iess controversial in recent
vears. To most mathematicians it seems quite plausible. and it has so many
important applications in practically all branches of mathematics that not to
aceept it would seem to be a wilful hobbling of the practising mathemati-
cian. We shall discuss its consistency and independence later in this section.

Another hypothesis that has been proposed as a basic principle of set
theory is the so-called regulariny axiom (Reg):

(VX)X £0 = G eXAynX =0))

(bvery non-empty class X' contains a member that is disjoint from X.)

PROPOSITION 4.44

1) The regularity axiom implies the Fundierungsaxiom:
S(3)Fne(/YANZ(f) = w A (Vu)(u € w = (i) € [*u))

that is, there is no infinitely descending €-sequence xp 3 x; 33 3 ...
thy I we assume AC, then the Fundierungsaxiom implies the regularity
axiom.

() Fhe regularity axiom implies the non-existence of finite €-cycles — that
is. ol functions f on a non-zero finite ordinal o« such that
{0/ 1e. . e fae fD In particular. it implies that there is no set y
such that v € 3.

Proof

) Assume Fne(/) A7) o AV o
By (Reg). there is some element van z such that v oz

Y O fu) etz o,
W Since v oz, there
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15 a finite ordinal 2 such that v = /"2 Then /*(2') € v Nz, contradicting
yOz.= 0

(b) First, we detine the transitive closure TC(u) of a set u. Intuitively. we
want TC(u) to be the smallest transitive set that contains u. Dectine by
induction a function g on m such that ¢'#) = {«} and ¢*(2) = | (g a) for cach
v in o Thus, ¢'l =u.¢g2=uyg3=UUJw). and so on. Lel
TC(u) = {J(yw) be called the transitive closure of u. For any w. TC(u) is
transitive: that is. (Ve)(v € TC(u) = v C TC(u)). Now, assume AC and the
Fundierungsaxiom; also. assume X # §) but there is no y in X such that
yNX =0. Let » be somc element of X: hence. hNX #0. Let
¢ =TC(h)NX. By AC. let /& be a choice function for ¢. Define a function f°
on o such that /~f = b and, for any xin w, f*(a') = A ((/*2) N X). It follows
easily that, for each o in w, /*(«') € f*a, contradicting the Fundierungsaxi-
om. (The proof can be summarized as follows: we start with an element b of
X then. using /i, we pick an element /“1 in b N X since. by assumption, /"1
and X cannot be disjoint, we pick an element /2 in /*1 N.X. and so on.)

(¢) Assume given a finite e-cycle: [0 € f*l €...€ f*ne [0 Let X be
the range of /: {/*0, /*1, ..., /*n}. By (Reg), therc is some /*j in X such that

/70X = . But each element of X has an element in common with X1

Exercises

4.80 If z is a transitive set such that « € z, prove that TC(u) C z.

4.81 By the principle of dependent choices (PDC) we mean the following: if r
is a non-empty relation whose range is a subset of its domain, then there is a
function /: w — %(r) such that (Vu)(u € o = (“u, /(")) € r) (Mostowski,
1948).

(a) Prove F AC = PDC.

(b) Show that PDC implies the denumerable axiom of choice (DAC):

Den(x) A(Vu)(u e x = u#0) = (3)(f:x — Ux A (Vu)(u € x = fu € u))

(¢) Provet PDC = (Vx)(Inf(x) = w=<x) (Hence, by Exercise 4.64(c), PDC
implies that a set is infinite if and only if it is Dedekind-infinite.)

(d) Prove that the conjunction of PDC and the Fundierungsaxiom implies
(Reg).

Let us define by transfinite induction the following function ¥ with do-
main On:

'The use of AC in deriving (Reg) from the Fundicrungsaxiom is necessary.
Mendelson (1958) proved that, if NBG is consistent and if we add the Fundie-
rungsaxiom as an axiom, then (Reg) s not provable in this enlarged theory.
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Wed) o AW
Lim(/) = W/ - U W
FLE—s

Let A stand for J(W"On). that is. H consists of all members of sets of the
form ‘Pa. Let Hy stand for W*('). Thus, Hy = 2(W') and Hy = 2(W ("))

= P(Hp). In vparticular, Hy = 2(W0) = 2(0) = {0}, H, = 2(Hy) =
200 = {0.{0}}, and  Hy = 2(Hy) = 2({0.{0}}) = {0.{0}. {{0}}.
{0.{0}}}.

Define a function p on H such that, for any x in /. px is the least ordinal
a such that x € Wa. pix is called the rank of x. Observe that px must be a
successor ordinal. (In fact, there are no sets of rank ¢, since W' = §. If Zis a
limit ordinal, every set in ¥/ already was o member of ‘Pff for some
B <o 4) As examples. note that ph = 1.p {0} 1. p {0 {0}} = 2. and
p{{0}} =2

Exercise 4.82. Prove that the following are theorems of NBG.

() (Vx)Trans(W¥2)

(b) Trans(H)

() (Vo) (Wa CW(Y))

(dy (Va)(VB)(x <o = Wa CWf)

(¢) On CH

(N (Va)(pra = o)

(2) Viy(VoYue HAvEHAuE D= p'u <, p)
(hy Vu)(uCH=ucH)

PROPOSITION 4.45

‘The regularity axiom is equivalent to the assertion that V' = H, that is, that
cvery set is a member of H.

Proof

{a) Assume ¥V = H. Let X # (). Let o be the least of the ranks of all the
members of X, and let b be an element of X such that p‘b = . Then
hivX - 0 for, if we hN X, then, by Excrcise 4.82(g), p'u € p'b =,
contradicting the minimality of «.

(h)y Assume (Reg). Assume ¥V / /{1, Then V11 # (. By (Reg), there is
some yin VoM such that vy (Vo 77} 0. Hence, y ¢ 11 and so, by
Excrcise 4.82(h), v o /1, contradicting v e 17 1.
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Exercises

4.83 Show that (Reg) is cquivalent to the special case: (Vx)(x = 0
= (A(rexAavnx =)

4.84 Show that. " w¢ assume (Reg). then Ord(X) is cquivalent to
Trans(X) A E Con X. that is, to the wf

(Vi ue X =uCX)ANM)VeYueXAreXAufdv=>uervecu)

Thus, with the regularity axiom, a much simpler definition of the notion of
ordinal class is available, a definition in which all quantifiers are restricted to
sets.

4.85 Show that (Reg) implies that every non-empty transitive class con-
tains )

Proposition 4.45 certainly increases the attractiveness of adding (Reg) as
a new axiom to NBG. The proposition V' = H asserts that every set can be
obtained by starting with () and applying the power sct and union operations
any transfinite number of times. The assumption that this is so is called the
iterative conception of set. Many set theorists now regard this conception as
the best available formalization of our intuitive picture of the universe of
sets. f

By Exercise 4.84. the regularity axiom would also simplify the definition
of ordinal numbers. In addition, we can develop the theory of cardinal
numbers on the basis of the regularity axiom: namely. just define the car-
dinal number of a set x to be the set of all those y of lowest rank such that
y 2= x. This would satisfy the basic requirement of a theory of cardinal
numbers, the existence of a function Card whose domain is ¥ and such that
(Vx)(Vy)(Card'x = Card‘y < x > y).

There is no unanimily among mathematicians about whether we have
sufficient grounds for adding (Reg) as a new axiom, for, although it has
great simplifying power, it does not have the immediate plausibility that
even the axiom of choice has, nor has it had any mathematical applications.
Nevertheless, it is now often taken without explicit mention to be one of the
axioms.

The class H determines an inner model of NBG in the following sense.
For any wf # (written in unabbreviated notation), let Rel; (#) be the wf
obtained from # by replacing every subformula (VX)%(X) by
(VX)X C H = ¢(X)) (in making the replacements we start with the in-

IThe iterative conception seems to presuppose that we understand the power set
and union operations and that ordinal numbers (or something essentially equivalent
to them) are available for carrying out the transfinite iteriation of the power set and
union operittions.
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prefixing (Y CHAYLCHN. . ANY, CH)=.

In other words, in forming Rely, ((4). we interpret “class’ as “subclass of
H". Since M(X) stands for (3Y)(X € V). Rely (M(X)) Is
(YWY CHAX ¢ V), which is equivalent to X € H: thus. the ‘sets’ of the
model are the clements ot H. Hence. Rely ((Vx).4) is cquivalent to
(Wx)(x e H = %), where 4% is  Rely(4). Note also that
FXCHAYCH = [Rely(X =Y) < X =Y. Then it turns out that. for
any theorem # of NBG. Rely, (%) is also a theorem of NBG.

Exercises

4.86 Verify that, for each axiom .4 of NBG. i Rely (4). If we adopt a
semantic approach. one need only show that. il ./ is a model for NBG. in
the usual sense of “model’, then the objects X of ./ that satisfy the wi X C /{1
also form a model for NBG. In addition, onc can verify that (Reg) holds in
this model; this is essentially just part (a) of Proposition 4.45. A direct
consequence of this fact is that. if NBG is consistent, then so is the theory
obtained by adding (Reg) as a new axiom. That (Reg) is independent of
NBG (that is. cannot be proved in NBG) can be shown by means of a model
that is somewhat more complex than the one given above for the consistency
proof” (see Bernays, 1937 1954, part VII). Thus, we can consistently add
cither (Reg) or its negation to NBG. if NBG is consistent. Practically the
same arguments show the independence and consistency of (Reg) with re-
spect to NBG + (AC).

4.87 Consider the model whose domain is /, and whose interpretation of €
is LIy, . the membership relation restricted to H,. Notice that the ‘sets’ of this
model are the sets of rank <,a and the ‘proper classes’ are the sets of rank
»'. Show that the model H, satisfies all axioms of NBG (except possibly the
axioms of infinity and replacement) if and only if Lim(a). Prove also that H,
satisfies the axiom of infinity if and only if o >, w.

4.88 Show that the axiom of infinity is not provable from the other axioms
of NBG. if the latter form a consistent theory.

4.89 Show that the replacement axiom (R) is not provable from the other
axioms (T, P.NO(BD—(B7), U, W, S) if these latter form a consistent theory.
4.90 An ordinal x such that H, is a model for NBG is called inaccessible.
Since NBG has only a finite number of proper axioms, the assertion that « is
iaceessible can be expressed by the conjunction of the relativization to H,
of the proper axioms of NBG. Show that the existence of inaccessible or-
dinals is not provable in NBG if NBG is consistent. (Compare Shepherdson
(1951 53). Montague and Vaught (1959), and, for related results, Bernays
(1961) and Levy (1960)) Inaccessible ordinals have been shown to have
connections with problems in measure theory and algebra (see Ulam, 1930:
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Zeeman. 1955: Erdds and Tarski. 1961)." The consistency of the theory
obtained from NBG by adding an axiom asserting the existence of an in-
accessible ordinal is still an open question. More about inaccessible ordinals
may be found in Exercisc 4.91.

The axiom of choice turns out to be consistent and independent with
respect (o the theory NBG + (Reg). More precisely. if NBG is consistent,
AC 1s an undecidable sentence of the theory NBG + (Reg). In fact, Godel
(1938: 1939; 1940) showed that, if NBG is consistent. then the theory NBG
+ (AC) + (Reg) + (GCH) s also consistent, where (GCH) stands for the
generalized continuum hypothesis:

(Vay(Infly) = —(Ip)(x <y Ay <.2(x)))

(Our statement of Godel's result is a  bit  redundant. since
Fapg (GCH) = (AC) has been proved by Sierpinski (1947) and Specker
(1954). This result will be proved below.) The unprovability of AC from
NBG + (Reg). if NBG is consistent, has been proved by P.J. Cohen (1963--
64), who also has shown the independence of the special continuum hy-
pothesis. 27 = wy. in the theory NBG + (AC) + (Reg). Expositions of the
work of Cohen and its further development can be found in Cohen (1966)
and Shoenfield (1971b). as well as in Rosser (1969) and Felgner (1971a). For
a thorough treatment of these results and other independence proofs in set
theory, Jech (1978) and Kunen (1980) should be consulted.

We shall present here a modified form of the proof in Cohen (1966) of
Sierpinski’s theorem that GCH implies AC.

DEFINITION

For any set v, let 2°(v) = v, 2 (v) = P(v), 2*(v) = P(P(v)), ..., 7?7 )
= 2(#*(v)) for all k in .

LEMMA 4.46

If o=<v, then 2*(v) +. 2#*(v) = #*(v) for all k=,1.

fInaccessible ordinals are involved also with attempts to provide a suitable set-
theoretic foundation for category theory (see Maclhane, 1971 Gabriel, 1962 Sonner,
1962; Kruse, 1966; Isbell, 1966).
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Proof

Remember that .2(x) 2~ 2 (see Exercise 4.40). From m=i wc obtain
o=<.2*(¢) for all k in «. Hence, AHe) e = 240 tor all k in o, by Ex-
ercise 4.64(g). Now, for any £ >, I,

P0) o P0) = Py x 2= 24 () x 2227 o

4

227 2l 27 T 2 T sk () = b

LEMMA 4.47

Iy +ex = 2(x 4+, x), then .2(x)<y.

Proof

Notice that 2(x +.x) 22"V 22 2V x 2 > 2(x) x .2(v). Let v = v x {0}
and x" = x x {1}. Since y 4+ x = 2(x 4+, x) = .2(x) x .2(x). there is a func-
tion /" such that v* Ux*2=2(x) x .#(x). Let & be the function that takes each u
i x* into the first Co[mponenl of the pair f‘u. Thus, h:x' = 2(x). By
Proposition 4.25(a), there must exist ¢ in .2(x) — A*(x*). Then, for all z in
#(x). there exists a unique v in y* such that /v = (¢.z). This determines a
one one function from #(x) into y. Hence, 2(x)=<y.

PROPOSITION 4.48

Assume GCH.

ti) Il u cannot be well-ordered and u 4+ v = u and f is an ordinal such that
£=<2", then f=<Xu.
(b) The axiom of choice holds.

Proof

(i) Notice that u +. 1 = u implies | +. u = u, by Exercise 4.71(b). Therefore,
by Lixercise 4.55(i), 2% +¢ u = 2%, Now, u<Xf +. u=<x2"+. u = 2*. By GCH,
ather (1) wx=f+.u or (i) B+euz=2'. If (i) holds,
Bicu™2"+ou=2u+cu). Hence, by Lemma 4.47, 2(~)<f and,
therefore, w={ff. Then. since u would be equinumerous with a subset of an
ordinal, w could be well-ordered. contradicting our assumption. Hence, (i)
must hold. But then, i=<ff 1. u ™~ u.

(b) We shall prove AC by proving the equivalent sentence (WO) asserting
that every set can be well-ordered. To that end, consider any set v and
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assume. for the sake of contradiction, that x cannot be well-ordered. Let
=2 Then o=<yUm=<r. Hence. by Lemma 4.46. PAEY 4o 20
=~ 2y for all k=1, Also. since y<xyUm=r < 2(r) < 2(2()) < ...
and x cannot be well-ordered. cach .7)k(l’) cannot be well-ordered, tor & = ,0.
Let ff = # v. We know that 3=,.#*(¢r) by Corollary 4.32. Henee. by part (a).
withu = ,7’"(1‘). we obtain /i<./’3(1‘). Using part (@) twice more (successively
with i = .2°(¢) and w = 2(r)). we obtain # v = f=v. But this contradicts
the definition of .# ‘v as the least ordinal not equinumerous with a subsct
ol r.

Exercise

4.91 An x-sequence is defined to be a function / whose domain is . If the
range of / consists of ordinals, then / is called an ordinal x-sequence and, if,
in addition, f <, 7 <, impliecs [ <, [y, then [ is called an
increasing ordinal x-sequence. By Proposition 4.12, if f is an incrcasing
ordinal s-sequence. then | J(/**«) is the least upper bound of the range of /.
An ordinal & is said to be regular if. for any increasing ordinal «-sequence
such that % <, ¢ and the ordinals in the range of [/ are all
<o 04U 2) +0 1 <00 8. Non-regular ordinals are called singular ordinals.
(a) Which finite ordinals arc regular?

(b) Show that my is vegular and o, is singular

(c) Prove that every regular ordinal is an initial ordinal.

(d) Assuming the axiom of choice (AC), prove that every ordinal of the
form o, is regular.

(¢) If o, is regular and Lim(x), prove that w, = 2. (A regular ordinal w,
such that Lim(x) is called a weakly inaccessible ordinal.)

(f)  Show that, if w, has the property that 3 <, w, implies 2(7) < w,, then
Lim(z). The converse is implied by the generalized continuum hypoth-
esis. A regular ordinal w, such that & >, @ and such that y <, w, implies
P(7) < wy. 1s called strongly inaccessible. Thus, every strongly inacces-
sible ordinal is weakly inaccessible and, if (GCH) holds, the strongly
inaccessible ordinals coincide with the weakly inaccessible ordinals.

(g) (Sheperdson 1951-33; Montague and Vaught, 1959) (1) If y is inacces-
sible (i.e., if H, is a model of NBG), prove that y is weakly inaccessible.
(ii)D In the theory NBG + (AC), show that 7y is inaccessible if and only
il y is strongly inaccessible.

(h) If NBG is consistent, then in the theory NBG + (AC) + (GCH), show
that it is impossible to prove the existence of weakly inaccessible or-
dinals.

.
K
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4.6 OTHER AXIOMATIZATIONS OF SET THEORY

We have chosen to develop set theory on the basis of NBG because it is
relatively simple and convenient for the practising mathematician. There
are, of course. many other varicties of axiomatic set theory, of which we will
now make a brief survey.

Morse—Kelley (MK)
Strengthening NBG. we can replace axioms (B1) - (B7) by the axiom schema:
() AN e Y o 40)

where 4(x) is any wl (not necessarily predicative) of NBG and Y is not free
in .4(x). The new theory MK. called Morse Kelley ser theory, became well-
known through its appcarance as an appendix in a book on general to-
pology by Kelley (1955). The basic idea was proposed independently by
Mostowski, Quine. and Morse (whose rather unorthodox system may be
found in Morse (1965)). Axioms (Bl)-(B7) follow easily from ([]) and,
thercfore. NBG 1s a subtheory of MK. Mostowski (1951a) showed that, if
NBG is consistent, then MK is rcally stronger than NBG. He did this by
constructing a ‘truth defimition” in MK on the basis of which he proved
I vk GornnpG. Where Conpe s a standard arithmetic sentence asserting the
consistency of NBG. On the other hand, by Godel's second theorem,
‘4t G 18 Not provable in NBG if the latter is consistent.

The simplicity and power of schema ([]) make MK very suitable for usc
hy mathematicians who are not interested in the subtleties of axiomatic set
theory. But this very strength makes the consistency of MK a riskier gambile.
However, if we add to NBG + (AC) the axiom (In) asserting the existence
of a strongly inaccessible ordinal 0, then Hj is a model of MK. Hence, MK
mvolves no more risk than NBG + (AC) + (In).

Therc are several textbooks that develop axiomatic set theory on the basis
of MK (Rubin, 1967; Monk, 1980; Chuquai, 1981). Some of Cohen’s in-
dependence results have been extended to MK by Chuquai (1972).

Fxereises

4.92 Prove that axioms (B1)-(B7) are theorems of MK.
4.93 Verity that,if 0 is a strongly inaccessible ordinal, then Hy is a model of
MK.

{ 287
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Zermelo-Fracnkel (ZF)

The carliest axiom system for set theory was devised by Zermelo (1908). The
objects of the theory are thought of intuitively as sers. not the c¢lasses of
NBG or MK. Zermelo's theory Z can be formulated in a language that
contains only onc predicate letter €. Equality is defined extensionally: x = v
stands for (Vz)(z € x & z € v). The proper axioms arc:

Tyx=r=(xczavcr) (substitutivity of =)
P () (Vu)uEez e u=xVu=y) (pairing)
N: () (V) (véx) (null set)
U: ()(Vu)(weve (Fe)(uecvhrex)) (sum set)
W: () (Vu)(u €y o uCx) (power set)
St (3 (Vu)(u € y < (u € x A Au))). where A(u) is any wl not containing y

free (selection)
I ()@ exA(Vz2)(zcx=zU{z} €x)) (infinity)

Here we have assumed the same definitions of C.0. U and {u} as in
NBG.

Zermelo's intention was to build up mathematics by starting with a few
simple sets () and ) and then constructing further sets by various well-
defined operations (such as formation of pairs, unions and power sets). In
fact., a good deal of mathematics can be built up within Z. However,
Fraenkel (1922a) observed that Z was too weak for a full development of
mathematics. For example, for each finite ordinal a, the ordinal w 4, # can
be shown to exist, but the set 4 of all such ordinals cannot be proved to
exist, and, therefore, w +, @, the least upper bound of 4, cannot be shown
to exist. Fraenkel proposed a way of overcoming such difficulties, but his
idea could not be clearly expressed in the language of Z. However, Skolem
(1923) was able to recast Fraenkel’s idea in the following way: for any wf
A(x,y), let Fun(4) stand for (Vx)(Vu)(Vv)(B(x,u) A #(x,v) = u = v). Thus,

Fun (%) asserts that 4 determines a function. Skolem’s axiom schema of

replacement can then be formulated as follows:

(R*) Fun(#4) = (Yw)(32)(Vv)(v € z & (u)(u € wA B(u,v)))
for any wf 4(x,y)

This is the best approximation that can be found for the replacement axiom
R of NBG.

The system Z + (R*) is denoted ZF and is called Zermelo-Fraenkel set
theory. In recent years, ZF is often assumed to contain a set-theoretic reg-
ularity axiom (Reg'): x # 0 = (3y)(y € x AyNx =0). The reader should
always check to see whether (Reg*) is included within ZI-. ZI¥ is now the
most popular form of axiomati¢ set theory: most of the modern rescarch in
set theory on independence and consistency proofs has been carned ont with
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respect to ZF. For expositions of ZI'. see Krivine (1971). Suppes (1960).
Zuckerman (1974), Levy (1978) and Hrbacek and Jech (1978).

ZF and NBG vyicld essentiaily equivalent developments of set theory.
Every sentence of ZF is an abbreviation of a sentence ol NBG since, in
NBG. lower-case variables v.y.z.... serve as restricted set variables. Thus
axiom N is an abbreviation of (3v)(M(x) A (Vy)(M{v) = v¢x)) in NBG. Tt
1s a simple matter to verify that all axioms of ZF are theorems in NBG.
Indeed, NBG was originally constructed so that this would be the case. We
can conclude that, if NBG is consistent, then so is Z1-. In flact, if a con-
tradiction could be derived in ZF. the samce proof would yield a con-
tradiction in NBG.

The presence of class variables in NBG seems to make it much more
powerful than ZF. At any rate, it is possible to express propositions in NBG
that either are impossible to formulate in ZF (such as the universal choice
axiom) or are much morc unwieldy in ZF (such as transfinite induction
theorems). Nevertheless, it is a surprising fact that NBG is no riskier than
ZF. An even stronger result can be proved: NBG is a conservative extension
of ZF in the sense that, for any scntence .4 of the language of ZF. if Fygg 4.
then bz 4 (see Novak (Gal) 1951; Rosser and Wang, 1950: Shoenfield,
1954). This implies that, if ZF is consistent, then NBG is consistent. Thus,
NBG is consistent if and only if ZF is consistent, and NBG seems (o be no
stronger than ZF. However. NBG and ZF do differ with respect to the
cxistence of certain kinds of models (se¢ Montague and Vaught, 1959).
Moreover, another important difference is that NBG is finitely axiomatiz-
able, whereas Montague (1961a) showed that ZF (as well as Z) is not finitely
axiomatizable. Montague (1961b) proved the stronger result that ZF cannot
be obtained by adding a finite number of axioms to Z.

kExercise

4.94 Let H; =|JH, (see page 281).

() Verify that H; consists of all sets of rank less than «.

(b) 1f % is a limit ordinal >, , show that /7 is a model for Z.

()" Find an instance of the axiom schema of replacement (R#) that is false
in H, . [Hint: Let #(x,y) be x€ wAy=w+,x. Observe that
w+omgHy o cand o4, 0 = J{v| (Fu)(u € o A B(u,v))}]

(d) Show that, if ZF is consistent, then ZF is a proper extension of Z.

I'he theory of types (ST)

Russell’s paradox is based on the set K ot all those sets that are not members
of themselves: K {vv¢ x} Clearly, K e A il and only if K¢ K. In NBG
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this argument simply shows that K is a proper class. not a set. In ZIF the
conclusion is just that there is no such set K.

Russell himself chose to find the source of his paradox clsewhere. He
maintained that x € v and x¢x should be considered “illegitimate’ and
“ungrammatical” formulas and. therefore, that the definition of K makes no
sense. However. this alone is not adequate because paradoxes analogous to
Russell’s can be obtained from slightly more complicated circular prop-
erties, like x € v A v ey

Exercise

4.95 (a) Derive a Russell-style paradox by using x € v A y € x.
(b) Usexevi Ay €wmA...AY, | €V, Ay, €xtoobtain a paradox,
where n > 1.

Thus. to avoid paradoxes, one must forbid any kind of indirect circu-
larity. For this purpose, we can think of the universe divided up into typesin
the following way. Start with a collection W of non-sets or individuals. The
clements of W are said to have rype 0. Sets whose members are of type 0 are
the objects of type 1. Sets whose members arc of typel will be the objects of
type 2. and so on.

Our language will have variables of ditferent types. The superscript of a
variable will indicate its type. Thus. x" is a variable of type 0, y' is a variable of
type I, and so on. There are no variables other than type variables. The atomic
wfsare of the form x" € y™ ' where » is one of the natural numbers0. 1,2, . .. .
The rest of the wfs are built up from the atomic wfs by means of logical
connectives and quantifiers. Observe thuat —(x € x) and ~(x € y Ay € x) are
not wfs.

The equality relation must be defined piecemeal, one definition for each

type.

DEFINITION

X' =y" for (VZ*)(x" € 2! & " € 2"*!) Notice that two objects are de-
fined to be equal if they belong to the same sets of the next higher type. The
basic property of equality is provided by the following axiom scheme.

ST1 (EXTENSIONALITY AXIOM)
(V.\’")(X” c 'VIIC | P I :uA I) - ,l"” | Lo 1

This asserts that two sets that have the same members must be equal. On the
other hand, observe that the property of luving the same members could
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not be taken as a general definition of equality because it is not suitable for
objects of type 0.
Given any wi A(x"). we wish to be able to define a set {¥" | 4(x")}.

ST2 (COMPREHENSION AXIOM SCHEME)

For any wi' Z(x"). the following wf is an axiom:
(3),/“ | }(V.\‘”)(,\‘” c ,V“‘ 1 PEN ,/f(_‘_n))

Here, y"* ! is any variable not frec in 4(x"). If we use the extensionality
axiom, then the set v ! asserted to exist by axiom ST2 is unique and can be
denoted by {x" | A(x")}.

Within this system. we can define the usual set-theoretic notions and
operations, as well as the natural numbers. ordinal numbers. cardinal
numbers and so on. However, these concepts are not unique but are re-
peated for each type (or. in some cases, for all but the first few types). For
example, the comprehension scheme  provides a null set A" =
" x" # x"} for each non-zero type. But there is no null set per se. The
same thing happens for natural numbers. n type theory. the nutural numbers
arc not defined as they are in NBG. Here they are the finite cardinal
numbers. For example, the set of natural numbers of type 2 is the inter-
section of all sets containing {AI} and closed under the following successor
operation: the successor S(y*) of a set y* is {o' | (J")(3P) @' €

WA u At = ut U {z"})}. Then, among the natural numbers of type 2.

we have 0 = {A'}, 1 = S(0),2 = S(1), and so on. Here, the numerals 0, 1, 2,

. should really have a superscript 2 to indicate their type. but the super-
scripts were omitted for the sake of legibility. Note that 0 is the set of all sets
of type 1 that contain no elements, 1 is the set of all sets of type | that
contain one element, 2 is the set of all sets of type | that contain two
clements, and so on.

This repetition of the same notion in different types makes it somewhat
imconvenient for mathematicians to work within a type theory. Moreover, it
Is casy to show that the existence of an infinite set cannot be proved from the
extensionality and comprehension schemas.! To see this, consider the
‘model” in which cach variable of type n ranges over the sets of rank less
than or ¢qual to n 4+, . (There is nothing wrong about assigning overlap-
ping ranges (o variables of different types.)

We shall assume an axiom that guarantees the existence of an infinite set.
As a preliminary. we shall adopt the usual definition {{x"}. {x",)"}} of the
ordered pair: ("), where {70} stands for {u” | " =x"Vu" = y'}.

“This Tact seemed to undermine Russell’s doctrine of fogicism, according to

which all of mathemances could be reduced to basic axioms that were of an essentiatly
fogrcal chanacter An axiom of infimity could not be thought of as o logical truth,
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Notice that (¥ 3"} is of tvpe n + 2. Hence, a binary relation on a set 4. being
a set ol ordered pairs of clements of 4. will have type 2 greater than the type
of A. In particular. a binary relation on the universe V' = {x" | x" =x"} of

all objects of type 0 will be a set of type 3.
ST3 (AXIOM OF INFINITY)

) EE () e A
(V1 )(‘/l NG CANT §£ ALY e A wy ext =
G oy e YA [ Vi (32“)((1' e

This asserts that there is a non-empty irreflexive. transitive binary relation x*

on Vl such that every member of the range of x* also belongs to the domain
of x*. Since no such relation exists on a finite set. ' must be infinite.

The system based on ST1-ST3 is called the simple theory of tvpes and is
denoted ST. Because of its somewhat complex notation and the repetition of
concepts at all (or. in some cases. almost all) type levels. ST is not generally
used as a foundation of mathematics and is not the subject of much con-
temporary rescarch. Suggestions by Turing (1948) to make type theory more
usable have been largely ignored.

With ST we can associate a first-order theory ST*. The non-logical
constants of ST* are € and monadic predicates 7, for each natural number
n. We then translate any wf .4 of ST into ST* by replacing subformulas
(VA" (x") by (Vx)(T,(x) = %{(x")) and, finally, if y/',... y* are the free
variables of 4, prefixing to the result 7, (m) A ... AT, (H) = and changing
each y/ into y;. In a rigorous presentation, we would have to specily clearly
that the replacements are made by proceeding from smaller to larger sub-
formulas and that the variables x. y, ..., % are new variables. The axioms of
ST* are the translations of the axioms of ST. Any theorem of ST translates
into a theorem of ST".

Exercise

4.96 Exhibit a model of ST* within NBG.

By virtue of Exercise 4.96, NBG (or ZF) is stronger than ST: (1) any
theorem of ST can be translated into a corresponding theorem of NBG; and
(2) if NBG is consistent, so is ST.T

To provide a type theory that is easier to work with. one can add axioms
that impose additional structure on the set V' of objects of type 0. For

FA stronger result was proved by John Kemeny (1949) by means of a truth
definition within Z: i Z s consistent, soas 8T
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example. Peano’s axioms lor the natural numbers were adopted at level 0 in
Godel's system P. for which he originally proved his famous incompleteness
theorem (see Godel, 1931).

In Principia Mathematica (1910-1913), the three-volume work by Alfred
North Whitehead and Bertrand Russell. there is a theory of types that is
further complicated by an additional hierarchy of orders. This hierarchyv was
introduced so that the comprehension scheme could be suitably restricted in
order not to generate an impredicatively defined set, that is. a set A4 defined by
a formula in which some quantified variabie ranges over a set that turns out
to contain the set 4 itself. Along with the mathematician Henri Poincaré.
Whitehead and Russell believed impredicatively defined sets to be the root
of all evil. However, such concepts are required in analysis (for example, in
the proof that any non-empty sct of real numbers that is bounded above has
a least upper bound). Principia Mathematica had to add the so-called axiom
of reducibility to overcome the order restrictions imposed on the compre-
hension scheme. The Whitehead- Russell system without the axiom of re-
ducibility is called ramified type theorv: it is mathematically weak but is of
interest to those who wish an extreme constructivist approach to mathe-
matics. The axiom of reducibility vitiates the effect of the order hicrarchy:
therefore, it is much simpler to drop the notion of order and the axiom of
reducibility. The result is the simple theory of types ST, which we have
described above.

In ST. the types are natural numbers. For a smoother presentation, some
fogicians allow a larger set of types, including types for relations and/or
functions defined on objects taken from previously defined types. Such a
system may be found in Church (1940).

Principia Mathematica must be read critically; for example, it often
overlooks the distinction between a formal theory and its metalanguage.
The idea of a simple theory of types goes back to Ramsey (1925) and.
independently. to Chwistek (1924-25). Discussions of type theory are found
in Andrews (1986), Hatcher (1982) and Quine (1963).

Quine’s theories NF and ML

Quine (1937) invented a type theory that was designed to do away with some
ol the unpleasant aspects of type theory while keeping the essential idea of
the comprehension axiom ST2. Quine’s theory NF (New Foundations) uses
only one kind of variable x,y,z,... and one binary predicate letter €.
Fquality is defined as in type theory: x = y stands for (Vz)(x €z & y € z).
['he first axiom is familiar:
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NFI (EXTENSIONALITY)

(Voizexs e y) >0 =1y

In order to formulate the comprehension axiom. we introduce the notion
of stratification. A wl 4 is said to be stratified i one can assign integers to
the variables of 4 so that: (1) all occurrences of the same free variable are
assigned the same integer: (2) all bound occurrences of a variable that are
bound by the same quantifier must be assigned the same integer; and (3) for
every subformula x € v of 4. the integer assigned to y is | greater than the
integer assigned to .

Examples
I (I} (x € ¥y Ay €z) Vu € x is stratified by virtue of the assignment indi-
cated below by superscripts:

(B e A ey vl ey

(89

() (x € v)) A (Fy)(y € x) is stratified as follows:
(DH ey A @G e xly
Notice that the vs in the second conjunct do not have to have the same
integers assigned to them as the ys in the first conjunct.
3. x € yVy € xis not stratified. If ¥ is assigned an integer a, then the first y
must be assigned » + | and the second y must be assigned # — 1. con-
tradicting (1).

NF2 (COMPREHENSION)

For any stratified wl #4(x),
(I (Ix)(x € y & Ax))

is an axiom. (Here, y is assumed to be the first variable not free in #4(x).)
Although NF2 is an axiom scheme, it turns out that NF is finitely axi-
omatizable (Hailperin, 1944).

Exercise

4.97 Prove that equality could have been defined as follows: x =y for
(Vz)(x € z = y € z) (More precisely, in the presence of NF2, this definition is
equivalent to the original one.)

The theory of natural numbers, ordinal numbers and cardinal numbers s
developed in much the sume way as in type theory, except that there is no
longer a multiplicity of similar concepts. There is a unique empty set
A {v ]/ a) and a unigue universal set B vy o) We can casily
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prove ¥ e V. which immediately distinguishes NF from type theory (and
from NBG. MK and ZF).

The usual argument for Russcll's paradox does not hold in NF. since

x ¢ v is not stratified. Almost all of standard set theory and mathematics is

derivable in NF: this is done in full detail in Rosser (1933). However. NF
has some very strange propertics. First of all. the usual proof of Cantor’s
thcorem. 4 < .2(A). does not go through in NF; at a key step in the proof. a
set that is needed is not available because its defining condition 1s not
stratified. The apparent unavailability of Cantor’s theorem has the desirable
effect of undermining the usual proot of Cantor’'s paradox. If' we could
prove 4 < .#(4), then. since .2(V) = V. we could obtain a contradiction
from V. < 2(V}. In NF. the standard proof of Cantor’s theorem docs yicld

USC(4) < #£(A4). where USC(4) stands for {x| (Gu)(w € AAx = {u})}. If

we let 4 = V. we conclude that USC(F) < V. Thus, V has the peculiar
property that it is not equinumerous with the sct of all unit sets of its
clements. In NBG. the function /. defined by [{u) = {u} Tor all w in A,
establishes a one one correspondence between 4 and USC(A4) for any sct A.
However. the defining condition for / is not stratified, so that /" may not
exist in NF. If /" does exist, 4 is said to be stronglv Cantorian.

Other surprising properties of NI are the following.

I. The axiom of choice is disprovable in NF (Specker. 1953).

2. Any model for NF must be non-standard in the sense that a well-ordering
of the finite cardinals or of the ordinals of the model is not possible in the
metalanguage (Rosser and Wang, 1950).

3. The axiom of infinity is provable in NF (Specker, 1953).

Although property 3 would ordinarily be thought of as a great advan-
tage. the fact of the provability of an axiom of infinity appeared to many
logicians to be too strong a result. If rhar can be proved, then probably
anything can be proved, that is, NF is likely to be inconsistent. In addition,
the disprovability of the axiom of choice seems to make NF a poor choice
for practising mathematicians. However, if we restrict attention to so-called
Cantorian sets, sets A for which 4 and USC(A4) are equinumerous, then it
might be consistent to assume the axiom of choice for Cantorian sets and to
do mathematics within the universe of Cantorian sets.

NF has another attractive feature. A substantial part of category theory
(sce MacLane, 1971) can be developed in a straightforward way in NF,
whereas this is not possible in ZF, NBG or MK. Since category theory has
become an important branch of mathematics, this is a distinct advantage for
NI,

It the system obtained from NF by assuming the existence of an inac-
cessible ordinal is consistent, then Z17 1s consistent (see Orey, 1956a; Collins
1955). If we add to NE the assumption of the existence of an ifinite strongly
Cantorian set, then Zermelo's set theory-7Z s consistent (see Rosser, 1954),
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The question of whether the consistency of ZF impilies the consistency of NF
is still open (as is the question of the reverse implication).

Let ST be the simple theory of types ST without the axiom of infinity.
Given any closed wi % of ST, let #* denote the result of adding 1 to the
types of all variables in 4. Let SP denote the theory obtained from ST by
adding as axioms the wifs .2 < £ for all closed wis 4. Specker (1958: 1962)
proved that NF is counsistent if and only if SP is consistent.

Let NFU denote the theory obtained from NF by restricting the ext-
ensionality axiom to non-empty sets:

NF1" (Au)uex)A(Vz)(zeEx @ zey) = x =y

Jensen (1968 -69) proved that NFU is consistent if and only if ST~ is con-
sistent, and the equiconsistency continues to hold when both theories are
supplemented by the axiom of infinity or by axioms of infinity and choice.
Discussions of NF may be found in Hatcher (1982) and Quine (1963).
Forster (1983) gives a survey of more recent results.
Quine also proposed a system ML that is formally related to NF in much
the same way that MK is related to ZF. The variables are capital italic

letters X.Y.Z....: these variables are called class variables. We define
M(X). X is a ser.” by (3Y)(X € Y). and we introduce lower-case italic letters
X.yozoo.as variables restricted to sets. Equality is defined as in NBG: X = Y

for (VZ)(Z € X & Z € Y). Then we introduce an axiom of equality:
MLI: X=YAXeZ=>YelZ

There is an unrestricted comprehension axiom scheme:
ML2: (3Y)(W)(x € ¥ & 4(x))

where #(x) is any wf of ML. Finally, we wish to introduce an axiom that has
the same effect as the comprehension axiom scheme NF2:

ML3: (V) .. (V) (32)(Vx)(x € z & B(x))

where #(x) is any stratified wf whose free variables are x, yy, ..., y,(n > 0)
and whose quantifiers are set quantifiers.

All theorems of NF are provable in ML. Hence, if ML is consistent, so is
NF. The converse has been proved by Wang (1950). In fact, any closed wf of
NF provable in ML is already provable in NF.

ML has the same advantages over NF that MK and NBG have over Z1:
a greater ease and power of expression. Moreover, the natural numbers of
ML behave much better than those of NF; the principle of mathematical
induction can be proved in full generality in ML.

'Quince uses the word “clement’ instead of “set’
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The prime source for ML is Quine (1951)." Consult also Quine (1963) and
Fraenkel. Bar-Hillel and Lévy (1973).

Set theory with urelements

The theories NBG. MK, ZF. NF and ML do not allow for objects that arc
not sets or classes. This is all well and good for mathematicians. since only
sets or classes seem to be needed for dealing with mathematical concepts and
problems. However, if set theory is to be a part of a more inclusive theory
having to do with the natural or social sciences, we must permit reference to
things like electrons, molecules, people, companics, etc., and to sets and
classes that contain such things. Things that are not scts or classes are
sometimes called wrelementst We shall sketch a theory UR similar to NBG
that allows for the existence of urclements.t Like NBG. UR will have a finite
number of axioms.

The variables of UR will be the lower-case Latin boldlace letters
X1.X2.... . (As usual, let us use x.y,z.... to refer to arbitrary variables.) In
addition to the binary predicate letter 43 there will be a monadic predicate
letter A]. We abbreviate A3(x.y) by x € y. =43(x.y) by x ¢ y. and 4}(x) by
Cls (x). (Read “Cls(x)” as "x is a class’.) To bring our notation into line with
that of NBG, we shall use capital Latin letters as restricted variables for
classes. Thus, (VX)4(X) stands for (¥x) (Cls (x) = 4(x)), and (3X)#4(X)
stands for (3x) (Cls(x) A #(x)). Let M(x) stand for Cls(x) A (3y(x € y), and
read *M(x) as ‘x is a set’. As in NBG, use lower-case Latin letters as
restricted variables for sets. Thus, (Vx)4(x) stands for (Vx) (M(x) = 4(x)).
and (3x)A(x) stands for (Ix) (M(x) A4(x)). Let Pr(x) stand for Cls(x) A
-M(x), and read ‘Pr(x)’ as ‘x is a proper class’. Introduce Ur(x) as an
abbreviation for —Cls(x), and read “Ur(x)" as ‘x is an urelement’. Thus, the
domain of any model for UR will be divided into two disjoint parts con-
sisting of the classes and the urelements, and the classes are divided into sets
and proper classes. Let El(x) stand for M(x) V Ur(x), and read ‘El(x)” as x is
an clement’. In our intended interpretation, sets and urelements are the
objects that are elements (i.e., members) of classes.

'Quine’s carlier version of ML, published in 1940, was proved inconsistent by
Rosser (1942). The present version is due to Wang (1950).

PUr s a German prefix meaning  primitive, original or earliest. The words
andividual” and “atom’ are sometimes used as synonyms for “urelement’.

fZermelo’s 1908 axiomatization permitted urclements, Fraenkel was among the
hirst to draw attention to the fact that urelements are not necessary for mathematical
purposes (see FraenKel, 1928, pp. 3550, Von Neumann's (1925 1928) axiom systems
cxcluded urelements )
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Exercise AXIOM UR3 (NULL SET)

4.98 Prove: Fp (VX)(El(x) < —Pr(x)). (Fe)(vy )y £ x)
We shall define equality in o different way for classes and urelements. This tell us that there is a ses that has no members. Of course, all urelements
also have no elements.

Ak | x — visoan - svinti "
DEFINITION x =y is an abbreviation for: Exercise

[Cls(x) ACIs(y) A (Vz)(z € x e zey)] V[Ur(x) AUr(y) A (VZ)(x € 2 <> y € 7)]
4 102 Show:
—ur (F10)(Vy)(y € x). On the basis of this excrcise we can introduce a new

Exercise mdnvndual constant ) satisfying the condition M({) A (Vy)(y ¢ §).

4.99 Prove :Fyr (VX)(x = x).

AXIOM UR4 (PAIRING)
AXIOM URI1
(VE)(Ur(x) = (%) (3 ¢ x)] Exercise (vx)(Vy)(El(x) AEl(y) = (Fz)(Vu)(u € z <= [u = xVu =y
Thus. urclements have no members.
4.112 Prove: Fyr (VX)(Vy)(Zi2)([E(x) AEl(y) A (Vu)(u€z & [u=xVu
=¥P VI[(-El(x) v =El(y)) Az = 0])

Exercise On the basis of this exercise we can introduce the unordered pair notation
{x.y}. When x and y are ¢lements, {x,y} is the set that has x and y as its
4.100 Prove: Fyr (Vx)(Vy)(x € y = Cls(y) A El(x)). only members; when x or y is a proper class. {x,y} is arbitrarily chosen to be

\ the empty set (. As usual, the singleton notation {x} stands for {x,x}.

AXIOM UR2

DEFINITION (ORDERED PAIR)

(VX)(VY)(VZ)X =Y AX €Z= Y € Z)

Let (x.y) stand for {{x}, {x,y}}. As in the proof of Proposition 4.3, one can
Exercise show that, for any elements x,y,u,v,(X.y) = (u,v) & [x =uAy=yv|. Or-
4.101 Show: dered n-tuples can be defined as in NBG.

The class existence axioms BI-B7 of NBG have to be altered slightly by
(@) Fur (VX)(Vy)(x=y= (Vz)(zEXx & z€Yy)) sometimes replacing universal quantification with respect to sets by uni-
(b) Fur (Vx)(Vy)(x =y = (Vz){(x €z &y E z)) versal quantification with respect to elements.
(©) Fur (Vx)(Vy)(x =y = [Cls(x) & Cls(y)] A [Ur(x) < Ur(y)]A
M(x) < M(y)))

(d) Fur (YX)(Vy)[x =y = (#(x,x) = B(x,y))], where #(x,y) arises from
#(x,x) by replacing some, but not necessarily all, free occurrences of x
by y, with the proviso that y is free for x in 4(x.x).

AXIOMS OF CLASS EXISTENCE

T ith cauali : o v wive URS) (V) (Vu)(W)(El(u) A El(v) = [(u.v) € X & uev])
e) UR is a first-order theory with cquality (with respect to the given ( .
© definition of equality) ’ - ’ P : (UR6) (VA)Y(VY)(IZ)(Vu)(ue Z < uc X AueyY)
' (UR7) (V)2 (va)(El(u) »[uc Z<sug X))
(URR) (VAOYCIZ (V) (Bl () > (e Z < (Wv)((uv) ¢ X))
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(UR9) (VX
(URI10) (V.

Ei(u) A El(yv) = ((u.v) € Z = u € X))

(URID) (V.

As in NBG. we can prove the existence of the intersection, complement
and union of any classes. and the existence of the class 1 of all elements. But
in UR we also need an axiom to ensurc the existence of the class ¥y of all
sets. or. equivalently, of the class V,,, of all urelements.

AXIOM URI2

() (Vu)(u € X < Ur(u))

This yields the existence of 1, and implies the existence of Wy, that is,
(AX)(Vu)(u € X < M(u)). The class Vg of all elements i1s then the union
Vo J . Note that this axiom also yields (3X)(Vu)(El(u) = [ue X &
Cls(u)]), since My can be taken as the required class X.

As in NBG. we can prove a general class existence theorem.

Exercise

4.104. Let ¢(xy,.... Xy, ¥|.-...Y,) be a formula in which quantification
takes place only with respect to elements, that is, any subformula (vu).% has
the form (Yu)(El(u) = ). Then

Fur (32)(\7/)(]) (‘c/x,,)(El(x|) AN El(x,,) =
(X1, X)) €EZ & O(Xp, e X Y- Y)])-

The sum set, power set, replacement and infinity axioms can be translated
into UR.

AXIOM URI3

(Vx)(Iy)(Vu)(u € y = (Iv)(u € v Ay € X))

AX1IOM UR14

(Yx)(Fv)(Vu)(w € v ¢>u C x)

where uw ¢ x stands for M(u) A M{x) A (V¥)(v ¢ w = v X).
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AXIOM URIS

(YY) (Un(Y) = (Zy)(Vu)lu € y < (IV)((v.u) € Y Av e X))

where Un(z) stands for (vx;)(¥x2)(Vxz)[E(x)) A El(x2) A El(X3) = ({X).X2)
€z <X],X}>Z = X2 = Xj‘)]

AXIOM URI16

(3)D ex A (Vu)(uex=ull{u) €x))

From this point on. the standard development of set theory including the
theory of ordinal numbers. can be imitated in UR.

PROPOSITION 4.49

NBG is a subtheory of UR.

Proof

[t is casy to verify that every axiom of NBG is provable in UR, provided
that we take the variables of NBG as restricted variables for “classes’ in UR.
The restricted variables for sets in NBG become restricted variables for ‘sets’
in UR.T

PROPOSITION 4.50

UR is consistent if and only if NBG is consistent.

Proof

By Proposition 4.49, if UR is consistent, NBG is consistent. For the con-
verse, note that any model of NBG yields a model of UR in which there are
no urclements. In fact, if we replace ‘Cls(x)’ by the NBG formula ‘x = x’,
then the axioms of UR become theorems of NBG. Hence, a proof of a
contradiction in UR would produce a proof of a contradiction in NBG.

The axiom of regularity (Reg) takes the following form in UR.
In fact, o tormula (Va).24(x) in NBG is an abbreviation in NBG flor

VOICIYMNY oY) x4\ The latter formula s equivalem in UR  to
(YNHEMIND = i), which s abbreviated as (Vo). #(v) in UR.
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It is clear that an analogue of Proposition 4.49 holds: UR + (Reg ) is an
extension of NBG + (Reg). Likewise, the argument of Proposition 4.50
shows the equiconsistency of NBG + (Reg) and UR + (Reggy)-

Since definition by transfinite induction (Proposition 4.14(b)) holds in
UR. the cumulative hierarchy can be defined

Y= )
We(o') = 2(Wa)
Lim(:) = w7 = | ¥p
e

and the union H = [J(W*“On) is the class of ‘pure’ sets in UR and forms a
model of NBG + (Reg). In NBG. by Proposition 4.45, (Reg) is equivalent
to V = H. where V is the class of all sets.

If the class ¥, of urelements is a set. then we can define the following by
transfinite induction:

Lim(7) »Z7 - | ) 28
[

The union Hy, = [J(Z0n) is a model of UR + (Regy ), and (Reg.g) holds
in UR if and only if H,; is the class ¥y of all elements.

If the class ¥, of urelements is a proper class, it is possible to obtain an
analogue of H, in the following way. For any set x whose members are
urelements and any ordinal y, we can define a function ZI by transfinite
induction up to y:

Lim(z) = E°4
Let H;;, be the class of all elements v such that, for some x and 7, v is in the
range of Zi. Then H;, detcrmines a model of UR + (Regyg). and. in UR,
{(Regyg) holds if and only if H}, is the class Vg of all elements.
The equiconsistency of NBG and UR can be strengthened (o show the
following result.

PROPOSITION 4.51

If NBG is consistent, then so is the theory UR 4 (Reg,,) + 4, 1s denu-
merable’,

OTHER AXTOMATIZATIONS OF SET THEORY

Proof

Within NBG one can define a model with domain ) that is a model of NBG
without the axiom of infinity. The idea is duc to Ackermann (1937). IFor any
aand min e, define m € 7 to mean that 2 occurs as a term in the expansion
of nas a sum of different powers of 2.1 I we take “A-scts’ to be members of )
and “proper A-classes’ to be infinite subsets of @, 1t is casy to verify all
axioms of NBG + (Reg) except the axiom of infinity.! (Scc Bernays (1954,
pp. 81 -82) for a sketch of the argument.) Then we change the ‘membership’
relation on o by defining m € n to mean that 2”cn. Now we define a “set’ to
be cither 0 or a member # of » for which there is some m in o such that
m €, n. We take the ‘urelements’ to be the members of « that are not “sets’.
For example. 8 is an “urelement’, since 8 = 2% and 3 is not a power of 2.
Other small *urelements’ are 1. 9. 32, 33 and 40. In general, the "urelements’
are sums of one or more distinct powers 2% where 4 is not a power of 2. The
‘proper classes” are (o be the infinite subsets of . Essentially the same
argument as for Ackermann’s modcl shows that this yields a model . # of all
axioms of UR + (Reg ) cxcept the axiom of infinity. Now we want to
extend . # to a model of UR. First, let » stand for the set of all finite subsets
of w that are not members of w, and then define by transfinite induction the
following function @.

OV =mn
O () = 2(O2) —r
Lim()) = /=] op
Bor
Let Hy = J(©*On). Note that Hg contains no members of r. Let us define a
membership relation €* on Hg. For any members x and y of Hy, define
v €' y to mean that either x and y are in w and x €, y, or y¢ ® and x € y.
The *urelements’ will be those members of w that are the “urelements’ of .#.
The “sets’ will be the ordinary sets of Hp that are not ‘urelements’, and the
‘proper classes’ will be the proper classes of NBG that are subclasses of Hg.

It now requires a long careful argument to show that we have a model of

UR 4 (Regyg) in which the class of urelements is a denumerable set.

A uniform method for constructing a model of UR + (Regyg} In which
the class of urelements is a set of arbitrary size may be found in Brunner
(1990, p.65).% If AC holds in the underlying theory, it holds in the model as
well.

"I'his s equivitlent to the statement that the greatest integer £ such thatk - 2" <n
s odd.

“For distinet natural numbers .. ng. the role of the finite set {ny. ..., m}ois
played by the natural number 270 4 0 2™

*Brunner attributes the idea behind the construction 1o 1. Truss.

i

303



7‘/\Xl()M/\TIC SET THEORY l

The most important application of axiomatic set theories with urclements
used to be the construction of independence proofs. The first independence
proof for the axiom of choice. given by Fracnkel (1922b). depended essen-
tially on the existence of a denumerable set of urelements. More precise
formulations and further developments may be found in Lindenbaum and
Mostowski (1938) and Mostowski (1939).7 Translations of these proofs into
set theories without urelements were found by Shoenfield (1955). Mendclson
(1956b) and Specker (1957), but only at the expense of weakening the axiom
of regularity. This shortcoming was overcome by the forcing method of
Cohen (1966). which applies to theories with (Reg) and without urelements.

tFor more information about these methods, see Levy (1965), Pincus (1972),
Howard (1973) and Brunner (1990).

Computability

5.1 ALGORITHMS. TURING MACHINES

An algorithm is a computational mcthod for solving cach and every problem
from a large class of problems. The computation has to be precisely specificd
so that it requires no ingenuity for its performance. The familiar technique
for adding integers is an algorithm, as arc the techniques for computing the
other arithmetic operations of subtraction, multiplication and division. The
truth table procedure to determine whether a statement form is a tautology
is an algorithm within logic itself.

[t is often easy to sce that a specified procedure yields a desired algorithm.
In recent years, however, many classes of problems have been proved not to
have an algorithmic solution. Examples are:

I. Is a given wf of quantification theory logically valid?

2. Is a given wl of formal number theory S true (in the standard interpre-
tation)?

3. Is a given wl of S provable in S§?

4. Does a given polynomial f(xj,...,x,) with integral coeflicients have
integral roots (Hilbert’s tenth problem)?

In order to prove rigorously that there does nor exist an algorithm for
answering such questions, it is necessary to supply a precise definition of the
notion of algorithm.

Various proposals for such a definition were independently offered in
1936 by Church (1936b), Turing (1936-37), and Post (1936). All of these
definitions, as well as others proposed later, have been shown to be equiv-
alent. Morcover, it is intuitively clear that every procedure given by these
definitions is an algorithm. On the other hand, every known algorithm falls
under these definitions. Our exposition will use Turing’s ideas.

First of all, the objects with which an algorithm deals may be assumed to
be the symbols of a finite alphabet A {ag.ay... .. a,}. Non-symbolic
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objects can be represented by symbols. and languages actually used for
computation require only finitely many symbols.!

A finite sequence of symbols of a language A is called a word of A. It is
convenient to admit an empty word A consisting of no symbols at all. If P
and Q are words, then PQ denotes the word obtained by writing Q to the
right of P. For any positive integer k. P* shall stand for the word made up of
k consecutive occurrences of P.

The work space of an algorithm often consists of a piece of paper or a
blackboard. However, we shall make the simplifying assumption that all
calculations take place on a tape that is divided into squares (see Figure S.1).
The tape is potentially infinite in both directions in the sense that, although
al any moment it is finite, more squares always can be added to the right-
and left-hand ends of the tape. Each square contains at most one symbol of
the alphabet A. At any one time. only a finite number of squares contain
symbols. while the rest arc blank. The symbol ay will be reserved for the
content of a blank square. ( In ordinary language. a space is sometimes used
for the same purpose.) Thus, the condition of the tape at a given moment
can be represented by a word of A: the tape in Figure 5.1 is aapasa;. Our
use of a one-dimensional tape does not limit the algorithms that can be
handled; the information in a two-dimensional array can be encoded as a
finite sequence.!

Our computing device, which we shall refer to as a Turing machine, works
in the following way. The machine operates at discrete moments of time, not
continuously. It has a reading head which, at any moment, will be scanning
one square of the tape. (Observation of a larger domain could be reduced to
consecutive observations of individual squares.) The device then reacts in
any of four different ways:

I. It prints a symbol in the square, erasing the previous symbol.
2. It moves to the next square to the right.

3. It moves to the next square to the left.

4. It stops.

tfa language has a denumerable alphabet {ag.ay,...}. then we can replace it by
the alphabet {b,*}. Each symbol a, of the old alphabet can be replaced by the
expression bx - - - %, consisting of b followed by n occurrences of +.

{This follows from the fact that there is an effective one one correspondence
between the set of pairs of natural numbers and the set of natural numbers. For the
details, see pp. 183 4.

1 ALGORITHMS. TURINEi M/\E‘;lrliNES
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What the machine does depends not only on the observed symbol but also
on the internal stare of the machine at that moment (which. in turn. depends
on the previous steps of the computation and on the structure of the ma-
chine). We shall make the plausible assumption that a machine has only a
linite number of internal states {qy.q;..... q,,}- The machine will always
begin its operation in the initial siare .

A step in a computation corresponds to a quadruple of one of the fol-
lowing three forms: (1) q,4:44,: (2) q,4;Rq,: (3) q;a;Lq,. In cach case, q; is
the present internal state, a; is the symbol being observed, and q, 1s the
internal state after the step. In form (1). the machine erases a; and prints ay.
In form (2). the reading head of the machine moves one square to the right,
and. in form (3), it moves one square to the left. We shall indicate later how
the machine is told to stop.

Now we can give a precise definition. A Turing machine with an alphabet
A of rape stmbols {ag,a,. . ... ay} and with iwrernal stares {q,.q,. ... .q,,} is
a finite set .7 of quadruples of the forms (1) g;a:aq,. (2) q,4;Rq,.. and (3)
4,4;L.q, such that no two quadruples of 7 have the same first two symbols.

Thus. for fixed q;a;. no two quadruples of types (1), (2) and (3)arein .7 .
This condition ensures that there is never a situation in which the machine is
nstructed to perform (wo contradictory operations.

The Turing machine 7~ operates in accordance with its list of quadruples.
This can be made precise in the following manner.

By a tape descriprion of .7 we mean a word such that: (1) all symbols in
the word but one are tape symbols: (2) the only symbol that is not a tape
symbol is an internal state q,; and (3) g, 1s not the last symbol of the word.

A tape description describes the condition of the machine and the tape at
a given moment. When read from left to right, the tape symbols in the
description represent the symbols on the tape at that moment, and the tape
symbol that occurs immediately (o the right of q; in the tape description
represents the symbol being scanned by the reading head at that moment. If
the internal state q; is the initial state q, then the tape description is called
an initial tape description.

Example
I'he tape description a,apq,apa a; indicates that the machine is in the in-
ternal state gy, the tape is as shown in Figure 5.2, and the reading head is
scanning the square indicated by the arrow.

We say that .7 moves one tape description o into another one B (ab-
breviated fx—/»_»[%) if and only if one of the following is true.

I s of the form Pq,a,Q. B is of the form Pg,a,Q. and q;;24q,. is one of the
quadruples of 7.

Here and below, P and Q arc arbitrary (possibly empty) words of the alphabel
ol 7
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Figure 5.2

o

. o is of the form Pa,q;a;Q. B is of the form Pg,a,a,Q, and q;a;Lq, is one of
the quadruples of .7 .
3. ais of the form g;a,Q. B is of the form q,a9a,Q, and g;a,Lq, is one of the
quadruples of .7 .
4. ais of the form Pq;a;a,Q. B is of the form Pa,q,a,Q. and g;a;Rq, is one of
the quadruples of 7.
5. ais of the form Pq;a,, B is of the form Pa;q,a¢. and g;a;Rq, is one of the
quadruples of .7 .

According to our intuitive picture, *.7 moves o into ° means that, if the
condition at a time ¢ of the Turing machine and tape is described by o, then
the condition at time 7+ | is described by B. Notice that, by clause 3,
whenever the machine reaches the left-hand end of the tape and is ordered to
move left, a blank squarc is attached to the tape on the left; similarly, by
clause 5, a blank square is added on the right when the machine reaches the
right-hand end and has to move right.

We say that .7 stops at tape description o if and only if there is no tape
description f such that o—p. This happens when q;a; occurs in « but q;a; 1s
not the beginning of any ‘quadruple of .7 .

A computation of 7 is a finite sequence of tape descriptions
A, ..., 0 (k > 0) such that the following conditions hold.

1. oy is aninitial tape description, that is, the internal state occurring in oL is q.
2. Qi Uit for 0<i<k
3. .7 stops at o.

This computation is said to hegin at oy and end at o4. If there is a compu-
tation beginning at ap, we say that 7 is applicable to og.
The algorithm Alg,; determined by 7 is defined as follows:

For any words P and Q of the alphabet A of 7, Alg,(P) = Q if and
only if there is a computation of 7 that begins with the tape de-
scription qyP and ends with a tape description of the form R;q;R;,
where Q = R|R;.

This means that, when .7 begins at the left-hand end of P and there is
nothing else on the tape, .7 stops with Q as the entire content of the tape.
Notice that Alg, necd not be defined for certain words P An algorithm
Alg, determined by a Turing machine .7 s said to be o Turing algorithm.

ALGORITHMS. TURING MACHINLS

Example

In any computation of the Turing machinc .7 given by
QoaoRyg . qparang. gpaaeq;. . ... Qoilaanq)

7 locates the first non-blank symbol (if any) at or to the right of the square

scanned at the beginning of the computation, erases that symbol, and then

stops. If there are only blank squares at or to the right of the initial square,

7 keeps on moving right for ever.

Let us now consider computations of number-theoretic functions. For
convenience, we sometimes will write | instead of a, and B instead of a.
(Think of B as standing for “blank’.) FFor any natural number 4, its rape
representation k will stand for the word |F'', that is, the word consisting of
k + 1 occurrences of |. Thus, 0 = |, 1 = {|.2 = |||, and so on. The reason why
we represent £ by £ + 1 occurrences of | instead of k& occurrences is that we
wish 0 to be a non-empty word, so that we will be aware of its presence. The
tape representation (ky. A2, .... k,) ol an n-tuple of natural numbers

(ky.ks.....k,) is defined to be the word kB k:B---Bk,. For example.
(3.1.0.5) is [[I/BIBIBI||]
A Turing machine 7~ will be thought of as computing the following

partial function /-, of one variable.!

J74(k) = m if and only if the following condition holds: Alg 7 (k) is

defined and Alg - (k) = E; m E», where E; and E, are certain (possibly
empty) words consisting of only Bs (blanks).

l'he function /7 is said to be Turing-computable. Thus, a one-place partial
function /" is Turing-computable if and only if there is a Turing machine
such that /= f, .

For each n > 1, a Turing machine 7 also computes a partial function
/', » of n variables. For any natural numbers &, ... 4,:

J7alky. .. k,) = mif and only if the following condition holds:

/\lgf((k[,kz, . ,k,,)) i1s defined and Alglyl—((klykz, R ,k,,)) = El m Ez,
where E| and E; are certain (possibly empty) words consisting of only Bs
(blanks).

Ihe partial function [, is said to be Turing-computable. Thus, an n-place
partial function f is Turing-computable if and only if there is a Turing
machine 7 such that f = f5,.

Notice that, at the end of a computation of a value of a Turing-com-
putable function, only the value appears on the tape, aside from blank
squares at cither or both ends, and the location of the reading head does not
matter. Also observe that, whenever the function is not defined, either the

"Remember that a partial function may fail to be defined for some values of its
argument, Thus, a total function is considered to be a special case of a partial
tunchion.
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Turing machine will never stop or, if it docs stop. the resulting tape is not of
the appropriate form E, m Es.

Ixamples
[. Consider the Turing machine 7. with alphabet {B.|}, defined by
qulLq,.q,Bly>. -7 computes  the successor  function  N(x). since
quk»q, Bk—>q-k + [, and .7 stops at >k + . Hence N(x) is Turing-
7 7

computable.
2. The Turing machine .7 defined by
do|Bd;. q;BRqy. qyBlq»

computes the zero function Z(x). Given k£ on the tape, .7 moves right,
erasing all |s until it reaches a blank. which it changes to a|. So, 0 is the
final result. Thus, Z(x) is Turing-computable.

3. The addition function is computed by the Turing machine .7 defined by
the following seven quadruples:

do|Byy- 4y BRq;. q,|Rq;. g, Blqy. q2[Rq:. q;BLIq;. g5 By;
In fact, for any natural numbers m and n.
q“(";:’ili) _ q“‘m l B]n -1 7})(‘]“ B‘m Bln | I";’B(h ‘mB|n‘ |
e —f’Blm(h Blnl I‘[’B‘/”qu”A IA? .
7 7/ / 7

_;B|m |n »quB_;B‘m.l ”- ]q~\|B—;B‘m i ](-}j\ BB = qu‘BB

and .7 stops at Bm + nq;BB.
Exercises

5.1 Show that the function U3 such that U?(x,x;) = x; is Turing-com-
putable.

5.2 (a) What function f(x;,x2,x3) is computed by the following Turing
machine?

dolld).4,1Bdg, q9BRq,, q, BRq,,
92/R4;,9;BRa;.q3/Bas, q4BRq,
(b) What function f(x) is computed by the following Turing machine?
do|Ba;.q,BRq;,q,Bq;

5.3 (a) State in plain language the operation of the Turing machine, de-
scribed in Example 3, for computing the addition function.

(b) Starting with the tape description qu||B|[[]. write the sequence of
tape descriptions that make up the computation by the addition machine of
Example 3.

5.4 What function f(x) is computed by the followig Turing machine?

DIAGRAMS
dolRar qalRq; geBlag
aiBay  aiBlgs  qBlg;
QwBRyy  qs|Lgs asilyy
q:[Rqy qsBLg,  47BRqy
d:BRyay  gellygg  qx|Bag

5.5 Find a Turing machinc that computes the function sg(x). (Recall that
sg(0) = 0 and sg(x) =1 forx > 0.)
5.6 Find Turing machines that compute the following functions.

() x=y(Remember that x—y =x—yilx >y, and x=yp =0 if x < y.)
(b)  [x/2] (Recall that [x/2] is the greatest integer less than or equal o x/2.
Thus, [v/2] =x/2 if x is even. and [x/2] = (x — 1)/2 if x is odd.)

(¢) x-v, the product of x and y.
5.7 If a function is Turing-computable, show that it is computable by
infinitely many difTerent Turing machines.

5.2 DIAGRAMS

Many Turing machines that compute even relatively simple functions (like
multiplication) require a large number of quadruples. 1t is difficult and
tedious to construct such machines, and even more difficult to check that
they do the desired job. We shall introduce a pictorial technique for con-
structing Turing machines so that their operation is easier to comprehend.
‘The basic ideas and notation are due to Hermes (1965).

[, Let .7y,..... 7, be any Turing
{agoay, ..., a0},
2. Sclect a finite set of points in a plane. These points will be called veriices.
3o To cach vertex attach the name of one of the machines .7 ,,...,.7 ,.
Copies of the same machine may be assigned to more than one vertex.
4. Connect some vertices to others by arrows. An arrow may go from a
vertex to itself. Each arrow is labelled with one of the numbers 0,1, ... k.
No two arrows that emanate from the same vertex are allowed to have
the same label.

>. One vertex is enclosed in a circle and is called the initial vertex.

machines with alphabet A =

I he resulting graph is called a diagram.

Fxample
Sce Figure §.3.

We shall show that every diagram determines a Turing machine whose
operation can be deseribed in the following manner. Given a tape and a
specific square on the tape, the Turing machine of the initial vertex V of the
diagrimn begins to operate. with ats reading head scanning the specified
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Figure 5.3

square of the tape. If this machine finally stops and the square being scanned
at the end of the computation contains the symbol a;. then we look for an
arrow with label / emanating from the vertex V. If there is no such arrow,
the computation stops. If there is such an arrow, it leads to a vertex to which
another Turing machine has been assigned. Start that machine on the tape
produced by the previous computation, at the square that was being scan-
ned at the end of the computation. Repeat the same procedure that was just
performed. and keep on doing this until the machine stops. The resulting
tape is the output of the machine determined by the diagram. If the machine
ncver stops, then it is not applicable to the initial tape description.

The quadruples for this Turing machine can be specified in the following
way.

1. For each occurrence in the diagram of a machine .7, write its quadruples,
changing internal states so that no two machine occurrences have an
internal state in common. The initial vertex machine is not to be changed.
This retains qq as the initial internal state of the machine assigned to the
initial vertex. For every other machine occurrence, the original initial
state q, has been changed to a new internal state.

2. If an occurrence of some . is connected by an arrow — to some .7, then,
for every (new) internal state q, of that occurrence of 4 such that no
(new) quadruple of .4 begins with q,a,, add the quadruple q,a,a,q,,
where q, i1s the (new) initial state for .7. (Step 2 ensures that, whenever J
stops while scanning a,, Z; will begin operating.)

The following abbreviations are used in diagrams:

. 0 1 k
1. If one vertex is connected to another vertex by all arrows —, —, ..., —,

we replace the arrows by one unlabelled arrow.

2. If one vertex is connected to another by all arrows except —. we replace
all the arrows by sy

3. Let 717 stand for 9| — J 5, let 7,7, 7 ystand for 7y — .71 — .73,
and so on. Let 7% be 7.7, let 7° be 7.7.7, and so forth.

4. If no vertex is circled, then the leftmost vertex is to be initial.

To construct diagrams, we need a few simple Turing machines as building
blocks.

| DIAGRAMS

I. r (right machine). Let {ay.a;..... ay } be the alphabet. r consists of the
quadruples qga;Rq, for all a,. This machine, which has & + 1 quadruples.
moves one square to the right and then stops.

.1 (left machine). Let {ay.a;....,a,} be the alphabet. I consists of the
quadruples qgya;Lq, for all a;. This machine. which has & + 1 quadruples.
moves one square to the left and then stops.

3. a; (constant machinc) for the alphabet {ag.ay..... a4 }. a; consists of the
quadruples qgya;a;q, for all a,. This machine replaces the initial scanned
symbol by a; and then stops. In particular, ag erases the scanned symbol.
and a, prints |.

o

Examples of Machines Defined by Diagrams

. P (Figure 5.4) finds the first blank to the right of the initially scanned
square. In an alphabet {ag.a,..... a }. the quadruples for the machine P
are: qoa;Rq; for all a;. and qya;a;q,, for all a, # a,.

]
Figure 5.4

2. A (Figure 5.5) finds the first blank to the left of the initially scanned
square.

*0

Figure 5.5

I-xercises

5.8 Describe the operations of the Turing machines p (Figure 5.6) and A
(Figure 5.7) and write the list of quadruples for each machine.

]

Figure 5.6
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0

L—» ] ———1
Figure 5.7

5.9 Show that machine S in Figure 5.8 scarches the tape for a non-blank
square. If there are such squares, S finds onc and stops. Otherwise. S never
stops.

0 r 0 0 |

r— a;1 — ajpagr — ajl3z

1¢0 1#0

pagh Aagp

Figure 5.8

To describe some aspects of the operation of @ Turing machine on part of

a tape. we introduce the following notation:

~ arbitrary symbol

B...B sequence of blanks

B... everything blank to the right

...B everything blank to the left

w non-empty word consisting of non-blanks
X W BW,B...W,(n > 1), a sequence of

nonempty words of non-blanks, separated
by blanks

Underlining will indicate the scanned symbol.

More Examples of Turing Machines Defined by Diagrams
3. R (right-end machine). See Figure 5.9.

~XBB = ~ XBB
Squares on the rest of the tape are not affected. The same assumption is made
in similar places below. When the machine £ begins on a square preceding a

sequence of one or more nonempty words, followed by at least two blank
squares, it moves right to the first of those blank squares and stops.

#0

> Pr— )

0

Figure 5.9

} DIAGRAMS

4. & (left-end machince) See Figure 5.10.
BBX~ = BBX ~

0

Al— .,

0
Figure 5.10
5. T (left-translation machinc) See Figure 5.11.1
~BWB = ~ WBB

This machine shifts the whole word W one square to the left.

Figure 5.11

6. o (shift machine). See Figure 5.12.
BW,BW,B = BW,B...B

In the indicated situation, W, is erased and W is shifted leftward so that it
begins where W originally began.

Figure 5.12

7. C (clean-up machine) See Figure 5.13.
~ BBXBWB - ~WB...B

PI'here is o separate arrow from 2 to cach of the groups on the right and a
. , Rk
separite arrow from cach of these, except lag, back to r.
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8. K (word-copier) See Figure 5.14.
BWB... = BWBWB...

P

Iopzﬂl Azﬂ|

//T
PN

agP?a,Aa,

Figure 5.14

9. K,, (n-shift copier) See Figure 5.15.
BW,BW, |B...W,B... = BW,BW, |B...W,BW,B...

P’I
agP"la; A"l

A'r

A

2P a, A" ay

Figure 5.15

Exercises

5.10. Find the number-theoretic function f(x) computed by each of the
following Turing machines.

(a) 1a

(b) Figure 5.16

(©) P](Aal/\(rao)2

5.11. Verify that the given functions are computed by the indicated Turing
machines.

+0

L

O ara,
Figure 5.16

(a)

x — y| (Figure 5.17)

1 0
apr — PZlagl —= Aa,

11
Alr

S

Figure 5.17

(b) x+y Pall\(l"d())z
(¢) x-y(Figure 5.18)

1 1
@ —» lag(r}) — lag RK L
fo ’

l

Pra;rC r —la,A(rag)’P

Figure 5.18

5.12. Draw diagrams for Turing machines that will compute the following
functions: (a) max(x, y) (b) min(x, y) (c) x=y (d) [x/2]

5.13. Prove that, for any Turing machine .7 with alphabet {ag, ..., a;}, there
is & diagram using the Turing machines r, 1, ag, ..., ax that defines a Turing
machine . such that 7~ and . have the same effect on all tapes. (In fact, &
can be defined so that, except for two additional trivial initial moves left and
right. it carries out the same computations as .7.)

5.3 PARTIAL RECURSIVE FUNCTIONS.
UNSOLVABLE PROBLEMS

Recall, from Section 3.3, that the recursive functions are obtained from the
il functions (the zero function Z(x). the successor function M(v), and the
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projection functions U] (xy.... .. v, )) by means of substitution. recursion and
the restricted poperator. Instead of the restricted g-operator. et us intro-
duce the wnrestricted p-operator:

I/ (xp. ) = lglag L) = 0)
—= the least v such that g(xy... .x,.v) = 0

then /' is said to arise from ¢ by means ol the unrestricted g-operator.

Notice that, for some xy.... .. v,. the value f(x. ... v,) need not be detined:
this happens when there is no y such that g(x;.....x,.y) = 0.

If we replace the restricted j-operator by the unrestricted p-operator in
the definition of the recursive functions, we obtain a definition of the partial
recursive functions. In other words, the partial recursive funciions are those
functions obtained from the initial functions by means of substitution, re-
cursion and the unrestricted p-operator.

Whereas all recursive functions are total functions, some partial recursive
functions will not be total functions. For example, p(x +y = 0) is defined
only when x = 0.

Since partial recursive functions may not be defined for certain arguments.
the definition of the unrestricted pi-operator should be made more precise:

iyl v,.v) - 0) = k means that, for 0<u < k.
gl v, i) 1s defined and g(x.... .. v,.u) # 0. and
glxp.o...o X, v) =0

Observe that, if R(xj,...,x,.v) is a recursive relation, then
J(R(x1,. ... xyy)) can be considered an admissible application of the un-
restricted p-operator. In fact, p(R(xy,. ... % y)) = mwy(Crlxy,... S Xy V)
= 0), where Cy is the characteristic function of R. Since R is a recursive
relation. Cg is, by definition, a recursive function.

Exercises

5.14 Describe the following partial recursive functions.

@ wx+y+1=0)
(b)y w(y>x)
(© w(y+x=x)

5.15 Show that all recursive functions are partial recursive.
5.16 Show that every partial function whose domain is a finite set of natural
numbers is a partial recursive function.

It is easy to convince ourselves that every partial recursive function
f(x1,...,x,) is computable, in the sense that there is an algorithm that
computes f(x),...,x,) when f(x;...... v,) is defined and gives no result when
f(x1.....x,) is undefined. This property is clear for the initial functions and

PARTIAL RECURSIVE FUNCTIONS. UNSOLVABLE PROBLEMS

is inherited under the operations of substitution. recursion and the unre-
stricted g-operator.

It turns out that the partial recursive functions are identical with the
Turing-computable functions. To show this, it is convenient to introduce a
different kind of Turing-computablility.

A partial number-theoretic function f(xy.... . v, is said to be standard
Turing-computable if there is a Turing machine .7 such that, for any natural
numbers k... .. k,. the following holds.

Let Bk BkaB ... Bk, be called the argument strip.t Notice that the ar-
gument strip is B (kj. ..., k,). Take any tape containing the argument
strip but without any symbols to the right of it. (It may contain
symbols to the left.) Thc machine .7 is begun on this tape with its
reading head scanning the first | of k. Then:

I. .7 stops il and only it f(k;..... k,) is dehined.
. .7 stops. the tape contains the same argument strip as before, followed

2

by Bf(k),...k,). Thus, the final tape contains
Bk\Bk:B...Bk,B/ (ki.... . k,)
Moreover:
. The reading head is scanning the first | of f(k).....k,).

=

. There is no non-blank symbol on the tape to the right of f(A),....k,).
5. During the entire computation, the reading head never scans any square
to the left of the argument strip.

I‘or the sake of brevity, we shall say that the machine .7 described above
ST-computes the function f(x,...,x,).

Thus, the additional requirement of standard Turing computability is
that the original arguments are preserved, the machine stops if and only if
the function is defined for the given arguments, and the machine operates on
or to the right of the argument strip. In particular, anything to the left of the
argument strip remains unchanged.

PROPOSITION 5.1

bvery standard Turing-computable function is Turing-computable.

Proof
let .7 be a Turing machine that ST-computes a partial function
Tivoo.o, v, ). Then /s Turning-computable by the Turing machine .7 PC. In

"For o function ol one varable, the argument stnp s taken 1o be By
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fact. after .7 operates, we obtain Bx;B... Bx,Bf (x.. .. .2 v,,). with the reading

head at the leftmost | of f(x,....x,). P then moves the reading head to the
right of f(xy.... .. v,). and then C removes the original argument strip.

PROPOSITION 5.2

Every partial recursive function is standard Turing-computable.

Proof

(a) Pra; ST-computes the zero function Z(x).

(b) The successor function N(x) is ST-computed by PKa Ar.

(¢) The projection function U!(x),...,x,) =x; is ST-computed by
.‘%K,,_,' 1 Ar.

(d) (Substitution.) Let f{x1,...,x,) = g(h(x1,. . Xn), o hn(x1, .. 00x0))
and assume that 7 ST-computes g and .7 ST-computes h; for 1 <j<m.
Let .¢; be the machine ZPs¢"(K,. ;)" A"r. The reader should verify that
fis ST-computed by

TIPKy ) NS AS s S oy 1T P AET 6" Ar

We take advantage of the ST-computability when, storing x|, ..., %,
(xr,-o X))y -y ki, -, X,) on the tape, we place (xy, ..., x,) on the
tape to the right and compute h;.(xy,...,x,) without disturbing what
we have stored on the left.

(e) (Recursion.) Let

Flxr, X 0) = glxr, ..., x,)
fxrexamy + 1) =hxy, xS, XL y))

Assume that .¥ ST-computes g and 7 ST-computes 4. Then the reader
should verify that the machine in Figure 5.19 ST-computes /.

(f) Unrestricted p-operator. Let f(xy,...x,) = wy(g(x1,..., X,,y) = 0) and
assume that 4 ST-computes g. Then the machine in Figure 5.20 ST-
computes /[

ra,rl(z(l(,”)"A"“ lagrPr & PK,.2180!
\

! CAr

0

1
1Koy 2/ rarr Ko 3 A" 207 PKyyglagh —— r(Ka, """

T ]

Figure 5.19
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Rra, A" r T - Pra rolagl

lo

laglAr

Figure 5.20

Exercise

5.17 For a recursion of the form

J10) =k
S+ 1) = A0 f(v)

show how the diagram in Figure 5.19 must be modificd.

COROLLARY 5.3

Every partial recursive function is Turing-computable.

Exercise

5.18 Prove that every partial recursive function is Turing-computable by a
Turing machine with alphabet {ag,a;}.

In order to prove the converse of Corollary 5.3, we must arithmetize the
language of Turing computability by assigning numbers, called Gddel
munbers, to the expressions arising in our study of Turing machines. ‘R” and
‘.7 are assigned the Godel numbers 3 and 5, respectively. The tape symbols
a, are assigned the numbers 7 + 4/, while the internal state symbols q, are
given the numbers 9 + 4i. For example, the blank B, which is ag, receives the
number 7; the stroke |, which is a;, has the number 11; and the initial
internal state symbol q, has the number 9. Notice that all symbols have odd
(Gidel numbers, and different symbols have different numbers assigned to
them.

As in Section 3.4, a finite sequence ug, uy,...,u; of symbols is assigned
the Godel number pg(““)pi’(“’)...pZ(""), where pg, pi, pa,... are the prime
numbers 2,3.5,... in ascending order and g(u;) 1s the Goédel number as-
signed to u,. For example. the quadruple gyapaq, receives the Goédel
number 27375177,

By an expression we mean a finite sequence ol symbols. We have just
shown how to assign Godel numbers to expressions, In a similar manner, to
any fimte sequence B By B, of expressions we assign the number
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(o) glE)) AE) 1s o L
i) ‘]’( Vo piE For example, this assigns Godel numbers to finite se-

quences of Turing machine quadruples and to finite sequences of tape de-
scriptions. Obscrve that the Gédel number of an expression is cven and,
therefore, different from the Godel number of a symbol. which is odd.
Moreover, the Godel number of a sequence of expressions has an even
number as an exponent of py and is, therefore, different from the Godel
number of an expression, which has an odd number as an exponent of py.

The reader should review Scctions 3.3 and 3.4, especially the functions
74(x).(x),). and x*y. Assume that x is the Gédel number of a finite se-
quence wp,wi,...,wg; that is, x = p"(“")p"(w') . .p"_’(w‘), where g(w;) is the
Godel number of w;. Recall that 74(x) = k + 1, the length of the sequence,
and (v); = g(w;), the Godel number of the jth term of the sequence. If in
addition, y is the Godel number of a finite sequence v, vy, ..., V,, then x = v
is the Godel number of the juxtaposition wo,wy. ..., S Wi VO, Vs, v,, of the
Lwo sequences.

PROPOSITION 5.4

The following number-theoretic relations and functions are primitive re-
cursive. In cach case, we write first the notation for the relation or function,
then, the intuitive interpretation in terms of Turing machines, and, finally,
the exact definition. (For the proofs of primitive recursiveness, use Propo-
sition 3.18 and various primitive relations and functions defined in Section
3.3. At a first reading, it may be advisable to concentrate on just the intuitive
meanings and postpone the technical verification until later.)

I1S(x): x is the Goédel number of an internal state symbol q,:
(3“)“ ;(‘. - 9 + 4“)

Sym(x): x is the Godel number of an alphabet symbol a,: -3

(Fu), (x=T7+4u)
Quad(x): x is the Godel number of a Turing machine quadruple:
£4(x) =4 ANIS((x)y) A Sym((x),) A IS((x)3)
A [Sym((x),) V (x); =3V (x), = 3]
TM(x): x is the G6del number of a Turing machine (in the form of a finite
sequence of appropriate quadruples):

(Vu)"d,’(_r)Quad(( Y ) Ax> 1A (Vu)“d/ 3 (Y0) sy (4 F 0
= [((®))o # ((x)o)o V (X)) # (%), )]
D(x): x is the Goédel number of a tape description:
x> LA (Yu), g [IS((x
A (Vi) op0 (IS((Y),)

v Sym({(x),)] A (
>udt o« 1//(_\'))

Fiu),, pan 18000,

l
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Cons(x.y.z): x and y are Godel numbers of tape descriptions o and B. and
= 1s the Godel number of a Turing machine quadruple that transforms «
into B:
TD(x) A TD() A Quad(z) A (3w), /- [1S((x),.)
Ax), =2y Ax),., = (2 A
[Sym((z)2) A (1), = (@) A V), = (2)3 A LX) = C4(V)
AUyt Fw A u £ w + 1= ), = WV
[(2); = 3N = (D AWy = (1A

I (V) py U A wnu#F w+ 1= (y), = (x),JA
(w2 < h(x) NOL(Y) = bA(x)] V [ + 2 = €4(x)A
() = Ax) + 1A (W), = TV
[(2), =SA{Ww#OA(), .| = @AM, =),
ALY = A AN (Tu), g (0 F w1 A w =
S (0, = IV b = OA (3~ 61, A3, = T2
CA(y) = CA() + 1A (W) i Wiy = ()11

[ corresponds to a quadruple q;a;a,q,. 11 to a quadruple q;a;Rq,. and 1l
to a quadruple q,a,Lq,.
NTD(x): x is the Gédel number of a numerical tape description — that is,
a lape description in which the tape has the form E kE,, where each of E,
and E, is empty or consists entirely of blanks, and the location of the
rcading head is arbitrary:

TD(x) A (Y1), iy (Sym((x),) = (x), = TV (x), = 11)

A iy (Y0 o) (T )iy (M < DAL <WA(X), =TT A

(), =11=(x), #7) (30, cn{x), = 11)
Stop(x,z): z is the G6del number of a Turing machine .7 and x is the
Godel number of a tape description a such that .7” stops at o:

TM(z) A TD(x) A ~(3u),,...4 r\[IS (X)) A0y )(((Z)u)o
= @), M@ = &)yp)]
Comp(y,z): z is the Godel number of a Turing machine .7
Godel number of a computation of 7
v > EATM(z) A (Vi) TD(OY),) A Stop(() gy < 1.2) A
(Y1), g 1 W) mCons(v),,. (0), 41, (2),) A
(Vr),. ,,,m,“)(|5(((.')(,),.) 2> A{g), — 9

and y is the

il

The Godel number of the word ¥ that is, of |

18

Num(x):
Numi()

|
J
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TR(xy.....0 v, ): The Godel number of the tape representation (xi. ... . X,)
of the n-tuple (xy...... v, )
TR(x).....x,) = Num(x;) # 27« Num(xs) « 27 % -+ 27 % Num(x,)

U(y): If v is the Godel number of a computation that results in a nu-
merical tape description, then U(y) is the number represented on that
final tape.!

U(.v)z[ S SEU) iy = 11D| =1

w AU e - )

[Let w be the number, represented by |**', on the final tape. The cal-

cualtion of U(v) tallies a 1 for every stroke | that appears on the final
tape. This yields a sum of w + 1, and then 1 is subtracted to obtain w.]

T.(z.x1,...,x,,¥): y is the Gédel number of a computation of a Turing
machine with Gédel number z such that the computation begins on the
tape (x7.....x,), with the reading head scanning the first | in X, and ends
with a numerical tape description:

Comp(y.z) A (y)y = 27« TR(x1.....x) ANTD(() 10y - 1)
When n =1, replace TR(x;...... v,) by Num(x;). (Observe that, if
To(z,x, .o oox,. ) and T(zoxg, ..., X, ¥2), then y; =y, since there is at

most one computation of a Turing machine starting with a given initial
tape.)

PROPOSITION 5.5

If .7 is a Turing machine that computes a number-theoretic function
f(x1,...,x,) and e is a Gédel number of .7, then!

S, x) = UwTaexy, ... . x0p))

Proof

Let ki,....k, be any natural numbers. Then f(kj,...,k,) is defined if and
only if there is a computation of 7 beginning with (ky,...,4,) and ending
with a numerical tape description — that is, if and only if
(3I)Tu(e. ki, ..., xn,y). So, fl(ki,....k,) is defined if and only if
wh(e ki, ... kyy) is defined. Moreover, when f(ky,... k,) is defined,

If y is not the Gddel number of a computation that yields a numerical tape
description, U(y) is defined, but its value in such cases will be of no significance.

‘Remember that an equality between two partial functions means that, when-
ever one of them is defined, the other is also defined and the two functions have the
same value.

!
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(e k.., k. ¥) 1s the Godel number of a computation of .7 beginning
with (ky... .. k,) and U(uT, (e k... .. ky.v)) is the value yielded by the
computation, namely, f(k,....k,).

COROLLARY 5.6

Every Turing-computable function is partial recursive.

Proof

Assume f(x;,....x,)is Turing-computablc by a Turing machine with Godel
number e. Then f(x),....x,) = UQwyT,(e,xy. .. ... v,.v)). Since T, is primitive
recursive, wvT,(e.xy,....x,.v) is partial recursive. Hence. UQuovT,(e.x.

....xy,¥)) is partial recursive.

COROLLARY 5.7

The Turing-computable functions are identical with the partial recursive
functions.

Proof

Usce Corollaries 5.6 and 5.3.

COROLLARY 5.8

Livery total partial recursive function is recursive.

Proof

Assume that the total partial recursive function f(x,...,x,) is Turing-
computable by the Turing machine with Gédel number e. Then, for all
AT v (3)T(e xi, ... x,,p). Hence, wyT,(e,xy,...,x,,y) is produced by
an application of the restricted p-operator and is, therefore, recursive. So,
Ul (e xy ..o ox,, v)) 1s also recursive. Now use Proposition 5.5.

COROLIARY 5.9

F'or any total number-theoretic function /. / is recursive if and only if /1y
Luning-computable.
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Proof

Use Corollaries 5.7 5.8 and Excrcise 5.15.

Church’s thesis amounts to the assertion that the recursive functions are
the same as the computable total functions. By Corollary 5.9, this is
equivalent to the identity, for total functions. of computability and Turing
computabtlity. This strengthens the case for Church’s thesis because of the
plausibility of the identification of Turing computability with computabil-
ity. Let us now widen Church’s thesis to assert that the computable func-
tions (partial or total) are the same as the Turing-computable functions. By
Corollary 5.7, this implies that a function is computable if and only if it is
partial recursive.

COROLLARY 5.10

Any number-theoretic function is Turing-computable if and only if it is
standard Turing-computable.

Proof

Use Proposition 5.1, Corollary 5.6 and Proposition 5.2

COROLLARY 5.11 (KLEENE’S NORMAL FORM THEOREM)

As z varies over all natural numbers, U(uyT,(z,x|,...,x,,¥)) enumerates
with repetitions all partial recursive functions of n variables.

Proof

Use Corollary 5.3 and Proposition 5.5. The fact that every partial recursive
function of n variables reappears for infinitely many z follows from Exercisc
5.7. (Notice that, when z is not the Gédel number of a Turing machine, there
is no y such that 7,(z,x,...,x,,v), and, therefore, the corresponding partial
recursive function is the empty function.f)

COROLLARY 5.12

For any recursive relation R(xy,...,x,,y), there exist natural numbers =, and

vo such that, for all natural numbers x;, ..., x,:

"Ihe empty function is the empty set ¥ 11 has the empty set as ats donn.

! N
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(a) (IVIR(xy... ... v, ) il and only if (3v) 7, (zp. x. ... .. V. V)

(b) (YW)R(x). ... v,. v) it and only if (Vy)=T,(rg.x). ... .. Yy V)

Proof

(a) The function f(x).... . V) = pvR(xy. L v,.)) 1s partial recursive. Let zq
be a Godel number of a Turing machine that computes /. Hence.
AT v,) is defined if and only if (3y)7,(z0.x...... v,.v). But
FACTT x,) is defined if and only if (3y)R(x;.... . Xyl V).

(b) Applying part (a) to the recursive refation =R(x. ... .. Y,. V), we obtain a

number vy such that:
(Fy)-R(xy. ... .. v, ) if and only if (37, (epoxy. oo v, y)

Now take the negations of both sides of this equivalence.

Exercise

5.19 Extend Corollary 5.12 to two or more quantifiers. For example, if

R(xy. ..., x,.y.z) 1s a recursive relation, show that there are natural numbers
zo and vy such that, for all x;...... X,

(a) (Vz)(Fy)R(xi.....x,,v.z) il and only if (V2)(3)T, 1 (z0,x10 ... X, V. 2).
(b) (B2)(YWR(xy.... 5, p.2) if and only if (3z)(Vy)=T, 1 (ve, x1. . ... Xy V.2).

COROLLARY 5.13

(@) (Fy)Tu(x1,x1,x2, ... ,x,,¥) is NOL recursive.
(b) (3y)Tu(z,x1,...,x,,y) is nOt recursive.

Proof

(1) Assume (3y)T,(x),x,x2,...,%,,y) is recursive. Then the relation
(V) Ta(xr.xy.x2, .. x,, ) Az =1z is recursive. So, by Corollary 5.12(a),
there exists zg such that:
(32)(=(Iy) T (x1,x1, %2, ... x5, ¥) Az = z) if and only if
(32) T (zo. x1,x2, .o, X, 2)
Hence, since z obviously can be omitted on the left,

()T (xox . xae o x,.v) if and only if (32)7,(z0, x5, X2, ..., X, 2)

betyy vy oo x, = zp. Then we obtain the contradiction
o i\')];.(:n.:n.:n. A .Z|).v\') i and ()Hly ll ( JZ)T,,(S(;.:().I(). - .:(;.:)
(b)Y I () (zovy s v, V) were recursive, so would be. by substitu-

non, () (vova v o), contradicing part (a).
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Exercises

5.20 Prove that therc is a partial recursive function g(z.x) such that. for
any partial recursive function f(x), there is a number z, for which

J(x) = ¢g{zo,x) holds for all x. Then show that there must exist a number v

such that g(ey. vy) is not defined.

5.21 Lethy(xy, o oooxy)e o hg(xr, ... x,) be partial recursive functions. and
let Ry(xy.....0 Yn)s ... Ri(x), ... .x,) be recursive relations that arc exhaustive
(i.e.. for any x,...,x,, at least one of the relations holds) and pairwise
mutually exclusive (i.e., for any x...... x,. no two of the rclations hold).
Dcfine

Ai(xr,..oox,) R (X))

glxr, o X)) =<
(Xt x) i R )
Prove that ¢ is partial recursive.
5.22 A partial function f{x) is said to be recursively completable if there is a
recursive function f(x) such that, for every x in the domain of /', (x) = [/(x).

(a) Prove that pyTi(x.x.y) is not rceursively completable.

(b) Prove that a partial recursive function f{(x) is recursively completable if
the domain D of fis a recursive set  that is, if the property ‘x € D is
recursive.

(¢) Find a partial recursive function f(x) that is recursively completable but
whose domain is not recursive.

5.23 If R(x,y) is a recursive relation, prove that there are natural numbers
zo and vg such that:

(a) —[(IV)R(z0,y) & (V¥)~Ti(20,20. )]
(b) =[(9)R(vo,y) & (I)Ti(vo, vo. y)]

5.24 If S(x) is a recursive property, show that there are natural numbers z
and vy such that:

(a) —[S(z0) & (¥¥)~Ti(z0,20,1)]
(b) =[S(vo) « (3y)Ti(vo, vo, )]

5.25 Show that there is no recursive function B(z, x|,...,x,) such that, if =
is a Godel number of a Turing number .7 and k,, ..., k, are natural numbers
for which /5 ,(ki, ..., k,) is defined, then the number of steps in the com-
putation of f7 ,(ki,... , k,) is less than B(z, ki, ... k).

Let 7 be a Turing machine. The halting problem {or .7 is the problem of
determining, for each tape description B, whether .7 is applicable to 3. that
is, whether there is a computation of 7 that begins with B.

We say that the halting problem for .7 is algorithmically solvable it there
is an algorithm that. given a tape description B, determines whether .7 s
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applicable to B. Instcad of a tape description B we may assume that the
algorithm is given the Gédel number of B. Then the desired algorithm will
be a computable function H 7 such that:

(0 if x is the Gddel number of a tape description 8
{ to which .7 is applicable
I otherwise

If we accept Turing algorithms as exact counterparts of algorithms (that is.
the extended Church’s thesis), then the halting problem for .7 is algorith-
mically solvable if and only if the function H, is Turing-computable, or
equivalently, by Corollary 5.9. recursive. When the function H 5 is recursive,
we say that the halting problem for .7 is recursively solvable. If H; is not
recursive, we say that the halting problem for .7 is recursively unsolvable.

PROPOSITION 5.14

There is a Turing machine with a recursively unsolvable halting problem.

Proof

By Proposition 5.2, let .7~ be a Turing machine that ST-computes the partial
recursive function wyTy(x,x,y). Remember that, by the definition of stan-
dard Turing computability, if .7 is begun on the tape consisting of only x
with its reading head scanning the leftmost |, then .7 stops if and only if
v {x,x,y) is defined. Assume that .7 has a recursively solvable halting
problem, that is, that the function H  is recursive. Recall that the Godel
number of the tape description ¢ox is 27 * Num(x). Now.,

(V)T (x,x,p) if and only il wyTy(x,x,y) is defined
if and only if .7, begun on ¢ox. performs a computation
it and only if  H;(2” x Num(x)) = 0

Since H 7. Num and * are recursive, (3y)7){x,x, y) is recursive, contradicting
Corollary 5.13(a) (when n = 1).

F.xercises

5.26 Give an cxample of a Turing machine with a recursively solvable
halting problem.

5.27 Show that the tollowing special halting problem is recursively un-
solvable: given a Godel number = of a Turing machine .7 and a natural
number x, determine whether .7 is applicable to gy,

5.28 Show that the following self-halting problem is recursively unsolvable:
given a Godel number = of o Turing machine .7, determine whether 7 s
apphcable to gz,
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5.29 The printing problem for a Turing machine .7 and a symbol o is the
problem of determining, for any given tape description o, whether .7 . begun
on 4. ever prints the symbol a;. Find a Turing machine .7 and a symbol a,
for which the printing problem is recursively unsolvable.

5.30 Show that the following decision problem is recursively unsolvable:
given any Turing machine .7, if .7 i% begun on an empty tape, determine
whether .7 stops (that is, whether .7 is applicable to ¢oB).

5.31° Show that the problem of deciding, for any given Turing machine,
whether it has a recursively unsolvable halting problem is itself recursively
unsolvable.

To deal with more intricate decision problems and other aspects of the
theory of computability, we need more powerful tools. First of all, let us
introduce the notation

EIx1 o x) = Uz, oo, p)

Thus, by Corollary 5.11, ¢f, @Y, ¢45.... s an enumeration of all partial re-
cursive functions of n variables. The subscript j is called an index of the
function ¢}. Each partial recursive function of n variables has infinitely
many indices.

PROPOSITION 5.15 (ITERATION THEOREM
OR s-m-n THEOREM)

For any positive integers m and n, there is a primitive recursive function
s"™(z,y1, ..., ¥m) such that

netn

P, (Xl IEERER VTS | PR a)’m) = (p.s’,:'(z.)q.,v..y,.,.)(X| ER ‘x”)

Thus, not only does assigning particular values to z,y.,...,y, In
O (X1, . X W15 -, V) yield a new partial recursive function of » vari-
ables, but also the index of the resulting function is a primitive recursive

function of the old index z and of yi, ..., ynu-

Proof

If 7 is a Turing machine with Godel number z, let 7, . be a Turing

machine that, when begun on (xj,...,x,), produces (xi,..., Xy, Vis. .\ Vm).
moves back to the leftmost | of ¥, and then behaves like 7. Such a machlm.

is defined by the diagram
Rr(ayr) 'e(a ) e e(agr) "t er T

The Godel number s7(z, y1, . . ., yu) of this Turing machine can be effectively
computed and, by Church’s thesis. would be partial recursive. In fact, s can
be computed by a primitive recursive function g(z. vy, .. ., ) defined in the
following manner. Let 7 - vy oo b v 8 2m b 10 Also, et w(i) =

PARTIAL RECURSIVE FUNCTIONS. UNSOL V/\BLE PROBLI:MS

2043751704 and e(i) = 220431153714 Notice that u(i) is the Godel
number of the quadruple ¢;B|¢, and ¢(i) is the Godel number of the quad-
ruple ¢;|Rg;.. Then take g(z.y..... V) 1O be:

2‘7]”;'\7‘) W77 133114379 59133757717
{2 ‘\3_.5752],77_,,7]*

H (i) : A e e S A RS
’: 4 ’l 3 * 2 *

=2
Vitaatd
u(i) (i)
I | Priz(u+a)P2i-(m+4) 1%
I=v t4
AV s 337 5379 A s - 6)
2 T * Lk
229\4(\1 Sty g 2m D7 gigvidte -Jrrv!*
Vi kY 1 2m
w(i) i)
RIS )| P . > *
e vy vy F 220 (w1 2w ]
=yt g R 2m

22%-‘.1]”557‘)-4/ 12‘)~41]7’5i7‘l44u4 h <2u~4[/» 113|15~'7w4/

9 +d(e4 1) 378379 4 4(r- 2} G pdr 217539 040 4
72 37507 112 357 %

3(E4(2))

2(( 1 b HA ‘);( Ih szl 7[(:1,)14-4(!4\
I | Pi

i=0
¢ is primitive recursive by the results of Section 3.3. When z is not a Godel
number of a Turing machine, 7" is the empty funcllon and, therefore,

Sz 310 ..., ¥m) must be an index of the empty function and can be taken to
be 0. Thus, we define:

ST ym) = glzyp... .. ym) 1f TM(2)
' 0 otherwise

m

Hence, s is primitive recursive.

COROLLARY 5.16

For any partial recursive function f(xy,...,xn,»1,...,¥n), there is a recur-
sive function g(vi, ..., y.) such that

VAT Xns Voo o aym) = Py0m..... y,,.)(xl: cee v\'n)
Proof

Let ¢ be anindex of /. By Proposition 5,15,

7S E P VAR U Vi) ey, N V)

Let .‘/(_\'l e V) -\':'("-_Vl ~~~~ “m)-
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Examples

[. Let G(x) be a fixed partial recursive function with non-empty domain.
Consider the following decision problem: for any u. determine whether
@) = G. Let us show that this problem is recursively unsolvable. that is,
that the property R(u). defined by ¢! = G. is not recursive. Assume. for
the sake of contradiction, that R is recursive. Consider the function
Sxu) = Glx)- N(Z{yT (u.u, ). (Recall that N(Z(n) =1 for all 1).
Applying Corollary 5.16 to f(x.u), we obtain a recursive function ¢(u)
such that f(x,u) = (pq w(X). For any fixed u. (/)q w, = G il and only if
()T (u,u.y). (Here, we use the fact that G has non-emply domain.)
Hence, (3y)7(u, u,v) if and only if R(g(u)). Since R{gy(u)) is recursive,
(3v)T) (u. . y) would be recursive, contradicting Corollary 5.13(a).

2. A universal  Turing machine. Let the partial recursive function
U(wyTi(z,x,y)) be computed by a Turing machine 7~ with Godel number
e. Thus, U(vTi(z,x,y)) = U(wyT(e,z.x,y)). ¥ is universal in the fol-
lowing sense. First, it can compute cvery partial recursive function f(x) of
one variable. If z is a Gédel number of a Turing machine that computes f,
then, if 7~ begins on the tape (z, x), it will compute U (3T (z,x,y)) = f(x).
Further. /7 can be used to compute anmy partial recursive function
h(xy,....x,). Let vy be a Godel number of a Turing machine that com-
putes A, and et f(x) = h((x)y. (x),.....(x), ). Then h(x)....,x,)
=/(p ---py ). By applying Corollary 5.16 to the partial recursive
function U(puy T, (v, (x)y. (x);. . ... (x),_,-¥)). we obtain a recursive func-
tion g(v) such that U(uy T,(v, (x)g, (x);,- -, (¥),_1.»)) = @}, (x). Hence,

S () = @y (x). So h(xi....
(g(l"())vp() .. '/),,L])-

,X,) is computed by applying ¥ to the tape

Exercises

5.32 Find a superuniversal Turing machine ¥ such that, for any Turing
machine 7, if zis a Godel number of 7 and xis the Godel number of an initial
tape descnptlon o of .7, then ¥ is applicable to gy(z,x) if and only if .7 is
applicable to o; moreover, if .7, when applied to «, ends with a tape description
that has Godel number w, then ¥, when applied to go(z,x), produces w.
5.33 Show that the following decision problem is recursively unsolvable: for
any « and v, determine whether ¢! = ¢!.

5.34 Show that the following decision problem is recursively unsolvable: for
any u, determine whether ¢! has empty domain. (Hence, the condition in
Example | above, that G(x) has non-empty domain is unnecessary).

5.35

(a) Prove that there is a recursive function g(u, v) such that

Patuny (X) = @o(x) - p)(x)

(b) Prove that there 1s a recursive function C(u,r) such that

| THE KLEENE MOSTOWSKI HIERARCHY
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54 THE KLEENE-MOSTOWSKI HIERARCHY.
RECURSIVELY ENUMERABLE SETS

Consider the following array, where R(xy. ..., x,.v..... ) IS a recursive
relation.
R(xy,....x,)
(OR(xr . oxy ) (VvR(x1. .o oxy 1)
(An) (V.z) ( X V1Y) (D) (B2)R(x) - x 1 32)
(3)’1)(\7 ¥2 YD) (Fy)R(x1 oo v v 33)

)y ) (,\], ..... YoV, (Y

ﬁH

Let Zo = [} = the set of all n-place recursive relations. For & > 0, let
be the set of all m-place rclations expressible in the prenex l"olm
() (D) . (O )Ry, o Xy Ve ). consisting of & alternating quan-
tifiers beginning with an existential quantifier and followed by a recursive
relation R. (Here, *(Qy;)" denotes (3w ) or (¥ ), depending on whether 4 1s
odd or even.) Let T1] be the set of all n-place relations expressible in the
prenex form (Vy }(Iy) .. . (Qvi)R(x1, ... Xu 31, -+, 0% ), consisting of k al-
ternating quantifiers beginning with a universal quantifier and followed by a
recursive relation R. Then the array above can be written

220
2 i
2 >
" n
3 3

This array of classes of relations is called the Kleene—Mostowski hierarchy,
or the arithmetical hierarchy.

PROPOSITION 5.17

(a) Every relation expressible in any form listed above is expressible in all
the forms in lower rows; that is, for all j > &,

n " n , " n n
SreYn I wa LYol
(b) There is a relation of cach form, except » 7. that is not expressible in

the other form in the same row and, henee, by part (a), not in any of the
rows above; thatas, for k- 0,

—
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Z: - Hl #0 und H: ~ Z"’ £

(¢) Every arithmetical relation is expressible in at least one of these

forms.

(d) (Post) For any relation Q(x;.... .2 v, ). Qs recursive if and only if both Q
and —Q are expressible in the form (dyv)R(xy.... . x,. ¥ ). where R is
recursive: that is, Y7 N IT = Y74

(¢) If Qredy and O € 37}, then Oy v O, and Oy AQ; are in Y ;. If
Oy € I1{ and O, € I}, then O, v Q> and Q) A Q5 are in TT}.
(fy In contradistinction to part (d). if £ > 0. then

(Xl IL ) - (S I #0

Proof

(a) (Fz)(dw) o (TP )Ry X Zi Ve i W)
() (Bz)) () o (Fze ) (V) Ry oo X 21V e i) At = u) &
Bz ) o () (I M T (R Xz e ) A= u)

Hence. any relation expressible in one of the forms in the array is
expressible in both forms in any lower row.

(b) Let us consider a typical case, say > 5. Take the relation
(Fe)(V2)(3y) T2 (x1.x1, %2, . . ., X, 0,2 p). which is in Y75, Assume that
this is in TII5, that is, it is expressible in the form (Vv)(3z)(Vy)
R(xy,...,x,. 0,2, y), where R is recursive. By Exercise 5.19, this relation
is equivalent to (Ve )(3z)(Vy)—=T,2(e,x1,. .., x,, 0,2, ¥) for some e. When
x| = e, this yields a contradiction.

(c) Every wf of the first-order theory S can be put into prenex normal form.
Then, it suffices to note that (3u)(3v)R(u, v) is equivalent to (F2)R((2),,
(2),), and (Yu)(Vv)R(u,v) is equivalent to (Vz)R((2),,(z),). Hence,
successive quantifiers of the same kind can be condensed into one such
quantifier.

(d) If Q is recursive, so is —Q, and, if P(x,...,x,) is recursive, then
P(xy,...,x,) © (A)(P(xy,...,x,) Ay =y). Conversely, assume Q is
expressible as (Jy)R(x,...,x,.¥) and —Q as (Iy)Ra(xy, ..., x,.¥).
where the relations R; and R, are recursive. Hence, (Vx))...
(Vx,) () (Ry (x1,y-v oy Xy y) V Ralxt,e ey xn, ). So, ¥ (x),....x,) =
Ww(Ry (x1,. ., X0, ») V Ra(x1,...,X,,»)) is recursive. Then, Q(x|,....x,)
< Ri(x1,....xp,W(x1,...,x,)) and, therefore, Q is recursive.

(e) Use the following facts. If x is not free in .«/.
F()(o VB) & (o V()A).
FU) (o VA) e (o V (V). 4).

F (30 A A) <5 (o A ().8).
P (Y A B 5s (o A (V1))

7 TH]Z;: IZLEI:N!‘ MOSTOWSKI HIERARCHY

() We shall suggest a proofin the case n = 1: the other cases arc then easy
consequences. Let Q(x) € 37, — ﬂ: Define P(x) as (32){(v == 2=A
O(z))V (x = 2z + | A =Q(z))]. It is casy Lo prove that P ¢ l:z U I} and
that P € Z,{ .1- Observe that P(x) holds if and only if

(G (x=2=AQE) vV () (v =22+ 1) A¥z)(x = 224 1 > =Q(=))

Hence, P € HZ_H (Rogers, 1959).

Exercises

5.36 For any rclation W of n variables, prove that W € 37} if and only iff
W ¢ T1i. where W is the complement of W with respect to the set of all
n-tuples of natural numbers.

5.37 For each £ > 0, find a universal relation ¥, in 57 ' that is. for any
relation W of i variables: (a) if W ¢ ;. then there exists zy such that. for all

Xpoooa Xy Wi v,) i and only i ¥i(zp.vp.. .. v, )o and (b) if W e []}.
there exists vy such that, for all xj...... Y, W(x;.....x,) il and only if

<Vi(vo. X1, ... xn). [Hint: Use Exercise 5.19.]
The s-m-n theorem (Proposition 5.15) enables us to prove the following
basic result of recursion theory.

PROPOSITION 5.18 (RECURSION THEOREM)

Ifn>1and f(x)....,x,) is a partial recursive function. then there exists a
natural number ¢ such that

/(rl....,x,,_|,e)=(p:,'"(\’| ..... Xn-1)
Proof
Let d be an index of f(xy, ..., X, 1,5 (x4, x,)). Then
f(-\'l s xxn—las,l,,l (X,,,X")) - (P:!(-"I yor s Xn—1 s-\'n)
By the s-m-n theorem, ¢(x),...,xn) = (p:f,,:ll(d._r")(xl, oo Xy1). Let e=

s) (d.d). Then:
Sxieoooxg gee) = fle, .. .x,,,,|,s,1,71 (d.d)) = @hxi, ..., xs1.d)

n o1 n-1

=@ ](d.d)(x|"'- Xn l) =@, (X|~~'~ 1"’1171)

COROLLARY 5.19 (FIXED-POINT THEOREM)

I8 A(v) s recursive, then there exists e such that ! @)

(o~

bn
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Applying the recursion theorem to f(x,u) = ([)ll“,”)(.\’). we obtain number ¢

such that f(x.¢) = @} (x). But f(x.¢) = @}, (x).

COROLLARY 5.20 (RICE’S THEOREM) (RICE, 1953)

Let .# be a set consisting of at least one, but not all, partial recursive
functions of one variable. Then the set 4 = {u|p} € .7} is not recursive.

Proof

By hypothesis, there exist numbers ) and u> such that u; € 4 and u» ¢ A.
Now assume that 4 is recursive. Define

h(x) — {111 ifx g4

75 Hxc4Ad
Clearly. h{x) € 4 if and only if x & 4. h is recursive, by Proposition 3.19. By
the fixed-point theorem. there is a number e such that ¢! = ‘f’/l;(u)' Then we
obtain a contradiction as follows:

=

ccA ifandonlyil ¢ €7
il and only if ¢}, €7
if and only if /A(e) € 4
ifand only if e g A

Rice’s theorem can be used to show the recursive unsolvability of various
decision problems.

Example
Consider the following decision problem: for any u, determine whether ¢
has an infinite domain. Let % be the set of all partial recursive functions of
one variable that have infinite domain. By Rice’s theorem, {u|pl € #} is
not recursive. Hence, the problem is recursively undecidable.

Notice that Example | on page 332 and Exercise 5.34 can be handled in
the same way.

Exercises

5.38 Show that the following decision problems are recursively unsolvable,
(a) For any u, determine whether ¢! has infinitc range.

(b) For any u, determine whether ¢! is a constant function,

(¢) For any u, determine whether ‘/’.l; is recursive,

THE KLEENLE MOSTOWSKIT HIERARCHY
5.39
(a) Show that there is a number ¢ such that the domain of ) is {¢}.
(b) Show that there is a number ¢ such that the domain of ¢! is @ {e}.
5.40 This exercise will show the existence of a recursive function that is not
primitive recursive.
(a) Let [\/x] be the largest integer less than or equal to /x. Show that [\/x]

is defined by the recursion

K(() =0
k(x4 1) = ~(x) +5g8[(x 4 1) (k(x) 4 1)

Hence, [/x] is primitive recursive.

(b) The function Quadrem{x) :x;[ﬁ]: is primitive recursive and rep-
resents the difference between x and the largest square less than or equal
to .x.

(¢) Let plx,y) = ((x +.v)2 1)+ m(2) = Quadrem(z). and  ps(z) =
Quadrem([y/z]). These functions are primitive recursive. Prove the
following:

(i) pi(plx.y)) =xand py(p(x,p)) = ».
(i) p is a one-one function from ? into w.
(1) p,(0) = p,(0) =0 and
mx+ ) =p ) +1

} it ot 1) £0
palx+ 1) = py(x)

(iv) Let p? denote p, and, for n >3, define p"(xi,...,x,)
= p(p" " (x1,...,x, 1).x,). Then each p" is primitive recursive.
Define p?(x) = p? '(p,(x)) for 1<i<n—1, and pl(x) = py(v).
Then each p/, 1<i<n, is primitive recursive. and
pr(p™(x1,...,x,)) = x;. Hence, p" is a one-one function of w" into
w. The p"s and the p!s are obtained from p, p, and p, by sub-
stitution.

(d) The recursion rule (V) (p. 174) can be limited to the form

F(le- - vxn+l~,0) = Xn+1 (" > 0)
Flxiooooxpn,y+ 1) =Gl xs v Flx, o x,0)

[7Fint: Given

fa...., X, 0) = g(x),... .0 X,)

flo . coxnv+ 1) =hle. oo fxy X))
define Foas above, letting Glxy, .. ... Ve voz) = hlxpoool v,.v.z). Then
/.(»\'l ------ \'n-,") I'.(XI ------ V- .‘/(»\'I BRI --\‘n)-,\')"

(¢) Taking v + v, vy and [/x] as additional initial functions, we can limit
the recursion rule to the one-parameter torn:
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F(x.0) = G(x)
Flxoy + 1) = {x.v. Flx.y)

[Hint: Let n > 2. Given

Sl 0) =gy, . .o0x,)
Sy + Dy =hlaooov oy (oo oox,)

let Flu.y) = f(piu)..... pia(u),y). Define F by a permissible recursion.
(Note that d(x),x=y,p" and p! are available.) [(x,.. ... Yy V)
=F(p"(x1.....x,),v).]
Taking x + y, x -y, and [/x] as additional initial functions, we can use
h(y.F(x,y)) instead of H(x,y,F(x,y)) in part (¢).
[Hint: Given
F(x.0) = G(x)
Fly, v+ 1) =H(x.y, Flx,y))

let  F(x,y)=px,F(x.p). Then x=p(F{x.y))
= py(Fi(x,y)). Define Fi(x.y) by a permissible recursion.]

and  F(x,y)
Taking x + v. x -y and [y/x] as additional initial functions, we can limit
uscs of the recursion rule to the form
S(x.0)=x
Sy + )y =h(y f(x.)

Hint: Given

F(x,0) = G(x)
Flx,y+ 1) =h(y.F(x,y))

define f as above. Then f(x,y) = f(G(x),y).

Taking x + y, x -y, [v/x] and x+y as additional initial functions, we can
limit uses of the recursion rule to those of the form

9(0)=10
g+ 1) =H(y,g9(»))

[Hint: First note that |x — y| = (x=y) + (y—=x) and that [\/x] is defin-
able by a suitable recursion. Now, given

S(x,0) =x
Slxov+ 1) =h(v f(x.3)

let g(x) = f(pa(x). py(x)). Then

(1)

Q)

(b

THE KLEENE- MOSTOWSKI HIERARCHY

g(0) = f(p2(0). 0y (0)) = [(0.0} =0
glx+ 1) = f(ps(v + Dop (v + 1)
e+ if oy (x+ 1) =0
N {h(p](x+ D=1 (palx+ Dopplx+ D=1)  ifp(x +1)#0
e+ 1) i (x+1)=0
- {h(m(x)z,/‘(m(x)-pz(-r))) itp(x+1)#0
et ) ipx+1)=0
- {h(m(x)-u(\)) it (x+1)#£0
= palx + 1) sg(p (v + 1)) + hlp(x). g(x)) - sglpy (v + 1))

Then f(x,y) = g(p(y,x)). (Note that sg is obtainable by a recursion of
the appropriate form and sg(x) = 1 =x.)
In part (h), H{y.¢g( v)) can be replaced by H(g(v)).
[Hint: Given
9(0) =0
gy + 1) = H(y,g(v)

let f(u) = p(u,g(u)) and @(w) = p(p,(w) + I H(p,(w), ps(w))). Then
J0)=0
fly+1) = olf(y)
and g(u) = p,(f(u)). (Note that sg(x) is given by a recursion of the

specified form.)
Show that the equations

Y(x,0) =x+1
W0,y + 1) =v(Ly)
'7”('\‘ + l!y + l) = 'r//('/’(xa)“r l),)’)

define a number-theoretic function. In addition, prove:
Wix,y) > x

(I1) W(x,y) is monotonic in x, that is, if x <z, then Y(x,y) < ¥(z, ).

() Yl + Ly)<ylx,y + 1).

(1V) (x,v) is monotonic in y, that is, if y < z, then ¥(x,y) < ¥(x,z).

(V)" Use the recursion theorem to show that  is recursive. [Hint: Use

(V1) Forcevery primitive recursive function f(x.. ...

Exercise 5.21 to show that there is a partial recursive function g such
that g(x,0,u) = x+ 1,g(0,y + L,u) = 2(1,y), and g(x + 1,y + 1, u) =
¢ (¢2(x.y + 1).v). Then use the recursion theorem to find e such that
glx.voe)  pi(x.v). By induction, show that g(x.v,e) = (x.v).]

X, ). there is some fixed
m such that

v o) s imax (v, o) m)

-
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forallx;...... v,. [Hint: Prove this first for the initial functions Z. N, U/,
XA xox v [Wxland x =y, and then show that it is preserved by
substitution and the recursion of part (1).] Hence, for every primitive
recursive function f(xj. there is some m such that f(x) < (x. m) for allx.
(ViI)Prove that #(x,x) 4+ | is recursive but not primitive recursive.
For other proofs of the existence of recursive functions that are not
primitive recursive, see Ackermann (1928). Péter (1935; 1967), and
R.M. Robinson (1948).

A sct of natural numbers is said to be recursively enumerable (r.e.) if
and only il it is either empty or the range of a recursive function. If we
accept Church’s thesis, a non-empty recursively enumerable set is a
collection of natural numbers generated by some mechanical process
or eflective procedure.

PROPOSITION 5.21

(a) A set Bisr.c. if and only if x € B is expressible in the form (Iy)R(x, y),
where R is recursive. (We even can allow R here to be primitive re-
cursive.)

(b) Bisr.e. if and only if B is cither empty or the range of a partial recursive
function.!

(c) Bisre. if and only if B is the domain of a partial recursive function.

(d) B is recursive if and only if B and its complement B are r.e.}

(e) The set K = {x|(Jy)Ti(x,x,y)} is r.e. but not recursive.

Proof

(a) Assume Bis r.e. If Bis empty, thenx € B < (dy) (x #xAy#y). If Bis
non-empty, then B is the range of a recursive function g. Then
x € B (dy)(g(y) = x). Conversely, assume x € B < (Jy)R(x,y), where R is
recursive. If B is empty, then B is r.e. If B is non-empty, then let k& be a fixed
element of B. Define

[k if ~R((2)y, (2),)
0(z) = { (2 ifR((Z)oyO(Z)J

B is recursive by Proposition 3.19. Clearly, B is the range of 6. (We can take
R to be primitive recursive, since, if R is recursive, then, by Corollary 5.12(a),
(IY)R(x,y) & (Iy)Ti(e,x,y) for some e, and T (e, x,y) is primitive recursive.)

ISince the empty function is partial recursive and has the empty set as its range,
the condition that B is empty can be omitted.
B B.where o is the set of natural numbers.
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(b) Assume B is the range of a partial recursive function ¢. If' B is empty.
then B is r.e. If B is non-cmpty. then let & be a fixed element of B. By
Corollary 5.11, there is a number e such that g(x) = U(qvT(e.x.v)). Let

oUWz 0 Ti(e(2)y.(2)))
hu>~{k ' irﬁﬂ@mnwuh)

By Proposition 3.19. i is primitive recursive. Clearly, B is the range of 4.
Hence, Bis re.

(¢) Assume B is r.e. If B is empty. then B is the domain of the partial
recursive function uy(x + vy + 1 = 0). If B is non-empty, then B is the range
of a recursive function ¢. Let G be the partial recursive function such that
G(y) = ux(g(x) = y). Then B is the domain of G. Conversely, assume B is
the domain of a partial recursive function H. Then there is a number e such
that H(x) = U(uyTi(e.x.y)). Hence, H(x) = z il and only if (3v)(71(e.x.y)A
U(y) =z). But, x € B if und only if (Jz)(H(x) = z). So. x € B if and only if
(F2)(3v)(Ti(e.x.v) AU(y) = z), and the latter is equivalent to (Ju)(7(e. x.
(t))) ANU(u),) = (u)y). Moreover, Ti(e.x, (u),) AU((u)) =(u), 1s recur-
sive. Thus, by part (a), B is r.e.

(d) Use part (a) and Proposition 5.17(d). (The intuitive meaning of part
(d) is the following: if there are mechanical procedures for generating B and
5. then to determine whether any number 7 is in B we need only wait until n
is generated by one of the procedures and then observe which procedure
produced it.)

(e) Use parts (a) and (d) and Corollary S.13(a).

Remember that the functions ¢} (x) = U(uyTy(n.x,p)) form an enumer-
ation of all partial recursive functions of one variable. If we designate the
domain of (p,', by W,. then Proposition 5.21(c) tells us that Wy, Wy, W5, ... 1s
an enumeration (with repetitions) of all r.e. sets. The number » is called the
index of the set W,.

kxercises

5.41 Prove that a set Bis r.e. if and only if it is either empty or the range of

a primitive recursive function. [Hint: See the proof of Proposition 5.21(b).]

5.42

(i) Prove that the inverse image of a r.e. set B under a partial recursive
function /" is r.c. (that is, {x|/(x) € B} is r.e.).

(b) Prove that the inverse image of a recursive set under a recursive func-
tion 1s recursive,

(¢) Prove that the image of a r.e. set under a partial recursive function 1s
r.e.

(d) Using Church’s thesis, give intuitive arguments for the results in parts

() (c).
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(¢) Show that the image of a recursive set under a recursive function need
not be recursive.
5.43 Prove that an infinite set is recursive if and only if it is the range of a
strictly increasing recursive function. (g is stricily increasing if x < y implies
glxy < g(v).)
5.44 Prove that an infinite set is r.c. if and only if it is the range of a one—
onc recursive function.
5.45 Prove that every infinite r.c. set contains an infinite recursive subset.
5.46 Assume that 4 and B are r.e. sets.
(a) Prove that AUB is r.e. [In fact, show that there is a recursive function
g(u.v) such that Wy, . = W, U W, ]
(b) Prove that AnB is r.e. [In fact, show that there is a recursive function
h{u.v) such that Wy, ., = W,nI.]
(¢) Show that 4 need not be r.e.
(d) Prove that |J, ., W, is re.
5.47 Show that the assertion
(V) A set Bis r.e. if and only if Bis effectively enumerable (that is,
there 1s a mechanical procedure for generating the numbers in B)
is equivalent to Church’s thesis.
5.48 Prove that the set 4 = {u|W, = »} is not r.e.
5.49 A sct Bis called creative if and only if B is r.e. and there is a partial
recursive function # such that. for any n, it W, C B, then h(n) € B - W,

(a) Prove that {x|(3y)7)(x,x,y)} is creative.
(b) Show that every creative set is non-recursive.

5.50° A set B is called simple if B is r.e., B is infinite, and B contains no
infinite r.e. set. Clearly, every simple set is non-recursive. Show that a simple
sct exists.

5.51 A recursive permutation is a one—one recursive {unction from w onto w.
Sets 4 and B are called isomorphic (written 4 ~ B) if there is a recursive
permutation that maps 4 onto B.

(a) Prove that the recursive permutations form a group under the opera-
tion of composition.

(b) Prove that ~ is an equivalence relation.

(c) Prove that, if 4 is recursive (r.e., creative, simple) and 4 ~ B, then B is
recursive (r.e., creative, simple).

Myhill (1955) proved that any two creative sets are isomorphic. (See also
Bernays, 1957.)

5.52 A is many—one reducible to B (written AR,,B) if there is a recursive
function f such that u € 4 if and only if /(«) € B. (Many one reducibility of
A to B implics that, if the decision problem for membership in B is recur-
sively solvable, so is the decision problem for membership in 4.) 4 and B are
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called many--one equivalent (written 4 =, B) \ AR, B and BR,A. 4 1s one

one reducible 1o B (writtten AR B) if there is a one-one recursive tunction f

such that u € A ifand enly il /(1) € B. 4 and B arc called one one equivalent

(written 4 =; B) il AR B and BR, 4.

(a) Prove that =,, and =, are equivalence relations.

(b) Prove that. if 4 is creative, B is r.e.. and AR, B, then B is creative.
[Myhill (1955) showed that. if 4 is creative and B is r.e.. then BR,A4. |

(¢)  (Myhill. 1955) Prove that. if AR B then AR, B, and if 4 = B then
A =n B. However. many one reducibility does not imply one-one re-
ducibility. and many one equivalence does not imply onc-onc equiv-
alence. [Hini: Let 4 be a simple sel. C an infinite recursive subset of A.
and B=4 — C. Then AR|B and BR 4 but not-(BR,4).] It can be
shown that 4 =, B if and only if 4 ~ B.

5.583 (Dekker, 1955) 4 is said to be productive il there is a partial

recursive function f such that. if W, C 4. then f(n} € 4 - W,. Prove the

lollowing.

(a) If 4 is productive. then A is not r.c.: hence. both 4 and 4 arc infinite.

()P 1f 4 is productive, then 4 has an infinite r.c. subset. Hence, if A is
productive, 4 is not simple.

(¢) I Aisr.e., then 4 is creative if and only if A is productive.

()" There exist 2% productive sets.

5.54 (Dekker and Myhill, 1960) 4 is recursively equivafent to B (written

-1 ~ B) if there is a one-one partial recursive function that maps 4 onto B.

(1) Prove that ~ is an equivalence relation.

(b) A is said to be imumune if 4 is infinite and 4 has no infinite r.e. subset. 4
is said to be isolated if A is not recursively equivalent to a proper subsel
of A. (The isolated sets may be considered the counterparts of the
Dedekind-finite sets.) Prove that an infinite set is isolated if and only if
it i1s immune.

(c)” Prove that there exist 2% immune sets.

Recursively enumerable sets play an important role in logic because, if we
assume Church’s thesis, the set Tg of Godel numbers of the theorems of any
axiomatizable first-order theory K is r.e. (The same holds true of arbitrary
formal axiomatic systems.) In fact, the relation (see page 198)

Pk (v.x): v is the Godel number of a proof in K of a wf with Godel

number x

is recursive if the set of Godel numbers of the axioms is recursive, that is, if
there is o decision procedure for axiomhood and Church’s thesis holds.
Now, v ¢ Tx ifand only if ( 1v)Pfx ( v.x) and, theretfore, 7k is r.e. Thus, it we
accept Church's thesis, K is decidable it and only it the r.e. set 7k s re-
cursive. 11 was shown in Corollary 3.46 that every consistent extension K of
the theory RR s recursively undecidable, that is, 7k is not recursive,
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Much more general results along these lines can be proved (see Smullyan,
19611 Feferman, 1957: Putnam. 1957: Ehrenfcucht and Feferman. 1960: and
Myhill. 1955). For example. if K is a first-order theory with equality in the
language ¢ of arithmetic: (1) if every recursive sct is expressible in K. then
K is essentially recursively undecidable. that is, for every consistent exten-
sion K" of K, Ty is not recursive (see Exercise 5.58): (2) if every recursive
function is representable in K and K satisfies conditions 4 and 5 on page
208. then the set 7k 1s creative. For further study of r.e. sets, see Post (1944)
and Rogers (1967): for the relationship between logic and recursion theory.
see Yasuhara (1971) and Monk (1976, part 111).

Exercises

5.55 Let K be a first-order theory with equality in the language %, of

arithmetic. A number-theoretic relation B(xj,....x,) is said to be weakly
expressible in K if there is a wf 4(x;... . x,) of K such that. for any natural
numbers k... k,.B(ky.... k) if and only il b B(ky.... . k,).

(a) Show that., if K is consistent. then every relation expressible in K is
weakly expressible in K.

(b) Prove that. if every recursive relation is expressible in K and K is o-
consistent. every r.e. set is weakly expressible in K. (Recall that, when
we refer here to a r.e. set B, we mean the corresponding relation
‘x € B)

(c) If K has a recursive vocabulary and a recursive axiom set, prove that
any set that is weakly expressible in K is r.e.

(d) If formal number theory S is w-consistent, prove that a set B is r.e. if
and only if B is weakly expressible in S.

5.56

(a) (Craig, 1953) Let K be a first-order theory such that the set Tx of Godel
numbers of theorems of K is r.e. Show that K is recursively axiom-
atizable.

(b) For any wf # of formal number theory S, let ## represent its trans-
lation into axiomatic set theory NBG (see page 269. Prove that the set
of wfs %4 such that Fngg A4 is a (proper) recursively axiomatizable
extension of S. (However, no ‘natural’ set of axioms for this theory is
known.)

5.57 Given a set 4 of natural numbers, let u € A* if and only if « is a Gddel

number of a wf %(x|) and the Gédel number of #(#) is in 4. Prove that, it 4

is recursive, then A* is recursive.

5.58 Let K be a consistent theory in the language ¢4 of arithmetic.

(a) Prove that (Tk)* is not weakly expressible in K.

(b) If every recursive sct is weakly expressible in K. show that K is re-
cursively undecidable.

OTHER NOTIONS OF CONMPU TABILTTY

(¢) I every recursive set iy expressible in Ko prove that K is essentially
recursively undecidable.

5.5 OTHER NOTIONS OF COMPUTABILITY

Computability has been treated here in terms of Turing machines because
Turing’s definition is probably the one that makes clearest the equivalence
between the precise mathematical concept and the intuitive notion.! We
already have encountered other equivalent notions: standard Turing com-
putability and partial recursiveness. One of the strongest arguments for the
rightness of Turing's definition is that all of the many definitions that have
been proposed have turncd out to be equivalent. We shall present several of
these other definitions.

Herbrand—Gadel Computability

The idea of defining computable functions in terms of fairly simple systems

ol cquations was proposed by Herbrand. given a more precise form by

Godel (1934), and developed in detail by Kleene (1936a). The exposition

aiven here is a version of the presentation in Kleene (19520 chap. X1.)
First let us define the rerms.

. All variables are terms.

. 01s a term.

107 is a term. then (1)’ is a term.

R A T, 1, are terms and /7' is a function letter. then f7'(ry,...,1,) is a
term.

e 9 —

FFor every natural number n. we define the corresponding numeral i as
follows: (1) 0is 0 and (2) n + L is (7)". Thus, every numeral is a term.

An equation is a formula r = s where r and s are terms. A system E of
cquations is a finite sequence ry = sy.r2 = $2,. .../ = 5 of equations such
that #; 1s of the form ‘/‘;’(11. co ).

The function letter /7' is called the principal letter of the system E. Those
function letters (if any) that appcar only on the right-hand side of equations
of E are called the snitial letrers of E; any function letter other than the
principal letter that appears on the left-hand side of some equations and also
on the right-hand side of some cquations is called an auxiliary letter of E.

We have two rules of inference:

"For further pistification ol this equivalence, see Tuanng (1936 37)0 Kleene
(LOS2 pp W17 230 376 3K and Mendelson (1990)
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R An equation ¢ is a consequence of an equation ¢; by Ry if and only if
¢> arises from ¢ by substituting any numeral 7 for all occurrences of a
variable.

R>: An equation ¢ is a consequence by R; of Lqu‘mons NS ) = p
and r = s if and only if ¢ arises from r = s by replacing one or more
occurrences of f)"(ny, ..., 7,) ins by p.and r = s contains no variables.

A proof of an equation ¢ {rom a set B of equations is a sequence ¢y. . . . . ey
of equations such that e, is ¢ and, if 0 <7< n, then: (1) ¢; is an equation of B,
or (2) e; is a consequence by Ry of a preceding equation ¢;(j < i), or (3) ¢; is a
consequence by R; of two preceding equations e; and e, (j < i.m < i). We
use the notation B F e to state that there is a proof from B of ¢ (or, in other
words, that ¢ is derivable from B).

Example

Let E be the system

/) = (x
/l(n )=/ (2 x2. /1 (%)

The principal letter of E is /7. f' is an auxiliary letter, and /; is an initial
letter. The sequence of equations

fixrx) = (2o f ()
f7(2.x2) = f1(2.x2./1(2)
[T =2 T.41(2)
/1l(xl) =(x) )/
R =1Q) (e fi2)=3)
21 =213

is a proof of f2(2,1) = f3(2,1,3) from E.

A number-theoretic partial function ¢(x,...,x,} is said to be computed
by a system E of equations if and only if the principal letter of E is a letter /7'
and, for any natural numbers ki,. .., k., p,

E%f;(i.,...,%,,) =pifand only if @(k|,... . k,) =p

The function ¢ is called Herbrand-Gédel-computable (for short, HG-com-
putable) if and only if there is a system E of equations by which ¢ is
computed.

Examples

1. Let E be the system f}!(x;) = 0. Then E computes the zero function 7.
Hence, Z is HG-computable.

2. Let E be the system f!'(x;) = (x))". Then E computes the successor
function N. Hence, N is HG-computable.
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3. Let E be the system [ (xy.... . v,) = x;. Then E computes the projection

function U". Hence. U] is HG-computable.

4. Let E be the system

SRx10) = x
S ) = xxa))

Then E computes the addition function.
. Let E be the system

N

Slx) =0
i) =x

The function ¢(x;) computed by E is the pdl‘lldl function with domain {0}
such that @(0) = 0. For every k # 0. E - f(k )=0 and E & f)(k) = k.
Hence, ¢(x)) is not defined for x; # 0.

Exercises
5.59
(a) What functions are HG-computable by the following systems of
cquations ?
(i) /10y =0, fI{(x)) = S
(i) f7(x1.0)= Vh 130, x2 ) o SHE) () = SR x)
(i) fl(n) =0, fl(n)=0 S
(v) SRx0) =xi, fila, (w) = (xx))s fl) =)
(b) Show that the following functions are HG-computable.
(i) | —x2
() x;-x2

Gil) () = {0 ifx is even

.60 1 ifxisodd

(1) Find a system E of equations that computes the n-place function that is
nowhere defined.

(b) Let / be an n-place function defined on a finite domain. Find a system
of cquations that computes /.

(¢) If f(x)is an HG-computable total function and g(x) is a partial func-
tion that coincides with f(x) except on a finite set 4, where g is unde-
fincd. find a system of equations that computes g.

PROPOSITION 5.22

Every partial recursive function s HG-computable,
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Proof

(a) Lxamples I 3 above show that the ital fuactions 20N and U are HG-
computabic.

(b) (Substitution rule (IV).) Let givy. oo O TN AT P T
Wy v,)) where n. ..o #,, have been shown to be HG-computable.
Let E; be a system ol equations wmpunn} i, with principal letter /", and
fet E, 1 be asystem of equations computing #. with principal letter f,,, . By
changing indices we may assume that no two of E..... E, | have any
function letters in common. Construct a system E for ¢ by listing

Ejoo.. E, 1 and then adding the equation /) (v...... = I
(SMx.. . Xp)eoonn Sy o). (We may assume that /7, does not oc-
cur in By, ... B, ) Tt as clear that, if o(A..... ky) = p. then E /" .
(ky,.... k) =p. Conversely. if E /" (k... k,) =p. then E
o A ST ki)=pyoo..  EF Mk ki) =P, and E F /M (D). ..D,)
= p. Hence, it reudlly follows that E, + /"(/\1 ..... ky) = Pieeoon Ent
_/;:(EI,.. k) = P and E, =" p Pw) =P Consequenlly. l//l
(ky..... ki) =pio.... W lkyo ... ko) = pm and  y(pr..... Pm) =p.  So,
ok ... k,) = p. [Hints as to the details of the proof may be found in
Kleene (1952, chap. XI. especially. pp. 262 270).] Hence. ¢ is HG-com-
putable.
(C) (Recurxion rule (V).) Let
17,1 S PPN VN ¥ BN /2 (8 AR U
16N T R VARTEE i B IESV] R TP N X))

where iy and ¥ arc HG-computable. Assume that E; is a system of equations
computing ¥ with principal letter /" and that E; is a system of equations
computing ¢ with principal letter /"2, Then form a system for computing ¢
by adding to E; and E,
S 0) = )
. ‘l”H(XF ceea Xy (XIHrl) ) = /”N( EERR T ES| eflm I(*"ls ce -xn+l))

(We assume that E) and E, have no function letters in common.) Clearly, if
@(ki,... ks, k) =p, then E "'V (k,,... k,.k) = p. Conversely, one can
prove easily by induction on k that, if E & f7"""(k,... .k, k) =p, then
o(ki,... k, k) = p. Therefore. ¢ is HG-computable. (The case when the
recursion has no parameters is even easier to handle.)

(d) (p-operator rule (VI).) Let o(xy,....x,) = w(Wlxr,....x,, ) =0)
and assume that i is HG-computable by a system E, of equations with
principal letter /7't'. By parts (a)—(c), we know that every primitive recursive
function is HG-computable. In particular, multiplication is HG-comput-
able; hence, there is a system E, of equations having no function letters in
common with E; and with principal letter /7 such that Ea = (3 (k. k2) - pif
and only if &y - k> = p. We form a system Ly by adding to Iy and E; the
cquations

OTHER NOTIONS OFF COMPUTABILITY

B 0) =
U ) = /'32(_/}:' e e X )T, 1)
One can prove by induction that E; computes the function
[1 (v ox.v)e that s, Ex b /77 Yk ... k,.k)y=p o and only if
1. .w( /\1 ..... ky.v) = p. Now construct the system E by adding to E; the
equations

S0 00x) =

S W) =13 P X ) e (V1)) n)
Then E computes the function ¢(x;. ... .0 X, ) = (... v v = 0). 1 v
(Wiky..... ky.v) =0) = ¢. then Ex b /7 (ky. ... k,.q) =P, where p + 1 =
I1. ,///(k, kyy). and Es b /""( ..... k,.q') = 0. chce E &/
(kyo.... k,) = /_,Q) 0.g). But, E F /3 (7'.0.9) = q. and so. bk
k,) =q. Conversely, il E & f7(ki..... k,) =7q. then E /4(1)1 0.9) = 7.
where  Es b /7 ' (k.. ky.q) = (m)’ and  Exb /9 (ky k,.q) = 0.
Henee. H l// kio... k,.y)=m+1+#0and H\ J ki ko v) = 0. So.
Wiky. ..., k. y) # () for y<gqg, and (k... ... k,.q) = 0. Thus. pv(ip(k.

. ky.v) = 0) = ¢q. Therefore, ¢ is HG-computable.

We now shall proceed to show that every HG-computable function is
partial recursive by means of an arithmetization of the apparatus of Her-
brand-Gédel computability. We shall use the same arithmetization that was
used for first-order theories (see Section 3.4). (We take the symbol ' to be an
abbreviation for f!. Remember that » = s is an abbreviation for 43(r,s). The
only individual constant is 0.) In particular, the following relations and
unctions are primitive recursive (see pages 192-4):

L(x): x is the Godel number of a function letter
(3o (F2), . x = 1+ 82" - F)Ay>0Az>0)

1:Vbl(x): x is the Godel number of an expression consisting of a variable

L' L{x): x 1s the Gbédel number of an expression consisting of a function
fetter

Nu(v): x is the Godel number of a numeral

I'rm(x): x is the Godel number of a term

Num(x) = the Godel number of the numeral ¥

Arg:p(x) - the number of arguments of a function letter, f, if x is the Godel
number of /'

vey o the Godel number of an expression 4B if x is the Goédel number of
the expression 4 and y is the Gaodel number of B

Subst(v. v w.r): s the Godel number of a variable x,, uw is the Godel
number of a term 7. v s the Godel number of an expression .4, and x is
the Godel number of the result of substituting 7 for all occurrences of 'y,
n #
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The following are ilso primitive recursive:
Eqt(x): x is the Godel number of an cquation:

Ao(x) = IATem((x) ) A Trm((x), ) A (x), = 99

(Remember that=is Af. whose Godel number i1s 99.)
Syst(x): x is the Godel number of a system of equations:
(), a EQU) ) A FLA ), 400 -0 )0)
Occ(u. v): wis the Godel number of a term ¢ or equation B and v is the Gédel
number of a term that occurs in ¢ or B:
(Trm(u) V Eqt{u)) ATrm(e) A (2x), ., (3v).. (= xxvsy
Vu=x+xeVu=r+yVu=r)
Cons) (1. v): uis the Gédel number of an equation ¢, v is the Gédel number

of an equation ea, and e- 1s a consequence of ¢; by rule R;:

pal

Eqt(u) A Eqt(s) A (3x), ., (3v), - (Nu(y) A Subst(v.u. y.x) A Occ(u. x))

Consy(u.z,v): u, z. v arc Goédel numbers of cquations ¢y, e», e3, respec-
tively, and ¢; is a consequence of ¢; and ¢» by rule Rj:
Eqt(u) A EqU(z). A Egt(r) A =(3x), . .(EVbI(x) A Oce(z. x))
AFL((2))o) A (I gy agmy, ~FLRAE)),)
A (Vx), ..<z/,((_;):)'jFL(((Z)z)y) A Oce((u),.(2)y)
AL uB) (W) = 4 (&) xw A e = 2730050 v
((u)y = (z), Ao =2"30050:))
Ded(u, z): u is the Godel number of a system of equations E and z is the
Godel number of a proof from E:
Syst(u)A(Vx), <//7(2)((‘:‘|w)w<///(u)(“)w = (2),
V(). Consi((z),. (2),) V (Iy), < (Fv), . (Consy((2),, (2),. (2),))

S,(u,xy,...,xn,2) : uls the Goédel number of a system of equations E whose

principal letter is of the form /7', and z is the Gédel number of a proof

from E of an equation of the form f7(x,....%,) = p:
Ded(u,z) A Argr((() 40 - Mo =1 N4 =101
= (((")/,5(,,);|)|)0 A (VY)0<y</ﬁ(((Z)/q:, ,)1)_'FL((((Z)//,(:) )
ANU(((2), 4= 1)) AN (2 gy ) = 20w 10y 3y aNumy) a7

* 2Num(.r;) " 27 e 27 " zNumh,,) * 2‘

Remember that ¢(() 3.g())  Sand g(.) 7.
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U(x) = pve o (Num(v) = ((x), .., J2). (W is the Godel number of a proof

of an equation » = p. then U(x) = p.)

PROPOSITION 5.23

(Kleene. 1936a) If p(x;..... x,) s HG-computable by a system of equations
E with Goédel number ¢, then
@y oax,) = Ue(Sy(exyooox )

Hence. every HG-computable function ¢ is partial recursive. and. if ¢ 1s
total. then ¢ is recursive.

Proof

plhy.. ... ky) = p if and only it E b [/(k)..... ky) = p. where /7 is the
principal letter of E. (k... .. ky,) 1s defined if and  only if
(Iv)S, (e hky.oo ky o v). I8k, .. ky) s defined. (S, (e ky, .. .. k. v))is the
Godel number of a proof from E of an equation _/'/."(/?I ..... k,) = p. Hence.
Ulpy(Sule k... kyy))) = p= ok, ... ky). Also, since S, is primitive
recursive, pp(S,(e.xy.....x,.v)) Is partial recursive. If ¢ is total. then
(Vxy) .. (W) (3v)S,(e.xy. ..., x,. v): hence, pv(S,(e.x),....x,.»y)) IS recur-

sive, and then, so is U(uy(S,(e,xy, ..., x5 1))
Thus, the class of HG-computable functions is identical with the class of
partial recursive functions. This is further evidence for Church’s thesis.

Markov algorithms

By an algorithm in an alphabet A we mean a computable function 2 whose
domain is a subset of the set of words of A and the values of which are also
words in A. If P is a word in A, U is said to be applicable to P if P is in the
domain of 2; if 2 is applicable to P, we denote its value by 2U(P). By an
algorithm over an alphabet A we mean an algorithm 21 in an extension B of
A." Of course, the notion of algorithm is as hazy as that of computable
function.

Most familiar algorithms can be broken down into a few simple steps.
Starting trom this observation and following Markov (1954), we select a
particularly simple operation, substitution of one word for another, as the
basic unit from which algorithms are to be constructed. To this end, if P and
Q are words of an alphabet A, then we call the expressions P — Q and
P Q productions in the alphabet AL We assume that *—" and "7 are not
symbols ol A Notice that Por Q 1s permitted to be the empty word. P -+ Q

An alphabet Bosanextension of AA B
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is called a simple production, whereas P — - Q is a rerminal production. Let
us use P — (-) Q to denote cither P — Q or P — - Q. A finite list of pro-
ductions in A

P — () Q
Py — () Q
P =) Q

is called an algorithm schema and determines the following algorithm I
in A. As a preliminary definition, we say that a word T occurs in a word
Q if there are words U, V (cither one possibly the empty word A) such
that Q = UTV. Now, given a word P in A: (1) We write ¥: P2 if none
of the words Py.....P, occurs in P. (2) Otherwise, if m is the least in-
teger, with I <m<r. such that P, occurs in P, and if R is the word that
results from replacing the leftmost occurrence of P,, in P by Q,,. then we

write
(a) WA:PFR

it P, — (-) Q,, 1s simple (and we say that 2 simply transforms P into R);
(b)y W:PF-R

if P, — (-) Q,, is terminal (and we say that 9 terminally transforms P into
R). We then define 2 :PE R to mcan that there is a sequence
Ry, R;...., Ry such that:

(i) P=R,.

(i) R =Ry

(i) For0<j<k -2, AR, FR;y;.

(iv) Either U : Ry, ; = R, or U : Ry_; = - R¢. (In the second case, we write
A:PE-R.)

We set U(P) =R if and only if either W:PE-R, or AW:PER and
A : RO, The algorithm thus defined is called a normal algorithm (or a
Markov algorithm) in the alphabet A.

The action of A can be described as follows: given a word P, we find the
first production P,, — () Q,, in the schema such that P,, occurs in P. We¢
then substitute Q,, for the leftmost occurrence of P,, in P. Let R; be the ncw
word obtained in this way. If P,, — () Q,, was a terminal production, the
process stops and the value of the algorithm is R;. If P, — () Q,, was
simple, then we apply the same process to R as was just applied to P, and so
on. If we ever obtain a word R; such that 2 : R;3. then the process stops
and the value A(P) is R;. It is possible that the process just described never
stops. In that case, 2 is not applicable to the given word P.

Our exposition of the theory of normal algorithms will be based on
Markov (1954).
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Examples

I

. Let A be the alphabet {ag.ay.....

Let A be the alphabet {b.cf. Consider the schema

The normal algorithm 20 defined by this schema transforms any word
that contains at least one occurrence of b into the word obtained by
erasing the leltmost occurrenee of b, ¥ transforms the empty word A into
itself. Qs not applicable to any non-empty word that does not contain b.

a, }. Consider the schema

a0 - A
] A
, A

We can abbreviate this schema as follows:
oA {(EmA)

(Whenever we use such abbreviations. the productions intended may be
listed in any order.) The corresponding normal algorithm transforms
cvery word into the empty word. For example.

W apanagasag F ajasajas B oasagasz araz Fay kA and 2 AJ. Hence,
W(ajaraa3a9) = A.

. Let A be an alphabet containing the symbol a;, which we shall abbre-

viate . For natural numbers 2. we define 7 inductively as follows: 0 =|
and n + 1 =7 |. Thus. T = ||. 2 =|||. and so on. The words 7 will be called
numerals. Now consider the schema A — - |, defining a normal algorithm
9. For any word P in A, 9(P) =| P.i In particular, for every natural
number n, WAy =n+ 1.

4. Let A be an arbitrary alphabet {ag,a;,....a,}. Given a word
P =g, let P=a, - a; a;, be the inverse of P. We seck a nor-
mal algorithm 2 such that 2(P) = P. Consider the following (abbrevi-
ated) algorithm schema in the alphabet B = Au{x. B}.

() 2z - B

(hy BE B (Ein A)

() Px B

Wy p oA

(¢) and - lan (Eonin A)

M A

"To see this, observe that A occurs at the begmmng of any word P.osinee

AP
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This determines a normal algorithm 2 in B. Let P = a;.a; ---a; be any
word in A. Then ¥ : P+ «P by production (). Then, «P F a; 2,0, .. a;,
Fa,apoa;a;, .. a,. .. Faga;, ... a;%,. all by production (e). Thus.
A PEaja;,...a,2a;,. Then. by production (), : P =xa;a, ...
aj aa;,. Applying, as before, production (e). 2 : P E aa,, ... a;,%q, 2a;,
Iterating this process, we obtain U : P = xaj0a, x...%a,xa,. Then, by
production (), 9 : P aoaj xa,, ... xa;aa;,. and. by production (a),
W PE Bajaa;, x... 2,24, Applying productions (b) and (c¢) and fi-
nally (d), we arrive at 91 : P - P. Thus, U is a normal algorithm over A
that inverts every word of A.f

Exercises

5.61 Let A be an alphabet. Describe the action of the normal algorithms
given by the following schemas.

(a) Let Q be a fixed word in A and let the algorithm schema be: A — - Q.
(b) Let Q be a fixed word in A and let x be a symbol not in A. Let
B = Au{z}. Consider the schema

2 — G (& n A)

a— - Q
A —

(¢) Let Q be a fixed word in A. Take the schema
E—-A  (£inA)
A—-Q
(d) Let B= Au{]|}. Consider the schema
E—| € inA-{}hH
A

5.62 Let A be an alphabet not containing the symbols «,f,y. Let B =
Au{a} and C = Au{a, B, 7}

(a) Construct a normal algorithm 2 in B such that A(A) = A and
AU(EP) = P for any symbol & in A and any word P in A. Thus, 21 erases
the first letter of any non-empty word in A.

"The distinction between a normal algorithm in A and a normal algorithm over
A is important. A normal algorithm in A uses only symbols of A, whereas a normal
algorithm over A may use additional symbols not in A. Every normal algorithm in A
is a normal algorithm over A, but there are algorithms in A that are determined by
normal algorithms over A but that are not normal algorithms in A (for example. the
algorithm of Exercise 5.62(d)).
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(b) Construct a normal algorithm © in 3 such that T(A)=A and
(PL) = P for any symbol 2 in A and any word Pin A. Thus. T erases
the last letter of any non-empty word in A.

(¢) Construct a normal algorithm € in B such that €(P) equals A i P
contains exactly two occurrences of » and €(P) is defined and is not
equal to A in all other cases.

(d) Construct a normal algorithm .4 in C such that. for any word P of A.

B(P) = PP.
5.63 Let A and B be alphabets and let « be a symbol in neither A nor B. For
certain symbols ay..... agin Allet Q... Q, be corresponding words in B.

Consider the algorithm that associates with each word P of A the word
Sub &% (P) obtained by simultancous substitution of cach Q; for
(i = I fk)‘ Show that this is given by a normal algorithm in AUBuU{a}.
5.64 Let H = {|} and M = {|. B}. Every natural number n is represented by
its numeral 7. which is a word in H. We represent every k-tuple
(oo nx) of natural numbers by the word mBmB... B7 in M. We

shall denote this word by (n).n3,....n). For example, (3.1.2) is [|||B]|BJ]|.

(a) Show that the schema

B—B
x| =
o — -
A—a
defines a normal algorithm 90, over M such that (7)) = 0 for any n, and
91, is applicable only to numerals in M.
(b) Show that the schema
B—B
xf = -l
A—a
defines a normal algorithm Ay over M such that Uy (7) = n + | for all n,
and Yy is applicable only to numerals in M.

(¢) Leta..... x5 be symbols not in M. Let | < j < k. Let  be the list
2, 1B —oay B

Ay Ii '1‘||

=
N
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Iy - hconsider I 1 consider I/ A consider
the algorithm schema the schema the schema
s nB 1B s
: IR Y f
S bl Yy
12 |B VAR B I;B A A2 |B P AN |B
a2, 00 a) v PR
x4 : | oy
7, B - 2, M %y B = 2 B
A 7;; B oxy B Pop = - A
: A |- 7y A —
S PR BI A &7
ay 1 Boay B auB - ayB
dag 1] — x sk — - A
k| = An A —
A4 B — A4 B
Aop A
A— b

Showl the mncxpomhm_ normal algorithm "l is such that
o HEUIP. ) u,.and “I is applicable 1o only wordx of the form
(/1,. ).

(d) Construct a schema for a normal algorithm in M transforming (n;. ns)
into |n; — na.

(e) Construct a normal algorithm in M for addition.

(M Construct a normal algorithm over M for multiplication.

Given algorithms 20 and B und a word P. we write 2(P) ~ B(P) if and
only if either U and B are both applicable to P and A(P) = B(P) or neither
A nor B is applicable to P. More generally, if C and D are expressions, then
C ~ D is to hold if and only if neither C nor D is defined, or both C and D
are defined and denote the same object. If 2 and B are algorithms over an
alphabet A, then we say that 9 and B are fully equivalent relative to A if
and only if A(P) ~ B(P) for every word P in A; we say that A and B are
equivalent relative to A if and only if, for any word P in A, whenever 21(P) or
B(P) exists and is in A, then A(P) =~ B(P).

Let M be the alphabet {|, B}, as in Exercise 5.64, and let w be the set of
natural numbers. Given a partial number-theoretic function ¢ of & argu-
ments, that is, a function from a subset of o* into w, we denote by B, the
corresponding function in M; that is, B,((ny, ...,m)) = @(n..... n)
whenever either of the two sides of the equation is defined. B, is assumed to
be inapplicable to words not of the form (n;. ... .n). The function ¢ is said

OTHER NOTIONS OF COMPUTABILITY

to be Markov-computable il and only 1l there is a normal algorithm 2 over
M that is fully cquivalent to 93, relative to M./

A normal algorithm is said to be c¢losed if and only 1f one of the pro-
ductions in its schema has the form A — - Q. Such an algorithm can ¢nd
only terminally - that is, by an application of a terminal production. Given
an arbitrary normal algorithm 21, add on at the end of the schema for 20 the
new production A — - A, and denote by - the normal algorithm deter-
mined by this enlarged schema. 21 is closed, and - is fully equivalent to I
relative to the alphabet of 9I.

Let us now show that the composition of two normal algorithms is again
a normal algorithm. Let 2 and B be normal algorithms in an alphabet A.
For each symbol b in A, form a new symbol b. called the correlare of b. Let
A be the alphabet consisting of the correlates of the symbols of A. We
assume that A and A have no symbols in common. Let z and B be two
symbols not in AUA. Let Sy be the schema of - except that the terminal
dot i terminal productions is replaced by . Let Sy be the schema of 8-
cxcept that every symbol is replaced by its correlate. every terminal dot is
replaced by B, productions of the form A — Q are replaced by 2 — 2Q, and
productions A — - Q are replaced by o — «BQ. Consider the abbreviated
schema

ag — xa (ain A)
a4 — o (ain A)
ab—ab (a.binA)
ap—pa (ainA)
Ba—PBa (ainA)
ab—ab (a,binA)
aff — - A

Sy

Ca

This schema determines a normal algorithm ® over A such that
6(P) ~ B(W(P)) for any word P in A. & is called the composition of A and
B and is denoted BoA. In general, by W,o...0%UA; we mean
W, o (. 030 (AUy0Ayp)).. o).

Let ¥) be an algorithm in an alphabet A and let B be an extension of A. If
we Liake a schema for ¥) and prefix to it the production b — b for each
svmbol bin B A, then the new schema determines a normal algorithm 9y
in B such that Y),(P) =~ WP) for every word P in A, and 9y is not appli-

"In this and in all other definitions in this chapter, the existential quantifier
‘there s is meant in the ordinary “classical” sense. When we assert that there exists an
object of a certam kind, we do not necessarily imply that any human being has found
or ever will find such an objeet. Thus, a function ¢ may be Markov-computable
without our ever knowing it to be so
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cable to any word in B that contains any symbol of B - A. 9)} is fully
equivalent to ) relative to A and is called the propagation ol ) onto B.

Assume that 20 is a normal algorithm in an alphabet A} and VB is a
normal algorithm in an alphabet Ay, Let A = AjuAs. Let 2, and B, be
the propagations of 2 and V. respectively. onto A. Then the composition
® of A, and By is called the normal composition of W and B and is
denoted by B o A (When A} = As. the normal composition of ¥ and B is
identical with the composition of 2 and B: hence the notation B o WA is
unambiguous.)  is a normal algorithm over A such that G(P) =~ B(A(P))
for any word P in A;. and ® is applicable to only those words P of A
such that P is a word of A,. 20 1s applicable to P. and B is applicable to
A(P).

PROPOSITION 5.24

Let .7 be a Turing machine with alphabet A. Then there is a normal al-
gorithm 2 over A that is fully equivalent to the Turing algorithm Alg ,
relative to A.

Proof

Let D = {q,.....q,}, where q; ..., q, are the internal states of .7 and
Qz, = do- Write the algorithm schema for 2 as follows: First, for all qua-
druples q;a;a,q, of 7. take the production q;a, — ¢,a;. Second, for each
quadruple q,a;Lq, of .7, take the productions a,q;a; — q,a,a; for all sym-
bols a, of A; then take the production q;a; — q,apa;. Third, for each qua-
druple q;4,Rq, of .7, take the productions q;4;4, — a;q,4, for all symbols a,,
of A; then take the production q;a; — a;q,a¢. Fourth, write the productions
qy, — - A for each internal state q, of .7, and finally take A — q,. This
schema defines a normal algorithm 2 over A, and it is easy to see that. for
any word P of A, Alg - (P) ~ A(P).

COROLLARY 5.25

Every Turing-computable function is Markov-computable.

Proof

Let f(xi,...,x,) be standard Turing-computable by a Turing machine .7
with alphabet A D {[,B}. (Remember that B is iy and | is 07.) We know

that, for any natural numbers &y..... koo i f(kyoo o0 k) is not defined, then
Alg ; is not applicable 10 (k... ., k) . whercas it f{hy. ... ko) s detined,
then
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Ale  ((hy. .. ko)~ Rk ... k) B [k k)R>
where R and Ra are (possibly empty) sequences of Bs. Let 8 be a normal
algorithm over A that is fully equivalent to Alg ;- relative to A. Let ® be the
normal algorithm over {|. B} determined by the schema

B —
2| — P
Bl —lp
BB — By
=B
B—7
By — - A
B—-A
AN

If Ry and R, are possibly empty sequences of Bs. then 9. when applied to
Ry (ky,.... ky) B f(ky.....k,) Ry, will erasc Ry and Rj. Finally, let ‘2[:;::
be the normal ‘projection” algorithm defined in Exercise 5.64(c). Then the
normal composition 20 | } oo B is a normal algorithm that computes /.

Let 2 be any algorithm over an alphabet A = {a;,.....a; }. We can
associate with 90 a partial number-theoretic function y such that
tho(n) = m if and only if either n is not the Gddel number' of a word of A

and m = 0, or n and m are Gddel numbers of words P and Q of A such that

AP) = Q.

PROPOSITION 5.26

I 20 is a normal algorithm over A = {aj,,...,a;,}, then y is partial re-
cursive.

Proof

We may assume that the symbols of the alphabet of U are of the form a;.
Given a simple production P — Q, we call 2!39(P59Q) jis index; given a
terminal  production P — - Q, we let 2239PI59Q be its index. If
Po o (1Qqe. ... P, - (-)Q, is an algorithm schema, we let its index be
23k phl where &, is the index of P; — (+)Q,. Let Word(u) be the recur-
sive predicate that holds if and only if w0 is the Godel number of a finite
sequencee of symbols of the Torm i,

"Here and below, we use the Godel numberning of the Language of Turing
computabihty given i Section S Vp 21 Thus, the Gadel number gl ] ol o, as
70 In particular, g(B) gt Tand gty gty 1
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wFEON = LV (V) (z < /() = ()(v < uA (). - T4 4v))]

Let SI(u) be the recursive predicate that holds when wis the index of a simple
production: /Z(u) =3 A (u), =1 A Word((u),;) A Word((u),). Similarly.
Tl(w) 15 the recursive predicate that holds when u is the index of a terminal
production: 7/4(u) = 3 A (u), =2 A Word({u),) A Word((u),). Let Ind(u)
be the recursive predicate that holds when w is the index of an algorithm
schema: w > I A (Vz)(z < /4(u) = SI((w).) vV TI{(x).)). Let Lsub(x.y.¢) be
the recursive predicate that holds if and only if e is the index of a production
P — (-)Qand x and y are Godel numbers of words U and V such that P occurs
in U, and Vis the result of substituting Q for the leftmost occurrence of Pin U:

Word(x) A Word(y) A (SI(e) vV THe)) A (), . (Fe), - (v =wu=(e) xv
Ay =us(e)y=eA=(Tw), . (F2), o (x=ws(e) xzAw < u))

Let Occ(x, y) be the recursive predicate that holds when x and v are Gédel
numbers of words U and V such that V occurs in U: Word(x) A Word( y)
A3v), ¢ ((F2). ¢ ((x = v yxz). Let End(e, 2) be the recursive predicate that
holds when and only when z is the Gédel number of a word P, and e is the
index of an algorithm schema defining an algorithm 20 that cannot be ap-
plied to P (i.e. U :PI):Ind(e) A Word(z) A (VW) ., ., —Oce(z,((e),)))
Let SCons(e. y.x) be the recursive predicate that holds if and only if ¢ is the
index of an algorithm schema and y and x are Godel numbers of words V
and U such that V arises from U by a simple production of the schema:
Ind(e) A Word(x) A Word(y) A (F0),. . 4 [SH((e),) A Lsub(x, y. (e),)
A (Vz).. . ~Oce(x. ((e),), )]

Similarly, one defines the recursive predicate TCons(e, y,x), which differs
from SCons(e, y,x) only in that the production in question is terminal. Let
Der(e, x, v) be the recursive predicate that is true when and only when e is the
index of an algorithm schema that determines an algorithm %, x is the
Godel number of a word Uy, y is the Godel number of a sequence of words
Uq,...,Us(k > 0) such that, for 0<i < k=1,U;, arises from U; by a
production of the schema, and either A : U; - F - U, or A : Uy - Uy and
N : U, d(or,if k=0, just A : Uga):

Ind(e) A Word(x) A (Vz),... 4,y Word((p),) A (y)y = x
AY2), < pagyy=25€C0ns(e, (p),4, (1)) A(Z4(y) = 1 A End(e. (1))
VA4 y) > T A{TCons(e, (1) 1+ (VW) rsny-2) V (SCons(e (v), 0, -
(D)sa(yy-2) NEnd(e, (3) 1)1 ]

Let Wa(u) be the recursive predicate that holds il and only it w is the
Godel number of a word of A:

w/ON e TV (Vz), skl T d v ), T )
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Let e be the index of an algorithm schema tor L Now define the partial
recursive  function  @(x) = pv((Wa(v) A Der{e.v.v)) v 1HA(x)).  Bul
ha(x) = (@), (v - Therefore. gy is partial recursive.

COROLLARY 5.27

Every Markov-computable function ¢ is partial recursive.

Proof

Let 2 be a normal algorithm over {1, B} such that o(4..... k,) = 11l and
only if ((ky,...,k,)) = 1. By Proposition 5.26. the function iy is partial
recursive. Define the recursive function (x) = /4(x)=1. I v =117, p!'
then n = y(x). (Remember that a stroke [. which is an abbreviation for ay,
has Godel number 11. So. if x is the Godel number of the numeral 7. then

»(x) = n.) Let &(ky,... k,) be the Goédel number of (... .. k,):

Ekive k) =g((ki k) = g1 "B BB
L havl
=(IIe" - o) (T ') - e ases) -
(0 i=1)
kot 1

(Phyeihgrm=a) (H(Puk. b))
i=0
¢ is clearly recursive. Then ¢ = o by o ¢ is partial recursive.

The equivalence of Markov computability and Turing computability
follows from Corollaries 5.25 and 5.27 and the known equivalence of Turing
computability and partial recursiveness. Many other definitions of com-
putability have been given, all of them turning out to be equivalent to
Turing computability. One of the earliest definitions, A-computability, was
developed by Church and Kleene as part of the theory of A-conversion (see
Church, 1941). Its equivalence with the intuitive notion of computability is
not immediately plausible and gained credence only when Z-computability
was shown to be equivalent to partial recursiveness and Turing comput-
ability (sce Kleene, 1936b; Turing, 1937). All reasonable variations of Tu-
ring computability seem to yield equivalent notions (see W. Oberschelp,
1958: TMischer, 1965).

5.6 DECISION PROBLEMS
A class of problems is sind 1o be wnsolvable 1 there is no effective procedure

for solving cach problem in the cliss, For example, given any polynomial
£ (V) with antegral coefhicients (for example, W 8 vt Ty 1200 s
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there an integer & such that /(k) = 07 We can certainly answer this question
for various special polynomials, but is there a single general procedure that
will solve the problem for every polynomial f(x)? (The answer is given
below in paragraph 4.)

If we can arithmetize the formulation of a class of problems and assign to
each problem a natural number. then this class is unsolvable if and only if
there is no computable function 4 such that, if # is the number of a given
problem. then A(n) yields the solution of the problem. If Church’s thesis is
assumed. the function A has to be partial recursive, and we then have a more
accessible mathematical question.

Davis (1977b) gives an excellent survey of rescarch on unsolvable prob-
lems. Let us look at a few decision problems, some of which we already have
solved.

I. Is a statement form of the propositional calculus a tautology? Truth
tables provide an casy, effective procedure for answering any such question.

2. Decidable and undecidable theories. 1s there a procedure for deter-
mining whether an arbitrary wf of a formal system . is a theorem of ¥ If
so, /is called decidable: otherwise. it is undecidable.

(a) The system L of Chapter 1 is decidable. The theorems of L are the
tautologies, and we can apply the truth table method.

(b) The pure predicate calculus PP and the full predicate calculus PF were
both shown to be recursively undecidable in Proposition 3.54.

(¢) The theory RR and all its consistent extensions (including Peano
arithmetic S) have been shown to be recursively undecidable in Cor-
ollary 3.46.

(d) The axiomatic set theory NBG and all its consistent extensions are
recursively undecidable (see pages 269-70).

(e) Various theories concerning order structures or algebraic structurcs
have been shown to be decidable (often by the method of quantifier
elimination). Examples are the theory of unbounded densely ordered
sets (see page 116 and Langford, 1927), the theory of abelian groups
(Szmielew, 1955), and the theory of real closed fields (Tarski, 1951). For
further information, consult Kreisel and Krivine (1967, Chap. 4):
Chang and Keisler (1973, Chap. 1.5); Monk (1976, Chap. 13); Ershov
et al. (1965); Rabin (1977); and Baudisch ¢t al. (1985). On the other
hand, the undecidability of many algebraic theories can be derived from
the results in Chapter 3 (see Tarski, Mostowski and Robinson, 1953,
11.6, 111; Monk, 1976, Chap. 16).

3. Logical validiry. 1s a given wf of quantification theory logically vahd?
By Gddel’s completeness theorem (Corollary 2.19), a wf is logically valid if
and only if it is provable in the full predicate calculus PF. Since PE s
recursively undecidable (Proposition 3.54), the problem of logical vahdity is
recursively unsolvable,
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However, there is a decision procedure for the logical validity of wis of
the pure monadic predicate calculus (Exercise 3.59).

There have been extensive investigations of decision procedures for
various important subclasses of wis of the pure predicate caleulus; for ex-
ample. the class (¥ 3 V) of all closed wfs of the form (Vx)(Hy)(Vz).4(x. y. z),
where #(x. v, z) contains no quantifiers. See Ackermann (1954). Dreben and
Goldfarb (1980) and Lewis (1979).

4. Hilhert's Tenth Problem. If [(xy. ... .x,) is a polynomial with imtegral
coctlicients, are there integers k. ... .k, such that f(ky. ... .k,) = 0? This
difficult decision problem is known as Hilbert's tenth problem.

For one variable, the solution is easy. When ay.q,, ... . a, are integers.
any integer x such that a,‘,” + ...+ ax+ay =0 must be a divisor of «y.
Hence. when ay # 0, we can test each of the finite number of divisors of ay.
If ay = 0, then x = 0 is a solution. However, there is no analogous proce-
dure when the polynomial has more than onc variable. It was finally shown
by Matiyasevich (1970) that there is no decision procedure for determining
whether a polynomial with integral coctlicients has a solution consisting of
integers. His prool was based in part on some earlicr work of Davis, Put-
nam and Robinson (1961). The proof ultimately rches on basic lacts of
rccursion theory. particularly the cxistence of a non-recursive r.e. sct
(Proposition 5.21(¢)). An up-to-date exposition may be found in Mat-
iyasevich (1993).

5. Word problems.

(a) Semi-Thue Systems. Let B={b),....b,} be a fimte alphabet.
Remember that a word of B is a finite sequence of elements of B.
Moreover. the empty sequence A is considered a word of B. By a pro-
duction of B we mean an ordered pair (u,v), where u and v are words of
B. If p = {(u.v) is a production of B, and if w and w’ are words of B, we
write w =, w' if w' arises from w by replacing a part u of w by v. (Recall
that u is a part of w if there exist (possibly empty) words w; and w, such
that w = wiuw,.)

By a semi-Thue system on B we mean a finite set . of productions of B.
IFor words w and w' of B, we write w = w' if there is a finite sequence wy,
Wi, ... Wi (k> 0) of words of B such that w=wy,w = w, and, for
0 <i < k. there is a production p of .9 such that w; =, w;.|. Observe that
w =, w for any word w of B. Moreover, if w; =4 w> and w, = w3, then
w) ., wi Inaddition, if w) =, wy and wi = wy, then w ws =5 wowy.
Notice that there is no fixed order in which the productions have to be
applied and that many different productions of .%” might be applicable to the
same word.

By a Tl svstemr we mean a semi-Thue system such that, for every
production (u.v). the mverse (vany is also a production. Clearly, if /" is a
Thue system and wo», W', then w' s, w. Henee,  », is an equivalencee
relation on the set of words of the alphabet of v/

303



364

| (OMPL [/\BILITY 1

Example

Let /¥ be the Thue system that has alphabet {b} and productions (b’. A)
and (A.bY). It is casy to see that every word is transformable into b, b, or
AL

By a semigroup we mean a non-empty set G together with a binary op-
cration on G (denoted by the juxtaposition uv of elements u and v) that
satisfies the associative law x(yz) = (xy)z. An element vy such that
xv = =x for all x in G is called an identity element. 1f an identity element
exists, it is unique and is denoted 1.

A Thue system %" on an alphabet B determines a semigroup G with an
identity element. In fact, for each word w of B, let [w] be the set of all words
w’ such that w = w'. [w] is just the equivalence class of w with respect to
= .. Let G consist of the sets [w] for all words w of B. If U and V are
elements of G, choose @ word u in U and a word v in V. Let UV stand for
the set {uv]. This defines an operation on G, since, if u’ is any word in U and
v 1s any word in V, [uv] = [u'v'].

Exercises

5.65 For the set G determined by the Thue system ., prove:

(a) (UVYW = U(VW) for all members U, V and W of G.

(b) The equivalence class [A] of the empty word A acts as an identity
clement of G.

5.66

(a) Show that a semigroup contains at most one identity element.

(b) Give an example of a semigroup without an identity element.

A Thue system ¢ provides what is called a finite presentation of the
corresponding semigroup G. The elements by, ... ,b,, of the alphabet of ¥
are called generators, and the productions (u,v) of & are written in the form
of equations u = v. These equations are called the relations of the presen-
tation. Thus, in the example above, b is the only generator and b® = A can
be taken as the only relation. The corresponding semigroup is a cyclic group
of order 3.

If % is a semi-Thue or Thue system, the word problem for & is the
problem of determining, for any words w and W/, whether w =, w'.

Exercises

5.67 Show that, for the Thue system .%’# in the example, the word problem
is solvable.

5.68 Consider the following Thue Gystem Y. The alphabet is {a.b.c.d} and
the productions arec  (ac. A). (ca. A). (bd,A).(db.A). (a'. A). (b* A).
(ab, ba). and their inverses.

DLIC ISI()’\ I’R()Bl E MS

(a) Show that ¢ =»., o~ and d =, b.

(b) Show that cvery word ol . can be transformed into onc of the words a,
a-. b.ab. a’b. and A.

(¢) Show that the word problem for . is solvable. [Hint: To show that the
six words of part (b) cannot be transformed into one another, use the
cyclic group of order 6 generated by an element g. with a = ¢* and
b=yg']

PROPOSITION 5.30

(Post, 1947) There exists a Thue system with a recursively unsolvable word
problem.

Proof

Let .7 be a Turing machine with alphabet {ag.a;. ... .a,} and internal
states {(g-qy. - -qQ, . Remember that a tape description is a sequence of
symbols describing the condition of .7 at any given moment; it consists of
symbols of the alphabet of .7 plus one internal state ¢;, and g; is not the last
symbol of the description. .7 is in state g;, scanning the symbol following q;,
and the alphabet symbols, read from left to right, constitute the entire tape
at the given moment. We shall construct a semi-Thue system .’ that will
reflect the operation of .7 each action induced by quadruples of .7~ will be
copied by productions of %. The alphabet of % consists of
{a. a1, oo 20, qpsqys -+ 1 Qs B.0,&}. The symbol B will be placed at the
beginning and end of a tape description in order to ‘alert’ the semi-Thue
system when it is necessary to add an extra blank square on the left or right

end of the tape. We wish to ensure that, if W ~ W', then BW =, BW'P.
The productions of % are constructed from the quadruples of .7 in the

following manner.

(a) If q;a;a4q, is a quadruple of 7, let {q;a;,a,q;) be a production of ..

(b) If g;a,Rq, is a quadruple of .7, let (q;a,a¢.a;q,a¢) be a production of .%
for every a,. In addition, let (q;a;Ba;, q,a0P) be a production of & (This
last production adds a blank square when 7 reaches the right end of
the tape and is ordered to move right.)

(¢) 1q,aLq, isa quadruple of .7, let (asq;a;,q,asa;) be a production of .’
for cach a,. In addition, let (Bq;a,, Bq,apa,) be a production of &. (This
lust production adds a blank square to the left of the tape when this is
required.)

(d) 11 there is no quadruple of .7 beginning with g,a,. let /" contain the
following productions: (q,u,.8). (s, o) for all a0 (6 B.8). (0,88 for
all s and (BaL o).
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7 stops when it is in a state g,. scanning a symbol a,, such that g;a; does not
begin a quadruple of .7, In such a case. .’ would replace q;a; in the final
tape description of .77 by &. Then & procceds to annihilate all the other
symbols to its right. including the rightmost B, whereupon it changes to &. §
then annihilates all symbols to its left, including the remaining B. The final
result is & alone. Hence:

(1) For any inttial tape description z. .7 halts when and only when faff =, &

Now. enlarge . to a Thue system %" by adding to . the inverses of all
the productions of .. Let us show that:

(V) For any initial tape description xof 7. Baff = . &if and only if B« =, &

Clearly, if B =4 &, then Pofy =, & Conversely, assume for the sake of

contradiction that Bxf3 = - &, but it is not the case that Bafl =, &. Consider
a sequence of words leading from fBaf to & in .9

BB = Wy =y Wi Sy S W By W, =

Here, each arrow is intended to indicate a single application of a production.
It is clear from the definition of % that no production of . applies to ¢
alone. Hence, the last step in the sequence w, | =« § must be the result of a
production of .%". So, w, | = &. Working backward, let us find the least p
such that w, =, &. Since we have assumed that it is not true that af = ., &,
we must have p > 0. By the minimality of p, it is not true that w, | = w,.
Therefore, w, = w, ;. Examination of the productions of . shows that
each of the words wy.wy, ..., w, must contain exactly one of the symbols
qo: 9y« -+ ,qQms 0, Or &, and that, to such a word, at most one production of
% is applicable. But, w, is transformed into both w,.; and w,_, by pro-
ductions of .. Hence, w,_| = w,y). But, w,,; =« &. Hence, w,. | = &,
contradicting the definition of p. This establishes (V).

Now, let .7~ be a Turing machine with a recursively unsolvable halting
problem (Proposition 5.14). Construct the corresponding Thue system .¢” as
above. Then, by ([J) and (V), for any tape description «, .7 halts if and only
if Baf = 4 E. So, if the word problem for &’ were recursively solvable, the
halting problem for .7 would be recursively solvable. (The function that
assigns to the Godel number of a the Gddel number of (Buaf, &) is clearly
recursive under a suitable arithmetization of the symbolism of Turing ma-
chines and Thue systems.) Thus, .¥” has a recursively unsolvable word
problem.

That the word problem is unsolvable even for certain Thue systems on a
nwo-element alphabet (semigroups with two generators) was proved by Hall
(1949).

(b) Finitely presented groups. A finite presentation of a group consists of a
finite set of generators g;.....g, and a finitc sct of cquations W, -
Wi ... W, =W, between words ol the alphabet B {g,.....

DECISION PROBLEMS

g.g, ' oo ig o What s really involved here is a Thue system ./ with

alphabet B. productions (W, . W), ... (W, W}) and their mverses, and all
the productions (g,g, ' A). (g, 'g,. A) and their inverses. The corresponding

semigroup G is actually a group and is called a finitely presented group. The
word problem for G (or. rather, for the finite presentation of () is the word
problem for the Thue system ..

Problems that concern word problems for finitely presented groups are
generally much more difficult than corresponding problems for finitely
presented semigroups (Thue systems). The existence of a finitely presented
group with a recursively unsolvable word problem was proved. indepen-
dently, by Novikov (1955) and Boone (1959). Other proofs have been given
by Higman (1961), Britton (1963). and McKenzie and Thompson (1973).
(See also Rotman, 1973.) Results on other decision problems connected with
groups may be found in Rabin (1958). For corresponding problems in
general algebraic systems, consult Evans (1951).



Appendix
Second-Order Logic

Our treatment of quantification theory in Chapter 2 was confined to first-
order logic. that is, the variables used in quantifiers were only individual
variables. The axiom systems for formal number theory in Chapter 3 and set
theory in Chapter 4 also were formulated within first-order languages. This
restriction brings with it certain advantages and disadvantages. and we wish
now to seec what happens when the restriction is lifted. That will mean
allowing quantification with respect to predicate and function variables.
Emphasis will be on second-order logic, since the important diflerences
between first-order and higher-order logics already reveal themselves at the
second-order level. Our treatment will offer only a sketch of the basic ideas
and results of second-order logic.

Let LIC be the first-order language in which C is the set of non-logical
constants (that is, individual constants, function letters, and predicate let-
ters). Start with the language LI1C, and add function variables g! and pre-
dicate variables R, where n and i are any positive integers.” (We shall use
g’ h", ... to stand for any function variables of n arguments, and
R", 8", ..., X", Y", Z" to stand for any predicate variables of n arguments.
We shall also omit the superscript n when the value of # is clear from the
context.) Let (u), stand for any sequence of individual variables u,, ..., u,}
and let V(u), stand for the expression (Vu,) ... (Vu,). Similarly, let (1), stand
for a sequence of terms #, ..., t,. We expand the sct of terms by allowing
formation of terms g"((r),), where g” is a function variable. and we then
expand the set of formulas by allowing formation of atomic formulas

'We use bold letters to avoid confusion with function letters and predicate
letters. Note that function letters and predicate letters are supposed 1o denote specitic
operations and relations, whereas function variables and predicate variables vary
over arbitrary operations and relations,

Un particular. (v) will stand for Yy,
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A'({n),) and R"({r),,) where (r;, is any sequence of the newly enlarged set of
terms., A7 is any predicate letter of C and R” is any n-ary predicate variable.
Finally., we expand the set of formulas by quantification (vg?) 4 and
(VR").24 with respect to function and predicate variables.

Let L2C denote the second-order language obtained in this way. The
language L2C will be called a full second-order language. The adjective “full’
indicates that we allow both function variables and predicate variables and
that there is no restriction on the arity » of those variables. An example of a
non-full second-order language is the second-order monadic predicate lan-
guage in which there are no function letters or variables, no predicate letters,
and only monadic predicate variables.

It 1s not necessary to take = as a primitive symbol. since it can be defined
in the following manner.

DEFINITIONS

= u stands for (VR')(R't < R'u)

R
g" = " stands for ¥{x), (g"({(x),) = h"((x),))
R" = S" stands for V(x), (R"({x),) € S"((x),))

~

3

STANDARD SECOND-ORDER SEMANTICS FOR L2C

For a given language L.2C, let us start with a first-order interpretation with
domain D. In the first-order case, we defined satisfaction for the set ) of
denumerable sequences of members of D. Now, instead of 3}, we use the set
Z\ of functions s that assign to each individual variable a member of D, to
cach function variable g" some n-ary operation s(g") on D, and to each
predicate variable R” some n-ary relation® s(R”) on D. For each such s, we
cxtend the denotations determined by s by specifying that, for any terms
i, ..., t, and any function variable g", the denotation s(g"(s), ..., t,)) 1s
s(g")(s(n), ..., s(ty)). The first-order definition of satisfaction is extended as
follows:

(a) For any predicate variable R” and any finite sequence (1), of terms, s
satisfies R"((1),) if and only if (s(r)), ..., s(t,)) € s(R");

"Third-order logics are obtained by adding function and predicate letters and
viariables that can have as arguments individual variables, function and predicate
letters, and second-order function and predicate variables, and then allowing
quantibication with respeet to the new function and predicate variables. This pro-
cedure can beaterated to obtamn ath-order logies tor all n - 1.

AN n-ary redation on Dasacsubset of the set 7Y of m-tuples ot D Whena - 1an
n-ary relation s gust a subset of D
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(b) ~ satisfies (¥Vg").#4 il and only if' s" satisfies 4 for every & in ) that
agrees with s except possibly at g”; '

(¢) s satisfies (VR").4 if and only if 5" satisfies .4 for every " in >  that
agrees with s except possibly at R”. :

The resulting interpretation -4 is called a  standard interpretation of the
given language.

A formula 4 is said to be rrue for a standard interpretation ./ (written
M A)If A s satisfied by every s in Y . A s false for . /7 if no sequence  in
> satisfies 4. .

‘A formula .4 is said to be standardly valid if 4 is true for all standard
interpretations. 4 is said to be standardly satisfiable if 4 is satisfied by some
sin )" in some standard interpretation. A formula % is said to be a sran-
dard logical consequence of a set I' of formulas if, for every standard in-
terpretation, every s in ) that satisfies every formula in I" also satisfics €.
A formula A 1s said to standardly logically imply a formula € if ¢ is a logical
consequence ol {4}.

The basic properties of satisfaction. truth, logical consequence, and lo-
gical implication that held in the first-order case (see (1)-( XI) on pp. 61-3)
also hold here for their standard versions. In particular, a sentence 4 is
standardly satishable if and only if .4 is truc for some standard interpreta-
tion.

We shall see that second-order languages have much greater expressive
power than first-order languages. This is true even in the case where the set
C of non-logical constants is empty. The corresponding language L2() will be
denoted L2 and called the pure full second-order language. Consider the
following sentence in L2.

(n (Fg)(E)(VR)[(R(x) A (W¥)(R(y) = R(g(¥)))) = (VX)R(x)]

This sentence is true for a standard interpretation if and only if the domain
D is finite or denumerable. To see this, consider an operation ¢ and element
x given by this sentence. By induction, define the sequence x, g(x),
g(g(x)), glglg(x)}),..., and let R be the set of objects in this sequence. R is
finite or denumerable, and (1) tells us that every object in D is in R. Hence,
D = R and D is finite or denumerable. Conversely, assume that D is finite or
denumerable. Let F be a one-one function from D onto w (when D is
denumerable) or onto an initial segment {0, I, ..., n} of @ (when D is
finite).! Let x = F'(0) and define an operation g on D in the following
manner. When D is denumerable, g(u) = F~'(F(u) + 1) for all u in D; when
D is finite, let g(u) = F~'(F(u) + 1)) if F(u) < n and g(u) = x if F(u) = n.
With this choice of ¢ and x, (1) holds.

"Remember that the domain of an interpretation is assumed to be non-empty.
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Exercise

A.l Show that there is no first-order sentence 4 such that 4 is truc in an
interpretation if and only if its domain is finite or denumerable. [Hint:
Use Corollary 2.22.]

Let us introduce the abbreviations Y' € X' for (Vu)(Y'(1) = X'(u)).
NonEm(X'") for (3u)(X'(1)). and Asym(R>. X" for (Vu)(ve)(X' () A X' (1)
A R (u. t) = ~R*(v. ). Let R® We X' stand for the second-order formula

Asym(R% XY A (vY')(Y' € X' A NonEm(Y')
= (F) (Y (1) A ()Y (1) Ao # 1= R u. 1))

Then R® We X! is satisfied by an assignment in a given standard inter-
pretation if and only if the binary relation assigned to R’ well-orders the set
assigned to X'

Let Suc(u. v. R?) stand for R(r. 1) A (Viw)=(R* (. w) A R*(w. u)), and
let First(u, R?) stand for (Ve)(v # u = R*(u. r)). Consider the following
second-order formula.

(2) (AR (XY (R? We XU A (V)X (1) A (Vu)(=First(u. R?)
= (F)Suc(u. v. R*)) A (Bu)(Ve) (v # u = R (v. u)))

This is true for a standard interpretation if and only if there is a well-
ordering of the domain in which every element other than the first is a
successor and there is a last element. But this is equivalent to the domain
being finite. Hence, (2) is true for a standard interpretation if and only if its
domain is finite.

Exercise

A.2 (a) Show that, for every natural number », there is a first-order sentence
the models of which are all interpretations whose domain contains at
least 1 elements. (b) Show that, for every positive integer n, there is a
first-order theory the models of which are all interpretations whose
domain contains exactly » elements. (¢) Show that there is no first-order
sentence 4 that is true for any interpretation if and only if its domain is
finite.

The sccond-order sentence (1) A —(2) is true for a standard interpretation
it and only if the domain is denumerable.

Fxereises

A.3 Show that there is no first-order sentence .4 the models of which are all
miterpretiations whose doman s denumerable.
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A.4 Construct a second-order formula Den(X') that is satisfied by an as-
signment in a standard mterpretation if and only if the set assigned to
X' is denumerable.

SECOND-ORDER THEORIES

We define a second-order theory in a language L2C by adding the following

new logical axioms and rules to the first-order axioms and rules.

(B4a) (VR")A(R") = #A(W"), where A(W") arises from #(R") by
replacing all free occurrences of R” by W and W” is free for R" in
A(R").

(B4b) (Vg")4(g") = A(h"). where 4(h") arises from #(g") by replacing all
free occurrences of g” by h" and h" is free for g”" in 4(g").

(Bsa) (VR")(# = ¢) = (4 = (VR")%), where R” is not free in 4.

(B5b) (Vg")(#4 = %) = (4 = (Vg")%). where g" is not {rec in 4.

COMPREHENSION SCHEMA (COMP)

(FR")(Y(x), ) (R"({x),) & 4). provided that all free variables of 4 occur in
(x), and R" is not free in .4.

FUNCTION DEFINITION SCHEMA ( FUNDEF)

(YRD[(9(x), ) FIR™ (0, 0) = (3g") (V) )R ((x),,, g"((x),))]

NEW RULES

(Gen2a) (VR")# follows from %
(Gen2b) (Vg")4 follows from #

Exercises

A.5 Show that we can prove analogues of the usual equality axioms (A6)
(A7) in any second-order theory:

(i) Ft=tAng'=g'AR"'=R"

(i) Fr=s= (A1 1) = A1, s)), where 4(1, s) arises from .4(1. 1) by re-
placing zero or more occurrences of 1 by s, provided that s is free for 7in
A1, 1),
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(i) b g =h = (A(g". g") = Alg". h")). where 4(g". h") arises from
A" 8") by replacing zero or more occurrences of g” by h'. provided
that h” is free for g" in 4(g". g").

(iv) - R" = 8" = (4(R". R") = 4(R". S")). where 4(R". S"} arises from
A(R". R") by replacing zero or more occurrences of R” by §”. provided
that 8" 1s free for R” in 4(R". R").

A.6 Formulate and prove a sccond-order analogue of the first-order de-
duction thecorem (Proposition 2.5).

Let PC2 denote the second-order theory in the language L2C without any
non-logical axioms. PC2 is called a second-order predicate calculus.

PROPOSITION A.1 (SOUNDNESS)

Every theorem of PC2 is standardly valid.

Proof

That all the logical axioms (except Comp and FunDef) are standardly valid
and that the rules of inference preserve standard validity follow by argu-
ments hike those for the analogous first-order properties. The standard va-
lidity of Comp and FunDef follows by simple set-theoretic arguments.

We shall see that the converse of Proposition A.1 does not hold. This will
turn out to be not a consequence of a poor choice of axioms and rules, but
an inherent incompleteness of second-order logic.

Let us consider the system of natural numbers. No first-order theory will
have as its models those and only those interpretations that are isomorphic
to the system of natural numbers.! However, a second-order characteriza-
tion of the natural numbers is possible. Let AR2 be the conjunction of the
axioms (S1)—(S8) of the theory S of formal arithmetic (see p. 155), and the
following second-order principle of mathematical induction:

(289)  (YRM[R'(0) A (Yx)(R'(x) = R'(x)) = (V)R (x)]

Notice that, with the help of (Comp), all instances of the first-order axiom
schema (S9) can be derived from (2S9).1

"Let K be any first-order theory in the language of arithmetic whose axioms are
true i the system of natural numbers. Add a new individual constant b and the
axioms b/ nfor every natural number n. The new theory K* is consistent, since any
finite set ol its axioms has a model in the system of natural numbers. By Proposition
217, KT has a model, but that model cannot be isomorphic to the system of natural
numbers, since the object denoted by b cannot correspond to o natural number.

“In AR2, the function letters for addition and multipheation and the associated
ax1oms (8S) (SK) can be onutted. The exastence of operations satisfying (85) (SK) can
then be prosed See Mendelson (1973 Secnons 2.3 and 2.5)
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For any standard interpretation that is a model of AR2 we can prove the
following result that justifies inductive definition.

PROPOSITION A.2 ITERATION THEOREM)

Let ./ be a standard interpretation that is a modcel of AR2. and let D be the
domain of ./. Let ¢ be an clement of an arbitrary set ¥ and let ¢ be a
singulary opcration of W. Then therc is a unique function F from D into ¥
such that D(0) = ¢ and (Vx)(x € D = F(x') = y(F(x))).1

Proof

Let % be the set of all subsets H of D x W such that (1, ¢) € H and
(Vx)(Yw)({x, wy € H = (¥, g(w)) € H). Note that D x W € %. Let I be the
intersection of all sets /{ in %. We leave it to the reader to prove the fol-
lowing assertions:

(a) Fes

(b) Fis a function from D into W. [Hint: Let B be the set of all x in D for
which there is a unique w in W such that {(x. w) € F. By mathematical
induction. show that 8 = D]

(¢) F(l)=c.

(d) F(x')=g(F(x)) for all x in D.

The uniqueness of F can be shown by a simple application of mathematical
induction.

PROPOSITION A.3 (CATEGORICITY OF AR2)

Any two standard interpretations .# and .#" that are models of AR2 are
isomorphic.

Proof

Let D and D™ be the domains of .# and .#~, 0 and 0" the respective zero
elements, and f and /™ the respective successor operations. By the iteration
theorem applied to .#, with W =D* ¢=0* and g = f", we obtain a
function F from D into D~ such that F(0) = 0* and F(f(x)) = f"(F(x)) for
any x in D. An easy application of mathematical induction in .#" shows that
every element of D* is in the range of F. To show that F is onc one. apply

tIn order to avoid cumbersome notation, ‘0" denotes the interpretation in . # of

the individual constant *0°, and *x”* denotes the result of the application to the object
x of the interpretation of the successor function.
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mathematical induction in ./ to the set of all x in D such that
(Vo)[ve DAY #£X) = Flx) £ F(y)

Let ./ consist of the non-logical constants of formal arithmetic (zero.
successor. addition, multiplication, equality). Let . 17 be the standard inter-
pretation of L2.</ with the set of natural numbers as its domain and the
usnal interpretations of the non-logical constants.

PROPOSITION A4

Let .4 be any formula of L2.¢7. Then 4 is true in . 1" if and only if AR2 = 4
is standardly valid.

Proof

Assume AR2 = Zis standardly valid. So, AR2 = Aistruein. | . But AR2
is true in . f . Hence. 4 is true in . 1 . Converscely. assume .4 is true in . { . We
must show that AR2 = 4 is standardly valid. Assume that AR2 is true in
some standard interpretation ./ of L2.¢7. By the categoricity of AR2, ./ is
isomorphic to ... Therefore, since 4 is true in .1, 4 is true in ./. Thus,
AR2 = 4 s true in cvery standard interpretation of L2.«/, that is,
AR2 = 4 is standardly valid.

PROPOSITION A.5

(a) The set SV of standardly valid formulas of L2.</ is not effectively
enumerable.

(b) SV is not recursively enumerable, that is, the set of Godel numbers of
formulas in SV is not recursively enumerable.

Proof

()  Assume that SV is effectively enumerable. Then, by Proposition A4, we
could effectively enumerate the set .7 % of all true formulas of first-
order arithmetic by running through SV, finding all formulas of the
form AR2 = .4, where 4 is a formula of first-order arithmetic, and
listing those formulas 4. Then the theory .7 # would be decidable,
since. for any closed formula 4. we could effectively enumerate 7 %
until cither 4 or its negation appears. By Church’s thesis. .7 %4 would be
recursively decidable, contradicting Corollary 3.46 (since .74 is a
consistent extension of RR),

{b) This follows from part (a) by Church’s thesis,

"Detanls of the proot may be found i Mendelson (1973, Section 2 7)
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The use of Church’s thesis in the proof could be avoided by a consistent
use of recursion-theoretic language and results. The same technique uas the
one used in part (a), together with Tarski's thecorem (Corollary 3.44), would
show the stronger result that the set (of Godel numbers) of the formulas in
SV is not arithmetical.

COROLLARY A.6

The sct of all standardly valid formulas 1s not effectively (or recursively)
enumerable.

Proof

An enumeration of all standardly valid formulas would yield an enumera-

tion of all standardly valid formulas of L2.¢</, since the set of formulas of

L2.«/ is decidable (recursively decidable).

COROLLARY A7

There is no axiomatic formal system whose theorems are the standardly
valid formulas of L2.¢/.

Proof

If there were such an axiom system, we could enumerate the standardly valid
formulas of L2.¢/, contradicting Corollary A.5.

PROPOSITION A.8 (INCOMPLETENESS
OF STANDARD SEMANTICS)

There is no axiomatic formal system whose theorems are all standardly valid
formulas.

Proof

If there were such an axiom system, we could enumerate the set of all
standardly valid formulas, contradicting Corollary A.6.

Proposition A.8 sharply distinguishes second-order logic from first-order
logic, since Gédel's completeness theorem tells us that there is an axiomatic
formal system whose theorems are all logically valid first-order formulas.

APPENDIN

Here are some additional important properties enjoyed by first-order the-
ories that do not hold for second-order theories.

(1) Every consistent theory has a model. To see that this does not hold
for second-order logic (with ‘modei” meaning "model in the sense of the
standard semantics™). add to the theory AR2 o new individual constant bh.
Let .7 be the theory obtained by adding to AR2 the set of axioms b # n lor
all natural number 7. .7 is consisient. (Any proof involves a finite number of
the axioms h # n. AR2 plus any fimite number of the axioms » # »n has the
standard interpretation as a model. with /» interpreted as a suitable natural
number. So. every step of the proof would be true in . {7 Therefore, a
contradiction cannot be proved.). But .7 has no standard model. (If .7 were
such a model. AR2 would be truc in /. Henee. /7 would be isomorphic to
.47 and so, the domain of ./ would consist ol the objects denoted by the
numerals 7. But this contradicts the requirement that the domain of ./
would have to have an object denoted by A7 that would satisly the axioms
h # n for all natural numbers n.)

(1) The compactness property: a set I of formulas has @ model if and
only if every finite subset of T has a model. A counterexample is furnished
by the set of axioms of the theory .7 in (1) above.

(I1) The upward Skolem- 1.0wenheim theorem: every theory that has an
infinite model has models of every infinite cardinality. In sccond-order logic
this fails for the theory AR2. By Proposition A.3. all models of AR must be
denumerable.

(I1V) The downward Skolem -Lowenheim theorem: every model .# of a
theory has a countable elementary submodel’. In second-order logic, a
counterexample is furnished by the second-order categorical theory for the
rcal number system.! Another argument can be given by the following
considerations. We can cxpress by the following second-order formula
2(Y' X') the assertion that Y' is equinumerous with the power set of X':

(IR [V ) (x2) (X () A X () A (V) (Y () = |R*(n.3) &

R (x2v)]) = x) =x) A (YVWHW! C Y = (3x)(X' (x)A

(VW' (1) & R x)))]
R’ correlates with cach x in X' the set of all y in Y! such that R*(x,y). Now
consider the following sentence Cont:

XYY (Den(X") A (VY () A 2 X))

"For a detintion ot clementary: submaodel, see Section 2013,

“The axtoms are those for an ordered field (see p.99) plus a second-order
completeness axtont The kuter can be taken to be the assertion that every nonemplty
subset that as bounded above has o deast upper bound (or, cquivalently, that no
Dedekind cut s gap) Fora proot of categonaty, see Mendelson [1973), Section
sS4

377



APPENDIX
Then Cont is true in a standard interpretation if and only if the domain of
the interpretation has the power of the continuum. since the power set of a
denumerable set has the power of the continuum. Sec Shapiro (1991, Section
5.1.2) and Garland (1974) for more information about the definability of
cardinal numbers in second-order logic.

Exercises

A.7 Show that a sentence of pure second-order logic is true in a standard
interpretation . if and only if it is true in any other standard inter-
pretation whose domain has the same cardinal number as that of /7.

A.8 (a) Show that there is a formula Cont (X') of pure second-order logic

that is satisfied by an assignment in an interpretation if and only if
the set assigned to X' has the power of the continuum.

(b) Find a sentence CH of pure second-order logic that is standardly
valid if and only if the continuum hypothesis is true.!

HENKIN SEMANTICS FOR L2C

In light of the fact that completeness, compactness and the Skolem--Low-
enheim theorems do not hold in second-order logic, it is of some interest
that there is a modification of the semantics for second-order logic that
removes those drawbacks and restores a completeness property. The fun-
damental ideas sketched below are due to Henkin (1950).

Start with a first-order interpretation with domain D. For each positive
integer n, choose a fixed collection % (n) of n-ary relations on D, and a fixed
collection # (n) of n-ary operations on D. Instead of ) , we now use the set
ZZ of assignments s in 27 such that, for each predicate variable R", s(R")
is in %(n) and, for each function variable g", s(g") is in % (n). The definitions
of satisfaction and truth are the same as for standard semantics, except that
> is replaced by Z)H Such an interpretation will be called a Henkin
interpretation. Using a Henkin interpretation amounts to restricting the
ranges of the predicate and function variables. For example, the range of a
predicate variable R' need not be the entire power set 2(D) of the domain
D. In order for a Henkin interpretation J# to serve as an adequate semantic
framework, we must require that all instances of the comprehension schema
and the function definition schema are true in . A Henkin interpretation

'We take as the continuum hypothesis the assertion that every subset of the set
of real numbers is either finite or denumerable or is equinumerous with the set of all
real numbers.

APPENDIX

for which this condition is met will be called a general model. A formula that
is true in all general models will be said to be gencrally valid. and a formula
that is satisfied by some assignment in some general model will be said to be
generally satisfiable. We say that 4 generally implies 6 it 4 = ¢ is generally
valid, and that 4 is generally equivalent 10 ¢ if 4 < % is generally valid.

A standard interpretation on a domain D determines a corresponding
general model in which 2 (n) is the set of ail n-ary relations on D and 7 (n) is
the set of «/l n-ary operations on D. Such a general model is called a ful/
general model. Standard satisfaction and truth are equivalent to Henkin
satisfaction and truth for the corresponding full general model. Hence, the
following statements are obvious.

PROPOSITION A.9

(a) Every generally valid formula is also standardly valid.
(b) Every standardly satisfiable formula is generally satisfiable.

We also have the lollowing strengthening of Proposition Al.

PROPOSITION A.10

Every theorem of PC2 is generally valid.

Proof

The general validity of (Comp) and (FunDef) follows from the definition of
a general model. The proofs for the other logical axioms are similar to those
in the first-order case, as is the verification that general validity is preserved
by the rules of inference.

PROPOSITION A.11 (GENERAL SECOND-ORDER
COMPLETENESS)

The theorems of PC2 coincide with the generally valid formulas of L2C.

Proof

let 4 be o generally valid formula of L2C. We must show that .4 is a
theorem of PC2 (1t sullices to consider only closed formulas.) Assume, for

“the sake of contradiction, that .4 i1s not a theorem of PC2, Then, by the

deduction theorem, the theory PC2 4 { w8} s consistent. If we could prove

-
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that any consistent extension of PC2 has o general model. then it would
follow that PC2 4+ { =2} has a general model. contrudicting our hvpothesis
that .4 is generally vahd. Tence. it suflices to establish the following result.

HENKIN'S LEMMA

Every consistent extension .7 of PC2 has a general model.

Proof

The strategy is the same as in Henkin's proof” of the fact that every con-
sistent first-order theory has a model. One first adds enough new individual
constants, function letters and predicate letters to provide “witnesses™ for all
existential sentences. For example. for cach sentence (Jx)% (x) there will be a
new individual constant A such that (3x)%(x) = %(b) can be consistently
added to the theory. (See Lemma 2.15 for the basic technique.) The same
thing is done for existential gquantifiers (dg”) and (3R"). Let 77 be the
consistent extension of .7 obtained by adding all such conditionals as ax-
ioms. Then, by the method of Lindenbaum’s lemma (Lemma 2.14), we
inductively extend .7~ to a maximal consistent theory 7 7. A general model
A of .7 can be extracted from .77, The domain consists of the constant
terms of .7 . The range of the predicate variables consists of the relations
determined by the predicate letters of .7 #. A predicate letter B determines
the relation B# such that 87 (1}, holds in . # if and only if B¥ (1), is a theorem
of 7#. The range of the function variables consists of the operations de-
termined by the function letters of 7% If f is a function letter of 7 define
an operation f* by letting f#({t),) = f({t),). A proof by induction shows
that, for every sentence ¢, ¢ is true in .// if and only if 4 is a theorem of
7% In particular, all theorems of .7 are true in ./.

The compactness property and the Skolem--Léwenheim theorems also
hold for general models. See Manzano (1996, Chapter 1V), or Shapiro
(1991) for detailed discussions.!

COROLLARY A.12

There are standardly valid formulas that are not generally valid.

fLindstrom (1969) has shown that, in a certain very precise sense, first-order
logic is the strongest logic that satisfies the countable compactness and Skolem
Lowenheim theorems. So, general models really are disguised first-order models.

et e

Proof

By Corollary A.7, there is no axiomatic formal system whose theorems are
the standardly valid formulas of L2.<7. By Proposition A.11, the generally
valid formulas of L2.¢/ are the theorems of the second-order theory P./2.
Hence, the set of standardly valid formulas of L2.¢/ is ditferent from the sct
ol generally valid formulas of L2.«/. Since all gencrally valid formulas arc
standardly valid. there must be some standardly valid formula that is not
generally vahd.

We can exhibit an explicit sentence that is standardly valid but not
generally valid. The Goédel-Rosser incompleteness theorem (Proposition
3.38) can be proved for the second-order theory AR2. Let # be Rosser’s
undecidable sentence for AR2.T If AR2 is consistent, .4 is true in the stan-
dard model of arithmetic. (Recall that .# asserts that, for any proof in AR2
of A, there is a proof in AR2, with a smaller Godel number, of —£. I AR2
1s consistent, # i1s undecidable in AR2 and. thercfore. there is no proof in
AR2 of #, which makes # trivially truc.) Hence, AR2 = 4 is standardly
valid, by Proposition A.4. However, AR2 = .4 is not gencrally valid. For, if
AR2 = % were generally valid, it would be provable in P.</2. by Proposi-
tion A.11. Hence, :# would be provable in AR2, contradicting the fact that it
is an undecidable sentence of AR2.

Exercise

A9 (a) Show that the second-order theory AR2 is recursively undecid-
able.
(b) Show that the pure second-order predicate calculus P.e/2 is re-
cursively undecidable.!

It appears that second-order and higher-order logics were the implicitly
understood logics of mathematics until the 1920s. The axiomatic char-
acterization of the natural numbers by Dedekind and Peano, the axiomatic
characterization of the real numbers as a complete ordered field by Hilbert
in 1900, and Hilbert’s axiomatization of Euclidean geometry in 1902 (in the
I'rench translation of his original 1899 book) all presupposed a second-
order logic in order to obtain the desired categoricity. The distinction be-
tween first-order and second-order languages was made by Lowenheim
(1915) and by Hilbert in unpublished 1917 lectures, and was crystal-clear in

'"We must assume that AR is consistent.

"I'he pure second-order monadic predicate logic MP2 (in which there are no
nonlogicil constants and no function variables, and all sccond-order predicate
varrables are monadic) s recursively decidable. See Ackermann (1954) for o proof.

Fhe carhest proot was found by Léowenheim (1915), and simpler proofs were given

by Skolem (1919) and Behmann (1922)
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Hilbert and Ackermann’s (1950)." where the problem was posed about the
completencess of their axiom system for first-order logic. The positive solu-
tion to this problem presented in Godel (1930). and the compactness and
Skolem Léwenheim theorems that followed thercfrom. probably made the
use of first-order logic more attractive. Another strong point favoring first-
order logic was the fact that Skolem in 1922 constructed a first-order system
for axiomatic set theory that overcame the imprecision in the Zermelo and
Fraenkel systems.! Skolem was always an advocate of first-order logic,
perhaps because it yielded the relativity of mathematical notions that Sko-
lem believed in. Philosophical support for first-order logic came from W.V.
Quine, who championed the position that /ogic is first-order logic, and that
second-order logic is just set theory in disguise.

The rich lodes of first-order model theory and proof theory kept logicians
busy and satisfied for over a half-century, but recent years have secn a
revival of interest in higher-order logic and other alternatives to first-order
logic, and the papers in the book Model-Theoretic Logics (edited by Barwise
and Feferman (1985)) offer a picture of these new developments.’ Barwise
(1985) lays down the challenge to the old first-order orthodoxy, and Shapiro
(1991) and Corcoran (1987) provide philosophical. historical and technical
support for higher-order logic. Of course, we need not choose between first-
order and higher-order logic; there is plenty of room for both.

fHilbert and Ackermann (1950) is a translation of the second (1938) edition of a
book which was first published in 1928 as Grundziige der theoretischen Logik.

tSee Moore (1988) and Shapiro (1991) for more about the history of first-order
logic. Shapiro (1991) is the most reliable and thorough study of the controversics
involving first-order and second-order logic.

*Van Benthem and Doets (1983) also provides a high-level survey of second-
order logic and its ramifications,

Answers to Selected Exercises

CHAPTER 1

1.1 4

==

4 4 =B (4= B)
F T
T T
F F
T T
1.3 ((4 = B)AA)
TTTTT
FTT FF
TFF FT
FTF FF
L4 (1) ((4 = (=B)) A ((=4) = (-B)))
(¢) (4 = B). A: xis prime, B: x is odd.
(d) (4 = B). A: the sequence s converges,
B: the sequence s is bounded.
(¢) (4 (BA(CAD)))
A: the sheikh s happy.
B: the sheikh has wine,
(" the sheikh has women,
1 the sheikh has song.
) 1 =By,
(1) (( ) = B).

4

TS T = =%

T
F
T
F
12 A4
T
F
T
F

- =<

A2 Fiorello goes to the movies.

A Kasparov wins today,

B: Karpov will win the tournament.
LS (). () () () (0, () are tautologies.
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" ANSWERS TO SELECTED EXERCISES

1.6 (a). (b). (d). (¢). (f') are logically equivalent pairs.
1.11 All except ().
1.13 Only (c) and (e).
1.15 (a) (B= A)AC ()4 B ~(CVD)
(¢) Drop all parentheses. (g) ~(—~(BV C) < (B < ()
6 (@) (CV((-A)AB) () ((C= ((~((AVB)= C))AA) & B)
7 (a) (((~(=4)) & A4) = (BV C)) (d) and () are the only ones that are
not abbreviations of statement forms.
1.18 (a) V= C-Band VC = AB-DC
(¢) () A= B-AC (b)vAVBC
(d) ()isnot. (i) (4= B)= ((B= C)= (-4 = C))
1.19 (1) is contradictory, and (a), (d), (e), (g)-(]) are tautologies.
1.20 (b)-(d) are false.
1.21 (a) T (b) T (c) indeterminate

1.22 (a)Ais T, Bis F,and -4V (4= B) is F.
(c)AIsT, CisT,Bis T.
1.29 (©) (1) AN({(BAC)V(-BASC)) (W) AABA-C

(i) =4V (=B A C)

1.30 (a) I % is a tautology, the result of replacing all statement letters by
their negations is a tautology. If we then move all negation signs
outward by using Exercise 1.27 (k) and (1), the resulting tautology
is =4’ . Conversely, if .4’ is a lautology, let % be =#'. By the first
part, =%’ is a tautology. But ~%" is - ~4.

() (wAAN-BA-C)V(AABA-D)

1.32 (a) For figure 1.4

A\

- B

1.33 (a), (d) and (h) are not correct.
1.34 (a) Satisfiable: Let A, B, and C be F, and let D be T.
1.36 For f,

(ANBAC)V(=AANBAC)V(AN-BAC)V(~AN-BA-C)

1.37 For = and Vv, notice that any statement form built up using = and Vv
will always take the value T when the statement letters in it are T. In the casc
of = and &, using only the statement letters 4 and B, find all the truth
functions of two variables that can be generated by applying — and < any
number of times.

1.40 (a)2° =16 (b)2¥

! ANSWERS TO SELFCTED EXERCISES
141 A{(C.C.C) = ~Cand h(B.B. (CYis B = (.
1.42 (b) For (4 = B)v (-4 A C). a disjunctive normal form is (4 A =B)V
(=4 A C}, and a conjunctive normal fornvis (4 v C) A (=B YV 2A)A (B V C).
(¢) () For (AAB)v 4. afulldnfis (AABY/{~AANB)V (-4 A—-B), and
a full entis BV —4.
1.43 (b)) (1) Yes. 4. T.B: V. CoFny Yes. A:T.B:F.C: T
1.45 (b) A conjunction & of the form B, A ... A B; . where cach B} is either
B or —B,. is said to be ¢figible i some assignment of truth values to the
statement letters of 4 that makes 4 wrue also makes & true. Let % be the
disjunction of all eligible conjunctions.
147 (b) 1.0 = &
2. 4=
38 =(6= )= ((4=>7)
= (4= )
(=)= (A= (0= 7))

Hypothesis
Hypothesis
Axiom (A2)

Axiom (Al)

Lo =6 Lemma 1.11(a)

B = b 3, 4, Corollary 1.10(a)

L C = B B =€ -5

H (5 = B)=> (8= F) 6, deduction theorem

8.F(6VAB)Y= (BVE) 7, abbreviation

1.50 Take any assignment of truth values to the statement letters of 4 that
makes A fulse. Replace in 4 each letter having the value T by 4, vV -4, and
cach letter having the value F by 4; A 4. Call the resulting statement form
‘“,. Thus, % is an axiom of L", and , therefore, b - 4. Observe that % always
has the value | for any truth assignment. Hence, -% is a tautology. So
1. % and, therelore, - —%.
1.51 (Deborah Moll) Use two truth values. Let = have its usual table and
let v be interpreted as the constant function F. When Bis F, (-8B = —4) =
(B »A4)y »B)is L.
1.52  The theorems of P oare the same as the axioms, Assume that P is
sitable for some n-valued logie. Then, for all values &, & xk will be a
designated value. Consider the sequence of formulas 4y A4, A « .4,
Simce there are 2" possible truth functions of one vanable, among
M. ... 4, there must be two ditferent tormulas .4, and 4, that determine

4
5.8 = (6 = ) l.4. MP
6. (B=%)= (4= 3.5.MP
7.4 = 7 2. 6. MP

148 (a) 1. .4 = -—B Lemma 1.11(b)
2. 2—AB = (B = %) Lenuna 1.11(¢c)
3 A= (-4 =) 1. 2. Corollary 1.10(a)
4. 4 = (ABVE) 3. Abbreviation

(c) 1. % = 4 Hypothesis

2. (—% = AB) = (-4 = ~—%) Lemma 1.11(e)
3. A= % ,2. MP
4
5
6
7
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the same truth function. Hence. 4, » 4; will be an exceptional formula that
is not a theorem.

1.53  Take as axioms all exceptional formulas. and the identity function as
the only rule of inference.

CHAPTER 2

2.1

2.2
2.3

2.6
2.8

2.9
2.10

2.11
2.12

(@) (Wx0) (4} () A (A4} (02)))) - (b) (((Fx2)4] (x2
(d) (((Vn)((V\z)((\“f«m)/ﬂ(-\'1)))) = (4} (x2) A (=430
(@) (vx)(4](x1) = 4] (x1))) V (3x)4](x1)

(a) The only free occurrence of a variable is that of x-.

(b) The first occurrence of x; is free, as is the last occurrence of x;.
Ye< in parts (a). (¢) and (e)

1) (Vx)(P(x) = L(x))

(Vx)(P(x) = T1H(x)) or T(3x)(P(x) A H(x))

(Vx)(B(x) = F(x))

(Vx)(B(x) = =F(x)) () T(x) = I(x)

(V) (V) (S(x) AD(x,v) = J(¥))

(Vx)(=H (x.x) = H(j,x)) or (Vx)(P(x) A =H(x,x) = H(j,x))

)
( ¢)
(d)
(f)
()

(In the second wf, we have specified that John hates those persons

who do not hate themselves, where P(x) means x /s a person.)

(a) All bachelors are unhappy. (c) There is no greatest integer.

(a) (i) is satisfied by all pairs {x,.x;) of positive integers such that
x| -xp > 2.

(i) is satisfied by all pairs (x|, x;) of positive integers such that
either x| < xo (when the antecedent is false) or x; = x> (when
the antecedent and consequent are both true).

(ii1) 1s true.

(a) Between any two real numbers there is a rational number.
(I) A sequence s satisfies 14 if and only if s does not satisfy 4.

Hence, all sequences satisfy 714 if and only if no sequence satisfies

4, that is, 714 is true if and only if 4 is false.

(II) There is at least one sequence s in 3. If s satisfies 4, # cannot be
false for M. If s does not satisfy %, % cannot be true for M.
(IIDIf a sequence s satisfies both % and # = &, then s satisfies € by

condition 3 of the definition.

(V) (a) s satisfies Z A € if and only if s satisfies 71(# = 1%)

if and only if s does not satisfy £ = 1%

if and only if s satisfies 4 but not 1%

if and only if s satisfies 4 and s satisfies %

(VI)(a) Assume [y 4. Then every sequence satisfies 4. In particular,
every sequence that differs from a sequence s in at most the Jith

(b)

(VD) Lemma. 1f all the variables in a term ¢ occur in the list x;.....x;

/\\JS\’VERS TO SELECTE l) EXERC ISFS

place satisfies 4. So. every sequence satisfies (Va;)4: that is,

Ea (V)2

Assume F=y (Vx) 4. If s is a sequence. then any sequence that

differs from s in at most the /th place satisfies .4, and. in particular,

s satisfies 4. Then every scquence satisfies 41 that is, = 4.

4
(k > 0: when £ = 0, 1 has no variables). and if the sequences
and s have the same components in the 7 th.. ... ipth places.
then s* (1) = (+')" (1).

Proof. Induction on the number m of function letter in r. Assume
the result holds for all integers less than m.

Case 1.t is an individual constant a,. Then s*(a,) = (a,
= () (a).

Case 2. tis a variable x, . Then s (x;) = 5;, = sf = (') ().

Case 3. t1s of the form /7'(n..... ty). For g <n. cach ¢, has fewer
than m function letters and all its variables occur among

: By inductive hypothesis, s*(f,) = (s')"(¢,). Then
S n)) = (M ()t ) = (DY () (1)
----- (s") (1)) = (s) (/”(’l- o).

Proof of (VIII). lnductlon on the number » of connectives and
quantifiers in 4. Assume the result holds for all ¢ < r.

Case 1. 4 is of the form A(r, ..., t,), that is, »r = 0. All the
variables of each ¢ occur among x;,...,x,. Hence, by the
lemma, s*(1,) = (s')"(#;). But s satisfies 4%(¢),....1,) if and only
it (s*(n).....s" () is in (AM-
(") (). .. (s) (1)) is in (40)™, which is equivalent to s
satisfying A(f1. ..., ta).

Case 2. A is of the form 1%.

Cuse 3. A is of the form ¥ = %. Both cases 2 and 3 are easy.

Cuse 4. # is of the form (Vx;)%. The free variables of % occur
among X; ,...,x;, and x;. Assume s satisfies . Then every se-
quence that differs from s in at most the jth place satisfies %. Let
s# be any sequence that differs from s’ in at most the jth place.
Let s be a sequence that has the same components as s in all but
the jth place, where it has the same component as s%. Hence, s”
satisfies %. Since s” and s* agree in the i th,..., isth and jth
places. it follows by inductive hypothesis that s” satisfies % if
and only it s# satisfies 4. Hence, s# satisfies . Thus, s’ satisfies
A. By symmetry, the converse also holds.

M
)

(1X) Assume 4 is closed. By ( VI, for any sequence s and s', s satisfies

A i and only it & satisfies 4. If w4 is not true for M. some
sequence s” does not satisfy 4 that is, s’ satisfies 4. Henee, every
sequence s satisties 4 that is, | oy 4.

that 1s, if and only if
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( X) Proof of Lenuna 1 induction on the numbcer m of function letters

ini.
Case 1. 118 a;. Then 1715 a;. Henee,

;M

STy s ey Lay W a )

Case 2. 118 v, where j # 4. Then ¢ is x,. By the lemma of ( VI,
(") = (") (1), sinee s and s have the same component in the
Jth place.

Case 3. tis x;. Then ¢7is w. Hence. s™ (1) = s7(u). while (s) (1) =
() (v) =5 =s"(u).

Cuse 4. ¢ is ol the form [7(n... .. t,). For 1 <g<n. let Iq’ result
from ¢, by the substitution of « for x;. By inductive hypothesis.
st(t)) = (s") " (1y). But

Vg
S =S = M) s )
= MUY ) ) W) = ) U ) = (5 (1)

Proof of Lemma 2(ay: induction on the number m of connectives
and quantifiers in .%4(x,).

Case 1. m = 0. Then 4(x,) is A';(n ..... ). Let lq' be the result of
substituting ¢ for all occurrences of x; in ¢,. Thus, #(r) is
AT 1,). By Lemma L s'(1)) = (s')"(1,). Now, s satisfies
A1) if and only if {s*(1/).. ... s"(1,)) belongs to (47)™, which is
equivalent to {(s")'(n)..... (s")'(r,)) belonging to (A’,’)M — that
is, to s’ satisfying .4(x;).

Case 2. B(x;) is ~%/(x,); this is straightforward.

Case 3. A(x;) is € (x;)=%(x,): this is straightforward.

Case 4. B(x;) is (Vx;)B(x;).

Case 4a. x; is x;. Then x; is not free in #(x;), and #(f) is B(x;).
Since x; is not free in #(x;), it follows by ( VIII) that s satisfies
A(1) if and only if s satisfies Z(x;).

Cuase 4b. x; is different from x;. Since ¢ 1s free for x; in #(x;), ¢ is also
free for x; in 6(x;).

Assume s satisfies (Vx;)%(z). We must show that s satisfies
(Vx;)%(x;). Let s# differ from s" in at most the jth place. It
suffices to show that s* satisfies %(x;). Let s” be the same as s*
except that it has the same ith component as s. Hence, s” is the
same as s except in its jth component. Since s satisfies (Vx,)% (¢).
s satisfies (). Now, since ¢ is free for x; in (Vx;)%(x;). 1 does
not contain x;. (The other possibility, that x; is not free in % (x;).
is handled as in case 4a.) Hence, by the lemma of (VIII),
(s2)*(¢) = 57 (1). Hence, by the inductive hypothesis and the fact
that s# is obtained from s” by substituting (s”)"(¢) for the ith
component of s*_ it follows that s” satisfies 4 (x,). if and only if
s” satisties 4(r). Since s” satisties 7 (7). 5" satisfies 4 (x,).

ANSWERS TO SELECTED EXERCISES

Conversely, assume s satisfies (Yx,)% (x;). Let s” differ from s

in at most the jth place. Let s* be the sume as 5" cxcept in the jth

place, where it is the same uas s, Then s* satisfies %(x;). As

above. s'(1) = (s")"(r). Hence. by the inductive hypothesis. s”

satisfies %(¢) if and only if s# satisfies €(x;). Since s7 satisfies
%(x,).s" satisfies 6(1). Therefore, s satisfies (Vx;)%(t).

Proof of Lemma 2(b). Assume s satisfies (Vx;).4(x;). We must
show that s satisfies Z(r). Let s" arise from s by substituting s (1)
for the ith component of s. Since s satisfics (Vx;)4(x;) and s
differs from s in at most the /th place, ' satisfies .#4(x;). By
Lemma 2(a), s satisties .4(1).

2.13 Assume 4 is satisfied by a sequence s. Let s be any sequence. By (VIII),
s" also satisfies 4. Hence. 4 is satisfied by all sequences; that is, Fum 4.

2.14 (a)
2.15 (a)

2.17 (a)

2.18 (a)

(b)

2.19 (b)

221 (a)

2.22 (a)

x 1s a common divisor of v and z. (d) x; 1s a bachelor.

(i) Every non-ncgative integer is even or odd. True.
(i1) If the product of two non-negative integers is zero, at least one
of them is zero. True. (iii) | is cven. False.
Consider an interpretation with the set of integers as its domain.
Let Al(x) mean that x is even and let 43(x) mcan that x is odd.
Then (Vx;)A4](x)) is false, and so (Vx;)A4] (x;)=> (Vx| )45(x)) is true.
However, (Vx))(4](x;)=43(x))) is false, since it asserts that all
even integers arc¢ odd.
[(Vx;)=B(x))=—~B(1)|= [B(t)=>—(Yx;)~#(x;)] is logically valid
because it is an instance of the tautology (4= —-B)=(B=—4).
By (X), (Vx;)=%(x;)=—~#A(¢) is logically valid. Hence, by (I11),
A()=—(Vx;) ~ZB(x;) is logically valid.
Intuitive proof: If 2 is true for all x;, then % is true for some x;.
Rigorous proof: Assume (Vx;)Z4=—(3x;)% is not logically valid.
Then there is an interpretation M for which it is not true. Hence,
there is a sequence s in Y such that s satisfies (Vx;)4 and s does
not satisfy —(Vx;)=#. From the latter, s satisfies (Vx;)—4. Since s
satisfies (Vx;)4, s satisfies 4, and, since s satisfies (Vx;)—4, s sat-
isfies =4. But then s satisfies both 2 and =4, which is impossible.
Take the domain to be the set of integers and let A} («) mean that u
is even. A sequence s in which s is even satisfies 4] (x)) but does
not satisfy (Vx;)d4](x;).
Let the domain be the set of integers and let 42(x,y) mean that
x < y. (b) Same interpretation us in (a).
The premisses are (i) (Yx)(S(x) = N(x)) and (ii) (Vx)(V(x) =
N (x)), and the conclusion is (Vx) (¥ (x)==>-S(x)). Intuitive proof:
Assume V(x). By (), N(x). By (i), S(x). Thus, -S(x) follows
from V(x). and the conclusion holds. A more rigorous proof can
be given along the lines of (1) ( X1), but a better proof will become
avinlable after the study of predicate caleuli.
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2.26 (2) (3x)(3)(A](x) A =A](¥))

227 () 1. (Vx)(4==%) Hyp
2. (Wx)A Hyp
3 (V) (A=) = (4=7) Axiom (A4)
4. A= 1.3. MP
5. (Wx) 4= 4 Axiom (A4)
6. # 2,5, MP
7. 4.6, MP
8. (Vx)¢ 7. Gen
9. (Vx)(A==%). (Vr)//ﬂ— (Vx)e 1-8
10. (Vx)(A=%) b (Vx) A= (Vx)¥ 1-9. Corrollary 2.6

L. B (Vx)(#=C)=((Vx) B=(¥x)%) 1-10, Corollary 2.6
2.28 Hint: Assume kg 4. By induction on the number of steps in the

proof of % in K, prove that. for any variables y...., yaln > 0),
Frs (V). (V)4
2.31 (a) L. (Vx)(V) ) 1(x,») Hyp

2. (W)Ai(x,p) I. Rule A4

3. A3(x. x) 2, Rule A4

4. (Vx)43(x, ,\) 3. Gen

5. (4)(ATx0) b (i) I-4

6. (Vx)(v_y) (x, p)=>(Vx)A7(x.x) 1.5, Corollary 2.6

233 (a) - (V,r)ﬂﬂ.f#<:>ﬂ(Vr) -4 by the replacement theorem and the fact
that F ~—~#<=4. Replace ~(Vx)-~#4 by its abbreviation (Jx)~4.
2.36 (b) (3e)(e > 0 A (V3)(d > 0= (Fx)(jx —¢| < dA|f(x) = f(c)| < ¢)))
2.37 (a) (1) Assume + #. By moving the negation step-by-step inward to
the atomic wfs, show that - -4 <=%. where % is obtained
from # by replacing all atomic wfs by their negations. But,
from F4 it can be shown that - €. Hence, - ~4"*. The converse
follows by noting that (#*)" is 4.
(i) Apply (i) to ~- BV E.

2.39 1. (3y)(¥x)(4}(x, ») =4} (x,x)) Hyp
2. (Vx)(43(x, b)=>—43(x,x)) I, Rule C
3. A2(b, y)e=>43(b, b) 2, Rule A4
4. € N =€ 3, Tautology

(¢ i1s any wf not containing b.) Use Proposition 2.10 and proof by con-

tradiction.

2.46 (a) Instep 4, bis not a new individual constant. It was already used in
step 2.

2.49 Assume K is complete and let 4 and % be closed wfs of K such that

Fx 2V €. Assume not-t-x 4. Then, by completeness, -k —4. Hence. by the

tautology ~4=((4 Vv )= 4),x #. Conversely, assume K is not com-

plete. Then there is a sentence 4 of K such that not-tg .4 and not-l-¢ 4.

However, bx 8V 4

2.50 See Tarski, Mostowski and Robinson (1953, pp. 15 16).
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e —

2.55 (b) It suffices to assume 4 is a closed wi. (Otherwise. look at the
closure of .4.) We can effectively write all the interpretations on a
finite domain {hy..... byt (We need only specify the interpreta-
tions of the symbols that occur in 4.) For every such interpre-
tation, replace every wi (Vx)%(x), where %(x) has no quantifiers.
by (b} A ... AN6(hy), and continue until no quantifiers are left.
One can then evaluate the truth of the resulting wf for the given
interpretation.

2.59 Assume K is not finitely axiomatizable. Let the axioms of K, be

By B, and let the axioms of K, be @,.%> . ... Then

{#),6,, #>.C,....} is consistent. (I not, some finite subset {4.

Y T Be.Cy...., %y} ts Inconsistent. Since K, is not finitely axiomatiz-

able, there is a theorem 4 of K such that :4,. 4>......4, b 4 does not hold.

Hence, the theory with axioms { 4. 4>...... Ai.—.#4} has a model M. Since

Fk 4, M must be a model of K;. and. thercfore. M is a model of
(B P B b, ‘@, }. contradicting the inconsistency of this set of

wfs.) Since {,%h(/)’[..’ﬂz,((/g
a model of both K; and K>.
2.60 Hinr: Let the closures of the axioms of K be 4,.4,,.... Choose a
subsequence .4, 4, ... such that /A, , is the first sentence (if any) after 4;,
that is not dedumble Irom By N NB; . Let Gy be B NABLN A 4,‘
Then the ;s form an ax1om set for the lhcoremb of K euch that
b Gy ==%, but not-- €,=—=%,. Then {€,, 6\, =%, ¢r,==>%5....} isan
1ndependem axiomatization of K.
2.61 Assume # is not logically valid. Then the closure ¢ of 4 is not logi-
cally valid. Hence, the theory K with —% as its only proper axiom has a
model. By the Skolem-Loéwenheim theorem, K has a denumerable model
and, by the lemma in the proof of Corollary 2.22, K has a model of car-
dinality m. Hence, € is false in this model and, therefore, .% is not true in
some model of cardinality ni.
265 (¢) l.x=x Proposition 2.23(a)
2. (3v)x =y 1, rule E4
I (V) (Fy)x =y 2, Gen
2.68 (1) The problem obviously reduces to the case of substitution for a
single variable at a time: b x; = yy=£(x,) = {(yy). From (A7),
Fx) = v=((x1) = ((x1)=1(x1) = t(n)). By Proposition 2.23
(a). F [(.\’]) = t(x;). Hence, F x| :y|:>t(x|) = I(yl).
270 (a) By LIxercise 2.65(c). F (Iv)x =y. By Proposition 2.23(b,c),
FAVI(Vz)(x = v Ax = z==y = z). Hence, I (3,y)x =». By Gen,
VO vy - e
2.7t (by (1) Let Ay. o,y /v, stand for the conjunction of all wis of the
form v, / v, where 1<+ j<n let 4, be (lv)...(Jx,)
Apeo goats £,

..} is consistent. it has a model. which must be
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(i1) Assume there is a theory with axioms .</......</, that has the
same theorems as K. Each of 7. .. .. ./, 1s provable from K
plus a finite number of the wfs .4,..4>,.... Hence. K, plus a
finite number of wfs 4, ...... 4, sullices to prove all thcorems
of K. We may assume j; < -+ < j,. Then an interpretation
whose domain consists of j, objects would be a model of K,
contradicting the fact that 4; 4 is an axiom of K.
2.74 For the independence of axioms (A1) - (A3). replace all + = s by the
statement form 4 => 4: then erase all quantificrs, terms and associated
commas and parentheses; axioms (A4) - (A6) go over into statement forms
of the form P = P. and axiom (A7) into (P = P) = (0 = Q). For the
independence of axiom (Al). the following four-valued logic. due to Dr
D.K. Roy, works, where () is the only designated value.

A B A=B 4 B A=B A B A=B A B A=B A4 4
0 0 0 I 0 0 2.0 0 3 0 0 0 1
0 1 | [ 0 2 1 0 3o | 10
0 2 | 2 0 2 2 0 3 2 1 20
0 3 1 13 0 2 3 0 33 0 3 0

When 4 and B take the values 3 and 0. respectively, axiom (Al) takes the
value 1. For the independence of axiom (A2), Dr Roy devised the following
four-valued logic, where 0 is the only designated value.

A B A=8B A4 B A=8B 4 B A=B A B A=B A4 14
0 0 0 1 0 0 2 0 0 3 0 0 0 1
0 1 l o1 0 2 1 0 301 0 | 0
0 2 1 12 0 22 0 3 2 [ 2 0
0 3 I 13 0 2 3 0 3 3 0 3.0

If A, B and C take the values 3, 0 and 2 respectively, then axiom (A2)is 1.
For the independence of axiom (A3), the proof on page 44 works. For
axiom (A4), replace all universal quantifiers by existential quantifiers. For
axiom (A5), change all terms ¢ to x; and replace all universal quantifiers by
(Vx;). For axiom (A6), replace all wfs t = s by the negation of some fixed
theorem. For axiom (A7), consider an interpretation in which the inter-
pretation of = is a reflexive non-symmetric relation.

2.83 (a) (Vx)(I)((32)(#B(z,x,p,...,y) NI (x,p,2)) = (F2)(B(z.p,x....,X)
Az =x))

284 () (@)W = Al5)] = 1) = 41(2)

2.87 ¥ has the form (3x)(3y)(Vz)([43(x,y) = A4l(x)] = 4](z)). Let the

domain D be {1,2}, let 43 be <, and Iet Al (u) sldnd for u=2. Then & is

true, but (Vx)(Iy)43(x,y) is false.

2.88 Let g be a one-one correspondence bclwu.n D' and D. Define:

(@)™ = g(@)™): (/M i by = ¢ M b, glba)]:

v A hal if and only if | m A7{g(hy). .. .. g(h,)).

e
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2.95 Hint: Extend K by adding axioms .4,,. where .4, asserts that there are
at least n elements. The new theory has no finite models.
2.96 (a) Hint: Consider the wfs 4,. where 4, asserts that there are at least

n elements. Use elimination of quantificrs. treating the 4,5 as if

they were atomic wfs.
2.101 Let W be any sct. For each b in W_ let a;, be an individual constant.
Let the theory K have as its proper axioms: a, # a. for all b, ¢ in W such
that b # ¢, plus the axioms lor a total order. K is consistent, since any finite
subset of its axioms has a model. (Any such finite subset contains only a
finite number of individual constants. One can define a total order on any
finite set B by using the one-one correspondence between B and a set
{1,2,3,...,n} and carrying over to B the total order < on {1.2,3..... nt.)
Since K is consistent, K has a model M by the generalized completeness
theorem. The domain D of M is totally ordered hy the relation <M:; hcn«,c
the subset D,, of D consisting of the objects (uh) is totally ordered by <M
This total ordering of D,. can then be carried over to a total ordering oi
W:b <, cif and only if a, <M a..
2.103 Assume M, is finite and M| = M5. Let the domain D, of M, have n
clements. Then, since the assertion that a model has exactly » clements can
be written as a sentence, the domain D>, of M> must also have »n elements.
Let Dy = {by,..., by} and Dy = {c1....,cu}.

Assume M| and M, are not isomorphic. Let ¢ be any one of the n! one--one
correspondences between D) and D». Since ¢ is not an isomorphism, either:
(1) there is an individual constant @ and an element b; of D) such that either
(i) by =aM' A (b)) # a2 or (i) b; #a™ A (b)) = aM; or (2) there is a
Iuncllon letter /" and b,. b, .. ..,bjm in Dy such that

b= ()™ (bys- - bj,) and @(b) # (S (0(by), - 0(by,))
or (3) there is a predicate letter 47" and b;,,...,b,; in D; such that either
) m, AY by by,] and Eu, 147 (0(b, ) - @(by,)] or

(i) Ewm, ‘lA’"[b,, ..... bl and Em, AR [@(b)), ..., ¢(b),)]. Construct a wf
A, as follows:

X, =a if (1) (i) holds
x;#a if (1) (i1) holds
Bois ¢ x, = f[x;..0x; ) i (2) holds
AP (). x) if (3) (i) holds
WP, o,y if (3) (if) holds
Letgy, ... ¢,n be the one once correspondences between Dy and Ds.

l.et ./ be the wt

(1), .(h,.)( N

Ve gnnm

vy A ,ﬂ”,’ N, NN .ﬂ,l,~‘>

Then .o/ 1s true for M, but not tor M.
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2.104 (a) There are ¥, sentences in the language of K. Hence, there are 2%

scts of sentences. If My = M> does not hold, then the set of sen-
tences true for My is different from the set of sentences true for
M,.

2.105 Let K be the theory with N. new symbols b, and, as axioms, all

sentences true for M and all b, # b, for 1 # p. Prove K* consistent and

apply Corollary 2.34.

2.108 (a) Let M be the field of rational numbers and let X = {—1}.

2.110 Consider the wf (dx;) x> < x.

2.111 (a) (ii) Introduce a new individual constant b and form a new theory
by adding to the complete diagram of M all the sentences
b # 1 for all closed terms 7 of the language of K.

2112 If @ ¢ 7, # # P(4). Conversely, il § € .#. then, by clause (3) of

the definition of filrer, 7 = 2(A).

2,113 If 7 = Fp, then (., C =B c 7. Conversely, if B={\-.Ce 7,
then .# = .7 5.

2.114 Use Exercise 2.113.

2115 (a) A € 7.sinced =4 — (.

YIWB=A-W e # and C =4 — W, € .#, wherc W, and W, are
finite, then BNC = 4 — (Wyuls) € #, since W, UM5 is finite.

) If B=4-We.#, where W is finite, and if BC C, then
C=A4—-(W —C)¢c #. since W — (is finite.

(d) Let BC C. So, B=A — W, where W is finite. Let b € B. Then
Wo{b} is finite. Hence, C = 4 — (Wu{b}) € #.Bul, B & (,since
b & C. Therefore, # # Fg.

2.118 Let # = {D|D CAA(IC)(C € F ABNC C D)}.

2.119 Assume that, forevery B C 4, eitherBe . # ord—Bc % .let%bea

filter suchthat # C 4. letBe % —%.Then4d - B € % .Hence, 4 —Bc ¥.

So, 0 = Bn(4 — B) € 4 and % is improper. The converse follows from Ex-

ercise 2.118.

2.120 Assume .# is an ultrafilter and B¢ .#,C ¢ #. By Exercise 2.119,

A—Bec% and 4 —-Ce F. Hence, 4 — (BUC)=(4—B)n(4-C)e 7.

Since % is proper, BuC ¢ #. Conversely, assume B¢ # AC & .7

= BuC ¢ #. Since Bu(4 — B) = A4 € #, this implies that, if B ¢ .#, then

A— B e #. Use Exercise 2.119.

2.121 (a) Assume F¢ is a principal ultrafilter. Let @ € C and assumc
C # {a}. Then {a} & ¢ and C — {a} € # . By Exercise 2.120,
C = {a}u(C ~ {a}) € # ¢, which yields a contradiction.

(b) Assume a non-principal ultrafilter # contains a finite set, and let B
be a finite set in # of least cardinality. Since .# is non-principal,
the cardinality of B is greater than 1. Let » € B. Then B — {h} # {.
Both {b} and B — {b} are finite scts of lower cardinality than B.
Hence, {b} ¢ .7 and B-{b} ¢ .#. By Ixcrcise 2.120,
B = {b}u(B {bh})) ¢ #. which contradicts the definition of 8.

2.124 Lct ./ be the set of all finite subsets of I'. For cach A in J. choose a
model My of A. For AinJ. let A" = {A"|A" ¢ JAA C A'}. The collection %
of all A's has the finitc-intersection property. By Exercise 2.117. there is a
proper filter .7 2 %. By the ultrafilter theorem, therc is an ultrahlter
F' 2.7 2. Consider [[y.,Ma/ 7" Let #cT. Then {4} €4 C 7"

Thercfore, {4} C {AJA € GA Enm, 4} € .7'. By Lo$’s theorem. 4 is true in

HA(,./ M/\/‘j;"

2.125 (a) Assume ¥ is closed under clementary equivalence and ultra-
products. Let A be the set of all sentences of ¥ that are true in
every interpretation in ¥ . Let M be any model of A. We must
show that M isin #7. Let T be the set of all sentences truc for M.
Let J be the set of finite subsets of T. For I = {4,...... B,} € J.
choose an interpretation N in # “such that 4, A ... A .4, is true
in Np. (If there were no such interpretation, ~(.4; A ... A .4,),
though false in M. would be in A.} Asin Exercise 2.124. there is an
ultrafilter #' such that N* = [];», , Ny» /4" is a model of T. Now.
N* € #". Morcover, M = N*. Hence, M € ff

(b) Use (a) and Exercise 2.59.

(¢) Let # be the class of all fields of characteristic 0. Let .# be a non-
principal ultrafilter on the set P of prnimes, and consider
M =11, 2%,/ 7. Apply (b).

2.126 R* C R*. Hence, the cardinality of R* is > 2% On the other hand. R"

is equinumerous with 2 and, therefore, has cardinality 2% . But the cardi-

nality of R* is at most that of R™.

2.127 Assume x and y ave infinitesimals. Let ¢ be any positive real. Then

Ix| <¢/2 and [y] < /2. So, |x+v[<lx| + [y < &/2+¢/2 =& |xy| = |x]|y]

<le=glx—yl<x|+ |-y <e/2+e/2=c¢.

2.128 Assume |x| < r and |y| < ¢ for all positive real . Let ¢ be a positive

recal.  Then «&/ry is a positive real. Hence [y]<e¢/r, and so,

| = x|l < rie/r) =e

2.130 Assume x — r; and x — r, are infinitesimals, with r; and r, real. Then

(v - 1) — (x —r2) = rp — 1 is infinitesimal and real. Hence, r, —r; = 0.

2.131 (a) x —st{x) and y—st(y) are infinitesimals. Hence, their sum

(v + 1) — (st{x) +st(y)) is an infinitesimal. Since st(x) + st(y) is real,

st(v) 1 st(y) = st{x + v) by Exercise 2.130.

2.132 (a) By Proposition 2.45, s*(n) & ¢| and u*(n) =~ ¢; for all n € w* — w.
Hence. s'(n) +uw(n)=cy+c¢ for all new —w.  But
s'(n) +u(n) = (s + 1) (n). Apply Proposition 2.45.

2.133 Assume / continuous at ¢. Take any positive real . Then there is a

positive real o such that (Vx)(v ¢ BA [x - ¢ < d = | f(x) = f{c)] < ¢) holds

in 4. Therefore, (Ve)(x ¢ B*Alv ol =8 » [/ (x) [f(e)] < «) holds in

A So, it vo B and vaeo then v o¢of - o and.  therefore,

[/ () fle)] - e Sinee wowas arbitrary, £ (v) 2= /(). Conversely, assume

Ve BT A e s 00 s ) Take any positive real e Let oy be o positive
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infinitesimal. Then (Vx)(x € B' Ajx —¢| < dy = | f"(x) — f(¢)] < &) holds

for #*. Hence, (30)(0 > OA (Vx)(x € B' Alx —¢| < 3 = | f'(x) —f(c)] < &)

holds for #", and so. ()3 >0A(X)(xEBA|x —¢|<d = |f(x)

—/ ()] <)) holds in 2.

2.134 (a) Since x € B' Ax=c = (/*(x) = [(c) Ag'(x) = g(c)) by Proposi-
tion 246, we can conclude x€B' Ax=c= (f+g) (x)
= (/ + ¢)(c), and so. by Proposition 2.46. / + g is continuous
at ¢.

2.139 (a) (i) T[(Vx)(4](x) V 45(x)) = ((Vx)A}(x)) V (¥x) A4} (x)]
(ii) (Vx)(4}(x) V A} (x)) (i)
(i) [((Vx)4{(x)) V (Vx)43(x)] (i)
(iv) 1(vx)4](x) (i)
(v) 1(Vx)dl(x) (iii)
(vi) (3x) 14 (x) (iv)
(vii) (Fx) 14} (x) v)
(viii) TA:(b) (vi)
(ix) 14! 5(¢) (vii)
(x)  A}(b) vV A}(b) (ii)
Ve AN
(xi) A} (b) AY(b) (x)
(xii) x Al(c) v A(¢) (i)
/ \
(xiii) A:(L) A;(c) (xii)
X

No further rules are applicable and there is an unclosed branch. Lcl the

model M have domain {5, (} let (A ) hold only for ¢, and let (4HM hold
for only b. Then, (Vx)(4](x) vV 4}(x)) is true for M, but (Vx)4!(x) and
(Vx)A)(x) are both false for M. Hence, (Vx)(4](x) V A} (x)) = ((¥x)4](x))

% (Vx)Aé(x) is not logically valid.

CHAPTER 3

3.4 Consider the interpretation that has as its domain the set of polynomials
with integral coefficients such that the leading coefficient is non-negative.
The usual operations of addition and multiplication are the interpretations
of + and -. Verify that (S1}«S8) hold but that Proposition 3.11 is false
(substituting the polynomial x for x and 2 for y).

u
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3.5 (a) Form a new theory §' by adding to S a new individual constant b

and the axioms b £ 0. h# L.h#2..... b #na. ....Show that " is
consistent, and apply Proposition 2.26 and Corollary 2.34(c¢).
(b) By a cortége let us mean any denumerable sequence of Os and 1s.
There are 2% cortéges. An clement ¢ of a denumerable model M of
S determines a cortége (sg.s1.52....) as follows: s; = 0 if =y pile.
and s, = 1 il f=m “1{pilc). Consider now any cortege s. Add a new
constant b to S. together with the axioms 4;(h). where 4,(b) is p;|b
if s, = 0and #,(h)is T1(pi}h) if 5, = 1. This theory is consistent and.
therefore. has a decnumerable model Mq. in which the interpretation
of b determines the cortége s. Thus. each of the 2% cortéges is
determined by an element of some denumerable model. Every
denumerable model determines denumerably many corteges.
Therefore, if a maximal collection of mutually non-isomorphic
denumerable modcls had cardinality m < 2% then the total num-
ber of cortéges represented in all denumerable models would be
<m x Ry < 2%, (We use the fact that the elements of a denumer-
able model determine the sume corteges as the elements of an iso-
morphic model.)
3.6 Let (D,0,") be one model of Peano’s postulates, with 0 € D and ' the
successor operation, and let (D+#,0#.' ) be another such model. For each x
in D, by an x-mapping we mean a function f from S, = {uju € D A u<x}
into D# such that f(0) = 0# and f(«') = (f(u))" for all u < x. Show by
induction that, for every x in D, there is a unique x-mapping (which will be
denoted /). It is easy to see that, if x; < x3, then the restriction of f,, to S,
must be f;,. Define F(x) = f,(x) for all x in D. Then F is a function from D
into D# such that F(0) = 0# and F(x') = (F(x))" for all x in D. 1t is easy to
prove that F is one-one. (If not, a contradiction results when we consider
the least x in D for which there is some y in D such that x # y and
F(x) = F(y).) To see that F is an isomorphism, it only remains to show that
the range of F'is D#. 1f not, let z be the least element of D# not in the range
of F. Clearly, z # 0#. Hence, z = w* for some w. Then w is in the range of F,
and so w = F(u) for some u in D. Therefore, F(¢') = (F(u))" = w* =z,
contradicting the fact that z is not in the range of F.

The reason why this proof does not work for models of first-order
number theory S is that the proof uses mathematical induction and the least-
number principle several times, and these uses involve properties that cannot
be formulated within the language of S. Since the validity of mathematical
induction and the least-number principle in models of S is guaranteed to
hold, by virtue of axiom (S9), only for wfs of S, the categoricity proof is not
apphcable. For example, in a non-standard model for S, the property of
being the interpretation of one of the standard imtegers 0,1,2,3,... is not
expressible by a wi of U1 1t were, then, by axiom (89), one could prove that
{0,123, ) constitutes the whole model.

397
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3.7 Use a reduction procedure similar to that given for the theory K, on
pages 11617, For any number 4, dcfine 4 -/ by induction: 0.7 is 0 and
(k+1)-ris (k-1) + 1 thus. k- ris the sum of 7 taken 4 times. Also. for any
given 4, let r = s(mod ) stand for (3x)(r =s+k-xVs =14k -x). In the
reduction procedure. consider all such wfs 1 = s(mod k). as well as the wfs
1< s.as atomic wis, although they actually are not. Given any wfs of' S, . we
may assume by Proposition 2.30 that it is in prenex normal form. Describe a
method that. given a wf (3y)%. where % contains no quantifiers (remem-
bering the convention that 1 = s(mod k) and 1 < s are considered atomic),
finds an equivalent wf without quantifiers (again remembering our con-
vention). For help on details, see Hilbert and Bernays (1934, 1, pp. 359-366).
3.8 (b) Use part (a) and Proposition 3.6(a)(i).
(¢) Use part (b) and Lemma 1.12.

3.13  Assume f(x|....,x,) =x,, is expressible in S by AB(x1....,x,41). Let
Cxt, .o oxapn)  be Bl x, DAV2)(z<xp1 = 18, .. Xnil)).
Show that @ represents f(x;,.... x,) in S. [Use Proposition 3.8(b).] Assume,
conversely, that f(xy,..... Y,) 1s representable in S by .o/(x), ... x,,;). Show
that the sume wf expresses f(x,..... X,) =X, in S.

316 (@) (3y),... Rlxj..... X,.») is equivalent to (3z)_ e RO X

z+wu + 1), and similarly for the other cases.
3.18 If the relation R{xj oo x,0): f(xr,....x,) = »vis recursive, then Cr

is recursive and. therefore, so is [(x),... . x,) = w(Cg (X1, X0 ¥) = 0).
Conversely, [ Y A G SO Xy ) is recursive, Crixy, . x,,y) =
sglf (xi....,x,) — | is recursive. '
3.19

[Vi] = (W cnr (» > n))
M(n) =) 58(Cerl(y))

yEn

320 [ne]= [n(1+1+5+%+--+1)] since ’1((".:])!'1- ' +---)< L

n! (n+2)! n

Let I+ 1+ 54+ =20 Then g(0) = land g(n + 1) = (n + 1)g(n) +1.

n! n
Hence, g is primitive recursive. Therefore, so is [ne] = [%(,")} = qt(n!l, ng(n)).

3.21 RP(,z) stands for (V%) gpi(xly Axlz = x = 1),

¢(n) = _58(Crp(y,n))

ysn

322 Z(0) =0,Z(y+ 1) = U3(y,Z(y)).

3.23 Letv=(popi...p) + |. Some prime ¢ is a divisor of v. Hence. g <.
But ¢ is different from py,py,...,pi. If ¢ = p;. then pilv and pipopy ...y
would imply that p;|l and, therefore, p, =1. Thus, p, <g<
([)()[)] ...[)‘.) + 1.

ANSWERS TO SELECTED EXERCISES

3.26 1If Goldbach’s conjecture is true. /i is the constant tunction 2. 1f Gold-
bach’s conjecture is false. 4 is the constant function 1. In cither casc. / is
primitive recursive.

3.28 List the recursive functions step by step in the following way. In the
first step, start with the finite list consisting of Z(x). N(x). and U/ (x). At the
(n + [)th step. make one application ol substitution, recursion and the p-
operator to all appropriate sequences of functions already in the list after the
ath step, and then add the » + | functions U}"'(.n ...... v, i1) to the list.
Every recursive function c¢ventually appears in the list.

3.29 Assume /[ (y) is primitive recursive (or recursive). Then so s

Ju(x)+ 1. Hence, fi(x)+ 1 is equal to fi(x) for some k. Therefore,
Ji(x) = fo(x) + 1 for all x and, in particular, f; (k) = fi (k) + 1.

3.30 (a) Let d be the least positive integer in the sct Y of integers of the
form au + bv, where v and v are arbitrary integers  say.d = auy + hry. Then
dla and d|b. (To sce this for a, let « = gd + . where 0<r < d. Then
r=a—qgd =a— qlauy + bvy) = (1 ~ qup)a + (—qro)b € Y. Since d is the
least positive integer in ¥ and » < «.r must be 0. Hence dla.) If ¢ and b are
relatively prime, then « = 1. Hence. | = auy + bry. Therctore, auy = 1
(mod b).

3.32 (a) 1944 = 2%3% Hence, 1944 is the Gddel number of the expression

()
(b) 49 = 1 + 8(2'3'). Hence. 49 is the Gddel number of the function
letter /.

3.34 (a) g(/)) =49 and g(ar) = 15. So, g(f] (a1)) = 2¥3351375.

3.37 Take as a normal model for RR, but not for S, the set of polynomials
with integral coefficients such that the leading coefficient is non-negative.
Note that (Vx)(Iy)(x =y +yVx=y+y+ 1) is false in this model but is
provable in S.

3.38 Let oo be an object that is not a natural number. Let o’ = o0,
+x=x+o00=o0oc for all natural numbers x,oc-0=0-00=0, and
X =x-00 = co for all x # 0.

3.41 Assume S is consistent. By Proposition 3.37(a), ¢ is not provable in S.
Hence, by Lemma 2.12, the theory S, is consistent. Now. 719 is equivalent
to ()27 (x2, " % ). Since there is no proof of ¥ in S, 2/(k,q) is false for
all natural numbers &, where ¢ = "% . Hence, -, 71Pf(k, ) for all natural
numbers k. Therefore, by, T1.2/(k,g). But, k=, (3x2)2/(x2.4). Thus S is w-
mconsistent.

345 (G. Kreisel. Mathematical Reviews, 1955, Vol. 16, p. 103) Let 4(x)
be a wi of S that is the arithmetization of the following: x; i1s the Goédel
number of a closed wi' .24 such that the theory S+ { A4} is m-inconsistent.
(The Jatter says that there s o wi & () such that, for every n, & (n) is provable
in S+ {4}, and such that { 1v) & (x) 18 provable in § + {4}.) By the fixed-
point theorem, let ¢ be a closed wi such that 1 g% =407 4 ) Lot
A S e} (s false i the standard model. (Assume ¢ true. Then K
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is a true theory. But. <=4(" % ) is truc. since it s provable in S, So.
A(° % )is true. Flence. K is - inconsistent and. therefore. K is not true,
which viclds a contradiction.) (2) K is am-consistent. (Assume K om-incon-
sistent. Then ("% ') is true and, thercfore, ¢ is truc. contradicting (1).)
3.46 (a) Assume the “function” form of Church’s thesis and let 4 be an
eflectively decidable set of natural numbers. Then the character-
istic function 'y is effectively computable and. thercfore, recur-
sive. Hence. by definition, A is a recursive set.

(b) Assume the “set’” form of Church’s thesis and let f(x;.....x,) be
any eflectively computable function. Then the relation
J(x1.....x,) = yiseflectively decidable. Using the functions o, ¢*
ol pages 1834 let 4 be the set of all z such that
o7 (2)...., 00" (z)) = " }(z). Then A is an effectively decid-
able set and, therefore, recursive. Hence., [(x;....,x,)
= 07! | (uz(Cq(z) = 0)) is recursive.

3.48 Let K be the extension of S that has as proper axioms all wfs that are

true in the standard model. If 7r were recursive, then, by Proposition 3.38, K

would have an undecidable sentence, which is impossible.

3.49 Use Corollary 3.39.

3.50 Let f(xp..... v,) be a recursive function. So. f(xj.... .. Y,) =y Is a

recursive relation, expressible in K by a wf ./(x),....x,,»). Then / is rep-

resentable by ./(x;,...,x,. ¥) A(Vz)(z < y = 1./ (x),....x,.2)), where

z < ystands for z<y Az # y.

353 (a) FO=1=%. Hence, F Ber("0=1")=HBen("%") and,
therefore, F+ 1 Bc(" % )= 1Bcee("0=1"). Thus, F 4=
NBeer (V0 = ij)

(b) l_,%1,/4;(17@j)ﬁ:%caﬂ(r,%cw(rqu)—‘). Also, b 19 =%

("9, and so, F HBew(' 19 ") = Bew(" 4 (-,m(r@/j)—l).
Hence + Bew("9 ') =RBee(" 19 "). By a laulology,
Fé9—(1%=(% A 11%)); hence, + ,%lztl,)(rg—l)ﬁ RBeww (" 1%
= (% N %) .—I). Therefore, F 4 a/,)(l_fg—l) = (Bew (" 9
= Beo(" (9N 7{9)7l)). It follows that F Zew(" %) =
RBew:(" (G N _lfg)—l). But, F%A19=0=1; so, + Beuw
(T(GA1Y9) \—=Bew("0=1"). Thus, + Bew(" % )=
Beer("0 =1"), and F 1Bew(T0=1") =1 Be(" % ).
Hence, F 1 Becr("0 =1 )=%.

3.56 If a theory K is recursively decidable, the set of Godel numbers of

theorems of K is recursive. Taking the theorems of K as axioms, we obtain a

recursive axiomatization.

3.58 Assume there is a recursive set C such that 7x C C and Refx C C. Let

C be expressible in K by .o/(x). Let %, with G6del number £, be a fixed point

for —.o/(x). Then, Fx F <= 1.9/ (k). Since .o/ (x) expresses Cin K, by .o/(k)

or kg jf’/(/()

ANSWERS TO SELECTED EXERCISES

(1) I by /(k). then +x 1.7. Therefore. & €Refy € €. Hence.

Fx 1.o/(k). contradicting the consistency of K.

(b) If Fg *i.o/(k_). then Fx .Z. So. k € Tx € € and therefore. Fg ,c/(f).

contradicting the consistency of K.

3.60 Let K, be the theory whose axioms are those wis of Ky that are
provable in K*. The theorems of Ky are the axioms of K. Hence, x € Ty, if
and only if Fmlg, (x) Ax € Tx-. So, if K* were recursively decidable - that is,
il Tx. were recursive - Ty, would be recursive. Since K is a consistent
extension of K, this would contradict the essential recursive undecidability
of K].

3.61 (a) Compare the proof of Proposition 2.28.

(b) By part (a), K* is consistent. Hence, by Exercise 3.60, K™ is es-
sentially recursively undecidable. So, by (a), K is recursively un-
decidable.

3.62 (b) Take (Vx)(4](x)¢=x = x) as a possible definition of 4}.
3.63 Use Exercises 3.61(b) and 3.62.
3.64 Use Corollary 3.46, Exercise 3.63, and Proposition 3.47.

CHAPTER 4

4.12 (s) Assume u € x x y. Then u = (v, w) = {{v}. {v,w}} for some v in x
and w in y. Then ¢ € xuy and w € xuy. So, {v} € #(xuy) and
{v,w} € 2(xuy). Hence, {{v}, {v,w}} € Z(2(xuy)).

4.15 (a) Z(x) € J(Ux) and £(x) C [J(Ux). Apply Corollary 4.6(b).

(b) Use Exercise 4.12(s), Exercise 4.13(b), axiom W, and Corollary
4.6(b).

(c) If Rel(Y), then Y C %(Y) x £(Y). Use part (b) and Corollary
4.6(b).

418 Let X = {{n,»)» =y Ay €Y} thatis, X is the class of all or-

dered pairs {u,u) with u €Y. Clearly, Fnc(X) and, for any set x,

(F)((v,u) € X Av € x)<=u € Ynx. So, by axiom R, M(Ynx)

4.19 Assume Fnec(Y). Then Fnc(x[Y) and #(x[Y) Cx. By axiom R,

M (Yx).

4.22 (a) Let  be the class {u|u # u}. Assume M(X). Then § C X. So, § =
# N X. By axiom S, M (§).

4.23  Assume M(V). Let ¥ = {x|x¢ x}. It was proved above that -M(Y).

But ¥ C ¥. Hence, by Corollary 4.6(b), =M (V).

4.30 (¢) Let u be the least €-clement of X — Z.

4.33 (a) By Proposition 4.11(a), Trans(m). By Proposition 4.11(b) and
Proposition 4.8()), @ ¢ On. If m e Ky then o € o, contradicting
Proposition 4.8(a). Hence, ¢ Ky,

439 let X, X < {Bjand Y, Y < {1}
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4.40 Forany v € y. let the characteristic function C, be the function with
domain ysuch that C,w = 0 ifw e wand C,w = 1ifw € v — . Let F be the
function with domain .2( y) such that F'u = C, toru € .#(y). Then .2y )27‘
4.41 (a) Forany set w. “(u) is a set by Exercise 4.15(a).

(b) Ifwex' then v C v xx So.x" C .2(y x x).
4.42 (a) 0 is the only function with domain 0.

(¢) I 7(u) # 0, then A(u) # 0.
4.43  Define a function F with domain X such that. for any xy in X. F(xy) is
the function ¢ in X1*! such that ¢'w = xy. Then X %X‘”}.
4.44 AsﬂumeX Y and 7 < W. If =M (W), then QM(Z) and X4 =y =

bv Exercise 44l(a) Hence "we may assume M(W) and M(Z). Define a
function ® on X“ as lollows: if / € X? let®' /' = Fo f oG ' Then X/’VY”
4.45 If X or Y is not a set. then ZXY and Z¥ x 7" are both (). We"may
assume then that X and Y are sets. Define a function ® with domain Z¥V7 as
follows: if /€ Z¥“Y let @/ = (X [ /,¥ | /). Then /m‘~7Y x 7',

4.46 Define a function F with domain (x") as follows: for any /in (x")°,
let F~f be the function in x'* such that (F'/)u.v) = (f*v)'w for all
(u,v) € y x z. Then (¥)° ’,:Yx-"”.

447 If -M(Z). (X xY) =0 =0x0=X7x Y% Assume then that
M(Z). Define a function F: X* x Y% — (X x ¥)” as follows: for any
feXigevi ( Fg/ N)z={fz,¢z) for all z in Z  Then
X% x Y/7(X x Y)
4.48 This is a direct consequence of Proposition 4.19.
4.54 (b) Use Bernstein’s theorem ( Proposition 4.23(d)).

(c) Use Proposition 4.23(c,d).
4.55 Definc a function F from V into 2. as follows: Fu= {u, 0} if
u # 0: F9 = {1,2}. Since, F is one-one, V' <2.. Hence, by Exercises 4.23 and
4.50, =M (2.).
4.56 (h) Use Exercise 4.45.

(1) 2" x5 428 = 2% x 222 0¥ x 2l oy prtel o )y,

Hence, by Bernstein’s Theorem, 2% 4. x = 2%,

4.59 Under the assumption of the axiom of infinity, w is a set such that
(Ju)(ue w)AN(Vy)(y€e o= (3z)(z€ v Ay Cz)). Conversely, assume (*)
and let o be a set such that (i) (Ju)(xe€b) and (i) (Vy)(v€Eh
= (I)(z€bAyCz)). Letd = {u|(3Iz)(z€ bAuCz)}. Sinced C 2 (b)),
dis aset. Define a relation R = {(n, v)|n € o Av= {ulu € d Au=n}}. Thus,
(n.v) € Ris and only if n € » and v consists of all elements of d that are
equinumerous with #. R is a one—one function with domain « and range a
subset of 2(d). Hence, by the replacement axiom applied to R .« is a set
and, therefore, axiom 1 holds.

4.62 (a) Induction on zin (Vx)(x @ 2 Aa € w = Fin(.2(x))).

/\NS\\TRS T() SF[ f( 1'ED EXIE R( ISES

(b) Induction on x in (¥x)(x 2 xAxc oA (Vir)yex=Fmny)) =
Fin(lJx)).

(¢) Use Proposition 4.27(a).

(d) xC 2(Jx)and vex=vCJx

(¢) Inductionon xin (Vx)(x X xAx € w=> (x<»yV y=<y))

(2) Induction on z in (Vx)(x 2o Ax € o Alnf(Y) = x<Y)

(h) Use Proposition 4.26(c).

() ¥ C 2(vxx)

4.63 Let Z be a set such that every non-empty set of subsets of Z has a
minimal element. Assume Inf(Z). Let ¥ be the set of all infinite subscets of 7.
Then Y is a non-cmpty set of subsets of Z without a minimal clement.
Conversely, prove by induction that, for all 2 in m. any non-empty subsct of
#(a) has a minimal element. The result then carries over to non-emplty
subsets of 2(z), where z is any finite set.

4.64 (a) Induction on x in (Vx)(x = a A x € m A Den(yv) = Den(xuy)).

(b) Induction on « in (Vx)(x @ x Ax # B A Den(y) = Den(x x v))

(c) Assume z C x and Den(z). Let z22 . Define a lfunction ¢ on x as
follows: g'u =u fu € x—z: gu = (Y () if u ez Assume x
is Dedekind-infinitc. Assume z C x and x=z. Let v € x — z. Define
a function A on o such that /) = ¢ and b*(«) = /*(h* ) if o € w.
Then A 1s one-one. So, Den(h*w) and h*w C x.

(f) Assume y & x. (i) Assume xu {y} = x. Define by induction a
function g on o such that ¢'® = y and ¢*(n+ 1) = /*(g'n). g is a
one-one function from  into x. Hence, x contains a denumerable
subsct and, by part (c¢), x is Dedekind-infinite. (ii) Assume x is
Dedekind-infinite. Then, by part (c), there is a denumerable subset
z of x. Assume z~ . Let ¢o=(f"")'0. Define a function F as
follows: Fu=uforu € x — z: Feo=y; Flu= (f (S u—1)for
u € z— {co}. Then x% xuly}. If zis {co,c1. ca2,...}, F takes ¢; )
into ¢; and moves ¢, Into y.

(g) Assume w=<x. By part (c), x is Dedekind-infinite. Choose y & x.
By part (f), x=xu{y}. Hence, x+.1=(xx {0})u{{B, 1)}
~yu {y} =

4.65 Assume M is a model of NBG with denumerable domain D. Let z be
the clement of D satisfying the wf x = 2¢. Hence, z satisfies the wf —~(x = w).
This means that there is no object in D that satisfies the condition of being a
one one correspondence between z and w. Since D is denumerable, there is a
one one correspondence between the set of “elements’ of z (that is, the set of
objects v in D such that =y ¢ € z) and the set of natural numbers. However,
no such one one correspondence exists within M.

4.68 NBG s finitely axiomatizable and has only the binary predicate letter
13. The argument on p. 269 70 shows that NBG is recursively undecidable.
Hence, by Proposition 3.49, the predicate caleulus with A3 as its only non-
logical constant s recursively undeaidable
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Assume x=<xm,. If 2=<x, then, by Propositions 4.37(b) and 4.40,
W, =XX U, Xx X 0, =<y, X 0, > o, If x contains onc clement,
usc Excreise 4.64(c.f).

Use Corollary 4.41.

Plorg) x Pen,) 2 27 x 2 2 D0 o 00 2 Py

(P(y))" = (27)" = 27 ¥ 22 2 22 P(yy)

If v were non-empty and finite, y 22 y +. y would contradict Ex-

ercise 4.62(b).

By part (¢),lety =wvvunv=0u=yv=y Lety=r. Definea

function g on 2( y) as follows: for x C y, let g'x = uu’(/"‘x). Then

g'x Cy and y =2 u<xg'x<y. Hence, g'x = y. So, ¢ is a one-one

function from #(y) into 4 = {z|]z C y Az = p}. Thus, 2(y)<A4.

Since A C 2(p). AL2(y).

Use part (d): {zlz C y Az =y} C {z]z C y A Inf(z)}.

By part (¢). let y = uov,une =0, u =y, v = y. Let ul% v. Define [

on y as follows: fx = A'xif x €wand fx = (h™')xif x € v

Use Proposition 4.37(b).

(1) Perm (y) C p¥=<(2")" = 270 =~ 2 =~ 2(y).

(1) By part (a). we may use Exercise 4.7 (¢). Lelt
y=uvrunv=0u=y vy Letu=vand y=u. Define a
function F:.2(y) — Perm (y) in the following way: assume
ze€ P(y). Let y.:y—y be dcfined as follows: .x
=Hx il xe Gz, x=(H "Yxif (H')Yxe G Y, x=x
otherwise. Then ¥, € Perm(y). Let F'z = ,. F is one-one.
Hence, Z(y) <Perm(y).

Use WO and Proposition 4.19.

The proof of Zorn = WO in Proposition 4.42 uses only this

special case of Zorn’s Lemma.

To prove the Hausdorfl maximal principal (HMP) from Zorn,

consider some C-chain Cy in x. Let y be the set of all C-chains C in

x such that Cy C C and apply part (b) to y. Conversely, assume

HMP. To prove part (b), assume that the union of each non-

empty C-chain in a given non-empty set x is also in x. By HMP

applied to the C-chain @, there is some maximal C-chain C in x.

Then |J(C) is an C-maximal element of x.

Assume the Teichmiiller—Tukey lemma (TT). To prove part (b),

assume that the union of each non-empty C-chain in a given non-

empty set x is also in x. Let y be the set of all C-chains in x. y is

easily seen to be a set of finite character. Therefore, y contains a C-

maximal element C. Then |J(C) is a C-maximal element of x.

Conversely, let x be any set of finite character. In order to prove

TT by means of part (b), we must show that, if C'is a C-chain in x,

then [ J(C) € x. By the finite character of v, it suffices to show that

every finite subset = of [J(C) is in x. Now, since z is finite, 2 is a

()

ANSWERS TO SELECTED 1EXERCISES

subsct of the union of a finite subset W of C. Since 15 4« -chain.
I has a C-greatest element w € v and zis asubset ol w. Sinee xoas
of finite character, z € x.

Assume Rel(x). Let w= {z|(Fv)(r € w{x) Az = {r}] vi that s,
z € il zis the set of all ordered pairs (r.w) in x. for some fixed «
Apply the multiplicative axiom to u. The resulting chotee set v € a
is a function with domain < (x). Conversely. the given property
casily vields the multiplicative axiom. If x is a sct of disjoint non-
empty sets, let » be the set of all ordered pairs (w. v) such that v © v
and ¢ € w. By part (e). there is a function / C» such that
s(f) = 2(r) = x. The range #( /) is the required choice set for x.
By trichotomy. either x < v or y < x. If x < v, there is a function
with domain y and range x. (Assumcx%y] C y. Take ¢ € x. Defince

gu=c if ucyv—v.and gu=(f "Yu if v €y Similarly. if
v < x. there is a function with domain x and range v. Conversely.
to prove WO, apply the assumption (1) to x and # "(.#(x)). Notc
that, if (3/)(/ :u— v A Z2(f) = r), then .2(¢) ~< 2{u). Therelore,
if there were a function / from x onto .# *(.2(x)). w¢ would have
A (P(x)) < 2(H(2(x))) < 2(x) contradicting the definition of
A +(#(x)). Hencc. there is a function from #*(.2(x)) onto x. Since
# *(:#(x)) is an ordinal, one can define a one—one [unction from x
into .#*(#(x)). Thus x < #*(#(x)) and, therefore, x can be well-
ordered.

4.76 If < is a partial ordering of x, use Zorn’s lemma to obtain a maximal
partial ordering <* of x with < C <'. But a maximal partial ordering must
be a total ordering. (If u, v were distinct elements of x unrelated by <. we
could add to <* all pairs (uy,vy) such that w; <*u and v<'v,. The new
relation would be a partial ordering properly containing <*.)

4.79 (b)

(©)

()

Since x Xy 2x+.y, xxy=aub with anb=¢, a=x, b=y
Let » be a well-ordering of y. (i) Assume there exists # in x such
that (u,v) € a for all v in y. Then y<a. Since a = x, y=<x, con-
tradicting —( y=<Xx). Hence, (ii) for any « in x, there exists v in y
such that (u,v) € b. Define f: x — b such that f*u = (1, v), where ¢
is the r-least element of y such that (u,v) € b. Since [ is one-one.
x<xh=y.

Clearly Inf(z) and Inf(x +. z). Then

Nhez (v ien) Mt b2 x (XX Z) e 2 Ex 42X (xX2)4e2

Theretore, vy x 22 x (x X 2)<v +¢ 2 X (x X z) +, z = x +. z. Con-
versely, vt 2=y x = by Proposition 4.37(b).

If AC holds, (Vy)(Inf(v) > v~y xy) follows from Proposition
4.40 and Exercise 4.73(a). Conversely, if we assume v > v x v for
all infimite v, then, by parts (¢) and (b), 3t follows that v=0# v for
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any infinite set x. Since # "x 1s an ordinal. x can be well-ordered.
Thus. WO holds.

481 (a) Let {be a well-ordering of the range of r. Let /0 be the {-least
clement of #(r), and let f*n be the (-least element of thosc ¢ in
A(r) such that (f*n.v) € r.

(b) Assume Den(x) A (Vu)(u € x = u # 0). Let @ = x. Let r be the set
of all pairs {a.b) such that @ and b are finite scqtilcnccs (o ery . Uy
and {(rg.t1.....0,0) such that, for 0<i<n+ 1.1; € ¢'i. Since
#(r)y C (r), PDC produces a function h: @ — 7(r) such that
(hrn lr(n")) € rforallnin w. Define the choice function f by taking,
for each w in x. /“u to be the (¢g'u)th component of the sequence
h(g'u).

{¢) Assume PDC and Inf(x). Let r consist of all ordered pairs
(u.uo{a}), where wu{a} Cx Fin(wu{a}), and a¢u. By PDC,
there is a function f: w — Z(r) such that( f*a. f*(n')) € r for all n
in . Define ¢: @ — x by setting g‘n cqual to the unique element of
S(n")=/"n. Then ¢ is one-one, and so, w=x.

(d) In the proof of Proposition 4.44(b), instead of using the choice
function A, apply PDC to obtain the function /. As the relation r,
use the set of all pairs (v.v) such thatu € c,v € c.v € un X.

4.82 (a) Use transfinite induction.

(d) Use induction on f3.

(e)-(f) Use transfinite induction and part (a).

(h) Assume v C H. Let v be the set of ranks p‘x of elements x in u. Let
ff =Uv. Then u CWf. Hence u € 2(WVf3) = W'(f) T H..

4.83 Assume X # @A ~(3y)(y € X AynX =0). Choose u € X. Define a
function ¢g: g0 = unX, ¢'(n") = U(g'n)nX. Let x = U(#%(g)). Then
x # 0 and (Vy)(y € x = ynx £ Q).

4.88 Hint: Assume that the other axioms of NBG are consistent and that
the Axiom of Infinity is provable from them. Show that H,, is a model
for the other axioms but not for the Axiom of Infinity.

4.89 Use H, 1,0

495 (a) Let C={x| ~(y)(x e y Ay € x)}.

CHAPTER 5

5.1qy[Bq,
9B Rq,
q111a0
q:BRq,
5.2 (a) U3 (b) é(x)
5.7 Let a Turing machine .# compute the function f. Replace all occur-
rences of g, in the quadruples of .# by a new internal state ,. Then add the

-
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quadruples qya;a,q, Tor all symbols «, of the alphabet of .#. The Turing
machine dcfined by the enlarged set of quadruples also computes the
function /.
5.10 (a) N(x) =x+ 1
5.12 (a)

(¢) 2x

o —

%(Kz)zlﬂol —> _‘fraor —» R
o o
C RK;C

5.14 (a) The empty function (b) N(x) =x+ 1 (¢) Z(x)
5.16 If f(ay) =by,.... f(a,) = b,, then

Sy =wlx=aAy=bh)V--Vix=a,Ny=h,)]

520 Let g(z.x) = U(wyT (z,x,y)) and use Corollary 5.11. Let v, be a
number such that g(x,x) + | =¢g(vy.x). Then. it g(rg,v9) is defined,
d(ro, vo) + 1 = g(vo.vy), which is impossible.

5.21 g(xl,....x',,):: hl(xl..“,x,,)-Q(Ckl(,n, ..... X ,,))+..,+
/zA.(x,, c ,x,,) . %(CRA (xl, N ,.\.‘,,))
5.22 (a) Assume that A(x) 1s a recursive function such that h(x) =
wTi(x,x,y) for every x in the domain of wyTi(x,x,y). Then
()T (x,x,y) if and only if T)(x,x, A(x)). Since Ti(x,x,h(x)) is a
recursive relation, this contradicts Corollary 5.13(a).
(b) Use Exercise 5.21.
(¢) Z(uyTy(x,x,y)) is recursively completable, but its domain is
{x|(3¥)T)(x,x,y)}, which, by Corollary 5.13(a), is not recursive.
5.29 Let 7 be a Turing machine with a recursively unsolvable halting
problem. Let a; be a symbol not in the alphabet of .7". Let q, be an internal
state symbol that does not occur in the quadruples of 7. For each q; of .7
and a; of .7, if no quadruple of 7 begins with q;a;, then add the quadruple
q,4;44q,. Call the new Turing machine .77". Then, for any initial tape de-
scription ¢ of .77,.7 ", begun on «, prints a; if and only if .7 is applicable to
x. Hence. if the printing problem for .77 and a; were recursively solvable,
then the halting problem for .77 would be recursively solvable.
5.31 Let .7 be a Turing machine with a recursively unsolvable halting
problem. IFor any initial tape description « for .7, construct a Turing ma-
chine .7, that does the following: for any inttial tape deseription fi, start .7
on x it .7 stops, erase the result and then start .7 on fi It s casy to check
that .7 s applicable to 2l and only 1f .77, has a recursively unsolvable
halting problem. 11 as very tedious to show how to construct .7, and to
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prove that the Gadet number of 7, is a recursive function ol the Godel
number of 7.
5.33 Let ¢y be the index of a partial recursive tunction Gv) with non-empty
domain. If the given decision problem were recursively solvable. so would be
the decision problem of Example 1 on page 332
5.34 By Corollary 5.16, there is a recursive function g(u) such that
(p['jw(x) =x - vTi{w. . vy, Then (/)L”(“) has an empty domain i and only if
(37 (. wv). Bute =(3v) 71 (. x) is not recunsive by Corollary 5.13(a).
5.39 (a) By Corollary 516, there is a recursive function g(u) such that
¢} ¥) = oy = w Ay = x). The domain of ¢y is {u}. Apply
the fixed-point theorem to g.

(b) There is a recursive function g¢{u) such that (/)L“”(.\’) =
w(x # u Ay =0). Apply the fixed-point theorem to g¢.

542 (a) Letd = {x|f(x) € B}. By Proposition 5.21(¢). B is the domuin of a
partial recursive function g. Then 4 is the domain of the compo-
sition g o /. Since g o /" is partial recursive by substitution, 4 is r.e.
by Proposition 5.21(c¢).

(b) Let B be a recursive set and let 1 be the inverse image of B under a
recursive function /. Then x € D if and only if Cyx( f(x)) =0 and
Cu(/f(x)) = 0 is a recursive relation.

(c) Let B be an r.e. set and let 4 be the image {f(x)|x € B} under a
partial recursive function /. If B is empty, so is 4. If B is non-
empty. then B is the runge of a recursive function g. Then A4 is the
range of the partial recursive function f(y(x)) and, by Proposition
5.21(b). 4 is r.e.

(d) Consider part (b). Given any natural number x, compute the value
/{x) and determine whether f(x) is in B. This is an eflective pro-
cedure for determining membership in the inverse image of B.
Hence, by Church’s thesis, B is recursive.

() Any non-empty r.e. set that is not recursive (such as that of
Proposition 5.21(e)) is the range of a recursive function g and is,
therefore, the image of the recursive set w of all natural numbers
under the function g.

5.43 The proof has two parts:
1. Let 4 be an infinite recursive set. Then A is the range of a recursive
function f, by Proposition 5.21(d). Since A4 is infinite,
h(u) = puy(f(y) > u) is recursive. Let gy be the least element of A4.
Define g(0) = ag, g(n+ 1) = f(h(g(n)). Then ¢ is a strictly in-
creasing function with range A.

2. Let 4 be the range of a strictly increasing recursive function g.
Then ¢(x) > x for all x (by the special case of Proposition 4.15).
Hence, x € 4 if and only if(3u), . .¢g(u) = x. So. 4 is rccursive by
Proposition 3.18.

ANSWERS TO SELECTED EXERCISES
5.44 Assume 4 1s an inlinite r.¢. set. Let A be the range ot the recursive
[uncuon ¢(x). Detine the function 77 by the following course-of-values re-
cursion:

fon) = gQo((va) . aty) # 7)) = gQor((vo).,g(v) # (F ) ))

Then A is the range of A A is once one, and /4 is recursive by Propositions
318 and 3.20. Intuitively. f(0) == g(0) and. for 7 > 0. f(n) = g(v). where v is
the lcast number for which ¢g(v) 1s different tfrom f(0). f(1)..... f(n—1).
5.45 Lct 4 be aninfinite r.e. set, and let 4 be the range of the recursive
function y. Since A4 is infinite. F(u) = py(g(y) > u) is a recursive function.
Define G(0) = ¢(0). G(n -+ 1) = g(py(g(y) > G(n))) = g(F(G(n))). G is a
strictly increasing recursive function whose range is infinite and included in
A. By Exercise 5.43, the range of G is un infinite recursive subset of 4.
5.46 (a) By Corollary 5.16, there is a recursive function g(u, v) such that
(plll(“_,_)(x) = (T (u.x vy vV T (e x. ).

5.47 Assume (V). Let f(xy,....x,) be eflfectively computable. Then the sct
B = {ulf((u),..... (u),) = (u),,} 1s eflectively enumerable and. therefore.
by (V). r.e. Hence, u € B<=(3v)R(u, v) for some recursive relation R. Then

JACTR. ) = ([r(((0)g)) = x0 A A ((0)g), = xa AR, (1), MWodu i

So. j"is recursive. Conversely, assume Church’s thesis and let W be an

cflectively enumerable set. If W is empty, then W is r.e. If W is non-empty,

let W be the range of the effectively computable function ¢g. By Church’s
thesis. ¢ is recursive. But, x € W<=(3u)(y(u) = x). Hence, W is re. by

Proposition 5.21(a).

5.48 Assume 4 isr.e. Since 4 # (), 4 is the range of a recursive function y(z).

So, for each z, U(uwyT(y(z),x,y)) is total and, therefore, recursive. Hence,

U (g(x),x,¥)) + 1 is recursive. Then there must be a number z, such

that Uy Ti(g(x),x.y)) + 1 = U(iwyT 1 (g(zp),x,5)). A contradiction results

when x = zg.

5.49 (a) Let ¢(n) =n for all n.

550 Let ¢(z) = o2 (wy[Ti(z.63(»), 63(»)) A a3(y) > 2z]), and let B be the

range of ¢.

5.55 (b) Let 4 be r.e. Then x € 4<=-(3y)R(x,y), where R is recursive. Let
A(x.v) express R(x,y) in K. Then k € A<=ty (3v)A(k,y).

(¢) Assumceck € A<= kg .c%(K) for all natural numbers £. Then k € 4
<=»(3v)B.s(k.v) and B., is recursive (see the proof of Proposition
3.29 on page 199.

5.56 (a) Clearly Tk is infinite. Let f(x) be a recursive function with range
Tx. Let Ay .4y, ... be the theorems of K. where .4, is the wf of K
with Godel number (/). Let g(v.v) be the recursive function such
that, il vis the Godel number of a wi ., then g(x. ) 1s the Godel
number of the conjunction 4 A% A A consisting of j con-
juncts; and, otherwise, gy /) O Then g/ (7). 7)) is the Godel
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number of the j-fold conjunction 4, A 4; A--- A4, Let K' be the 5.62 (4) 2 — A (SinA)

theory whose axioms are all these j-fold conjunctions. for w A

j=0.1.2.... Then K" and K have the same theorems. Moreover. A -y

the sel of axioms of K’ is recursive. In fact, x is the Gédel number

of an axiom of K’ if and only if x # 0 A (3v), . (9(/ (»).y) = x). (b) ¢ =<z (CinA)

From an intuitive standpoint using Church’s thesis, we observe Sx— - A (SinA)

that, given any wl </, one can decide whether ¢/ is a conjunction 2= A

¢ NG A--- A6l it s such a conjunction, one can determine the A >y

number ; of conjuncts and check whether % is 4. )

(b) Part (b) follows from part (a). ‘ ) <¢—=A (CinA)

5.58 (a) Assume #(x|) weakly expresses (Tx)" in K. Then, for any ag = - A

n.Fx A(R) if and only if n € (Tx)". Let p be the Godel number of A— -

A(x)). Then ¢ A(p) il and only if p € (Tx)". Hence, g #(p) if
and only if the Godel number of #(p) is in Ty that is. Fx #(p) if
and only if not-x #4( p).

(d) énp—nps (Enin A)
al — ¢féx (Ein A)

(b) If K is recursively decidable. Tk is recursive. Hence, T is recursive By
and, by Exercise 5.57,(Tx)" is recursive. So, (Tx)" is weakly ex- 7= A
pressible in K, contradicting part (a). x— A

(c) Use part (b); every recursive set is expressible, and, therefore, A=z

weakly expressible, in every consistent extension of K.

559 (1) (i) o(x). 5.63 xa;, - Qu (i=1,....k)

(ii)X] =X aé — iﬁ (CinA-{a,,....ak})
(iii) The function with empty domain. - A
(iv) The doubling function. A—a
S20.x2) = x5 B — |
SHx) (02)) = fix,x) () Bl —|

(f) Let a, and & be new symbols.

()  f2x1,0) =x
S () = (S xx)) 1 Bl — Ip
_zz(x|,0):0 o) — |pa
o (2)) = U5 (e 2)x) xo A
|6 — |6
(i) £l =1 5|
fx=)) =0 ‘ d|| — 4
f1(0)=0 S — |
L)Y = 1) 5 — |
5.61 (a) Any word P is transformed into QP. “ﬁ : ([S

(b) Any word P in A is transformed into PQ.

(¢) Any word P in A is transformed into Q.

(d) Any word P in A is transformed into n, where n is the number of
symbols in P.
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Auxiliary letter 345
Axiom 34
of choice 9. 275
of class existence 230
comprehension scheme
extensionality 290, 294
finite, of choice 277
Fundierungs- 279
of infinity 239, 288, 292
logical 69
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Downward Skolem-Loéwenheim
theorem 128

failure of. 1 standard second-

order logic 377

validity of. for general models 380
Duality 23
Dummy variables 176
Dyson. V.H. 171

Easton. W.B. 279
Effectively computable function 200
Effcctively decidable 211
Electric circuit 24
Element 1, 5. 296
Elementarily equivalent 123
Elementary

class of models 136
extension 125

submodel 125
substructure 125

theory 98

theory of groups. fields, ordered
fields 98
Elimination of existential
quantifiers 117
Empty

domain 147

function 326

set 5

word 306
Epimenides 2
Equality

in second-order languages 369
in set theory 226

in type theory 290

pure first-order theory of 98
reflexivity of 95
substitutivity of 95

theory with  94-5, 99
Equation 345
Equinumerous 7, 253
Equivalence

class 6

logical 16

recursive 343

relation 6

theorem 79
Equivalent

elementarily, interpretations 123
(fully), algorithms 356
logically 16, 66

recursively 343

ST

INDEX

Essential incompleteness 211
Essential recursively
undecidable 216
Exclusive “or™ 11
Existential
quantifier 50
rule E4 77
Exponentiation. ordinal = 250
Expressible relation 170
weakly 344
Expression 34, 321
Extension
of an alphabet 351
conservative 289
elementary 125
finite, of a theory 219
ol a model 124
submodel 125
substructure 125
of a theory &6
Extensionality  290. 294
axiom 290 294
principle 227
extremal clause 35

False

for an interpretation 60
for a standard second-order
interpretation 370
logically I8
Field of a relation 6, 242
Fields

algebraically closed 119
elementary theory of 98
ordered 98

real-closed 362
Filter 129

proper, improper, principal 129
ultra- 130
Finitary 36
Finite

axiom of choice
Dedekind- 261

e-cycles 279

extension 219
intersection property 129
marriage problem 119
ordinal 259
presentation 364
Ramsey theorem 210
sequence ¥

set ¥, 259

INDEX

Finitely
axiomatizable theory 94
presented group 366
First-order fanguage 56
generalized 114
First-order predicate calculus 70
First-order vs. second-
order logic  381-2
full 221
pure 221
First-order theory 69
of densely ordered sets 98
of equality 98
with equality  94-5
generalized 114
Fixed-point theorem 204
Fixed-point theorem in recursion
theory 335
F-less transform 104
Follows from 34
Form, statement 13
Formal
number theory 154
theory 18, 34
Formula
atomic 52
well-formed 34, 52
Fraenkel, A.A. 288
Free
occurrence 53
variable 53
for x;in a formula 54
Frege-Russell cardinal numbers 257
F-transform 104
Full first-order predicate calculus 221
Full general model 379
Full normal form 31
Full Second-order language 369
pure 370
Fully equivalent algorithms 356
l'unction 6, 238
charactenstic 173
conditional (Cond) 1906
definition of new, letters 103
diagonal 197
cllectively computable 200
cipty 326
Godel's beta 1X6
Herbrand-Godel (HG)-
computible 346
imtial 174
mto 7

Function (continued)
Juxtaposition 182

letter 51
Markov-computable 356 7
maximum. minimum 177
negation (Neg) 196
number-theoretic 170
one-one 7

onto 7

partial 7, 309

partial recursive 318
predecessor 177
primitive recursive 175
projection 174

quotient 177

recursive 175

recursively completable 328
remainder 177

(strongly) representable 171
successor 174

total 7, 309

truth  14-5
Turing-computable- 309
variables 368

zero 174
Function definition schema
(Fundef) 372
Fundierungsaxiom 279

Gch, see Generalized continuum
hypothesis

Gen 70

General class existence theorem 232

General model 379

Full 379

General recursive 175

General second-order
completeness 379

Generalization (Gen) rule 70
second-order 372

Generahized completeness theorem 121

Generalized continuum hypothesis 284

Generalized first-order
language 114
theory 114

Generally
implies, is cquivalent to 379
satisfiable, vahid - 379

Generators 164

Godel, K.
Herbrand-Gaodel-computable 346
number 190, 32]
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INDEX

Rosser thcorem 208 9, 219
sentence 200
Godel's
fi-function 186
completeness theorem 91
incompleteness theorem 206
second theorem 212, 215
Graph 118
Graph of a function 174
Grelling's paradox 3
Groups
finitely presenled 366
orderable 119
theory of 71, 98

Halting problem 328

setf- 329

special 329
Hartogs’ function 264
Hartogs’ theorem 263
Hausdorfl maximal principle 277
Henkin, L.

second-ordcr interpretation 378
second-order semantics 378
sentence 213
Henkin's lemma 380
Herbrand. J. 345
Herbrand-Gédel-(HG)-
computable 346
Heterological 3
Higher-order

languages 56

theories 56, 381
Hilbert, D. 381

Bernays derivability conditions 213

Hilbert's tenth problem 305, 363
Hyp 38

Hypothesis 35

inductive 8

Ideal (maximal, proper) 9
Identifying variables 176
Identity element 364
ldentity relation 6, 234
Image 7
inverse 7
Immune 343
Implication, logical 16, 65
Impredicatively defined set 293
Improper filter 129
Inaccessible ordinal 283
strongly 286

Inaccessible ordinal (continued)
weakly 286
Inclusion 5, 226
Inclusive ‘or” 11
Inclusively valid 148
Incompleteness
essential 211
Godel-Rosser, theorem 208
Godel's theorem 206
of standard second-order
semantics 376
w- 208
Inconsistent theory 72
Increasing function 251

Increasing ordinal z-sequence 286

Independence 43
Independent axiomatization 94
Index 330, 341
Individual 227, 297
constants 51

variables 51

Induction

complete &, 9, 166
mathematical 8
principle 8. 154-5

rule 155

transfinite 9, 245, 248-9
up to w, up to o 248
Inductive hypothesis 8
Inference, rules of 34
Infinite 8, 261

Dedekind- 261

ordinal 259

Infinitely close 138
Infinitely descending e-sequences
Infinitesimal 136
Infinity, axiom of 239

in type theory 292
Initial

functions 174

letter 345

ordinal 264

state 307

tape description 307
vertex 311

Inner model 282
Inseparable, recursively 219
Instance 61

Internal state 307
Interpolation theorem 33
Interpretable 223
relatively 224

279

Interpretation 57
Henkin second-order 378
standard 160
standard second-order 370
Intersection 5, 231, 237
Intuitionism 4
Intuitionistic propositional calculus
Inverse 7
Image 7
lexicographical ordering 272
relation 6, 235
of a word 353
lota term 106
Irreflexive 240
Isolated 343
Isomorphic
interpretations 111
recursively 342
Iteration theorem 330
for models of AR2 374
lterative conception of set 282

Jomnt denial 29
Juxtaposition function 181-182

k-colourable graph 118
Kleene, S.C.

-Mostowski hierarchy 333
Normal form theorem of 326
Konig's Unendlichkeitslemma 118
Kreisel, G. 399

k-valid 93

/-computability 361
L. 35
language
of arithmetic 154
first-order 56
genceralized first-order 114
higher-order 56
meta- 30
object 306
law of the excluded middle 4, 16
Lcast
clement 9, 245
number principle 166
left
-end machine 31S
nachime 3113
-transhvbon machme 318
Iabmyz, GW 68

48

Length of an expression 181
Letter

auxiliary 345

function Sl

initial 345

predicate  S1

principal 345

statement 13, 35
Liar paradox 2
Limit ordinal 247
Lindenbaum, A.

algebra 49
Lindenbaum’s lemma 86
Literal 30
Léb, M.H.

Lob's paradox 3

Lob’s theorem 214
Logic 1

many-valued 44-5
second-order 368

third and higher-order 369
Logical

axioms 069

consequence 16, 66
implication 16
equivalence 16
paradoxes 3

standard, consequence 370
validity 362
Logically

correct arguments 26
equivalent 16, 66

false 18

imply 16, 65

standardly second-order, imply 370
true 18

valid 65
Logicism 291
Los’ theorem 133
Lowenheim, L.

Downward Skolem-Léwenheim-
Tarski theorem 128
Skolem-Lowenheim theorem 92
Upward Skolem-Léwenheim-
Tarski theorem 128

p-operator (mu-operator) 175
bounded 179
unrestricted 318
Machime, Tuning 306
clean-up 31S

constant - 3113
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Machine. Turing (continued)
left 313

left-end 315
left-translation 315

n-shift copier 316

right 313

right-end 314

shift 315

super-universal 332
universal 332

word-copier 316
Many-one

equivalent 343

reducible 342
Many-valued logic  44-5
Maps 7

Markov, A.A.

algorithm 352
-computable  356-7
Marriage problem 119
Mathematical induction 8, 154-5
Mathematical logic 1, 4
Maxunal ideal 9

theorem 121

Maximum function 177
n-categorical 112
Mechanical procedure 211
Member 1.5

Membership relation 225, 242
Metalanguage 36
Metamathematics 36
Mctaproof, metatheorem 36
Method of infinite descent 167
Minimum function 177
Minimal (maximal) element 263
ML 296

Model 60, 70

contracted 100
denumerable 90

(full) general 379

inner 282

nonstandard 160

normal 100

standard 160

Modus ponens (MP) 34-5
Moll, D. 385

Monadic predicate calculus, pure 222
Monadic predicate letters Sl
Morse-Kelley set theory (MK) 287
Mostowski, A. 287

Kleene-, hierarchy 333
Moves 307

MP. s¢e Modus ponens
Multiplication. ordinal 250
Multiplicative axiom (Mult) 275

Natural number 154

NBG 225

Negation 11

elimination, introduction 77
function (Neg) 196

rules 77

NF (Quine’s New Foundations) 293
NFU 296

Non-class 227

Nonlogical

axioms 69-70
constants 57
Nonstandard 160, 295
analysis 136
model 160, 295
reals 137

Normal

algorithm 352

closed, algorithm 357
composition 358

forms 30

model 100

prenex, form 106

Skolem, form 109

Normal form theorem, Kleene’s 326
NP-complete 31

N-shift copier (K,,) 316

Null set 5
axiom 228
Number
cardinal 2, 8, 279, 282
of divisors 179
Godel 190, 321

natural 154

ordinal 243
Number-theoretic

function 170

relation 170
Numeral 160, 345
Numerical tape description 323

Object language 36
Occurrence (free, bound) 53
Occurs 352

w 246

-consistency 205
-incompleteness 208

On 243

One one 7
correspondence 7
cquivalent 343
function 238
reducible 343

Open
set 140
wf 68

Operation. n-place 7
Or 11

Order

partial  §

total 9, 242

type 242

well- 9
Orderable group 119
Ordered

fields 98

k-tuple 5. 230
pair 5,229
Ordinal

a-sequence 286
addition 249

class 243
exponentiation 250
finite 259

of first kind 246
inaccessible 283
infinite 259

nitial - 264

limit 247
multiplication 250
number 243

regular 286

singular 286

strongly inaccessible 286
successor 246

weakly inaccessible 286
Owings. J.C., Jr. 12

PA. see Peano arithmetic
Pair

ordered 5. 229
unordered 5, 228
Parmg axiom 228
Paradox

Berry's 3
Burali-Forti's 2.4
Cantor's 2.4
Cretan 2
Grrelhing's 3

i 2

INDEX

Paradox (continued)

Lob's 3

logical 3

Richard's 2

Russell's 1.4
semantical 3

Skolem’s 263
Parameters of a recursion 175
Parentheses 20, 52
Partial

funcuon 7

order 8. 71, 240
recursive 318
Particularization rule A4 76
Peano arithmetic (PA) 155
Peano’s postulates 154
categoricity of 169
Permutation, recursive 342
Permuting variables 176
PF 221

Poincaré. H. 293

Polish notation 21
Polyadic algebras 123
Possible definitions 223
Possible worlds 65

Post, E.L. 334

Power

class 234

of the continuum 8

set axiom 236

PP 221

Precisely k-valid 93
Predecessor function 177
Predicate

calculus 70

calculus, full 221
calculus, pure 109, 221
calculus, pure monadic 222
letter 51

variables 368
Predicative wf 232
Premiss 35

Prenex normal form 106
Prenex wf 94

Presburger arithmetic 169
Prime number function 181
Prime number property 180
Primitive connectives 35
Primitive recursive

axiom set 197
functon 178

relanon 179
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Primitive recursive (continued)
vocabulary 192
Principal
connective 14
filter 129
letter 345
Principia Mathematica 4. 293
Principle
of complete induction 8.9
of dependent choices (PDC) 280
extensionality 227
least-number 166
of mathematical induction 8, 154-5
well-ordering 9, 275
Printing problem 330
Product
bounded 178
Cartesian 6. 233
Production (simple, terminal) 351-2,
363
Productive 343
Projection functions 174
Proof 34-6
by contradiction 78
of an equation 346
Propagation 358

Proper
axtoms 69-70
class 226
filter 129
ideal 9

inclusion 226
initial segment 21
subclass 226
subset 5
Property 6, 62
Proposition 36
Propositional calculus 11
intuitionistic 48
Propositional connective 13
Pure
first-order predicate calculus 109, 221
first-order theory of equality 98
full second-order language 370
monadic predicate calculus 222

Q 20t
Quadruple of a Turing machine 307
Quantification theory 50
Quantifiers 50

bounded 179

function and predicate 369

Quine, W.V. 287, 293, 296, 382
Quotation marks 13
Quotient function 177

R 202

Ramified type theory 293
Range 6. 235

Rank 281

R.e., se¢ Recursively enumerable
Reading head 306
Real-close field 362

Real numbers, nonstandard 137
Recursion 174
course-of-values 185
theorem 335

Recursive

axiom set 197

function 175

partial 318
permutation 342
relation 179

set 211

vocabulary 192
Recursive, but not primitive recursive

function 340
Recursively

axiomatizable 211
completable 328
decidable 216
enumerable (r.e.) 340
equivalent 343
essentially, undecidable 216
inseparable 219
solvable 329
undecidable 216
unsolvable 329
Reduced direct product 133
Reducibility, axiom of 293
Reducible

one-one 343

many-one 342
Reflexive 6

partial order 8

total order 9
Regular ordinal 286
Regularity axiom 279, 288
Relation 6, 62, 233
arithmetical 190

binary 6, 233

connected 240
equivalence 6
expressible 170

N o

Relation (continued)

identity 6, 234

inverse 6. 235
irreflexive 240
membership 242
n-place 6
number-theorctic 170
primitive recursive 179
recursive 179

reflexive 6

symmetric 6

transitive 6, 240
universal 335

weakly expressible 344
well-ordering 242
Relations of a finite
presentation 364
Relative complement 5
Relatively interpretable 224
Relatively prime 190
Relativization 224
Remainder function 177
Replacement

axiom 239, 288
theorem 79
Representation function 171
Resolution 32
Restricted g-operator 175
Restriction of a function 7, 238
Rice's theorem 336
Richard's paradox 2
Right

-cnd machine 314
machine 313
Robinson, A. 136
Robinson, R.M.

Robinson’s system Q 201
Rosser, J.B.

Godel-, theorem  208-9, 219
sentence 208
Roy. D.K. 392
RR 200
Rule

A4 70

Kl 2

4 77

Generahization (Gen) 70
142

Rules of interence 34
detinved 76 8

for semantic trees 142
tor systems of cquations 346

INDEX

Russell, B. 4,293
Russell's paradox 1.4

S (first-order arithmetic) 154
consistency of 160, 212
Satisfaction relation  60-2
second-order 369
Satisfiable 59, 65
generally 379
standardly second-order 370
statement form 31
Scapegoat theory 87
Scope 52
Second e-theorem 120
Second form of translinite
induction 248
Second-order
general, completeness theorem 379
generalization rules 372
language (full) 369
logic 368
predicate calculus 373
semantics 368
soundness of, logic 373
Second-order theory 372
comprehension schema in 372
function definition schema in 372
Second-order vs. first-order
logic 381-2
Section 242
Segment 21, 243
Self-halting problem 329
Semantic
paradoxes 3
trees 141
Semantical 69, 92
Semantics, second-order 369
Henkin 378
Semigroup 364
Semi-Thue system 363

Sentence
Godel 206
Henkin 213
Rosser 208

undeccidable 206
Sentential class of models 136
Sequence

- 286

denumerable ¥

finte 8
Set 1, S, 226

arthmenical 217
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Set (continued)

Cantorian (strongly) 295
closed 140

countable §

creative 342
Dedekind-finite 261
Dedekind-infinite 261
denumcrable 8
cffectively decidable 211
empty (null) 3

finite 8

immune 343
impredicatively defined 293
infinite 8

isolated 343

iterative conception of 282
open 140

power 236

productive 343

recursive 211

simple 342

sum 236

unit 5

well-ordered 9

Set theory with urelements 297
Sets

disjoint 5

recursively inseparable 219
Shannon, C. 24

Shift machine 315
Sierpinski. W. 284
Similar

ordered structures 241
wfs 84
Similarity mapping 241
Simple

{-term 104

production 352

set 342

theory of types (ST) 292
Singleton 229
Singular ordinal 286 .
Skolem-Lowenheim theorem 92, 101
Downward 128

Upward 128
Skolem, T. 288, 382
normal form 109
Skolem’s paradox 263
S-m-n theorem 330
Solvable

algorithmically 328
recursively 329

Soundness of second-order logic 373
Special halting problem 329
ST (simple theory of types) 373
ST™ 296
ST-computable 319
ST (simple theory of types) 289
Standard
interpretation (model) 160
part 138
second-order interpretation 370
second-order logical
consequence 370
Standard semantics, incompleteness
of 376
Standard Turing-computable 319
Standardly (second-order)
logically imply 370
satisfiable, valid 370
State
initial 307
internal 307
valid formulas (SV) 375
Statement
form 13
letter 13, 35
Stops 308
Stratified wf 294
Strongly
Cantorian 295
inaccessible 286
representable 171
Subclass 226
proper 226
Submodel 124
generated by 125
Subset 5
proper 5
Subsets axiom 236
Substitution 174
Substitutivity of equality 95, 288
Substructure 124
Subtheory 86
Successor 154, 291
function 174
ordinal 246
Sufficiently strong theory 212,224
Suitable 45
Sum
bounded 178
of cardinals 258
class 234
set axiom 236

Super-universal Turing machine 332
SV 375

Symbol 34

Symmetric 6

Syntactical 69, 92

System of equations 345

Tape 306
description 307
deseription. numerical 323
representation 309
symbols 307
Tarski, A,
Tarskis theorem 217
-Vaught theorem 126
Tautology 16
Teichmiiller-Tukey lemma 277
Term S1. 345
closed 87
Terminal production 352
Theorem 34
Theory 71
axiomatic 34, 211
complete 86
consistent 72
decidable 34, 362
of densely ordered sets 98
of equality 98
with equality 94-5, 99
essentially incomplete 211
essentially recursively
undecidable 216
first-order 69
formal 18, 34
generalized first-order 114
inconsistent 72
ramified type 293
recursively axiomatizable 211
recursively decidable 216
recursively undecidable 216
scapegoat 87
second-order 372
sufliciently strong 212
true 205
of types 289,292
undecidable 34, 362
hue system 363
I, 216
I otal
tunction 7
order 9,240, 242

INDEX L 439

Tr 212
Transtinite induction 9
definition by 249
principle of 245
second form 248
up to ., up to § 248
Transitive
class 242
closure 280
relation 6. 240
Trees. semantic 141
basic principle of 143
rules for 142
Trichotomy (Trich) 275
True
for an interpretation 60
for a standard second-order
interpretation 370
logically 18
theory 205
Truss. J. 303

Truth
function 14-5
value 11

Truth-functional combination 11
Truth table 11, 14
abbreviated 14
Turing, A.M. 305
algorithm 308
-computable 309
-computable, standard 319
Turing machine 306-7
alphabet  306-7
clean-up 315
computation 308
Godel number of 321
halting problem 328
left-end 315
left-translation 315
n-shift copier 316
quadruples 307
right, left, constant 313
right-end 314
shift = 315
stops 308
superuniversal 332
universal 332
word-copier 316
Tychonoif™s theorem 11X
I'ypes, theory of - 289
ranuficd 293



INDEX

Ultrafilter 130

theorem 130
Ultrapower 133
Ultraproduct 133
Undecidable

recursively 216

sentence 206

theory 34, 362
Uniformly continuous 141
Union 5. 231, 236
Unit set S
Universal

choice function 278
class 231

closure 61

quantifiers 50

relation 335

Turing machine 332
Unordered pair 5, 228
Unrestricted p-operator 318
Unsolvable 329, 361
Upward Skolem-Léwenheim-
Tarski theorem 128
failure of, in standard second-
order logic 377
validity of| for general models 380
UR 297
Urelements 297

Vum. Ve 300

Valid

generally 379

inclusively 148

logically 65, 362
standardly second-order 370
Variable

{ree (bound) 53

function 368
individual 51
predicate 368

Vertices (of & diagram) 311
mitial - 311

Vocabulary, primitive recursive
(recursive) 192

Weakly

expressible relation 344
inaccessible ordinal 286
Well-formed lormula (wf)
closed 38

decidable 169

open 08

predicative 232
prenex 94

similar wis 84
stratified 294
Well-ordered set 9
Well-ordering 9, 240. 242
principle (WO) 9. 275
W, see Well-formed lormula
Whitaker, J. 256
Whitehead, A.N.
Word 306
-copier (K) 316
empty 306
problem 364

34,52

4,293

Zermelo, E. 4

Zermelo’s system Z 288
Zermelo-Fraenkel set theory (ZF)
Zero function 174
Zorn's lemma 276

special case of 277

288




