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PREFACE

My purpose in writing this book was to provide a clear, accessible treatment of discrete
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical
foundation for computer science courses such as data structures, algorithms, relational
database theory, automata theory and formal languages, compiler design, and cryptog-
raphy, and for mathematics courses such as linear and abstract algebra, combinatorics,
probability, logic and set theory, and number theory. By combining discussion of theory
and practice, I have tried to show that mathematics has engaging and important applica-
tions as well as being interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by
students either before or after a course in calculus. Previous editions of the book have
been used successfully by students at hundreds of institutions in North and South America,
Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery
(ACM) include discrete mathematics as the largest portion of "core knowledge" for com-
puter science students and state that students should take at least a one-semester course in
the subject as part of their first-year studies, with a two-semester course preferred when
possible. This book includes all the topics recommended by those organizations and can
be used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-level
undergraduates. Discovering how to present these topics in ways that can be understood
by first- and second-year students was the major and most interesting challenge of writing
this book. The presentation was developed over a long period of experimentation during
which my students were in many ways my teachers. Their questions, comments, and
written work showed me what concepts and techniques caused them difficulty, and their
reaction to my exposition showed me what worked to build their understanding and to
encourage their interest. Many of the changes in this edition have resulted from continuing
interaction with students.

Themes of a Discrete Mathematics Course
Discrete mathematics describes processes that consist of a sequence of individual steps.
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the
industrial revolution, the ideas of discrete mathematics underlie the science and technology
of the computer age. The main themes of a first course in discrete mathematics are logic
and proof, induction and recursion, combinatorics and discrete probability, algorithms and
their analysis, discrete structures, and applications and modeling.

Logic and Proof Probably the most important goal of a first course in discrete mathe-
matics is to help students develop the ability to think abstractly. This means learning to
use logically valid forms of argument and avoid common logical errors, appreciating what
it means to reason from definitions, knowing how to use both direct and indirect argument
to derive new results from those already known to be true, and being able to work with
symbolic representations as if they were concrete objects.

xi
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Induction and Recursion An exciting development of recent years has been the in-
creased appreciation for the power and beauty of "recursive thinking." To think recur-
sively means to address a problem by assuming that similar problems of a smaller nature
have already been solved and figuring out how to put those solutions together to solve
the larger problem. Such thinking is widely used in the analysis of algorithms, where
recurrence relations that result from recursive thinking often give rise to formulas that are
verified by mathematical induction.

Combinatorics and Discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measurement
of random or chance events. Discrete probability focuses on situations involving discrete
sets of objects, such as finding the likelihood of obtaining a certain number of heads
when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied,
from economics to biology, to computer science, to chemistry and physics, to business
management.

Algorithms and Their Analysis The word algorithm was largely unknown in the mid-
dle of the twentieth century, yet now it is one of the first words encountered in the study of
computer science. To solve a problem on a computer, it is necessary to find an algorithm or
step-by-step sequence of instructions for the computer to follow. Designing an algorithm
requires an understanding of the mathematics underlying the problem to be solved. Deter-
mining whether or not an algorithm is correct requires a sophisticated use of mathematical
induction. Calculating the amount of time or memory space the algorithm will need in
order to compare it to other algorithms that produce the same output requires knowledge
of combinatorics, recurrence relations, functions, and 0-, Q-, and (t-notations.

Discrete Structures Discrete mathematical structures are the abstract structures that
describe, categorize, and reveal the underlying relationships among discrete mathematical
objects. Those studied in this book are the sets of integers and rational numbers, general
sets, Boolean algebras, functions, relations, graphs and trees, formal languages and regular
expressions, and finite-state automata.

Applications and Modeling Mathematical topics are best understood when they are
seen in a variety of contexts and used to solve problems in a broad range of applied
situations. One of the profound lessons of mathematics is that the same mathematical
model can be used to solve problems in situations that appear superficially to be totally
dissimilar. A goal of this book is to show students the extraordinary practical utility of
some very abstract mathematical ideas.

Special Features of This Book
Mathematical Reasoning The feature that most distinguishes this book from other
discrete mathematics texts is that it teaches-explicitly but in a way that is accessible to
first- and second-year college and university students-the unspoken logic and reasoning
that underlie mathematical thought. For many years I taught an intensively interactive
transition-to-abstract-mathematics course to mathematics and computer science majors.
This experience showed me that while it is possible to teach the majority of students to
understand and construct straightforward mathematical arguments, the obstacles to doing
so cannot be passed over lightly. To be successful, a text for such a course must address
students' difficulties with logic and language directly and at some length. It must also
include enough concrete examples and exercises to enable students to develop the mental
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models needed to conceptualize more abstract problems. The treatment of logic and proof
in this book blends common sense and rigor in a way that explains the essentials, yet
avoids overloading students with formal detail.

Spiral Approach to Concept Development A number of concepts in this book appear
in increasingly more sophisticated forms in successive chapters to help students develop
the ability to deal effectively with increasing levels of abstraction. For example, by the
time students encounter the relatively advanced mathematics of Fermat's little theorem
and the Chinese remainder theorem in the Section 10.4, they have been introduced to
the logic of mathematical discourse in Chapters 1 and 2, learned the basic methods of
proof and the concepts of mod and div in Chapter 3, studied partitions of the integers in
Chapter 5, considered mod and div as functions in Chapter 7, and become familiar with
equivalence relations in Sections 10.2 and 10.3. This approach builds in useful review
and develops mathematical maturity in natural stages.

Support for the Student Students at colleges and universities inevitably have to learn a
great deal on their own. Though it is often frustrating, learning to learn through self-study
is a crucial step toward eventual success in a professional career. This book has a number
of features to facilitate students' transition to independent learning.

Worked Examples
The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions
for the proof problems are developed in two stages: first a discussion of how one
might come to think of the proof or disproof and then a summary of the solution,
which is enclosed in a box. This format allows students to read the problem and skip
immediately to the summary, if they wish, only going back to the discussion if they
have trouble understanding the summary. The format also saves time for students who
are rereading the text in preparation for an examination.

Exercises
The book contains almost 2,500 exercises. The sets at the end of each section have
been designed so that students with widely varying backgrounds and ability levels will
find some exercises they can be sure to do successfully and also some exercises that
will challenge them.

Solutions for Exercises
To provide adequate feedback for students between class sessions, Appendix B con-
tains a large number of complete solutions to exercises. Students are strongly urged
not to consult solutions until they have tried their best to answer the questions on
their own. Once they have done so, however, comparing their answers with those
given can lead to significantly improved understanding. In addition, many problems,
including some of the most challenging, have partial solutions or hints so that students
can determine whether they are on the right track and make adjustments if necessary.
There are also plenty of exercises without solutions to help students learn to grapple
with mathematical problems in a realistic environment.

Figures and Tables
Figures and tables are included in every case where it seemed that doing so would help
readers to a better understanding. In most, a second color is used to add meaning.

Reference Features
Many students have written me to say that the book helped them succeed in their
advanced courses. One even wrote that he had used the first edition so extensively
that it had fallen apart and he actually went out and bought a copy of the second edition,
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which he was continuing to use in a master's program. My rationale for screening
statements of definitions and theorems, for putting titles on exercises, and for giving
the meaning of symbols and a list of reference formulas in the endpapers is to make
it easier for students to use this book for review in a current course and as a reference
in later ones.

Support for the Instructor I have received a great deal of valuable feedback from
instructors who have used previous editions of this book. Many aspects of the book have
been improved through their suggestions.

Exercises
The large variety of exercises at all levels of difficulty allows instructors great freedom
to tailor a course to the abilities of their students. Exercises with solutions in the back of
the book have numbers in blue and those whose solutions are given in a separate Student
Solutions Manual/Study Guide have numbers that are a multiple of three. There are
exercises of every type that are represented in this book which have no answer in either
location to enable instructors to assign whatever mixture they prefer of exercises with
and without answers. The ample number of exercises of all kinds gives instructors a
significant choice of problems to use for review assignments and exams. Instructors are
invited to use the many exercises stated as questions rather than in "prove that" form to
stimulate class discussion on the role of proof and counterexample in problem solving.

Flexible Sections
Most sections are divided into subsections so that an instructor who is pressed for time
can choose to cover certain subsections only and either omit the rest or leave them for
the students to study on their own. The division into subsections also makes it easier
for instructors to break up sections if they wish to spend more then one day on them.

Presentation of Proof Methods
It is inevitable that the proofs and disproofs in this book will seem easy to instructors.
Many students, however, find them difficult. In showing students how to discover and
construct proof and disproofs, I have tried to describe the kinds of approaches that
mathematicians use when confronting challenging problems in their own research.

Instructor's Manual
An instructor's manual is available to anyone teaching a course from this book. It
contains suggestions about how to approach the material of each chapter, solutions
for all exercises not fully solved in Appendix B, transparency masters, review sheets,
ideas for projects and writing assignments, and additional exercises.

Highlights of the Third Edition
The changes that have been made for this edition are based on suggestions from colleagues
and other long-time users of the first and second editions, on continuing interactions with
my students, and on developments within the evolving fields of computer science and
mathematics.

Improved Pedagogy

* The number of exercises has been increased to almost 2,500. Approximately 980
new exercises have been added.

* Exercises have been added for topics where students seemed to need additional
practice, and they have been modified, as needed, to address student difficulties.

* Additional full answers have been incorporated into Appendix B to give students
more help for difficult topics.
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* The exposition has been reexamined throughout and revised where needed.

* Careful work has been done to improve format and presentation.

* Discussion of historical background and recent results has been expanded and the
number of photographs of mathematicians and computer scientists whose contribu-
tions are discussed in the book has been increased.

Logic

* The treatment of quantification has been significantly expanded, with a new section
entirely devoted to multiple quantifiers.

* Exercises have been added using Tarski's World, an excellent pedagogical tool
developed by Jon Barwise and John Etchemendy at Stanford University.

* Applications related to Internet searching are now included.

* Terms for various forms of argument have been simplified.

Introduction to Proof

* The directions for writing proofs have been expanded.

* The descriptions of methods of proof have been made clearer.

* Exercises have been revised and/or relocated to promote the development of student
understanding.

Induction and Recursion

* The format for outlining proofs by mathematical induction has been improved.

* The subsections in the section on sequences have been reorganized.

* The sets of exercises for the sections on strong mathematical induction and the well-
ordering principle and on recursive definitions have been significantly expanded.

Number Theory

* A subsection on open problems in number theory has been incorporated, and the
discussion of recent mathematical discoveries in number theory has been expanded.

* A new section on modular arithmetic and cryptography has been added. It includes a
discussion of RSA cryptography, Fermat's little theorem, and the Chinese remainder
theorem.

* The discussion of testing for primality has been moved to later in Chapter 3 to make
clear its dependence on indirect argument.

Set Theory

* The properties of the empty set are now introduced in the first section of Chapter 5.

* The second section of Chapter 5 is now entirely devoted to element proofs.

* Algebraic proofs of set properties and the use of counterexamples to disprove set
properties have been moved to the third section of Chapter 5.

* The treatment of Boolean algebras has been expanded, and the relationship among
logical equivalences, set properties, and Boolean algebras has been highlighted.

Combinatorics and Discrete Probability

* Exercises for the section on the binomial theorem has been significantly expanded.

* Two new sections have been added on probability, including expected value, con-
ditional probability and independence, and Bayes' theorem.

* Combinatorial aspects of Internet protocol (IP) addresses are explained.
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Functions

* Exercises about one-to-one and onto functions have been refined and improved.

* The set of exercises on cardinality with applications to computability has been
significantly expanded.

Efficiency of Algorithms

* Sections 9.2 and 9.4 have been reworked to add 0- and Q-notations.

* Sections 9.3 and 9.5 have been revised correspondingly, with a clearer explanation
of the meaning of order for an algorithm.

* The treatment of insertion sort and selection sort has been improved and expanded.

Regular Expressions and Finite-State Automata

* The previous disparate sections on formal languages and finite-state automata have
been reassembled into a chapter of their own.

* A new section on regular expressions has been added, as well as discussion of the
relationship between regular expressions and finite-state automata.

Website
A website has been developed for this book that contains information and materials for
both students and instructors. It includes

* descriptions and links to many sites on the Internet with accessible information about
discrete mathematical topics,

* links to applets that illustrate or provide practice in the concepts of discrete mathe-
matics,

* additional examples and exercises with solutions,

* review guides for the chapters of the book.

A special section for instructors contains

* transparency masters and PowerPoint slides,

* additional exercises for quizzes and exams.

Student Solutions Manual/Study Guide
In writing this book, I strove to give sufficient help to students through the exposition in
the text, the worked examples, and the exercise solutions, so that the book itself would
provide all that a student would need to successfully master the material of the course. I
believe that students who finish the study of this book with the ability to solve, on their
own, all the exercises with full solutions in Appendix B will have developed an excellent
command of the subject. Nonetheless, I have become aware that some students want
the opportunity to obtain additional helpful materials. In response, I have developed
a Student Solutions Manual/Study Guide, available separately from this book, which
contains complete solutions to every exercise that is not completely answered in Appendix
B and whose number is divisible by 3. The guide also includes alternative explanations
for some of the concepts, and review questions for each chapter.
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Organization
This book may be used effectively for a one- or two-semester course. Each chapter
contains core sections, sections covering optional mathematical material, and sections
covering optional applications. Instructors have the flexibility to choose whatever mixture
will best serve the needs of their students. The following table shows a division of the
sections into categories.

Sections Containing Optional Sections Containing Optional
Chapter Core Sections Mathematical Material Computer Science Applications

1 1.1-1.3 1.4, 1.5

2 2.1-2.4 2.2, 2.3 2.3

3 3.1-3.4, 3.6 3.5, 3.7 3.8

4 4.1-4.2 4.3-4.4 4.5

5 5.1 5.2-5.4 5.4

6 6.1-6.4 6.5-6.9 6.3

7 7.1-7.2 7.3-7.5 7.1, 7.2, 7.5

8 8.1, 8.2 8.3, 8.4 8.4

9 9.1, 9.2 9.4 9.3, 9.5

10 10.1-10.3 10.4, 10.5 10.4, 10.5

11 11.1, 11.5 11.2, 11.3, 11.4 11.1, 11.2, 11.5, 11.6

12 12.1, 12.2 12.3 12.1-12.3

The following tree diagram shows, approximately, how the chapters of this book de-
pend on each other. Chapters on different branches of the tree are sufficiently independent
that instructors need to make at most minor adjustments if they skip chapters but follow
paths along branches of the tree.

*Instructors who wish to define a function as a binary relation can cover Section 10.1 before Section 7.1.

tSection 10.3 is needed for Section 12.3 but not for Sections 12.1 and 12.2.
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The first great treatises on logic were written by the Greek philosopher Aristotle. They
were a collection of rules for deductive reasoning that were intended to serve as a basis
for the study of every branch of knowledge. In the seventeenth century, the German
philosopher and mathematician Gottfried Leibniz conceived the idea of using symbols to
mechanize the process of deductive reasoning in much the same way that algebraic notation
had mechanized the process of reasoning about numbers and their relationships. Leibniz's
idea was realized in the nineteenth century by the English mathematicians George Boole
and Augustus De Morgan, who founded the modem subject of symbolic logic. With re-
search continuing to the present day, symbolic logic has provided, among other things, the
theoretical basis for many areas of computer science such as digital logic circuit design (see
Sections 1.4 and 1.5), relational database theory (see Section 10.1), automata theory and
computability (see Chapter 12), and artificial intelligence (see Sections 2.3, 11.1, and 11.5).

A o1 Logical Form and Logical Equivalence
Logic is a science of the necessary laws of thought, without which no employment of the
understanding and the reason takes place.- Immanuel Kant, 1785

The central concept of deductive logic is the concept of argument form. An argument is a
sequence of statements aimed at demonstrating the truth of an assertion. The assertion at
the end of the sequence is called the conclusion, and the preceding statements are called
premises. To have confidence in the conclusion that you draw from an argument, you
must be sure that the premises are acceptable on their own merits or follow from other
statements that are known to be true.

In logic, the form of an argument is distinguished from its content. Logical analysis
won't help you determine the intrinsic merit of an argument's content, but it will help
you analyze an argument's form to determine whether the truth of the conclusion follows
necessarily from the truth of the premises. For this reason logic is sometimes defined as
the science of necessary inference or the science of reasoning.

Consider the following two arguments, for example. Although their content is very
different, their logical form is the same. Both arguments are valid in the sense that if their
premises are true, then their conclusions must also be true. (In Section 1.3 you will learn
how to test whether an argument is valid.)

Aristotle
(384 B.c.-322 B.C.) Logical Form and Logical Equivalence
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Argument 1 If the program syntax is faulty or if program execution results in division by
zero, then the computer will generate an error message. Therefore, if the computer does
not generate an error message, then the program syntax is correct and program execution
does not result in division by zero.

Argument 2 If x is a real number such that x < -2 or x > 2, then x2 
> 4. Therefore, if

x2 4 4, then x It-2 and x 4 2.

To illustrate the logical form of these arguments, we use letters of the alphabet (such
as p, q, and r) to represent the component sentences and the expression "not p" to refer
to the sentence "It is not the case that p." Then the common logical form of both the
arguments above is as follows:

If p or q, then r.

Therefore, if not r, then not p and not q.

Example 1.1.1 Identifying Logical Form

Fill in the blanks below so that argument (b) has the same form as argument (a). Then
represent the common form of the arguments using letters to stand for component sen-
tences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take Math
150.
Jane is a computer science major.
Therefore, Jane will take Math 150.

b. If logic is easy or (1) , then (2)
I will study hard.
Therefore, I will get an A in this course.

Solution

1. I (will) study hard.

2. I will get an A in this course.

Common form: If p or q, then r.

q-

Therefore, r. a

Statements
Most of the definitions of formal logic have been developed so that they agree with the
natural or intuitive logic used by people who have been educated to think clearly and
use language carefully. The differences that exist between formal and intuitive logic are
necessary to avoid ambiguity and obtain consistency.

In any mathematical theory, new terms are defined by using those that have been
previously defined. However, this process has to start somewhere. A few initial terms
necessarily remain undefined. In logic, the words sentence, true, andfalse are the initial
undefined terms.

I. !. .il

A statement (or proposition) is a sentence that is true or false but not both.
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For example, "Two plus two equals four" and "Two plus two equals five" are both state-
ments, the first because it is true and the second because it is false. On the other hand,
the truth or falsity of "He is a college student" depends on the reference for the pronoun
he. For some values of he the sentence is true; for others it is false. If the sentence were
preceded by other sentences that made the pronoun's reference clear, then the sentence
would be a statement. Considered on its own, however, the sentence is neither true nor
false, and so it is not a statement. We will discuss ways of transforming sentences of this
form into statements in Section 2.1.

Similarly, "x + y > 0" is not a statement because for some values of x and y the
sentence is true, whereas for others it is false. For instance, if x = 1 and y = 2, the
sentence is true; if x = -1 and y = 0, the sentence is false.

Compound Statements
We now introduce three symbols that are used to build more complicated logical expres-
sions out of simpler ones. The symbol - denotes not, A denotes and, and V denotes
or. Given a statement p, the sentence "-p" is read "not p" or "It is not the case that p"
and is called the negation of p. In some computer languages the symbol - is used in
place of -. Given another statement q, the sentence "p A q" is read "p and q" and is
called conjunction of p and q. The sentence "p V q" is read "p or q" and is called the
disjunction of p and q.

In expressions that include the symbol - as well as A or v, the order of operations
is that - is performed first. For instance, -p A q = (-p) A q. In logical expressions, as
in ordinary algebraic expressions, the order of operations can be overridden through the
use of parentheses. Thus -(p A q) represents the negation of the conjunction of p and
q. In this, as in most treatments of logic, the symbols A and V are considered coequal in
order of operation, and an expression such as p A q v r is considered ambiguous. This
expression must be written as either (p A q) v r or p A (q v r) to have meaning.

A variety of English words translate into logic as A, V, or -. For instance, the word
but translates the same as and when it links two independent clauses, as in "Jim is tall
but he is not heavy." Generally, the word but is used in place of and when the part of the
sentence that follows is, in some way, unexpected. Another example involves the words
neither-nor When Shakespeare wrote, "Neither a borrower nor a lender be," he meant,
"Do not be a borrower and do not be a lender." So if p and q are statements, then

p but q means p and q

neither p nor q means -p and -q.

Example 1.1.2 Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting h = "It is hot" and s = "It is
sunny."

a. It is not hot but it is sunny.

b. It is neither hot nor sunny.

Solution

a. The given sentence is equivalent to "It is not hot and it is sunny," which can be written
symbolically as -h A S.
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b. To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore,
the given sentence can be written symbolically as -h A -s. U

Example 1.1.3 Searching on the Internet

Advanced versions of many Internet search engines allow you to use some form of and,
or and not to refine the search process. For instance, imagine that you want to find web
pages about careers in mathematics or computer science but not finance or marketing.
With a search engine that uses quotation marks to enclose exact phrases and expresses
and as AND, or as OR, and not as NOT, you would write

Careers AND (mathematics OR "computer science")
AND NOT (finance OR marketing).

The notation for inequalities involves and and or statements. For instance, if x, a, and
b are particular real numbers, then

|x <a means x <a or x =-a

*a <x <Mb means a <x and x <b.

Note that the inequality 2 < x < I is not satisfied by any real numbers because

2<x< I means 2<x and x< 1,

and this is false no matter what numberx happens to be. By the way, the point of specifying
x, a, and b to be particular real numbers is to ensure that sentences such as "x < a" and
"x > b" are either true or false and hence that they are statements.

Example 1.1.4 And, Or, and Inequalities

Suppose x is a particular real number. Let p, q, and r symbolize "0 < x," "x < 3," and
"x = 3," respectively. Write the following inequalities symbolically:

a. x <3

b. 0 < x < 3

c. 0 < x < 3

Solution

a. q V r

b. pAq

c. pA (q V r) U

Truth Values
In Examples 1. 1.2-1.1.4 we built compound sentences out of component statements and
the terms not, and, and or. If such sentences are to be statements, however, they must have
well-defined truth values-they must be either true or false. We now define such com-
pound sentences as statements by specifying their truth values in terms of the statements
that compose them.

The negation of a statement is a statement that exactly expresses what it would mean
for the statement to be false. Therefore, the negation of a statement has opposite truth
value from the statement.
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Ifp is a statement variable, the negation of p is "not p" or "It is not the case that p"
and is denoted -p. It has opposite truth value from p: if p is true, -p is false; if p
is false, -p is true.

The truth values for negation are summarized in a truth table.

Truth Table for -p

In ordinary language the sentence "It is hot and it is sunny" is understood to be true
when both conditions-being hot and being sunny-are satisfied. If it is hot but not
sunny, or sunny but not hot, or neither hot nor sunny, the sentence is understood to be
false. The formal definition of truth values for an and statement agrees with this general
understanding.

If p and q are statement variables, the conjunction of p and q is "p and q," denoted
p A q. It is true when, and only when, both p and q are true. If either p or q is false,
or if both are false, p A q is false.

The truth values for conjunction can also be summarized in a truth table. The table is
obtained by considering the four possible combinations of truth values for p and q. Each
combination is displayed in one row of the table; the corresponding truth value for the
whole statement is placed in the right-most column of that row. Note that the only row
containing a T is the first one since the only way for an and statement to be true is for both
component statements to be true.

Truth Table for p A q

P q | A q|

T T T

T F F

F T F

F F IF7

By the way, the order of truth values for p and q in the table above is TT, TF, FT, FF. It
is not necessary to write the truth values in this order, although it is customary to do so. We
will use this order for all truth tables involving two statement variables. In Example 1 .1.6
we will show the standard order for truth tables that involve three statement variables.

In the case of disjunction-statements of the form "p or q"-intuitive logic offers
two alternative interpretations. In ordinary language or is sometimes used in an exclu-
sive sense (p or q but not both) and sometimes in an inclusive sense (p or q or both). A
waiter who says you may have "coffee, tea, or milk" uses the word or in an exclusive sense:
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Extra payment is generally required if you want more than one beverage. On the other
hand, a waiter who offers "cream or sugar" uses the word or in an inclusive sense: You
are entitled to both cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible ambiguity about the meaning of the word
or by understanding it to mean the inclusive "and/or." The symbol v comes from the Latin
word vel, which means or in its inclusive sense. To express the exclusive or, the phrase p
or q but not both is used.

I. [-] *

If p and q are statement variables, the disjunction of p and q is "p or q," denoted
p V q. It is true when either p is true, or q is true, or both p and q are true; it is false
only when both p and q are false.

Here is the truth table for disjunction:

Truth Table for p v q

P q I pvql
T T rTl
T F T

F T T

Note that the statement "2 < 2" ("2 is less than 2 or 2 equals 2") is true because 2 = 2.

Evaluating the Truth of More General
Compound Statements

Now that truth values have been assigned to -p, p A q, and p V q, consider the question of
assigning truth values to more complicated expressions such as Up V q,
(p V q) A -(p A q), and (p A q) V r. Such expressions are called statement forms (or
propositional forms). The close relationship between statement forms and Boolean ex-
pressions is discussed in Section 1.4.

Bell HiI

A statement form (or propositional form) is an expression made up of statement
variables (such as p, q, and r) and logical connectives (such as -, A, and v) that be-
comes a statement when actual statements are substituted for the component statement
variables. The truth table for a given statement form displays the truth values that
correspond to all possible combinations of truth values for its component statement
variables.

To compute the truth values for a statement form, follow rules similar to those used
to evaluate algebraic expressions. For each combination of truth values for the statement
variables, first evaluate the expressions within the innermost parentheses, then evaluate
the expressions within the next innermost set of parentheses, and so forth until you have
the truth values for the complete expression.
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Example 1.1.5 Truth Table for Exclusive Or

Construct the truth table for the statement form (p V q) A -(p A q). Note that when or
is used in its exclusive sense, the statement "p or q" means "p or q but not both" or "p
or q and not both p and q," which translates into symbols as (p V q) A -(p A q). This
is sometimes abbreviated p E q or p XOR q.

Solution Set up columns labeled p, q, p V q, p A q, -(p A q), and (p V q) A -(p A q).

Fill in the p and q columns with all the logically possible combinations of T's and F's. Then
use the truth tables for v and A to fill in the p v q and p A q columns with the appropriate
truth values. Next fill in the -(p A q) column by taking the opposites of the truth values
for p A q. For example, the entry for -(p A q) in the first row is F because in the first row
the truth value of p A q is T. Finally, fill in the (p V q) A -- (p A q) column by considering
the truth table for an and statement together with the computed truth values for p V q and
-- (p A q). For example, the entry in the first row is F because the entry for p v q is T, the
entry for -(p A q) is F, and an and statement is false unless both components are true.
The entry in the second row is T because both components are true in this row.

Truth Table for Exclusive Or: (p V q) A -(p A q)

P q p v q pAq -(p A q) (p V q) A -(p A q)

T T T T F F

T F1 T F T T

F T T F T T

F F F F T F .

Example 1.1.6 Truth Table for (p A, q) v -r

Construct a truth table for the statement form (p A q) V -r.

Solution Make columns headed p, q, r, p A q, -r, and (p A q) V -r. Since there are eight
logically possible combinations of truth values for p, q, and r, enter these in the three
left-most columns. Then fill in the truth values for p A q and for -r. Complete the
table by considering the truth values for (p A q) and for -r and the definition of an or
statement. Since an or statement is false only when both components are false, the only
rows in which the entry is F are the third, fifth, and seventh rows because those are the
only rows in which the expressions
other rows is T.

p A q and -r are both false. The entry for all the

P q r pAq _r (pAq)v-r

T T T T F T

T T F T T T

T F T F F F

T F F F T T

F T T F F F

F T F F T T

F F T F F F

F F F F T T .
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The essential point about assigning truth values to compound statements is that it
allows you-using logic alone-to judge the truth of a compound statement on the basis
of your knowledge of the truth of its component parts. Logic does not help you determine
the truth or falsity of the component statements. Rather, logic helps link these separate
pieces of information together into a coherent whole.

Logical Equivalence
The statements

6 is greater than 2 and 2 is less than 6

are two different ways of saying the same thing. Why? Because of the definition of the
phrases greater than and less than. By contrast, although the statements

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

are also two different ways of saying the same thing, the reason has nothing to do with
the definition of the words. It has to do with the logical form of the statements. Any
two statements whose logical forms are related in the same way as (1) and (2) would
either both be true or both be false. You can see this by examining the following truth
table, where the statement variables p and q are substituted for the component statements
"Dogs bark" and "Cats meow," respectively. The table shows that for each combination
of truth values for p and q, p A q is true when, and only when, q A p is true. In such a
case, the statement forms are called logically equivalent, and we say that (1) and (2) are
logically equivalent statements.

P q p Aq q A P

T T T T

T F F F

F T F F

F F F F

p A q and q A p always

have the same truth
values, so they are
logically equivalent

. I. I

Two statemtentforms are called logically equivalent if, and only if, they have identical
truth values for each possible substitution of statements for their statement variables.
The logical equivalence of statement forms P and Q is denoted by writing P 5 Q.

Two statements are called logically equivalent if, and only if, they have logically
equivalent forms when identical component statement variables are used to replace
identical component statements.
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Example 1.1.7 Double Negative Property: -(-p)- p

Check that the negation of the negation of a statement is logically equivalent to the
statement.

Solution

.

p and -(-p) always have
the same truth values, so they
are logically equivalent

Example 1.1.8

An alternate way to show that statement forms P and Q are not logically equivalent
is to find concrete statements of each form, one of which is true and the other of which is
false. This method is illustrated in part (b) of Example 1.1.8.

Showing Nonequivalence

Show that the statement forms -(p A q) and -p A -q are not logically equivalent.

Solution

a. One way to show this is to use truth tables.

P q p -q p A q -(p A q) -p A -q

T T F F T F F

T F F T F T F

F T T F F T F

F F T T F T T

-(p A q) and -p A -q have
different truth values in rows 2 and 3,
so they are not logically equivalent

Testing Whether Two Statement Forms P and Q Are Logically Equivalent

1. Construct a truth table for P with one column for the truth values of P and another
column for the truth values of Q.

2. Check each combination of truth values of the statement variables to see whether
the truth value of P is the same as the truth value of Q.

a. If in each row the truth value of P is the same as the truth value of Q, then P
and Q are logically equivalent.

b. If in some row P has a different truth value from Q, then P and Q are not
logically equivalent.
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b. A second way to show that -(p A q) and -p A -q are not logically equivalent is by
example. Let p be the statement "0 < 1" and let q be the statement "1 < 0." Then

-(p A q) is "It is not the case that both 0 < I and 1 < 0,"

which is true. On the other hand,

-p A -q is "0O l and I 0,"

which is false. This example shows that there are concrete statements you can substitute
for p and q to make one of the statement forms true and the other false. Therefore, the
statement forms are not logically equivalent. D

Example 1.1.9 Negations of And and Or: De Morgan's Laws

For the statement "John is tall and Jim is redheaded" to be true, both components must
be true. So for the statement to be false, one or both components must be false. Thus
the negation can be written as "John is not tall or Jim is not redheaded." In general, the
negation of the conjunction of two statements is logically equivalent to the disjunction
of their negations. That is, statements of the forms -(p A q) and -p V -q are ]ogically
equivalent. Check this using truth tables.

Sollution p q |p -q p A q |(p A q) p v '-q

T T F F T F F

T F F T F T T

F T T F F T T

F F IT T F T T

Augustus De Morgan
(1806-1871)

-(p A q) and -p v -q always
have the same truth values, so they
are logically equivalent

Symbolically,

(p A q) - p V -q.

In the exercises at the end of this section you are asked to show the analogous law that
the negation of the disjunction of two statements is logically equivalent to the conjunction
of their negations:

(p V q) -p A q.

The two logical equivalences of Example 1.1.9 are known as De Morgan's laws
of logic in honor of Augustus De Morgan, who was the first to state them in formal
mathematical terms.

I

I
II
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Example 1.1.10 Applying De Morgan's Laws

Write negations for each of the following statements:

a. John is 6 feet tall and he weighs at least 200 pounds.

b. The bus was late or Tom's watch was slow.

Solution

a. John is not 6 feet tall or he weighs less than 200 pounds.

b. The bus was not late and Tom's watch was not slow.

Since the statement "neither p nor q" means the same as "-p and -q," an alternative
answer for (b) is "Neither was the bus late nor was Tom's watch slow." U

If x is a particular real number, saying that x is not less than 2(x - 2) means that x
does not lie to the left of 2 on the number line. This is equivalent to saying that either
x = 2 or x lies to the right of 2 on the number line (x = 2 or x > 2). Hence,

x g 2 is equivalent to x > 2.

Pictorially,

-2 -1 0 1 2 3 4 5
I I I I I I - I

If x < 2, then x lies in here.

Similarly,

x > 2 is equivalent to x < 2,
x S 2 is equivalent to x > 2, and
x k 2 is equivalent to x < 2.

Example 1.1.11 Inequalities and De Morgan's Laws

Use De Morgan's laws to write the negation of 1 <x <4.

Solution The given statement is equivalent to

-1 <x and x<4.

By De Morgan's laws, the negation is

-lx or x 4,

which is equivalent to

-1>x or x>4.

De Morgan's Laws

The negation of an and statement is logically equivalent to the or statement in which
each component is negated.

The negation of an or statement is logically equivalent to the and statement in
which each component is negated.
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Pictorially, if- I > x or x > 4, then x lies in the shaded region of the number line, as
shown below.

-2 -1 0 1 2 3 4 5 6
I I I I I *, I I U

De Morgan's laws are frequently used in writing computer programs. For instance,
suppose you want your program to delete all files modified outside a certain range of dates,
say from date 1 through date 2 inclusive. You would use the fact that

-(datel < file modification-date < date2)

is equivalent to

(file-modification-date < date) or (date2 < file modification date).

Example 1.1.12 A Cautionary Example

According to De Morgan's laws, the negation of

p: Jim is tall and Jim is thin

is

-p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or statement in which the two components
are negated.

Unfortunately, a potentially confusing aspect of the English language can arise when
you are taking negations of this kind. Note that statement p can be written more compactly
as

p': Jim is tall and thin.

When it is so written, another way to negate it is

-(p'): Jim is not tall and thin.

But in this form the negation looks like an and statement. Doesn't that violate De Morgan's
laws?

Actually no violation occurs. The reason is that in formal logic the words and and or
are allowed only between complete statements, not between sentence fragments.

One lesson to be learned from this example is that when you apply De Morgan's laws,
you must have complete statements on either side of each and and on either side of each
or A deeper lesson is this:

Caution! Although the laws of logic are extremely useful, they should be
used as an aid to thinking, not as a mechanical substitute for it.

.

Tautologies and Contradictions
It has been said that all of mathematics reduces to tautologies. Although this is formally
true, most working mathematicians think of their subject as having substance as well as
form. Nonetheless, an intuitive grasp of basic logical tautologies is part of the equipment
of anyone who reasons with mathematics.
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I. !

A tautology is a statement form that is always true regardless of the truth values of
the individual statements substituted for its statement variables. A statement whose
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth
values of the individual statements substituted for its statement variables. A statement
whose form is a contradication is a contradictory statement.

According to this definition, the truth of a tautological statement and the falsity of a
contradictory statement are due to the logical structure of the statements themselves and
are independent of the meanings of the statements.

Example 1.1.13 Tautologies and Contradictions

Show that the statement form p v -p is a tautology and that the statement form p A -p
is a contradiction.

Solution -P Up v Up A Up

T FI T F

F T T F

1' T
.

al IT's so a]l F's so
pv pis pA -pisa

atautology contradiction

Example 1.1.14 Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, show that p A t - p and p A C = C.

Solution
P t I PA t  

P C p A C

T T T T F F

F T I F F F

same truth
values, so
pAt -/

same truth
values, so
PJAC -C

Summary of Logical Equivalences
Knowledge of logically equivalent statements is very useful for constructing arguments.
It often happens that it is difficult to see how a conclusion follows from one form of a
statement, whereas it is easy to see how it follows from a logically equivalent form of the
statement. A number of logical equivalences are summarized in Theorem 1. 1. 1 for future
reference.

.

1
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The proofs of laws 4 and 6, the first parts of laws 1 and 5, and the second part of law 9
have already been given as examples in the text. Proofs of the other parts of the theorem
are left as exercises. In fact, it can be shown that the first five laws of Theorem 1.1.1 form
a core from which the other laws can be derived. The first five laws are the axioms for a
mathematical structure known as a Boolean algebra, which is discussed in Section 5.3.

The equivalences of Theorem 1.1.1 are general laws of thought that occur in all areas of
human endeavor. They can also be used in a formal way to rewrite complicated statement
forms more simply.

Example 1.1.15 Simplifying Statement Forms

Use Theorem 1.1.1 to verify the logical equivalence

-(-p A q) A (p V q) - p.

Solution Use the laws of Theorem 1.1.1 to replace sections of the statement form on the
left by logically equivalent expressions. Each time you do this, you obtain a logically
equivalent statement form. Continue making replacements until you obtain the statement
form on the right.

-(-p A q) A (p V q) (-(-(p) V -q) A (p V q) by De Morgan's laws

-(p V -q) A (p V q) by the double negative law

-p V (-q A q) by the distributive law

-p V (q A -q) by the commutative law for A

- p V C by the negation law

-- p by the identity law U

Skill in simplifying statement forms is useful in constructing logically efficient computer
programs and in designing digital logic circuits.

Although the properties in Theorem 1.1.1 can be used to prove the logical equiva-
lence of two statement forms, they cannot be used to prove that statement forms are not

Theorem 1.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences
hold.

1. Commutative laws: p A q-q A p p V qq V p

2. Associative laws: (p A q) A r p A (q A r) (p V q) V r p v (q V r)

3. Distributive laws: p A (q V r) (p A q) V (p A r) p v (q A r) (p V q) A (p V r)

4. Identity laws: p A tp a p V C -p

5. Negation laws: p V 'p = t p A -p-P _c

6. Double negative law: "(-p) =_ p

7. Idempotent laws: p A p p pvp = p

8. Universal bound laws: p V t t p A C C

9. De Morgan's laws: -(p A q) :2 -p V -q (p V q) 2 -p A -q

10. Absorption laws: p V (p A q) a p p A (p V q)-p

11. Negations of t and c: -t c --c- t
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logically equivalent. On the other hand, truth tables can always be used to determine
both equivalence and nonequivalence, and truth tables are easy to program on a computer.
When truth tables are used, however, checking for equivalence always requires 2' steps,
where n is the number of variables. Sometimes you can quickly see that two statement
forms are equivalent by Theorem 1.1.1, whereas it would take quite a bit of calculating
to show their equivalence using truth tables. For instance, it follows immediately from
the associative law for A that p A (-q A -r) - (p A -q) A -r, whereas a truth table
verification requires constructing a table with eight rows.

Exercise Set 1.1
Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete, the exercise
number has an H next to it. A * next to an exercise number signals that the exercise is more challenging than usual. Be careful not
to get into the habit of turning to the solutions too quickly. Make every effort to work exercises on your own before checking your
answers. See the Preface for additional sources of assistance and further study.

In each of 1-4 represent the common form of each argument
using letters to stand for component sentences, and fill in the
blanks so that the argument in part (b) has the same logical form
as the argument in part (a).

1. a. If all integers are rational, then the number I is rational.
All integers are rational.
Therefore, the number I is rational.

b. If all algebraic expressions can be written in prefix nota-
tion, then

Therefore, (a + 2b) (a2 -b) can be written in prefix no-
tation.

2. a. If all computer programs contain errors, then this pro-
gram contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer programs
contain errors.

b. If , then
2 is not odd.
Therefore, it is not the case that all prime numbers are
odd.

3. a. This number is even or this number is odd.
This number is not even.
Therefore, this number is odd.

b. - or logic is confusing.
My mind is not shot.
Therefore,

4. a. If n is divisible by 6, then n is divisible by 3.
If n is divisible by 3, then the sum of the digits of n is
divisible by 3.
Therefore, if n is divisible by 6, then the sum of the digits
of n is divisible by 3.
(Assume that n is a particular, fixed integer.)

b. If
then the guard condition for the while loop is false.
If
then program execution moves to the next instruction
following the loop.

Therefore, if x equals 0, then
(Assume that x is a particular variable in a particular
computer program.)

5. Indicate which of the following sentences are statements.
a. 1,024 is the smallest four-digit number that is a perfect

square.
b. She is a mathematics major.
c. 128=26 d. x =26

Write the statements in 6-9 in symbolic form using the symbols
-, v, and A and the indicated letters to represent component
statements.

6. Let s = "stocks are increasing" and i = "interest rates are
steady."
a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing nor are interest rates steady.

7. Juanisamathmajorbutnotacomputersciencemajor. (m =
"Juan is a math major," c = "Juan is a computer science ma-
jor")

8. Let h = "John is healthy," w = "John is wealthy," and s =

"John is wise."
a. John is healthy and wealthy but not wise.
b. John is not wealthy but he is healthy and wise.
c. John is neither healthy, wealthy, nor wise.
d. John is neither wealthy nor wise, but he is healthy.
e. John is wealthy, but he is not both healthy and wise.

9. Either Olga will go out for tennis or she will go out for track
but not both. (n = "Olga will go out for tennis," k = "Olga
will go out for track")

10. Let p be the statement "DATAENDFLAG is off," q the state-
ment "ERROR equals 0," and r the statement "SUM is less
than 1,000." Express the following sentences in symbolic
notation.
a. DATAENDFLAG is off, ERROR equals 0, and SUM is

less than 1,000.
b. DATAENDFLAG is off but ERROR is not equal to 0.
c. DATAENDFLAG is off; however ERROR is not 0 or

SUM is greater than or equal to 1,000.
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d. DATAENDFLAG is on and ERROR equals 0 but SUM
is greater than or equal to 1,000.

e. Either DATAENDFLAG is on or it is the case that both
ERROR equals 0 and SUM is less than 1,000.

11. In the following sentence, is the word or used in its inclusive
or exclusive sense? A team wins the playoffs if it wins two
games in a row or a total of three games.

In 12 and 13, imagine that you are searching the Internet using a
search engine that uses AND for and, NOT for not, and OR for
or.

12. You are trying to find the name of the fourteenth president
of the United States of America. Write a logical expression
to find Web pages containing the following: "United States
president" and either " 14th" or "fourteenth" but not "amend-
ment" (to avoid pages about the Fourteenth Amendment to
the United States Constitution).

13. You recall that the fastest mammal on earth is either ajaguar
or a cheetah. To find a Web page to tell you which one is
the fastest, write a logical expression containing "jaguar"
and "cheetah,"and either "speed" or "fastest" but not "car,"
or "automobile," or "auto" (to avoid pages about the Jaguar
automobile).

Write truth tables for the statement forms in 14-18.

14. -p A q

16. p A (q A r) 17. p A (-q V r)

H 18. (p V (-p v q)) A -(q A -r)

Determine which of the pairs of statement forms in 19-28 are
logically equivalent. Justify your answers using truth tables and
include a few words of explanation. Read t to be a tautology
and c to be a contradiction.

19. pv(pAq)andp

21. pvtandt

20. -(p A q) and -p A -q

22. p A t and p

23. (pAq)ArandpA(q Ar)

24. p A (q V r) and (p A q) V (p A r)

25. (pAq)vrandpA(qVr)

26. (pVq)V(pAr) and (pVq)Ar

27. ((-pVq)A(pV r))A(-pV q)and (pVr)

28. (rvp)A((-rV(pAq))A(rVq))andpAq

Use De Morgan's laws to write negations for the statements in
29-34.

29. Hal is a math major and Hal's sister is a computer science
major.

30. Sam is an orange belt and Kate is a red belt.

31. The connector is loose or the machine is unplugged.

32. This computer program has a logical error in the first ten
lines or it is being run with an incomplete data set.

33. The dollar is at an all-time high and the stock market is at a
record low.

34. The train is late or my watch is fast.

Assume x is a particular real number and use De Morgan's laws
to write negations for the statements in 35-38.

35. -2 < x < 7

37. 1 > x > -3

36. -10 < x < 2

38. 0>x> -7

In 39 and 40, imagine that num orders and num-instock are par-
ticular values, such as might occur during execution of a com-
puter program. Write negations for the following statements.

39. (num orders > 100 and num-instock < 500) or
num-instock < 200

40. (num orders < 50 and num -instock > 300) or
(50 < num-orders < 75 and num instock > 500)

Use truth tables to establish which of the statement forms in
41-44 are tautologies and which are contradictions.

41. (p A q) V (-p V (p A -q))

42. (p A -q) A (-p V q)

43. ((-p A q) A (q A r)) A -q

44. (-p v q) V (p A -q)

In 45 and 46 below, a logical equivalence is derived from The-
orem 1.1.1. Supply a reason for each step.

4 5 (pA- q)V(pAq)=-pA(-qVq) by (a)
-p A (q V -q) by (b)

- p A t by (c)
- p by (d)

Therefore, (p A -q) V (p A q) - p.

46. (p v -q) A (-p V -q)

- (-q V p) A (-q V -p) by (a)

-q V (p A -p) by (b)

- ~qvc by (c)

- q by (d)

Therefore, (p v -q) A (-p V -q) -_ q.

Use Theorem 1.1.1 to verify the logical equivalences in 47-51.
Supply a reason for each step.

47. (p A -q) V p - p 48. p A (-q V p) - p

49. -(p v -q) V (-p A -q) - -p

50. (((-p A q) V (-p A -q)) V (p A q) -p

51. (p A (-(-p V q))) V (p A q) - p

15. -(P A q) V (p V q)
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* 52. In Example 1. 1.5, the symbol E was introduced to denote
exclusive or so p e q - (p v q) A -(p A q). Hence the
truth table for exclusive or is as follows:

a. Find simpler statement forms that are logically equiva-
lent tope p and (p Dp) ep.

b. Is (p (D q) 3 r p f3 (q it r)? Justify your answer.
c. Is (p {3 q) Ar - (p A r) e (q A r)? Justify your an-

swer.

* 53. In logic and in standard English, a double negative is equiv-
alent to a positive. Is there any English usage in which a
double positive is equivalent to a negative? Explain.

* 54. The rules for a certain frequent-flyer club include the fol-
lowing statements: "Any member who fails to earn any
mileage during the first twelve months after enrollment in
the program may be removed from the program. Except
as otherwise provided, any member who fails at any time

to earn mileage for a period of three consecutive years is
subject to termination of his or her membership and forfei-
ture of all accrued mileage. Notwithstanding this provision,
no pre-July 1, 2004, member who has earned mileage (other
than enrollment bonus) prior to July 1, 2005, shall be subject
under this provision to the termination of his or her mem-
bership and to the cancellation of mileage accrued prior to
July 1, 2005, until the amount of such mileage falls below
10,000 miles (the amount necessary for the lowest available
award under the structure in place as of June 30, 2004), or
until December 15, 2015, whichever comes first."

Let x be a particular member of this club, and let

p = "x fails to earn mileage during the first twelve
months after enrollment,"

q = "x fails to earn mileage for a period of three
consecutive years,"

r = "x became a member prior to July 1, 2004,"

s = "x currently has at least 10,000 miles for pre-July 1,
2005, mileage (not including enrollment bonus
miles),"

t = "the current date is prior to December 15, 2015."

Use symbols to write the complete condition under which
x's membership may be terminated.

1.2 Conditional Statements
... hypothetical reasoning implies the subordination of the real to the realm of the
possible . . . -Jean Piaget, 1972

When you make a logical inference or deduction, you reason from a hypothesis to a
conclusion. Your aim is to be able to say, "If such and such is known, then something or
other must be the case."

Let p and q be statements. A sentence of the form "If p then q" is denoted symbolically
by "p -* q"; p is called the hypothesis and q is called the conclusion. For instance, in

If 4,686 is divisible by 6, then 4,686 is divisible by 3

the hypothesis is "4,686 is divisible by 6" and the conclusion is "4,686 is divisible by 3."
Such a sentence is called conditional because the truth of statement q is conditioned on
the truth of statement p.

The notation p -* q indicates that -> is a connective, like A or v, that can be used
to join statements to create new statements. To define p - q as a statement, therefore,
we must specify the truth values for p -. q as we specified truth values for p A q and for
p V q. As is the case with the other connectives, the formal definition of truth values for

(if-then) is based on its everyday, intuitive meaning. Consider an example.

Suppose you go to interview for a job at a store and the owner of the store makes you
the following promise:

If you show up for work Monday morning, then you will get the job.

Under what circumstances are you justified in saying the owner spoke falsely? That
is, under what circumstances is the above sentence false? The answer is: You do show
up for work Monday morning and you do not get the job.
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After all, the owner's promise only says you will get the job if a certain condition
(showing up for work Monday morning) is met; it says nothing about what will happen
if the condition is not met. So if the condition is not met, you cannot in fairness say
the promise is false regardless of whether or not you get the job.

The above example was intended to convince you that the only combination of circum-
stances in which you would call a conditional sentence false occurs when the hypothesis
is true and the conclusion isfalse. In all other cases, you would not call the sentence false.
This implies that the only row of the truth table for p -- q that should be filled in with an
F is the row where p is T and q is F. No other row should contain an F. But each row of a
truth table must be filled in with either a T or an F. Thus all other rows of the truth table
for p -* q must be filled in with T's.

Truth Table for p -# q

p q I P q
T T T

T F F

F T T

F |F | T

If p and q are statement variables, the conditional of q by p is "If p then q" or "p
implies q" and is denoted p -- q. It is false when p is true and q is false; otherwise
it is true. We call p the hypothesis (or antecedent) of the conditional and q the
conclusion (or consequent).

A conditional statement that is true by virtue of the fact that its hypothesis is false is
often called vacuously true or true by default. Thus the statement "If you show up for
work Monday morning, then you will get the job" is vacuously true if you do not show
up for work Monday morning.

In expressions that include as well as other logical operators such as A, V, and -,

the order of operations is that is performed last. Thus, according to the specification
of order of operations in Section 1. 1, - is performed first, then A and v, and finally -+.

The philosopher Willard VanOrman Quine advises against using the phrase "p implies
q" to mean "p -* q" because the word implies suggests that q can be logically deduced
from p and this is often not the case. Nonetheless, the phrase is used by many people,
probably because it is a convenient replacement for the -÷ symbol.

Example 1.2.1 Truth Table for p v -q - p

Construct a truth table for the statement form p v -q -p.

Solution By the order of operations given above, p v -q -*-p means (p v (-q))
(-p), and this order governs the construction of the truth table. First fill in the four
possible combinations of truth values for p and q, and then enter the truth values for
-p and -q using the definition of negation. Next fill in the p v -q column using the
definition of v. Finally, fill in the p v -q -* --p column using the definition of -*. The
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only rows in which the hypothesis p v -q is true and the conclusion -p is false are the
first and second rows. So you put F's in those two rows and T's in the other two rows.

conclusion hypothesis

p q I p I-q p V -q p V -q - -p

T T F F T F

T F F T T F

F T T F F T

F F IT IT T T .

Logical Equivalences Involving --
Imagine that you are trying to solve a problem involving three statements: p, q, and r.
Suppose you know that the truth of r follows from the truth of p and also that the truth
of r follows from the truth of q. Then no matter whether p or q is the case, the truth of r
must follow. The division-into-cases method of analysis is based on this idea.

Example 1.2.2 Division into Cases: Showing that p v q -+ r - (p - r) A (q -+ r)

Use truth tables to show the logical equivalence of the statement forms p V q -* r and
(p -- r) A (q -+ r).

Solution First fill in the eight possible combinations of truth values for p, q, and r. Then
fill in the columns for p V q, p -* r, and q -* r using the definitions of or and if-then.
For instance, the p -s. r column has F's in the second and fourth rows because these are
the rows in which p is true and q is false. Next fill in the p v q -+ r column using the
definition of if-then. The rows in which the hypothesis p v q is true and the conclusion r
is false are the second, fourth, and sixth. So F's go in these rows and T's in all the others.
The complete table shows that p V q -- r and (p -* r) A (q -* r) have the same truth
values for each combination of truth values of p, q, and r. Hence the two statement forms
are logically equivalent.

p q r p vq p -+ r q -+ r pvq -*r (p -*r) A (q -+r)

T T T T T T T

T T F T F F F F

T F T T T T T T

T F F T F T F F

F T T T T T T T

F T F T T F F F

F F T F T T T T

F F F F T T T T

p V q - r and (p - r) A (q -s r)

always have the same truth values,
so they are logically equivalent .
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Representation of If-Then As Or
In exercise 1 3(a) at the end of this section you are asked to use truth tables to show that

p q -_ p v q.

The logical equivalence of "if p then q" and "not p or q" is occasionally used in everyday
speech. Here is one instance.

Example 1.2.3 Application of the Equivalence between -p v q and p -+ q

Rewrite the following statement in if-then form.

Either you get to work on time or you are fired.

Solution Let -p be

You get to work on time.

and q be

You are fired.

Then the given statement is -p V q. Also p is

You do not get to work on time.

So the equivalent if-then version, p -* q, is

If you do not get to work on time, then you are fired. U

The Negation of a Conditional Statement
By definition, p -÷ q is false if, and only if, its hypothesis, p, is true and its conclusion,
q, is false. It follows that

The negation of "if p then q" is logically equivalent to "p and not q."

This can be restated symbolically as follows:

-( -( q) - p A -q

You can also obtain this result by starting from the logical equivalence p -- q - p V q.
Take the negation of both sides to obtain

(p- q) - ~(-p v q)

- -(-p) A (-q) by De Morgan's laws

- p A -q by the double negative law.

Yet another way to derive this result is to construct truth tables for -(p -* q) and for
p A -q and to check that they have the same truth values. (See exercise 13(b) at the end
of this section.)
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Example 1.2.4 Negations of If-Then Statements

Write negations for each of the following statements:

a. If my car is in the repair shop, then I cannot get to class.

b. If Sara lives in Athens, then she lives in Greece.

Solution

a. My car is in the repair shop and I can get to class.

b. Sara lives in Athens and she does not live in Greece. (Sara might live in Athens,
Georgia; Athens, Ohio; or Athens, Wisconsin.) U

A ]Caution! It is tempting to write the negation of an if-then statement as another
if-then statement. Please resist that temptation! Remember that the negation
of an if-then statement does not start with the word if.

The Contrapositive of a Conditional Statement
One of the most fundamental laws of logic is the equivalence between a conditional
statement and its contrapositive.

The contrapositive of a conditional statement of the form "If p then q" is

If -q then -p.

Symbolically,

The contrapositive of p -* q is -q --* -p.

The fact is that

A conditional statement is logically equivalent to its contrapositive.

You are asked to establish this equivalence in exercise 26 at the end of this section.

Example 1.2.5 Writing the Contrapositive

Write each of the following statements in its equivalent contrapositive form:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. If Howard cannot swim to the island, then Howard cannot swim across the lake.

b. If tomorrow is not Monday, then today is not Easter. U
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When you are trying to solve certain problems, you may find that the contrapositive
form of a conditional statement is easier to work with than the original statement. Re-
placing a statement by its contrapositive may give the extra push that helps you over the
top in your search for a solution. This logical equivalence is also the basis for one of the
most important laws of deduction, modus tollens (to be explained in Section 1.3), and for
the contrapositive method of proof (to be explained in Section 3.6).

The Converse and Inverse of a Conditional Statement
The fact that a conditional statement and its contrapositive are logically equivalent is very
important and has wide application. Two other variants of a conditional statement are not
logically equivalent to the statement.

I. ! ,2I

Suppose a conditional statement of the form "If p then q" is given.

1. The converse is "If q then p."

2. The inverse is "If -p then -q."

Symbolically,

The converse of p - q is q -* p,

and

The inverse of p -* q is -p -* -q.

Example 1.2.6 Writing the Converse and the Inverse

Write the converse and inverse of each of the following statements:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. Converse: If Howard can swim to the island, then Howard can swim across the lake.

Inverse: If Howard cannot swim across the lake, then Howard cannot swim to the
island.

b. Converse: If tomorrow is Monday, then today is Easter.

Inverse: If today is not Easter, then tomorrow is not Monday. .

Caution! Many people mistakenly believe that if a conditional statement is
true, then its converse and inverse are also true. This is not so. If a conditional
statement is true, then its converse and inverse may or may not be true. For
instance, on any Sunday except Easter, the conditional statement in Example
1.2.6(b) is true; yet both its converse and its inverse are false.

OAI
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In exercises 24, 25, and 27 at the end of this section, you are asked to use truth tables to
verify the statements in the box above. Note that the truth of statement 3 also follows
from the observation that the inverse of a conditional statement is the contrapositive of its
converse.

Only If and the Biconditional
To say "p only if q" means that p can take place only if q takes place also. That is,
if q does not take place, then p cannot take place. Another way to say this is that if p
occurs, then q must also occur (by the logical equivalence between a statement and its
contrapositive).

I, gide ;

It p and q are statements,

p only if q means "if not q then not p,"

or, equivalently,

"if p then q."

Example 1.2.7 Converting Only If to If-Then

Use the contrapositive to rewrite the following statement in if-then form in two ways:

John will break world's record for the mile run only if
he runs the mile in under four minutes.

Solution Version 1: If John does not run the mile in under four minutes, then he will
not break the world's record.

Version 2: If John breaks the world's record, then he will have run the mile in
under four minutes.

1. A conditional statement and its converse are not logically equivalent.

2. A conditional statement and its inverse are not logically equivalent.

3. The converse and the inverse of a conditional statement are logically equivalent
to each other.

Caution! "p only if q" does not mean "p if q." For instance, to say that John
will break the world's record only if he runs the mile in under four minutes
does not mean that John will break the world's record if he runs the mile in
under four minutes. His time could be under four minutes but still not be fast
enough to break the record.

AI
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Given statement variables p and q, the biconditional of p and q is "p if, and only if,
q" and is denoted p *+ q. It is true if both p and q have the same truth values and is
:false if pand q have opposite truth values. The words if and only if are sometimes
abbreviated iff.

The biconditional has the following truth table:

Truth Table for p + q

P q

T T

T F

F T

F F

T

F

F

T

In order of operations (-* is coequal with -A. As with A and v, the only way to indicate
precedence between them is to use parentheses. Here is the full hierarchy of operations
for the five logical operators:

Order of Operations for Logical Operators

1. ~ Evaluate negations first.

2. A, V Evaluate A and v second. When both are present, parentheses may be needed.

3-+, Evaluate - and ** third. When both are present, parentheses may be needed.

According to the separate definitions of if and only if, saying "p if, and only if, q"
should mean the same as saying both "p if q" and "p only if q." The following truth table
shows that this is the case:

Truth Table Showing that p +- q 5 (p -> q) A (q -+ p)

p q p - q q -p p+*q (p- q) A(q - p)

T T T T T T

T F F T F F

F T T F F F

F F T T T T

p ÷ q and (p - q) A (q - p)
always have the same truth values,
so they are logically equivalent

Example 1.2.8 If and Only If

Rewrite the following statement as a conjunction of two if-then statements:

This computer program is correct if, and only if, it produces
the correct answer for all possible sets of input data.
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Solution If this program is correct, then it produces the correct answers for all possible sets
of input data; and if this program produces the correct answers for all possible sets of
input data, then it is correct. U

Earlier it was noted that p q -p v q. Since p - q - (p -- q) A (q -- p), it
follows that

p q (-p V q) A (-q V p).

Consequently, any statement form containing -+ or -> is logically equivalent to one
containing only -, A, and V. (See exercises 38-41.)

Necessary and Sufficient Conditions
The phrases necessary condition and sufficient condition, as used in formal English, cor-
respond exactly to their definitions in logic.

.! ]]i

If r and s are statements:

r is a sufficient condition for s means "if r then s."

r is a necessary condition for s means "if not r then not s."

In other words, to say "r is a sufficient condition for s" means that the occurrence of
r is sufficient to guarantee the occurrence of s. On the other hand, to say "r is a necessary
condition for s" means that if r does not occur, then s cannot occur either: The occurrence
of r is necessary to obtain the occurrence of s. Note that because of the equivalence
between a statement and its contrapositive,

r is a necessary condition for s also means "if s then r."

Consequently,

r is a necessary and sufficient condition for s means "r if, and only if, s."

Example 1.2.9 Interpreting Necessary and Sufficient Conditions

Consider the statement "If John is eligible to vote, then he is at least 18 years old." The
truth of the condition "John is eligible to vote" is sufficient to ensure the truth of the
condition "John is at least 18 years old." In addition, the condition "John is at least 18
years old" is necessary for the condition "John is eligible to vote" to be true. If John were
younger than 18, then he would not be eligible to vote. U

Example 1.2.10 Converting a Sufficient Condition to If-Then Form

Rewrite the following statement in the form "If A then B":

Pia's birth on U.S soil is a sufficient condition
for her to be a U.S. citizen.

Solution If Pia was born on U.S. soil, then she is a U.S. citizen. .
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Example 1.2.11 Converting a Necessary Condition to If-Then Form

Use the contrapositive to rewrite the following statement in two ways:

George's attaining age 35 is a necessary condition
for his being president of the United States.

Solution Version 1: If George has not attained the age of 35, then he cannot be president
of the United States.

Version 2: If George can be president of the United States, then he has attained
the age of 35. U

Remarks
1. In logic, a hypothesis and conclusion are not required to have related subject matters.

In ordinary speech we never say things like "If computers are machines, then Babe
Ruth was a baseball player" or "If 2 + 2 = 5, then Mickey Mouse is president of the
United States." We formulate a sentence like "If p then q" only if there is some
connection of content between p and q.

In logic, however, the two parts of a conditional statement need not have related
meanings. The reason? If there were such a requirement, who would enforce it? What
one person perceives as two unrelated clauses may seem related to someone else. There
would have to be a central arbiter to check each conditional sentence before anyone
could use it, to be sure its clauses were in proper relation. This is impractical, to say
the least!

Thus a statement like "if computers are machines, then Babe Ruth was a baseball
player" is allowed, and it is even called true because both its hypothesis and its conclu-
sion are true. Similarly, the statement "If 2 + 2 = 5, then Mickey Mouse is president
of the United States" is allowed and is called true because its hypothesis is false, even
though doing so may seem ridiculous.

In mathematics it often happens that a carefully formulated definition that suc-
cessfully covers the situations for which it was primarily intended is later seen to be
satisfied by some extreme cases that the formulator did not have in mind. But those
are the breaks, and it is important to get into the habit of exploring definitions fully to
seek out and understand all their instances, even the unusual ones.

2. In informal language, simple conditionals are often used to mean biconditionals.
The formal statement "p if, and only if, q" is seldom used in ordinary language.

Frequently, when people intend the biconditional they leave out either the and only if
or the if and. That is, they say either "p if q" or "p only if q" when they really mean
"p if, and only if, q." For example, consider the statement "You will get dessert if,
and only if, you eat your dinner." Logically, this is equivalent to the conjunction of
the following two statements.

Statement 1: If you eat your dinner, then you will get dessert.

Statement 2: You will get dessert only if you eat your dinner.
or

If you do not eat your dinner, then you will not get dessert.

Now how many parents in the history of the world have said to their children "You
will get dessert if, and only if, you eat your dinner"? Not many! Most say either "If you
eat your dinner, you will get dessert" (these take the positive approach-they emphasize
the reward) or "You will get dessert only if you eat your dinner" (these take the negative
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approach-they emphasize the punishment). Yet the parents who promise the reward
intend to suggest the punishment as well, and those who threaten the punishment will
certainly give the reward if it is earned. Both sets of parents expect that their conditional
statements will be interpreted as biconditionals.

Since we often (correctly) interpret conditional statements as biconditionals, it is not
surprising that we may come to believe (mistakenly) that conditional statements are al-
ways logically equivalent to their inverses and converses. In formal settings, however,
statements must have unambiguous interpretations. If-then statements can't sometimes
mean "if-then" and other times mean "if and only if." When using language in mathe-
matics, science, or other situations where precision is important, it is essential to interpret
if-then statements according to the formal definition and not to confuse them with their
converses and inverses.

Exercise Set 1.2
Rewrite the statements in 1-4 in if-then form.

1. This loop will repeat exactly N times if it does not contain
a stop or a go to.

2. I am on time for work if I catch the 8:05 bus.

3. Freeze or I'll shoot.

4. Fix my ceiling or I won't pay my rent.

Construct truth tables for the statement forms in 5-11.

7. p A -q -+ r

9. p A r +q vr

6. (p v q) V (p A q)- q

8. -pVq q r

10. (p -* r) 4* (q -- r)

11. (p -(q - r)) ((p A q) -r)

12. Use the logical equivalence established in Example 1.2.3,
p V q -* r = (p -* r) A (q -* r), to rewrite the following
statement. (Assume that x represents a fixed real number.)

If x > 2 or x < -2, then x2 
> 4.

13. Use truth tables to verify the following logical equivalences.
Include a few words of explanation with your answers.
a. p -+q =_ -p v q b. -(p -q) -_ p A -q .

H 14. a. Show that the following statement forms are all logically
equivalent.

p q V r, p A -q -+r, and p A -r -->q

b. Use the logical equivalences established in part (a) to
rewrite the following sentence in two different ways.
(Assume that n represents a fixed integer.)

If n is prime, then n is odd or n is 2.

15. Determine whether the following statement forms are logi-
cally equivalent:

p 4(q -+r) and (p -q)- r

In 16 and 17, write each of the two statements in symbolic form
and determine whether they are logically equivalent. Include a
truth table and a few words of explanation.

16. If you paid full price, you didn't buy it at Crown Books.
You didn't buy it at Crown Books or you paid full price.

17. If Rob is goalkeeper and Aaron plays forward, then Sam
plays defense. Rob is not goalkeeper or Aaron does not
play forward or Sam plays defense.

18. Write each of the following three statements in symbolic
form and determine which pairs are logically equivalent.
Include truth tables and a few words of explanation.

If it walks like a duck and it talks like a duck, then it is
a duck.

Either it does not walk like a duck or it does not talk
like a duck, or it is a duck.

If it does not walk like a duck and it does not talk like a
duck, then it is not a duck.

19. True or false? The negation of "If Sue is Luiz's mother, then
Deana is his cousin" is "If Sue is Luiz's mother, then Deana
is not his cousin."

20. Write negations for each of the following statements. (As-
sume that all variables represent fixed quantities or entities,
as appropriate.)
a. If P is a square, then P is a rectangle.
b. If today is New Year's Eve, then tomorrow is January.
c. If the decimal expansion of r is terminating, then r is

rational.
d. If n is prime, then n is odd or n is 2.
e. If x is nonnegative, then x is positive or x is 0.
f. If Tom is Ann's father, then Jim is her uncle and Sue is

her aunt.
g. If n is divisible by 6, then n is divisible by 2 and n is

divisible by 3.



28 Chapter 1 The Logic of Compound Statements

21. Suppose that p and q are statements so that p -* q is false.
Find the truth values of each of the following:
a. -p-q b. pVq c. q ~ p

H 22. Write contrapositives for the statements of exercise 20.

H 23. Write the converse and inverse for each statement of exer-
cise 20.

Use truth tables to establish the truth of each statement in 24-27.

24. A conditional statement is not logically equivalent to its con-
verse.

25. A conditional statement is not logically equivalent to its in-
verse.

26. A conditional statement and its contrapositive are logically
equivalent to each other.

27. The converse and inverse of a conditional statement are log-
ically equivalent to each other.

H 28. "Do you mean that you think you can find out the answer to
it?" said the March Hare.

"Exactly so," said Alice.
"Then you should say what you mean," the March Hare

went on.
"I do," Alice hastily replied; "at least-at least I mean

what I say-that's the same thing, you know."
"Not the same thing a bit!" said the Hatter. "Why, you

might just as well say that 'I see what I eat' is the same thing
as 'I eat what I see'!"

-from "A Mad Tea-Party" in Alice in Wonderland,
by Lewis Carroll

The Hatter is right. "I say what I mean" is not the same
thing as "I mean what I say." Rewrite each of these two
sentences in if-then form and explain the logical relation
between them. (This exercise is referred to in the introduc-
tion to Chapter 3.)

If statement forms P and Q are logically equivalent, then
P ( Q is a tautology. Conversely, if P <-~ Q is a tautology,
then P and Q are logically equivalent. Use < to convert each
of the logical equivalences in 29-31 to a tautology. Then use a
truth table to verify each tautology.

29. p -(q V r) - (p A q)- r

30. pA(qVr) -(p Aq)V(pAr)

3 1. p -(q -r)--=(p A q) ->r

Use the contrapositive to rewrite the statements in 25 and 26 in
if-then form in two ways. Assume that only if has its formal,
logical meaning.

32. The Cubs will win the pennant only if they win tomorrow's
game.

33. Sam will be allowed on Signe's racing boat only if he is an
expert sailor.

34. Taking the long view on your education, you go to the Pres-
tige Corporation and ask what you should do in college to
be hired when you graduate. The personnel director replies
that you will be hired only if you major in mathematics or
computer science, get a B average or better, and take ac-
counting. You do, in fact, become a math major, get a B+
average, and take accounting. You return to Prestige Cor-
poration, make a formal application, and are turned down.
Did the personnel director lie to you?

Some programming languages use statements of the form "r un-
less s." This means that as long as s does not happen, then r will
happen. More formally,

Definition: If r and s are statements,

r unless s means if -s then r.

In 35-37, rewrite the statements in if-then form.

35. Payment will be made on the fifth unless a new hearing is
granted.

36. Ann will go unless it rains.

37. This door will not open unless a security code is entered.

In 38-41 (a) use the logical equivalences p -* q - p V q and
p -q - (-p V q) A (q V p) to rewrite the given statement
forms without using the symbol -+ or , and (b) use the logi-
cal equivalence p V q -_ (-p A -q) to rewrite each statement
form using only A and -.

38. p A q -r 39. p V q -r v q

40. (p r) < (q r)

4 1. (p (q -r)) ((p A q) -r)

42. Given any statement form, is it possible to find a logically
equivalent form that uses only - and A? Justify your an-
swer.

Rewrite the statements in 43 and 44 in if-then form.

43. Catching the 8:05 bus is a sufficient condition for my being
on time for work.

44. Having two 45° angles is a sufficient condition for this tri-
angle to be a right triangle.

Use the contrapositive to rewrite the statements in 45 and 46 in
if-then form in two ways.

45. Being divisible by 3 is a necessary condition for this number
to be divisible by 9.

46. Doing homework regularly is a necessary condition for Jim
to pass the course.

Note that "a sufficient condition for s is r" means r is a sufficient
condition for s and that "a necessary condition for s is r" means
r is a necessary condition for s. Rewrite the statements in 47
and 48 in if-then form.
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47. A sufficient condition for Jon's team to win the champi-
onship is that it win the rest of its games.

48. A necessary condition for this computer program to be cor-
rect is that it not produce error messages during translation.

49. "If compound X is boiling, then its temperature must be at
least 150'C." Assuming that this statement is true, which of
the following must also be true?
a. If the temperature of compound X is at least 150'C, then

compound X is boiling.

b. If the temperature of compound X is less than 150'C,
then compound X is not boiling.

c. Compound X will boil only if its temperature is at least
150'C.

d. If compound X is not boiling, then its temperature is less
than 150'C.

e. A necessary condition for compound X to boil is that its
temperature be at least 1500C.

f. A sufficient condition for compound X to boil is that its
temperature be at least 150'C.

1.3 Valid and Invalid Arguments
"Contrariwise, " continued Tweedledee, "if it was so, it might be; and if it were so, it
would be; but as it isn 't, it ain' . That's logic. " -Lewis Carroll, Through the Looking Glass

In mathematics and logic an argument is not a dispute. It is a sequence of statements
ending in a conclusion. In this section we show how to determine whether an argument is
valid-that is, whether the conclusion follows necessarily from the preceding statements.
We will show that this determination depends only on the form of an argument, not on its
content.

It was shown in Section 1. I that the logical form of an argument can be abstracted
from its content. For example, the argument

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

Socrates is mortal.

has the abstract form

If p then q

p
. q

When considering the abstract form of an argument, think of p and q as variables for
which statements may be substituted. An argument form is called valid if, and only if,
whenever statements are substituted that make all the premises true, the conclusion is also
true.

I. , l l l

An argument is a sequence of statements, and an argument form is a sequence
of statement forms. All statements in an argument and all statement forms in an
argument form, except for the final one, are called premises (or assumptions or
hypotheses). The final statement or statement form is called the conclusion. The
symbol .-., which is read "therefore," is normally placed just before the conclusion.

To say that an argumentform is valid means that no matter what particular state-
ments are substituted for the statement variables in its premises, if the resulting
premises are all true, then the conclusion is also true. To say that an argument is
valid means that its form is valid.

The crucial fact about a valid argument is that the truth of its conclusion follows
necessarily or inescapably or by logicalform alone from the truth of its premises. It is
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impossible to have a valid argument with true premises and a false conclusion. When an
argument is valid and its premises are true, the truth of the conclusion is said to be inferred
or deduced from the truth of the premises. If a conclusion "ain't necessarily so," then it
isn't a valid deduction.

Example 1.3.1 An Invalid Argument Form

Show that the following argument form is invalid.

p q V -r

q p pAr

Solution Construct a truth table as shown below, and indicate which columns represent the
premises and which the conclusion. Although there are several situations in which the
premises and the conclusion are all true (rows 1, 7, and 8), there is one situation (shown
in row 4) where the premises are true and the conclusion is false. This cannot occur when
the argument form is valid, and so this argument form is invalid.

premises conclusion

p q r |-r | qV r pAr p -*qV r q -pAr p -+ r

T T T F T T T T T

T T F T T F T F F

T F T F F T F T F

T F F T T F T T F

F T T F T F T F F

F T F T T F T F F

F F T F F F T T T

F F F T T F T T T

This row shows it is possible
for an argument of this form
to have true premises and a
false conclusion. Hence this
form of argument is invalid.

U

Note that if you are in a hurry to check the validity of an argument, you need not fill
in truth values for the conclusion except in the rows where all the premises are true. We call

Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the premises and the con-
clusion.

3. If the truth table contains arow in which all the premises are true and the conclusion
is false, then it is possible for an argument of the given form to have true premises
and a false conclusion, and so the argument form is invalid. Otherwise, in every
case where all the premises are true, the conclusion is also true, and so the argument
form is valid.
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these the critical rows. The truth values in the other rows are irrelevant to the validity or
invalidity of the argument. This is illustrated in the following example.

Example 1.3.2 A Valid Argument Form

Show that the following argument form is valid:

p V (q V r)

.. pVq

Solution Construct a truth table as shown below, and indicate which columns represent the
premises and which the conclusion.

premises conclusion

p q r qvr pv(qvr) |r pvq

T T T T T F

T T F T T T T-

T F T T T F

T F F F T T T

F T T T T F

F T F T T T T

F F T T T F

F F F F F TI

critical rows

In each situation where the

premises are both true, the

conclusion is also true, so the

argument form is valid.

M

Modus Ponens and Modus Tollens
An argument form consisting of two premises and a conclusion is called a syllogism. The
first and second premises are called the major and minor premises, respectively. The most
famous form of syllogism in logic is called modus ponens. It has the following form:

If p then q.

p

. q

Here is an argument of this form:

If the sum of the digits of 371,487 is divisible by 3,
then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.

371,487 is divisible by 3.

The term modus ponens is Latin meaning "method of affirming" (the conclusion is an
affirmation). Long before you saw your first truth table, you were undoubtedly being
convinced by arguments of this form. Nevertheless, it is instructive to prove that modus
ponens is a valid form of argument, if for no other reason than to confirm the agreement
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between the formal definition of validity and the intuitive concept. To do so, we construct
a truth table for the premises and conclusion.

premises conclusion

p q p -+q p q

T T T T T

T F F T F

F T T F T

F F T F F

- critical row

The first row is the only one in which both premises are true, and the conclusion in that
row is also true. Hence the argument form is valid.

Now consider another valid argument form called modus tollens. It has the following
form:

If p then q.

-q

Here is an example of modus tollens:

If Zeus is human, then Zeus is mortal.

Zeus is not mortal.

Zeus is not human.

An intuitive explanation for the validity of modus tollens uses proof by contradiction.
It goes like this:

Suppose

(1) If Zeus is human, then Zeus is mortal; and

(2) Zeus is not mortal.

Must Zeus necessarily be nonhuman?

Yes!

Because, if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal.

Hence, Zeus cannot be human.

Modus tollens is Latin meaning "method of denying" (the conclusion is a denial). The
validity of modus tollens can be shown to follow from modus ponens together with the
fact that a conditional statement is logically equivalent to its contrapositive. Or it can be
established formally by using a truth table. (See exercise 11.)

Studies by cognitive psychologists have shown that although nearly 100% of college
students have a solid, intuitive understanding of modus ponens, less than 60% are able
to apply modus tollens correctly.* Yet in mathematical reasoning, modus tollens is used

*Cognitive Psychology and Its Implications, 3d ed. by John R. Anderson (New York: Freeman,
1990), pp. 292-297.
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almost as often as modus ponens. Thus it is important to study the form of modus tollens
carefully to learn to use it effectively.

Example 1.3.3 Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of the following arguments so
that they become valid inferences.

a. If there are more pigeons than there are pigeonholes, then two pigeons roost in the
same hole.
There are more pigeons than there are pigeonholes.

b. If 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.

Solution

a. Two pigeons roost in the same hole. by modus ponens

b. 870,232 is not divisible by 6. by modus tollens U

Additional Valid Argument Forms: Rules of Inference
A rule of inference is a form of argument that is valid. Thus modus ponens and modus
tollens are both rules of inference. The following are additional examples of rules of
inference that are frequently used in deductive reasoning.

Example 1.3.4 Generalization

The following argument forms are valid:

a. p b. q
., pVq .. pvq

These argument forms are used for making generalizations. For instance, according
to the first, if p is true, then, more generally, "p or q" is true for any other statement q. As
an example, suppose you are given the job of counting the upperclassmen at your school.
You ask what class Anton is in and are told he is a junior.

You reason as follows:

Anton is a junior.

(more generally) Anton is a junior or Anton is a senior.

Knowing that upperclassman means junior or senior, you add Anton to your list. U

Example 1.3.5 Specialization

The following argument forms are valid:

a. pAq b. pAq

These argument forms are used for specializing. When classifying objects according to
some property, you often know much more about them than whether they do or do not have
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that property. When this happens, you discard extraneous information as you concentrate
on the particular property of interest.

For instance, suppose you are looking for a person who knows graph algorithms to
work with you on a project. You discover that Ana knows both numerical analysis and
graph algorithms. You reason as follows:

Ana knows numerical analysis and Ana knows graph algorithms.

(in particular) Ana knows graph algorithms.

Accordingly, you invite her to work with you on your project. E

Both generalization and specialization are used frequently in mathematics to tailor
facts to fit into hypotheses of known theorems in order to draw further conclusions.
Elimination, transitivity, and proof by division into cases are also widely used tools.

Example 1.3.6 Elimination

The following argument forms are valid:

a. pVq b. pvq
-q -P

These argument forms say that when you have only two possibilities and you can rule
one out, the other must be the case. For instance, suppose you know that for a particular
number x,

x-3=0 or x+2=0.

If you also know that x is not negative, then x : -2, so

x + 2 A 0.

By elimination, you can then conclude that

x.x-3 =0.

Example 1.3.7 Transitivity

The following argument form is valid:

p q

q r

..p r

Many arguments in mathematics contain chains of if-then statements. From the fact that
one statement implies a second and the second implies a third, you can conclude that the
first statement implies the third. Here is an example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of 18,486 is divisible
by 9.

If 18,486 is divisible by 18, then the sum of the digits of 18,486 is divisible
by9.
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Example 1.3.8 Proof by Division into Cases

The following argument form is valid:

p V q

p r

q r

.r

It often happens that you know one thing or another is true. If you can show that in either
case a certain conclusion follows, then this conclusion must also be true. For instance,
suppose you know that x is a particular nonzero real number. The trichotomy property of
the real numbers says that any number is positive, negative, or zero. Thus (by elimination)
you know that x is positive or x is negative. You can deduce that x2 > 0 by arguing as
follows:

x is positive or x is negative.

If x is positive, then x2 
> 0.

If x is negative, then x2 > 0.

x
2 

>0. N

The rules of valid inference are used constantly in problem solving. Here is an example
from everyday life.

Example 1.3.9 Application: A More Complex Deduction

You are about to leave for school in the morning and discover that you don't have your
glasses. You know the following statements are true:

a. If my glasses are on the kitchen table, then I saw them at breakfast.

b. I was reading the newspaper in the living room or I was reading the newspaper in the
kitchen.

c. If I was reading the newspaper in the living room, then my glasses are on the coffee
table.

d. I did not see my glasses at breakfast.

e. If I was reading my book in bed, then my glasses are on the bed table.

f. If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

Where are the glasses?

Solution The glasses are on the coffee table. Here is a sequence of steps you might use to
reach this answer, together with the rules of inference that allow you to draw the conclusion
of each step:

1. The glasses are not on the kitchen table. by (a), (d), and modus tollens

2. I did not read the newspaper in the kitchen. by (f), (1), and modus tollens

3. I read the newspaper in the living room. by (b), (2), and elimination

4. My glasses are on the coffee table. by (c), (3), and modus ponens
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Note that (e) was not needed to derive the conclusion. In mathematics as in real life, we
frequently deduce a conclusion from just a part of the information available to us. U

The preceding example shows how to use rules of inferential logic to solve an or-
dinary problem that could occur in real life. Normally, of course, you use these rules
unconsciously. Occasionally, however, problems are so complex that it is helpful to use
symbolic logic explicitly. The next example shows how you could do this for the situation
described in Example 1.3.9.

Example 1.3.10 Symbolizing a Situation to Find a Solution

Solve the problem of Example 1.3.9 symbolically.

Solution Let p = My glasses are on the kitchen table.

q = I saw my glasses at breakfast.

r = I was reading the newspaper in the living room.

s= I was reading the newspaper in the kitchen.

t = My glasses are on the coffee table.

u = I was reading my book in bed.

v = My glasses are on the bed table.

Then the statements of Example 1.3.9 translate into the following premises:

a. p -* q b. r vs c. r t
d. -q e. u v f. s p

The following deductions can be made:

1. p- q by (a)
-q by (d)

-..p by modus tollens

2. s -p by (f)

-p by the conclusion of (I)

-S by modus tollens

3. r v s by (b)

-s by the conclusion of (2)

r by elimination

4. r -t by (c)

r by the conclusion of (3)

t by modus ponens

Hence t is true and the glasses are on the coffee table.

Fallacies
A fallacy is an error in reasoning that results in an invalid argument. Three common
fallacies are using ambiguous premises, and treating them as if they were unambiguous,



1.3 Valid and Invalid Arguments 37

begging the question (assuming what is to be proved without having derived it from the
premises), and jumping to a conclusion (without adequate grounds). In this section we
discuss two other fallacies, called converse error and inverse error, which give rise to
arguments that superficially resemble those that are valid by modus ponens and modus
tollens but are not, in fact, valid.

As in previous examples, you can show that an argument is invalid by constructing
a truth table for the argument form and finding at least one critical row in which all the
premises are true but the conclusion is false. Another way is to find an argument of the
same form with true premises and a false conclusion. The reason is that for an argument to
be valid, any argument of the same form that has true premises must have a true conclusion.

Example 1.3.11 Converse Error

Show that the following argument is invalid:

If Zeke is a cheater, then Zeke sits in the back row.

Zeke sits in the back row.

Zeke is a cheater.

Solution Many people recognize the invalidity of the above argument intuitively, reasoning
something like this: The first premise gives information about Zeke if it is known he is a
cheater. It doesn't give any information about him if it is not already known that he is a
cheater. One can certainly imagine a person who is not a cheater but happens to sit in the
back row. Then if that person's name is substituted for Zeke, the first premise is true by
default and the second premise is also true but the conclusion is false.

The general form of the above argument is as follows:

p q

q

In exercise 13(a) at the end of this section you are asked to use a truth table to show that
this form of argument is invalid. N

The fallacy underlying this invalid argument form is called the converse error because
the conclusion of the argument would follow from the premises if the premise p -* q
were replaced by its converse. Such a replacement is not allowed, however, because a
conditional statement is not logically equivalent to its converse. Converse error is also
known as the fallacy of affirming the consequent.

Another common error in reasoning is called the inverse error.

Example 1.3.12 Inverse Error

Consider the following argument:

If interest rates are going up, stock market prices will go down.

Interest rates are not going up.

Stock market prices will not go down.
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Note that this argument has the following form:

-P
-q

You are asked to give a truth table verification of the invalidity of this argument form in
exercise 13(b) at the end of this section.

The fallacy underlying this invalid argument form is called the inverse error because
the conclusion of the argument would follow from the premises if the premise p -> q
were replaced by its inverse. Such a replacement is not allowed, however, because a
conditional statement is not logically equivalent to its inverse. Inverse error is also known
as the fallacy of denying the antecedent. U

Example 1.3.13 A Valid Argument with a False Conclusion

The argument below is valid by modus ponens. But its major premise is false, and so is
its conclusion.

If John Lennon was a rock star, then John Lennon had red hair.

John Lennon was a rock star.

John Lennon had red hair. U

Example 1.3.14 An Invalid Argument with a True Conclusion

The argument below is invalid by the converse error, but it has a true conclusion.

If New York is a big city, then New York has tall buildings.

New York has tall buildings.

New York is a big city. U

The important thing to note is that validity is a property of argument forms: If an
argument is valid, then so is every other argument that has the same form. Similarly, if
an argument is invalid, then so is every other argument that has the same form. What
characterizes a valid argument is that no argument whose form is valid can have all true
premises and a false conclusion. For each valid argument, there are arguments of that
form with all true premises and a true conclusion, at least one false premise and a true
conclusion, and at least one false premise and a false conclusion. On the other hand, for
each invalid argument, there are arguments of that form with every combination of truth
values for the premises and conclusion, including all true premises and a false conclusion.

Caution! Sometimes people lump together the ideas of validity and truth.
If an argument seems valid, they accept the conclusion as true. And if an
argument seems fishy (really a slang expression for invalid), they think the
conclusion must be false. This is not correct! In logic, the words true and
valid have very different meanings.

A valid argument may have a false conclusion, and an invalid argument
may have a true conclusion.

AI



1.3 Valid and Invalid Arguments 39

Contradictions and Valid Arguments
The concept of logical contradiction can be used to make inferences through a technique
of reasoning called the contradiction rule. Suppose p is some statement whose truth you
wish to deduce.

Contradiction Rule

If you can show that the supposition that statement p is false leads logically to a
contradiction, then you can conclude that p is true.

Example 1.3.15 Contradiction Rule

Show that the following argument form is valid:

-p -- c, where c is a contradiction

S C p

Solution Construct a truth table for the premise and the conclusion of this argument.

premises conclusion

P Up C "p-+ c P

T F F T T - There is only one critical row

F T F F Fin which the premise is true,
and in this row the conclusion U
is also true. Hence this form
of argument is valid.

The contradiction rule is the logical heart of the method of proof by contradiction. A
slight variation also provides the basis for solving many logical puzzles by eliminating
contradictory answers: If an assumption leads to a contradiction, then that assumption
must be false.

Example 1.3.16 Knights and Knaves

The logician Raymond Smullyan describes an island containing two types of people:
knights who always tell the truth and knaves who always lie.* You visit the island and are
approached by two natives who speak to you as follows:

A says: B is a knight.

B says: A and I are of opposite type.

What are A and B?

'Raymond Smullyan has written a delightful series of whimsical yet profound books of logical
puzzles starting with What Is the Name of This Book? (Englewood Cliffs, New Jersey: Prentice-

ld Smullyan Hall, 1978). Other good sources of logical puzzles are the many excellent books of Martin Gardner,
919) such as Aha! Insight and Aha! Gotcha (New York: W. H. Freeman, 1978, 1982).

Raymon
(born P
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Solution A and B are both knaves. To see this, reason as follows:

Suppose A is a knight.

. What A says is true.

. B is also a knight.

What B says is true.

by definition of knight

That's what A said.

by definition of knight

A and B are of opposite types. That's what B said.

We have arrived at the following contradiction: A and B
are both knights and A and B are of opposite type.

The supposition is false.

A is not a knight.

A is a knave.

What A says is false.

B is not a knight.

B is also a knave.

by the contradiction rule

negation of supposition

by elimination: It's given that all inhabitants
are knights or knaves, so since A is not a
knight, A is a knave.

by elimination

This reasoning shows that if the problem has a solution at all, then A and B must both
be knaves. It is conceivable, however, that the problem has no solution. The problem
statement could be inherently contradictory. If you look back at the problem, though, you
can see that it does work out for both A and B to be knaves. a

Summary of Rules of Inference
Table 1.3.1 summarizes some of the most important rules of inference.

Table 1.3.1 Valid Argument Forms

Modus Ponens p - q Elimination a. p vq b. p V q

Modus Tollens p - q Transitivity p q

.. p.-. p r

Generalization a. p b. q Proof by p v q
.. p v q .p v q Division into Cases p r

Specialization a. p A q b. p A q q r

Conjunction p Contradiction Rule p -* c

q

.p A q ______ _______
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Exercise Set 1.3
Use modus ponens or modus tollens to fill in the blanks in the
arguments of 1-5 so as to produce valid inferences.

1. If X2 is rational, then N/2 = a/b for some integers a
and b.
It is not true that X/ = a/b for some integers a and b.

2. If this is a while loop, then the body of the loop may never
be executed.

Use truth tables to show that the argument forms referred to in
14-21 are valid. Indicate which columns represent the premises
and which represent the conclusion, and include a few words of
explanation to support your answers.

14. Example 1.3.4(a)

16. Example 1.3.5(a)

18. Example 1.3.6(a)

20. Example 1.3.7

15. Example 1.3.4(b)

17. Example 1.3.5(b)

19. Example 1.3.6(b)

21. Example 1.3.8

. The body of the loop may never be executed.

3. If logic is easy, then I am a monkey's uncle.
I am not a monkey's uncle.

4. If this figure is a quadrilateral, then the sum of its interior
angles is 3600.
The sum of the interior angles of this figure is not 3600.

5. If they were unsure of the address, then they would have
telephoned.

They were sure of the address.

Use truth tables to determine whether the argument forms in
6-10 are valid. Indicate which columns represent the premises
and which represent the conclusion, and include a few words of
explanation to support your answers.

6. pe-q
q --+p

.. p Vq

8. pvq

p -*

p -- + r

, , r

10. p- r
q -- r

.,. p V q -r

7. p

-qV r

. r

9. pAq -o -r
p V -q

- -* p

.,. -r

11. p-+qvr
-q V -r

., p V -r

12. Use a truth table to prove the validity of modus tollens.

-q

.'. _P

13. Use truth tables to show that the following forms of argu-
ment are invalid.
a. p- q b. p-*q

q
. . p
(converse error)

( P
. . -q

(inverse error)

Use symbols to write the logical form of each argument in 22
and 23, and then use a truth table to test the argument for validity.
Indicate which columns represent the premises and which rep-
resent the conclusion, and include a few words of explanation to
support your answers.

22. If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
Tom is not on team A or Hua is not on team B.

23. Oleg is a math major or Oleg is an economics major.
If Oleg is a math major, then Oleg is required to take
Math 362.
Oleg is an economics major or Oleg is not required to
take Math 362.

Some of the arguments in 24-32 are valid, whereas others ex-
hibit the converse or the inverse error. Use symbols to write the
logical form of each argument. If the argument is valid, identify
the rule of inference that guarantees its validity. Otherwise, state
whether the converse or the inverse error is made.

24. If Jules solved this problem correctly, then Jules obtained
the answer 2.
Jules obtained the answer 2.
Jules solved this problem correctly.

25. This real number is rational or it is irrational.
This real number is not rational.
This real number is irrational.

26. If I go to the movies, I won't finish my homework.
If I don't finish my homework, I won't do well on the
exam tomorrow.
If I go to the movies, I won't do well on the exam
tomorrow.

27. If this number is larger than 2, then its square is larger
than 4.
This number is not larger than 2.
The square of this number is not larger than 4.

28. If there are as many rational numbers as there are irrational
numbers, then the set of all irrational numbers is infinite.
The set of all irrational numbers is infinite.
There are as many rational numbers as there are irrational
numbers.



42 Chapter 1 The Logic of Compound Statements

29. If at least one of these two numbers is divisible by 6, then
the product of these two numbers is divisible by 6.
Neither of these two numbers is divisible by 6,
The product of these two numbers is not divisible by 6,

30. If this computer program is correct, then it produces the
correct output when run with the test data my teacher gave
me.
This computer program produces the correct output when
run with the test data my teacher gave me.
This computer program is correct.

31. Sandra knows Java and Sandra knows C++.
Sandra knows C++.

32. If I get a Christmas bonus, I'll buy a stereo.
If I sell my motorcycle, I'll buy a stereo.
If I get a Christmas bonus or I sell my motorcycle, then
I'll buy a stereo.

33. Give an example (other than Example 1.3.13) of a valid
argument with a false conclusion.

34. Give an example (other than Example 1.3.14) of an invalid
argument with a true conclusion.

35. Explain in your own words what distinguishes a valid form
of argument from an invalid one.

36. Given the following information about a computer program,
find the mistake in the program.
a. There is an undeclared variable or there is a syntax error

in the first five lines.
b. If there is a syntax error in the first five lines, then there

is a missing semicolon or a variable name is misspelled.
c. There is not a missing semicolon.
d. There is not a misspelled variable name.

37. In the back of an old cupboard you discover a note signed
by a pirate famous for his bizarre sense of humor and love
of logical puzzles. In the note he wrote that he had hidden
treasure somewhere on the property. He listed five true state-
ments (a-e below) and challenged the reader to use them to
figure out the location of the treasure.
a. If this house is next to a lake, then the treasure is not in

the kitchen.
b. If the tree in the front yard is an elm, then the treasure is

in the kitchen.
c. This house is next to a lake.
d. The tree in the front yard is an elm or the treasure is

buried under the flagpole.
e. If the tree in the back yard is an oak, then the treasure is

in the garage.
Where is the treasure hidden?

38. You are visiting the island described in Example 1.3.16 and
have the following encounters with natives.
a. Two natives A and B address you as follows:

A says: Both of us are knights.
B says: A is a knave.
What are A and B?

b. Another two natives C and D approach you but only C
speaks.
C says: Both of us are knaves.
What are C and D?

c. You then encounter natives E and F.
E says: F is a knave.
F says: E is a knave.
How many knaves are there?

H d. Finally, you meet a group of six natives, U, V, W, X,
Y, and Z, who speak to you as follows:
U says: None of us is a knight.
V says: At least three of us are knights.
W says: At most three of us are knights.
X says: Exactly five of us are knights.
Y says: Exactly two of us are knights.
Z says: Exactly one of us is a knight.
Which are knights and which are knaves?

39. The famous detective Percule Hoirot was called in to solve
a baffling murder mystery. He determined the following
facts:
a. Lord Hazelton, the murdered man, was killed by a blow

on the head with a brass candlestick.
b. Either Lady Hazelton or a maid, Sara, was in the dining

room at the time of the murder.
c. If the cook was in the kitchen at the time of the murder,

then the butler killed Lord Hazelton with a fatal dose of
strychnine.

d. If Lady Hazelton was in the dining room at the time of
the murder, then the chauffeur killed Lord Hazelton.

e. If the cook was not in the kitchen at the time of the murder,
then Sara was not in the dining room when the murder
was committed.

f. If Sara was in the dining room at the time the murder was
committed, then the wine steward killed Lord Hazelton.

Is it possible for the detective to deduce the identity of the
murderer from the above facts? If so, who did murder Lord
Hazelton? (Assume there was only one cause of death.)

40. Sharky, a leader of the underworld, was killed by one of his
own band of four henchmen. Detective Sharp interviewed
the men and determined that all were lying except for one.
He deduced who killed Sharky on the basis of the following
statements:
a. Socko: Lefty killed Sharky.
b. Fats: Muscles didn't kill Sharky.
c. Lefty: Muscles was shooting craps with Socko when

Sharky was knocked off.
d. Muscles: Lefty didn't kill Sharky.
Who did kill Sharky?

In 41-44 a set of premises and a conclusion are given. Use the
valid argument forms listed in Table 1.3.1 to deduce the con-
clusion from the premises, giving a reason for each step as in
Example 1.3.10. Assume all variables are statement variables.
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42. a. pVq

b. q-*r
C. pAs- t

d. -r
e. tq U A S

f. . . t

43. a. -p -r-r A -s

b. to-s

C. u +p

d. -w

e. uVw

f. . . -t

44. a. p-+ q

b. rVs

c. -S - ~t
d. -q Vs

e. -s

f. -p Ar ->u

g. wVt

h. .i.UAW

1.4 Application: Digital Logic Circuits
Only connect!-E. M. Forster, Howards End

In the late 1930s, a young M.I.T. graduate student named Claude Shannon noticed an
analogy between the operations of switching devices, such as telephone switching circuits,
and the operations of logical connectives. He used this analogy with striking success to
solve problems of circuit design and wrote up his results in his master's thesis, which was
published in 1938.

The drawing in Figure 1.4.1(a) shows the appearance of the two positions of a simple
switch. When the switch is closed, current can flow from one terminal to the other; when
it is open, current cannot flow. Imagine that such a switch is part of the circuit shown in
Figure 1.4. 1(b). The light bulb turns on if, and only if, current flows through it. And this
happens if, and only if, the switch is closed.

Claude Shannon
(1916-2001) Open

(a)

The symbol =
1 C C denotes a battery and

the symbol (P

denotes a light bulb.

(b)

Closed

Figure 1.4.1

Now consider the more complicated circuits of Figures 1.4.2(a) and 1.4.2(b).

P QXQ

T|
Switches "in series"

(a)

- Q

Switches "in parallel"

(b)

Figure 1.4.2

In the circuit of Figure 1.4.2(a) current flows and the light bulb turns on if, and only
if, both switches P and Q are closed. The switches in this circuit are said to be in series.
In the circuit of Figure 1.4.2(b) current flows and the light bulb turns on if, and only if, at
least one of the switches P or Q is closed. The switches in this circuit are said to be in
parallel. All possible behaviors of these circuits are described by Table 1.4.1.

41. a. -p v q -+r
b. sV -q
C. -t

d. p-* t

e. -pAr -s

f. .-. -q
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Table 1.4.1

(a) Switches in Series

Switches Light Bulb

P Q State

closed closed on

closed open off

open closed off

open open off

(b) Switches in Parallel

Switches Light Bulb

P Q State

closed closed on

closed open on

open closed on

open open off

Observe that if the words closed and on are replaced by T and open and off are replaced
by F, Table 1.4. 1 (a) becomes the truth table for and and Table 1.4.1 (b) becomes the truth
table for or. Consequently, the switching circuit of Figure 1.4.2(a) is said to correspond to
the logical expression P A Q, and that of Figure 1.4.2(b) is said to correspond to P v Q.

More complicated circuits correspond to more complicated logical expressions. This
correspondence has been used extensively in the design and study of circuits.

In the 1 940s and 1 950s, switches were replaced by electronic devices, with the physical
states of closed and open corresponding to electronic states such as high and low voltages.
The new electronic technology led to the development of modem digital systems such
as electronic computers, electronic telephone switching systems, traffic light controls,
electronic calculators, and the control mechanisms used in hundreds of other types of
electronic equipment. The basic electronic components of a digital system are called
digital logic circuits. The word logic indicates the important role of logic in the design of
such circuits, and the word digital indicates that the circuits process discrete, or separate,
signals as opposed to continuous ones.

The INTEL Pentium inte-
grated circuit, here shown
enlarged, can function as the
central processing unit of a
powerful personal computer
It is a triumph of miniatur-
ization, containing tens of
millions of'transistors that
make up millions of digital
logic circuits.

Electrical engineers continue to use the language of logic when they refer to values
of signals produced by an electronic switch as being "true" or "false." But they generally

,0

a

1O
aj
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use the symbols 1 and 0 rather than T and F to denote these values. The symbols 0 and
I are called bits, short for binary digits. This terminology was introduced in 1946 by the
statistician John Tukey.

Black Boxes and Gates
Combinations of signal bits (I's and 0's) can be transformed into other combinations of
signal bits (I's and 0's) by means of various circuits. Because a variety of different tech-
nologies are used in circuit construction, computer engineers and digital system designers
find it useful to think of certain basic circuits as black boxes. The inside of a black box
contains the detailed implementation of the circuit and is often ignored while attention is
focused on the relation between the input and the output signals.

Input a black bo S Output signal
R

The operation of a black box is completely specified by constructing an input/output
table that lists all its possible innut siignals together with their corresnondin oiitniit sinals.
For example, the black box pictured above has three input signals. Since each of these
signals can take the value I or 0, there are eight possible combinations of input signals.
One possible correspondence of input to output signals is as follows:

An Input/Output Table

Input Output

P Q R S

I I I I
1 1 0 0

1 0 1 0

1 0 0 1

o I 1 0

o I 0 1

o o 1 1

o u 0 U

The third row, for instance, indicates that for inputs P = 1, Q = 0, and R = 1, the output
S is 0.

An efficient method for designing more complicated circuits is to build them by con-
necting less complicated black box circuits. Three such circuits are known as NOT-,
AND-, and OR-gates.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If
the input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the
output signal is 1. An AND-gate is a circuit with two input signals and one output signal.
If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0.
An OR-gate also has two input signals and one output signal. If both input signals are 0,
then the output signal is 0. Otherwise, the output signal is 1.

The actions of NOT-, AND-, and OR-gates are summarized in Figure 1.4.3, where P
and Q represent input signals and R represents the output signal. It should be clear from

John W Tukey
(1915-2000)
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Figure 1.4.3 that the actions of the NOT-, AND-, and OR-gates on signals correspond
exactly to those of the logical connectives -, A, and V on statements, if the symbol 1 is
identified with T and the symbol 0 is identified with F.

Figure 1.4.3

Gates can be combined into circuits in a variety of ways. If the rules shown below are
obeyed, the result is a combinational circuit, one whose output at any time is determined
entirely by its input at that time without regard to previous inputs.

Rules for a Combinational Circuit
Never combine two input wires.

A single input wire can be split partway and used as input
for two separate gates.

An output wire can be used as input.

No output of a gate can eventually feed back into that gate.

1.4.1

1.4.2

1.4.3

1.4.4

Rule (1.4.4) is violated in more complex circuits, called sequential circuits, whose output
at any given time depends both on the input at that time and also on previous inputs. These
circuits are discussed in Section 12.2.

Type of Symbolic
Gate Representation Action

NOT P NOT R

Input Output

P Q R

AD Q 1: ~ 0 0

o 1 0

o o 0

Input Output

P Q R

OR OR R I I I
Q 1E - 0 1

o i 1 1
o 0 1 0

1
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The Input/Output Table for a Circuit
If you are given a set of input signals for a circuit, you can find its output by tracing
through the circuit gate by gate.

Example 1.4.1 Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

a. Input signals: P = 0 and Q = I
P NOT

AND R

Q

b. p Inputsignals: P = 1, Q = 0, R = I

Q
AND S

R

Solution

a. Move from left to right through the diagram, tracing the action of each gate on the
input signals. The NOT-gate changes P = 0 to a 1, so both inputs to the AND-gate
are 1; hence the output R is 1. This is illustrated by annotating the diagram as shown
below.

P NO
AD R

Q 1

b. The output of the OR-gate is 1 since one of the input signals, P, is 1. The NOT-gate
changes this 1 into a 0, so the two inputs to the AND-gate are 0 and R = 1. Hence the
output S is 0. The trace is shown below.

Q 3'D 0

1 AD S
R

To construct the entire input/output table for a circuit, trace through the circuit to find
the corresponding output signals for each possible combination of input signals.

Example 1.4.2 Constructing the Input/Output Table for a Circuit

Construct the input/output table for the following circuit.

P

OR R

Q NO
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Solution List the four possible combinations of input signals, and find the output for each
by tracing through the circuit.

Input

P Q

1 1

1 0

o 1

o o

Output

R

1

0

1
.

The Boolean Expression Corresponding to a Circuit
In logic, variables such as p, q and r represent statements, and a statement can have one
of only two truth values: T (true) or F (false). A statement form is an expression, such as
p A (-q V r), composed of statement variables and logical connective.

As noted earlier, one of the founders of symbolic logic was the English mathematician
George Boole. In his honor, any variable, such as a statement variable or an input signal,
that can take one of only two values is called a Boolean variable. An expression composed
of Boolean variables and the connectives -, A, and V is called a Boolean expression.*

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a corresponding
Boolean expression can be obtained by tracing the actions of the gates of the input variables.

Example 1.4.3 Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits shown below. A dot indicates
a soldering of two wires; wires that cross without a dot are assumed not to touch.

(a) (b)

Solution

a. Trace through the circuit from left to right, indicating the output of each gate symbol-
ically, as shown below.

P

Q

*Strictly speaking, only meaningful expressions such as (-p A q) V (p A r) and -(-(p A q) V r)
are allowed, not meaningless ones like p -q((rs V A q -. We use recursion to give a careful
definition of Boolean expressions in Section 8.4.

George Boole
(1815-1864)
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The final expression obtained, (P V Q) A -(P A Q), is the expression for exclusive
or: P or Q but not both.

b. The Boolean expression corresponding to the circuit is (P A Q) A -R, as shown below.

P P

R, =

Observe that the output of the circuit shown in Examplel.4.3(b) is 1 for exactly one
combination of inputs (P = 1, Q = 1, and R = 0) and is 0 for all other combinations of
inputs. For this reason, the circuit can be said to "recognize" one particular combination
of inputs. The output column of the input/output table has a I in exactly one row and 0's
in all other rows.

lI.u 'I

A recnzeris ac itthat outputs a or exactly o rticular cminon of
inpuot signalsand outputs s for all other combinations.

Input/Output Table for a Recognizer

P Q R (PAQ)A-.R l

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

The Circuit Corresponding to a Boolean Expression
The preceding examples showed how to find a Boolean expression corresponding to a cir-
cuit. The following example shows how to construct a circuit corresponding to a Boolean
expression.

Example 1.4.4 Constructing Circuits for Boolean Expressions

Construct circuits for the following Boolean expressions.

b. ((P A Q) A (R A S)) A Ta. (-P A Q) V -Q
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Solution

a. Write the input variables in a column on the left side of the diagram. Then go from the
right side of the diagram to the left, working from the outermost part of the expression to
theinnermostpart. Sincethe]astoperationexecutedwhenevaluating (-P A Q) V -Q
is v, put an OR-gate at the extreme right of the diagram. One input to this gate is
-P A Q, so draw an AND-gate to the left of the OR-gate and show its output coming
into the OR-gate. Since one input to the AND-gate is -P, draw a line from P to a
NOT-gate and from there to the AND-gate. Since the other input to the AND-gate is
Q, draw a line from Q directly to the AND-gate. The other input to the OR-gate is
-Q, so draw a line from Q to a NOT-gate and from the NOT-gate to the OR-gate. The

circuit you obtain is shown below.

P

Q

b. To start constructing this circuit, put one AND-gate at the extreme right for the A

between ((P A Q) A (R A S)) and T. To the left of that put the AND-gate corre-
sponding to the A between P A Q and R A S. To the left of that put the AND-gates
corresponding to the A's between P and Q and between R and S. The circuit is shown
in Figure 1.4.4.

Figure 1.4.4 U

It follows from Theorem 1.1.1 that all the ways of adding parentheses to
P A Q A R A S A T are logically equivalent. Thus, for example,

((P A Q) A (R A S)) A T - (P A (Q A R)) A (S A T).

It also follows that the circuit in Figure 1.4.5, which corresponds to
(P A (Q A R)) A (S A T), has the same input/output table as the circuit in Figure 1.4.4,
which corresponds to ((P A Q) A (R A S)) A T.

I-,

Q

R

S

I

Figure 1.4.5
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Each of the circuits in Figures 1.4.4 and 1.4.5 is, therefore, an implementation of
the expression P A Q A R A S A T. Such a circuit is called a multiple-input AND-gate
and is represented by the diagram shown in Figure 1.4.6. Multiple-input OR-gates are
constructed similarly.

P

Q
R AN

S

T

Figure 1.4.6

Finding a Circuit That Corresponds to a Given
Input/Output Table

To this point, we have discussed how to construct the input/output table for a circuit, how
to find the Boolean expression corresponding to a given circuit, and how to construct the
circuit corresponding to a given Boolean expression. Now we address the question of how
to design a circuit (or find a Boolean expression) corresponding to a given input/output
table. The way to do this is to put several recognizers together in parallel.

Example 1.4.5 Designing a Circuit for a Given Input/Output Table

Design a circuit for the following input/output table:

Input Output

P Q R S

1 1 1 1
I I I I
1 I 0 0

1 0 1 1

1 0 0 1

o i 1 0

o 1 0 0

o 0 1 0

o 0 0 0

Solution First construct a Boolean expression with this table as its truth table. To do this,
identify each row for which the output is 1-in this case, the first, third, and fourth rows.
For each such row, construct an and expression that produces a l(or true) for the exact
combination of input values for that row and a 0 (or false) for all other combinations
of input values. For example, the expression for the first row is P A Q A R because
P A Q A R is 1 if P = 1 and Q = 1 and R = 1, and it is 0 for all other values of P. Q,
and R. The expression for the third row is P A -Q A R because P A -Q A R is I if
P = 1 and Q = 0 and R = 1, and it is 0 for all other values of P, Q, and R. Similarly,
the expression for the fourth row is P A -Q A -R.
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Now any Boolean expression with the given table as its truth table has the value I in
caseP QA R = l,orincasePA -QA R = 1,orincasePA-QA -R= l,andin
no other cases. It follows that a Boolean expression with the given truth table is

(PA Q AR) V (PA -Q AR) v (PA -Q A -R). 1.4.5

The circuit corresponding to this expression has the diagram shown in Figure 1.4.7. Ob-
serve that expression (1.4.5) is a disjunction of terms that are themselves conjunctions in
which one of P or -P, one of Q or -Q, and one of R or -R all appear. Such expressions
are said to be in disjunctive normal form or sum-of-products form.

P-
Q.

Figure 1.4.7 .

Simplifying Combinational Circuits
Consider the two combinational circuits shown in Figure 1.4.8.

P

Q

R

(a)

AD R
Q

(b)

Figure 1.4.8
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If you trace through circuit (a), you will find that its input/output table is

Input

P Q
I I

0 1

0 0

Output

R

I
0

0

0

which is the same as the input/output table for circuit (b). Thus these two circuits do the
same job in the sense that they transform the same combinations of input signals into the
same output signals. Yet circuit (b) is simpler than circuit (a) in that it contains many fewer
logic gates. Thus, as part of an integrated circuit, it would take less space and require less
power.

Two digital logic circuits are equivalent if, and only if, their i t/oput tas a
Identical.

Since logically equivalent statement forms have identical truth tables, you can deter-
mine that two circuits are equivalent by finding the Boolean expressions corresponding to
the circuits and showing that these expressions, regarded as statement forms, are logically
equivalent. Example 1.4.6 shows how this procedure works for circuits (a) and (b) in
Figure 1.4.8.

Example 1.4.6 Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in Figure 1.4.8. Use Theorem 1 .1.1 to show
that these expressions are logically equivalent when regarded as statement forms.

Solution The Boolean expressions that correspond to circuits (a) and (b) are
((P A -Q) V (P A Q)) A Q and P A Q, respectively. By Theorem 1.1.1,

((P A -Q) v (P A Q)) A Q
(P A (-Q V Q)) A Q by the distributive law (Theorem 1.1.1 (3))

(P A (Q V -Q)) A Q by the commutative law for v (Theorem 1.1.1(1))

(P A t) A Q by the negation law (Theorem 1.1.1(5))

P A Q by the identity law (Theorem 1.1.1(4)).

It follows that the truth tables for ((P A -Q) V (P A Q)) A Q and P A Q are the same.
Hence the input/output tables for the circuits corresponding to these expressions are also
the same, and so the circuits are equivalent. U

In general, you can simplify a combinational circuit by finding the corresponding
Boolean expression, using the properties listed in Theorem 1.1.1 to find a Boolean ex-
pression that is simpler and logically equivalent to it (when both are regarded as statement
forms), and constructing the circuit corresponding to this simpler Boolean expression.
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NAND and NOR Gates
Another way to simplify a circuit is to find an equivalent circuit that uses the least number
of different kinds of logic gates. Two gates not previously introduced are particularly
useful for this: NAND-gates and NOR-gates. A NAND-gate is a single gate that acts like
an AND-gate followed by a NOT-gate. A NOR-gate acts like an OR-gate followed by a
NOT-gate. Thus the output signal of a NAND-gate is 0 when, and only when, both input
signals are 1, and the output signal for a NOR-gate is 1 when, and only when, both input
signals are 0. The logical symbols corresponding to these gates are I (for NAND) and 4,
(for NOR), where I is called a Sheffer stroke (after H.M. Sheffer 1882-1964) and 4 is
called a Peirce arrow (after C.S. Peirce, 1839-1914; see page 78). Thus

P I Q =- -(P A Q) and P , Q - (P v Q).

The table below summarizes the actions of NAND and NOR gates.

Type of Gate Symbolic Representation Action

Input Output

P Q R=PI Q

NAND R I 0
1 0 1

o i 1

o 0 1

Input Output

P Q R=PI Q Q

NOR N
Q 1 o o

o 1 0

o 0 1

It can be shown that any Boolean expression is equivalent to one written entirely with
Sheffer strokes or entirely with Peirce arrows. Thus any digital logic circuit is equivalent
to one that uses only NAND-gates or only NOR-gates. Example 1.4.7 develops part of
the derivation of this result; the rest is left for the exercises.

Example 1.4.7 Rewriting Expressions Using the Sheffer Stroke

Show that

a. -P-PJP and b. PvQ=(PjP)j(QIQ).

Solution

a. -P -"(P A P) by the idempotent law for A (Theorem 1.1.1(7))

- P I P by definition of .

H. M. Sheffer
(1882-1964)
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b. P v Q = - (-(P V Q)) by the doul

- -(-P A -Q) by De Mor

- ' ((P I P) A (Q I Q)) by part (a)

- (P P) M (Q IQ) by definitic

ble negative law (Theorem 1.1.1(6))

gan's laws (Theorem 1.1.1(9))

)in of 1.

Exercise Set 1.4
Give the output signals for the circuits in 1-4 if the input signals
are as indicated.

1. p
OR R

Q nOT

input signals: P = I and Q = 1

2. p

Q

input signals: P = 1 and Q = 0

'2
1. r

Q

R

S

input signals: P = 1, Q=O, R=O

4. p

Q

R

input signals: P = 0, Q = 0, R = 0

In 5-8, write an input/output table for the circuit in the referenced
exercise.

5. Exercise 1 6. Exercise 2

7. Exercise 3 8. Exercise 4

In 9-12, find the Boolean expression that corresponds to the
circuit in the referenced exercise.

9. Exercise I 10. Exercise 2

11. Exercise 3 12. Exercise 4

Construct circuits for the Boolean expressions in 13-17.

13. -P v Q 14. -(P v Q)

15. P v (-P A -Q) 16. (P A Q) v -R

17. (P A -Q) v (-P A R)

R

For each of the tables in 18-21, construct (a) a Boolean expres-
sion having the given table as its truth table and (b) a circuit
having the given table as its input/output table.

18. P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

o 1 1 1

o 1 0 0

o 0 1 0

o 0 0 0

19. P Q R S

1 I 1 0

1 1 0 1

1 0 1 0

1 0 0 1

o i 1 0

o 1 0 1

o 0 1 0

o o 0 0

P Q R S

I 1 1 1

1 1 0 0

1 0 1 1

1 0 0 0

o 1 1 0

o i 0 0

o o 1 0

o o 0 1

.
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21.

22. Design a circuit to take input signals P, Q, and R and output
a I if, and only if, P and Q have the same value and Q and
R have opposite values.

23. Design a circuit to take input signals P, Q, and R and output
a I if, and only if, all three of P, Q, and R have the same
value.

24. The lights in a classroom are controlled by two switches:
one at the back and one at the front of the room. Moving
either switch to the opposite position turns the lights off if
they are on and on if they are off. Assume the lights have
been installed so that when both switches are in the down
position, the lights are off. Design a circuit to control the
switches.

25. An alarm system has three different control panels in three
different locations. To enable the system, switches in at least
two of the panels must be in the on position. If fewer than
two are in the on position, the system is disabled. Design a
circuit to control the switches.

Use the properties listed in Theorem 1.1.1 to show that each
pair of circuits in 26-29 have the same input/output table. (Find
the Boolean expressions for the circuits and show that they are
logically equivalent when regarded as statement forms.)

26. a. p

Q OR

b. p

Q AN

27. a.

P

Q

b. p

Q

29. a.
P

Q

bz p

For the circuits corresponding to the Boolean expressions in each
of 30 and 31 there is an equivalent circuit with at most two logic
gates. Find such a circuit.

30. (PA Q)V(-PA Q)V(-PA -Q)

31. (-P A -Q) v (-P A Q) v (P A -Q)

32. The Boolean expression for the circuit in Example 1.4.5 is

(PA QAR)V(PA QAR)V(PA QA R)

(a disjunctive normal form). Find a circuit with at most
three logic gates that is equivalent to this circuit.

33. a. Show that for the Sheffer stroke 1,

PAQ =- (PIQ)I(PIQ).

b. Use the results of Example 1.4.7 and part (a) above to
write P A (-Q v R) using only Sheffer strokes.

b. Q

Q

P Q R

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

o I O
o 0 1

o o 0

28. a.
P

Q

S

0

0

0

.

0

0

I

-
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34. Show that the following logical equivalences hold for the c. P A Q - (P , P) l (Q 4 Q)
Peirce arrow 4, where P 4, Q -- -(P v Q). H d. Write P Q using Peirce arrows only.
a. -P =_ P J P e. Write P Q using Peirce arrows only.
b. P v Q (P Q)4 (P 1 Q)

1.5 Application: Number Systems and Circuits
for Addition
Counting in binary is just like counting in decimal if you are all thumbs. -Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a
string of decimal digits as a number, you mentally multiply each digit by its place value.
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the
tens place, and a 9 in the ones place. Thus

5,049 = 5 - (1,000) + 0 (100) + 4 * (10) + 9 (1).

Using exponential notation, this equation can be rewritten as

5,049 = 5 . 103 + 0 . 102 + 4. 101 + 9 . 100.

More generally, decimal notation is based on the fact that any positive integer can be
written uniquely as a sum of products of the form

d 0n,

where each n is a nonnegative integer and each d is one of the decimal digits 0, 1, 2, 3, 4,
5, 6, 7, 8, or 9. The word decimal comes from the Latin root deci, meaning "ten." Decimal
(or base 10) notation expresses a number as a string of digits in which each digit's position
indicates the power of 10 by which it is multiplied. The right-most position is the ones
place (or 100 place), to the left of that is the tens place (or 101 place), to the left of that is
the hundreds place (or 102 place), and so forth, as illustrated below.

P0l 102 10l 100
Place thousands hundreds tens ones

Decimal Digit 5 0 4 9

Binary Representation of Numbers
There is nothing sacred about the number 10; we use 10 as a base for our usual number
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve
as a base for a number system. In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern electronics are always in one
of only two states. (The Latin root bi means "two.")

In Section 4.4. we show that any integer can be represented uniquely as a sum of
powers of the form

d 2

where each n is an integer and each d is one of the binary digits (or bits) 0 or 1. For
example,

27= 16+8+2+ 1

= 1 -24 + 1 . 23 + 0- 22 +1 . 2' + 1 . 20.
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In binary notation, as in decimal notation, we write just the binary digits, and not the
powers of the base. In binary notation, then,

1 * 24 + 1 * 23 + 0 * 22 + 1 . 2' + 1 * 20

I I, II 1
2 7 10 I I 10112

where the subscripts indicate the base, whether 10 or 2, in which the number is written.
The places in binary notation correspond to the various powers of 2. The right-most
position is the one's place (or 20 place), to the left of that is the twos place (or 21 place),
to the left of that is the fours place (or 22 place), and so forth, as illustrated below.

24 23 22 2' 20
Place sixteens eights fours twos ones

Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For
example,

0031o = 31o = 1 21 + 1 20 = 112 = 0112.

Example 1.5.1 Binary Notation for Integers from 1 to 9

Derive the binary notation for the integers from 1 to 9.

Solution lo =

3to =

4io =

5io =

6io =

7io =

8jo =

910 =

1 20 = 12

1 21 +0-20 = 102

1 21+1. 20 = 112

1 . 22 +0 - 21 + 020 = 1002

1 22 + 0 . 21 + 1I 20 = 1012

1 . 22 + 1 . 21 + 0 -20 = 1102

1 22+ 1.21+ 20 = 1112

1 -23 + 0 -22 +0 2 + 020 = 10002

1 23 + 0 22 +0 .21 + 1 20 = 10012

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary
conversions. See Table 1.5.1.

Table 1.5.1 Powers of 2

| Power of 2 | 210 |2 2' | 22 | 26 | 25 | 24 | 23 | 22 | 21 ' 20

| Decimal Form | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |

.
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Example 1.5.2 Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution 1101012 = 1 * 25 + 1.24+ 0.23 + 1.22 + 0.21 + 1.20
= 32+16+4+1

= 5310

Alternatively, the schema below may be used.

/e /e/e/ /e /e

1 0 1 0 12
1 1- 1

082= 01.4- 4
0.8 0

1 .16 = 16
1 .32 32

53~ U

Example 1.5.3 Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution Use Table 1.5.1 to write 209 as a sum of powers of 2, starting with the highest
power of 2 that is less than 209 and continuing to lower powers.

Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128.
Hence

20910 = 128 + a smaller number.

Now 209 - 128 = 81, and 81 is between 64 and 128, so the highest power of 2 that is
less than 81 is 64. Hence

209io = 128 + 64 + a smaller number.

Continuing in this way, you obtain

2091o = 128 + 64 + 16 + 1

= 1 - 27 + 1 . 26 + 0 - 2' + 1 .2 4+ 0 -2 3+ 0. 22+ 0- 21 + 1. 20.

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position
of the binary number. For each power of 2 that is missing from the sum, there is a 0 in the
corresponding position of the binary number. Thus

2091o = 110100012 l

Another procedure for converting from decimal to binary notation is discussed in
Section 4.1.
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Binary Addition and Subtraction
The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic the number 2 (= 102 in binary notation) plays a role similar to
that of the number 10 in decimal arithmetic. But do not read 102 as "ten"; it is the number
two. Read 102 as "one oh base two."

Example 1.5.4 Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution Because 21o = 102 and I lo = 12, the translation of I to + l o = 21o to binary no-
tation is

12

+ 12

102

It follows that adding two I's together results in a carry of 1 when binary notation is used.
Adding three I's together also results in a carry of I since 3 10 112 ("one one base two").

12

+ 12

+ 12

112

Thus the addition can be performed as follows:

I I t carry row

I I 0 12

+ I 1 1 2
1 0 1 0 02

Example 1.5.5 Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution In decimal subtraction the fact that 101Oo - 1 = 91o is used to borrow across
several columns. For example, consider the following:

9 9
+- borrow row

1)-At 010

- 5 8 10

9 4 210

In binary subtraction it may also be necessary to borrow across more than one column.
But when you borrow a 12 from 102, what remains is 12.

102
12

12

Thus the subtraction can be performed as follows:

0 I I

I \ 1 0 - borrow row

- I 0 1 12

1 1 0 12
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Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 + 12 = 102,

12 + 02 = 12 = 012,

02 + 12 = 12 = 012,

02 + 02 = 02 = 002.

It follows that the circuit to be designed must have two outputs-one for the left
binary digit (this is called the carry) and one for the right binary digit (this is called the
sum). The carry output is I if both P and Q are 1; it is 0 otherwise. Thus the carry
can be produced using the AND-gate circuit that corresponds to the Boolean expression
P A Q. The sum output is 1 if either P or Q, but not both, is 1. The sum can, therefore,
be produced using a circuit that corresponds to the Boolean expression for exclusive or:
(P V Q) A -(P A Q). (See Example 1.4.3(a).) Hence, a circuit to add two binary digits
P and Q can be constructed as in Figure 1.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit Input/Output Table

Sum

Carry

P Q Carry Sum

I1 1 1 0

1 0 0 1

o 1 0 1
o o 0 0 I

Figure 1.5.1 Circuit to Add P + Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers,
each with more than one digit. Because the addition of two binary digits may result in
a carry to the next column to the left, it may be necessary to add three binary digits at
certain points. In the following example, the sum in the right column is the sum of two
binary digits, and, because of the carry, the sum in the left column is the sum of three
binary digits.

1 carry row

1 12

+ 1 12
1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is
necessary to incorporate a circuit that will compute the sum of three binary digits. Such
a circuit is called a full-adder. Consider a general addition of three binary digits P, Q,
and R that results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P

+ Q
+ R

CS

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the result
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is added to R. For instance, consider the following addition:

+ 2 12 +°2=12 12 + 12 = 102

+ 12

102

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary number with two digits.

P
+ Q

C'sS

Step 2: Add R to the sum Cl SI of P and Q.

C, SI

+ R

To do this, proceed as follows:

Step 2a: Add R to SI using a half-adder to obtain the two-digit number C2 S.

SI

+ R

C2 S

Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b: Determine the left-most digit, C, of the entire sum as follows: First note that

it is impossible for both C, and C2 to be l's. For if C, = 1, then P and Q are

both 1, and so SI = 0. Consequently, the addition of SI and R gives a binary

number C2 SI where C2 = 0. Next observe that C will be a 1 in the case that the

addition of P and Q gives a carry of I or in the case that the addition of SI (the

right-most digit of P + Q) and R gives a carry of 1. In other words, C = 1 if,

and only if, C, = I or C2 = 1. It follows that the circuit shown in Figure 1.5.2

will compute the sum of three binary digits.

FULL-ADDER
Circuit

P

Q

R

C

S

Input/Output Table

P Q R C I S I

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

o 1 1 1 0
o 1 0 0 1
o o 1 0 1

o o 0 0 0

Figure 1.5.2 Circuit to Add P + Q + R, Where P, Q and R Are Binary Digits
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Two full-adders and one half-adder can be used together to build a circuit that will
add two three-digit binary numbers P QR and STU to obtain the sum WXYZ. This is
illustrated in Figure 1.5.3. Such a circuit is called a parallel adder. Parallel adders can
be constructed to add binary numbers of any finite length.

R

U

Q
T

P

S

SI = Z

S,= Y

S3 = X

C3 = W

Figure 1.5.3 A Parallel Adder to Add P QR and STU to Obtain WXYZ

Two's Complements and the Computer Representation
of Negative Integers

Typically, a fixed number of bits is used to represent integers on a computer, and these
are required to represent negative as well as nonnegative integers. Sometimes a particular
bit, normally the left-most, is used as a sign indicator, and the remaining bits are taken to
be the absolute value of the number in binary notation. The problem with this approach
is that the procedures for adding the resulting numbers are somewhat complicated and the
representation of 0 is not unique. A more common approach, using two s complements,
makes it possible to add integers quite easily and results in a unique representation for 0.
The two's complement of an integer relative to a fixed bit length is defined as follows:

en a positive integer a, tie two's complement of a relative to a ied bit length
' sthe n-bit binaryrpeenaino

-a.

Bit lengths of 16 and 32 are the most commonly used in practice. However, because
the principles are the same for all bit lengths, we use a bit length of 8 for simplicity in this
discussion. For instance, because

(28 - 27)1o = (256 - 2 7 )1o = 2 2 9 io = (12 8 + 64 + 3 2 + 4 + l)1o = 111001012,

the 8-bit two's complement of 27 is 111001012.
It turns out that there is a convenient way to compute two's complements that involves

less arithmetic than direct application of the definition. For an 8-bit representation, it is
based on three facts:
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For instance, by (2) and (3), with a = 27,

Illllldll~ll I28 -I

O's and l's IA [I0 i 0 |lIl 1 10 1 | 1 | 27
are switched

IjIX IjjI j j j 1j0 10 (2- 1) -27 1.5.1

and so in binary notation the difference (28 - 1) - 27 is 111001002. But by (1) with
a = 27, 2' - 27 = [(2' - 1) -27] + 1, and so if we add I to (1.5.1), we obtain the 8-bit

binary representation of 28 - 27, which is the 8-bit two's complement of 27:

TLPj°T°llllof j (28-1) -27
1001001010011 I

Tii °Tif ii0 fii 2 -27

In general,

Example 1.5.6 Finding a Two's Complement

Find the 8-bit two's complement of 19.

Solution Write the 8-bit binary representation for 19, switch all the O's to I's and all the I's
to O's, and add 1.

191o = (16 + 2 + l)io = 000100112 flipthebits, 11101100 add I> 11101101

To check this result, note that

111011012 = (128 + 64 + 32 + 8 + 4 + l)1o = 237 1o = (256 - 19)1o

= (2' - 19)lo,

which is the two's complement of 19. v

1.28 -a=[(28 -1)-a]+1.

2. The binary representation of 28 - 1 is 111111112.

3. Subtracting an 8-bit binary number a from 111111112 just switches all the O's in a
to I's and all the l's to O's. (The resulting number is called the one's complement
of the given number.)

To find the 8-bit two's complement of a positive integer a that is at most 255:

0* Write& the 8-bit binary representation for a. l

* Flip the bits (that is, switch all the l's to O's and all the O's to l's).

X Add 1 in binary notation.
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Observe that because

28 - (28 - a) = a

the two's complement of the two's complement of a number is the number itself, and
therefore,

To find the decimal representation of the integer with a given 8-bit two's complement:

* Find the two's complement of the given two's complement.

* Write the decimal equivalent of the result.

Example 1.5.7 Finding a Number with a Given Two's Complement

What is the decimal representation for the integer with two's complement 10101001?

Solution

101010012 flipthebits) 01010110

add I1 010101112=(64+16+4+2+1)1o=8710

To check this result, note that the given number is

101010012 = (128 + 32 + 8 + l) o = 169 1o = (256 - 8 7 )io = (28 - 87)IO,

which is the two's complement of 87.

8-Bit Representation of a Number
Now consider the two's complement of an integer n that satisfies the inequality 1 < n <
128. Then

-1 > -n > -128 because multiplying by -I reverses
the direction of the inequality

and

28 - 1 > 28 - n > 28 _ 128 by adding 28 to all parts of the inequality.

But 28 - 128 = 256 -128 128 = 27. Hence

2 < the decimal form of the two's complement of n < 2.

It follows that the 8-bit two's complement of an integer from 1 through 128 has a leading
bit of 1. Note also that the ordinary 8-bit representation of an integer from 0 through 127
has a leading bit of 0. Consequently, eight bits can be used to represent both nonnegative
and negative integers by representing each nonnegative integer up through 127 using
ordinary 8-bit binary notation and representing each negative integer from -1 through
-128 as the two's complement of its absolute value. That is, for any integer a from -128
through 127,

The 8-bit representation of aI the 8-bit binary representation of a if a > 0

the 8-bit binary representation of 28 - jal if a < 0

The representations are illustrated in Table 1.5.2.
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Table 1.5.2

8-Bit Representation (ordinary 8-bit Decimal Form of
binary notation if nonnegative or 8-bit two's Two's Complement

Integer complement of absolute value if negative) for Negative Integers

127 01111111

126 01111110

2 00000010

1 00000001

0 00000000

-1 11111111 28 - 2

-2 ll111110 2' - 2

-3 11111101 28 -3

-127 10000001 28 - 127

-128 10000000 2' - 128

Computer Addition with Negative Integers
Here is an example of how two's complements enable addition circuits to perform subtrac-
tion. Suppose you want to compute 72 -54. First note that this is the same as 72 + (-54),
and the 8-bit binary representations of 72 and -54 are 01001000 and 11001010, respec-
tively. So if you add the 8-bit binary representations for both numbers, you get

0 1 0 0 1 0 0 0
+ 11 0 0 1 0 1 0

1 0 0 0 1 0 0 1 0

And if you truncate the leading 1, you get 00010010. This is the 8-bit binary representation
for 18, which is the right answer!

The description below explains how to use this method to add any two integers between
-128 and 127. It is easily generalized to apply to 16-bit and 32-bit representations in
order to add integers between about -2,000,000 and 2,000,000.

To add two integers in the range -128 through 127 whose sum is also in the range
-128 through 127:

* Convert both integers to their 8-bit representations (representing negative integers
by using the two's complements of their absolute values).

* Add the resulting integers using ordinary binary addition.

* Truncate any leading 1 (overflow) that occurs in the 28 th position.

* Convert the result back to decimal form (interpreting 8-bit integers with leading
O's as nonnegative and 8-bit integers with leading l's as negative).

To see why this result is true, consider four cases: (1) both integers are nonnegative, (2)
one integer is nonnegative and the other is negative and the absolute value of the negative
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integer is greater than that of the nonnegative one, (3) one integer is nonnegative and the
other is negative and the absolute value of the negative integer is less than or equal to that
of the nonnegative one, and (4) both integers are negative.

Case (1), where both integers are nonnegative, is easy because if two nonnegative
integers from 0 through 127 are written in their 8-bit representation and if their sum is also
in the range 0 through 127, then the 8-bit representation of their sum has a leading 0 and
is therefore interpreted correctly as a nonnegative integer. The example below illustrates
what happens when 38 and 69 are added.

10101 I 101[o1 38

010001010[O ll 69

l1fl I Ii ol 1 107

Both cases (2) and (3) involve adding a negative and a nonnegative integer. To be
concrete, let the nonnegative integer be a and the negative integer be -b and suppose
both a and -b are in the range -128 through 127. The crucial observation is that adding
the 8-bit representations of a and -b is equivalent to computing

a + (28 - b)

because the 8-bit representation of -b is the binary representation of 28 - b.
In case IaI < IbI, observe that

a + (28 -b) = 28 - (b -a),

and the binary representation of this number is the 8-bit representation of -(b - a) =

a + (-b). We must be careful to check that 28 - (b - a) is between 27 and 28. But it is
because

27 = 28 - 27 < 28 - (b-a) < 28 since < b-a < 128 = 27.

Hence in case lal < Ibl, adding the 8-bit representations of a and -b gives the 8-bit
representation of a + (-b).

In case Ia > Ib , observe that

a + (2 8 -b) = 28 + (a-b).

Also

28 < 28 + (a -b) < 28 + 27 because < a - b < 128.

So the binary representation of a + (28 - b) = 28 + (a - b) has a leading 1 in the ninth
(28th) position. This leading 1 is often called "overflow" because it does not fit in the
8-bit integer format. Now subtracting 28 from 28 + (a - b) is equivalent to truncating
the leading 1 in the 28th position of the binary representation of the number. But

[a + (2 8 -b)]-2 8 = 28 + (a-b) -28 = a-b = a + (-b).

Hence in case la I > lb, adding the 8-bit representations of a and -b and truncating the
leading 1 (which is sure to be present) gives the 8-bit representation of a + (-b).
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Example 1.5.8 Computing a + (-b) Where 0 < a < b < 128

Use 8-bit representations to compute 39 + (-89).

Solution

Step 1: Change from decimal to 8-bit representations using the two's complement to
represent -89.

Since 39 10 = (32 + 4 + 2 + I)Io = 1001112, the 8-bit representation of 39 is
00100111. Now the 8-bit representation of -89 is the two's complement of 89.
This is obtained as follows:

891o = (64 + 16 + 8 + )lo = 010110012 flip the bits

1ioiooio add I> 10100111

So the 8-bit representation of -89 is 10100111.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th
position if there is one:

1101110101111111+ -

There is no I in the 28 th
position to truncate--- I I | I Ii I 1 |1 | 1 o

Step 3: Find the decimal equivalent of the result. Since its leading bit is 1, this number
is the 8-bit representation of a negative integer.

11001110 flipthebits 00110001 add 1, 00110010

, -(32 + 16 + 2)io =-50jo

Note that since 39 -89 = -50, this procedure gives the correct answer. U

Example 1.5.9 Computing a + (-b) Where 1 < b < a < 127

Use 8-bit representations to compute 39 + (-25).

Solution

Step 1: Change from decimal to 8-bit representations using the two's complement to
represent -25

As in Example 1.5.8, the 8-bit representation of 39 is 00100111. Now the
8-bit representation of -25 is the two's complement of 25, which is obtained as
follows:

2510 (16+8+ )0o =000110012 flipthebits

11100110 add I> 11100111

So the 8-bit representation of -25 is 11100111.
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Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th
position if there is one:

olol 11 lolo- 111M

1111d1H10=1111

Truncate-* I I 0 j 0 | 0 | 0 | I I I I I I 0

Step 3: Find the decimal equivalent of the result:

000011102 = ( 8 + 4 + 2 )1o = 141o.

Since 39 -25 = 14, this is the correct answer. U

Case (4) involves adding two negative integers in the range -1 through -128 whose
sum is also in this range. To be specific, consider the sum (-a) + (-b) where a, b, and
a + b are all in the range 1 through 128. In this case, the 8-bit representations of -a and
-b are the 8-bit representations of 28 - a and 28 - b. So if the 8-bit representations of
-a and -b are added, the result is

(28 - a) + (28 -b) = [28 - (a + b)] + 28 .

Recall that truncating a leading I in the ninth (28th) position of a binary number is equiv-
alent to subtracting 28. So when the leading I is truncated from the 8-bit represen-
tation of (28 - a) + (28 - b), the result is 28 - (a + b), which is the 8-bit representa-
tion of -(a + b) = (-a) + (-b). (In exercise 37 you are asked to show that the sum
(28 - a) + (28 - b) has a leading 1 in the ninth (28th) position.)

Example 1.5.10 Computing (-a) + (-b) Where 1 < a, b < 128, and 1 < a + b < 128

Use 8-bit representations to compute (-89) + (-25).

Solution

Step 1: Change from decimal to 8-bit representations using the two's complements to
represent -89 and -25.

The 8-bit representations of -89 and -25 were shown in Examples 1.5.8 and
1.5.9 to be 10100111 and 1 1001 1, respectively.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28 th
position if there is one:

11011101011111
+

Truncate-s 1 |lj| | I| I|l |I|1 |
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Step 3: Find the decimal equivalent of the result. Because its leading bit is 1, this number
is the 8-bit representation of a negative integer.

10001110 flipthebits> 0 1 0001 add 1 011100102

( -(64 + 32 + 16 + 2)1o = -1141o

Since (-89) + (-25) -- 114, that is the correct answer. U

Hexadecimal Notation
It should now be obvious that numbers written in binary notation take up much more space
than numbers written in decimal notation. Yet many aspects of computer operation can
best be analyzed using binary numbers. Hexadecimal notation is even more compact
than decimal notation, and it is much easier to convert back and forth between hexadecimal
and binary notation than it is between binary and decimal notation. The word hexadecimal
comes from the Greek root hex-, meaning "six," and the Latin root deci-, meaning "ten."
Hence hexadecimal refers to "sixteen," and hexadecimal notation is also called base 16
notation. Hexadecimal notation is based on the fact that any integer can be uniquely
expressed as a sum of numbers of the form

d - 16',

where each n is a nonnegative integer and each d is one of the integers from 0 to 15. In
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol.
So digits 10 through 15 are represented by the first six letters of the alphabet. The sixteen
hexadecimal digits are shown in Table 1.5.3, together with their decimal equivalents and,
for future reference, their 4-bit binary equivalents.

Table 1.5.3

4-Bit Binary
Decimal Hexadecimal Equivalent

0 0 0000

I 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

I1 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111
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Example 1.5.11 Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution A schema similar to the one introduced in Example 1.5.2 can be used here.

316 C1 6  F16
11 11 11

3io 1210 151o
l15. 1 = 15

12 . 16 = 192
3 . 256 = 768

9751o

So 3CF16 = 97510.

Now consider how to convert from hexadecimal to binary notation. In the example
below the numbers are rewritten using powers of 2, and the laws of exponents are applied.
The result suggests a general procedure.

C,6  516 016 A, 6
11 11 11 11

12,o 51o 010 1010
10 160°=( 2 3+ 2 ) I =23+2
0 16'=0 -24 =0
5 162 =(22+1)2 =210+28

12 163 = (2' + 22) . 212 = 215 + 214

since 10 = 23 + 2
since 161 = 24
since 5 = 22 + I, 162 = (24)2 = 8 and 22  2= 2'10
since 12 = 23 + 22, 162 = (24)3 = 212,
23 212 = 215, and 22 .212 = 2- 4

But

(215 + 214) + (210 + 28) + 0 + (23 + 2)

= 1100 0000 0000 00002 + 0101 0000 00002 by the rules for writing

+ 0000 00002 + 10102 binary numbers.

So

C50A1 6 = 1100 0101 0000 10102

C16 516 016 A16

by the rules for adding
binary numbers.

The procedure illustrated in this example can be generalized. In fact, the following
sequence of steps will always give the correct answer:
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To convert an integer from hexadecimal to binary notation:

* Write each hexadecimal digit of the integer in fixed 4-bit binary notation.

* Juxtapose the results.

Example 1.5.12 Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation,

Solution B16 = 1110 = 10112, 016 = °10 = 00002, 916 = 910 = 10012, and F16 = l5lo =
11112. Consequently,

B 0 9 F
I I l I

1011 0000 1001 1111

and the answer is 10110000100111112-

To convert integers written in binary notation into hexadecimal notation, reverse the
steps of the previous procedure.

Example 1.5.13 Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution First group the binary digits in sets of four, working from right to left and adding
leading O's if necessary.

0100 1101 1010 1001.

Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001

4 D A 9

Then juxtapose the hexadecimal digits.

4DA916

Example 1.5.14 Reading a Memory Dump

The smallest addressable memory unit on most computers is one byte, or eight bits.
In some debugging operations a dump is made of memory contents; that is, the contents

To convert an integer from binary to hexadecimal notation:

* Group the digits of the binary number into sets of four, starting from the right and
adding leading zeros as needed.

* Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose
those hexadecimal digits.
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of each memory location are displayed or printed out in order. To save space and make
the output easier on the eye, the hexadecimal versions of the memory contents are given,
rather than the binary versions. Suppose, for example, that a segment of the memory
dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?

Solution A316 = 101000112

BB16 = 101110112

5916 = 010110012

2E1 6 = 00101110 2 a

Exercise Set 1.5
Represent the decimal integers in 1-6 in binary notation.

1. 19 2. 55 3. 287

4. 458 5. 1609 6. 1424

Represent the integers in 7-12 in decimal notation.

7. 11102 8. 101112 9. 1101102

10. 11001012 11. 10001112 12. 10110112

Perform the arithmetic in 13-20 using binary notation.

13. 10112 14. 10012
+ 1012 + 10112

15. 1011012 16. 1101110112
+ 111012 + 10010110102

17. 101002 18. 110102
- 11012 - 11012

19. 1011012 20. 10101002
- 100112 - 101112

21. Give the output signals S and T for the circuit below if the
input signals P, Q, and R are as specified. Note that this is
not the circuit for a full-adder.
a. P 1, Q = 1, R I1
b. P 0, Q =1, R 0
c. P= 1, Q =0, R =1

P

Q

R

S

22. Add 111111112 + 12 and convert the result to decimal nota-
tion, to verify that 111111112 = (2-I) lo.

Find the 8-bit two's complements for the integers in 23-26.

23. 23 24. 67 25. 4 26. 115

Find the decimal representations for the integers with the 8-bit
representations given in 27-30.

27. 11010011 28. 10011001

29. 11110010 30. 10111010

Use 8-bit representations to compute the sums in 31-36.

31. 57 + (-118) 32. 62 + (-18)

33. (-6) + (-73) 34. 89 + (-55)

35. (-15) + (-46) 36. 123 + (-94)

* 37. Show that if a and b are integers in the range I through
128, and the sum of a and b is also in this range, then
2< < (28 a) + (2' - b) < 29. Explain why it follows that
the binary representation of (28 - a) + (2 -b) has a lead-
ing 1 in the 28th position.

Convert the integers in 38-40 from hexadecimal to decimal no-
tation.

38. A2BC16  39. EOD16  40. 39EB16

Convert the integers 41-43 from hexadecimal to binary notation.

41. ICOABE,6  42. B53DF81 6  43. 4ADF83 16

Convert the integers in 44-46 from binary to hexadecimal nota-
tion.

44. 001011102 45. 10110111110001012

46. 110010010111002
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47. Octal Notation: In addition to binary and hexadecimal,
computer scientists also use octal notation (base 8) to rep-
resent numbers. Octal notation is based on the fact that any
integer can be uniquely represented as a sum of numbers of
the form d 8", where each n is a nonnegative integer and
each d is one of the integers from 0 to 7. Thus, for example,
50738 = 5 8'3 + 0 . 82 + 7 8' + 3 8° = 26191o.
a. Convert 615028 to decimal notation.
b. Convert 207638 to decimal notation.

c. Describe methods for converting integers from octal to
binary notation and the reverse that are similar to the
methods used in Examples 1.5.12 and 1.5.13 for con-
verting back and forth from hexadecimal to binary nota-
tion. Give examples showing that these methods result
in correct answers.



CHAPTER 2

THE LOGIC OF QUANTIFIED
STATEMENTS

In Chapter 1 we discussed the logical analysis of compound statements-those made of
simple statements joined by the connectives -, A, v, -a, and A*. Such analysis casts
light on many aspects of human reasoning, but it cannot be used to determine validity in
the majority of everyday and mathematical situations. For example, the argument

All men are mortal.

Socrates is a man.

Socrates is mortal.

is intuitively perceived as correct. Yet its validity cannot be derived using the methods
outlined in Section 1.3. To determine validity in examples like this, it is necessary to
separate the statements into parts in much the same way that you separate declarative
sentences into subjects and predicates. And you must analyze and understand the special
role played by words that denote quantities such as "all" or "some." The symbolic analysis
of predicates and quantified statements is called the predicate calculus. The symbolic
analysis of ordinary compound statements (as outlined in Sections 1.1-1.3) is called the
statement calculus (or the propositional calculus).

2.1 Introduction to Predicates and Quantified
Statements I
People who call this "instinct" are merely giving the phenomenon a name, not
explaining anything. -Douglas Adams, Dirk Gentlys Holistic Detective Agency, 1987

As noted in Section 1. 1, the sentence "He is a college student" is not a statement because
it may be either true or false depending on the value of the pronoun he. Similarly, the
sentence "x + y is greater than 0" is not a statement because its truth value depends on
the values of the variables x and y.

In grammar, the word predicate refers to the part of a sentence that gives information
about the subject. In the sentence "James is a student at Bedford College," the word James

75
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is the subject and the phrase is a student at Bedford College is the predicate. The predicate
is the part of the sentence from which the subject has been removed.

In logic, predicates can be obtained by removing some or all of the nouns from a
statement. For instance, let P stand for "is a student at Bedford College" and let Q
stand for "is a student at." Then both P and Q are predicate symbols. The sentences
"x is a student at Bedford College" and "x is a student at y" are symbolized as P(x)
and as Q(x, y) respectively, where x and y are predicate variables that take values in
appropriate sets. When concrete values are substituted in place of predicate variables, a
statement results. For simplicity, we define a predicate to be a predicate symbol together
with suitable predicate variables. In some other treatments of logic, such objects are
referred to as propositional functions or open sentences.

A predicate is a sentence that contains a finite number of variables and becomes
a statement when specific values are substituted for the variables. The domain of
a predicate variable is the set of all values that may be substituted in place of the
variable.

Example 2.1.1 Finding Truth Values of a Predicate

Let P(x) be the predicate "x2 > x" with domain the set R of all real numbers. Write
P(2), Plj), and P(- ), and indicate which of these statements are true and which are
false.

Solution P(2): 22 > 2, or 4 > 2. True.

P(-) (1)2 > or > 2. False.

2 or >-2 True. U

The sets in which predicate variables take their values may be described either in
words or in symbols. When symbols are used, sets are normally denoted by uppercase
letters and elements of sets by lower-case letters. The notation x E A indicates that x is
an element of the set A, or, more briefly, x is in A. Then x 0 A means that x is not in
A. One way to define a set is simply to indicate its elements between a pair of braces.
For instance, {1, 2, 3} refers to the set whose elements are 1, 2, and 3, and {l, 2, 3, ... .I
indicates the set of all positive integers. (The symbol ". . ." is called an ellipsis and is read
"and so forth.") Two sets are equal if, and only if, they have exactly the same elements.

Certain sets of numbers are so frequently referred to that they are given special sym-
bolic names. These are summarized in the table below.

Symbol Set

R set of all real numbers

Z set of all integers*

Q set of all rational numbers, or quotients of integers

*The Z stands for the first letter of the German word for integers, Zahlen.
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Addition of a superscript + or - or the letters nonneg indicates that only the positive
or negative or nonnegative elements of the set, respectively, are to be included. Thus
R+ denotes the set of positive real numbers, and Znonneg refers to the set of nonnegative
integers: 0, 1, 2, 3, 4, and so forth. Some authors refer to the set of nonnegative integers
as the set of natural numbers and denote it as N. Other authors call only the positive
integers natural numbers. To avoid confusion, we simply avoid using the phrase natural
numbers in this book.

The set of real numbers is usually pictured as the set of all points on a line, as shown
below. The number 0 corresponds to a middle point, called the origin. A unit of distance
is marked off, and each point to the right of the origin corresponds to a positive real
number found by computing its distance from the origin. Each point to the left of the
origin corresponds to a negative real number, which is denoted by computing its distance
from the origin and putting a minus sign in front of the resulting number. The set of real
numbers is therefore divided into three parts: the set of positive real numbers, the set of
negative real numbers, and the number 0. Note that 0 is neither positive nor negative.
Labels are given for a few real numbers corresponding to points on the line.

-3 -2 -1 0 1 2 3
< I I . 1 I. I . I * I*

- 3 -0.8 I 2.6 I1
2 34

The real number line is called continuous because it is imagined to have no holes.
The set of integers corresponds to a collection of points located at fixed intervals along
the real number line. Thus every integer is a real number, and because the integers are
all separated from each other, the set of integers is called discrete. The name discrete
mathematics comes from the distinction between continuous and discrete mathematical
objects.

When an element in the domain of the variable of a one-variable predicate is substituted
for the variable, the resulting statement is either true or false. The set of all such elements
that make the predicate true is called the truth set of the predicate.

" I|. I

If P(x is a predicate and x has domain D, the truth set of P(x) is the set of all
elements of D that lk P(x) true when they are substituted for x. The truth set of
P(x) is denoted

t{XE DIP(x) ;

the set of all such that

which is read "the set of all x in D such that P(x)."

Example 2.1.2 Finding the Truth Set of a Predicate

Let Q(n) be the predicate "n is a factor of 8." Find the truth set of Q(n) if

a. the domain of n is the set Z+ of all positive integers

b. the domain of n is the set Z of all integers.
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Solution

a. The truth set is ( 1, 2, 4, 8} because these are exactly the positive integers that divide 8
evenly.

b. The truth set is { 1, 2, 4, 8, -1, -2, -4, -8) because the negative integers-1, -2, -4,
and -8 also divide into 8 without leaving a remainder. D

The Universal Quantifier: V
One sure way to change predicates into statements is to assign specific values to all their
variables. For example, if x represents the number 35, the sentence "x is (evenly) divisible
by 5" is a true statement since 35 = 5 * 7. Another way to obtain statements from predicates
is to add quantifiers. Quantifiers are words that refer to quantities such as "some" or
"all" and tell for how many elements a given predicate is true. The formal concept
of quantifier was introduced into symbolic logic in the late nineteenth century by the
American philosopher, logician, and engineer Charles Sanders Peirce and, independently,
by the German logician Gottlob Frege.

The symbol V denotes "for all" and is called the universal quantifier. For example,
another way to express the sentence "All human beings are mortal" is to write

Sanders Peirce V human beings x, x is mortal,

114) or, more formally,

Vx E S, x is mortal,

where S denotes the set of all human beings. (Think "for all" when you see the symbol V.)
The domain of the predicate variable is generally indicated between the V symbol and the
variable name (as in V human beings x) or immediately following the variable name (as
in Vx E S). Some other expressions that can be used instead of for all are for every, for
arbitrary, for any, for each, and given any. In a sentence such as "V real numbers x and
y, x + y = y + x," the V symbol is understood to refer to both x and y.*

Sentences that are quantified universally are defined as statements by giving them the
truth values specified in the following definition:

Frege I.
:25)

Let Q (x) be a predicate and D the domain of x. A universal statement is a statement
of the form "Vx E D, Q(x)." It is defined to be true if, and only if, Q(x) is true for
every x in D. It is defined to be false if, and only if, Q(x) is false for at least one x in
D. A value for x for which Q(x) is false is called a counterexample to the universal
statement.

Example 2.1.3 Truth and Falsity of Universal Statements

a. Let D = {1, 2, 3, 4, 5), and consider the statement

Vx E D, x2 
> x.

Show that this statement is true.

*More formal versions of symbolic logic would require writing a separate V for each variable:
"Vx e R(Vy e R(x + y = y + x))."

Charles 5
(1839-19

Gottlob F
(1848-19
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b. Consider the statement

Vx E Rx 2 > X.

Find a counterexample to show that this statement is false.

Solution

a. Check that "x2 > x" is true for each individual x in D.

I2 > 1, 22 > 2, 32 > 3, 42 > 4' 52 > 5

Hence "8x E D, x2 > x" is true.

b. Counterexample: Take x = Then x is in R (since 2 is a real number) and

41 A2

2J 4 2

Hence "Vx E R. x2 > x" is false. U

The technique used to show the truth of the universal statement in Example 2.1.3(a) is
called the method of exhaustion. It consists of showing the truth of the predicate sepa-
rately for each individual element of the domain. (The idea is to exhaust the possibilities
before you exhaust yourself!) This method can, in theory, be used whenever the domain
of the predicate variable is finite. In recent years the prevalence of digital computers has
greatly increased the convenience of using the method of exhaustion. Computer expert
systems, or knowledge-based systems, use this method to arrive at answers to many of
the questions posed to them. Because most mathematical sets are infinite, however, the
method of exhaustion can rarely be used to derive general mathematical results.

The Existential Quantifier: 3
The symbol 3 denotes "there exists" and is called the existential quantifier. For example,
the sentence "There is a student in Math 140" can be written as

3 a person s such that s is a student in Math 140,

or, more formally,

:s E S such that s is a student in Math 140,

where S is the set of all people. (Think "there exists" when you see the symbol 3.) The
domain of the predicate variable is generally indicated either between the 3 symbol and
the variable name or immediately following the variable name. The words such that are
inserted just before the predicate. Some other expressions that can be used in place of
there exists are there is a, we can find a, there is at least one, for some, and for at least
one. In a sentence such as "3 integers m and n such that m + n = m * n," the 3 symbol is
understood to refer to both m and n.*

Sentences that are quantified existentially are defined as statements by giving them
the truth values specified in the following definition.

*In more formal versions of symbolic logic, the words such that are not written out (although they are
understood) and a separate 3 symbol is used for each variable: "im E Z(3n e Z(m + n = m * n))."
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I. I

Let Q(x) be a predicate and D the domain of x. An existential statement is a
statement of the form "3x E D such that Q(x)." It is defined to be true if, and only
if, Q(x) is true for at least one x in D. It is false if, and only if, Q (x) is false for all
x in D.

Example 2.1.4 Truth and Falsity of Existential Statements

a. Consider the statement

3m e Z such thatm 2 = m.

Show that this statement is true.

b. Let E = {5, 6, 7, 8, 9, 10} and consider the statement

1m E E such that m2 = m.

Show that this statement is false.

Solution

a. Observe that 12 = 1. Thus "M2 = m" is true for at least one integer m. Hence "3m E Z
such that m2 = m" is true.

b. Note that m2
= m is not true for any integers m from 5 to 10:

52= 25 # 5,

92 = 81 : 9,

62 =36 :A 6,

102 = 100 # 10.

72 = 49 :A 7, 82 = 64 # 8,

Thus "]Im E E such that m 2 = m" is false. M

Formal Versus Informal Language
It is important to be able to translate from formal to informal language when trying to make
sense of mathematical concepts that are new to you. It is equally important to be able to
translate from informal to formal language when thinking out a complicated problem.

Example 2.1.5 Translating from Formal to Informal Language

Rewrite the following formal statements in a variety of equivalent but more informal
ways. Do not use the symbol V or 3.

a. Vx E R, x2 > 0.

b. Vx E R, x2 :A-1.

c. :iM E Z such that m2 = m.

Solution

a. All real numbers have nonnegative squares.
Every real number has a nonnegative square.
Any real number has a nonnegative square.
x has a nonnegative square, for each real number x.
The square of any real number is nonnegative.
(Note that the singular noun is used to refer to the domain
translated as every, any, or each.)

when the V symbol is
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b. All real numbers have squares not equal to -1.
No real numbers have squares equal to -1.
(The words none are or no ... are are equivalent to the words all are not.)

c. There is an integer whose square is equal to itself.
We can find at least one integer equal to its own square.
I2 = m, for some integer m.
Some integer equals its own square.
Some integers equal their own squares.
(In ordinary English, this last statement might be taken to be true only if there are at
least two integers equal to their own squares. In mathematics, we understand the last
two statements to mean the same thing.) U

Example 2.1.6 Translating from Informal to Formal Language

Rewrite each of the following statements formally. Use quantifiers and variables.

a. All triangles have three sides.

b. No dogs have wings.

c. Some programs are structured.

Solution

a. V triangles t, t has three sides, or
Vt E T, t has three sides (where T is the set of all triangles).

b. V dogs d, d does not have wings, or
Vd E D, d does not have wings (where D is the set of all dogs).

c. 3 a program p such that p is structured, or
3p E P such that p is structured (where P is the set of all programs). U

Universal Conditional Statements
A reasonable argument can be made that the most important form of statement in mathe-
matics is the universal conditional statement:

Vx, if P(x) then Q(x).

Familiarity with statements of this form is essential if you are to learn to speak mathematics.

Example 2.1.7 Writing Universal Conditional Statements Informally

Rewrite the following formal statement in a variety of informal ways. Do not use quanti-
fiers or variables.

Vx E R, if x > 2 then x2 > 4.

Solution If a real number is greater than 2 then its square is greater than 4.

Whenever a real number is greater than 2, its square is greater than 4.

The square of any real number that is greater than 2 is greater than 4.

The squares of all real numbers greater than 2 are greater than 4. U
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Example 2.1.8 Writing Universal Conditional Statements Formally

Rewrite each of the following statements in the form

V _ , if then

a. If a real number is an integer, then it is a rational number.

b. All bytes have eight bits.

c. No fire trucks are green.

Solution

a. V real numbers x, if x is an integer, then x is a rational number, or
Vx E R, if x E Z then x E Q.

b. Vx, if x is a byte, then x has eight bits.

c. Vx, if x is a fire truck, then x is not green.

It is common, as in (b) and (c) above, to omit explicit identification of the domain of
predicate variables in universal conditional statements. U

Careful thought about the meaning of universal conditional statements leads to another
level of understanding for why the truth table for an if-then statement must be defined as
it is. Consider again the statement

V real numbers x, if x > 2 then x2 > 4.

Your experience and intuition tell you that this statement is true. But that means that

If x > 2 then x2 > 4

must be true for every single real number x. Consequently, it must be true even for x that
make its hypothesis "x > 2" false. In particular, both statements

If I > 2 then 12 > 4 and If-3 > 2 then(-3)2 > 4

must be true. In both cases the hypothesis is false, but in the first case the conclusion
,,12 > 4" is false, and in the second case the conclusion "(-3)2 > 4" is true. Hence,
regardless of whether its conclusion is true or false, an if-then statement with a false
hypothesis must be true.

Note also that the definition of valid argument is a universal conditional statement:

V combinations of truth values for the component statements,
if the premises are all true then the conclusion is also true.

Equivalent Forms of Universal and Existential Statements
Observe that the two statements "V real numbers x, if x is an integer then x is rational"
and "V integers x, x is rational" mean the same thing. Both have informal translations
"All integers are rational." In fact, a statement of the form

Vx E U, if P(x) then Q(x)

can always be rewritten in the form

Vx E D, Q(x)
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by narrowing U to be the domain D consisting of all values of the variable x that make
P (x) true. Conversely, a statement of the form

Vx E D, Q(x)

can be rewritten as

Vx, if x is in D then Q(x).

Example 2.1.9 Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms "Vx, if then " and
"'V _ x, _ ": All squares are rectangles.

Solution Vx, if x is a square then x is a rectangle.

V squares x, x is a rectangle. v

Example 2.1.10 Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only positive integer factors are itself
and 1. Consider the statement "There is an integer that is both prime and even." Let
Prime(n) be "n is prime" and Even(n) be "n is even." Use the notation Prime(n) and
Even(n) to rewrite this statement in the following two forms:

a. 3n such that A

b. 3 - n such that

Solution

a. :n such that Prime(n) A Even(n).

b. Two answers: 3 a prime number n such that Even(n).
3 an even number n such that Prime(n). U

Implicit Quantification
Consider the statement

If a number is an integer, then it is a rational number.

As shown earlier, this statement is equivalent to a universal statement. However, it
does not contain the telltale word all or every or any or each. The only clue to indicate
its universal quantification comes from the presence of the indefinite article a. This is an
example of implicit universal quantification.

Existential quantification can also be implicit. For instance, the statement "The number
24 can be written as a sum of two even integers" can be expressed formally as "3 even
integers m and n such that 24 = m + n."

Mathematical writing contains many examples of implicitly quantified statements.
Some occur, as in the first example above, through the presence of the word a or an.
Others occur in cases where the general context of a sentence supplies part of its meaning.
For example, in an algebra course in which the letter x is always used to indicate a real
number, the predicate

If x > 2 then x2 > 4
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is interpreted to mean the same as the statement

V real numbers x, if x > 2 then x2 > 4.

Mathematicians often use a double arrow to indicate implicit quantification symbolically.
For instance, they might express the above statement as

x>2 = x2>4.

Let P(x) and Q(x) be predicates and suppose the common domain of x is D. The
notation P(x) X= Q(x) means that every element in the truth set of P(x) is in the truth
set of Q(x), or, equivalently, Vx, P(x) -* Q(x). The notation P(x) X Q(x) means
that P(x) and Q(x) have identical truth sets, or, equivalently, Vx, P(x) *+ Q(x).

Example 2.1.11 Using X and X

Let

Q(n) be "n is a factor of 8,"

R(n) be "n is a factor of 4,"

S(n) be "n < 5 and n A 3,"

and suppose the domain of n is Z+, the set of positive integers. Use the •> and X* symbols
to indicate true relationships among P(n), Q(n), and R(n).

Solution

1. As noted in Example 2.1.2, the truth set of Q(n) is {1, 2, 4, 8} when the domain of
n is Z+. By similar reasoning the truth set of R(n) is (I, 2, 4}. Thus it is true that
every element in the truth set of R(n) is in the truth set of Q(n), or, equivalently, Vn
in Z+, R(n) Q(n). So R(n) > Q(n), or, equivalently

n is a factor of 4 ' n is a factor of 8.

2. The truth set of S(n) is { 1, 2, 4}, which is identical to the truth set of R(n), or, equiva-
lently, Vn in Z+, R(n) <4 S(n). So R(n) S 5(n), or, equivalently,

n is afactorof4 n < 5 andn * 3.

Moreover, since every element in the truth set of S(n) is in the truth set of Q(n), or,
equivalently, Vn in Z+, S(n) -* Q(n), then S(n) ==> Q(n), or, equivalently,

n <5andn :3 > nisafactorof8. U

Some questions of quantification can be quite subtle. For instance, a mathematics text
might contain the following:

a. (x + l)2 = x 2 + 2x + 1. b. Solve (x + 2)2 = 25.

Although neither (a) nor (b) contains explicit quantification, the reader is supposed to
understand that the x in (a) is universally quantified whereas the x in (b) is existentially
quantified. When the quantification is made explicit, (a) and (b) become

a. V real numbers x, (x + 1)2 = x2 + 2x + 1.

b. Show (by finding a value) that 3 a real number x such that (x + 2)2 = 25.
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The quantification of a statement-whether universal or existential-crucially deter-
mines both how the statement can be applied and what method must be used to establish
its truth. Thus it is important to be alert to the presence of hidden quantifiers when you
read mathematics so that you will interpret statements in a logically correct way.

Tarski's World
Tarski's World is a computer program developed by information scientists Jon Barwise
and John Etchemendy to help teach the principles of logic. It is described in their book
The Language of First-Order Logic, which is accompanied by a CD-Rom containing the
program Tarski's World, named after the great logician Alfred Tarski.

Example 2.1.12 Investigating Tarski's World

The program for Tarski's World provides pictures of blocks of various sizes, shapes, and
colors, which are located on a grid. Shown in Figure 2.1.1 is a picture of an arrangement
of objects in a two-dimensional Tarski world. The configuration can be described using
logical operators and-for the two-dimensional version-notation such as Triangle(x),
meaning "x is a triangle," Blue(y), meaning "y is blue," and RightOf(x, y), meaning "x is
to the right of y (but possibly in a different row)." Individual objects can be given names
such as a, b, or c.

Alfred Tarski
(1902-1983)

Figure 2.1.1

Determine the truth or falsity of each of the following statements. The domain for all
variables is the set of objects in the Tarski world shown above.

a. Vt, Triangle(t) --. Blue(t).

b. Vx, Blue(x) -* Triangle(x).

c. By such that Square(y) A RightOf(d, y).

d. 3z such that Square(z) A Gray(z).

Solution

a. This statement is true: all the triangles are blue.

b. This statement is false. As a counterexample, note that e is blue and it is not a triangle.

c. This statement is true because e and h are both square and d is to their right.

d. This statement is false: all the squares are either blue or black.

AO
A d

H A
_AU

kI

. - -

.
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Exercise Set 2.1 *
1. A menagerie consists of seven brown dogs, two black dogs,

six gray cats, ten black cats, five blue birds, six yellow birds,
and one black bird. Determine which of the following state-
ments are true and which are false.
a. There is an animal in the menagerie that is red.
b. Every animal in the menagerie is a bird or a mammal.
c. Every animal in the menagerie is brown or gray or black.
d. There is an animal in the menagerie that is neither a cat

nor a dog.
e. No animal in the menagerie is blue.
f. There are in the menagerie a dog, a cat, and a bird that all

have the same color.

2. Indicate which of the following statements are true and
which are false. Justify your answers as best as you can.
a. Every integer is a real number.
b. 0 is a positive real number.
c. For all real numbers r, -r is a negative real number.
d. Every real number is an integer.

3. Let P(x) be the predicate "x > l/x."
a. Write P(2), P(l), P(-1), P(- ), and P(-8), and in-

dicate which of these statements are true and which are
false.

b. Find the truth set of P(x) if the domain of x is R, the set
of all real numbers.

c. If the domain is the set R± of all positive real numbers,
what is the truth set of P(x)?

4. Let Q(n) be the predicate "n2 
< 30."

a. Write Q(2), Q(-2), Q(7), and Q(-7), and indicate
which of these statements are true and which are false.

b. Find the truth set of Q(n) if the domain of n is Z, the set
of all integers.

c. If the domain is the set Z+ of all positive integers, what
is the truth set of Q(n)?

5. Let Q(x, y) be the predicate "If x < y then x2 
< y

2 ", with
domain for both x and y being the set R of real numbers.
a. Explain why Q(x, y) is false if x = -2 and y = 1.
b. Give values different from those in part (a) for which

Q(x, y) is false.
c. Explain why Q(x, y) is true if x = 3 and y = 8.
d. Give values different from those in part (c) for which

Q(x, y) is true.

6. Let R(m, n) be the predicate "If m is a factor of n2 then m
is a factor of n," with domain for both m and n being the set
Z of integers.
a. Explain why R(m,n) is false if m = 25 and n = 10.
b. Give values different from those in part (a) for which

R(m, n) is false.
c. Explain why R(m, n) is true if m = 5 and n = 10.

d. Give values different from those in part (c) for which
R(m,n)is true.

7. Find the truth set of each predicate.
a. predicate: 6/d is an integer, domain: Z
b. predicate: 6/d is an integer, domain: Z+
c. predicate: 1 < x2 < 4, domain: R
d. predicate: I < x2 < 4, domain: Z

8. Let B(x) be "-10 < x < 10." Find the truth set of B(x)
for each of the following domains.
a. Z b. Z+ c. The set of all even integers

Find counterexamples to show that the statements in 9-12 are
false.

9. Vx e R, x> l/x.

10. Va c Z, (a - 1)/a is not an integer.

11. V positive integers m and n, m n > m + n.

12. V real numbers x and y, X y== ,/3 + r.

13. Consider the following statement:

V basketball players x, x is tall.

Which of the following are equivalent ways of expressing
this statement?
a. Every basketball player is tall.
b. Among all the basketball players, some are tall.
c. Some of all the tall people are basketball players.
d. Anyone who is tall is a basketball player.
e. All people who are basketball players are tall.
f. Anyone who is a basketball player is a tall person.

14. Consider the following statement:

3x E R such that x2 = 2.

Which of the following are equivalent ways of expressing
this statement?
a. The square of each real number is 2.
b. Some real numbers have square 2.
c. The number x has square 2, for some real number x.
d. If x is a real number, then x2 = 2.
e. Some real number has square 2.
f. There is at least one real number whose square is 2.

15. Rewrite the following statements informally in at least two
different ways without using variables or the symbol V or 3.
a. V squares x, x is a rectangle.
b. 3 a set A such that A has 16 subsets.

16. Rewrite each of the following statements in the form
'IV x, - ."

a. All dinosaurs are extinct.
b. Every real number is positive, negative, or zero.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.



c. No irrational numbers are integers.
d. No logicians are lazy.
e. The number 2,147,581,953 is not equal to the square of

any integer.
f. The number -I is not equal to the square of any real

number.

17. Rewrite each of the following in the form "3
that ._ _

a. Some exercises have answers.
b. Some real numbers are rational.

x such

18. Let D be the set of all students at your school, and let M(s)
be "s is a math major," let C(s) be "s is a computer sci-
ence student," and let E(s) be "s is an engineering student."
Express each of the following statements using quantifiers,
variables, and the predicates M(s), C(s), and E(s).
a. There is an engineering student who is a math major.
b. Every computer science student is an engineering stu-

dent.
c. No computer science students are engineering students.
d. Some computer science students are also math majors.
e. Some computer science students are engineering stu-

dents and some are not.

19. Consider the following statement:

V integers n, if n2 is even then n is even.

Which of the following are equivalent ways of expressing
this statement?
a. All integers have even squares and are even.
b. Given any integer whose square is even, that integer is

itself even.
c. For all integers, there are some whose square is even.
d. Any integer with an even square is even.
e. If the square of an integer is even, then that integer is

even.
f. All even integers have even squares.

20. Rewrite the following statement informally in at least two
different ways without using variables or the symbol V or 3.

V students S, if S is in CSC 321
then S has taken MAT 140.

21. Rewrite each of the following statements in the form
"V x, if then "or "V x and
y, if - then ."_
a. All Java programs have at least 5 lines.
b. Any valid argument with true premises has a true con-

clusion.
c. The sum of any two even integers is even.
d. The product of any two odd integers is odd.

22. Rewrite each of the following statements in the two forms
"Vx, if then "and 'V - x, "

(without an if-then).
a. The square of any even integer is even.
b. Every computer science student needs to take data struc-

tures.
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23. Rewrite the following statements in the two forms
"3 x such that "and "3x such that
and ."
a. Some hatters are mad. b. Some questions are easy.

24. Consider the statement "All integers are rational numbers
but some rational numbers are not integers."
a. Write this statement in the form "Vx, if then

, but 3 x such that ."
b. Let Ratl(x) be "x is a rational number" and Int(x) be "x

is an integer." Write the given statement formally using
only the symbols Ratl(x), Int(x), V, 3, A, v, -, and -f.

25. Refer to the picture of Tarski's world given in Example
2.1.12. Let Above(x, y) mean that x is above y (but pos-
sibly in a different column). Determine the truth or falsity
of each of the following statements. Give reasons for your
answers.
a. Vu, Circle(u) -* Gray(u).
b. Vu, Gray(u) -* Circle(u).
c. 3y such that Square(y) A Above(y, d).
d. 3z such that Triangle(z) A Above(f, z).

In 26-28, rewrite each statement without using quantifiers or
variables. Indicate which are true and which are false, and jus-
tify your answers as best as you can.

26. Let the domain of x be the set D of objects discussed in
mathematics courses, and let Real(x) be "x is a real num-
ber," Pos(x) be "x is a positive real number," Neg(x) be "x
is a negative real number," and Int(x) be "x is an integer."
a. Pos(O)
b. Vx, Real(x) A Neg(x) --. Pos(-x).
c. Vx, Int(x) -+ Real(x).
d. 3x such that Real(x) A -Int(x).

27. Let the domain of x be the set of geometric figures in the
plane, and let Square(x) be "x is a square" and Rect(x) be
"x is a rectangle."
a. 3x such that Rect(x) A Square(x).
b. 3x such that Rect(x) A -Square(x).
c. Vx, Square(x) -- Rect(x).

28. Let the domain of x be the set Z of integers, and let Odd(x)
be "x is odd," Prime(x) be "x is prime," and Square(x) be
"x is a perfect square." (An integer n is said to be a perfect
square if, and only if, it equals the square of some integer.
For example, 25 is a perfect square because 25 = 52.)

a. 3x such that Prime(x) A "Odd(x).
b. Vx, Prime(x) -÷ Square(x).

c. 3x such that Odd(x) A Square(x).

H 29. In any mathematics or computer science text other than this
book, find an example of a statement that is universal but
is implicitly quantified. Copy the statement as it appears
and rewrite it making the quantification explicit. Give a
complete citation for your example, including title, author,
publisher, year, and page number.
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30. Let R be the domain of the predicate variable x. Which of
the following are true and which are false? Give counter-
examples for the statements that are false.
a. x > 2 X•' x > 1
b. x > 2 => x2 >4
c. x2 >4 =o x > 2
d. x 2 > 4 X Ixx > 2

31. Let R be the domain of the predicate variables a, b, c, and d.
Which of the following are true and which are false? Give
counterexamples for the statements that are false.
a. a > 0 and b > 0 => ab > 0
b. a <0 and b <0 =k ab <0
c. ab=O- a=Oorb=O
d. a<bandc<d =ac<bd

2.2 Introduction to Predicates and Quantified
Statements 11
TOUCHSTONE: Stand you both forth now: stroke your chins, and swear by your
beards that I am a knave.
CELIA: By our beards-if we had them-thou art.
TOUCHSTONE: By my knavery-if I had it-then I were; but if you swear by that that
is not, you are not forsworn. -William Shakespeare, As You Like It

This section continues the discussion of predicates and quantified statements begun in
Section 2.1. It contains the rules for negating quantified statements; an exploration of the
relation among V, 3, A, and v; an introduction to the concept of vacuous truth of universal
statements; examples of variants of universal conditional statements; and an extension of
the meaning of necessary, sufficient, and only if to quantified statements.

Negations of Quantified Statements
Consider the statement "All mathematicians wear glasses." Many people would say that
its negation is "No mathematicians wear glasses." In fact, the negation is "One or more
mathematicians do not wear glasses" or "Some mathematicians do not wear glasses."
After all, if even one mathematician does not wear glasses, the sweeping statement that
all mathematicians wear glasses must be false.

The general form of the negation of a universal statement follows immediately from
the definitions of negation and of the truth values for universal and existential statements.

Theorem 2.2.1 Negation oa Universal Statement

The negation of a statement of the form

Vx in D, Q(x)

is logically equivalent to a statement of the form

3x in D such that 'Q(x).

Symbolically,

0~(V D, Q(x)) 9x Elx D such that -Q(x).

Thus

The negation of a universal statement ("all are") is logically
equivalent to an existential statement ("some are not").

Note that when we speak of logical equivalence for quantified statements, we mean that
the statements always have identical truth values no matter what predicates are substituted
for the predicate variables and no matter what sets are used for the domains of the predicate
variables.
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Now consider the statement "Some fish breathe air." What is its negation? Many
people would answer that it is "Some fish do not breathe air." Actually, the negation is
"No fish breathe air." After all, if it is not true that some fish breathe air, then not a single
fish breathes air. "That is, no fish breathe air, or all fish are non-air-breathers.

The general form for the negation of an existential statement follows immediately from
the definitions of negation and of the truth values for existential and universal statements.

Theorem 2.2.2 Negation of an Existential Statement

The negation of a statement of the form

3x in D such that Q(x)

is logically equivalent to a statement of the form

Vx in D, -Q(x).

Symbolically,

(3x E D such that Q(x)) = Vx E D, Q(x).

Thus

The negation of an existential statement ("some are") is
logically equivalent to a universal statement ("all are not").

Example 2.2.1 Negating Quantified Statements

Write formal negations for the following statements:

a. V primes p, p is odd.

b. 3 a triangle T such that the sum of the angles of T equals 200°.

Solution

a. By applying the rule for the negation of a V statement, you can see that the answer is

3 a prime p such that p is not odd.

b. By applying the rule for the negation of a 3 statement, you can see that the answer is

V triangles T, the sum of the angles of T does not equal 2000. .

You need to exercise special care to avoid mistakes when writing negations of state-
ments that are given informally. One way to avoid error is to rewrite the statement formally
and take the negation using the formal rule.

Example 2.2.2 More Negations

Rewrite the following statement formally. Then write formal and informal negations.

No politicians are honest.

Solution Formal version: V politicians x, x is not honest.

Formal negation: 3 a politician x such that x is honest.

Informal negation: Some politicians are honest. .
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Another way to avoid error when taking negations of statements that are given in
informal language is to ask yourself, "What exactly would it mean for the given statement
to be false? What statement, if true, would be equivalent to saying that the given statement
is false?"

Example 2.2.3 Still More Negations

Write informal negations for the following statements:

a. All computer programs are finite.

b. Some computer hackers are over 40.

Solution

a. What exactly would it mean for this statement to be false? The statement asserts a
property for all computer programs. So for it to be false, there would simply have to
be some computer program that does not have the property. Thus the answer is

There is a computer program that is not finite.

Or:

Some computer programs are not finite.

b. This statement is equivalent to saying that there is at least one computer hacker with
a certain property. So for it to be false, not a single computer hacker can have that
property. Thus the negation is

No computer hackers are over 40.

Or:

All computer hackers are 40 or under. .

Negations of Universal Conditional Statements
Negations of universal conditional statements are of special importance in mathematics.
The form of such negations can be derived from facts that have already been established.

By definition of the negation of afor all statement,

-(Vx, P(x) -* Q(x)) =- 3x such that -(P(x) -* Q(x)).

Caution! Informal negations of many universal statements can be constructed
simply by inserting the word not or the words do not at an appropriate place.
However, the resulting statements may be ambiguous. For example, a possible
negation of "All mathematicians wear glasses" is "All mathematicians do not
wear glasses." The problem is that this sentence has two meanings. With
the proper verbal stress on the word not, it could be interpreted as the logical
negation. (What! You say that all mathematicians wear glasses? Nonsense!
All mathematicians do not wear glasses.) On the other hand, stated in a flat
tone of voice (try it!), it would mean that all mathematicians are nonwearers
of glasses; that is, not a single mathematician wears glasses. This is a much
stronger statement than the logical negation: It implies the negation but is not
equivalent to it.

I

2.2.1
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But the negation of an if-then statement is logically equivalent to an and statement. More
precisely,

-(P(X) - Q(X)) - P(X) A -Q(X). 2.2.2

Substituting (2.2.2) into (2.2.1) gives

-(Vx, P(x) - Q(x)) 3x such that (P(x)A '-QQ(X)).

Written less symbolically, this becomes

| -(Vx, if P (x) then Q(x)) 3x such that P(x) and - Q(x).

Example 2.2.4 Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal negation for statement (b).

a. V people p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines, then it contains a bug.

Solution

a. 3 a person p such that p is blond and p does not have blue eyes.

b. There is at least one computer program that has more than 100,000 lines and does not
contain a bug. v

The Relation among V, 3, A, and v
The negation of afor all statement is a there exists statement, and the negation of a there
exists statement is afor all statement. These facts are analogous to De Morgan's laws,
which state that the negation of an and statement is an or statement and that the negation
of an or statement is an and statement. This similarity is not accidental. In a sense,
universal statements are generalizations of and statements, and existential statements are
generalizations of or statements.

If Q(x) is a predicate and the domain D of x is the set {XI, X2, .. xn, then the
statements

Vx E D, Q(x)

and

Q(xj) A Q(x2) A ... A Q(xn)

are logically equivalent. For example, let Q(x) be "x x = x" and suppose D = 10, 1}.
Then

Vx E D, Q(x)

can be rewritten as

V binary digits x, x x = x.

This is equivalent to

0 * 0 = 0 and I 1 = 1,

which can be rewritten in symbols as

Q(O) A Q(1).
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Similarly, if Q(x) is a predicate and D = [xI, X2, . . ., x. }, then the statements

3x E D such that Q(x)

and

Q(xi) V Q(x2) V... V Q(x,)

are logically equivalent. For example, let Q(x) be "x + x = x" and suppose D {0, 11.
Then

3x E D such that Q(x)

can be rewritten as

3 a binary digit x such that x + x = x.

This is equivalent to

0+0=0 or 1 + 1 = 1,

which can be rewritten in symbols as

Q(O) V Q(l).

Vacuous Truth of Universal Statements
Suppose a bowl sits on a table and next to the bowl is a pile of five blue and five gray
balls, any of which may be placed in the bowl. If three blue balls and one gray ball are
placed in the bowl, as shown in Figure 2.2.1(a), the statement "All the balls in the bowl
are blue" would be false (since one of the balls in the bowl is gray).

Now suppose that no balls at all are placed in the bowl, as shown in Figure 2.2.1(b).
Consider the statement

All the balls in the bowl are blue.

Is this statement true or false? The statement is false if, and only if, its negation is true.
And its negation is

There exists a ball in the bowl that is not blue.

But the only way this negation can be true is for there actually to be a nonblue ball in
the bowl. And there is not! Hence the negation is false, and so the statement is true "by
default."

(a) (b)

Figure 2.2.1

In general, a statement of the form

Vx in D, if P(x) then Q(x)

is called vacuously true or true by default if, and only if, P(x) is false for every x in D.
By the way, in ordinary language the words in general mean that something is usually,

but not always, the case. (In general, I take the bus home, but today I walked.) In
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mathematics, the words in general are used quite differently. When they occur just after
discussion of a particular example (as in the preceding paragraph), they are a signal that
what is to follow is a generalization of some aspect of the example that always holds true.

Variants of Universal Conditional Statements
Recall from Section 1.2 that a conditional statement has a contrapositive, a converse,
and an inverse. The definitions of these terms can be extended to universal conditional
statements.

I. ! aM!I

Consider a statement of the form

Vx E D, if P(x) then Q(x).

1. Its contrapositive is the statement

Vx E D, if -Q(x) then -P(x).

2. Its converse is the statement

Vx E D, if Q(x) then P(x).

3. Its inverse is the statement

Vx E D, if -P(x) then -Q(x).

Example 2.2.5 Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write the contrapositive, converse, and inverse for the following statement:

If a real number is greater than 2, then its square is greater than 4.

Solution The formal version of this statement is Vx E R, if x > 2 then x2 
> 4.

Contrapositive: Vx e R, if x2 < 4 then x < 2; or,
If the square of a real number is less than or equal to 4,
then the number is less than or equal to 2.

Converse. VY E R, if x2 > 4 then x > 2; or,
If the square of a real number is greater than 4, then the
number is greater than 2.

Inverse: Vx E R, if x < 2 then x2 < 4; or
If a real number is less that or equal to 2, then the square
of the number is less than or equal to 4.

Note that in solving this example, we have used the equivalence of "x ;4 a" and
"x < a" for all real numbers x and a. (See page 11.) U

In Section 1.2 we showed that a conditional statement is logically equivalent to its
contrapositive and that it is not logically equivalent to either its converse or its inverse. The
following discussion shows that these facts generalize to the case of universal conditional
statements and their contrapositives, converses, and inverses.

Let P(x) and Q(x) be any predicates, let D be the domain of x, and consider the
statement

Vx E D, if P(x) then Q(x)
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and its contrapositive

Vx E D, if -Q(x) then -P(x).

Any particular x in D that makes "if P(x) then Q(x)" true also makes "if -Q(x) then
-P(x)" true (by the logical equivalence between p -* q and -q -* -p). It follows that
the sentence "If P(x) then Q(x)" is true for all x in D if, and only if, the sentence "If
-Q(x) then '-P(x)" is true for all x in D. This is what is meant, in the predicate calculus,
by the statements

Vx e D, if P(x) then Q(x) and Vx E D, if -Q(x) then -P(x)

being logically equivalent to each other. Thus we write the following and say that a
universal conditional statement is logically equivalent to its contrapositive:

Vx E D, if P(x) then Q(x) - Vx E D, if -Q(x) then -P(x)

In Example 2.2.5 we noted that the statement

Vx e R, if x > 2 then x2 > 4

has the converse

Vx e R, if x2 > 4 then x > 2.

Observe that the statement is true whereas its converse is false (since, for instance, (-3)2 -

9 > 4 but -3 4 2). This shows that a universal conditional statement may have a different
truth value from its converse. Hence a universal conditional statement is not logically
equivalent to its converse. This is written in symbols as follows:

|Vx E D, if P(x) then Q(x) * Vx E D, if Q(x) then P(x).

In the exercises at the end of this section, you are asked to show similarly that a universal
conditional statement is not logically equivalent to its inverse.

|Vx E D, if P(x) then Q(x) * Vx E D, if -P(x) then -Q(x).

Necessary and Sufficient Conditions, Only If
The definitions of necessary, sufficient, and only if can also be extended to apply to
universal conditional statements.

I. a ]

1. "Vx, r(x) is a sufficient condition for s(x)" means "V'x, if r(x) then s(x)."

2. "Vx, r(x) is a necessary condition for s(x)" means "'x, if -r(x) then -s(x)"
or, equivalently, "Yx, if s(x) then r(x)."

3. "Yx, r(x) only if s(x)" means "Yx, if -s(x) then -r(x)" or, equivalently, "Vx, if
r(x) then s(x)."
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Example 2.2.6 Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements. Do not use the
word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being President of the United
States.

Solution

a. A formal version of the statement is

Vx, if x is a square, then x is a rectangle.

Or, in informal language:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as

V people x, if x is younger than 35, then x
cannot be President of the United States.

Or, by the equivalence between a statement and its contrapositive:

V people x, if x is President of the United States,
then x is at least 35 years old.

Only If

Rewrite the following as a universal conditional statement:

A product of two numbers is 0 only if one of the numbers is 0.

Solution Using informal language, you could write the answer as

If neither of two numbers is 0, then the product of the numbers is not 0.

Or, by the equivalence between a statement and its contrapositive,

If a product of two numbers is 0, then one of the numbers is 0.

Exercise Set 2.2
1. Which of the following is a negation for "All discrete math-

ematics students are athletic." More than one answer may
be correct.
a. There is a discrete mathematics student who is nonath-

letic.
b. All discrete mathematics students are nonathletic.
c. There is an athletic person who is a discrete mathematics

student.
d. No discrete mathematics students are athletic.
e. Some discrete mathematics students are nonathletic.
f. Some nonathletic people are not discrete mathematics

students.

2. Which of the following is a negation for "All dogs are loyal"?
More than one answer may be correct.
a. All dogs are disloyal. b. No dogs are loyal.
c. Some dogs are disloyal. d. Some dogs are loyal.

.

e. There is a disloyal animal that is not a dog.
f. There is a dog that is disloyal.
g. No animals that are not dogs are loyal.
h. Some animals that are not dogs are loyal.

3. Write a formal negation for each of the following state-
ments:
a. V fish x, x has gills.
b. V computers c, c has a CPU.
C. 3 a movie m such that m is over 6 hours long.
d. 3 a band b such that b has won at least 10 Grammy

awards.

4. Write an informal negation for each of the following state-
ments:
a. All pots have lids. b. All birds can fly.
c. Some pigs can fly. d. Some dogs have spots.

Example 2.2.7

.
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In 5 and 6, write a formal and an informal negation for each
statement in the referenced exercise.

H 5. Section 2.1, exercise 16

H 6. Section 2.1, exercise 17

7. Informal language is actually more complex than formal
language. That is what makes the job of a systems analyst
so challenging. A systems analyst works as an interme-
diary between a client who uses informal language and a
programmer who needs precise specifications in order to
produce code. For instance, the sentence "There are no or-
ders from store A for item B" contains the words there are.
Is the statement existential? Write an informal negation for
the statement, and then write the statement formally using
quantifiers and variables.

8. Consider the statement "There are no simple solutions to
life's problems." Write an informal negation for the state-
ment, and then write the statement formally using quantifiers
and variables.

Write a negation for each statement in 9 and 10.

9. V real numbers x, if x > 3 then x2 
> 9.

10. V computer programs P, if P compiles without error mes-
sages, then P is correct.

In each of 11-14 determine whether the proposed negation is
correct. If it is not, write a correct negation.

11. Statement: The sum of any two irrational numbers
is irrational.

Proposed negation: The sum of any two irrational numbers
is rational.

12. Statement: The product of any irrational number
and any rational number is irrational.

Proposed negation: The product of any irrational number
and any rational number is rational.

13. Statement: For all integers n, if n2 is even then n is
even.

Proposed negation: For all integers n, if n2 is even then n is
not even.

14. Statement: For all real numbers x, and x2, if
x,2 = x2then xi = x 2.

Proposed negation: For all real numbers xi and X2, if
x,2 = x2 then x, 1 x 2.

15. Let D = 1-48, -14, -8, 0, 1, 3, 16, 23, 26, 32, 36}. De-
termine which of the following statements are true and
which are false. Provide counterexamples for those state-
ments that are false.
a. Vx C D,ifxisoddthenx > 0.
b. Vx E D, if x is less than 0 then x is even.
c. Vx E D, if x is even then x < 0.
d. Vx E D, if the ones digit of x is 2, then the tens digit is

3 or 4.
e. Vx E D, if the ones digit of x is 6, then the tens digit is

I or2.

In 16 and 17, write a negation for each statement in the referenced
exercise.

H 16. Section 2.1, exercise 21

H 17. Section 2.1, exercise 22

In 18-25, write a negation for each statement.

18. V real numbers x, if x2 > I then x > 0.

19. V integers d, if 6/d is an integer then d = 3.

20. Vx E R, if x(x + 1) > 0 then x > 0 or x <-1.

21. Vn E Z, if n is prime then n is odd or n = 2.

22. V integers a, b and c. if a -b is even and b - c is even, then
a -c is even.

23. V animals x, if x is a dog then x has paws and x has a tail.

24. If an integer is divisible by 2, then it is even.

25. If the square of an integer is odd, then the integer is odd.

*26. If P(x) is a predicate and the domain of x is the set
of all real numbers, let R be "Vx e Z, P(x)," let S be
"Vx E Q. P(x)," and let T be "Vx E R, P(x)."
a. Find a definition for P(x) (but do not use "x E Z") so

that R is true and both S and T are false.
b. Find a definition for P(x) (but do not use "x E Q") so

that both R and S are true and T is false.

27. Consider the following string of numbers: 0204. A person
claims that all the l's in the string are to the left of all the
O's in the string. Is this true? Justify your answer. (Hint:
Write the claim formally and write a formal negation for it.
Is the negation true or false?)

28. True or false? All the occurrences of the letter u in the title
of this book are lower case. Justify your answer.

In 29-36, give the contrapositive, converse, and inverse of each
statement in the referenced exercise.

29. Exercise 18

31. Exercise 20

33. Exercise 22

35. Exercise 24

30. Exercise 19

32. Exercise 21

34. Exercise 23

36. Exercise 25

37. Give an example to show that a universal conditional state-
ment is not logically equivalent to its inverse.

Rewrite each statement of 38-41 in if-then form.

38. Earning a grade of C -in this course is a sufficient condition
for it to count toward graduation.

39. Being divisible by 8 is a sufficient condition for being di-
visible by 4.

40. Being on time each day is a necessary condition for keeping
this job.



41. Passing a comprehensive exam is a necessary condition for
obtaining a master's degree.

Use the facts that the negation of a V statement is a 3 statement
and that the negation of an if-then statement is an and statement
to rewrite each of the statements 42-45 without using the word
sufficient or necessary.

42. Being divisible by 8 is not a necessary condition for being
divisible by 4.

43. Having a large income is not a necessary condition for a
person to be happy.

44. Having a large income is not a sufficient condition for a
person to be happy.

45. Being a polynomial is not a sufficient condition for a func-
tion to have a real root.
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46. The computer scientists Richard Conway and David Gries
once wrote:

The absence of error messages during translation
of a computer program is only a necessary and
not a sufficient condition for reasonable [program]
correctness.

Rewrite this statement without using the words necessary
or sufficient.

47. A frequent-flyer club brochure states, "You may select
among carriers only if they offer the same lowest fare." As-
suming that "only if" has its formal, logical meaning, does
this statement guarantee that if two carriers offer the same
lowest fare, the customer will be free to choose between
them? Explain.

2.3 Statements Containing Multiple Quantifiers
It is not enough to have a good mind. The main thing is to use it well. - Ren6 Descartes

Imagine you are visiting a factory that manufactures computer microchips. The factory
guide tells you,

There is a person supervising every detail of the production process.

Note that this statement contains informal versions of both the existential quantifier there
is and the universal quantifier every. Which of the following best describes its meaning?

* There is one single person who supervises all the details of the production process.

• For any particular production detail, there is a person who supervises that detail, but
there might be different supervisors for different details.

As it happens, either interpretation could be what the guide meant. (Reread the sentence
to be sure you agree!) Taken by itself, his statement is genuinely ambiguous, although
other things he may have said (the context for his statement) might have clarified it. In
our ordinary lives, we deal with this kind of ambiguity all the time. Usually context helps
resolve it, but sometimes we simply misunderstand each other.

In mathematics, formal logic, and computer science, by contrast, it is essential that we
all interpret statements in exactly the same way. For instance, the initial stage of software
development typically involves careful discussion between a programmer analyst and
a client to turn vague descriptions of what the client wants into unambiguous program
specifications that client and programmer can mutually agree on.

Because many important technical statements contain both 3 and V, a convention has
developed for interpreting them uniformly. When a statement contains more than one
quantifier, we imagine the actions suggested by the quantifiers as being performed in the
order in which the quantifiers occur. For instance, consider a statement of the form

Vx in set D, By in set E such that x and y satisfy property P(x, y).

To show that such a statement is true, you must be able to meet the following challenge:

* Imagine that someone is allowed to choose any element whatsoever from the set D,
and imagine that the person gives you that element. Call it x.

* The challenge for you is to find an element y in E so that the person's x and your
y, taken together, satisfy property P(x, y).
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Note that because you do not have to specify the y until after the other person has
specified the x, you are allowed to find a different value of y for each different x you
are given.

Example 2.3.1 Truth of a V3 Statement in a Tarski World

Consider the Tarski world shown in Figure 2.3.1.

b2

U
0

A-

0
A

il-0
Figure 2.3.1

Show that the following statement is true in this world:

For all triangles x, there is a square y such that x and y have the same color.

Solution The statement says that no matter which triangle someone gives you, you will be
able to find a square of the same color. There are only three triangles, d, f, and i. The
following table shows that for each of these triangles a square of the same color can be
found.

U

Now consider a statement containing both V and 3, where the 3 comes before the V:

3 an x in D such that Vy in E, x and y satisfy property P (x, y).

To show that a statement of this form is true:

You must find one single element (call it x) in D with the following property:

* After you have found your x, someone is allowed to choose any element whatsoever
from E. The person challenges you by giving you that element. Call it y.

* Yourjob is to show that your x together with the person's y satisfy property P (x, y).

Note that your x has to work for anyy the person gives you;you are not allowed to change
your x once you have specified it initially.
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Example 2.3.2 Truth of a 3V Statement in a Tarski World

Consider again the Tarski world in Figure 2.3.1. Show that the following statement is
true: There is a triangle x such that for all circles y, x is to the right of y.

Solution The statement says that you can find a triangle that is to the right of all the circles.
Actually, either d or i would work, as you can see in the following table.

U

Here is a summary of the convention for interpreting statements with two different
quantifiers:

Example 2.3.3 Interpreting Multiply-Quantified Statements

A college cafeteria line has four stations: salads, main courses, desserts, and beverages.
The salad station offers a choice of green salad or fruit salad; the main course station
offers spaghetti or fish; the dessert station offers pie or cake; and the beverage station
offers milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and
make the following choices:

Uta: green salad, spaghetti, pie, milk

Tim: fruit salad, fish, pie, cake, milk, coffee

Yuen: spaghetti, fish, pie, soda

These choices are illustrated in Figure 2.3.2.

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form

forall x in D, therexists y in E such that P (x, y)

your challenge is to allow someone else to pick whatever element x in D they wish
and then you must find an element y in E that "works" for that particular x.

If you want to establish the truth of a statement of the form

3x in D such that Vy in E, P (x, y)

your job is to find one particulars in D that will "work" no matter what y in E anyone
might choose to challenge you with.
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Salads

Figure 2.3.2

Write each of following statements informally and find its truth value.

a. 3 an item I such that V students S, S chose I.

b. 3 a student S such that V items 1, S chose 1.

c. B a student S such that V stations Z, B an item I in Z such that S chose I.

d. V students S and V stations Z, 3 an item I in Z such that S chose I.

Solution

a. There is an item that was chosen by every student. This is true; every student chose
pie.

b. There is a student who chose every available item. This is false; no student chose all
nine items.

c. There is a student who chose at least one item from every station. This is true; both
Uta and Tim chose at least one item from every station.

d. Every student chose at least one item from every station. This is false; Yuen did not
choose a salad. U

Translating from Informal to Formal Language
Most problems are stated in informal language, but solving them often requires translating
them into more formal terms.

Example 2.3.4 Translating Multiply-Quantified Statements from Informal to Formal
Language

The reciprocal of a real number a is a real number b such that ab = 1. The following
two statements are true. Rewrite them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal. The number 0 has no reciprocal.

Solution

a. V nonzero real numbers u, 3 a real number v such that uv = 1.

b. B a real number c such that V real numbers d, cd 1. .
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Example 2.3.5 There Is a Smallest Positive Integer

Recall that every integer is a real number and that real numbers are of three types: positive,
negative, and zero (zero being neither positive nor negative). Consider the statement
"There is a smallest positive integer." Write this statement formally using both symbols
3 and V.

Solution To say that there is a smallest positive integer means that there is one, single
positive integer m with the property that no matter what positive integer n a person might
pick, m will be less than or equal to n:

3 a positive integer m such that V positive integers n, m < n.

Note that this statement is true because I is a positive integer that is less than or equal to
every positive integer.

positive integers

-5 4 -3 -2 -1 0 1 2 3 4 5 v
* . . * * .. * * . * * U

Example 2.3.6 There Is No Smallest Positive Real Number

Imagine any positive real number x on the real number line. These numbers correspond
to all the points to the right of 0. Observe that no matter how small x is, the number x/2
will be both positive and less than x.*

-2 -1 o x 1 2
I x. I I

2

Thus the following statement is true: "There is no smallest positive real number" Write
this statement formally using both symbols V and 3.

Solution V positive real numbers x, 3 a positive real number y such that y < x. U

Example 2.3.7 The Definition of Limit

The definition of limit of a sequence, studied in calculus, uses both quantifiers V and 3
and also if-then. We say that the limit of the sequence a, as n goes to infinity equals L
and write

lim a, = L
n-on

if, and only if, the values of a, become arbitrarily close to L as n gets larger and larger
without bound. More precisely, this means that given any positive number £, we can find
an integer N such that whenever n is larger than N, the number a, sits between L - E
and L + E on the number line.

L-e L L+e

a,, must lie in here when n > N

*This can be deduced from the properties of the real numbers given in Appendix A. Because x is
positive, 0 < x. Add x to both sides to obtain x < 2x. Then 0 < x < 2x. Now multiply all parts
of the inequality by the positive number 1/2. This does not change the direction of the inequality,
so 0 < x/2 < x.
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Symbolically:

Vs > 0, 3 an integer N such that V integers n,
if n > NthenL -<a, < L+E.

Considering the logical complexity of this definition, it is no wonder that many students
find it hard to understand. U

Ambiguous Language
The drawing in Figure 2.3.3 is a famous example of visual ambiguity. When you look at
it for a while, you will probably see either a silhouette of a young woman wearing a large
hat or an elderly woman with a large nose. Whichever image first pops into your mind,
try to see how the drawing can be interpreted in the other way. (Hint: The mouth of the
elderly woman is the necklace on the young woman.)

Figure 2.3.3

Once most people see one of the images, it is difficult for them to perceive the other.
So it is with ambiguous language. Once you interpreted the sentence at the beginning of
this section in one way, it may have been hard for you to see that it could be understood
in the other way. Perhaps you had difficulty even though the two possible meanings were
explained, just as many people have difficulty seeing the second interpretation for the
drawing even when they are told what to look for.

Although statements written informally may be open to multiple interpretations, we
cannot determine their truth or falsity without interpreting them one way or another.
Therefore, we have to use context to try to ascertain their meaning as best we can.

Negations of Multiply-Quantified Statements
You can use the same rules to negate multiply-quantified statements that you used to negate
simpler quantified statements. Recall that

-(Vx in D, P(x)) - 3x in D such that ~-P(x).
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and

-(3x in D such that P(x)) = Vx in D, - P(x).

We apply these laws to negate a statement of the form

-(Vx in D, 3x in E such that P(x, y))

by moving in stages from left to right along the sentence.

First version of negation: 3x in D such that -(3y in E such that P(x, y)).

Final version of negation: 3x in D such that Vy in E, '-P(x, y).

Similarly, to find

_(3x in D such that Vy in E, P(x, y)),

we have

First version of negation: Vx in D, -(Vy in E, P(x, y)).

Final version of negation: Vx in D, 3y in E such that -P(x, y).

These facts can be summarized as follows:

Negations of Multiply-Quantified Statements

-(Vx in D, 3x in E such that P(x, y)) 3x in D such that Vy in E, -P(x, y).

-(3x in D such that Vy in E, P(x, y)) Vx in D, 3y in E such that -P(x, y).

Example 2.3.8 Negating Statements in a Tarski World

Refer to the Tarski world of Example 2.3.1, which is reprinted here for reference.

~~b 0
ko

0

rV

i

Write a negation for each of the following statements, and determine which is true,
the given statement or its negation.

a. For all squares x, there is a circle y such that x and y have the same color.

b. There is a triangle x such that for all squares y, x is to the right of y.

� M,
WAR.... ..I
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Solution

a. First version of negation: 3 a square x such that ~-(3 a circle y such
that x and y have the same color).

Final version of negation: 3 a square x such that V circles y, x and y
do not have the same color.

The negation is true. Square e is black and no circle is black, so there is a square that does
not have the same color as any circle.

b. First version of negation: V triangles x, - (V squares y, x is to the
right of y).

Final version of negation: V triangles x, 3 a square y such that x is
not to the right of y.

The negation is true because no matter what triangle is chosen, it is not to the right of
square g (or square j). U

Order of Quantifiers
Consider the following two statements:

V people x, 3 a person y such that x loves y.

3 a person y such that V people x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. However,
the first means that given any person, it is possible to find someone who loves that person,
whereas the second means that there is one amazing individual who is loved by all peo-
ple. (Reread the statements carefully to verify these interpretations!) The two sentences
illustrate an extremely important property about multiply-quantified statements:

ACaution! If a statement contains two different quantifiers, reversing the order
of the quantifiers can change the truth value of the statement to its opposite.

Interestingly, however, if one quantifier immediately follows another quantifier of the
same type, then the order of the quantifiers does not affect the meaning. Consider the
commutative property of addition of real numbers, for example:

V real numbers x and V real numbers y, x + y = y + x.

This means the same as

V real numbers y and V real numbers x, x + y = y + x.

Thus the property can be expressed more briefly as

V real numbers x and y, x + y = y + x.

Example 2.3.9 Quantifier Order in a Tarski World

Consider again the Tarski world of Example 2.3.1. Do the following two statements have
the same truth value?

a. For every square x there is a triangle y such that x and y have different colors.

b. There exists a triangle y such that for every square x, x and y have different colors.
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Solution Statement (a) says that if someone gives you one of the squares from the Tarski
world, you can find a triangle that has a different color. This is true. If someone gives you
square g or h (which are gray), you can use triangle d (which is black); if someone gives
you square e (which is black), you can use either triangle f or triangle i (which are both
gray); and if someone gives you square j (which is blue), you can use triangle d (which
is black) or triangle f or i (which are both gray).

Statement (b) says that there is one particular triangle in the Tarski world that has
a different color from every one of the squares in the world. This is false. Two of the
triangles are gray, but they cannot be used to show the truth of the statement because the
Tarski world contains gray squares. The only other triangle is black, but it cannot be used
either because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have opposite
truth values. U

Formal Logical Notation
In many areas of computer science, logical statements are expressed in purely symbolic
notation. The notation involves using predicates to describe all properties of variables
and omitting the words such that in existential statements. (When you try to figure out
the meaning of a formal statement, however, it is helpful to think the words such that to
yourself each time they are appropriate.) The formalism also depends on ideas introduced
in Examples 2.1.10 and 2.1.12-namely, that

"Vx in D, P(x)" can be written as"Vx(x in D -+ P(x))," and

"3x in D such that P(x)" can be written as "3x(x in D A P(x))."

We illustrate these ideas in Example 2.3.10.

Example 2.3.10 Formalizing Statements in a Tarski World

Consider once more the Tarski world of Example 2.3. 1:

b

V

0

iS1h;

0

ff

A

i

Uig0:

Let Triangle(x), Circle(x), and Square(x) mean "x is a triangle," "x is a circle," and "x
is a square"; let Blue(x), Gray(x), and Black(x) mean "x is blue," "x is gray," and "x is
black"; let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean "x is to the right
of y," "x is above y," and "x has the same color as y"; and use the notation x = y to
denote the predicate "x is equal to y". Let the common domain D of all variables be the
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set of all the objects in the Tarski world. Use formal, logical notation to write each of the
following statements, and write a formal negation for each statement.

a. For all circles x, x is above f.

b. There is a square x such that x is black.

c. For all circles x, there is a square y such that x and y have the same color.

d. There is a square x such that for all triangles y, x is to right of y.

Solution

a. Statement: Vx(Circle(x) -- Above(x, f)).
Negation: -(Vx(Circle(x) Above(x, f)))

- 3x-' (Circle(x) -+ Above(x, f))
by the law for negating a V statement

3x(Circle(x) A -Above(x, f))
by the law of negating an if-then statement

b. Statement: ]x(Square(x) A Black(x)).
Negation: -(3x(Square(x) A Black(x)))

- Vx - (Square(x) A Black(x))
by the law for negating a 3 statement

Vx(-Square(x) V -Black(x))
by De Morgan's law

c. Statement: Vx(Circle(x) --> 3y(Square(y) A SameColor(x, y))).
Negation: -(Vx(Circle(x) -* 3y(Square(y) A SameColor(x, y))))

- - (Circle(x) 3y(Square(y) A SameColor(x, y)))
by the law for negating a V statement

-- x(Circle(x) A -(3y(Square(y) A SameColor(x, y))))
by the law for negating an if-then statement

- 3x(Circle(x) A Vy(-(Square(y) A SameColor(x, y))))
by the law for negating a 3 statement

- 3x(Circle(x) A Vy(-Square(y) V -SameColor(x, y)))
by De Morgan's law

d. Statement: 3x(Square(x) A Vy(Triangle(y) -- RightOf(x, y))).
Negation: -(3x(Square(x) A Vy(Triangle(y) -- RightOf(x, y))))

- -x (Square(x) A Vy(Triangle(x) --> RightOf(x, y)))
by the law for negating a 3 statement

Vx(-Square(x) V -(Vy(Triangle(y) -- RightOf(x, y))))
by De Morgan's law

Vx(-Square(x) V 3y(-(Triangle(y) -s. RightOf(x, y))))
by the law for negating a V statement

- Vx(-Square(x) V 3y(Triangle(y) A -RightOf(x, y)))
by the law for negating an if-then statement

U

The disadvantage of the fully formal notation is that because it is complex and some-
what remote from intuitive understanding, when we use it, we may make errors that go
unrecognized. The advantage, however, is that operations, such as taking negations, can
be made completely mechanical and programmed on a computer. Also, when we become
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comfortable with formal manipulations, we can use them to check our intuition, and then
we can use our intuition to check our formal manipulations. Formal logical notation is
used in branches of computer science such as artificial intelligence, program verification,
and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, predicates, and logical con-
nectives make up what is known as the language of first-order logic. Even though this
language is simpler in many respects than the language we use every day, learning it
requires the same kind of practice needed to acquire any foreign language.

Prolog
The programming language Prolog (short for programming in logic) was developed in
France in the 1970s by A. Colmerauer and P. Roussel to help programmers working in
the field of artificial intelligence. A simple Prolog program consists of a set of statements
describing some situation together with questions about the situation. Built into the
language are search and inference techniques needed to answer the questions by deriving
the answers from the given statements. This frees the programmer from the necessity of
having to write separate programs to answer each type of question. Example 2.3.11 gives
a very simple example of a Prolog program.

Example 2.3.11 A Prolog Program

Consider the following picture, which shows colored blocks stacked on a table.

Ai H gray block X | blue block 3

[E l = blue block I F = white block I

X1 = blue block 2 i = white block 2

The following are statements in Prolog that describe this picture and ask two questions
about it.*

isabove(g, bl) color(g, gray) color(b3 , blue)

isabove(bl, wl) color(bl, blue) color(wI, white)

isabove(w 2 , b2) color(b 2, blue) color(w2, white)

isabove(b 2 , b3) isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)

?color(bi, blue) ?isabove(X, wl)

The statements "isabove(g, bl )" and "color(g, gray)" are to be interpreted as "g is above
bl" and "g is colored gray". The statement "isabove(X, Z) if isabove(X, Y) and
isabove(Y, Z)" is to be interpreted as "For all X, Y, and Z, if X is above Y and Y is
above Z, then X is above Z." The program statement

?color(bI, blue)

*Different Prolog implementations follow different conventions as to how to represent constant,
variable, and predicate names and forms of questions and answers. The conventions used here are
similar to those of Edinburgh Prolog.
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is a question asking whether block bi is colored blue. Prolog answers this by writing

Yes.

The statement

?isabove(X, w,)

is a question asking for which blocks X the predicate "X is above wl" is true. Prolog
answers by giving a list of all such blocks. In this case, the answer is

X bl, X =g.

Note that Prolog can find the solution X = bI by merely searching the original set of given
facts. However, Prolog must infer the solution X = g from the following statements:

isabove(g, bi),

isabove(bl, wj),

isabove(X, Z) if isabove(X, Y) and isabove(Y, Z).

Write the answers Prolog would give if the following questions were added to the program
above.

a. ?isabove(b 2, Up)

Solution

b. ?color(wl, X) c. ?color(X, blue)

a. The question means "Is b2 above I'?"; so the answer is "No."

b. The question means "For what colors X is the predicate 'w, is colored X' true?"; so
the answer is "X = white."

c. The question means "For what blocks is the predicate 'X is colored blue' true?"; so
the answer is "X = bI," "X = b2 ," and "X = b3 ." U

Exercise Set 2.3
1. Let C be the set of cities in the world, let N be the set of na-

tions in the world, and let P(c, n) be "c is the capital city of
n." Determine the truth values of the following statements.
a. P(Tokyo, Japan) b. P(Athens, Egypt)
c. P(Paris, France) d. P(Miami, Brazil)

2. Let G(x, y) be ..Y2 > y." Indicate which of the following
statements are true and which are false.
a. G(2, 3) b. G(l, I)
c. G(1, 2) d. G(-2, 2)

3. The following statement is true: "V nonzero numbers x, 3 a
real number y such that xy 1." For each x given below,
find a y to make the predicate "xy = I" true.
a. x=2 b. x =- c. x=3/4

4. The following statement is true: "V real numbers x, 3 an
integern such thatn > x ."* For each x given below, find an
n to make the predicate "n > x" true.
a. x = 15.83 b. x= -08 c. x= 10- 0

*This is called the Archimedean principle because it was first
formulated (in geometric terms) by the great Greek mathema-
tician Archimedes of Syracuse, who lived from about 287 to
212 B.C.

The statements in exercises 5-8 refer to the Tarski world given
in Example 2.3.1. Explain why each is true.

5. For all circles x there is a square y such that x and y have
the same color.

6. For all squares x there is a circle y such that x and y have
different colors and y is above x.

7. There is a triangle x such that for all squares y, x is above y.

8. There is a triangle x such that for all circles y, y is above x.

9. Let D = E = (-2, -1,0, 1, 21. Explain why the following
statements are true.
a. Vx in D, 3 y in E such thatx +y=- 0.
b. 3xin DsuchthatVyinE, x+y =y.

10. This exercise refers to Example 2.3.3. Determine whether
each of the following statements is true or false.
a. V students S, 3 a dessert D such that S chose D.
b. V students S, 3 a salad T such that S chose T.
c. 3 a dessert D such that V students S, S chose D.



d. 3 a beverage B such that V students D, D chose B.
e. 3 an item I such that V students S, S did not choose I.
f. 3 a station Z such that V students S, 3 an item I such that

S chose I from Z.

11. How could you determine the truth or falsity of the follow-
ing statements for the students in your discrete mathematics
class? Assume that students will respond truthfully to ques-
tions that are asked of them.
a. There is a student in this class who has dated at least one

person from every residence hall at this school.
b. There is a residence hall at this school with the prop-

erty that every student in this class has dated at least one
person from that residence hall.

c. Every residence hall at this school has the property that
if a student from this class has dated at least one person
from that hall, then that student has dated at least two
people from that hall.

12. Let S be the set of students at your school, let M be the set
of movies that have ever been released, and let V(s, m) be
"student s has seen movie m." Rewrite each of the follow-
ing statements without using the symbol V, the symbol 3, or
variables.
a. 3s E S such that V(s, Casablanca).
b. Vs E S, V(s, Star Wars).
c. Vs e S, 3m E M such that V(s, m).
d. 3m E M such that VS E S, V(s, m).
e. 3s E S. 3t E S. and 3m E M such that s A t and

V(s, m) A V(t, m).
f. 3s E S and 3t E S such that s A t and Vm e M,

V(s, m) V(t, in).

13. Let D = E - 1-2, -1, 0, 1, 2). Write negations for each
of the following statements and determine which is true, the
given statement or its negation.
a. Vx in D, 3y in E such that x + y = 1.
b. 3x in D such that Vy in E, x + y = -y.

In each of 14-19, (a) rewrite the statement in English without
using the symbol V or 3 but expressing your answer as simply
as possible, and (b) write a negation for the statement.

14. V colors C, 3 an animal A such that A is colored C.

15. 3 a book b such that V people p, p has read b.

16. V odd integers n, 3 an integer k such that n = 2k + 1.

17. Vr c Q, 3 integers a and b such that r = a/b.

18. Vx E R, 3 a real number y such that x + y = 0.

19. 3x e R such that for all real numbers y, x + y = 0.

20. Recall that reversing the order of the quantifiers in a state-
ment with two different quantifiers may change the truth
value of the statement-but it does not necessarily do so.
All the statements in the pairs below refer to the Tarski world
of Example 2.3.1. In each pair, the order of the quantifiers
is reversed but everything else is the same. For each pair,
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determine whether the statements have the same or opposite
truth values. Justify your answers.
a. (I) For all circles x there is a triangle y such that x and

y do not have the same color.
(2) There is a triangle x such that for all circles y, x and
y have different colors.

b. (1) For all circles x there is a square y such that x and y
have the same color.
(2) There is a square x such that for all circles y, x and
y have the same color.

In 21 and 22, rewrite each statement without using variables or
the symbol V or 3. Indicate whether the statement is true or false.

21. a. V real numbers x, 3 a real number v such that x + y = 0.
b. 3 a real number y such that V real numbers x, x + y = 0.

22. a. V nonzero real numbers r, 3 a real number s such that
rs - 1.

b. 3 a real number s such that V real numbers r, rs = 1.

23. Use the laws for negating universal and existential state-
ments to derive the following rules:
a. -(Vx E D(Vy E E (P(x, y))))

- 3x E D(3y e E(-P(x, y)))
b. -(3x E D(3y e E(P(x, y))))

-Vx e D(Vy E E(-P(x, y)))

Each statement in 24-27 refers to the Tarski world of Example
2.3.1. For each, (a) determine whether the statement is true or
false and justify your answer, (b) write a negation for the state-
ment (referring, if you wish, to the result in exercise 23).

24. V circles x and V squares y, x is above y.

25. V circles x and V triangles y, x is above y.

26. 3 a circle x and 3 a square y such that x is above y and x
and y have different colors.

27. 3 a circle x and 3 a square y such that x is above y and x
and y have the same color.

For each of the statements in 28 and 29, (a) write a new statement
by interchanging the symbols V and 2, and (b) state which is true:
the given statement, the version with interchanged quantifiers,
neither, or both.

28. Vx E R. 3y E R suchthatx < y.

29. 3x E R such that Vy e R (the set of negative real num-
bers), x > y.

30. Consider the statement "Everybody is older than some-
body." Rewrite this statement in the form "V people x,

~ .1

31. Consider the statement "Somebody is older than every-
body." Rewrite this statement in the form "2 a person x
such that V _ ."
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In 32-38, (a) rewrite the statement formally using quantifiers
and variables, and (b) write a negation for the statement.

32. Everybody loves somebody.

33. Somebody loves everybody.

34. Everybody trusts somebody.

35. Somebody trusts everybody.

36. Any even integer equals twice some integer.

37. Every action has an equal and opposite reaction.

38. There is a program that gives the correct answer to every
question that is posed to it.

39. In informal speech most sentences of the form "There is
every _ " are intended to be understood as

meaning "V - 3 ," even though the existen-
tial quantifier there is comes before the universal quantifier
every. Note that this interpretation applies to the following
well-known sentences. Rewrite them using quantifiers and
variables.
a. There is a sucker born every minute.
b. There is a time for every purpose under heaven.

40. Indicate which of the following statements are true and
which are false. Justify your answers as best you can.
a. x E Z+, 3y E Z+ such thatx = y + 1.
b. VxeZ,3yEZsuchthatx=y+1.
c. 3x eRsuchthatVyER,x =y+ l.
d. Vx E R+, By E R' such that xy = 1.
e. Vx E R, 3y e R such thatxy = 1.
f. Vx e Z+andVy EZ+,3z e Z+ suchthatz =x -y.

g. Vx E Z and Vy E Z, 3z e Z such that z = x -y.
h. 3u e R+ such that Vv e R+, uv < v.
i. Vv E R+, 3u e R+ such that uv < v.

41. Write the negation of the definition of limit of a sequence
given in Example 2.3.7.

42. Write a negation for the following statement (which is the
definition of limr, f (x) = L):

For all real numbers E > 0, there exists a real
numbers> Osuchthatifa - <x <a +6
then L - e < f(x) < L +E.

43. The notation 3! stands for the words "there exists a unique."
Thus, for instance, "3! x such that x is prime and x is even"
means that there is one and only one even prime number.
Which of the following statements are true and which are
false? Explain.
a. 3! real number x such that V real numbers y, xy = y.
b. 3! integer x such that l/x is an integer.
c. V real numbers x, 3! real number y such that x + y = 0.

*44. Suppose that P(x) is a predicate and D is the domain of
x. Rewrite the statement "3! x E D such that P(x)" with-
out using the symbol 3!. (See exercise 43 for the meaning
of 3!.)

In 45-52, refer to the Tarski world given in Example 2.1. 1, which
is printed again here for reference. The domains of all variables
consist of all the objects in the Tarski world. For each statement,
(a) indicate whether the statement is true or false and justify your
answer, (b) write the given statement using the formal logical no-
tation illustrated in Example 2.3.10, and (c) write the negation of
the given statement using the formal logical notation of Example
2.3.10.

~A 0AU

A A ia X *
- - f~ 0k''=0

45. There is a triangle x such that for all squares y, x is above y.

46. There is a triangle x such that for all circles y, x is above y.

47. For all circles x, there is a square y such that y is to the right
of x.

48. For every object x, there is an object y such that if x 7 y
then x and y have different colors.

49. There is an object y such that for all objects x, if x 7 y
then x and y have different colors.

50. For all circles x and for all triangles y, x is to the right of y.

51. There is a circle x and there is a square y such that x and y
have the same color.

52. There is a circle x and there is a triangle y such that x and
y have the same color.

Let P(x) and Q(x) be predicates and suppose D is the domain
of x. In 53-56, for the statement forms in each pair, determine
whether (a) they have the same truth value for every choice of
P(x), Q(x), and D, or (b) there is a choice of P(x), Q(x), and
D for which they have opposite truth values.

53. Vx E D, (P(x) A Q(x)), and
(Vx E D, P(x)) A (8x F D, Q(x))

54. 3x e D, (P(x) A Q(x)), and
(3x E D, P(x)) A (3x E D, Q(x))

55. Vx E D, (P(x) v Q(x)), and
(8x E D, P(x)) v (Vx E D, Q(x))

56. 3x E D, (P(x) v Q(x)), and
(3x E D, P(x)) v (3x E D, Q(x))
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In 57-59, find the answers Prolog would give if the following
questions were added to the program given in Example 2.3.11.

57. a. ?isabove(bl, w1) 58. a. ?isabove(wl, g) 59. a. ?isabove(w 2, b3)
b. ?color(X, white) b. ?color(w 2, blue) b. ?color(X, gray)
c. ?isabove(X, b3) c. ?isabove(X, b1) c. ?isabove(g, X)

2.4 Arguments with Quantified Statements
The only complete safeguard against reasoning ill, is the habit of reasoning well;
familiarity with the principles of correct reasoning; and practice in applying those
principles. -John Stuart Mill

The rule of universal instantiation (in-stan-she-AY-shun) says that

If some property is true of everything in a domain, then
it is true of any particular thing in the domain.

Use of the words universal instantiation indicates that the truth of a property in a particular
case follows as a special instance of its more general or universal truth. The validity of
this argument form follows immediately from the definition of truth values for a universal
statement. One of the most famous examples of universal instantiation is the following:

All men are mortal.

Socrates is a man.

Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning. Mathematical
formulas, definitions, and theorems are like general templates that are used over and over
in a wide variety of particular situations. A given theorem says that such and such is true
for all things of a certain type. If, in a given situation, you have a particular object of
that type, then by universal instantiation, you conclude that such and such is true for that
particular object. You may repeat this process 10, 20, or more times in a single proof or
problem solution.

As an example of universal instantiation, suppose you are doing a problem that requires
you to simplify

rk+l r,

where r is a particular real number and k is a particular integer. You know from your
study of algebra that the following universal statements are true:

1. For all real numbers x and all integers m and n, xm nx' = xm+n.

2. For all real numbers x,x = x.

So you proceed as follows:

rk+l. r = rk r Step I

= r (k+lI)+ I Step 2

= rk+2 by basic algebra.

The reasoning behind step I and step 2 is outlined as follows.
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Step 1: For all real numbers x, x = x.
r is a particular real number.

. ri =r.

Step 2: For all real numbers x and all integers
m and n, xm 

_ Xn = xm+n.

r is a particular real number and k + I
and 1 are particular integers.

. . rk+1 .rl= r(k+l)+T.

universal truth

particular instance

conclusion

universal truth

particular instance

conclusion

Both arguments are examples of universal instantiation.

Universal Modus Ponens
The rule of universal instantiation can be combined with modus ponens to obtain the valid
form of argument called universal modus ponens.

Universal Modus Ponens

Formal Version

Vx, if P(x) then Q(x).

P(a) for a particular a.

Q(a).

Informal Version

If x makes P(x) true, then x makes Q(x) true.

a makes P(x) true.

. a makes Q(x) true.

Note that the first, or major, premise of universal modus ponens could be written "All
things that make P(x) true make Q(x) true," in which case the conclusion would follow
by universal instantiation alone. However, the if-then form is more natural to use in the
majority of mathematical situations.

Example 2.4.1 Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Is
this argument valid? Why?

If a number is even, then its square is even.

k is a particular number that is even.

. .k 2 is even.

Solution The major premise of this argument can be rewritten as

Vx, if x is even then x2 is even.

Let E(x) be "x is even," let S(x) be "x2 is even," and let k stand for a particular number
that is even. Then the argument has the following form:

Vx, if E(x) then S(x).
E(k), for a particular k.
S(k).

This argument has the form of universal modus ponens and is therefore valid. .
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Example 2.4.2 Drawing Conclusions Using Universal Modus Ponens

Write the conclusion that can be inferred using universal modus ponens.

If T is any right triangle with hypotenuse Pythagorean theorem

c and legs a and b, then c2 = a2 + b2 .

The triangle shown at the right is a right
triangle with both legs equal to 1 and
hypotenuse c. 1

Solution c 2 = i2 + 12 = 2

Note that if you take the nonnegative square root of both sides of this equation, you obtain
c = 42. This shows that there is a line segment whose length is 1. Section 3.7 contains
a proof that X is not a rational number. X

Use of Universal Modus Ponens in a Proof
In Chapter 3 we discuss methods of proving quantified statements. Here is a proof that
the sum of any two even integers is even. It makes use of the definition of even integer,
namely, that an integer is even if, and only if, it equals twice some integer. (Or, more
formally: V integers x, x is even if, and only if, 3 an integer k such that x = 2k.)

Suppose m and n are particular but arbitrarily chosen even integers. Then m = 2r for
some integer r, () and n = 2s for some integer s. (2) Hence

m + n = 2r + 2s by substitution

= 2(r + s)(3 ) by factoring out the 2.

Now r + s is an integer,(4) and so 2(r + s) is even.(5) Thus m + n is even.

The following expansion of the proof shows how each of the numbered steps is justified
by arguments that are valid by universal modus ponens.

(1) If an integer is even, then it equals twice some integer.
m is a particular even integer.
m equals twice some integer r.

(2) If an integer is even, then it equals twice some integer.
n is a particular even integer.
n equals twice some integer s.

(3) If a quantity is an integer, then it is a real number.
r and s are particular integers.
r and s are real numbers.

For all a, b, and c, if a, b, and c are real numbers, then ab + ac = a(b + c).
2, r, and s are particular real numbers.
2r + 2s = 2(r + s).

(4) For all u and v, if u and v are integers, then u + v is an integer.
r and s are two particular integers.
r + s is an integer.

(5) If a number equals twice some integer, then that number is even.
2(r + s) equals twice the integer r + s.
2(r + s) is even.
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Of course, the actual proof that the sum of even integers is even does not explicitly
contain the sequence of arguments given above. (Heaven forbid!) And, in fact, people
who are good at analytical thinking are normally not even conscious that they are reasoning
in this way. But that is because they have absorbed the method so completely that it has
become almost as automatic as breathing.

Universal Modus Tollens
Another crucially important rule of inference is universal modus tollens. Its validity
results from combining universal instantiation with modus tollens. Universal modus
tollens is the heart of proof of contradiction, which is one of the most important methods
of mathematical argument.

Universal Modus Tollens

Formal Version Informal Version

Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

-"Q(a), for a particular a. a does not make Q(x) true.

.. P(a) .. a does not make P(x) true.

Example 2.4.3 Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Write
the major premise in conditional form. Is this argument valid? Why?

All human beings are mortal.

Zeus is not mortal.

Zeus is not human.

Solution The major premise can be rewritten as

Vx, if x is human then x is mortal.

Let H(x) be "x is human," let M(x) be "x is mortal," and let Z stand for Zeus. The
argument becomes

Vx, if H(x) then M(x)

.H. -H(Z).

This argument has the form of universal modus tollens and is therefore valid.

Example 2.4.4 Drawing Conclusions Using Universal Modus Tollens

Write the conclusion that can be inferred using universal modus tollens.

All professors are absent-minded.

Tom Hutchins is not absent-minded.

.

Solution Tom Hutchins is not a professor. .



2.4 Arguments with Quantified Statements 115

Proving Validity of Arguments with Quantified
Statements

The intuitive definition of validity for arguments with quantified statements is the same as
for arguments with compound statements. An argument is valid if, and only if, the truth
of its conclusion follows necessarily from the truth of its premises. The formal definition
is as follows:

*. M a .w n m S t .N A eH
Tosay that an argument form is valid means the following: No matter what particular

predicates are substituted for the predicate symbols in its premises, if the resulting
premise statements are all true, then the conclusion is also true.

An argument is called valid if, and only if, its form is valid.

As already noted, the validity of universal instantiation follows immediately from the
definition of truth values of a universal statement. General formal proofs of validity of
arguments in the predicate calculus are beyond the scope of this book. We give the proof
of the validity of universal modus ponens as an example to show that such proofs are
possible and to give an idea of how they look.

Universal modus ponens asserts that

Vx, if P(x) then Q(x).

P(a) for a particular a.

Q(a).

To prove that this form of argument is valid, suppose the major and minor premises are
both true. [We must show that the conclusion "Q(a) " is also true.] By the minor premise,
P (a) is true for a particular value of a. By the major premise and universal instantiation,
the statement "If P(a) then Q(a)" is true for that particular a. But by modus ponens,
since the statements "If P(a) then Q(a)" and "P(a)" are both true, it follows that Q(a)
is true also. [This is what was to be shown.]

The proof of validity given above is abstract and somewhat subtle. We include the
proof not because we expect that you will be able to make up such proofs yourself at this
stage of your study. Rather, it is intended as a glimpse of a more advanced treatment of
the subject, which you can try your hand at in exercises 35 and 36 at the end of this section
if you wish.

One of the paradoxes of the formal study of logic is that the laws of logic are used to
prove that the laws of logic are valid!

In the next part of this section we show how you can use diagrams to analyze the
validity or invalidity of arguments that contain quantified statements. Diagrams do not
provide totally rigorous proofs of validity and invalidity, and in some complex settings
they may even be confusing, but in many situations they are helpful and convincing.

Using Diagrams to Test for Validity
Consider the statement

All integers are rational numbers.

Or, formally,

V integers n, n is a rational number.
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Picture the set of all integers and the set of all rational numbers as disks. The truth of the
given statement is represented by placing the integers disk entirely inside the rationals
disk, as shown in Figure 2.4.1.

Because the two statements "Vx e D, Q(x)" and "8x, if x is in D then Q(x)" are logically
equivalent, both can be represented by diagrams like the foregoing.

Perhaps the first person to use diagrams like these to analyze arguments was the
German mathematician and philosopher Gottfried Wilhelm Leibniz. Leibniz (LIPE-nits)
was far ahead of his time in anticipating modem symbolic logic. He also developed the
main ideas of the differential and integral calculus at approximately the same time as (and
independently of) Isaac Newton (1642-1727).

To test the validity of an argument diagrammatically, represent the truth of both
ibniz premises with diagrams. Then analyze the diagrams to see whether they necessarily
176) represent the truth of the conclusion as well.

Example 2.4.5 Using a Diagram to Show Validity

Use diagrams to show the validity of the following syllogism:

All human beings are mortal.

Zeus is not mortal.

Zeus is not a human being.

Solution The major premise is pictured on the left in Figure 2.4.2 by placing a disk labeled
"human beings" inside a disk labeled "mortals." The minor premise is pictured on the
right in Figure 2.4.2 by placing a dot labeled "Zeus" outside the disk labeled "mortals."

Zeus

Major premise Minor premise

Figure 2.4.2

G. W Le
(1646-];

Figure 2.4.1
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The two diagrams fit together in only one way, as shown in Figure 2.4.3.

Zeus

Figure 2.4.3

Since the Zeus dot is outside the mortals disk, it is necessarily outside the human beings
disk. Thus the truth of the conclusion follows necessarily from the truth of the premises.
It is impossible for the premises of this argument to be true and the conclusion false; hence
the argument is valid.

Example 2.4.6 Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following argument:

All human beings are mortal.

Felix is mortal.

Felix is a human being.

Solution The major and minor premises are represented diagrammatically in Figure 2.4.4.

Major premise Minor premise

Figure 2.4.4

All that is known is that the Felix dot is located somewhere inside the mortals disk.
Where it is located with respect to the human beings disk cannot be determined. Either
one of the situations shown in Figure 2.4.5 might be the case.

human being

0 Felix

(a) (b)

Figure 2.4.5
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The conclusion "Felix is a human being" is true in the first case but not in the second
(Felix might, for example, be a cat). Because the conclusion does not necessarily follow
from the premises, the argument is invalid. U

The argument of Example 2.4.6 would be valid if the major premise were replaced
by its converse. But since a universal conditional statement is not logically equivalent to
its converse, such a replacement cannot, in general, be made. We say that this argument
exhibits the converse error.

Converse Error (Quantified Form)

Formal Version Informal Version

Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

Q(a) for a particular a. a makes Q(x) true.

P(a). - invalid . . a makes P(x) true. - invalid
conclusion conclusion

The following form of argument would be valid if a conditional statement were logi-
cally equivalent to its inverse. But it is not, and the argument form is invalid. We say that
it exhibits the inverse error. You are asked to show the invalidity of this argument form
in the exercises at the end of this section.

Inverse Error (Quantified Form)

Formal Version Informal Version

Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

-P(a), for a particular a. a does not make P(x) true.

-Q(a). - invalid . . a does not make Q(x) true. <- invalid
conclusion conclusion

Example 2.4.7 An Argument with "No"

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.

This function is not a polynomial function.

Solution A good way to represent the major premise diagrammatically is shown in Figure
2.4.6, two disks-a disk for polynomial functions and a disk for functions with horizontal
asymptotes-that do not overlap at all. The minor premise is represented by placing a dot
labeled "this function" inside the disk for functions with horizontal asymptotes.



2.4 Arguments with Quantified Statements 119

f nations with
polynomial functions horizontal asymptotes

Figure 2.4.6

The diagram shows that "this function" must lie outside the polynomial functions disk, and
so the truth of the conclusion necessarily follows from the truth of the premises. Hence
the argument is valid. U

An alternative approach to this example is to transform the statement "No polynomial
functions have horizontal asymptotes" into the equivalent form "Vx, if x is a polynomial
function, then x does not have a horizontal asymptote." If this is done, the argument can
be seen to have the form

Vx, if P(x) then Q(x).

-'Q(a), for a particular a.

-P (a) .

where P(x) is "x is a polynomial function" and Q(x) is "x does not have a horizontal
asymptote." This is valid by universal modus tollens.

A Caution! You need to be careful when using diagrams to test for validity,
because you may miss seeing one or more of the ways the diagrams fit together.
For instance, in Example 2.4.6, if you saw only Figure 2.4.5(a) and not Figure
2.4.5(b), you would conclude erroneously that the argument was valid.

Creating Additional Forms of Argument
Universal modus ponens and modus tollens were obtained by combining universal in-
stantiation with modus ponens and modus tollens. In the same way, additional forms
of arguments involving universally quantified statements can be obtained by combining
universal instantiation with other of the valid argument forms given in Section 1.3. For
instance, in Section 1.3 the argument form called transitivity was introduced:

p q

q r

..p r

This argument form can be combined with universal instantiation to obtain the following
valid argument form.
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Example 2.4.8 Evaluating an Argument for Tarski's World

The following argument refers to the kind of arrangement of objects of various types and
colors described in Examples 2.1.12 and 2.3.1. Reorder and rewrite the premises to show
that the conclusion follows as a valid consequence from the premises.

1. All the triangles are blue.

2. If an object is to the right of all the squares, then it is above all the circles.

3. If an object is not to the right of all the squares, then it is not blue.

. All the triangles are above all the circles.

Solution It is helpful to begin by rewriting the premises and the conclusion in if-then form:

1. Vx, if x is a triangle, then x is blue.

2. Vx, if x is to the right of all the squares, then x is above all the circles.

3. Vx, if x is not to the right of all the squares, then x is not blue.

.. Vx, if x is a triangle, then x is above all the circles.

The goal is to reorder the premises so that the conclusion of each is the same as the
hypothesis of the next. Also, the hypothesis of the argument's conclusion should be the
same as the hypothesis of the first premise, and the conclusion of the argument's conclusion
should be the same as the conclusion of the last premise. To achieve this goal, it may be
necessary to rewrite some of the statements in contrapositive form.

In this example you can see that the first premise should remain where it is, but the
second and third premises should be interchanged. Then the hypothesis of the argument
is the same as the hypothesis of the first premise, and the conclusion of the argument's
conclusion is the same as the conclusion of the third premise. But the hypotheses and
conclusions of the premises do not quite line up. This is remedied by rewriting the third
premise in contrapositive form.

Thus the premises and conclusion of the argument can be rewritten as follows:

I. Vx, if x is a triangle, then x is blue.

3. Vx, if x is blue, then x is to the right of all the squares.

2. Vx, if x is to the right of all the squares, then x is above all the circles.

.Vx, if x is a triangle, then x is above all the circles.

The validity of this argument follows easily from the validity of universal transitivity.
Putting 1 and 2 together and using universal transitivity gives that

4. Vx, if x is a triangle, then x is to the right of all the squares.

Universal Transitivity

Formal Version Informal Version

VxP(x) - Q(x). Anything that x makes P(x) true makes Q(x) true.

VxQ(x) -- R(x). Anything thatx makes Q(x) true makes R(x) true.

. . VxP(x) -- R(x). . Anything that x makes P(x) true makes R(x) true.
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And putting 4 together with 3 and using universal transitivity gives that

Vx, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument. A

Remark on the Converse and Inverse Errors
One reason why so many people make converse and inverse errors is that the forms of
the resulting arguments would be valid if the major premise were a biconditional rather
than a simple conditional. And, as we noted in Section 1.2, many people tend to confuse
biconditionals and conditionals.

Consider, for example, the following argument:

All the town criminals frequent the Den of Iniquity bar.

John frequents the Den of Iniquity bar.

John is one of the town criminals.

The conclusion of this argument is invalid-it results from making the converse error.
Therefore, it may be false even when the premises of the argument are true. This type of
argument attempts unfairly to establish guilt by association.

The closer, however, the major premise comes to being a biconditional, the more likely
the conclusion is to be true. If hardly anyone but criminals frequents the bar and John
also frequents the bar, then it is likely (though not certain) that John is a criminal. On the
basis of the given premises, it might be sensible to be suspicious of John, but it would be
wrong to convict him.

A variation of the converse error is a very useful reasoning tool, provided that it
is used with caution. It is the type of reasoning that is used by doctors to make medical
diagnoses and by auto mechanics to repair cars. It is the type of reasoning used to generate
explanations for phenomena. It goes like this: If a statement of the form

For all x, if P (x) then Q(x)

is true, and if

Q(a) is true, for a particular a,

then check out the statement P(a); it just might be true. For instance, suppose a doctor
knows that

For all x, if x has pneumonia, then x has a fever and chills,
coughs deeply, and feels exceptionally tired and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of pneumonia is a strong
possibility, though not a certainty. The doctor will probably attempt to gain further support
for this diagnosis through laboratory testing that is specifically designed to detect pneu-
monia. Note that the closer a set of symptoms comes to being a necessary and sufficient
condition for an illness, the more nearly certain the doctor can be of his or her diagnosis.

This form of reasoning has been named abduction by researchers working in artificial
intelligence. It is used in certain computer programs, called expert systems, that attempt
to duplicate the functioning of an expert in some field of knowledge.
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Exercise Set 2.4
1. Let the following law of algebra be the first statement of an

argument:

For all real numbers a and b,
(a + b)

2 = a2 + 2ab + b2
.

Suppose each of the following statements is, in turn, the
second statement of the argument. Use universal instantia-
tion or universal modus ponens to write the conclusion that
follows in each case.
a. a = x and b = y are particular real numbers.
b. a = fi and b fj are particular real numbers.
c. a = 3u and b - 5v are particular real numbers.
d. a = g(r) and b = g(s) are particular real numbers.
e. a = log(tl) and b = log(t2) are particular real numbers.

Use universal instantiation or universal modus ponens to fill in
valid conclusions for the arguments in 2-4.

2. If an integer n equals 2 . k and k is an integer, then n is
even.
0 equals 2 . 0 and 0 is an integer.

3. For all real numbers a, b, c, and d, if b 0 0 and d 0 0,
then a/b + c/d = (ad + bc)/bd.
a = 2, b = 3, c = 4 and d = 5 are particular real num-
bers such that b A 0 and d A 0.

4. V real numbers r, a, and b, if r is positive, then
(r a)b = rob.

r = 3, a = 1/2, and b = 6 are particular real numbers
such that r is positive.

Use universal modus tollens to fill in valid conclusions for the
arguments in 5 and 6.

5. All healthy people eat an apple a day.
Adster does not eat an apple a day.

6. If a computer program is correct, then compilation of the
program does not produce error messages.
Compilation of this program produces error messages.

Some of the arguments in 7-18 are valid by universal modus
ponens or universal modus tollens; others are invalid and ex-
hibit the converse or the inverse error. State which are valid and
which are invalid. Justify your answers.

7. All healthy people eat an apple a day.
Keisha eats an apple a day.
Keisha is a healthy person.

8. All freshmen must take writing.
Caroline is a freshman.
Caroline must take writing.

9. All healthy people eat an apple a day.
Herbert is not a healthy person.
Herbert does not eat an apple a day.

10. If a product of two numbers is 0, then at least one of the
numbers is 0.
For a particular number x, neither (2x + 1) nor (x -7)
equals 0.
The product (2x + l)(x - 7) is not 0.

11. All cheaters sit in the back row.
Monty sits in the back row.
Monty is a cheater.

12. All honest people pay their taxes.
Darth is not honest.
Darth does not pay his taxes.

13. For all students x, if x studies discrete mathematics, then
x is good at logic.
Tarik studies discrete mathematics.
Tarik is good at logic.

14. If compilation of a computer program produces error
messages, then the program is not correct.
Compilation of this program does not produce error
messages.
This program is correct.

15. Any sum of two rational numbers is rational.
The sum r + s is rational.
The numbers r and s are both rational.

16. If a number is even, then twice that number is even.
The number 2n is even, for a particular number n.
The particular number n is even.

17. If an infinite series converges, then the terms go to 0.
c 1

The terms of the infinite series E - go to 0.
n=l n

The infinite series E- converges.
n

18. If an infinite series converges, then its terms go to 0.
n

The terms of the infinite series E do not go to 0.
n, n+l

The infinite series - does not converge.

19. Rewrite the statement "No good cars are cheap" in the form
"Vx, if P(x) then -Q(x)." Indicate whether each of the
following arguments is valid or invalid, and justify your
answers.
a. No good car is cheap.

A Rimbaud is a good car.
A Rimbaud is not cheap.

. .
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b. No good car is cheap.
A Simbaru is not cheap.
A Simbaru is a good car.

c. No good car is cheap.
A VX Roadster is cheap.
A VX Roadster is not good.

d. No good car is cheap.
An Omnex is not a good car.
An Omnex is cheap.

20. a. Use a diagram to show that the following argument can
have true premises and a false conclusion.

All dogs are carnivorous.

Aaron is not a dog.

Aaron is not carnivorous.

b. What can you conclude about the validity or invalidity
of the following argument form? Explain how the result
from part (a) leads to this conclusion.

Vx, if P(x) then Q(x).

--P(a) for a particular a.

-. Q(a).

Indicate whether the arguments in 21-26 are valid or invalid.
Support your answers by drawing diagrams.

21. All people are mice.
All mice are mortal.
All people are mortal.

22. All discrete mathematics students can tell a valid arg-
ument from an invalid one.
All thoughtful people can tell a valid argument from an
invalid one.
All discrete mathematics students are thoughtful.

23. All teachers occasionally make mistakes.
No gods ever make mistakes.
No teachers are gods.

24. No vegetarians eat meat.
All vegans are vegetarian.
No vegans eat meat.

25. No college cafeteria food is good.
No good food is wasted.
No college cafeteria food is wasted.

26. All polynomial functions are differentiable.
All differentiable functions are continuous.
All polynomial functions are continuous.

27. [Adapted from Lewis Carroll.]
Nothing intelligible ever puzzles me.
Logic puzzles me.
Logic is unintelligible.

In exercises 28-33, reorder the premises in each of the arguments
to show that the conclusion follows as a valid consequence from
the premises. It may be helpful to rewrite the statements in if-
then form and replace some statements by their contrapositives.
Exercises 28-30 refer to the kinds of Tarski worlds discussed in
Example 2.1.12 and 2.3.1. Exercises 31 and 32 are adapted from
Symbolic Logic by Lewis Carroll.*

28. 1. Every object that is to the right of all the blue objects is
above all the triangles.

2. If an object is a circle, then it is to the right of all the blue
objects.

3. If an object is not a circle, then it is not gray.
. . All the gray objects are above all the triangles.

29. 1. All the objects that are to the right of all the triangles are
above all the circles.

2. If an object is not above all the black objects, then it is
not a square.

3. All the objects that are above all the black objects are to
the right of all the triangles.
All the squares are above all the circles.

30. 1. If an object is not blue, then it is not a triangle.
2. If an object is not above all the gray objects, then it is not

a square.
3. Every black object is a square.
4. Every object that is above all the gray objects is above

all the triangles.
If an object is black, then it is above all the blue objects.

31. 1. I trust every animal that belongs to me.
2. Dogs gnaw bones.
3. I admit no animals into my study unless they will beg

when told to do so.
4. All the animals in the yard are mine.
5. I admit every animal that I trust into my study.
6. The only animals that are really willing to beg when told

to do so are dogs.
All the animals in the yard gnaw bones.

32. 1. When I work a logic example without grumbling, you
may be sure it is one I understand.

2. The arguments in these examples are not arranged in reg-
ular order like the ones I am used to.

3. No easy examples make my head ache.
4. I can't understand examples if the arguments are not ar-

ranged in regular order like the ones I am used to.
5. I never grumble at an example unless it gives me a

headache.
These examples are not easy.

*Lewis Carroll, Symbolic Logic (New York: Dover, 1958),
pp. 118, 120, 123.
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In 33 and 34 a conclusion follows from the given premises, but it
is difficult to see because the premises are jumbled up. Reorder
the premises to make it clear that a conclusion follows logically,
and state the valid conclusion that can be drawn. (It may be
helpful to rewrite some of the statements in if-then form and to
replace some statements by their contrapositives.)

33. 1. No birds except ostriches are at least 9 feet tall.
2. There are no birds in this aviary that belong to anyone

but me.
3. No ostrich lives on mince pies.
4. I have no birds less than 9 feet high.

34. 1. All writers who understand human nature are clever.
2. No one is a true poet unless he can stir the human heart.
3. Shakespeare wrote Hamlet.
4. No writer who does not understand human nature can

stir the human heart.
5. None but a true poet could have written Hamlet.

* 35. Derive the validity of universal modus tollens from the va-
lidity of universal instantiation and modus tollens.

* 36. Derive the validity of universal transitivity from the valid-
ity of universal instantiation and the valid argument called
transitivity in Section 1.3.



CHAPTER 3

ELEMENTARY NUMBER THEORY
AND METHODS OF PROOF

The underlying content of this chapter is likely to be familiar to you. It consists of
properties of integers (whole numbers), rational numbers (integer fractions), and real
numbers. The underlying theme of this chapter is the question of how to determine the
truth or falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given
any real number x, the floor of x, or greatest integer in x, denoted Lx], is the largest integer
that is less than or equal to x. On the number line, LxJ is the integer immediately to the
left of x (or equal to x if x is, itself, an integer). Thus [2.3j = 2, LI12.99999] = 12, and
L- 1.5] = -2. Consider the following two questions:

1. For any real number x, is Lx - I J = LxJ - ?

2. For any real numbers x and y, is Lx -y = LxJ - Ly]?

Take a few minutes to try to answer these questions for yourself.

It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the
answers you got? If not, don't worry. In Section 3.5 you will learn the techniques you need
to answer these questions and more. If you did get the correct answers, congratulations!
You have excellent mathematical intuition. Now ask yourself, "How sure am I of my
answers? Were they plausible guesses or absolute certainties? Was there any difference
in certainty between my answers to (1) and (2)? Would I have been willing to bet a large
sum of money on the correctness of my answers?"

One of the best ways to think of a mathematical proof is as a carefully reasoned
argument to convince a skeptical listener (often yourself) that a given statement is true.
Imagine the listener challenging your reasoning every step of the way, constantly asking,
"Why is that so?" If you can counter every possible challenge, then your proof as a whole
will be correct.

As an example, imagine proving to someone not very familiar with mathematical
notation that if x is a number with 5x + 3 = 33, then x = 6. You could argue as follows:

If 5x + 3 = 33, then 5x + 3 minus 3 will equal 33 -3 since subtracting the same
number from two equal quantities gives equal results. But 5x + 3 minus 3 equals 5x
because adding 3 to 5x and then subtracting 3 just leaves 5x. Also, 33 - 3 = 30.
Hence 5x = 30. This means that x is a number which when multiplied by 5 equals
30. But the only number with this property is 6. Therefore, x = 6.

125
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Of course there are other ways to phrase this proof, depending on the level of math-
ematical sophistication of the intended reader. In practice, mathematicians often omit
reasons for certain steps of an argument when they are confident that the reader can easily
supply them. When you are first learning to write proofs, however, it is better to err on the
side of supplying too many reasons rather than too few. All too frequently, when even the
best mathematicians carefully examine some "details" in their arguments, they discover
that those details are actually false. Probably the most important reason for requiring
proof in mathematics is that writing a proof forces us to become aware of weaknesses in
our arguments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death.
Suppose, for example, that a mathematician is part of a team charged with designing a new
type of airplane engine, and suppose that the mathematician is given the job of determining
whether the thrust delivered by various engine types is adequate. If you knew that the
mathematician was only fairly sure, but not positive, of the correctness of his analysis,
you would probably not want to ride in the resulting aircraft.

At a certain point in Lewis Carroll's Alice in Wonderland (see exercise 28 in Section
1.2), the March Hare tells Alice to "say what you mean." In other words, she should be
precise in her use of language: If she means a thing, then that is exactly what she should
say. In this chapter, perhaps more than in any other mathematics course you have ever
taken, you will find it necessary to say what you mean. Precision of thought and language
is essential to achieve the mathematical certainty that is needed if you are to have complete
confidence in your solutions to mathematical problems.

3.1 Direct Proof and Counterexample 1:
Introduction
Mathematics, as a science, commenced whenfirst someone, probably a Greek, proved
propositions about "any" things or about "some" things without specification of
definite particular things. -Alfred North Whitehead, 1861-1947

Both discovery and proof are integral parts of problem solving. When you think you have
discovered that a certain statement is true, try to figure out why it is true. If you succeed,
you will know that your discovery is genuine. Even if you fail, the process of trying will
give you insight into the nature of the problem and may lead to the discovery that the
statement is false. For complex problems, the interplay between discovery and proof is
not reserved to the end of the problem-solving process but, rather, is an important part of
each step.

In this text we assume a familiarity with the laws of basic algebra, which are listed in
Appendix A. We also use the three properties of equality: For all objects A, B, and C, (1)
A = A,(2)ifA = BthenB = A, and (3) ifA = BandB = C,thenA = C. In addition,
we assume that the set of integers is closed under addition, subtraction, and multiplication.
This means that sums, differences, and products of integers are integers. Of course, most
quotients of integers are not integers. For example, 3 -. 2, which equals 3/2, is not an
integer, and 3 ÷ 0 is not even a number.

The mathematical content of this section primarily concerns even and odd integers
and prime and composite numbers.

Definitions
In order to evaluate the truth or falsity of a statement, you must understand what the
statement is about. In other words, you must know the meanings of all terms that occur
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in the statement. Mathematicians define terms very carefully and precisely and consider
it important to learn definitions virtually word for word.

I I4 I ̂ l 1=1aI

An integer n is even if, and only if, n equals twice some integer. An integer n is odd
if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even X* 3 an integer k such that n = 2k.
n is odd X~ 3 an integer k such that n = 2k + 1.

It follows from the definition that if you are doing a problem in which you happen
to know that a certain integer is even, you can deduce that it has the form 2 * (some
integer). Conversely, if you know in some situation that a particular integer equals
2- (some integer), then you can deduce that the integer is even.

Know a particular
integer n is even.

Know n has the form
2 - (some integer).

deduce n has the form
3 2 * (some integer).

deduce n is even.

Example 3.1.1 Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following questions.

a. Is 0 even?

b. Is -301 odd?

c. If a and b are integers, is 6a2 b even?

d. If a and b are integers, is 10a + 8b + 1 odd?

e. Is every integer either even or odd?

Solution

a. Yes, 0 = 2 0.

b. Yes, -301 = 2(-151) + 1.

c. Yes, 6a2 b - 2(3a2 b), and since a and b are integers, so is 3a2 b (being a product of
integers).

d. Yes, 10a + 8b + 1 = 2(5a + 4b) + 1, and since a and b are integers, so is 5a + 4b
(being a sum of products of integers).

e. The answer is yes, although the proof is not obvious. (Try giving a reason yourself.)
We will show in Section 3.4 that this fact results from another fact known as the
quotient-remainder theorem. U

The integer 6, which equals 2 . 3, is a product of two smaller positive integers. On
the other hand, 7 cannot be written as a product of two smaller positive integers; its only
positive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a
product of two smaller positive integers is called prime.
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ON I

An integer n is prime if, and only if, n > 1 and for all positive integers r and s, if
n = r * s, then r = 1 or s = 1. An integer n is composite if, and only if, n > 1 and
n = r s for some positive integers r and s with r A 1 and s A 1.

Symbolically, if n is an integer that is greater than 1, then

n is prime X~* V positive integers r and s, if n = r * s
thenr = 1 ors = 1.

n is composite X* 3 positive integers r and s such that n = r * s
andr 0 lands 0 1.

Example 3.1.2 Prime and Composite Numbers

a. Is 1 prime?

b. Is it true that every integer greater than 1 is either prime or composite?

c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution

a. No. A prime number is required to be greater than 1.

b. Yes. For any integer greater than 1, the two definitions are negations of each other.

c. 2,3,5,7, 11, 13

d. 4,6,8,9,10,12 U

Proving Existential Statements
According to the definition given in Section 2. 1, a statement in the form

3x E D such that Q(x)

is true if, and only if,

Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true. Another way is to give
a set of directions for finding such an x. Both of these methods are called constructive
proofs of existence.

Example 3.1.3 Constructive Proofs of Existence

a. Prove the following: 3 an even integer n that can be written in two ways as a sum of
two prime numbers.

b. Suppose that r and s are integers. Prove the following: 3 an integer k such that
22r + 18s = 2k.

Solution

a. Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5, and 7 are all prime numbers.

b. Let k = I Ir + 9s. Then k is an integer because it is a sum of products of integers; and
by substitution, 2k = 2(1 r + 9s), which equals 22r + 18s by the distributive law of
algebra. E
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A nonconstructive proof of existence involves showing either (a) that the existence
of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction. The
disadvantage of a nonconstructive proof is that it may give virtually no clue about where
or how x may be found. The widespread use of digital computers in recent years has led to
some dissatisfaction with this aspect of nonconstructive proofs and to increased efforts to
produce constructive proofs containing directions for computer calculation of the quantity
in question.

Disproving Universal Statements by Counterexample
To disprove a statement means to show that it is false. Consider the question of disproving
a statement of the form

Vx in D, if P(x) then Q(x).

Showing that this statement is false is equivalent to showing that its negation is true. The
negation of the statement is existential:

3x in D such that P(x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and because
the example is used to show that the original statement is false, we call it a counterexample.
Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form "Vx E D, if P(x) then Q(x)," find a value of x in
D for which P(x) is true and Q(x) is false. Such an x is called a counterexample.

Example 3.1.4 Disproof by Counterexample

Disprove the following statement by finding a counterexample:

V real numbers a and b, if a2 = b2 then a = b.

Solution To disprove this statement, you need to find real numbers a and b such that a2 =b2

and a 0 b. The fact that both positive and negative integers have positive squares helps
in the search. If you flip through some possibilities in your mind, you will quickly see
that 1 and -I will work (or 2 and -2, or 0.5 and -0.5, and so forth).

Statement: V real numbers a and b, if a2 = b2, then a = b.

Counterexample: Let a = I and b -1. Then a2 = 12 = 1 and b2 = (-1)2 = 1,
and so a2 = b2. But a 0 b since 1 # -1.

.

It is a sign of intelligence to make generalizations. Frequently, after observing a
property to hold in a large number of cases, you may guess that it holds in all cases. You
may, however, run into difficulty when you try to prove your guess. Perhaps you just
have not figured out the key to the proof. But perhaps your guess is false. Consequently,
when you are having serious difficulty proving a general statement, you should interrupt
your efforts to look for a counterexample. Analyzing the kinds of problems you are
encountering in your proof efforts may help in the search. It may even happen that if
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you find a counterexample and therefore prove the statement false, your understanding
may be sufficiently clarified that you can formulate a more limited but true version of the
statement. For instance, Example 3.1.4 shows that it is not always true that if the squares
of two numbers are equal, then the numbers are equal. However, it is true that if the
squares of two positive numbers are equal, then the numbers are equal.

Proving Universal Statements
The vast majority of mathematical statements to be proved are universal. In discussing
how to prove such statements, it is helpful to imagine them in a standard form:

Vx E D, if P(x) then Q(x).

In Section 2.1 we showed that any universal statement can be written in this form and
that when D is finite, such a statement can be proved by the method of exhaustion. This
method can also be used when there are only a finite number of elements that satisfy the
condition P(x).

Example 3.1.5 The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

Vn E Z, if n is even and 4 < n < 30, then n can be written as a sum
of two prime numbers.

Solution 4=2+2 6=3+3 8=3+5 10=5+5

12=5+7 14=11+3 16=5+11 18=7+11

20=7+13 22=5+17 24=5+19 26=7+19

28=11+17 30=11+19 v

In most cases in mathematics, however, the method of exhaustion cannot be used. For
instance, can you prove by exhaustion that every even integer greater than 2 can be written
as a sum of two prime numbers? No. To do that you would have to check every even
integer, and because there are infinitely many such numbers, this is an impossible task.

Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer's
range. Since a typical computer would require thousands of years just to compute all
possible products of all numbers in its range (not to mention the time it would take to
check the accuracy of the answers), checking correctness by the method of exhaustion is
obviously impractical.

The most powerful technique for proving a universal statement is one that works
regardless of the size of the domain over which the statement is quantified. It is called
the method of generalizing from the generic particular. Here is the idea underlying the
method:

Method of Generalizing from the Generic Particular

To show that every element of a domain satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the domain, and show that x satisfies the
property.
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Example 3.1.6 Generalizing from the Generic Particular

At some time you may have been shown a "mathematical trick" like the following. You
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. Then you astound the person by announcing that their final
result was 7. How does this "trick" work? Let x stand for the number the person picks.
Here is what happens when the person follows your directions:

Step Result
Pick a number. x

Add 5. x + 5

Multiply by 4. (x + 5) 4 = 4x + 20

Subtract 6. (4x + 20) - 6 = 4x + 14

Divide by 2. 4x + 14 2x +7

Subtract twice the original number. (2x + 7) -2x = 7

Thus no matter what number the person starts with, the result will always be 7. Note that
the x in the analysis above is particular (because it represents a single quantity), but it
is also arbitrarily chosen or generic (because it can represent any number whatsoever).
This illustrates the process of drawing a general conclusion from a particular but generic
object. U

The point of having x be arbitrarily chosen (or generic) is to make a proof that can be
generalized to all elements of the domain. By choosing x arbitrarily, you are making no
special assumptions about x that are not also true of all other elements of the domain. The
word generic means "sharing all the common characteristics of a group or class." Thus
everything you deduce about a generic element x of the domain is equally true of any
other element of the domain.

When the method of generalizing from the generic particular is applied to a property
of the form "If P(x) then Q(x)," the result is the method of direct proof. Recall that the
only way "If P(x) then Q(x)" can be false is for P(x) to be true and Q(x) to be false.
Thus to show that "If P(x) then Q(x)" is true, suppose P(x) is true and show that Q(x)
must also be true. It follows by the method of generalizing from the generic particular
that to prove a statement of the form "Vx E D, if P(x) then Q(x)," you suppose x is a
particular but arbitrarily chosen element of D that satisfies P (x), and then you show that
x satisfies Q(x).

Method of Direct Proof

I. Express the statement to be proved in the form "Vx E D, if P(x) then QWx)."
(This step is often done mentally.)

2. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P(x) is true. (This step is often abbreviated "Suppose
x E D and P(x).")

3. Show that the conclusion Q(x) is true by using definitions, previously established
results, and the rules for logical inference.
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Example 3.1.7 A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

A Caution! The word two in this statement does not necessarily refer to two
distinct integers. If a choice of integers is made arbitrarily, the integers are
very likely to be distinct, but they might be the same.

Solution Whenever you are presented with a statement to be proved, it is a good idea to ask
yourself whether you believe it to be true. In this case you might imagine some pairs of
even integers, say 2 + 4, 6 + 10, 12 + 12, 28 + 54, and mentally check that their sums are
even. However, since you cannot possibly check all pairs of even numbers, you cannot
know for sure that the statement is true in general by checking its truth in these particular
instances. Many properties hold for a large number of examples and yet fail to be true in
general.

To prove this statement in general, you need to show that no matter what even integers
are given, their sum is even. But given any two even integers, it is possible to represent
them as 2r and 2s for some integers r and s. And by the distributive law of algebra,
2r + 2s = 2(r + s), which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more complicated than this. What is
the statement method you could use to derive a proof?

Formal Restatement: V integers m and n, if m and n are even then m + n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in general,
you need to show that no matter what two integers you might be given, if both of them
are even then their sum will also be even.

Next ask yourself, "Where am I starting from?" or "What am I supposing?" The
answer to such a question gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose m and n are particular but arbitrarily chosen integers that are
even.

Or, in abbreviated form:

Suppose m and n are any even integers.

Then ask yourself, "What conclusion do I need to show in order to complete the proof?"

To Show: m + n is even.

At this point you need to ask yourself, "How do I get from the starting point to the
conclusion?" Since both involve the term even integer you must use the definition of this
term-and thus you must know what it means for an integer to be even. It follows from
the definition that since m and n are even,

m = 2r, for some integer r and n = 2s, for some integer s.

(The reason you have to use two different letters r and s is that m and n are arbitrarily
chosen-they could be any pair of even integers whatsoever. If you had set m = 2r and
n = 2r, then m would equal n, which need not be the case.)

Now what you want to show is that m + n is even. In other words, you want to show
something about the expression m + n. Having just found alternate representations for m
(as 2r) and n (as 2s), it seems reasonable to substitute these representations in place of mi

and n:

m + n = 2r + 2s.
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Your goal is to show that m + n is even. By definition of even, this means that m + n can
be written in the form

2 * (some integer).

This analysis narrows the gap between the starting point and what is to be shown to
showing that

2r + 2s = 2. (some integer).

Why is this true? First, because of the distributive law from algebra, which says that

2r + 2s = 2(r + s),

and, second, because the sum of any two integers is an integer, which implies that r + s
is an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a
formal proof of it. (In mathematics, the word theorem refers to a statement that is known
to be true because it has been proved.) The formal proof, as well as many others in this
text, includes explanatory notes to make its logical flow apparent. Such comments are
purely a convenience for the reader and could be omitted entirely. For this reason they
are italicized and enclosed in square brackets: [ ].

Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof
based on a set of axioms.* In keeping with this analogy, the bracketed comments can
be thought of as similar to the explanatory documentation provided by a good program-
mer. Documentation is not necessary for a program to run, but it helps a human reader
understand what is going on.

U

Most theorems, like the one above, can be analyzed to a point where you realize that
as soon as a certain thing is shown, the theorem will be proved. When that thing has been

*Donald E. Knuth, The Art of Computer Programming, 2nd ed., Vol. I (Reading, MA: Addison-
Wesley, 1973), p. ix.
tSee page 113 for a discussion of the role of universal modus ponens in this proof.

nintegersis even.

Proof:

Suppose m and n are [particular but arbitrarily chosen] even integers. [We must show
that m + n is even.] By definition of even, m = 2r and n = 2s for some integers r
and s. Then

m + n = 2r + 2s by substitution

= 2(r + s) by factoring out a 2.

Let k = r + s. Note that k is an integer because it is a sum of integers. Hence

m + n = 2k where k is an integer.

It follows by definition of even that m + n is even. [This is what we needed to show.]t
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shown, it is natural to end the proof with the words "this is what we needed to show." The
Latin words for this are quod erat demonstrandum, or Q.E.D. for short. Proofs in older
mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the
proof of Theorem 3.1.1. Since m and n were known to be even, the only if (=a) part of
the definition was used to deduce that m and n had a certain general form. Then, after
some algebraic substitution and manipulation, the if (X) part of the definition was used
to deduce that m + n was even.

Directions for Writing Proofs of Universal Statements
Think of a proof as a way to communicate a convincing argument for the truth of a
mathematical statement. When you write a proof, imagine that you will be sending it to
a capable classmate who has had to miss the last week or two of your course. Try to be
clear and complete. Keep in mind that your classmate will see only what you actually
write down, not any unexpressed thoughts behind it.

Over the years, the following rules of style have become fairly standard for writing
the final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper.

2. Clearly mark the beginning of your proof with the word Proof.

3. Make your proof self-contained.
This means that you should identify each variable used in your proof in the body of

the proof. Thus you will begin proofs by introducing the initial variables and stating
what kind of objects they are. The first sentence of your proof would be something like
"Suppose m and n are integers" or "Let x be a real number that is greater than 2." This
is similar to declaring variables and their data types at the beginning of a computer
program.

At a later point in your proof, you may introduce a new variable to represent a
quantity that is known to exist. For example, if you know that a particular integer n
is even, then you know that n equals 2 times some integer. It is usually convenient to
give this integer a name so that you can work with it concretely later in the proof. Thus
if you decide to call the integer, say, s, you would write, "Since n is even, n = 2s for
some integer s."

4. Write your proof in complete sentences.
This does not mean that you should avoid using symbols and shorthand abbrevia-

tions, just that you should incorporate them into sentences. For example, the proof of
Theorem 3.1.1 contains the sentence

Then m + n = 2r + 2s

= 2(r + s).

To read this as a sentence, read the first equals sign as "equals" and each subsequent
equals sign as "which equals."

5. Give a reason for each assertion you make in your proof.
Each assertion in a proof should come directly from the hypothesis of the theorem,

or follow from the definition of one of the terms in the theorem, or be a result obtained
earlier in the proof, or be a mathematical result that has previously been established or
is agreed to be assumed. Indicate the reason for each step of your proof using phrases
such as by hypothesis, by definition of..., and by theorem ....
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6. Include the "little words" that make the logic of your arguments clear.
When writing a mathematical argument, especially a proof, indicate how each

sentence is related to the previous one. Does it follow from the previous sentence or
from a combination of the previous sentence and earlier ones? If so, start the sentence
by stating the reason why it follows or by writing Then, or Thus, or So, or Hence, or
Therefore, or It follows that, and include the reason at the end of the sentence. For
instance, in the proof of Theorem 3.1. 1, once you know that m is even, you can write:
"By definition of even, m = 2k for some integer k," or you can write, "Then m = 2k
for some integer k by definition of even."

If a sentence expresses a new thought or fact that does not follow as an immedi-
ate consequence of the preceding statement but is needed for a later part of a proof,
introduce it by writing Observe that, or Note that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous
variables. In such a case, introduce the new variable with the word Let. For instance,
in the proof of Theorem 3.1. 1, once it is known that m + n = 2(r + s), where r and s
are integers, a new variable k is introduced to represent r + s. The proof goes on to
say, "Let k = r + s. Then k is an integer because it is a sum of two integers."

Variations among Proofs
It is rare that two proofs of a given statement, written by two different people, are identical.
Even when the basic mathematical steps are the same, the two people may use different
notation or may give differing amounts of explanation for their steps, or may choose
different words to link the steps together into paragraph form. An important question
is how detailed to make the explanations for the steps of a proof. This must ultimately
be worked out between the writer of a proof and the intended reader, whether they be
student and teacher, teacher and student, student and fellow student, or mathematician and
colleague. Your teacher may provide explicit guidelines for you to use in your course. Or
you may follow the example of the proofs in this book (which are generally explained rather
fully in order to be understood by students at various stages of mathematical development).
Remember that the phrases written inside brackets [ ] are intended to elucidate the logical
flow or underlying assumptions of the proof and need not be written down at all. It is
entirely your decision whether to include such phrases in your own proofs.

Common Mistakes
The following are some of the most common mistakes people make when writing math-
ematical proofs.

1. Arguing from examples.
Looking at examples is one of the most helpful practices a problem solver can

engage in and is encouraged by all good mathematics teachers. However, it is a
mistake to think that a general statement can be proved by showing it to be true for
some special cases. A universal statement may be true in many instances without being
true in general.

Here is an example of this mistake. It is an incorrect "proof" of the fact that the
sum of any two even integers is even. (Theorem 3. 1. 1).

This is true because if m = 14 and n = 6, which are both even,
then m + n = 20, which is also even.

Some people find this kind of argument convincing because it does, after all, consist
of evidence in support of a true conclusion. But remember that when we discussed
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valid arguments, we pointed out that an argument may be invalid and yet have a true
conclusion. In the same way, an argument from examples may be mistakenly used to
"prove" a true statement. In the example above, it is not sufficient to show that the
conclusion "m + n is even" is true for m = 14 and n = 6. You must give an argument
to show that the conclusion is true for any even integers m and n.

2. Using the same letter to mean two different things.
Some beginning theorem provers give a new variable quantity the same letter name

as a previously introduced variable. Consider the following "proof" fragment:

Suppose m and n are odd integers. Then by definition of odd,
m = 2k + 1 and n = 2k + 1 for some integer k.

This is incorrect. Using the same symbol, k, in the expressions for both m and n implies
that m = 2k + 1 = n. It follows that the rest of the proof applies only to integers m
and n that equal each other. This is inconsistent with the supposition that m and n are
arbitrarily chosen odd integers. For instance, the proof would not show that the sum
of 3 and 5 is even.

3. Jumping to a conclusion.
To jump to a conclusion means to allege the truth of something without giving an

adequate reason. Consider the following "proof" that the sum of any two even integers
is even.

Suppose m and n are any even integers. By definition of even, m = 2r and
n = 2s for some integers r and s. Then m + n = 2r + 2s. So m + n is even.

The problem with this "proof" is that the crucial calculation

2r + 2s = 2(r + s)

is missing. The author of the "proof" has jumped prematurely to a conclusion.

4. Begging the question.
To beg the question means to assume what is to be proved; it is a variation of

jumping to a conclusion. As an example, consider the following "proof" of the fact
that the product of any two odd integers is odd:

Suppose m and n are any odd integers. When any odd integers are
multiplied, their product is odd. Hence mn is odd.

Here is another, more subtle example of the same mistake.

Suppose m and n are odd integers. If mn is odd, then mn = 2k + 1 for
some integer k. Also by definition of odd, m = 2a + 1 and n = 2b + 1 for
some integers a and b. Then mn = (2a + 1)(2b + 1) = 2k + 1, which
is odd by definition of odd. This is what was to be shown.

The problem with this "proof" is that the author first states what it means for the
conclusion to be true (that m n can be expressed as 2k + I for some integer k) and
later just assumes it to be true (by setting (2a + 1) . (2b + 1) equal to 2k + 1). Thus
the author of the "proof" begs the question.

5. Misuse of the word if.
Another common error is not serious in itself, but it reflects imprecise thinking that

sometimes leads to problems later in a proof. This error involves using the word if
when the word because is really meant. Consider the following proof fragment:
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Suppose p is a prime number. If p is prime, then p cannot be
written as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot
be written as a product of two smaller positive integers because it is prime. Here is a
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be
written as a product of two smaller positive integers.

Getting Proofs Started
Believe it or not, once you understand the idea of generalizing from the generic particular
and the method of direct proof, you can write the beginnings of proofs even for theorems
you do not understand. The reason is that the starting point and what is to be shown in a
proof depend only on the linguistic form of the statement to be proved, not on the content
of the statement.

Example 3.1.8 Identifying the "Starting Point" and the "Conclusion to Be Shown"

Write the first sentence of a proof of the following statement (the "starting point") and the
last sentence of a proof (the "conclusion to be shown"):

Every complete, bipartite graph is connected. You are not expected to
understand this statement.

Solution It is helpful to rewrite the statement formally using a quantifier and a variable:

domain hypothesis conclusion

Formal Restatement: V graphs G, if G is complete and bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in
this case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis
of the if-then part of the statement (in this case that G is complete and bipartite). The
conclusion to be shown is just the conclusion of the if-then part of the statement (in this
case that G is connected).

Starting Point: Suppose G is a [particular but arbitrarily chosen] graph such that G
is complete and bipartite.

Conclusion to Be Shown: G is connected.

Thus the proof has the following first and last sentences:

First sentence of proof: Suppose G is a [particular but arbitrarily chosen] graph such
that G is complete and bipartite.

Last sentence of proof: Therefore G is connected.

Of course, to reach the last sentence of the proof, the definitions of the terms will have to
be used. a

Showing That an Existential Statement Is False
Recall that the negation of an existential statement is universal. It follows that to prove an
existential statement is false, you must prove a universal statement (its negation) is true.
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Example 3.1.9 Disproving an Existential Statement

Show that the following statement is false:

There is a positive integer n such that n2 + 3n + 2 is prime.

Solution Proving that the given statement is false is equivalent to proving its negation is
true. The negation is

For all positive integers n, n2 + 3n + 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.
Claim: The statement "There is a positive integer n such that n2 + 3n + 2 is prime" is
false.

Proof:

Suppose n is any [particular but arbitrarily chosen] positive integer. [We will show
that n2 + 3n + 2 is not prime.] We can factor n2 + 3n + 2 to obtain n2 + 3n + 2 =
(n + 1) (n + 2). We also note that n + 1 and n + 2 are integers (because they are sums of
integers) and that both n + I > 1 and n + 2 > 1 (because n > 1). Thus n2 + 3n + 2 is a
product of two integers each greater than 1, and so n2 + 3n + 2 is not prime. E

Conjecture, Proof, and Disproof
More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is
impossible to find positive integers x, y, and z with x' + yf = Zn if n is an integer that
is at least 3. (For n 2, the equation has many integer solutions, such as 32 + 42 = 52
and 52 + 122 = 132.) Fermat wrote his claim in the margin of a book, along with the
comment "I have discovered a truly remarkable proof of this theorem which this margin
is too small to contain." No proof, however, was found among his papers, and over the
years some of the greatest mathematical minds tried and failed to discover a proof or a
counterexample, for what came to be known as Fermat's last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a
certain other statement, the Tanivama-Shimura conjecture. could be proved, then Fermat's

Format theorem would follow. Andrew Wiles, an English mathematician and faculty member at

5) Princeton University, had become intrigued by Fermat's claim while still a child and, as

an adult, had come to worK in me branch oT mathematics to which me ianiyama-3nimura
conjecture belonged. As soon as he heard of Ribet's result, Wiles immediately set to work
to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented
a proof to worldwide acclaim.

During the summer of 1993, however, while every part of the proof was being carefully
checked to prepare for formal publication, Wiles found that he could not justify one step
and that that step might actually be wrong. He worked unceasingly for another year to
resolve the problem, finally realizing that the gap in the proof was a genuine error but
that an approach he had worked on years earlier and abandoned provided a way around
the difficulty. By the end of 1994, the revised proof had been thoroughly checked and
pronounced correct in every detail by experts in the field. It was published in the Annals
of Mathematics in 1995. Several books and an excellent documentary television show
have been produced that convey the drama and excitement of Wiles's discovery.*

Miles

53) *`The Proof," produced in 1997, for the series Nova on the Public Broadcasting System; Fermat's
Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem, by Simon Singh and
John Lynch (New York: Bantam Books, 1998); Fermat's Last Theorem: Unlocking the Secret of
an Ancient Mathematical Problem by Amir D. Aczel (New York: Delacorte Press, 1997).

.

Pierre de
(1601-16

Andrew V
(born 195
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One of the oldest problems in mathematics that remain unsolved is the Goldbach
conjecture. In Example 3.1.5 it was shown that every even integer from 4 to 30 can be
represented as a sum of two prime numbers. More than 250 years ago, Christian Goldbach
(1690-1764) conjectured that every even integer greater than 2 can be so represented.
Explicit computer-aided calculations have shown the conjecture to be true up to at least
1016. But there is ahuge chasm between 1016 and infinity. As pointed out by James Gleick
of the New York Times, many other plausible conjectures in number theory have proved
false. Leonhard Euler (1707-1783), for example, proposed in the eighteenth century that
a4 + b4 + c4 = d4 had no nontrivial whole number solutions. In other words, no three
perfect fourth powers add up to another perfect fourth power. For small numbers, Euler's
conjecture looked good. But in 1987 a Harvard mathematician, Noam Elkies, proved it
wrong. One counterexample, found by Roger Frye of Thinking Machines Corporation in
a long computer search, is 95,8004 + 217,5194 + 414,5604 = 422,4814.*

In May 2000, "to celebrate mathematics in the new millennium," the Clay Mathematics
Institute of Cambridge, Massachusetts, announced that it would award prizes of $1 million
each for the solutions to seven longstanding, classical mathematical questions. One of
them, "P vs. NP," asks whether problems belonging to a certain class can be solved on a
computer using more efficient methods than the very inefficient methods that are presently
known to work for them. This question is discussed briefly at the end of Chapter 9.

Exercise Set 3.1t
In 1-3, use the definitions of even, odd, prime, and composite
to justify each of your answers.

1. Assume that k is a particular integer.
a. Is -17 an odd integer? b. Is 0 an even integer?
c. Is 2k -1 odd?

2. Assume that m and n are particular integers.
a. Is 6m + 8n even? b. Is l Omn + 7 odd?
c. If m > n > 0, is m 2 _ n2 composite?

3. Assume that r and s are particular integers.
a. Is 4rs even? b. Is 6r + 4s2 + 3 odd?
c. If r and s are both positive, is r2 + 2rs + S2 composite?

Prove the statements in 4-10.

4. There are integers m and n such that m > 1 and n > 1 and
I 1I

-+ - is an integer.
m n

5. There are distinct integers m and n such that -+ -is an
m n

integer.

6. There are real numbers a and b such that

a +b = a + S.

7. There is an integer n > 5 such that 2' - I is prime.

8. There is a real number x such that x > I and 2x > x10.

Definition: An integer n is called a perfect square if, and
only if, n = k2 for some integer k.

9. There is a perfect square that can be written as a sum of two
other perfect squares.

10. There is an integer n such that 2n2 - Sn + 2 is prime.

Disprove the statements in 11- 13 by giving a counterexample.

11. For all real numbers a and b, if a < b then a2 < b2 .

12. For all integers n, if n is odd then I is odd.
2

13. For all integers m and n, if 2m + n is odd then m and n are
both odd.

In 14-16, determine whether the property is true for all integers,
true for no integers, or true for some integers and false for other
integers. Justify your answers.

14. (a+ b) 2 = a2 + b2 15. 3n2 4n + I is prime.

16. The average of any two odd integers is odd.

Prove the statements in 17 and 18 by the method of exhaustion.

17. Every positive even integer less than 26 can be expressed
as a sum of three or fewer perfect squares. (For instance,
10= 12 + 32 and 16 =42.)

'James Gleick, "Fermat's Last Theorem Still Has Zero Solutions," New York Times, 17 April 1988.
tFor exercises with blue numbers, solutions are given in Appendix B. The symbol H indicates that only a hint or partial solution is
given. The symbol * signals that an exercise is more challenging than usual.
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18. For each integer n with I < n < l 0, n2 - n + I I is a prime
number.

19. a. Rewrite the following theorem in the form V _ , if
_____ then

b. Fill in the blanks in the proof.

Theorem: The sum of any even integer and any odd integer
is odd.

Proof: Suppose m is any even integer and n is (a). By
definition of even, m = 2r for some (b) , and by definition
of odd, n = 2s + I for some integer s. By substitution and
algebra, m + n = (c) = 2(r + s) + 1. Since r and s are
both integers, so is their sum r + s. Hence m + n has the
form 2 . (some integer) + 1, and so (d) by definition of
odd.

Each of the statements in 20-23 is true. For each, (a) rewrite the
statement using a variable or variables and the form V __

if__ then , and (b) write the first sentence of a proof
(the "starting point") and the last sentence of a proof (the "con-
clusion to be shown"). Note that you do not need to understand
the statements in order to be able to do these exercises.

20. For all integers m, if m > I then 0 < I1.
m

21. For all real numbers x, if x > I then x2 
> x.

22. For all integers m and n, if mn = I then m = n = I or
m =n =-1.

23. For all real numbers x, if 0 < x < I then x2 < x.

Prove the statements in 24-30. Follow the directions given in
this section for writing proofs of universal statements.

24. The negative of any even integer is even.

25. The difference of any even integer minus any odd integer is
odd.

26. The difference of any odd integer minus any even integer is
odd. (Note: The "proof" shown in exericse 35 contains an
error. Can you spot it?)

27. The sum of any two odd integers is even.

28. For all integers n, if n is odd then n2 is odd.

29. If n is any even integer, then (- 1 ) = 1.

30. If n is any odd integer, then (-I )n -1.

Prove that the statements in 31-33 are false.

31. There exists an integer m > 3 such that m2 - I is prime.

32. There exists an integer n such that 6n2 + 27 is prime.

33. There exists an integer k such that k > 4 and 2k2 - 5k + 2
is prime.

Find the mistakes in the "proofs" shown in 34-38.

34. Theorem: For all integers k, if k > 0 then k2 + 2k + 1 is
composite.

"Proof: Fork = 2, k 2 + 2k + 1 = 22 + 2 . 2 + 1 = 9. But
9 = 3 . 3, and so 9 is composite. Hence the theorem is true."

35. Theorem: The difference between any odd integer and any
even integer is odd.

"Proof: Suppose n is any odd integer, and m is any even
integer. By definition of odd, n = 2k + 1 where k is an
integer, and by definition of even, m = 2k where k is an
integer. Then n - m = (2k + 1) - 2k - 1. But 1 is odd.
Therefore, the difference between any odd integer and any
even integer is odd."

36. Theorem: For all integers k, if k > 0 then k2 + 2k + I is
composite.

"Proof: Suppose k is any integer such that k > 0. If k2 +
2k + 1 is composite, then k2 + 2k + 1 = r s for some in-
tegersrands suchthatl <r < (k 2 -+-2k+ 1)and I <s <
(k2 + 2k + 1). Since k2 -+ 2k + 1 = r s and both r and s
are strictly between I and k2 + 2k + 1, then k2 + 2k + 1 is
not prime. Hence k2 + 2k + 1 is composite as was to be
shown."

37. Theorem: The product of an even integer and an odd integer
is even.

"Proof: Suppose m is an even integer and n is an odd inte-
ger. If mr n is even, then by definition of even there exists
an integer r such that m n = 2r. Also since m is even,
there exists an integer p such that m = 2 p, and since n is
odd there exists an integer q such that n = 2q + 1. Thus

mr n = (2p) . (2q + I) = 2r,

where r is an integer. By definition of even, then, m n is
even, as was to be shown."

38. Theorem: The sum of any two even integers equals 4k for
some integer k.

"Proof: Suppose m and n are any two even integers. By def-
inition of even, m = 2k for some integer k and n = 2k for
some integer k. By substitution, m + n = 2k + 2k = 4k.
This is what was to be shown."

In 39-56 determine whether the statement is true or false. Justify
your answer with a proof or a counterexample, as appropriate.

39. The product of any two odd integers is odd.

40. The negative of any odd integer is odd.

41. The difference of any two odd integers is odd.

42. The product of any even integer and any integer is even.

43. If a sum of two integers is even, then one of the summands
is even. (In the expression a + b, a and b are called sum-
mands.)



44. The difference of any two even integers is even.

45. The difference of any two odd integers is even.

46. For all integers n and m, if n-m is even then n3 -m3 is
even.

47. For all integers n, if n is prime then (-I)n I.

48. For all integers m, if m > 2 then m2  4 is composite.

49. For all integers n, n2 _ n + II is a prime number.

50. For all integers n, 4(n2 + n + 1) -3n 2 is a perfect square.

51. Every positive integer can be expressed as a sum of three or
fewer perfect squares.

H * 52. (Two integers are consecutive if, and only if, one is one more
than the other.) Any product of four consecutive integers is
one less than a perfect square.

53. If m and n are positive integers and mn is a perfect square,
then m and n are perfect squares.

54. The difference of the squares of any two consecutive inte-
gers is odd.

55. For all nonnegative real numbers a and b, ab = Wia .
(Note that if x is a nonnegative real number, then there is a
unique nonnegative real number y, denoted ix, such that
y2 = X.)
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57. Ifm and n are perfect squares, then m + n + 2 ma is also
a perfect square. Why?

H * 58. If p is a prime number, must 2" - I also be prime? Prove
or give a counterexample.

* 59. If n is a nonnegative integer, must 22" + I be prime? Prove
or give a counterexample.

60. When expressions of the form (x -r)(x -s) are multi-
plied out, a quadratic polynomial is obtained. For instance,
(x -2)(x -(-7)) = (x -2)(x + 7) = x2 + 5x-14.

H a. What can be said about the coefficients of the polyno-
mial obtained by multiplying out (x -r)(x -s) when
both r and s are odd integers? when both r and s are
even integers? when one of r and s is even and the other
is odd?

b. It follows from part (a) that X3 1253x + 255 cannot
be written as a product of two polynomials with integer
coefficients. Explain why this is so.

*61. Observe that (x -r)(x -s)(x -t)

= X3 -(r +s + t)x 2 + (rs + rt +st)x - rst.

a. Derive a result for cubic polynomials similar to the result
in part (a) of exercise 60 for quadratic polynomials.

b. Can 15x3 + 7X2 - 8x -27 be written as a product of
three polynomials with integer coefficients? Explain.

56. For all nonnegative real numbers a and b,

a+b = - + 4.

3.2 Direct Proof and Counterexample 11:
Rational Numbers
Such, then, is the whole art of convincing. It is contained in two principles: to define all
notations used, and to prove everything by replacing mentally the defined terms by their
definitions.- Blaise Pascal, 1623-1662

Sums, differences, and products of integers are integers. But most quotients of integers
are not integers. Quotients of integers are, however, important; they are known as rational
numbers.

M I

A real number r is rational if, and only if, it can be expressed as a quotient of two
integers with a nonzero denominator. A real number that is not rational is irrational.
More formally, if r is a real number, then

a
r is rational #~ 3 integers a and b such that r = - and b # 0.

b

The word rational contains the word ratio, which is another word for quotient. A rational
number is a fraction or ratio of integers.
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Example 3.2.1 Determining Whether Numbers Are Rational or Irrational

a. Is 10/3 a rational number?

b. Is -(5/39) a rational number?

c. Is 0.281 a rational number?

d. Is 7 a rational number?

e. Is 0 a rational number?

f. Is 2/0 a rational number?

g. Is 2/0 an irrational number?

h. Is 0. 12121212 ... a rational number (where the digits 12 are assumed to repeat forever)?

i. If m and n are integers and neither m nor n is zero, is (m + n)/mn a rational number?

Solution

a. Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.

b. Yes, -(5/39) = -5/39, which is a quotient of the integers -5 and 39 and hence is
rational.

c. Yes, 0.281 = 281 / 1000. Note that the real numbers represented on a typical calculator
display are all finite decimals. An explanation similar to the one in this example shows
that any such number is rational. It follows that a calculator with such a display can
represent only rational numbers.

d. Yes,7 =7/1.

e. Yes,0=0/1.

f. No, 2/0 is not a number (division by 0 is not allowed).

g. No, because every irrational number is a number, and 2/0 is not a number. We discuss
additional techniques for determining whether numbers are irrational in Sections 3.6,
3.7, and 7.4.

h. Yes. Letx = 0.12121212.... Then lOOx = 12.12121212.... Hence

lOOx - x = 12.12121212... - 0.12121212 ... = 12.

But also

Hence

and so

1 O0x - x = 99x by basic algebra

99x = 12,

12
x -.

99

Therefore, 0.12121212 ... = 12/99, which is a ratio of two nonzero integers and thus
is a rational number.
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Note that you can use an argument similar to this one to show that any repeating
decimal is a rational number. In Section 7.3 we show that any rational number can be
written as a repeating or terminating decimal.

i. Yes, since m and n are integers, so are m + n and mn (because sums and products of
integers are integers). Also mn # 0 by the zero product property. (One version of
this property says that if neither of two real numbers is 0, then their product is also not
0. See exercise 8 at the end of this section.) It follows that (m + n)/mn is a quotient
of two integers with a nonzero denominator and hence is a rational number. U

More on Generalizing from the Generic Particular
Some people like to think of the method of generalizing from the generic particular as
a challenge process. If you claim a property holds for all elements in a domain, then
someone can challenge your claim by picking any element in the domain whatsoever and
asking you to prove that that element satisfies the property. To prove your claim, you
must be able to meet all such challenges. That is, you must have a way to convince the
challenger that the property is true for an arbitrarily chosen element in the domain.

For example, suppose "A" claims that every integer is a rational number. "B" chal-
lenges this claim by asking "A" to prove it for n = 7. "A" observes that

7
7 = which is a quotient of integers and hence rational.

"B" accepts this explanation but challenges again with n -1 2. "A" responds that

-12
-12 which is a quotient of integers and hence rational.

Next "B" tries to trip up "A" by challenging with n = 0, but "A" answers that

0
0 = which is a quotient of integers and hence rational.

As you can see, "A" is able to respond effectively to all "B"s challenges because "A" has a
general procedure for putting integers into the form of rational numbers: "A" just divides
whatever integer "B" gives by 1. That is, no matter what integer n "B" gives "A", "A"
writes

n
n = which is a quotient of integers and hence rational.

This discussion proves the following theorem.

Theorem 3.2.1

Every integer is a rational number.

In exercise I I at the end of this section you are asked to condense the above discussion
into a formal proof.
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Proving Properties of Rational Numbers
The next example shows how to use the method of generalizing from the generic particular
to prove a property of rational numbers.

Example 3.2.2 A Sum of Rationals Is Rational

Prove that the sum of any two rational numbers is rational.

Solution Begin by mentally or explicitly rewriting the statement to be proved in the form
"V _ , if - then _ ."

Formal Restatement: V real numbers r and s, if r and s are rational then r + s is rational.

Next ask yourself, "Where am I starting from?" or "What am I supposing?" The answer
gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose r and s are particular but arbitrarily chosen real numbers such
that r and s are rational; or, more simply,

Suppose r and s are rational numbers.

Then ask yourself, "What must I show to complete the proof?"

To Show: r + s is rational.

Finally you ask, "How do I get from the starting point to the conclusion?" or "Why must
r + s be rational if both r and s are rational?" The answer depends in an essential way on
the definition of rational.

Rational numbers are quotients of integers, so to say that r and s are rational means
that

a c
r - and s = for some integers a, b, c, and d

b d whereb # Oandd f #O.

It follows by substitution that

a c
r+s = - +

b d

Hence you must show that the right-hand sum can be written as a single fraction or ratio
of two integers with a nonzero denominator. But

a c ad bc rewriting the fraction with a common

b d bd bd denominator

ad + bc adding fractions with a common

bd denominator.

Is this fraction a ratio of integers? Yes. Because products and sums of integers are integers,
ad + bc and bd are both integers. Is the denominator bd :P 0? Yes, by the zero product
property (since b :A 0 and d : 0). Thus r + s is a rational number.

This discussion is summarized as follows:
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Deriving New Mathematics from Old
Section 3.1 focused on establishing truth and falsity of mathematical theorems using only
the basic algebra normally taught in secondary school; the fact that the integers are closed
under addition, subtraction, and multiplication; and the definitions of the terms in the
theorems themselves. In the future, when we ask you to prove something directly from
the definitions, we will mean that you should restrict yourself to this approach. However,
once a collection of statements has been proved directly from the definitions, another
method of proof becomes possible. The statements in the collection can be used to derive
additional results.

Example 3.2.3 Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following properties of even and odd integers:

1. The sum, product, and difference of any two even integers are even.

2. The sum and difference of any two odd integers are even.

3. The product of any two odd integers is odd.

4. The product of any even integer and any odd integer is even.

5. The sum of any odd integer and any even integer is odd.

6. The difference of any odd integer minus any even integer is odd.

7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any odd integer and b is any given
a2 +b 2 +l.

integer, then 2 is an integer.
2

Theorem 3.2.2

The sum of any two rational numbers is rational.

Proof:

Suppose r and s are rational numbers. [We must show that r + s is rational.] Then,
by definition of rational, r = a/b and s = c/d for some integers a, b, c, and d with
b :# O and d A O. Thus

a cr + s - + - by substitution
b d

ad + bc
ad + by basic algebra.
bd

Let p = ad + bc and q = bd. Then p and q are integers because products and sums
of integers are integers and because a, b, c, and d are all integers. Also q A 0 by the
zero product property. Thus

r + s = P where p and q are integers and q : 0.
q

Therefore, r + s is rational by definition of a rational number. [This is what was to
be shown.]
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Solution Suppose a is any odd integer and b is any even integer. By property 3, b2 is odd,
and by property 1, a 2 is even. Then by property 5, a2 + b2 is odd, and because I is also
odd, the sum (a2 + b2 ) + I = a2 + b2 + I is even by property 2. Hence, by definition
of even, there exists an integer k such that a2 + b2 + I = 2k. Dividing both sides by 2

age 2 = i s a g Tb 2 +i a.
gives = k, which is an integer. Thus ~ ~is an integer [as was to be

2 2
shown]. U

A corollary is a statement whose truth can be immediately deduced from a theorem
that has already been proved.

Example 3.2.4 The Double of a Rational Number

Derive the following as a corollary of Theorem 3.2.2.

Corollary 3.2.3

The double of a rational number is rational.

Solution The double of a number is just its sum with itself. But since the sum of any two
rational numbers is rational (Theorem 3.2.2), the sum of a rational number with itself is
rational. Hence the double of a rational number is rational. Here is a formal version of
this argument:

Proof:

Suppose r is any rational number. Then 2r = r + r is a sum of two rational numbers. So,
by Theorem 3.2.2, 2r is rational. U

Exercise Set 3.2
The numbers in 1-7 are all rational. Write each number as a ratio
of two integers.

35
1. _

6
2. 4.6037

4 2
3. - + -

5 9

4. 0.37373737 ...

5. 0.56565656 ...

6. 320.5492492492 ...

7. 52.4672167216721 ...

8. The zero product property says that if a product of two real
numbers is 0, then one of the numbers must be 0.
a. Write this property formally using quantifiers and vari-

ables.
b. Write the contrapositive of your answer to part (a).
c. Write an informal version (without quantifier symbols or

variables) for your answer to part (b).

9. Assume that a and b are both integers and that a 5~ 0 and
b 0 0. Explain why (b -a)/(ab 2 ) must be a rational num-
ber.

10. Assume that m and n are both integers and that n - 0. Ex-
plain why (Sm + 12n)/(4n) must be a rational number.

11. Prove that every integer is a rational number.

12. Fill in the blanks in the following proof that the square of
any rational number is rational:

Proof: Suppose that r is (a) . By definition of ratio-
nal, r = a/b for some (b) with b A 0. By substitution,
r2 = (c) = a2 /b2. Since a and b are both integers, so are
the products a2 and (d) Also h2  0 by the (e) Hence
r2 is a ratio of two integers with a nonzero denominator, and

so (f) by definition of rational.

Determine which of the statements in 13-19 are true and which
are false. Prove each true statement directly from the defini-
tions, and give a counterexample for each false statement. In
case the statement is false, determine whether a small change
would make it true. If so, make the change and prove the new
statement.

13. The product of any two rational numbers is a rational num-
ber.

H 14. The quotient of any two rational numbers is a rational num-
ber.

15. The difference of any two rational numbers is a rational
number.



16. Given any rational number r, -r is also a rational number.

H 17. If r and s are any two rational numbers with r < s, then

r2s is rational.
2

H 18. For all real numbers a and b, if a < b then a < 2 < b.

(You may use the properties of inequalities in T16-T25 of
Appendix A.)

19. Given any two rational numbers r and s with r < s, there
is another rational number between r and s. (Hint. Use the
results of exercises 17 and 18.)

Use the properties of even and odd integers that are listed in
Example 3.2.3 to do exercises 20-22. Indicate which properties
you use to justify your reasoning.

20. True or false? If m is any even integer and n is any odd
integer, then m2 + 3n is odd. Explain.

21. True or false? If a is any odd integer, then a2 + a is even.
Explain.

22. True or false? If k is any even integer and mn is any odd
integer, then (k + 2)2 - (m- 1)2 is even. Explain.

Derive the statements in 23-25 as corollaries of Theorems 3.2.1,
3.2.2, and the results of exercises 12, 13, 15, and 16.

23. For any rational numbers r and s, 2r + 3s is rational.

24. If r is any rational number, then 3r2 - 2r + 4 is rational.

25. For any rational number s, 5S3 + 8s2 -7 is rational.

26. It is a fact that if n is any nonnegative integer, then

I 1 1 1 1 - (1/2 +
2 + 22 23 2n 1 - (1/2)

(A more general form of this statement is proved in Section
4.2). Is a number of this form rational? If so, express it as
a ratio of two integers.

27. Suppose a, h, c, and d are integers and a 0 c. Suppose also
that x is a real number that satisfies the equation

ax + b
cx + d

Must x be rational? If so, express x as a ratio of two integers.

* 28. Suppose a, b, and c are integers and x, y, and z are nonzero
real numbers that satisfy the following equations:

xy =a and
x + y

= b and
x +z y +z

C.

Is x rational? If so, express it as a ratio of two integers.

29. Prove that if one solution for a quadratic equation of the
form x2 + bx + c = 0 is rational (where b and c are ra-
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tional), then the other solution is also rational. (Use the
fact that if the solutions of the equation are r and s, then
X2 + bx + c = (x -r)(x-s).)

30. Prove that if a real number c satisfies a polynomial equation
of the form

r3x3 + r 2x2 + r 1x + ro = 0,

where ro, r1, r2, and r3 are rational numbers, then c satisfies
an equation of the form

n3x + n2x2 + nix +no = °,

where no, ni, n2, and n3 are integers.

Definition: A number c is called a root of a polynomial p(x)
if, and only if, p(c) = 0.

* 31. Prove that for all real numbers c, if c is a root of a polynomial
with rational coefficients, then c is a root of a polynomial
with integer coefficients.

In 32-36 find the mistakes in the "proofs" that the sum of any
two rational numbers is a rational number.

32. "Proof: Let rational numbers r = I and s - be given.
Then r + s = I + 2 - 3, which is a rational number. This
is what was to be shown."

33. "Proof: Any two rational numbers produce a rational num-
ber when added together. So if r and s are particular but
arbitrarily chosen rational numbers, then r + s is rational."

34. "Proof: Suppose r and s are rational numbers. By defi-
nition of rational, r = a/b for some integers a and b with
b A 0, and s = a/b for some integers a and b with b 7& 0.
Then r + s = a/b + a/b = 2a/b. Let p = 2a. Then p
is an integer since it is a product of integers. Hence
r + s = p/b, where p and b are integers and b A 0. Thus
r + s is a rational number by definition of rational. This is
what was to be shown."

35. "Proof: Suppose r and s are rational numbers. Then
r - a/b and s = c/d for some integers a, b, c, and d with
b 7 0 and d 0 0 (by definition of rational). Then r + s =
a/b + c/d. But this is a sum of two fractions, which is
a fraction. So r + s is a rational number since a rational
number is a fraction."

36. "Proof: Suppose r and s are rational numbers. If r + s is
rational, then by definition of rational r + s = a /b for some
integers a and b with b 3& 0. Also since r and s are ratio-
nal, r = i/j and s = m/n for some integers i, j, m, and n
with j : O and n A 0. Itfollows that r + s = i/j + rn/n =
a/b, which is a quotient of two integers with a nonzero de-
nominator. Hence it is a rational number. This is what was
to be shown."
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3.3 Direct Proof and Counterexample I&:
Divisibility
The essential quality of a proof is to compel belief. -Pierre de Fermat

When you were first introduced to the concept of division in elementary school, you were
probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups
of 3, you get 4 groups with nothing left over.

You may also have been taught to describe this fact by saying that "12 is evenly divisible
by 3" or "3 divides 12 evenly."

The notion of divisibility is the central concept of one of the most beautiful subjects
in advanced mathematics: number theory, the study of properties of integers.

.i ,1

If n and d are integers, then

n is divisible by d if, and only if, n = dk for some integer k.

Alternatively, we say that

n is a multiple of d, or
d is a factor of n, or
d is a divisor of n, or
d divides n.

The notation d I n is read "d divides n." Symbolically, if n and d are integers and
d A 0,

din 3 3anintegerksuchthatn =dk.

Example 3.3.1 Divisibility

a. Is 21 divisible by 3?

d. Is 32 a multiple of -16?

Solution

a. Yes, 21 = 3 .7.

d. Yes, 32 = (- 16) (- 2).

b. Does 5 divide 40?

e. Is 6 a factor of 54?

b. Yes, 40 = 5 . 8.

e. Yes, 54 = 6 . 9.

c. Does 7 1 42?

f. Is 7 a factor of -7?

c. Yes, 42 = 7 . 6.

f. Yes, -7=7 (-1).

Example 3.3.2 Divisors of Zero

If k is any integer, does k divide 0?

Solution Yes, because 0 = k * 0.

Example 3.3.3 The Positive Divisors of a Positive Number

Suppose a and b are positive integers and a I b. Is a < b?

.

.
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Solution Yes. To say that a I b means that b = ka for some integer k. Now k must be a
positive integer because both a and b are positive. It follows that

I <k

because every positive integer is greater than or equal to 1. Multiplying both sides by a
gives

a <k-a =b

(since multiplying both sides of an inequality by a positive number preserves the
inequality-property T19 of Appendix A). U

Example 3.3.4 Divisors of 1

Which integers divide 1?

Solution By Example 3.3.3 any positive integer that divides I is less than or equal to 1.
Since 1 = 1 * 1, 1 divides 1, and there are no positive integers that are less than 1. So the
only positive divisor of 1 is 1.

On the other hand, if d is a negative integer that divides 1, then 1 = dk, and so
1 = Idl -kl. Hence Idl is a positive integer that divides 1. Thus Idl = 1, and so d = -1.
It follows that the only divisors of 1 are I and-1. U

Example 3.3.5 Divisibility of Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3?

b. If k and m are integers, is lOkm divisible by 5?

Solution

a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer
because it is a sum of two integers.

b. Yes. By the associative law of algebra, 1Okm = 5 . (2km) and 2km is an integer
because it is a product of three integers. U

When the definition of divides is rewritten formally using the existential quantifier,
the result is

d I n -. 3 an integer k such that n = dk.

Since the negation of an existential statement is universal, it follows that d does not divide
n (denoted d ) n) if, and only if, V integers k, n A dk, or, in other words, the quotient n /d
is not an integer.

For all integers n and d, d i n ' d- is not an integer.
d

Example 3.3.6 Checking Nondivisibility

Does 4 1 15?

Solution No, '- = 3.75, which is not an integer.4 .
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Example 3.3.7 Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n > 1 is prime if,
and only if, its only positive integer divisors are 1 and itself. U

Proving Properties of Divisibility
One of the most useful properties of divisibility is that it is transitive. If one number
divides a second and the second number divides a third, then the first number divides the
third.

Example 3.3.8 Transitivity of Divisibility

Prove that for all integers a, b, and c, if a I b and b I c, then a I c.

Solution Since the statement to be proved is already written formally, you can immediately
pick out the starting point, or first sentence of the proof, and the conclusion that must be
shown.
Starting Point: Suppose a, b, and c are particular but arbitrarily chosen integers such that

a lb and b Ic.

To Show: a c.
You need to show that a I c, or, in other words, that

c = a (some integer).

But since a b,

b = ar for some integer r. 3.3.1

And since b c,

c = bs for some integer s. 3.3.2

Equation 3.3.2 expresses c in terms of b, and equation 3.3.1 expresses b in terms of a.
Thus if you substitute 3.3.1 into 3.3.2, you will have an equation that expresses c in terms
of a.

c = bs by equation 3.3.2

= (ar)s by equation 3.3.1.

But (ar)s = a(rs) by the associative law for multiplication. Hence

c = a(rs).

Now you are almost finished. You have expressed c as a (something). It remains only to
verify that that something is an integer. But of course it is, because it is a product of two
integers.

Caution! Be careful to distinguish between the notation a I b and the notation
a/b. The notation a I b stands for the sentence "a divides b," which means
that there is an integer k such that b = a k. Dividing both sides by a gives
b/a = k, an integer. Thus, when d :A 0, a I b if, and only if, b/a is an integer.
On the other hand, the notation a/b stands for the fractional number a/b (the
inverse fraction!), which may or may not be an integer.

I& 0
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This discussion is summarized as follows:

U

It would appear from the definition of prime that to show that an integer is prime you
would need to show that it is not divisible by any integer greater than I and less than
itself. In fact, you need only check divisibility by prime numbers. This follows from
Theorem 3.3.1, Example 3.3.3, and the following theorem, which says that any integer
greater than 1 is divisible by a prime number. The idea of the proof is quite simple. You
start with a positive integer. If it is prime, you are done; if not, it is a product of two
smaller positive factors. If one of these is prime, you are done; if not, you can pick one
of the factors and write it as a product of still smaller positive factors. You can continue
in this way, factoring the factors of the number you started with, until one of them turns
out to be prime. This must happen eventually because all the factors can be chosen to be
positive and each is smaller than the preceding one.

Theorem 3.3.2 Divisibility by a Prime

Any integer n > 1 is divisible by a prime number.

Proof:

Suppose n is a [particular but arbitrarily chosen] integer that is greater than 1. [We
must show that there is a prime number that divides n.] If it is prime, then n is
divisible by a prime number (namely itself), and we are done. If n is not prime, then,
as discussed in Example 3.1.2b,

n = roso where ro and so are integers and
I < ro < n and 1 < so < n.

It follows by definition of divisibility that rO I n.

continued on page 152

Theorem 3.3.1 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof:

Suppose a, b, and c are [particular but arbitrarily chosen] integers such that a divides
b and b divides c. [We must show that a divides c.] By definition of divisibility,

b = ar and c = bs for some integers r and s.

By substitution

c = bs

= (ar)s

= a(rs) by basic algebra.

Let k = rs. Then k is an integer since it is a product of integers, and therefore

c = ak where k is an integer.

Thus a divides c by definition of divisibility. [This is what was to be shown.]
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Counterexamples and Divisibility
To show that a proposed divisibility property is not universally true, you need to find some
integers for which it is false.

Example 3.3.9 Checking a Proposed Divisibility Property

Is it true or false that for all integers a and b, if a I b and b I a then a = b?

Solution This proposed property is false. Can you think of a counterexample just by con-
centrating for a minute or so?

The following discussion describes a mental process that may take just a few seconds.
It is helpful to be able to use it consciously, however, to solve more difficult problems.

To discover the truth or falsity of a statement such as the one given above, start off
much as you would if you were trying to prove it.

Starting Point: Suppose a and b are integers such that a I b and b I a.

Ask yourself, "Must it follow that a = b, or could it happen that a A b for some a and b?"
Focus on the supposition. What does it mean? By definition of divisibility, the conditions
a I b and b I a mean that

b = ka and a = lb for some integers k and 1.

*Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering
principle, which is discussed in Section 4.4. Theorem 3.3.2 can also be proved using strong math-
ematical induction, as shown in Example 4.4.1.

If ro is prime, then ro is a prime number that divides n, and we are done. If ro is not
prime, then

ro = r1 s, where r1 and s, are integers and
1 < ri < ro and 1 < s1 < ro.

It follows by the definition of divisibility that r, I ro. But we already know that ro I n.

Consequently, by transitivity of divisibility, rT I n.

If rT is prime, then rT is a prime number that divides n, and we are done. If r, is
not prime, then

rT = r2S2 where r 2 and s2 are integers and
1 < r2 < rT and 1 < s 2 < rl.

It follows by definition of divisibility that r2 I rl. But we already know that ri I n.
Consequently, by transitivity of divisibility, r2 I n.

If r2 is prime, then r2 is a prime number that divides n, and we are done. If r2 is
not prime, then we may repeat the above process by factoring r 2 as r3S3.

We may continue in this way, factoring successive factors of n until we find a
prime factor. We must succeed in a finite number of steps because each new factor
is both less than the previous one (which is less than n) and greater than 1, and there
are fewer than n integers strictly between 1 and n.* Thus we obtain a sequence

ro. r.., r2, . .. , rk,

where k > O. I < rk < rk- < < r2 < ri < ro < n, and ri I n for each i = O, 1,
2, . .. , k. The condition for termination is that rk should be prime. Hence rk is a
prime number that divides n. [This is what we were to show.]
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Must it follow that a = b, or can you find integers a and b that satisfy these equations for
which a A b? The equations imply that

b = ka = k(lb) = (kl)b.

Since b I a, b 7& 0, and so you can cancel b from the extreme left and right sides to obtain

1 = k1.

In other words, k and I are divisors of 1. But the only divisors of 1 are 1 and -

(see Example 3.3.4). Thus k and I are both 1 or -1. If k = I = 1, then b = a. But
if k = 1 = -1, then b = -a and so a 0 b. This analysis suggests that you can find a
counterexample by taking b = -a. Here is a formal answer:

Statement: For all integers a and b, if a I b and b I a then a = b.

Counterexample: Let a = 2 and b = -2. Then

a I b since 2 1 (-2) and b I a since (-2) 1 2, but a :A b since 2 A -2.

Therefore, the proposed divisibility property is false.

.

The search for a proof will frequently help you discover a counterexample (provided
the statement you are trying to prove is, in fact, false). Conversely, in trying to find a
counterexample for a statement, you may come to realize the reason why it is true (if it is,
in fact, true). The important thing is to keep an open mind until you are convinced by the
evidence of your own careful reasoning.

The Unique Factorization Theorem
The most comprehensive statement about divisibility of integers is contained in a theorem
known as the unique factorization theorem for the integers. Because of its importance,
this theorem is also called the fundamental theorem of arithmetic. Although Euclid, who
lived about 300 B.C., seems to have been acquainted with the theorem, it was first stated
precisely by the great German mathematician Carl Friedrich Gauss (rhymes with house)
in 1801.

The unique factorization theorem says that any integer greater than 1 either is prime
or can be written as a product of prime numbers in a way that is unique except, perhaps,
for the order in which the primes are written. For example,

72 =2.2-2.3.3 3=2.3 .322 2=3-22-3-2

and so forth. The three 2's and two 3's may be written in any order, but any factorization of
72 as a product of primes must contain exactly three 2's and two 3's-no other collection
of prime numbers besides three 2's and two 3's multiplies out to 72.

Theorem 3.3.3 Unique Factorization Theorem for the Integers
(Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k, distinct prime numbers
Pi, P2, . , Pk. and positive integers el, e2 , . . ., ek such that

pe = e2 pe 3  pek
nP -- P2 P3 *'P~Ik',

and any other expression of n as a product of prime numbers is identical to this except,
perhaps, for the order in which the factors are written.
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The proof of the unique factorization theorem is included in Section 10.4.
Because of the unique factorization theorem, any integer n > 1 can be put into a

standardfactoredform in which the prime factors are written in ascending order from left
to right.

|!.2 I a

Given any integer n > 1, the standard factored form of n is an expression of the
form

n e2 e3  kek

where k is a positive integer; Pi, P2, . * *, Pk are prime numbers; el, e2 , ... , ek are
positive integers; and PI < p2 < ... < Pk-

Example 3.3.10 Writing Integers in Standard Factored Form

Write 3,300 in standard factored form.

Solution First find all the factors of 3,300. Then write them in ascending order:

3,300 = 100 33=4-25 .3. 11

=2 2 .55 .3 11 = 22.31 52- 111. .

Example 3.3.11 Using Unique Factorization to Solve a Problem

Suppose m is an integer such that

8 .7 6 .5 .4 .3 .2 m = 17- 16 15 14- 13 12- 11 * 10.

Does 17 l m?

Solution Since 17 is one of the prime factors of the right-hand side of the equation, it is also
a prime factor of the left-hand side (by the unique factorization theorem). But 17 does
not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large). Hence 17 must
occur as one of the prime factors of m, and so 17 l m. U

Exercise Set 3.3
Give a reason for your answer in each of 1-13. Assume that all
variables represent integers.

1. Is 52 divisible by 13? 2. Is 54 divisible by 18?

3. Does 5 10?

4. Is (3k + 1)(3k + 2)(3k + 3) divisible by 3?

5. Is 6m(2m + 10) divisible by 4?

6. Is 29 a multiple of 3? 7. Is-3 a factor of 66?

8. Is 6a(a + b) a multiple of 3a?

9. Is 4 a factor of 2a .34b?

10. Does 7 134? 11. Does 13 1 73?

12. If n = 4k + 1, does 8 divide n2
- I?

13. If n = 4k + 3, does 8 divide n2 - 1?

14. Fill in the blanks in the following proof that for all integers
a and b, if a l b then a I (-b).
Proof: Suppose a and b are any integers such that (a)
By definition of divisibility, b = (b) for some (c) k. By
substitution,-b = (d) = a (-k). But-k = (-1) k is
an integer since - I and k are integers. Hence, by definition
of divisibility, (e) , as was to be shown.

Prove statements 15 and 16 directly from the definition of divis-
ibility.

15. For all integers a, b, and c, if a lb and a c then a (b + c).

16. For all integers a, b, and c, if a lb and a lc then a (b - c).

For each statement in 17-28, determine whether the statement
is true or false. Prove the statement directly from the definitions
if it is true, and give a counterexample if it is false.



17. The sum of any three consecutive integers is divisible by
3. (Two integers are consecutive if, and only if, one is one
more than the other.)

18. The product of any two even integers is a multiple of 4.

19. A necessary condition for an integer to be divisible by 6 is
that it be divisible by 2.

20. A sufficient condition for an integer to be divisible by 8 is
that it be divisible by 16.

21. For all integers a, b, and c, if a I b and a I c then a I (2b - 3c).

H 22. For all integers a, b, and c, if ab I c then a I c and b I c.

23. For all integers a, b, and c, if a is a factor of c then ab is a
factor of c.

H 24. For all integers a, b, andc, ifa I(b+c) then a lb ora Ic.

25. For all integers a, b, and c, if a bc then a I b or a lc.

26. For all integers a and b, if a lb then a2 l b2.

27. For all integers a and n, if a In2 and a < n then a In.

28. For all integers a and b, if a lOb then a 10 or a lb.

29. A fast-food chain has a contest in which a card with numbers
on it is given to each customer who makes a purchase. If
some of the numbers on the card add up to 100, then the
customer wins $100. A certain customer receives a card
containing the numbers

72, 21, 15,36,69,81,9,27,42, and 63.

Will the customer win $100? Why or why not?

30. Is it possible to have a combination of nickels, dimes, and
quarters that add up to $4.72? Explain.

31. Is it possible to have 50 coins, made up of pennies, dimes,
and quarters, that add up to $3? Explain.

32. Two athletes run a circular track at a steady pace so that the
first completes one round in 8 minutes and the second in 10
minutes. If they both start from the same spot at 4 P.M., when
will be the first time they return to the start together?

33. It can be shown (see exercises 41-45) that an integer is di-
visible by 3 if, and only if, the sum of its digits is divisible
by 3. An integer is divisible by 9 if, and only if, the sum
of its digits is divisible by 9. An integer is divisible by 5 if,
and only if, its right-most digit is a 5 or a 0. And an integer
is divisible by 4 if, and only if, the number formed by its
right-most two digits is divisible by 4. Check the following
integers for divisibility by 3, 4, 5 and 9.
a. 637,425,403,705,125 b. 12,858,306,120,312
c. 517,924,440,926,512 d. 14,328,083,360,232

34. Use the unique factorization theorem to write the following
integers in standard factored form.
a. 1176 b. 5377 c. 3675
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35. Suppose that in standard factored form a = pl p12 
... plk

where k is a positive integer; pi, P2, Pk are prime num-
bers; and el, e2, . . ., ek are positive integers.
a. What is the standard factored form for a2?
b. Find the least positive integer n such that 25-3.52 73 n is

a perfect square. Write the resulting product as a perfect
square.

c. Find the least positive integer m such that 22.35.7. 11 -m is
a perfect square. Write the resulting product as a perfect
square.

36. Suppose that in standard factored form a = plI p1
2 ... pek

where k is a positive integer; pi, P2, ., k are prime num-
bers; and el, e2, . . ., ek are positive integers.
a. What is the standard factored form for a 39
b. Find the least positive integer k such that24 35 7 112 is

a perfect cube (i.e., equals an integer to the third power).
Write the resulting product as a perfect cube.

37. a. If a and b are integers and 12a = 25b, does 12 l b? does
25 1 a? Explain.

b. If x and y are integers and lOx 9y, does 101 y? does
9 l x? Explain.

38. How many zeros are at the end of 458 . 885? Explain how
you can answer this question without actually computing
the number. (Hint: 10 = 2 5.)

39. If n is an integer and n > 1, then n! is the product of n and
every other positive integer that is less than n. For example,
5! = 5 4 3 2. 1.
a. Write 6! in standard factored form.
b. Write 20! in standard factored form.
c. Without computing the value of (20!)2 determine how

many zeros are at the end of this number when it is writ-
ten in decimal form. Justify your answer.

*40. In a certain town 2/3 of the adult men are married to 3/5
of the adult women. Assume that all marriages are monog-
amous (no one is married to more than one other person).
Also assume that there are at least 100 adult men in the town.
What is the least possible number of adult men in the town?
of adult women in the town?

41. Prove that if n is any nonnegative integer whose decimal
representation ends in 0, then 5 l n. (Hint: If the decimal
representation of a nonnegative integer n ends in do, then
n = lOm + do for some integer m.)

Definition: Given any nonnegative integer n, the decimal
representation of n is an expression of the form

dkdk I... d2 d,do,

where k is a nonnegative integer; do, d,, d2, . .. , dk (called
the decimal digits of n) are integers from 0 to 9 inclusive;
dk A 0 unless n = 0 and k = 0; and

n = do.lIOk + d I 01 Ik + + d2 102 + d, 10 + do.

(For example, 2,503 = 2 I03 + 5. 102 + 0.10 + 3.)
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42. Prove that if n is any nonnegative integer whose decimal
representation ends in 5, then 5 I n.

43. Prove that if the decimal representation of a nonnegative
integer n ends in ddo and if 41 ( Od, + do), then 41 n.
(Hint: If the decimal representation of a nonnegative in-
teger n ends in d do, then there is an integer s such that
n = 100s + 10d, + do.)

H * 44. Observe that

7524 7 1000+5 100+2.10+4

= 7(999 + 1) + 5(99 + 1) + 2(9 + 1) +4

(7999 + 7) + (5.99 + 5) + (2.9 + 2) + 4

=(7.999 + 599 + 2.9) + (7 + 5 + 2 + 4)

= (7111.9+5 11.9+2.9)+(7+5+2+4)

= (7 111 + 5.11 + 2)9 + (7 +5 +2 + 4)

( (an integer divisible by 9)

+ (the sum of the digits of 7524).

Since the sum of the digits of 7524 is divisible by 9, 7524
can be written as a sum of two integers each of which is
divisible by 9. It follows from exercise 15 that 7524 is di-
visible by 9.

Generalize the argument given in this example to any
nonnegative integer n. In other words, prove that for any
nonnegative integern, if the sum of the digits of n is divisible
by 9, then n is divisible by 9.

*45. Prove that for any nonnegative integer n, if the sum of the
digits of n is divisible by 3, then n is divisible by 3.

* 46. Given a positive integer n written in decimal form, the alter-
nating sum of the digits of n is obtained by starting with the
right-most digit, subtracting the digit immediately to its left,
adding the next digit to the left, subtracting the next digit,
and so forth. For example, the alternating sum of the digits
of 180,928 is 8 -2 + 9 -0 + 8-I = 22. Justify the fact
that for any nonnegative integer n, if the alternating sum of
the digits of n is divisible by I1, then n is divisible by 11.

3.4 Direct Proof and Counterexample IV: Division
into Cases and the Quotient-Remainder Theorem
Be especially critical of any statementfollowing the word "obviously.

Anna Pell Wheeler 1883-1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2 -quotient

411
8
3 - remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

xxxx Fxxxx1 xxx
'V 1

2 groups of 4 3 left over

Or,

11 =2-4+3.

2 groups of 4 3 left over

Of course, the number left over (3) is less than the size of the groups (4) because if more
than 4 were left over, another group of 4 could be separated off.

The quotient-remainder theorem says that when any integer n is divided by any positive
integer d, the result is a quotient q and a nonnegative remainder r that is smaller than d.
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We give a proof of the quotient-remainder theorem in Section 4.4.
If n is positive, the quotient-remainder theorem can be illustrated on the number line

as follows:

0 d 2d 3d . ........ qd n

r

If n is negative, the picture changes. Since n = dq + r, where r is nonnegative, d must
be multiplied by a negative integer q to go below n. Then the nonnegative integer r is
added to come back up to n. This is illustrated as follows:

qd n ......... -3d -2d -d 0 *

r

Example 3.4.1 The Quotient-Remainder Theorem

For each of the following values of n and d, find integers q and r such that n = dq + r
and 0 < r < d.

a. n = 54, d = 4 b. n -54, d = 4 c. n = 54, d = 70

Solution

a. 54 = 4 13 + 2; hence q =13 and r = 2.

b. -54 = (- 14) 4 + 2; hence q =-14 and r = 2.

c. 54 = 70 0+54;hence q = Oandr = 54. U

div and mod
A number of computer languages have built-in functions that enable you to compute many
values of q and r for the quotient-remainder theorem. These functions are called div and
mod in Pascal, are called / and % in C and C++, are called / and % in Java, and are called
/ (or \) and mod in .NET. The functions give the values that satisfy the quotient-remainder
theorem when a nonnegative integer n is divided by a positive integer d and the result
is assigned to an integer variable. However, they do not give the values that satisfy the
quotient-remainder theorem when a negative integer n is divided by a positive integer d
(see exercise 16 at the end of this section). So we restrict our definitions for div (short
for "divided by") and mod (short for moduleo") to division of a nonnegative integer. The
module concept is discussed in greater detail in Sections 10.3 and 10.4.

Theorem 3.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such
that

n=dq+r and O<r <d.
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II . IN

Given a nonnegative integer n and a positive integer d,

n div d = the integer quotient obtained
when n is divided by d, and

n mod d = the integer remainder obtained
when n is divided by d.

Symbolically, if n and d are positive integers, then

ndivd =q and n mod d =r X n=dq+r

where q and r are integers and 0 < r < d.

Note that it follows from the quotient-remainder theorem that n mod d equals one of
the integers from 0 through d -I (since the remainder of the division of n by d must be
one of these integers). Note also that a necessary and sufficient condition for an integer
n to be divisible by an integer d is that n mod d = 0. You are asked to prove this in the
exercises at the end of this section.

You can also use a calculator to compute values of div and mod. To compute n div d
for a nonnegative integer n and a positive integer d, you just divide n by d and ignore the
fractional part of the answer. To find n mod d, you can use the fact that if n = dq + r,
then r = n -dq. Thus since n = d (n div d) + n mod d, we have that

nmodd=n-d (ndivd).

So you can compute n div d, multiply by d, and subtract the result from n, to obtain
n mod d.

Example 3.4.2 div and mod

Compute 32 div 9 and 32 mod 9.

Solution
3 ÷32div9

932
27

5 -32 mod 9

Thus 32 div 9 = 3 and 32 mod 9 = 5.

Example 3.4.3 Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of
the week will it be 1 year from today?

Solution There are 365 days in a year that is not a leap year, and each week has 7 days.
Now

365 div 7 = 52 and 365 mod 7 = I

because 365 = 52 . 7 + 1. Thus 52 weeks, or 364 days, from today will be a Tuesday,
and so 365 days from today will be I day later, namely Wednesday.
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More generally, if DayT is the day of the week today and DayN is the day of the week
in N days, then

DayN = (DayT + N) mod 7, 3.4.1

where Sunday = 0, Monday = 1, . . ., Saturday = 6. E

Representations of Integers
In Section 3.1 we defined an even integer to have the form 2k for some integer k. At that
time we could have defined an odd integer to be one that was not even. Instead, because
it was more useful for proving theorems, we specified that an odd integer has the form
2k + I for some integer k. The quotient-remainder theorem brings these two ways of
describing odd integers together by guaranteeing that any integer is either even or odd.
To see why, let n be any integer, and consider what happens when n is divided by 2. By
the quotient-remainder theorem (with d = 2), there exist integers q and r such that

n = 2q + r and 0 < r < 2.

But the only integers that satisfy 0 < r < 2 are r = 0 and r = 1. It follows that given any
integer n, there exists an integer q with

n=2q+0 or n=2q+1.

In the case that n = 2 q + 0 = 2 q, n is even. In the case that n = 2 q + 1, n is odd. Hence
n is either even or odd.

The parity of an integer refers to whether the integer is even or odd. For instance, 5
has odd parity and 28 has even parity. We call the fact that any integer is either even or
odd the parity property.

Example 3.4.4 Consecutive Integers Have Opposite Parity

Prove that given any two consecutive integers, one is even and the other is odd.

Solution Two integers are called consecutive if, and only if, one is one more than the other.
So if one integer is m, the next consecutive integer is m + 1.

To prove the given statement, start by supposing that you have two particular but
arbitrarily chosen consecutive integers. If the smaller is m, then the larger will be m + 1.
How do you know for sure that one of these is even and the other is odd? You might
imagine some examples: 4, 5; 12, 13; 1,073, 1,074. In the first two examples, the smaller
of the two integers is even and the larger is odd; in the last example, it is the reverse.
These observations suggest dividing the analysis into two cases.

Case 1: The smaller of the two integers is even.

Case 2: The smaller of the two integers is odd.

In the first case, when m is even, it appears that the next consecutive integer is odd.
Is this always true? If an integer m is even, must m + I necessarily be odd? Of course
the answer is yes. Because if m is even, then m = 2k for some integer k, and so m + 1 =
2k + 1, which is odd.

In the second case, when m is odd, it appears that the next consecutive integer is even.
Is this always true? If an integer m is odd, must m + I necessarily be even? Again,
the answer is yes. For if m is odd, then m = 2k + 1 for some integer k, and so m + 1 =
(2k + 1) + 1 = 2k + 2 = 2(k + 1), which is even.

This discussion is summarized as follows.
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U

The division into cases in a proof is like the transfer of control for an if-then-else
statement in a computer program. If m is even, control transfers to case 1; if not, control
transfers to case 2. For any given integer, only one of the cases will apply. You must
consider both cases, however, to obtain a proof that is valid for an arbitrarily given integer
whether even or not.

There are times when division into more than two cases is called for. Suppose that at
some stage of developing a proof, you know that a statement of the form

A1 or A2 or A3 or .. .orA,

is true, and suppose you want to deduce a conclusion C. By definition of or, you know
that at least one of the statements Ai is true (although you may not know which). In this
situation, you should use the method of division into cases. First assume Al is true and
deduce C; next assume A2 is true and deduce C; and so forth until you have assumed A,
is true and deduced C. At that point, you can conclude that regardless of which statement
Ai happens to be true, the truth of C follows. In symbols,

Given that AI or A2 or A3 or * or An to show that
(AI or A2 or A3 or ... or A,) C, show all the implications

Al1  C,

A 2  C,

A3  C,

A, C.

Note that this form of argument is a generalization of the one given in Example 1.3.8. Its
validity was proved in exercise 21 of Section 1.3.

The procedure used to derive the parity property can be applied with other values of
d to obtain a variety of alternative representations of integers.

Theorem 3.4.2

Any two consecutive integers have opposite parity.

Proof:

Suppose that two [particular but arbitrarily chosen] consecutive integers are given;
call them m and m + 1. [We must show that one of m and m + 1 is even and that the
other is odd.] By the parity property, either m is even or m is odd. [We break the
proof into two cases depending on whether m is even or odd.]

Case I (m is even): In this case, m = 2k for some integer k, and so m + 1 = 2k + 1,
which is odd [by definition of odd]. Hence in this case, one of m and m + 1 is even
and the other is odd.

Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so m + 1 =
(2k + 1) + 1 = 2k + 2 = 2(k + 1). But k + 1 is an integer because it is a sum of
two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even.
Hence in this case also, one of m and m + 1 is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and m + 1
that are chosen, one of m and m + 1 is even and the other is odd. [This is what was
to be shown.]
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Example 3.4.5 Representations of Integers Modulo 4

Show that any integer can be written in one of the four forms

n=4q or n=z4q+1 or n=4q+2 or n=4q+3

for some integer q.

Solution Given any integer n, apply the quotient-remainder theorem to n with d = 4. This
implies that there exist an integer quotient q and a remainder r such that

n = 4q + r and 0 < r < 4.

But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence

n=4q or n=4q+1 or n=4q+2 or n=4q+3

for some integer q. E

The next example illustrates how alternative representations for integers can help
establish results in number theory. The solution is broken into two parts: a discussion
and a formal proof. These correspond to the stages of actual proof development. Very
few people, when asked to prove an unfamiliar theorem, immediately write down the kind
of formal proof you find in a mathematics text. Most need to experiment with several
possible approaches before they find one that works. A formal proof is much like the
ending of a mystery story-the part in which the action of the story is systematically
reviewed and all the loose ends are carefully tied together.

Example 3.4.6 The Square of an Odd Integer

Prove that the square of any odd integer has the form 8m + 1 for some integer m.

Solution Begin by asking yourself, "Where am I starting from?" and "What do I need to
show?" To help answer these questions, introduce variables to represent the quantities in
the statement to be proved.

Formal Restatement: V odd integers n, 3 an integer m such that n2 = 8m + 1.

From this, you can immediately identify the starting point and what is to be shown.

Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.
To Show: 3 an integer m such that n2 = 8m + 1.

This looks tough. Why should there be an integer m with the property that n2 =
8m + 1? Thatwouldsaythat(n 2 

-_l)/8isanintegerorthat8dividesn 2 - 1. Perhapsyou
could make use of the fact that n2 

- 1 = (n - 1)(n + 1). Does 8 divide (n - 1)(n + 1)?
Since n is odd, both (n - 1) and (n + 1) are even. That means that their product is divisi-
ble by 4. But that's not enough. You need to show that the product is divisible by 8. This
seems to be a blind alley.

You could try another tack. Since n is odd, you could represent n as 2 q + 1 for some
integer q. Then n2 = (2 q + 1)2 = 4q2 + 4q + 1 = 4(q2 + q) + 1. It is clear from this
analysis that n2 can be written in the form 4m + 1, but it may not be clear that it can be
written as 8m + 1. This also seems to be a blind alley.*

Yet another possibility is to use the result of Example 3.4.5. That example showed
that any integer can be written in one of the four forms 4 q, 4q + 1, 4q + 2, or 4 q + 3.
Two of these, 4q + 1 and 4 q + 3, are odd. Thus any odd integer can be written in the

*See exercise 25 for a different perspective.



162 Chapter 3 Elementary Number Theory and Methods of Proof

form 4q + 1 or 4q + 3 for some integer q. You could try breaking into cases based on
these two different forms.*

It turns out that this last possibility works! In each of the two cases, the conclusion
follows readily by direct calculation. The details are shown in the following formal proof:

U

*Desperation can spur creativity. When you have tried all the obvious approaches without success
and you really care about solving a problem, you reach into the odd corners of your memory for
anything that may help.

Theorem 3.4.3

The square of any odd integer has the form 8m + 1 for some integer m.

Proof:

Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-
remainder theorem, n can be written in one of the forms

4q or 4 q + 1 or 4 q + 2 or 4 q + 3

for some integer q. In fact, since n is odd and 4q and 4q + 2 are even, n must have
one of the forms

4q + I or 4q + 3.

Case 1 (n = 4 q + 1 for some integer q): [We must find an integer m such that
n2 =8m+1.]Sincen=4q+1,

n2= (4 q + 1)2 by substitution

= (4q + 1) (4 q + 1) by definition of square

= 16q 2+ 8q + 1

= 8(2q2 + q) + 1 by the laws of algebra.

Let m = 2q2 + q. Then m is an integer since 2 and q are integers and sums and
products of integers are integers. Thus, substituting,

n2 = 8m + 1 where m is an integer.

Case 2 (n = 4 q + 3 for some integer q): [We must find an integer m such that
n2 = 8m + 1.] Since n = 4q + 3,

n2 = (4q + 3)2 by substitution

= (4q + 3)(4q + 3) by definition of square

= 16q2 + 2 4q + 9

= 16q 2 + 2 4 q + (8 + 1)

= 8 (2q 2 + 3q + 1) + 1 by the laws of algebra.

[The motivation for the choice of algebra steps was the desire to write the expression
in the form 8 - (some integer) + 1.]

Let m = 2q2 + 3q + 1. Then m is an integer since 1, 2, 3, and q are integers and
sums and products of integers are integers. Thus, substituting,

n2 = 8m + 1 where m is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4q + 1 or
4q + 3, n2 = 8m + I for some integer m. [This is what we needed to show.]
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Note that the result of Theorem 3.4.3 can also be written, "For any odd integer n,
n2 mod8= L."

Exercise Set 3.4
For each of the values of n and d given in 1-6, find integers q H 21. Prove that a necessary and sufficient condition for a non-
and r such that n = dq + r and 0 < r < d. negative integer n to be divisible by a positive integer d is

that n mod d = 0.
2. n=62,d=7

4. n=3,d=11

6. n=-27,d=8

Evaluate the expressions in 7-10.

7. a. 43 div 9 b. 43 mod 9

8. a. 50 div 7 b. 50 mod 7

9. a. 28 div 5 b. 28 mod5

10. a. 30 div 2 b. 30 mod 2

11. Check the correctness of formula (3.4.1) given in Example
3.4.3 for the following values of DayT and N.
a. DayT= 6 (Saturday) and N = 15
b. DayT = 0 (Sunday) and N = 7
c. DayT = 4 (Thursday) and N = 12

* 12. Justify formula (3.4.1) for general values of DayT and N.

13. On a Monday a friend says he will meet you again in 30
days. What day of the week will that be?

H 14. If today is Tuesday, what day of the week will it be 1,000
days from today?

15. January 1, 2000 was a Saturday, and 2000 was a leap year.
What day of the week will January 1, 2050 be?

H 16. The / and % functions in Java operate as follows: If q and r
are the integers obtained from the quotient-remainder theo-
rem when a negative integer n is divided by a positive inte-
ger d, then n/d is q + I and n%d is r - d, provided that
these values are assigned to an integer variable. Show that
n/d and n%d satisfy one of the conclusions of the quotient-
remainder theorem but not the other. To be specific, show
that the equation n = d . n/d + n%d is true but the condi-
tion 0 < n%d < d is false. (The functions div and mod in
Pascal, / and % in C and C++, and / (or \ ) and mod in
.NET operate similarly to/ and % in Java.)

17. When an integer a is divided by 7, the remainder is 4. What
is the remainder when 5a is divided by 7?

18. When an integer b is divided by 12, the remainder is 5. What
is the remainder when 8b is divided by 12?

19. When an integer c is divided by 15, the remainder is 3. What
is the remainder when 10c is divided by 15?

20. Suppose d is a positive integer and n is any integer. If d I n,
what is the remainder obtained when the quotient-remainder
theorem is applied to n with divisor d?

1. n=70,d=9

3. n = 36, d =40

5. n= -45,d=11

22. A matrix M has 3 rows and 4 columns.

[al a12  a 13 a14

a2 1  a2 2  a23 a 2 4

a3 1  a3 2  a3 3  a3 4 ]

The 12 entries in the matrix are to be stored in row major
form in locations 7,609 to 7,620 in a computer's memory.
This means that the entries in the first row (reading left to
right) are stored first, then the entries in the second row, and
finally the entries in the third row.
a. Which location will a22 be stored in?
b. Write a formula (in i and j) that gives the integer n so

that a3j is stored in location 7,609 + n.
c. Find formulas (in n) for r and s so that ar, is stored in

location 7,609 + n.

23. Let M be a matrix with m rows and n columns, and
suppose that the entries of M are stored in a computer's
memory in row major form (see exercise 22) in locations
N, N + 1, N +2,..., N +mn-1. Findformulasinkfor
r and s so that ar, is stored in location N + k.

24. Prove that the product of any two consecutive integers is
even.

25. The result of exercise 24 suggests that the second apparent
blind alley in the discussion of Example 3.4.6 might not be
a blind alley after all. Write a new proof of Theorem 3.4.3
based on this observation.

26. Prove that for all integers n, n2 - n + 3 is odd.

27. Show that any integer n can be written in one of the three
forms

n=3q or n=3q+1 or n=3q+2

for some integer q.

28. a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any three consecutive integers is di-
visible by 3.

b. Use the mod notation to rewrite the result of part (a).

H 29. Use the quotient-remainder theorem with d = 3 to prove
that the square of any integer has the form 3k or 3k + 1 for
some integer k.

30. Use the quotient-remainder theorem with d = 3 to prove
that the product of any two consecutive integers has the
form 3k or 3k + 2 for some integer k.
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31. a. Prove that for all integers m and n, m + n and m - n
are either both odd or both even.

b. Find all solutions to the equation mi2 
_ n2 = 56 for

which both mn and n are positive integers.
c. Find all solutions to the equation m2 _ n2 = 88 for

which both m and n are positive integers.

32. Given any integers a, b, and c, if a - b is even and b- c
is even, what can you say about the parity of 2a -(b + c)?
Prove your answer. You may use the properties listed in
Example 3.2.3.

33. Given any integers a, b, and c, if a-b is odd and b -c is
even, what can you say about the parity of a - c? Prove
your answer.

H 34. Given any integer n, if n > 3, could n, n + 2, and n + 4
all be prime? Prove or give a counterexample.

35. The fourth power of any integer has the form 8m or 8m + I
for some integer m.

Prove each of the statements in 36-43.

H 36. The product of any four consecutive integers is divisible
by 8.

37. The square of any integer has the form 4k or 4k + I for some
integer k.

H 38. For any integer n > I, n2 + I has the form 4k + I or 4k + 2
for some integer k.

H 39. The sum of any four consecutive integers has the form
4k + 2 for some integer k.

40. For any integer n, n (n2  l)(n + 2) is divisible by 4.

41. For all integers m, m 2 -5k, or m2 = 5k + 1, or m2 =

5k + 4 for some integer k.

H 42. Every prime number except 2 and 3 has the form 6q + I or
6q + 5 for some integer q.

43. If n is an odd integer, then n4 mod 16 = 1.

* 44. If m, n, and d are integers and m mod d = n mod d, does it
necessarily follow that m = n? That m- n is divisible by
d? Prove your answers.

*45. If m, n, and d are integers and d I (m -n), what is the rela-
tion between m mod d and n mod d? Prove your answer.

*46. If m, n, a, b, and d are integers and m mod d = a and n
mod d =b, is (m+n) mod d =a+b? Is (m +n) mod
d = (a + b) mod d? Prove your answers.

* 47. If m, n, a, b, and d are integers and m mod d = a and n mod
d = b, is (mn) mod d = ab? Is (mn) mod d = ab mod d?
Prove your answers.

48. Prove that if m, d, and k are integers and d 7L 0, then
(m+dk)modd =mmodd.

Use the following definition to prove each statement in 49-53.

49. For all real numbers x, l-xl = lxi.

50. For all real numbers x and y, IxI . IYI = IXYI

51. For all real numbers x, -lx I < x < lx .

52. If c is a positive real number and x is any real number, then
-c < x < c if, and only if, lxI < c. (To prove a statement
of the form "A if, and only if, B," you must prove "if A then
B" and "if B then A.")

53. For all real numbers x and y, Ix + yI < IxI + IY. This re-
sult is called the triangle inequality. (Hint: Use 51 and 52
above.)

3.5 Direct Proof and Counterexample V:
Floor and Ceiling
Proof serves many purposes simultaneously. In being exposed to the scrutiny and
judgment of a new audience, [a] proof is subject to a constant process of criticism and

revalidation. Errors, ambiguities, and misunderstandings are cleared up by constant
exposure. Proof is respectability. Proof is the seal of authority.

Proof, in its best instances, increases understanding by revealing the heart of the

matter Proof suggests new mathematics. The novice who studies proofs gets closer to
the creation of new mathematics. Proof is mathematical power, the electric voltage of
the subject which vitalizes the static assertions of the theorems.

Finally, proof is ritual, and a celebration of the power of pure reason.

-Philip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

Definition: For any real number x, the absolute value of x,
denoted lx i, is defined as follows:

x if x'O
Txl =I-x if x < O
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Imagine a real number sitting on a number line. The floor and ceiling of the number are
the integers to the immediate left and to the immediate right of the number (unless the
number is, itself, an integer, in which case its floor and ceiling both equal the number
itself). Many computer languages have built-in functions that compute floor and ceiling
automatically. These functions are very convenient to use when writing certain kinds
of computer programs. In addition, the concepts of floor and ceiling are important in
analyzing the efficiency of many computer algorithms.

M I.l4fiIT gm,

Given any real number x, the floor of x, denoted Lx], is defined as follows:

Lx] = that unique integer n such that n < x < n + 1.

Symbolically, if x is a real number and n is an integer, then

LxJ =n X n <x <n+ 1.

x
I I I
n no+ I

floor of x = Lxj

I. .* 1 l

Given any real number x, the ceiling of x, denoted [xl, is defined as follows:

Fxl = that unique integer n such that n - I < x < n.

Symbolically, if x is a real number and n is an integer, then

rxj = n X: n- I < x < n.

x
n I I
n-l n

ceiling of x = rxi

Example 3.5.1 Computing Floors and Ceilings

Compute Lxi and rxl for each of the following values of x:

a. 25/4 b. 0.999 c. -2.01

Solution

a. 25/4 = 6.25 and 6 < 6.25 < 7; hence L25/4i = 6 and [25/41 = 7.

b. 0 < 0.999 < 1; hence L0.999j = 0 and ro.999] = 1.

c. -3 < -2.01 < -2; hence L-2.01j =-3 and F-2.011 = -2.

Note that on some calculators Lxi is denoted INT (x). E
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Example 3.5.2 An Application

The 1,370 soldiers at a military base are given the opportunity to take buses into town for
an evening out. Each bus holds a maximum of 40 passengers.

a. For reasons of economy, the base commander will send only full buses. What is the
maximum number of buses the base commander will send?

b. If the base commander is willing to send a partially filled bus, how many buses will
the commander need to allow all the soldiers to take the trip?

Solution

a. L1370/40] = L34.25j = 34 b. [1370/401 = [34.25] = 35 U

Example 3.5.3 Some General Values of Floor

If k is an integer, what are LkJ and Lk + 1/2] ? Why?

Solution Suppose k is an integer. Then

Lkj = k because k is an integer and k < k < k + 1,

and

Lk± + ] becausee k is an integer and k < k + - < k + 1. A

Example 3.5.4 Disproving an Alleged Property of Floor

Is the following statement true or false?

For all real numbers x and y, Lx + yA = LxJ + LyJ.

Solution The statement is false. As a counterexample, take x = Y = . Then
2

LxJ + L ] ]=000
whereas

[x +y J K2 + 2 1]=.

Hence Lx + yA : LxJ + Lyj.
To arrive at this counterexample, you could have reasoned as follows: Suppose x and

y are real numbers. Must it necessarily be the case that Lx + yj = LxJ + Lyj, or could
x and y be such that Lx + yA # Lx] + Lyj ? Imagine values that the various quantities
could take. For instance, if both x and y are positive, then LxJ and Ly] are the integer
parts of Lx] and LyJ respectively; just as

3 3
2 =2+

5 5

integer part fractional part

so is

x = Lx] + fractional part of x

and

y = LyJ + fractional part of y.
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Thus if x and y are positive,

x + y = LxJ + LYJ + the sum of the fractional parts of x and y.

But also

x + y = Lx + yJ + the fractional part of (x + y).

These equations show that if there exist numbers x and y such that the sum of the fractional
parts of x and y is at least 1, then a counterexample can be found. But there do exist such
x and y; for instance, x = 1 and y = as before. a

The analysis of Example 3.5.4 indicates that if x and y are positive and the sum of their
fractional parts is less than 1, then Lx + yJ = LxJ + Lyj- In particular, if x is positive
and m is a positive integer, then Lx + mj = LxJ + LmJ = Lxj + m. (The fractional part
of m is O; hence the sum of the fractional parts of x and m equals the fractional part of x,
which is less than 1.) It turns out that you can use the definition of floor to show that this
equation holds for all real numbers x and for all integers m.

Example 3.5.5 Proving a Property of Floor

Prove that for all real numbers x and for all integers m, Lx + m] = Lx] + m.

Solution Begin by supposing that x is a particular but arbitrarily chosen real number and that
m is a particular but arbitrarily chosen integer. You must show that Lx + m] = LxJ + m.
Since this is an equation involving Lx] and Lx + m], it is reasonable to give one of these
quantities a name: Let n = Lxi. By definition of floor,

n is an integer and n < x < n + 1.

This double inequality enables you to compute the value of Lx + mJ in terms of n by
adding m to all sides:

n+m<x+m <n+m+l.

Thus the left-hand side of the equation to be shown is

Lx+mj =n+m.

On the other hand, since n = Lxi, the right-hand side of the equation to be shown is

Lx] + m = n + m

also. Thus Lx + mi = LxJ + m. This discussion is summarized as follows:

Theorem 3.5.1

For all real numbers x and all integers m, Lx + ml = Lx] + m.

Proof:

Suppose a real number x and an integer m are given. [We must show that Lx + mj =
Lxi + m.] Let n = Lxj. By definition of floor, n is an integer and

n <x <n + 1.

Add m to all sides to obtain

n +m < x +m < n +m + I

continued on page 168
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U

The analysis of a number of computer algorithms, such as the binary search and merge
sort algorithms, requires that you know the value of Ln/21, where n is an integer. The
formula for computing this value depends on whether n is even or odd.

Theorem 3.5.2 The Floor of n/2

For any integer n,

if n is even

1 if n is odd

Proof:

Suppose n is a [particular but arbitrarily chosen] integer. By the quotient-remainder
theorem, n is odd or n is even.

Case I (n is odd): In this case, n = 2k + I for some integer k. [We must show that
Ln/21 = (n - 1)/2.] But the left-hand side of the equation to be shown is

Lni L 2k + ] = [2Lk±+
2 L 2 L2+ 2 =(+-2 21

because k is an integer and k < k + 1/2 < k + 1. And the right-hand side of the
equation to be shown is

n-i (2k + 1)- 1 2k

2 2 2

also. So since both the left-hand and right-hand sides equal k, they are equal to each

other. That is, L2- 2 [as was to be shown].

Case 2 (n is even): In this case, n = 2k for some integer k. [We must show that
Ln/2J = n/2]. The rest of the proof of this case is left as an exercise.

[since adding a number to both sides of an inequality does not change the direction
of the inequality].

Now n + m is an integer [since n and m are integers and a sum of integers is an
integer] and so, by definition of floor, the left-hand side of the equation to be shown
is

Lx+m] =n+m.

But n = LxJ. Hence, by substitution,

n + m = Lxi + m,

which is the right-hand side of the equation to be shown. Thus Lx + ml = Lxi + m
[as was to be shown].
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Given a nonnegative integer n and a positive integer d, the quotient-remainder theorem
guarantees the existence of unique integers q and r such that

n = dq + r and O < r < d.

The following theorem states that the floor notation can be used to describe q and r as
follows:

q Ld and r=n-d L].

Thus if, on a calculator or in a computer language, floor is built in but div and mod are
not, div and mod can be defined as follows: For a nonnegative integer n and a positive
integer d,

ndivd = L[] and nmodd=n-d LJ. 3.5.1

Note that d divides n if, and only if, n mod d = 0, or, in other words, n = d Ln/dj. You
are asked to prove this in exercise 13.

Theorem 3.5.3

If n is a nonnegative integer and d is a positive integer, and if q = Ln/dj and r =
n - d Ln/dj, then

n=dq+r and O<r<d.

Proof:

Suppose n is a nonnegative integer, d is a positive integer, q = Ln/dj, and r =
n - d[n/dj. [We must show thatn = dq + r andO < r < d. By substitution,

dq +r d[ n] (n Ld])=n.

So it remains only to show that 0 < r < d. But q = Ln/dj. Thus, by definition of
floor,

n
q < d < q + 1.

Then

dq < n < dq + d by multiplying all parts by d

and so

0 < n - dq < d by subtracting dq from all parts.

But

r = n - d n] = n - dq.

Hence

0 < r < d by substitution.

[This is what was to be shown.]



170 Chapter 3 Elementary Number Theory and Methods of Proof

Example 3.5.6 Computing div and mod

Use the floor notation to compute 3850 div 17 and 3850 mod 17.

Solution By formula (3.5.1),

3850 div 17 = L3850/17] = L226.47] = 226

3850 mod 17 = 3850 -17- [3850/17J

= 3850 - 17 * 226

= 3850 - 3842 = 8. U

Exercise Set 3.5
Compute Lxj and rxi for each of the values of x in 1-4.

1. 37.999 2. 17/4

3. -14.00001 4. -32/5

5. Use the floor notation to express 259 div 11 and
259 mod 11.

6. If k is an integer, what is [k] ? Why?

7. If k is an integer, what is [k + 21 ? Why?

8. Seven pounds of raw material are needed to manufacture
each unit of a certain product. Express the number of units
that can be produced from n pounds of raw material using
either the floor or the ceiling notation. Which notation is
more appropriate?

9. Boxes, each capable of holding 36 units, are used to ship
a product from the manufacturer to a wholesaler. Express
the number of boxes that would be required to ship n units
of the product using either the floor or the ceiling notation.
Which notation is more appropriate?

10. If 0 = Sunday, 1 = Monday, 2 = Tuesday, ... , 6 = Satur-
day, then January 1 of year n occurs on the day of the week
given by the following formula:

(n+ L j [nL j + L 400 jJmod 7

a. Use this formula to find January I of
i. 2050 ii. 2100 iii. the year of your birth.

H b. Interpret the different components of this formula.

11. State a necessary and sufficient condition for the floor of a
real number to equal that number.

12. Prove that if n is any even integer, then [n/2] = n/2.

13. Suppose n and d are integers and d A 0. Prove each of the
following.
a. If d I n, then n = [n/d] d.
b. If n = Ln/dj d, then d n.
c. Use the floor notation to state a necessary and sufficient

condition for an integer n to be divisible by an integer d.

Some of the statements in 14-22 are true and some are false.
Prove each true statement and find a counterexample for each
false statement.

14. For all real numbers x and y, Lx- yJ = Lxj - Ly].

15. For all real numbers x, Lx - 1] = Lx] - 1.

16. For all real numbers x, [x2j = Lxj 2.

H 17. For all integers n,

n/3 if n mod3 =0
Ln/3j = (n-1)/3 if n mod 3 = I

(n-2)/3 if n mod 3 = 2

H 18. For all real numbers x and y, rx + yj = rx] + FyI.

H 19. For all real numbers x, [x + I1 = [xi + 1.

20. For all real numbers x andy, [xy] l= Fx1 FyI

21. For all odd integers n, [n/21 = (n + 1)/2.

22. For all real numbers x and y, FxYl = xi . [yi.

Prove each of the statements in 23-29.

23. For any real number x, if x is not an integer, then
Lxi + L-x =-I.

24. For any integer m and any real number x, if x is not an
integer, then Lxi + Lm - x] = m -1.

H 25. For all real numbers x, L[x/2i/2i = [x/4J.

26. For all real numbers x, if x - x < 1/2 then
L2xi = 2LxJ.

27. For all real numbers x, if x -Lx > 1/2 then
[2xi = 2[XJ + 1.

28. For any odd integer n,

Ln'2 = -n )n +)
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29. For any odd integer n, "Proof: Suppose n is any odd integer. Then n = 2k + I for

n2 1 2 + 3 some integer k. Consequently,

|4 | 4 02k + I] (2k + 1)-I 2k
LJ(-III 2 = k.

30. Find the mistake in the following "proof" that Ln/2= 2 2 2
(n -1)/2 if n is an odd integer. But n = 2k + 1. Solving for k gives k = (n -1)/2.

Hence, by substitution, Ln/2] = (n -1)/2."

3.6 Indirect Argument: Contradiction
and Contraposition
Reductio ad absurdum is one of a mathematician'sfinest weapons. It is afarfiner
gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even
a piece, but the mathematician offers the game. -G H. Hardy, 1877-1947

In a direct proof you start with the hypothesis of a statement and make one deduction after
another until you reach the conclusion. Indirect proofs are more roundabout. One kind
of indirect proof, argument by contradiction, is based on the fact that either a statement
is true or it is false but not both. Suppose you can show that the assumption that a given
statement is not true leads logically to a contradiction, impossibility, or absurdity. Then
that assumption must be false; hence, the given statement must be true. This method of
proof is also known as reductio ad impossible or reductio ad absurdum because it relies
on reducing a given assumption to an impossibility or absurdity.

Argument by contradiction occurs in many different settings. For example, if a man
accused of holding up a bank can prove that he was some place else at the time the crime
was committed, he will certainly be acquitted. The logic of his defense is as follows:

Suppose I did commit the crime. Then at the time of the crime, I would have had to be
at the scene of the crime. In fact, at the time of the crime I was in a meeting with 20
people far from the crime scene, as they will testify. This contradicts the assumption
that I committed the crime, since it is impossible to be in two places at one time. Hence
that assumption is false.

Another example occurs in debate. One technique of debate is to say, "Suppose for
a moment that what my opponent says is correct." Starting from this supposition, the
debater then deduces one statement after another until finally arriving at a statement that
is completely ridiculous and unacceptable to the audience. By this means the debater
shows the opponent's statement to be false.

The point of departure for a proof by contradiction is the supposition that the statement
to be proved is false. The goal is to reason to a contradiction. Thus proof by contradiction
has the following outline:

Method of Proof by Contradiction

1. Suppose the statement to be proved is false. That is, suppose that the negation of
the statement is true. (Be very careful when writing the negation!)

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.
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There are no clear-cut rules for when to try a direct proof and when to try a proof
by contradiction. There are some general guidelines, however. Proof by contradiction is
indicated if you want to show that there is no object with a certain property, or if you want
to show that a certain object does not have a certain property. The next two examples
illustrate these situations.

Example 3.6.1 There Is No Greatest Integer

Use proof by contradiction to show that there is no greatest integer.

Solution Most small children believe there is a greatest integer-they often call it a "zillion."
But with age and experience, they change their belief. At some point they realize that if
there were a greatest integer, they could add 1 to it to obtain an integer that was greater
still. Since that is a contradiction, no greatest integer can exist. This line of reasoning is
the heart of the formal proof.

For the proof, the certain property is the property of being the greatest integer. To
prove that there is no object with this property, begin by supposing the negation: that there
is an object with the property.

Starting Point: Suppose not. Suppose there is a greatest integer; call it N.

This means that N > n for all integers n.

To Show: This supposition leads logically to a contradiction.

N

After a contradiction has been reached, the logic of the argument is always the same:
"This is a contradiction. Hence the supposition is false and the theorem is true." Because
of this, most mathematics texts end proofs by contradiction at the point at which the
contradiction has been obtained.

The contradiction in the next example is based on the fact that 1/2 is not an integer.

Example 3.6.2 No Integer Can Be Both Even and Odd

Is it possible for an integer to be both even and odd? The intuitive answer is "Of course
not." What justifies this certainty? A proof by contradiction!

Theorem 3.6.1

There is no greatest integer.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a greatest integer N. [We must deduce a contradiction.] Then
N > n for every integer n. Let M = N + 1. Now M is an integer since it is a sum
of integers. Also M > N since M = N + 1.

Thus M is an integer that is greater than N. So N is the greatest integer and N is
not the greatest integer, which is a contradiction. [This contradiction shows that the
supposition is false and, hence, that the theorem is true.]
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The next example asks you to show that the sum of any rational number and any
irrational number is irrational. One way to think of this is in terms of a certain object
(the sum of a rational and an irrational) not having a certain property (the property of
being rational). This suggests trying a proof by contradiction: suppose the object has the
property and deduce a contradiction.

Example 3.6.3 The Sum of a Rational Number and an Irrational Number

Use proof by contradiction to show that the sum of any rational number and any irrational
number is irrational.

Solution Begin by supposing the negation of what you are to prove. Be very careful when
writing down what this means. If you take the negation incorrectly, the entire rest of the
proof will be flawed. In this example, the statement to be proved can be written formally as

V real numbers r and s, if r is rational and
s is irrational, then r + s is irrational.

From this you can see that the negation is

3 a rational number r and an irrational
number s such that r + s is rational.

Caution! The negation of "The sum of any irrational number and any rational
number is irrational" is NOT "The sum of any irrational number and any
rational number is rational."

Theorem 3.6.2

There is no integer that is both even and odd.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is an integer n that is both even and odd. [We must deduce a
contradiction.] By definition of even, n = 2a for some integer a, and by definition
of odd, n = 2b + I for some integer b. Consequently,

2a = 2b + 1 by equating the two expressions for n

and so

2a -2b=

2(a - b) = 1
(a -b) = 1/2 by algebra.

Now since a and b are integers, the difference a -b must also be an integer. But
a - b = 1/2, and 1/2 is not an integer. Thus a - b is an integer and a -b is not an
integer, which is a contradiction. [This contradiction shows that the supposition is
false and, hence, that the theorem is true.]
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It follows that the starting point and what is to be shown are as follows:

Starting Point: Suppose not. That is, suppose there is a rational number r and an irrational
number s such that r + s is rational.

To Show: This supposition leads to a contradiction.

To derive a contradiction, you need to understand what you are supposing: There are
numbers r and s such that r is rational, s is irrational, and r + s is rational. By definition
of rational and irrational, this means that s cannot be written as a quotient of any two
integers but that r and r + s can:

a
r = b for some integers a and b with b 0, and 3.6.1

C

r + s = for some integers c and d with d 0 0. 3.6.2
d

If you substitute (3.6.1) into (3.6.2), you obtain

a c
- + s =-.
b d

Subtracting a/b from both sides gives

c a

d b

be ad
-- by rewriting c/d and a/b as equivalent fractions

bd bd

bc - ad by the rule for subtracting fractions

bd with the same denominator.

But both be - ad and bd are integers because products and differences of integers are
integers, and bd 4 0 by the zero product property. Hence s can be expressed as a quotient
of two integers with a nonzero denominator, and so s is rational, which contradicts the
supposition that it is irrational.

This discussion is summarized in a formal proof.

Theorem 3.6.3

The sum of any rational number and any irrational number is irrational.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a rational number r and an irrational number s such that r + s is
rational. [We must deduce a contradiction.] By definition of rational, r = a/b and
r + s = c/d for some integers a, b, c, and d with b :# 0 and d 7 0. By substitution,

a c
b + s = dob d

and so

c as = - - by subtracting a/b from both sides
d b

be - ad
- d by the laws of algebra.

bd
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Now bc -ad and bd are both integers [since a, b, c, and d are, and since products
and differences of integers are integers], and bd 0 0 [by the zero product property].
Hence s is a quotient of the two integers bc - ad and bd with bd # 0. Thus, by def-
inition of rational, s is rational, which contradicts the supposition that s is irrational.
[Hence the supposition is false and the theorem is true.]

E

Argument by Contraposition
A second form of indirect argument, argument by contraposition, is based on the logical
equivalence between a statement and its contrapositive. To prove a statement by con-
traposition, you take the contrapositive of the statement, prove the contrapositive by a
direct proof, and conclude that the original statement is true. The underlying reasoning
is that since a conditional statement is logically equivalent to its contrapositive, if the
contrapositive is true then the statement must also be true.

Example 3.6.4 If the Square of an Integer Is Even, Then the Integer Is Even

Prove that for all integers n, if n2 is even then n is even.

Solution First form the contrapositive of the statement to be proved.

Contrapositive: For all integers n, if n is not even then n 2 is not even.

By the quotient-remainder theorem with d = 2, any integer is even or odd, so any integer
that is not even is odd. Also by Theorem 3.6.2, no integer can be both even and odd. So
if an integer is odd, then it is not even. Thus the contrapositive can be restated as follows:

Contrapositive: For all integers n, if n is odd then n2 is odd.

Method of Proof by Contraposition

1. Express the statement to be proved in the form

Yvx in D, if P(x) then Q(x).

(This step may be done mentally.)

2. Rewrite this statement in the contrapositive form

Vx in D, if Q(x) is false then P(x) is false.

(This step may also be done mentally.)

3. Prove the contrapositive by a direct proof.

a. Suppose x is a (particular but arbitrarily chosen) element of D such that Q(x)
is false.

b. Show that P(x) is false.
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A straightforward computation is the heart of a direct proof for this statement, as shown
below.

We used the word proposition here rather than theorem because although the word the-
orem can refer to any statement that has been proved, mathematicians often restrict it
to especially important statements that have many and varied consequences. Then they
use the word proposition to refer to a statement that is somewhat less consequential but
nonetheless worth writing down. We will use Proposition 3.6.4 in Section 3.7 to prove
that X2 is irrational.

Relation between Proof by Contradiction
and Proof by Contraposition

Observe that any proof by contraposition can be recast in the language of proof by con-
tradiction. In a proof by contraposition, the statement

Vx in D, if P(x) then Q(x)

is proved by giving a direct proof of the equivalent statement

Vx in D, if -Q(x) then -P(x).

To do this, you suppose you are given an arbitrary element x of D such that '-Q(x). You
then show that -P(x). This is illustrated in Figure 3.6.1.

Suppose x is an arbitrary ] sequence of steps []
element of D such that Q(x). |jm

Figure 3.6.1 Proof by Contraposition

Exactly the same sequence of steps can be used as the heart of a proof by contradiction
for the given statement. The only thing that changes is the context in which the steps are
written down.

To rewrite the proof as a proof by contradiction, you suppose there is an x in D such that
P (x) and ~-Q (x). You then follow the steps of the proof by contraposition to deduce the
statement -P(x). But '-P(x) is a contradiction to the supposition that P(x) and -Q(x).
(Because to contradict a conjunction of statement, it is only necessary to contradict one
component.) This process is illustrated in Figure 3.6.2.

Suppose 3x in D same sequence of steps |ontradiction:1

that P(x) and X). o P(x) and bP(x)

Figure 3.6.2 Proof by Contradiction

For al r n f even then' n i even.

Proof (by contraposition):

Suppose n is any odd integer. [We must show that n2 is odd.] By definition of
odd, n = 2k + 1 for some integer k. By substitution and algebra, n2 = (2k + 1)2 =

4k2 + 4k + 1 = 2(2k2 + 2k) + 1. But 2k2 + 2k is an integer because products and
sums of integers are integers. So n2 = 2 (an integer) + 1, and thus, by definition of
odd, n2 is odd [as was to be shown].
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As an example, here is a proof by contradiction of Proposition 3.6.4, namely that for
any integer n, if n2 is even then n is even.

Note that when you use proof by contraposition, you know exactly what conclusion
you need to show, namely the negation of the hypothesis; whereas in proof by contradic-
tion, it may be difficult to know what contradiction to head for. On the other hand, when
you use proof by contradiction, once you have deduced any contradiction whatsoever, you
are done. The main advantage of contraposition over contradiction is that you avoid having
to take (possibly incorrectly) the negation of a complicated statement. The disadvantage
of contraposition as compared with contradiction is that you can use contraposition only
for a specific class of statements-those that are universal and conditional. The discus-
sion above shows that any statement that can be proved by contraposition can be proved
by contradiction. But the converse is not true. Statements such as "I'2 is irrational"
(discussed in the next section) can be proved by contradiction but not by contraposition.

Proof as a Problem-Solving Tool
Direct proof, disproof by counterexample, proof by contradiction, and proof by contra-
position are all tools that may be used to help determine whether statements are true or
false. Given a statement of the form

For all elements in a domain, if (hypothesis) then (conclusion),

imagine elements in the domain that satisfy the hypothesis. Ask yourself: Must they
satisfy the conclusion? If you can see that the answer is "yes" in all cases, then the
statement is true and your insight will form the basis for a direct proof. If after some
thought it is not clear that the answer is "yes," try to think whether there are elements of
the domain that satisfy the hypothesis and not the conclusion. If you are successful in
finding some, then the statement is false and you have a counterexample. On the other
hand, if you are not successful in finding such elements, perhaps none exist. Perhaps you
can show that assuming the existence of elements in the domain that satisfy the hypothesis
and not the conclusion leads logically to a contradiction. If so, then the given statement is
true and you have the basis for a proof by contradiction. Alternatively, you could imagine
elements of the domain for which the conclusion is false and ask whether such elements
also fail to satisfy the hypothesis. If the answer in all cases is "yes," then you have a basis
for a proof by contraposition.

Proposition 3.6.4

For all integers n, if n2 is even then n is even.

Proof (by contradiction):

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is an integer n such that n2 is even and n is not even. [We must
deduce a contradiction.] By the quotient-remainder theorem with d = 2, any integer
is even or odd. Hence, since n is not even it is odd, and thus, by definition of
odd, n = 2k + 1 for some integer k. By substitution and algebra: n2 

= (2k + 1)2 =

4k2 + 4k + 1 = 2(2k2 + 2k) + 1. But 2k2 + 2k is an integer because products and
sums of integers are integers. So n2 = 2 * (an integer) + 1, and so, by definition of
odd, n2 is odd. Therefore, n2 is both even and odd. This contradicts Theorem 3.6.2,
which states that no integer can be both even and odd. [This contradiction shows that
the supposition is false and, hence, that the proposition is true.]
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Solving problems, especially difficult problems, is rarely a straightforward process.
At any stage of following the guidelines above, you might want to try the method of a
previous stage again. If, for example, you fail to find a counterexample for a certain
statement, your experience in trying to find it might help you decide to reattempt a direct
argument rather than trying an indirect one. Psychologists who have studied problem
solving have found that the most successful problem solvers are those who are flexible
and willing to use a variety of approaches without getting stuck in any one of them for
very long. Mathematicians sometimes work for months (or longer) on difficult problems.
Don't be discouraged if some problems in this book take you quite a while to solve.

Learning the skills of proof and disproof is much like learning other skills, such as
those used in swimming, tennis, or playing a musical instrument. When you first start
out, you may feel bewildered by all the rules, and you may not feel confident as you
attempt new things. But with practice the rules become internalized and you can use
them in conjunction with all your other powers-of balance, coordination, judgment,
aesthetic sense-to concentrate on winning a meet, winning a match, or playing a concert
successfully.

Now that you have worked through the first six sections of this chapter, return to the
idea that, above all, a proof or disproof should be a convincing argument. You need to
know how direct and indirect proofs and counterexamples are structured. But to use this
knowledge effectively, you must use it in conjunction with your imaginative powers, your
intuition, and especially your common sense.

Exercise Set 3.6
1. Fill in the blanks in the following proof that there is no least

positive real number.

Proof: [We take the negation of the statement and suppose

it to be true.] Suppose not. That is, suppose that there is a
real number x such that x is positive and (a) for all posi-
tive real numbers y. [We must deduce (b) J Consider the
number x/2. Then (c) because x is positive, and x/2 < x
because (d) Hence (e) ,which is a contradiction. [Thus
the supposition isjalse, and so there is no least positive real

number]

2. Is I an irrational number? Explain.
0

3. Use proof by contradiction to show that for all integers n,
3n + 2 is not divisible by 3.

4. Use proof by contradiction to show that for all integers m,
7m + 4 is not divisible by 7.

Carefully formulate the negations of each of the statements in
5-8. Then prove each statement by contradiction.

5. There is no greatest even integer.

6. There is no greatest negative real number.

7. There is no least positive rational number.

8. a. When asked to prove that the difference of any rational
number and any irrational number is irrational, a student
begins, "Suppose not. Suppose the difference of any
rational number and any irrational number is rational."
Comment.

b. Prove by contradiction that the difference of any rational
number and any irrational numbr is irrational.

Prove each statement in 9-15 by contradiction.

9. For all real numbers x and y, if x is irrational and y is rational
then x -y is irrational.

10. The product of any nonzero rational number and any irra-
tional number is irrational.

11. If a and b are rational numbers, b 3& 0, and r is an irrational
number, then a + br is irrational.

H 12. For any integer n, n2 - 2 is not divisible by 4.

H 13. For all prime numbers a, b, and c, a2 + b2 # c
2

H 14. If a, b, and c are integers and a2 + b2 
= c2 , then at least one

of a and b is even.

H * 15. For all odd integers a, b, and c, if z is a solution of
ax2 

+ bx + c = 0 then z is irrational.

16. Fill in the blanks in the following proof by contraposition
that for all integers n, if5 ,1 n2 then 5 , n.

Proof (by contraposition): [The contrapositive is: For all
integers n, if 5 I n then 5 1 n2.] Suppose n is any integer

such that (a) [We must show that (b) J By definition

of divisibility, n = (c) for some integer k. By substitu-
tion, n2 = (d) = 5(5k2 ). But 5k2 is an integer because it
is a product of integers. Hence n2 = 5 . (an integer), and so

(e) [as was to be shown].
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Prove the statements in 17 and 18 by contraposition.

17. If a product of two positive real numbers is greater than 100,
then at least one of the numbers is greater than 10.

18. If a sum of two real numbers is less than 50, then at least
one of the numbers is less than 25.

19. Consider the statement "For all integers n, if n2 is odd then
n is odd."
a. Write what you would suppose and what you would need

to show to prove this statement by contradiction.
b. Write what you would suppose and what you would need

to show to prove this statement by contraposition.

20. Consider the statement "For all real numbers r, if r2 is irra-
tional then r is irrational."
a. Write what you would suppose and what you would need

to show to prove this statement by contradiction.
b. Write what you would suppose and what you would need

to show to prove this statement by contraposition.

Prove each of the statements in 21-26 in two ways: (a) by con-
traposition and (b) by contradiction.

21. The negative of any irrational number is irrational.

22. The reciprocal of any irrational number is irrational. (The
reciprocal of a nonzero real number x is I/x.)

H 23. For all integers n, if n2 is odd then n is odd.

24. For all integers a, b, and c, if a; bc then a X b. (Recall that
the symbol I means "does not divide.")

H 25. For all integers m and n, if m + n is even then m and n are
both even or m and n are both odd.

26. Forall integersa, b, and c, if a I b anda I c, then a I (b + c).
(Hint: To prove p q V r, it suffices to prove either
p A -q --. r or p r -q. See exercise 14 in Section
1.2.)

27. The following "proof" that every integer is rational is incor-
rect. Find the mistake.

"Proof (by contradiction): Suppose not. Suppose every
integer is irrational. Then the integer 1 is irrational. But

1 = 1/ 1, which is rational. This is a contradiction. [Hence
the supposition is false and the theorem is true.]"

28. a. Use the properties of inequalities in Appendix A to prove
that for all integers r, s, and n, if r > 4F and s > ./'
then rs > n.

H b. Use proof by contraposition and the result of part (a) to
show that for all integers n > 1, if n is not divisible by
any positive integer that is greater than 1 and less than or
equal to ,/n, then n is prime.

c. Use proof by contraposition and the result of part (b) to
show that for all integers n > 1, if n is not divisible by
any prime number less than or equal to ./, then n is
prime.

29. Use the result of exercise 28 to determine whether the fol-
lowing numbers are prime.
a. 667 b. 557 c. 527 d. 613

30. The sieve of Eratosthenes, named after its inventor, the
Greek scholar Eratosthenes (276-194 B.c.), provides a way
to find all prime numbers less than or equal to some fixed
number n. To construct it, write out all the integers from
2 to n. Cross out all multiples of 2 except 2 itself, then all
multiples of 3 except 3 itself, then all multiples of 5 except
5 itself, and so forth. Continue crossing out the multiples
of each successive prime number up to `n. The numbers
that are not crossed out are all the prime numbers from 2 to
n. Here is a sieve of Eratosthenes that includes the numbers
from 2 to 27. The multiples of 2 are crossed out with a /,
the multiples of 3 with a \, and the multiples of 5 with a

2 3 A' 5 X 7 ,8'9 * 11 l2 13 1
$- V6 17 W 19 X# 21 2Z 23 4 2-- 26 2Z

Use the sieve of Eratosthenes to find all prime numbers less
than 100.

31. Use the results of exercises 28 and 30 to determine whether
the following numbers are prime.
a. 9,269 b. 9,103 c. 8,623 d. 7,917

H * 32. Use proof by contradiction to show that every integer greater
than 11 is a sum of two composite numbers.

3.7 Two Classical Theorems
How flat and dead would be a mind that saw nothing in a negation but an opaque

barrier! A live mind can see a window onto a world of possibilities.

-Douglas Hofstadter, Gadel, Escher Bach, 1979

This section contains proofs of two of the most famous theorems in mathematics: that v2
is irrational and that there are infinitely many prime numbers. Both proofs are examples
of indirect arguments and were well known more than 2,000 years ago, but they remain
exemplary models of mathematical argument to this day.
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The Irrationality of X1

When mathematics flourished at the time of the ancient Greeks, mathematicians believed
that given any two line segments, say A: and B: , two integers, say a
and b, could be found so that the ratio of the lengths of A and B would be in the same
proportion as the ratio of a and b. Symbolically:

length A a

length B b

Now it is easy to find a line segment of length A's; just take the diagonal of the unit square:

By the Pythagorean theorem, C2 = 12 + 12 = 2, and so c = vA. If the belief of the ancient
Greeks were correct, there would be integers a and b such that

length (diagonal) a
length (side) b

And this would imply that

-1 = b

Rut then / x would he a ratio of two intevers or in other words. a would he rational

In the fourth or fifth century B.C., the followers of the Greek mathematician and
philosopher Pythagoras discovered that X2 was not rational. This discovery was very
upsetting to them, for it undermined their deep, quasi-religious belief in the power of
whole numbers to describe phenomena.

The following proof of the irrationality of X2 was known to Aristotle and is similar to
that in the tenth book of Euclid's Elements of Geometry. The Greek mathematician Euclid
is best known as a geometer. In fact, knowledge of the geometry in the first six books of
his Elements has been considered an essential part of a liberal education for more than
2,000 years. Books 7-10 of his Elements, however, contain much that we would now call
number theory.

I he proot begins by supposing the negation: V 2 is rational. [his means that there
exist integers m and n such that 2 = m/n. Now if m and n have any common factors,
these may be factored out to obtain a new fraction, equal to mi/n, in which the numerator
and denominator have no common factors. (For example, 18/12 = (6. 3)/(6 . 2) = 3/2,
which is a fraction whose numerator and denominator have no common factors.) Thus,
without loss of generality, we may assume that m and n had no common factors in the
first place.* We will then derive the contradiction that m and n do have a common factor
of 2. The argument makes use of Proposition 3.6.4: If the square of an integer is even,
then that integer is even.

*Strictly speaking, this deduction is a consequence of an axiom called the "well-ordering principle,"
which is discussed in Section 4.4.

Euclid
(fl. 300 B.C)

I
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Now that you have seen the proof that X2 is irrational, you can easily derive the
irrationality of certain other real numbers.

Example 3.7.1 Irrationality of 1 + 3vf

Prove by contradiction that 1 + 3vf is irrational.

Solution The essence of the argument is the observation that if I + 3V/ could be written
as a fraction, then so could I2. But by Theorem 3.7.1, we know that to be impossible.

Theorem 3.7.1 Irrationality of V4
v'tais irrational.

Proof:

[We take the negation and suppose it to be true.] Suppose not. That is, suppose X

is rational. Then there are integers m and n with no common factors such that

X2 3.7.1
n

[by dividing m and n by any common factors if necessary]. [We must derive a
contradiction.] Squaring both sides of equation (3.7.1) gives

2 = 2
n2

Or, equivalently,
2 2mI = 2n2. 3.7.2

Note that equation (3.7.2) implies that m2 is even (by definition of even). It follows
that m is even (by Proposition 3.6.4). We file this fact away for future reference and
also deduce (by definition of even) that

m = 2k for some integer k. 3.7.3

Substituting equation (3.7.3) into equation (3.7.2), we see that

m2 = (2k)2 = 4k2 = 2n2 .

Dividing both sides of the right-most equation by 2 gives
2 2n = 2k2 .

Consequently, n2 is even, and so n is even (by Proposition 3.6.4). But we also know
that m is even. [This is the fact wefiled away.] Hence both m and n have a common
factor of 2. But this contradicts the supposition that m and n have no common factors.
[Hence the supposition is false and so the theorem is true.]
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U

The Infinitude of the Set of Prime Numbers
You know that a prime number is a positive integer that cannot be factored as a product of
two smaller positive integers. Is the set of all such numbers infinite, or is there a largest
prime number? The answer was known to Euclid, and a proof that the set of all prime
numbers is infinite appears in Book 9 of his Elements of Geometry.

Euclid's proof requires one additional fact we have not yet established: If a prime
number divides an integer a, then it does not divide a + 1.

Proposition 3.7.3

For any integer a and any prime number p, if p I a then p ,f (a + 1).

Proof:

Suppose not. That is, suppose there exists an integer a and a prime number p such
that p I a and p I (a + 1). Then, by definition of divisibility, there exist integers r and
s such that a = pr and a + I = ps. It follows that 1 = (a + 1) - a = ps - pr =
p(s - r), and so (since s - r is an integer) p I1. But the only integer divisors of
1 are 1 and -1 (see Example 3.3.4), and since p is prime, p > 1. Thus p < 1 and
p > 1, which is a contradiction. [Hence the supposition is false, and the proposition
is true.]

Proposition 3.7.2

1 + 3"2; is irrational.

Proof:

Suppose not. Suppose 1 + 3vf is rational. [We must derive a contradiction.] Then
by definition of rational,

a
1 + 3v/ = for some integers a and b with b + 0.

b

It follows that

3V2 - - 1 by subtracting I from both sides
b

a b
=- by substitution

b b

a -b by the rule for subtracting fractions

b with a common denominator.

Hence

a-b
3- by dividing both sides by 3.
3b

But a - b and 3b are integers (since a and b are integers and differences and products
of integers are integers), and 3b 7A 0 by the zero product property. Hence X2 is
a quotient of the two integers a - b and 3b with 3b A 0, and so X2 is rational
(by definition of rational.) This contradicts the fact that X'2 is irrational. [This
contradiction shows that the supposition is false.] Hence 1 + 3v2 is irrational.
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The idea of Euclid's proof is this: Suppose the set of prime numbers were finite. Then
you could take the product of all the prime numbers and add one. By Theorem 3.3.2 this
number must be divisible by some prime number. But by Proposition 3.7.3, this number is
not divisible by any of the prime numbers in the set. Hence there must be a prime number
that is not in the set of all prime numbers, which is impossible.

The following formal proof fills in the details of this outline.

The proof of Theorem 3.7.4 shows that if you form the product of all prime numbers
up to a certain point and add one, the result, N, is divisible by a prime number not on the
list. The proof does not show that N is, itself, prime. In the exercises at the end of this
section you are asked to find an example of an integer N constructed in this way that is
not prime.

When to Use Indirect Proof
The examples in this section and Section 3.6 have not provided a definitive answer to the
question of when to prove a statement directly and when to prove it indirectly. Many
theorems can be proved either way. Usually, however, when both types of proof are
possible, indirect proof is clumsier than direct proof. In the absence of obvious clues
suggesting indirect argument, try first to prove a statement directly. Then, if that does not
succeed, look for a counterexample. If the search for a counterexample is unsuccessful,
look for a proof by contradiction or contraposition.

Open Questions in Number Theory
In this section we proved that there are infinitely many prime numbers. There is no known
formula for obtaining primes, but a few formulas have been found to be more successful at
producing them than other formulas. One such is due to Marin Mersenne, a French monk
who lived from 1588-1648. Mersenne primes have the form 2P -1, where p is prime.
Not all numbers of this form are prime, but because of the greater likelihood of finding
primes among them, those seeking large prime numbers often test these for primality. As
a result, many of the largest known prime numbers are Mersenne primes.

Theorem 3.7.4 Infinitude of the Primes

The set of prime numbers is infinite.

Proof (by contradiction):

Suppose not. Suppose the set of prime numbers is finite. [We must deduce a
contradiction.] Then all the prime numbers can be listed, say, in ascending order:

pi = 2, P2 = 3, P3 = 5, P4 = 7, P5 1., Pn

Consider the integer

N = pIP2P3 .. A +l

Then N > 1, and so, by Theorem 3.3.2, N is divisible by some prime number p.
Also, since p is prime, p must equal one of the prime numbers PI, P2, P3, ,
pn. Thus p I (PI P2P3 .p,). By Proposition 3.7.3, P , (Pl P2P3 ... P, + I), and so
p If N. Hence p I N and p , N, which is a contradiction. [Hence the supposition is
false and the theorem is true.]
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An interesting question is whether there are infinitely many Mersenne primes. As
of the date of publication of this book, the answer is not known, but new mathematical
discoveries are being made every day and by the time you read this someone may have
discovered the answer. Another formula that seems to produce a relatively large number
of prime numbers is due to Fermat. Fermatprimes are prime numbers of the form 22" + 1,
where n is a positive integer. Are there infinitely many Fermat primes? Again, as of now,
no one knows. Similarly unknown are whether there are infinitely many primes of the
form n2 + 1, where n is a positive integer, and whether there is always a prime number
between integers n2 and (n + 1)2.

Another famous open question involving primes is the twin primes conjecture, which
states that there are infinitely many pairs of prime numbers of the form p and p + 2. As
with other well-known problems in number theory, this conjecture has withstood computer
testing up to extremely large numbers. But compared with infinity, any number, no matter
how large, is less than a drop in the ocean.

In 1844, the Belgian mathematician Eugene Catalan conjectured that the only solutions
to the equation xn - ym = 1, where x, y, n, and m are all integers greater than 1, is
32 - 23 = 1. This conjecture also remains unresolved to this day.

In 1993, while trying to prove Fermat's last theorem, an amateur number theorist,
Andrew Beal, became intrigued by the equation xm + yf = Zk, where no two of x, y, or
z have any common factor other than i1. When diligent effort, first by hand and then
by computer, failed to reveal any solutions, Beal conjectured that no solutions exist. His
conjecture has become known as Beal's conjecture, and he has offered a prize of $ 100,000
to anyone who can either prove or disprove it.

These are just a few of a large number of open questions in number theory. Many
people believe that mathematics is a fixed subject that changes very little from one century
to the next. In fact, more mathematical questions are being raised and more results are
being discovered now than ever before in history.

Exercise Set 3.7
1. A calculator display shows that f2 = 1.414213562, and

1414213562
1.414213562 = 1 - This suggests that X2 is a

rational number, which contradicts Theorem 3.7.1. Explain
the discrepancy.

2. Example 3.2.1 (h) illustrates a technique for showing that any
repeating decimal number is rational. A calculator display
shows the result of a certain calculation as 40.72727272727.
Can you be sure that the result of the calculation is a rational
number? Explain.

Determine which statements in 3-13 are true and which are false.
Prove those that are true and disprove those that are false.

3. 6 - 7V2 is irrational.

5. XA_ is irrational.

4. 3 - 7 is irrational.

6. v'2/6 is rational.

7. The sum of any two irrational numbers is irrational.

8. The difference of any two irrational numbers is irrational.

9. The square root of an irrational number is irrational.

10. If r is any rational number and s is any irrational number,
then r/s is irrational.

11. The sum of any two positive irrational numbers is irrational.

12. The product of any two irrational numbers is irrational.

H 13. If an integer greater than 1 is a perfect square, then its cube
root is irrational.

14. Consider the following sentence: If x is rational then f/k is
irrational. Is this sentence always true, sometimes true and
sometimes false, or always false? Justify your answer.

15. a. Prove that for all integers a, if a3 is even then a is even.
b. Prove that g2/ is irrational.

16. a. Use proof by contradiction to show that for any inte-
ger n, it is impossible for n to equal both 3q, + r1 and
3q2 + r2, where q1, q2, ri, and r2, are integers, 0 < r1 <
3, 0 < r2 <3, and ri 0 r2-

b. Use proof by contradiction, the quotient-remainder the-
orem, division into cases, and the result of part (a) to
prove that for all integers n, if n2 is divisible by 3 then n
is divisible by 3.

c. Prove that ,/3 is irrational.

17. Give an example to show that if d is not prime and n2 is
divisible by d, then n need not be divisible by d.
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H 18. The quotient-remainder theorem says not only that there ex-
ist quotients and remainders but also that the quotient and
remainder of a division are unique. Prove the uniqueness.
That is, prove that if a and d are integers with d > 0 and if
ql, ri, q2, and r2 are integers such that

a=dql+r, whereO<r, <d

and

a =dq2 +r2  where < r2 < d,

then

q, = q2 and r =r 2 .

H 19. Prove that 15 is irrational.

H 20. Prove that for any integer a, 9 A (a2 
- 3).

21. a. Use the unique factorization theorem to answer the fol-
lowing question: If the prime factorization of an integer
n contains k occurrences ofa prime number p, how many
occurrences of p are contained in the prime factorization
of n29

b. An alternative proof of the irrationality of X/2 counts the
number of 2's on the two sides of the equation 2n2 = m2

and deduces a contradiction. Write a proof that uses this
approach.

22. Use the proof technique illustrated in exercise 21 (b) to prove
that if n is any integer that is not a perfect square, then [/S
is irrational.

H 23. Prove that V2 + E is irrational.

* 24. Prove that log 5 (2) is irrational.

H 25. Let N = 2 3 . 5 7 + 1. What remainder is obtained when
N is divided by 2? 3? 5? 7? Is N prime? Justify your
answer.

H 26. Suppose a is an integer and p is a prime number such that
p I a and p I (a + 3). What can you deduce about p? Why?

27. Let pi, P2, P3, . .. be a list of all prime numbers in ascending
order. Here is a table of the first six:

P1I P2 I P3 I P4 | Ps | P6 I

2 1 3 7 5 l 7 1 11 1 13 l

28. An alternative proof of the infinitude of the prime numbers
begins as follows:

Proof: Suppose there are only finitely many prime num-
bers. Then one is the largest. Call it p. Let M = p! + 1.
We will show that there is a prime number q such that q > p.

Complete this proof.

H * 29. Prove that if pi, P2, . and P. are distinct prime numbers
with Pi = 2 and n > 1, then PI P2 pn + I can be written
in the form 4k + 3 for some integer k.

H * 30. Prove that for all integers n, if n > 2 then there is a prime
number p such that n < p < n!.

(n! =n(n-1) ... 3. 2 1)

H 31. a. Fermat's last theorem says that for all integers n > 2,
the equation x" + yn = zn has no positive integer solu-
tion (solution for which x, y, and z are positive integers).
Prove the following: If for all prime numbers p > 2,
xP + yP = zP has no positive integer solution, then for
any integer n > 2 that is not a power of 2, x1 + yn = Z,
has no positive integer solution.

b. Fermat proved that there are no integers x, y, and z such
that x4 + y4 = z4. Use this result to remove the restric-
tion in part (a) that n not be a power of 2. That is, prove
that if n is a power of 2 and n > 4, then x" + yn = Z,
has no positive integer solution.

For exercises 32-35 note that to show there is a unique object
with a certain property, show that (1) there is an object with
the property and (2) if objects A and B have the property, then
A = B.

32. Prove that there exists a unique prime number of the form
n2 - 1, where n is an integer that is greater than or equal
to 2.

33. Prove that there exists a unique prime number of the form
n2 + 2n -3, where n is a positive integer.

34. Prove that there is at most one real number a with the prop-
erty that a + r = r for all real numbers r. (Such a number
is called an additive identity.)

35. Prove that there is at most one real number b with the prop-
erty that br = r for all real numbers r. (Such a number is
called a multiplicative identity.)

H a. For each i = 1,2,3,4,5,6, let Ni = PP2 .Pi + 1.
Calculate NI, N2, N3, N4, N5, and N6 .

b. For each i = 1, 2, 3, 4, 5, 6, find the smallest prime num-
ber qi such that qi divides Ni.
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3.8 Application: Algorithms
Begin at the beginning ... and go on till you come to the end: then stop.

-Lewis Carroll, Alice's Adventures in Wonderland, 1865

In this section we will show how the number theory facts developed in this chapter form
the basis for some useful computer algorithms.

The word algorithm refers to a step-by-step method for performing some action.
Some examples of algorithms in everyday life are food preparation recipes, directions
for assembling equipment or hobby kits, sewing pattern instructions, and instructions
for filling out income tax forms. Much of elementary school mathematics is devoted
to learning algorithms for doing arithmetic such as multidigit addition and subtraction,
multidigit (or long) multiplication, and long division.

The idea of a computer algorithm is credited to Ada Augusta, Countess of Lovelace.
Trained as a mathematician, she became very interested in Charles Babbage's design
for an "Analytical Engine," a machine similar in concept to a modern computer. Lady
TA~flAaL,., tALIIUU flUL)~t..3 %.AplUatl~3-I t1-13 -13 1 a iiiar,-iijit. WUUIU UnJ.ritU L1LU_
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nizing that its importance lay "in the possibility of using a given sequence of instructions
repeatedly, the number of times being either preassigned or dependent on the results of
the computation." This is the essence of a modern computer algorithm.

An Algorithmic Language
The algorithmic language used in this book is a kind of pseudocode, combining elements of
Pascal, C, Java, and VB.NET, and ordinary, but fairly precise, English. We will use some
of the formal constructs of computer languages-such as assignment statements, loops,
and so forth-but we will ignore the more technical details, such as the requirement for
explicit end-of-statement delimiters, the range of integer values available on a particular
installation, and so forth. The algorithms presented in this text are intended to be precise
enough to be easily translated into virtually any high-level computer language.

In high-level computer languages, the term variable is used to refer to a specific
storage location in a computer's memory. To say that the variable x has the value 3 means
that the memory location corresponding to x contains the number 3. A given storage
location can hold only one value at a time. So if a variable is given a new value during
program execution, then the old value is erased. The data type of a variable indicates the
set in which the variable takes its values, whether the set of integers, or real numbers, or
character strings, or the set 10, 1 (for a Boolean variable), and so forth.

An assignment statement gives a value to a variable. It has the form

x := e,

where x is a variable and e is an expression. This is read "x is assigned the value e" or "let
x be e." When an assignment statement is executed, the expression e is evaluated (using
the current values of all the variables in the expression), and then its value is placed in the
memory location corresponding to x (replacing any previous contents of this location).

Ordinarily, algorithm statements are executed one after another in the order in which
they are written. Conditional statements allow this natural order to be overridden by
using the current values of program variables to determine which algorithm statement will
be executed next. Conditional statements are denoted either

a. if (condition) or b. if (condition) then s,

then s I

else S2

Lady Lovelace
(1815-1852)
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where condition is a predicate involving algorithm variables and where s, and s2 are
algorithm statements or groups of algorithm statements. We generally use indentation to
indicate that statements belong together as a unit. When ambiguity is possible, however,
we may explicitly bind a group of statements together into a unit by preceding the group
with the word do and following it with the words end do.

Execution of an if-then-else statement occurs as follows:

1. The condition is evaluated by substituting the current values of all algorithm variables
appearing in it and evaluating the truth or falsity of the resulting statement.

2. If condition is true, then s1 is executed and execution moves to the next algorithm
statement following the if-then-else statement.

3. If condition is false, then s2 is executed and moves to the next algorithm statement
following the if-then-else statement.

Execution of an if-then statement is similar to execution of an if-then-else state-
ment, except that if condition is false, execution passes immediately to the next algorithm
statement following the if-then statement.

Often condition is called a guard because it is stationed before s, and s2 and restricts
access to them.

Example 3.8.1 Execution of if-then-else and if-then Statements

Consider the following algorithm segments:

a. if x > 2 b. y := 0

then y := x + if x > 2 then y := 2x

elsedox :x -

y := 3 x end do

What is the value of y after execution of these segments for the following values of x?

i. x=5 ii. x=2

Solution

a. (i) Because the value of x is 5 before execution, the guard condition x > 2 is true
at the time it is evaluated. Hence the statement following then is executed, and
so the value of x + I = 5 + I is computed and placed in the storage location
corresponding to y. So after execution, y = 6.

(ii) Because the value of x is 2 before execution, the guard condition x > 2 is false at
the time it is evaluated. Hence the statement following else is executed. The value
of x - 1 = 2- I is computed and placed in the storage location corresponding
to x, and the value of 3 * x = 3 - 1 is computed and placed in the storage location
corresponding to y. So after execution, y = 3.

b. (i) Since x = 5 initially, the condition x > 2 is true at the time it is evaluated. So the
statement following then is executed, and y obtains the value 25 = 32.

(ii) Since x = 2 initially, the condition x > 2 is false at the time it is evaluated.
Execution, therefore, moves to the next statement following the if-then statement,
and the value of y does not change from its initial value of 0. U

Iterative statements are used when a sequence of algorithm statements is to be exe-
cuted over and over again. We will use two types of iterative statements: while loops and
for-next loops.
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A while loop has the form

while (condition)

[statements that make up
the body of the loop]

end while

where condition is a predicate involving algorithm variables. The word while marks the
beginning of the loop, and the words end while mark its end. Execution of a while loop
occurs as follows:

1. The condition is evaluated by substituting the current values of all the algorithm vari-
ables and evaluating the truth or falsity of the resulting statement.

2. If condition is true, all the statements in the body of the loop are executed in order.
Then execution moves back to the beginning of the loop and the process repeats.

3. If condition is false, execution passes to the next algorithm statement following the
loop.

The loop is said to be iterated (IT-a-rate-ed) each time the statements in the body of
the loop are executed. Each execution of the body of the loop is called an iteration
(it-er-AY-shun) of the loop.

Example 3.8.2 Tracing Execution of a while Loop

Trace the execution of the following algorithm segment by finding the values of all the
algorithm variables each time they are changed during execution:

i := 1, s := 0

while (i < 2)

s := s +

i:= i +1

end while

Solution Since i is given an initial value of 1, the condition i < 2 is true when the while
loop is entered. So the statements within the loop are executed in order:

s = 0 + 1 = 1 and i = 1 + 1 = 2.

Then execution passes back to the beginning of the loop.
The condition i < 2 is evaluated using the current value of i, which is 2. The condition

is true, and so the statements within the loop are executed again:

s = I + 2 = 3 and i = 2 + I = 3.

Then execution passes back to the beginning of the loop.
The condition i < 2 is evaluated using the current value of i, which is 3. This time

the condition is false, and so execution passes beyond the loop to the next statement of
the algorithm.

This discussion can be summarized in a table, called a trace table, that shows the
current values of algorithm variables at various points during execution. The trace table
for a while loop generally gives all values immediately following each iteration of the
loop. ("After the zeroth iteration" means the same as "before the first iteration.")
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Trace Table

Iteration Number
3 1 2

Variable Name

The second form of iteration we will use is a for-next loop. A for-next loop has the
following form:

for variable := initial expression tofinal expression

[statements that make up
the body of the loop]

next (same) variable

A for-next loop is executed as follows:

1. The for-next loop variable is set equal to the value of initial expression.

2. A check is made to determine whether the value of variable is less than or equal to the
value of final expression.

3. If the value of variable is less than or equal to the value of final expression, then
the statements in the body of the loop are executed, variable is increased by 1, and
execution returns back to step 2.

4. If the value of variable is greater than the value of final expression, then execution
passes to the next algorithm statement following the loop.

Example 3.8.3 Trace Table for a for-next Loop

Convert the for-next loop shown below into a while loop. Construct a trace table for the
loop.

for i :I 1 to 4

x :=i2

next i

Solution The given for-next loop is equivalent to the following:

i := I

while (i < 4)

x :=i2

i i + I

end while

Its trace table is as follows:

Trace Table

Iteration Number

0 1 2 3 4

x 1 4 9 16
Variable Name

i 1 2 3 4 5
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al-Khowdrizmi
(ca. 780-850)

A Notation for Algorithms
We will express algorithms as subroutines that can be called upon by other algorithms
as needed and used to transform a set of input variables with given values into a set of
output variables with specific values. The output variables and their values are assumed
to be returned to the calling algorithm. For example, the division algorithm specifies a
procedure for taking any two positive integers as input and producing the quotient and
remainder of the division of one number by the other as output. Whenever an algorithm
requires such a computation, the algorithm can just "call" the division algorithm to do the
job.

We generally include the following information when describing algorithms formally:

1. The name of the algorithm, together with a list of input and output variables.

2. A brief description of how the algorithm works.

3. The input variable names, labeled by data type (whether integer, real number, and so
forth).

4. The statements that make up the body of the algorithm, possibly with explanatory
comments.

5. The output variable names, labeled by data type.

You may wonder where the word algorithm came from. It evolved from the last part of
the name of the Persian mathematician Abu Ja'far Mohammed ibn Mosa al-Khowarizmi.
During Europe's Dark Ages, the Arabic world enjoyed a period of intense intellectual
activity. One of the great mathematical works of that period was a book written by
al-Khowarizmi thatcontained foundational ideas forthe subject ofalgebra. The translation
of this book into Latin in the thirteenth century had a profound influence on the develop-
ment of mathematics during the European Renaissance.

The Division Algorithm
For an integer a and a positive integer d, the quotient-remainder theorem guarantees the
existence of integers q and r such that

a = dq + r and 0 < r < d.

In this section, we give an algorithm to calculate q and r for given a and d where a is
nonnegative. (The extension to negative a is left to the exercises at the end of this section.)
The following example illustrates the idea behind the algorithm. Consider trying to find
the quotient and the remainder of the division of 32 by 9, but suppose that you do not
remember your multiplication table and have to figure out the answer from basic principles.
The quotient represents that number of 9's that are contained in 32. The remainder is the
number left over when all possible groups of 9 are subtracted. Thus you can calculate
the quotient and remainder by repeatedly subtracting 9 from 32 until you obtain a number
less than 9:

32 - 9 = 23 > 9,and

32 - 9 - 9 = 14>9,and

32 - 9 - 9 - 9 = 5 < 9.

This shows that 3 groups of 9 can be subtracted from 32 with 5 left over. Thus the quotient
is 3 and the remainder is 5.
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Note that the values of q and r obtained from the division algorithm are the same as
those computed by the div and mod functions built into a number of computer languages.
That is, if q and r are the quotient and remainder obtained from the division algorithm
with input a and d, then the output variables q and r satisfy

q=adivd and r=amodd.

The next example asks for a trace of the division algorithm.

Example 3.8.4 Tracing the Division Algorithm

Trace the action of Algorithm 3.8.1 on the input variables a = 19 and d = 4.

Solution Make a trace table as shown below. The column under the kth iteration gives the
states of the variables after the kth iteration of the loop.

Iteration Number
0 1 2 3 4

| a | 19 | l l

XTi I d | 4 |
Ir 19 1 15 1 11 71 3

1 q I 0 1 1 2 3 4 1

Algorithm 3.8.1 Division Algorithm

[Given a nonnegative integer a and a positive integer d, the aim of the algorithm is
to find integers q and r that satisfy the conditions a = dq + r and 0 < r < d. This
is done by subtracting d repeatedly from a until the result is less than d but is still
nonnegative.

O<a-d-d-d- d=-d =a -dq <d.

The total number of d's that are subtracted is the quotient q. The quantity a - dq
equals the remainder r.]

Input: a [a nonnegative integer], d [a positive integer]

Algorithm Body:

r :=a, q :=0
[Repeatedly subtract d from r until a number less than d is obtained. Add 1 to q
each time d is subtracted.]

while (r > d)

r r - d

q q + 1

end while

[After execution of the while loop, a = dq + r.]

Output: q, r [nonnegative integers]

I I I I

.

....~l: ~dIt
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The Euclidean Algorithm
The greatest common divisor of two integers a and b is the largest integer that divides
both a and b. For example, the greatest common divisor of 12 and 30 is 6. The Euclidean
algorithm provides a very efficient way to compute the greatest common divisor of two
integers.

I. ,

Let a and b be integers that are not both zero. The greatest common divisor of a
and b, denoted gcd(a, b), is that integer d with the following properties:

1. d is a common divisor of both a and b. In other words,

dia and dlb.

2. For all integers c, if c is a common divisor of both a and b, then c is less than or
equal to d. In other words,

for all integers c, if c I a and c I b, then c < d.

Example 3.8.5 Calculating Some gcd's

a. Find gcd(72, 63).

b. Find gcd(1020 , 630).

c. In the definition of greatest common divisor, gcd(0, 0) is not allowed. Why not? What
would gcd(0, 0) equal if it were found in the same way as the greatest common divisors
for other pairs of numbers?

Solution

a. 72 = 9 * 8 and 63 = 9 * 7. So 9 1 72 and 9 1 63, and no integer larger than 9 divides both
72 and 63. Hence gcd(72, 63) = 9.

b. By the laws of exponents, 1020 2 220 520 and 630 = 230 . 330 = 220 . 210 . 330 It fol
lows that

220 11020 and 220 l 630,

and by the unique factorization theorem, no integer larger than 220 divides both 1020
and 630 (because no more than twenty 2's divide 1020, no 3's divide 1020, and no 5's
divide 630). Hence gcd(1020 , 630) = 220.

c. Suppose gcd(0, 0) were defined to be the largest common factor that divides 0 and 0.
The problem is that every positive integer divides 0 and there is no largest integer. So
there is no largest common factor! N

Calculating gcd's using the approach illustrated in Example 3.8.5 works only when
the numbers can be factored completely. By the unique factorization theorem, all numbers
can, in principle, be factored completely. But, in practice, even using the highest-speed
computers, the process is unfeasibly long for very large integers. Over 2,000 years ago,
Euclid devised a method for finding greatest common divisors that is easy to use and is
much more efficient than either factoring the numbers or repeatedly testing both numbers
for divisibility by successively larger integers.
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The Euclidean algorithm is based on the following two facts, which are stated as
lemmas. A lemma is a statement that does not have much intrinsic interest but helps prove
a theorem.

The proof of the second lemma is based on a clever pattern of argument that is used
in many different areas of mathematics: To prove that A = B, prove that A < B and that
B < A.

Lemma 3.8.2

If a and b are any integers with b V 0 and q and r are nonnegative integers such that

a = bq + r,

then

gcd(a, b) = gcd(b, r).

Proof:

[The proof is divided into two sections: (1) proof that gcd (a, b) < gcd(b, r), and (2)
proof that gcd(b, r) < gcd(a, b). Since each gcd is less than or equal to the other,
the two must be equal.]

1. gcd(a, b) < gcd(b, r):

a. [We willfirst show that any common divisor of a and b is also a common divisor
of b and r.]

Let c be a common divisor of a and b. Then c I a and c I b, and so, by
definition of divisibility, a = nc and b = mc, for some integers n and m. Now
substitute into the equation

a = bq + r

to obtain

nc = (mc)q + r.

Then solve for r:

r = nc - (mc)q = (n - mq)c.

But n - mq is an integer, and so, by definition of divisibility, c I r. Because we
already know that c I b, we can conclude that c is a common divisor of b and r
[as was to be shown].

continued on page 194

Lemma 3.8.1

If r is a positive integer, then gcd(r, 0) = r.

Proof:

Suppose r is a positive integer. [We must show that the greatest common divisor of
both r and 0 is r. ] Certainly, r is a common divisor of both r and 0 because r divides
itself and also r divides 0 (since every positive integer divides 0). Also no integer
larger than r can be a common divisor of r and 0 (since no integer larger than r can
divide r). Hence r is the greatest common divisor of r and 0.
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The Euclidean algorithm can be described as follows:

1. Let A and B be integers with A > B > 0.

2. To find the greatest common divisor of A and B, first check whether B = 0. If it is, then
gcd(A, B) = A by Lemma 3.8.1. If it isn't, then B > 0 and the quotient-remainder
theorem can be used to divide A by B to obtain a quotient q and a remainder r:

A = Bq + r where 0 < r < B.

By Lemma 3.8.2, gcd(A, B) = gcd(B, r). Thus the problem of finding the greatest
common divisor of A and B is reduced to the problem of finding the greatest common
divisor of B and r.

What makes this piece of information useful is that B and r are smaller numbers
than A and B. To see this, recall that we assumed

A > B > 0.

Also the r found by the quotient-remainder theorem satisfies

0 < r < B.

Putting these two inequalities together gives

0 < r < B < A.

So the larger number of the pair (B, r) is smaller than the larger number of the pair
(A, B).

3. Now just repeat the process, starting again at (2), but use B instead of A and r instead
of B. The repetitions are guaranteed to terminate eventually with r = 0 because each
new remainder is less than the preceding one and all are nonnegative.*

By the way, it is always the case that the number of steps required in the Euclidean
algorithm is at most five times the number of digits in the smaller integer. This was proved
by the French mathematician Gabriel Lame (1795-1870).

*Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering
principle, which is discussed in Section 4.4.

b. [Next we show that gcd (a, b) < gcd(b, r).]
By part (a), every common divisor of a and b is a common divisor of b and

r. It follows that the greatest common divisor of a and b is a common divisor
of b and r. But then gcd(a, b) (being one of the common divisors of b and r)
is less than or equal to the greatest common divisor of b and r:

gcd(a, b) < gcd(b, r).

2. gcd(b, r) < gcd(a, b):
The second part of the proof is very similar to the first part. It is left as an

exercise.
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The following example illustrates how to use the Euclidean algorithm.

Example 3.8.6 Hand-Calculation of gcd's Using the Euclidean Algorithm

Use the Euclidean algorithm to find gcd(330, 156).

Solution

1. Divide 330 by 156:

2 - quotient

156 330
312

18 -remainder

Thus 330 = 156 * 2 + 18 and hence gcd(330, 156) = gcd(156, 18) by Lemma 3.8.2.

2. Divide 156by 18:

8 - quotient

18 156
144

12 - remainder

Thus 156 = 18 . 8 + 12 and hence gcd(156, 18) = gcd(18, 12) by Lemma 3.8.2.

3. Divide 18 by 12:

1 - quotient

12 18
12
6 - remainder

Thus 18 = 12 1 + 6 and hence gcd(18, 12) = gcd(12, 6) by Lemma 3.8.2.

4. Divide 12 by 6:

2 - quotient
6 12

12
0 (- remainder

Thus 12 = 6 -2 + 0 and hence gcd(12, 6) = gcd(6, 0) by Lemma 3.8.2.

Putting all the equations above together gives

gcd(330, 156) = gcd(156, 18)
= gcd(18, 12)
= gcd(12, 6)
= gcd(6, 0)
= 6 by Lemma 3.8.1.

.Therefore, gcd(330, 156) = 6.
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The following is a version of the Euclidean algorithm written using formal algorithm
notation.

Exercise Set 3.8
Find the value of z when each of the algorithm segments in 1
and 2 is executed.

Find the values of a and e after execution of the loops in 4
and 5:

2. i := 3

if (i < 3 or i > 6)

then z := 2

else z := 0

3. Consider the following algorithm segment:

if x . y > O then do y := 3 x

x := x + 1 end do

z := x y

Find the value of z if prior to execution x and y have the
values given below.
a. x= 2 ,y=3 b. x=l,v=l

4. a := 2

for i := I to 2

a I
a := - + -

2 a

next i

5. e:=Of :=2

for j := I to 4

f:= -j
I

e := e+ at

next j

Make a trace table to trace the action of Algorithm 3.8.1 for the
input variables given in 6 and 7.

6. a = 26, d = 7 7. a = 59, d = 13

Algorithm 3.8.2 Euclidean Algorithm

[Given two integers A and B with A > B > 0, this algorithm computes gcd(A, B).
It is based on two facts:

1. gcd(a, b) = gcd(b, r) if a, b, q, and r are integers with a = b * q + r and 0 <

r < b.

2. gcd(a, 0) = a.]

Input: A, B [integers with A > B > 0]

Algorithm Body:

a := A, b := B, r := B

[If b A 0, compute a mod b, the remainder of the integer division of a by b, and
set r equal to this value. Then repeat the process using b in place of a and r in
place of b.]

while (b :A 0)

r :=a mod b
[The value of a mod b can be obtained by calling the division algorithm.]

a b

b r

end while
[After execution of the while loop, gcd(A, B) = a.]
gcd := a

Output: gcd [a positive integer]

1. i := 2

if (i > 3 or i < 0)
then z := I

else z := 0
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8. The following algorithm segment makes change; given an
amount of money A between 1¢ and 99¢, it determines a
breakdown of A into quarters (q), dimes (d), nickels (n),
and pennies (p).

q A div 25

A: = A mod 25

d : = A div 10

A: = A mod 10

n: = A div5

p: = A mod 5

a. Trace this algorithm segment for A = 69.
b. Trace this algorithm segment for A = 87.

Find the greatest common divisor of each of the pairs of integers
in 9-12. (Use any method you wish.)

9. 27 and 72

11. 7and21

10. 5 and 9

12. 48 and 54

Use the Euclidean algorithm to hand-calculate the greatest com-
mon divisors of each of the pairs of integers in 13-16.

13. l,188 and 385

15. 832 and 10,933

14. 509 and 1,177

16. 4,131 and 2,431

Make a trace table to trace the action of Algorithm 3.8.2 for the
input variables given in 17 and 18.

17. 1,001 and 871 18. 5,859 and 1,232

H 19. Prove that for all positive integers a and b, a I b if, and only
if, gcd(a, b) = a. (Note that to prove "A if, and only if, B,"
you need to prove "if A then B" and "if B then A.")

20). Write an algorithm that accepts the numerator and denom-
inator of a fraction as input and produces as output the nu-
merator and denominator of that fraction written in lowest
terms. (The algorithm may call upon the Euclidean algo-
rithm as needed.)

21. Complete the proof of Lemma 3.8.2 by proving the follow-
ing: If a and b are any positive integers and q and r are any
integers such that

a = bq + r and 0 < r < b,

then

gcd(b, r) < gcd(a, b).

H 22. a. Prove: If a and d are positive integers and q and r are
integers such that a = dq + r and 0 < r < d, then

-a=d(-(q+l))+(d -r)

and

0 < d -r < d.

b. Indicate how to modify Algorithm 3.8.1 to allow for the
input a to be negative.

23. a. Prove that if a, d, q, and r are integers such that a =
dq+randO<r <d,then

q = La/dj and r = a- La/dj d.

b. In a computer language with a built-in-floor function, div
and mod can be calculated as follows:

a div d = La/d] and a mod d = a -La/d] d.

Rewrite the steps of Algorithm 3.8.2 for a computer lan-
guage with a built-in floor function but without div and
mod.

24. An alternative to the Euclidean algorithm uses subtraction
rather than division to compute greatest common divisors.
(After all, division is repeated subtraction.) It is based on
the following lemma:

Lemma 3.8.3

If a > b > 0, then gcd(a, b) = gcd(b, a -b).

Algorithm 3.8.3 Computing gcd's by Subtraction
[Given two positive integers A and B, variables a and b are
set equal to A and B. Then a repetitive process begins. If
a A 0, and b # 0, then the larger of a and b is set equal to
a -b (if a > b) or to b -a (if a < b), and the smaller of a
and b is left unchanged. This process is repeated over and
over until eventually a or b becomes 0. By Lemma 3.8.3,
after each repetition of the process,

gcd(A, B) = gcd(a, b).

After the last repetition,

gcd(A, B) = gcd(a, 0) or gcd(A, B) = gcd(O, b)

depending on whether a or b is nonzero. But by Lemma
3.8.1,

gcd(a, 0) = a and gcd(O, b) = b.

Hence, after the last repetition,

gcd(A,B)= aifa 0 or gcd(A,B)= bifbA0.]

Input: A, B [positive integers]

Algorithm Body:

a := A, b := B

while (a # 0 and b # 0)

if a > b then a := a - b

elseb :=b -a

end while

if a = O then gcd := b

else gcd := a

[After execution of the if-then-else statement,
gcd = gcd(A, B).]

Output: gcd [a positive integer]



198 Chapter 3 Elementary Number Theory and Methods of Proof

a. Prove Lemma 3.8.3.
b. Trace the execution of Algorithm 3.8.3 for A = 630 and

B = 336.
c. Trace the execution of Algorithm 3.8.3 for A = 768 and

B = 348.

Exercises 25-29 refer to the following definition.

25. Find
a. lcm(12, 18) b. lcm(22 .3 .5, 2 . 32)

c. lcm(2800, 6125)

H 26. Prove that for all positive integers a and b, gcd(a, b) =
lcm(a, b) if, and only if a = b.

27. Prove that for all positive integers a and b, a | b if, and only
if, 1cm(a, b) = b.

H 28. Prove that for all integers a and b, gcd(a, b) 1 lcm(a, b).

29. Prove that for all positive integers a and b,
gcd(a, b) - lcm(a, b) = ab.

Definition: The least common multiple of two nonzero in-
tegers a and b, denoted Icm(a, b), is the positive integer c
such that
a. aIcandblc
b. for all integers m, if a I m and b I m, then c I m.



CHAPTER 4

SEQUENCES AND
MATHEMATICAL INDUCTION

One of the most important tasks of mathematics is to discover and characterize regular
patterns, such as those associated with processes that are repeated. The main mathematical
structure used to study repeated processes is the sequence, and the main mathematical tool
used to verify conjectures about patterns governing the arrangement of terms in sequences
is mathematical induction. In this chapter we introduce the notation and terminology of
sequences, show how to use both the ordinary and the strong forms of mathematical
induction, and give an application showing how to prove the correctness of computer
algorithms.

4.1 Sequences
A mathematician, like a painter or poet, is a maker of patterns.
-G. H. Hardy, A Mathematician s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2,4,8, 16,32,64, 128,...

The symbol". is called an ellipsis. It is shorthand for "and so forth."
To express the pattern of the numbers, suppose that each is labeled by an integer giving

its position in the row.

Position in the row 1 2 3 4 5 6 7 ...

Number of ancestors |2 4 8 16 32 64 128 ...

The number corresponding to position 1 is 2, which equals 21. The number corresponding
to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding
numbers are 8, 16, 32, 64, and 128, which equal 23, 24, 25, 26, and 27, respectively. For
a general value of k, let Ak be the number of ancestors in the kth generation back. The
pattern of computed values strongly suggests the following for each k:

Ak = 2.*

*Strictly speaking, the true value of Ak is probably less than 2k when k is large, because ancestors
from one branch of the family tree may also appear on other branches of the tree.

199
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In this section we define the term sequence informally as a set of elements written in a
row. (We give a more formal definition of sequence in terms of functions in Section 7. 1.)
In the sequence denoted

am, am+,, am+2, an,

each individual element ak (read "a sub k") is called a term. The k in ak is called a
subscript or index, m (which may be any integer) is the subscript of the initial term,
and n (which must be greater than or equal to m) is the subscript of the final term. The
notation

am, am+1,am+2..*.

denotes an infinite sequence. An explicit formula or general formula for a sequence is
a rule that shows how the values of ak depend on k.

The following example shows that it is possible for two different formulas to give
sequences with the same terms.

Example 4.1.1 Finding Terms of Sequences Given by Explicit Formulas

Define sequences al, a2, a3, ... and b2, b3, b4, . .. by the following explicit formulas:

k
ak = - for all integers k > 1,

bi = for all integers i > 2.

Compute the first five terms of both sequences.

Solution 1 1 2-1 1
a, = - 2 2

1 + 1 2 2 2

2 2 3-1 2
a2 = 2 = b3 =3

2 + 1 3 3 3

3 = 3 4-1 3
3 3 + 1 4 b4= 4 4

4 4 5-1 4

4 + 1 5 b5 =-
5 = 5 6-1 5

5 + 1 6 6 6

As you can see, the first terms of both sequences are ,2 3 4 5; in fact, it can be
shown that all terms of both sequences are identical. E

The next example shows that an infinite sequence may have only a finite number of
values.

Example 4.1.2 An Alternating Sequence

Compute the first six terms of the sequence co, c1, C2 ... defined as follows:

cj = (-l)l for all integers j > 0.
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Solution co = ( =

Cl = (-1)1 =-1

C2 = (1)2 = I

C3 = (1)3 =-_

C4 = (-1)4 = 1

C- (-1)5 = -1

Thus the first six terms are 1, -1,1, -1,1, -1. By exercises 29 and 30 of Section 3.1,
even powers of -1 equal 1 and odd powers of -1 equal -1. It follows that the sequence
oscillates endlessly between I and-1. U

In Examples 4.1.1 and 4.1.2 the task was to compute initial values of a sequence given
by an explicit formula. The next example treats the question of how to find an explicit
formula for a sequence with given initial terms. Any such formula is a guess, but it is very
useful to be able to make such guesses.

Example 4.1.3 Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

1 1 1 -1 1 1
4 4 9' 16' 25' 36.

Solution Denote the general term of the sequence by ak and suppose the first term is ai.
Then observe that the denominator of each term is a perfect square. Thus the terms can
be rewritten as

2 22 32 42 52' 62

a I a2 a3 a4  a5 a6

Note that the denominator of each term equals the square of the subscript of that term,
and that the numerator equals ± 1. Hence

±1
ak

Also the numerator oscillates back and forth between +1 and -1; it is +1 when k is odd
and-I when k is even. To achieve this oscillation, insert a factor of (-1)k+l (or (-l)k-1)

into the formula for ak. [For when k is odd, k + 1 is even and thus (-l)k+I = +1; and
when k is even, k + 1 is odd and thus (-l)k+l -1.] Consequently, an explicit formula
that gives the correct first six terms is

-K - 2 for all integers k > 1.

Note that making the first term ao would have led to the alternative formula

(k + ) for all integers k > 0.

You should check that this formula also gives the correct first six terms. .
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I Caution! Two sequences may start off with the same initial values but divergeAs later on. See exercise 7 at the end of this section.

Summation Notation
Consider again the example in which Ak = 2k represented the number of ancestors a
person has in the kth generation back. What is the total number of ancestors for the past
six generations? The answer is

Al +A 2 +A 3 +A 4 +A 5 +A 6 =21 +22+2+ + 25+26 = 126.

It is convenient to use a shorthand notation to write such sums. In 1772 the French
mathematician Joseph Louis Lagrange introduced the capital Greek letter sigma, E, to
denote the word sum (or summation), and the notation

n

Iak
k=1

,uis Lagrange to represent the sum given in expanded form by
'13)

a, + a2 + a3 + + an.

More generally, if m and n are integers and m < n, then the summation from k equals
m to n ofak is the sum of all the terms am, am+,, am+2, ., an. We write

n

Z ak = am + am+, + am+2 + + an

k=m

and call k the index of the summation, m the lower limit of the summation, and n the
upper limit of the summation.

Example 4.1.4 Computing Summations

Let a, = -2, a2  -1, a3 = 0, a4 = 1, and a5 = 2. Compute the following:

5 2 2

a. Zak b. Zak c. Za2k
k=1 k=2 k=l

Solution
5

a.- ak=al+a2+a3+a4+a5=(-2)+(-1)+0+1+2=0
k=l

2

b. Eak = a2  I
k=2

2

C. Z a2k = a2. 1 + a2.2 = a2 + a4 = -1+ 1 =

k=l

Joseph Li
(1 736-1
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Oftentimes, the terms of a summation are expressed using an explicit formula. For
instance, it is common to see summations such as

5 8 l 1

Lk or EI:(-

k=l i=O

Example 4.1.5 When the Terms of a Summation Are Given by a Formula

Compute the following summation:

5

Lk 2 .kI
k=l

Solution E k2 = 12 + 22±+ 32+ 42+ 52 55.

k=I

When the upper limit of a summation is a variable, an ellipsis is used to write the
summation in expanded form.

Example 4.1.6 Changing from Summation Notation to Expanded Form

Write the following summation in expanded form:

n (-I)'i

i +

Souin n 0 ) ) (_I)l (_ 1)2 (_ 1)3 (_I)nSolution 0 + +± - + + +
i+I 0+1 1+1 2+1 3+1 n+I

-I+ (-)+I (I+ + -n
1 2 3 4 n + I

I 1 1 (-l)n
-l + - - + +..+

2 3 4 n + I

Example 4.1.7 Changing from Expanded Form to Summation Notation

Express the following using summation notation:

1 2 3 n+l
n n + I n + 2 2n

Solution The general term of this summation can be expressed as + for integers k from

0 to n. Hence

1 2 3 n+ I k+ I
n n + n+2 2n - Zn+k
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Example 4.1.8 Evaluating a,, a2, a3 , .. ., a,, for Small n

What is the value of the expression 1 2 I 2 I + -+ + when
1 22 3 3.-4 n (n +l)

n = I? n = 2? n = 3?

Solution

When n = 1, the expression equals I
1 .2 2

I I 1 1 3 1 4 2
When n = 2, it equals I + 2 + I 3 6 I 4 2

1 2 2 3 2 6 6 6 6 3

I I 1 I 1 1 6 2 1 9 3
Whenn-3,itis + + =-+-+±-=-+-+-=-=--.

I1 2 2 .3 3 4 2 6 12 12 12 12 12 4

A more mathematically precise definition of summation, called a recursive definition,
is the following:* If m and n are any integers with m < n, then

m Il n-I

Eak = a,,, and Zak Zak + a,, for all integers n > m.
krm k=m k=in

When solving problems, it is often useful to rewrite a summation using the recursive form
of the definition, either by separating off the final term of a summation or by adding a
final term to a summation.

Example 4.1.9 Separating Off a Final Term and Adding On a Final Term
n

a. Rewrite E3 - by separating off the final term.
i=l

n-I

b. Write Z 2k + 2' as a single summation.
i=O

Solution

, 1 l- 1 I 11-i n
a. E =E 2 + 2 b. E 2k + 211 2k

i=1 i-l k=O k=O

In certain sums each term is a difference of two quantities. When you write such sums
in expanded form, you sometimes see that all the terms cancel except the first and the last.
Successive cancellation of terms collapses the sum like a telescope.

*Recursive definitions are discussed in Section 8.4.

/ Caution! The expanded form of a sum may appear ambiguous for small
values of n. For instance, consider

12 +2 2 +3 2 + +n 2 .

This expression is intended to represent the sum of squares of consecutive
integers starting with 12 and ending with n2 . Thus, if n = 1 the sum is just 12,

if n = 2 the sum is 12 + 22, and if n = 3 the sum is 12 + 22 + 32
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Example 4.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a
simple expression. For instance, observe that

1 1 (k+l)-k I
k k+l k(k+l) k(k+1)

Use this identity to find a simple expression for Z k(k 1)

Solution

1)1

k=l

n+I

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for
their sum. The Greek capital letter pi, Fl, denotes a product. For example,

5

H ak = aja2 a3 a4 a 5.
k=l

More generally, the product from k equals m to n of ak is the product of all the terms
am, am+l, am+2 . a. That is,

n

H ak = am am+, am+2 an-

k=m

A recursive definition for the product notation is the following: If m and n are any integers
with m < n, then

H ak-am and Hak ak a, for all integers n > m.
k=m k=m k=m

Example 4.1.11 Computing Products

Compute the following products:

5 k
a. Hk b. k + 1

k=1 k=l

Solution

5 k 1
a. Hjk =I-2 -3-4-5 = 120 b. Bk+1= - 1+ - 0

k=lk1
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Factorial Notation
The product of all consecutive integers up to a given integer occurs so often in mathematics
that it is given a special notation-factorial notation.

I. I.j !

For each positive integer n, the quantity n factorial denoted n!, is defined to be the
product of all the integers from I to n:

n! =n -(n-1) ... 3 2 1.

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 6, it is convenient for many mathematical formulas.

Example 4.1.12 The First Ten Factorials

0! = I
2! = 2* 1 = 2

4! = 4.3 2. 1 = 24

6! = 6. 5 4 3 .2 1 = 720

8! =8 7.6.54.3-2.1

= 40,320

1! = 1

3! =3 .2. 1 = 6
5! = 5 .4. 3 * 2. 1 = 120

7! = 765 6 454-3 -2. 1 = 5,040

9! =9 8 - 7-6.5-4-3 2.- 1

= 362,880

As you can see from the example above, the values of n! grow very rapidly. For
instance, 40! - 8.16 x 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol - means "is approximately equal to.")

A recursive definition for factorial is the following: Given any nonnegative integer n,

! ( I
if n =0

1)! if n > 1

Example 4.1.13 illustrates the usefulness of the recursive definition for making computa-
tions.

Example 4.1.13 Computing with Factorials

Simplify the following expressions:

8! 5! 1 1
a. - b. c. +

7! 2! .3! 2!. 4! 3!.3!

Solution

8! 8. _f

a. 7!= X =8

5! 5- 4 .1 5 4
b. -2= - = = 2 o10

2! -3! 2! -Y! 2 -1

d. (n + 1)! e__n!
d. __-3 e.

n ! (n-3) !

.
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l 1 1 3 1 4c. I+ I = I .- 3+ I .- 4

2! 4! 3! 3! 2! * 4! 3 3! 3! 4

3 4
3 -2! 4! 3! 4 3!

3 4

3! 4! 3! 4!

7
3! . 4!

7
144

d (n + 1)! (n + 1) _.d. n! - = l

by multiplying each numerator and
denominator by just what is necessary to
obtain a common denominator

by rearranging factors

because 3 * 2! = 3! and 4 3! = 4!

by the rule for adding fractions
with a common denominator

n!
e. (n =

(n -3)!

n * (n - 1) * (n -2) I
= n (n - 1) * (n -2)

= n3- 3n2 + 2n

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 8.4.

Example 4.1.14 Using Properties of Summation and Product

Let ak = k + 1 and bk = k - 1 for all integers k. Write each of the following expressions
as a single summation or product:

n n

a. Lak, +2- b,
k=m k=m

.

Theorem 4.1.1

If am, am+I, am+2, ... and bi, bm+i, bm+2,... are sequences of real numbers and c
is any real number, then the following equations hold for any integer n > m:

n n n

1. Eak + Ebk = TLak + bk)
k=m k=m k=M

n n

2. c *E ak =E c *a, generalized distributive law

k=m k=m

3. ( ak) ( bk) = (ak .bk

k=m k=m k=m

b. ( ' ak) - ( " bk)fl H
k=m k=m
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Solution

n n n n

a. Eak+2 ELbk E=(k+ 1)+2 2 (k- 1) by substitution

k=m k=m k=m k=m

nl n

= (k+ 1) + E 2 (k- 1) by Theorem 4..1 (2)

k-m k=m

n

= ((k +1) + 2*(k-1)) by Theorem 4.1.1 (1)

k=m
k-n

E (3k-1) by algebraic
-) simplification

k=m

b. ( ak) ( bk) = (h(k + )) (h(k - 1)) by substitution

k=m k=m k=m k=m

n

= 17(k + 1) (k-1) by Theorem 4.1.1 (3)

k=m

n

= n(k2 1) by algebraic
simplification

k=m

Change of Variable
Observe that

Lk 2 = 12 + 22 + 32
k=l

and also that
3

i2= 12+22+32.

i-1

Hence
3 3

k 2 = E i2.

k=l i=l

This equation illustrates the fact that the symbol used to represent the index of a summation
can be replaced by any other symbol as long as the replacement is made in each location
where the symbol occurs. As a consequence, the index of a summation is called a dummy
variable. A dummy variable is a symbol that derives its entire meaning from its local
context. Outside of that context (both before and after), the symbol may have another
meaning entirely.
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The appearance of a summation can be altered by more complicated changes of variable
as well. For example, observe that

4

T -j _ 1)2 = (2 - 1)2 + (3 - 1)2 + (4 - 1)2

j=2

= 12+22+32
3

= EZk 2.
k=1

A general procedure to transform the first summation into the second is illustrated in
Example 4.1.15.

Example 4.1.15 Transforming a Sum by a Change of Variable

Transform the following summation by making the specified change of variable.

6 1

summation: A k +1 change of variable: j = k + 1
k=0

Solution First calculate the lower and upper limits of the new summation:

Whenk=O, j=k+1=O+I=1.

Whenk=6, j=k+1=6+1=7.

Thus the new sum goes from j = I to j = 7.
Next calculate the general term of the new summation. You will need to replace each

occurrence of k by an expression in j:

Since = k + 1, then k = j-1.

1 1 1
Hence = ______ = -

k+I (j-1)+1 j

Finally, put the steps together to obtain

6 7

4.1.1
k= o+l j=Ij

Equation (4.1.1) can be given an additional twist by noting that because the j in the
right-hand summation is a dummy variable, it may be replaced by any other variable name,
as long as the substitution is made in every location where j occurs. In particular, it is
legal to substitute k in place of j to obtain

7 l 7l

EJ Ek' 4.1.2
j=l k=1

Putting equations (4.1.1) and (4.1.2) together gives

6 7

k=o k + I kI
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Sometimes it is necessary to shift the limits of one summation in order to add it to
another. An example is the algebraic proof of the binomial theorem, given in Section 6.7.
A general procedure for making such a shift when the upper limit is part of the summand
is illustrated in Example 4.1.16.

Example 4.1.16 When the Upper Limit Appears in the Expression to Be Summed

a. Transform the following summation by making the specified change of variable.

summation: E k change of variable: j = k -I
k=

b. Transform the summation obtained in part (a) by changing all j's to k's.

Solution

a. When k = 1, then j =k-I = 1-1 = 0. (So the new lower limit is 0.) When
k = n + 1, then j = k - 1 = (n + 1) - 1 = n. (So the new upper limit is n.)

Since j = k - 1, then k = j + 1. Also note that n is a constant as far as the terms
of the sum are concerned. It follows that

k j + 1
n + k n + (j + 1)

and so the general term of the new summation is

j + 1
n + (j + 1)

Therefore,

k' =j 114.1.3Ln+l k n 11

k=1 n + k j=o j+1 ..

b. Changing all the j's to k's in the right-hand side of equation (4.1.3) gives

n + I n k + I
E j+ E k+1 4.1.4j=0+ U+ ) Z n+k+

Combining equations (4.1.3) and (4.1.4) results in

n+1 k n k+ 1

l n + k = O n + (k+ 1)

Sequences In Computer Programming
An important data type in computer programming consists of finite sequences. In computer
programming contexts, these are usually referred to as one-dimensional arrays. For
example, consider a program that analyzes the wages paid to a sample of 50 workers. Such
a program might compute the average wage and the difference between each individual
wage and the average. This would require that each wage be stored in memory for retrieval
later in the calculation. To avoid the use of entirely separate variable names for all of the
50 wages, each is written as a term of a one-dimensional array:

W[1], W[2], W[3], ... , W[50].
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Note that the subscript labels are written inside square brackets. The reason is that until
relatively recently, it was impossible to type actual dropped subscripts on most computer
keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping
the labels straight.

Example 4.1.17 Dummy Variable in a Loop

The index variable for a for-next loop is a dummy variable. For example, the following
three algorithm segments all produce the same output:

1. fori:=lton 2. for j:=Oton-l 3. fork:=2ton-+ I

print a[i] print a[j + 1] print a[k - I]

next i next j next D

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum of
a[l], a[2], . .. , a[n]. The one on the left exactly mimics the recursive definition by ini-
tializing the sum to equal a[ I]; the one on the right initializes the sum to equal 0. In both
cases the output is Fk=, a[k].

s := a[l] s := 0

fork :=2ton fork := ton

s :=s+a[k] s :=s+a[k]

next k next k

Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2

Section 1.5 contains some examples of converting integers from decimal to binary nota-
tion. The method shown there, however, is only convenient to use with small numbers. A
systematic algorithm to convert any nonnegative integer to binary notation uses repeated
division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder
theorem to obtain a quotient q [0] and a remainder r [0]. If the quotient is nonzero, divide
by 2 again to obtain a quotient q [11 and a remainder r [I]. Continue this process until a
quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which
is 2. Thus each remainder is either 0 or 1. The process is illustrated below for a = 38.
(Read the divisions from the bottom up.)

0 remainder = I = r[5]

2 1 remainder = 0 = r[4]

2 2 remainder = 0 = r[3]

2 l 4 remainder = I = r[2]

2 l 9 remainder= I = rI]

2 l19 remainder = r=O]

2 38
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The results of all these divisions can be written as a sequence of equations:

38 = 19 2 + 0,

19 =9 92 + 1,
9 4-2 + 1,

4 =2 2 + 0,

2= 2 + 0,

1 =0 2 + 1.

By repeated substitution, then,

38 = 192+0

= (92+ 1).2+0 = 9-22+ 1.2+0

= (4.2+1).22+1.2+0 = 4.23+1.22+1.2+0

= (2-2+0). 3 + 1 22 + 1.2+0
= 2.24 + 0.23 + 1. 2 + 1.2 + 0

= (1.2+0).24+0.23+1.22+1.2+0

= 1*2' +0.24+0.23+1.22+1.2+0.

Note that each coefficient of a power of 2 on the right-hand side above is one of the
remainders obtained in the repeated division of 38 by 2. This is true for the left-most I as
well, because I 0. 2 + 1. Thus

38 io = 1001102 = (r[5]r[4]r[3]r[2]r[1]r[0])2 .

In general, if a nonnegative integer a is repeatedly divided by 2 until a quotient of zero
is obtained and the remainders are found to be r[0], r[I], . . ., r[k], then by the quotient-
remainder theorem each r [i] equals 0 or 1, and by repeated substitution from the theorem,

a = 2k r[k] + 2k 1 .r[k -1] + .+ 22 r[2] + 2'.r[1] + 20 r[0]. 4.1.5

Thus the binary representation for a can be read from equation (4.1.5):

alo = (r[k]r[k - 1] ... r[2]r[1]r[0])2 .

Example 4.1.18 Converting from Decimal to Binary Notation Using Repeated Division by 2

Use repeated division by 2 to write the number 29 1i in binary notation.

Solution 0 remainder = r[4] = I

2 1 remainder = r[3] = I

2 3 remainder = r[2] = 1

2 7 remainder = r[1] = 0

2 | 14 remainder= r[O] = I

2 1 29

Hence 291o = (r[4]r[3]r[2]r[1]r[0])2 = 111012. U

The procedure we have described for converting from base 10 to base 2 is formalized
in the following algorithm:
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Exercise Set 4.1 *
Write the first four terms of the sequences defined by the formu-
las in 1-6.

k
1. ak = 1 , k for all integers k > 1.

10 + k

2. b = 5 ,k for all integers j > 1.

3. c= 3 ,for all integers i > 0.

4. d4 - 1 + (-) for all integers m > 0.

5. e, = [2j 2, for all integers n > 0.

6. fn = K] 4, for all integers n > 1.

7. Let ak = 2k + I and bk = (k -1) + k + 2 for all integers
k > 0. Show that the first three terms of these sequences are
identical but that their fourth terms differ.

Compute the first fifteen terms of each of the sequences in 8 and
9, and describe the general behavior of these sequences in words.
(A definition of logarithm is given in Section 7. 1.)

8. gn = Llog2 nj for all integers n > 1.

9. hn = n Llog2 nj for all integers n > 1.

Find explicit formulas for sequences of the form a,, a2, a3 , . . .

with the initial terms given in 10-16.

11. 0,1,-2,3, -4,510. -1, 1, -1, 1, -1, 1

1. 1 2 3 4 51 6
42 49 16 25 36 4-9

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol Hindicates that only a hint or a partial
solution is given. The symbol *signals that an exercise is more challenging than usual.

Algorithm 4.1.1 Decimal to Binary Conversion Using Repeated Division by 2

[In Algorithm 4.1.1 the input is a nonnegative integer a. The aim of the algorithm
is to produce a sequence of binary digits r[O], r[1], r[2], . r[k] so that the binary
representation of a is

(r[k]r[k - 1].. r[2]r[1]rf01)2.

That is,

a = 2k r[k] +2k-1 r[k -1] + +2 2  r[2] +2' r[1] +20  r[O].]

Input: a [a nonnegative integer]

Algorithm Body:

q :=a, i :=0
[Repeatedly perform the integer division of q by 2 until q becomes 0. Store suc-
cessive remainders in a one-dimensional array r[0], r[1], r[2], . .. , r[k]. Even
if the initial value of q equals 0, the loop should execute one time (so that r [0] is
computed). Thus the guard condition for the while loop is i = 0 or q 0 0.]

while (i = 0 or q A 0)

r[i] :=q mod 2

q :=q div 2
[r[i] and q can be obtained by calling the division algorithm.]

i1:=i+

end while
[After execution of this step, the values of r[0], r[1] . r[i - 1] are all 0's and
I's, and a = (r[i - I]r[i -2] ... r[2]r[1]r[0])2.1

Output: r [0], r [ 1 ], r [2], . . , r [i - 1] [a sequence of integers]
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1 .1 -
2'2 3'3 4'4 5'5 6'6 7

1 2 3 4 5 6
14. - - -

1 3 9' 27' 81 243' 729

1 2 3 4 5 6
15. 1, 2'3' 4'5' 6'7

16. 3,6,12,24,48,96

*17. Consider the sequence defined by a. = ( - I for
4

all integers n > 0. Find an alternative explicit formula for
a, that uses the floor notation.

18. Letao = 2, al I 3, a 2 =-2, a 3 = 1, a4 = 0, a5 -1, and
a6 =-2. Compute each of the summations and products
below.

6 0 3 6 2

a. La, b. La, c. La2j d. Hak e. H ak
i=o i=o j=I k=o k=2

Compute the summations and products in 19-28

n!
45.-

(n -1)!

((n + 1)!)2
4. (n!)2

46. (n -1)!
(n + 1)!

49. -
(n -k)!

47. n!
(n -2)!

50.
(n -k +1)!I

5 1. a. Prove that n! + 2 is divisible by 2, for all integers n > 2.
b. Prove that n! + k is divisible by k, for all integers n > 2

andk = 2,3, .. .,n.
H c. Givenanyintegerm > 2,isitpossibletofindasequence

of m - 1 consecutive positive integers none of which is
prime? Explain your answer.

Transform each of 52 and 53 by making the change of variable
i = k + 1.

52. Ek(k -1)
k=O

Transform each of 54-57 by making the change of variable
j = i - 1.

4
20. H k2

k=2

23. Ei(i+1)
i=l

+ I)

E 2m
-~0

0

24. (J + 1) 2i
j=o

26. E (k2 + 3)
k=-1

28. i(i+2)
28 2f (i - 1) . (i + 1)

Write the summations in 29-31 in expanded form.
n

29. E(-2)i
i=1

n

30. Ei(i+l)
j=l

31. E
k=O

Write each of 32-41 using summation or product notation.

32. 12-22+32- 42+52- 62+72

1) + (53 - 1)33. (13 - 1) - (2 3 - 1) + (3 3 _ 1) - (4'

34. (22 -1) .(32 _1) .(42 - 1)

2 3 4 5 6
35. -- +-- +

3 4 4 5 5 6 6 7 7 8
36. 1 -r+r2 r3 +r 4-r5

37. (Il-t) .(l- t2) (I (l-t3) .(1 -t4)

38. 1 3 +2 3 +33 + +n 3

1 2 3 n
39. -+ -+ +..+

2! 3! 4! (n + 1)!

40. n+(n-)+(n -2)+ .. +I

54. L i - I)2

i=n

-,1

56. E (n - i)2

2n

E i + n- I

n - i+1=n+

Write each of 58-60 as a single summation or product.

n
58. 3 L2k

k~l

3) + (4- 5k)
k~l

59. 2 + (3k 2 +4) + (2k2  1)
k=1 k=l

60. __) __(

60=(T k + I )k=1 k + 2)

61. CheckTheorem4.1.1 form 1 andn = 4bywritingoutthe
left-hand and right-hand sides of the equations in expanded
form. The two sides are equal by repeated application of
certain laws. What are these laws?

62. Suppose a[l], a[2], a[3],...,a[m] is a one-dimensional ar-
ray and consider the following algorithm segment:

sum := 0
fork := ito m

sum := sum + a[k]

next k

Fill in the blanks below so that each algorithm segment per-
forms the same job as the one given above.
a. sum := 0 b. sum := 0

n- n -2 n -3 1
41. n + 2 + ! + 4

2! 3! 4!
Compute each of 42 50.

42. 4
3!

43. 6!
8!

for i := 0 to

sum :=

next i

for j := 2 to

sum :=

next j
4!

44.
0!

19. (k + 1)
k=l

4

22. Fl(-I)
22J Io

25.H2(l -k)
10

27.L(',
nl

k
53.Hk2 +4

k=1
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Use repeated division by 2 to convert (by hand) the integers in
63-65 from base 10 to base 2.

63. 90 64. 98 65. 205

Make a trace table to trace the action of Algorithm 4.1. 1 on the
input in 66-68.

66. 23 67. 28

Use the algorithm you developed for exercise 69 to convert the
integers in 70-72 to hexadecimal notation.

70. 287 71. 693 72. 2,301

73. Write a formal version of the algorithm you developed for
exercise 69.

68. 44

69. Write an informal description of an algorithm (using re-
peated division by 16) to convert a nonnegative integer from
decimal notation to hexadecimal notation (base 16).

4.2 Mathematical Induction I
[Mathematical induction is] the standard proof technique in computer science.
-Anthony Ralston, 1984

Mathematical induction is one of the more recently developed techniques of proof in the
history of mathematics. It is used to check conjectures about the outcomes of processes
that occur repeatedly and according to definite patterns. We introduce the technique with
an example.

Some people claim that the United States penny is such a small coin that it should
be abolished. They point out that frequently a person who drops a penny on the ground
does not even bother to pick it up. Other people argue that abolishing the penny would
not give enough flexibility for pricing merchandise. What prices could still be paid with
exact change if the penny were abolished and another coin worth 3¢ were introduced?
The answer is that the only prices that could not be paid with exact change would be
10, 20, 40, and 70. In other words,

Any whole number of cents of at least 80 can be obtained using 30 and 50 coins.

More formally:

For all integers n > 8, n cents can be obtained using 3¢ and 50 coins.

Even more formally:

For all integers n > 8, P(n) is true, where P(n) is the sentence
'n cents can be obtained using 30 and 50 coins."

You could check that P(n) is true for a few particular values of n, as is done in the table
below.

Number of Cents How to Obtain It

80 30 + 50

90 3¢+3¢+3¢

100 50 + 5¢

11¢ 30+3¢+50

120 30+30+30+30

130 3¢ + 5¢ + 5¢

140 30+30+30+50

15¢ 50 + 50 + 5¢

160 30+30+50+50

17¢ 3¢+3¢+3¢+30+50
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The cases shown in the table provide inductive evidence to support the claim that P (n)
is true for general n. Indeed, P(n) is true for all n > 8 if and only if, it is possible to
continue filling in the table for arbitrarily large values of n.

The kth line of the table gives information about how to obtain ko using 3¢ and 5¢
coins. To continue the table to the next row, directions must be given for how to obtain
(k + 1)¢ using 3¢ and 5¢ coins. The secret is to observe first that if ko can be obtained
using at least one 5¢ coin, then (k + 1)¢ can be obtained by replacing the 5¢ coin by two
3¢ coins, as shown in Figure 4.2.1.

ko (k + 1)¢

Replace a 50 coin by
two 3¢ coins.

- Add

Figure 4.2.1

If, on the other hand, ko is obtained without using a 5¢ coin, then 3¢ coins are used
exclusively. And since the total is at least 8¢, three or more 3¢ coins must be included.
Three of the 3¢ coins can be replaced by two 5¢ coins to obtain a total of (k + 1)¢, as
shown in Figure 4.2.2.

ko (k + 1)¢

Figure 4.2.2

The structure of the argument above can be summarized as follows: To show that
P(n) is true for all integers n > 8, (1) show that P(8) is true, and (2) show that the truth
of P(k + 1) follows necessarily from the truth of P(k) for each k > 8. Any argument of
this form is called an argument by mathematical induction.
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The first known use of mathematical induction occurs in the work of the Italian scientist
Francesco Maurolico in 1575. In the seventeenth century both Pierre de Fermat and Blaise
Pascal used the technique, Fermat calling it the "method of infinite descent." In 1883
Augustus De Morgan (best known for De Morgan's laws) described the process carefully
and gave it the name mathematical induction.

To visualize the idea of mathematical induction, imagine an infinite collection of
dominoes positioned one behind the other in such a way that if any given domino falls
backward, it makes the one behind it fall backward also. (See Figure 4.2.3) Then imagine
that the first domino falls backward. What happens? . . . They all fall down!

Figure 4.2.3 If the kth domino falls backward, it pushes the (k + 1)st domino backward also.

To see the connection between this image and the principle of mathematical induction,
let P (n) be the sentence "The nth domino falls backward." It is given that for each k > 1,
if P(k) is true (the kth domino falls backward), then P(k + 1) is also true (the (k + I)st
domino falls backward). It is also given that P (1) is true (the first domino falls backward).
Thus by the principle of mathematical induction, P(n) (the nth domino falls backward)
is true for every integer n > 1.

The validity of proof by mathematical induction is generally taken as an axiom. That is
why it is referred to as the principle of mathematical induction rather than as a theorem. It
is equivalent to the following property of the integers, which is easy to accept on intuitive
grounds:

Suppose S is any set of integers satisfying (1) a E S, and (2) for all
integers k, if k E S then k + 1 E S. Then S must contain every integer
greater than or equal to a.

To understand the equivalence of this formulation and the one given earlier, just let S be
the set of all integers for which P (n) is true.

Principle of Mathematical Induction

Let P (n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k > a, if P(k) is true then P(k + 1) is true.

Then the statement

for all integers n > a, P(n)

is true.

. . .

I
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Proving a statement by mathematical induction is a two-step process. The first step is
called the basis step, and the second step is called the inductive step.

Here is a formal version of the proof about coins developed informally above.

Proposition 4.2.1

Let P(n) be the property "no can be obtained using 3¢ and 5¢ coins." Then P(n) is
true for all integers n > 8.

Proof:

Show that the property is true for n = 8: The property is true for n = 8 because
8¢ = 3¢ + 5¢.

Show that for all integers k > 8, if the property is true for n = k, then it is true
for n = k + 1: Suppose ko can be obtained using 3¢ and 5¢ coins for some integer
k > 8. [This is the inductive hypothesis.] We must show that (k + 1)0 can be obtained
using 3¢ and 5¢ coins. In case there is a 5¢ coin among those used to make up the
ko, replace it by two 3¢ coins; the result will be (k + 1)¢. In case no 5¢ coin is used
to make up the ko, then at least three 3¢ coins must be used because k > 8. Remove
three 3¢ coins and replace them by two 5¢ coins; the result will be (k + 1)¢. Thus in
either case (k + 1)¢ can be obtained using 3¢ and 5¢ coins [as was to be shown].

The following example shows how to use mathematical induction to prove a formula
for the sum of the first n integers.

Example 4.2.1 Sum of the First n Integers

Use mathematical induction to prove that

I + 2 + --- + n = ( 2 ) for all integers n > 1.
2

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers n > a, a property P (n) is true."
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that the property is true for n = a.

Step 2 (inductive step): Show that for all integers k > a, if the property is true for
n = k then it is true for n = k + 1. To perform this step,

suppose that the property is true for n = k, where k is any
particular but arbitrarily chosen integer with k > a.

[This supposition is called the inductive hypothesis.]

Then

show that the property is true for n = k + 1.
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Solution To construct a proof by induction, you must first identify the property P(n). In
this case, P(n) is

I± += 2 =nthe property (P(n))

[To see that P (n) is a sentence, note that its subject is "the sum of the integers from 1
to n" and its verb is "equals."]

In the basis step of the proof, you must show that the property is true for n = 1, or,
in other words that P(1) is true. Now P(1) is obtained by substituting 1 in place of n in
P (n). The left-hand side of P (1) is the sum of all the successive integers starting at 1 and
ending at 1. This is just 1. Thus P(1) is

1(1 +1) 1
1 = 2 *basis (P(1))

Of course, this equation is true because the right-hand side is

1(1+1) 1 2
2 2

which equals the left-hand side.
In the inductive step, you assume that P(k) is true, for some integer k with k > 1.

[This assumption is the inductive hypothesis.] You must then show that P (k + 1) is true.
What are P(k) and P(k + 1)? P(k) is obtained by substituting k for every n in P(n).
Thus P(k) is

1 + 2 + * + k = k(k2+ 1) inductive hypothesis (P(k))

Similarly, P (k + 1) is obtained by substituting the quantity (k + 1) for every n that appears
in P(n). Thus P(k + 1) is

I+ 2 +.+(k + = (k + l)((k + 1) + 1)
2

or, equivalently,

I + 2(k l)(kk+2)) -to show (P (k +1))
2

Now the inductive hypothesis is the supposition that P(k) is true. How can this
supposition be used to show that P(k + 1) is true? P(k + 1) is an equation, and the truth
of an equation can be shown in a variety of ways. One of the most straightforward is to
transform the left-hand side into the right-hand side using algebra and other known facts
and legal assumptions (such as the inductive hypothesis). In this case, the left-hand side
of P(k + 1) is

I + 2 + * * + (k + 1),



220 Chapter 4 Sequences and Mathematical Induction

which equals

(I + 2 + . + k) + (k + 1) by explicitly identifying the
next-to-last term and regrouping.

But by substitution from the inductive hypothesis,

(1 + 2 + + k) + (k + 1)
k (k + 1) since the inductive hypothesis says

- 2 + (k +l) thatlI+ 2 + +k =k(k +l)
2

Now use algebra to show that this expression equals the right-hand side of P(k + 1):

k(k + 1) + (k + I)

k(k + 1) 2(k + 1) multiply numerator and denominator
2 + of the second term by 2 to obtain a

common denominator

k(k + 1) + 2(k + 1)
2 by adding fractions

(k +2)(k + 1)
2 by factoring out (k + I)

(k + I)(k + 2) by commuting the factors (k + 1)
2 and (k + 2)

which equals the right-hand side of P(k + 1).
This discussion is summarized as follows:

Theorem 4.2.2 Sum of the First n Integers

For all integers n > 1,

n(n + 1)
2

Proof (by mathematical induction):

Let the property P (n) be the equation 1 + 2 + + n = 2 )

Show that the property is true for n = 1: To establish the property for n = 1, We

must show that 1 = (2 But the left-hand side of this equation is 1, and the

right-hand side is = = 1 also. Hence the property is true for n = 1.
2 2

Show that for all integers k > 1, if the property is true for n = k then it is true for
n = k + 1:

[Suppose the property I + 2 + + n = ( 1) is true when an integer k > 1
2

is substituted for n.]

k(k + 1)
Suppose 1 + 2 + + k 2 for some integer k > 1.

[This is the inductive hypothesis.]
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U

The story is told that one of the greatest mathematicians of all time, Carl Friedrich
Gauss (1777-1855), was given the problem of adding the numbers from 1 to 100 by his
teacher when he was a young child. The teacher had asked his students to compute the
sum, supposedly to gain himself some time to grade papers. But afterjust a few moments,
Gauss produced the correct answer. Needless to say, the teacher was dumbfounded. How
could young Gauss have calculated the quantity so rapidly? In his later years, Gauss
explained that he had imagined the numbers paired according to the following schema.

1 2 3. ....... 50 51 . . ..... 98 99 100

sum is 101

The sum of the numbers in each pair is 101, and there are 50 pairs in all; hence the total
sum is 50. 101 = 5,050.

[We must show that the property I + 2+ = n( 2 ) is true when k + I
2

is substitutedfor n].

We must show that 1 + 2 + + (k + 1) -(k + 1)((k + 1) + 1) equivalently

thatI+2+ *- +(k+1)= ( )2 ) 4.2.1

[We will show that the left-hand side of equation (4.2.1) equals the right-hand
side.]

But the left-hand side of equation (4.2.1) is

1 + 2 + + (k + 1)
(1 + 2 + + k) + (k + 1 The next-to-last term is k because the terms are

successive integers and the last term is k + I.
k(k + 1)

( + (k + 1) by substitution from the inductive hypothesis
2

k(k+ 1) (k+ 1) 2

- 2 2

(k+1)(k+2)

2

which is the right-hand side of equation (4.2.1) [as was to be shown].

[Since we have proved both the basis step and the inductive step, we conclude
that the theorem is true.]
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Example 4.2.2 Applying the Formula for the Sum of the First n Integers

a. Find 2 +4+6+ . + 500.

b. Find5+6+7+8+-..+50.

c. For an integer h > 2, find + 2 + 3 + **+ (h-1).

Solution

a. 2+4+6+.. +500=2. (1+2+3+- +250)

(2 250 251 ) by applying the formula for the sum
2 2 / of the first n integers with n = 250

= 62,750.

b. 5+6+7+8+- +50= (I +2+3+ . -+50)-(1 +2+3+4)

- 50 .51 - 10 by applying the formula for the sum
2 of the first n integers with n = 50

= 1,265

c. 1 + 2 + 3 + + (h 1) (h - 1) [(h - 1) + 1] byapplyingtheformulaforthe sum

2 of the first n integers with n = h-I

(h 1) since (h-1) + I = h. a

The next example asks for a proof of another famous and important formula in
mathematics-the formula for the sum of a geometric sequence. In a geometric se-
quence, each term is obtained from the preceding one by multiplying by a constant factor.
If thefirsttermis I andtheconstantfactorisr,thenthesequenceis 1, r, r2 , r3 . r
The sum of the first n terms of this sequence is given by the formula

n rn+l-1
E = r r 1
i=O

for all integers n > 0 and real numbers r not equal to 1. The expanded form of this formula
is

o 1 2 n rn~l1
r +r +r + +r = r -

and because ro = I and r' = r, the formula for n > 1 can be rewritten as

lr+r 2 ± ±rn = rn -
r-

Example 4.2.3 Sum of a Geometric Sequence

Prove that E r' = l , for all integers n > 0 and all real numbers r except 1.
i=O

Solution In this example the property P(n) is again an equation, although in this case it
contains a real variable r:
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Because r can be any real number other than 1, the proof begins by supposing that r is a
particular but arbitrarily chosen real number not equal to 1. Then the proof continues by
mathematical induction on n, starting with n = 0. In the basis step, you must show that
P (0) is true; that is, you show the property is true for n = 0. So you substitute 0 for each
n in P(n):

In the inductive step, you suppose P(k) is true; that is, you suppose the property is true
for n = k. So you substitute k for each n in P(n):

Then you show that P(k + 1) is true; that is, you show the property is true for n = k + 1.
So you substitute k + 1 for each n in P(n):

k+1 r(k+l)+l - 1

E r = r-

or, equivalently,

to show (P(k + I))

Theorem 4.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n > 0O

n X rn+l -I

Er =r-I

Proof:

Let the property P(n) be the equation E r' = l
r- 1

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1. We
must show that for all integers n > 0O

n rn+l - I

Er =r-1
i=O

We show this by mathematical induction on n.

continued on page 224
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Show that the property is true for n = 0: For n = 0 we must show that

Er r-
i=O

The left-hand side of this equation is r0 = 1. The right-hand side is

rl-1 r-1
r _ - - 1r-l r-1

also because r t = r and r A 1. [So the property is true for n = 0.]

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1:

n rn+l-1

[Suppose the property E r' = is true when an integer k > 0 is sub-

stituted in place of n.]

k rk+l-1

Suppose E r' = - 1 for k > 0. [This is the inductive hypothesis.]
-0-i=o

[We must show that the property is true when k + 1 is substituted in place of n.j

We must show that

k+l r(k+l)+l - 4

T r r- 4.2.2
i=O

[We will show that the left-hand side of this equation equals the right-hand side.]

But the left-hand side of equation (4.2.2) is

k+l k

' ri -Er + rk+l by writing the (k + I)st term
separately from the first k terms

i=O i=O

rk+l - + k+l by substitution from the

r -1 inductive hypothesis

rk+l- 1 rk+1 (r 1) by multiplying the numerator and denominator

r-1 + r-1 of the second term by (r -1) to obtain acommon denominator
(rk+l-1) + rk+l(r-1)

r by adding fractions

rk+l - 1 + rk+2 - rk+l by multiplying out and using the fact

r- 1 that rk+I r = rk+ I r= rk+2.

rk-21 by canceling the rk+ 1.5

which is the right-hand side of equation (4. 2. 2) [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the
theorem is true.]

a
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Note that the formula for the sum of a geometric sequence can be thought of as a
family of different formulas in r, one for each real number r except 1.

Example 4.2.4 Applying the Formula for the Sum of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is greater than or equal to 3.

a. Find +3 + 32 +... + 3m-2

b. Find32 +3 3 +3 4 +... +3m.

Solution
a. 1 + 3+32 + + 3m-2 - 3(m2)+l 1 by applying the formula for the sum of a

3 - 1 geometric sequence with r = 3 and n = m- 2

3` -I1

2

b. 32 +33 +34 + +3m = 32. (1 + 3 + 32 + ... + 3m-2) by factoring out 32

9 (3m-1 - 1) by part (a). E

As with the formula for the sum of the first n integers, there is a way to think of the
formula for the sum of the terms of a geometric sequence that makes it seem simple and
intuitive. Let

Sn=1+r+r2 ± ni-r.

Then
2 3 n+t

rS, =r+r +r +...+r

and so

rSn-S =(r + r2 + r3 + ** * + rn+1 )-( + r + r2 + ***+ rn)
= rn+ 1. 4.2.3

But

rSn - Sn = (r - l)Sn. 4.2.4

Equating the right-hand sides of equations (4.2.3) and (4.2.4) and dividing by r - 1 gives

rn+l - 1
Sn=-

This derivation of the formula is attractive and is quite convincing. However, it is not as
logically airtight as the proof by mathematical induction. To go from one step to another in
the calculations above, the argument is made that each term among those indicated by the
ellipsis (.. .) has such-and-such an appearance and when these are canceled such-and-such
occurs. But it is impossible actually to see each such term and each such calculation, and
so the accuracy of these claims cannot be fully checked. With mathematical induction it is
possible to focus exactly on what happens in the middle of the ellipsis and verify without
doubt that the calculations are correct.
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Exercise Set 4.2
1. Use mathematical induction (and the proof of Proposi-

tion 4.2.1 as a model) to show that any amount of money of
at least 14¢ can be made up using 30 and 8¢ coins.

2. Use mathematical induction to show that any postage of at
least 12¢ can be obtained using 3¢ and 7¢ stamps.

3. For each positive integer n, let P(n) be the formula

12+22+...+n2= n(n + l)(2n + 1)
6

a.
b.
c.
d.

Write P(1). Is P(1) true?
Write P(k).
Write P(k + 1).
In a proof by mathematical induction that the formula
holds for all integers n > 1, what must be shown in the
inductive step?

4. For each integer n with n > 2, let P(n) be the formula

n-1 (n -l)(n +1)
i(i + 1) = nn 3

i~l

a.
b.
c.
d.

Write P(2). Is P(2) true?
Write P(k).
Write P(k + 1).
In a proof by mathematical induction that the formula
holds for all integers n > 2, what must be shown in the
inductive step?

5. Fill in the missing pieces in the following proof that

1+3+5±+ +(2n -l) =n 2

for all integers n > 1.

Proof: Let the property P (n) be the equation

+3+5+... +(2n -1) =n.

Show that the property is true for n = 1: To establish the
formula for n = 1, we must show that when 1 is substituted
in place of n, the left-hand side equals the right-hand side.
But when n = 1, the left-hand side is the sum of all the odd
integers from 1 to 2 1 -1, which is the sum of the odd
integers from 1 to 1, which is just 1. The right-hand side is

(a), which also equals 1. So the property is true for n = 1.

Show that for all integers k > 1, if the property is true for
n = k then it is true for n = k + 1: Let k be any integer

with k > 1.

[Suppose the property + 3 + 5 + ... + (2n -1)
n2 is true when k is substituted for n.]

Suppose 1 + 3 + 5 + * + (2k -1) = (b)

[This is the inductive hypothesis.]

[We must show that the property is true when k + 1 is
substituted for n].

We must show that

(c) - (d) 4.2.5

But the left-hand side of equation (4.2.5) is

+3+5+. +(2(k+1) -1)

= + 3 + 5 + + (2k + 1) by algebra

=[1+3+5±.+ +(2k -1)]+(2k+1)

the next-to-last term is 2k -I because (e)

= k
2

+ (2k + 1) by (0
= (k + 1)2 by algebra

which is the right-hand side of equation (4.2.5) [as was to

be shown].

[Since we have proved the basis step and the inductive
step, we conclude that the given statement is true.]

The proof above was heavily annotated to help make its
logical flow more obvious. In standard mathematical writ-
ing, such annotation is omitted.

Prove each statement in 6-9 using mathematical induction. Do
not derive them from Theorem 4.2.2 or Theorem 4.2.3.

6. For all integers n > 1, 2 + 4 + 6 + + 2n = n2 
+ n.

7. For all integers n > 1,

1+6+11+-16+ ... +(5n -4)= 2

8. For all integers n > 0, 1 + 2 + 22 + ... + 2n = 2`1 -1.

9. For all integers n > 3,

43 + 44 + 4 + .. + 4n = 4(4f -16)
3

Prove each of the statements in 10-17 by mathematical induc-
tion.

10. 12 + 22 + n 2 = n(n + 1)(2n + 1), for all integers
6

n > 1 .

Fn(n +L1)12
11. 13 

+ 2
3 

+ + n
3 = [(2 ) ,for all integers n > 1.

1 1 1 n
12. - + 1) = + 1 for all integers

1.-2 2.-3 n(n +1) n +l
n> 1.

n-1 Eii 1 n(n-l)(n + 1)
13. i(i + 1) 3 ,for all integers n > 2.

n+l

14. Ei 2' = n * 2n2 + 2, for all integers n > 0.

n

H 15. i(i!) = (n + I)! -1, for all integers n > 1.
il

32 ) ..-. _ ) = n + for all inte-16g (e ) (

gers n > 2.
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17 (l 2i+1 i+ =(n - for all integers n > 0.

H * 18. If x is a real number not divisible by 7r, then for all integers
n > 1,

sinx + sin 3x + sin 5x + + sin (2n - I)x

I -cos 2nx
2 sin x

Use the formula for the sum of the first n integers and/or the
formula for the sum of a geometric sequence to find the sums in
19-28.

19. 4+8+ 12+ 16+ + 200

20. 5+ 10+ 15+20+ +300

21. 3+4+5+6+ - +1000

22. 7+8+9+10+ +600

23. 1 + 2 + 3 + . ±+ (k - 1), where k is a positive integer

24. a. +2+22+...+225
b. 2+22+23+...+226

25. 3 + 32+3 3 +- + 3, where n is an integer with n > 2

26. 53 + 54 + 55 + . + 5k, where k is any integer with k > 3.

27. 1 + I+ + -. + I, where n is a positive integer
2 22 2

28. 1 -2 + 22 - 23 + + (-l)'2n, where n is a positive in-
teger

H 29. Find a formula in n, a, m, and d for the sum (a + md) +
(a+(m+l)d)+(a+(m+2)d)±+ +(a+(m+n)d),
where m and n are integers, n > 0, and a and d are real
numbers. Justify your answer.

30. Find a formula in a, r, m, and n for the sum ar' + ar"' +
arm+2 + .. . + ar'+n, where m and n are integers, n > 0,
and a and r are real numbers. Justify your answer.

31. You have two parents, four grandparents, eight great-
grandparents, and so forth.
a. If all your ancestors were distinct, what would be the

total number of your ancestors for the past 40 genera-
tions (counting your parents' generation as number one)?
(Hint: Use the formula for the sum of a geometric se-
quence.)

b. Assuming that each generation represents 25 years, how
long is 40 generations?

c. The total number of people who have ever lived is ap-
proximately 10 billion, which equals 1010 people. Com-
pare this fact with the answer to part (a). What do you
deduce?

32. Find the mistake in the following proof fragment.

Theorem: For any integer n > 1,

2+ 22 + + +2= n(n+l)(2n+l)
6

"Proof (by mathematical induction): Certainly the
theorem is true for n 1 because 12 = 1 and

1(1 + 1)(2. 1 + 1) 1. So the basis step is true.
6

For the inductive step, suppose that for some integer k > 1,

k 2 
=k(k + 1)(2k + 1). We must show that (k + 1)2 =

6
(k + l)((k + 1) + 1)(2(k + 1) + 1)

6

* 33. Use Theorem 4.2.2 to prove that if m is any odd integer and
n is any integer, then ,' (n + k) is divisible by m. Does
the conclusion hold if m is even? Justify your answer.

H * 34. Use Theorem 4.2.2 and the result of exercise 10 to prove
that if p is any prime number with p > 5, then the sum of
squares of any p consecutive integers is divisible by p.

4.3 Mathematical Induction I/
A good proof is one which makes us wiser -I. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes
of thought-deduction being to infer a conclusion from general principles using the laws
of logical reasoning, and induction being to enunciate a general principle after observ-
ing it to hold in a large number of specific instances. In this sense, then, mathematical
induction is not inductive but deductive. Once proved by mathematical induction, a the-
orem is known just as certainly as if it were proved by any other mathematical method.
Inductive reasoning, in the natural sciences sense, is used in mathematics, but only to
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make conjectures, not to prove them. For example, observe that

1 1
2 2

2(1 3(l ) 3

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture
(though it is by no means certain) that the pattern holds true in general. In a case like
this, a proof by mathematical induction (which you are asked to write in exercise I at
the end of this section) gets to the essence of why the pattern holds in general. It reveals
the mathematical mechanism that necessitates the truth of each successive case from the
previous one. For instance, in this example observe that if

then by substitution

2 1) (1- I-) . . (1- )k) ( I + 1)

I (I _ I I (k+ I -1 I I k I
k k k+ I k k k+ I k Vk +I k +

Thus mathematical induction makes knowledge of the general pattern a matter of mathe-
matical certainty rather than vague conjecture.

In the remainder of this section we show how to use mathematical induction to prove
additional kinds of statements such as divisibility properties of the integers and inequali-
ties. The basic outlines of the proofs are the same in all cases, but the details of the basis
and inductive steps differ from one to another.

In the example below, mathematical induction is used to establish a divisibility prop-
erty.

Example 4.3.1 Proving a Divisibility Property

Use mathematical induction to prove that for all integers n > 1, 22, - I is divisible by 3.

Solution As in the previous proofs by mathematical induction, you need to identify the
property P(n). In this example, P(n) is

22n 1 I is divisible by 3. | the property (P(n))

By substitution, the statement for the basis step, P(l), is

2 221 1- is divisible by 3. <- basis (P(l))

The supposition for the inductive step, P(k), is

22k 1 I is divisible by 3, inductive hypothesis (P(k))
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and the conclusion to be shown, P(k + 1), is

2 2(k+) _ I is divisible by 3. | to show (P(k + 1))

Recall that an integer m is divisible by 3 if, and only if, m = 3r for some integer
r. Now the statement P(l) is true because 221 -1 = 22 _ I = 4 - I = 3, which is
divisible by 3 because 3 = 3 - 1.

To prove the inductive step, you suppose that k is an integer greater than or equal to 1
such that P (k) is true. This means that 22k - 1 is divisible by 3. You must then prove the
truth of P (k + 1). Or, in other words, you must show that 2 2(k+1) - is divisible by 3. But

2 2(k+]) -I 2 2k+2 1

- 2 2k * 22 I by the laws of exponents

- 22k 4- 1

The aim is to show that this quantity, 2 2k * 4-1, is divisible by 3. Why should that be so?
By the inductive hypothesis, 2 2k _1 is divisible by 3, and 22k 4- I resembles 22k - 1.
Indeed, if you subtract 22k - 1 from 2 2k 4 - 1, you obtain 22k * 3, which is divisible by 3:

2 2k 4- 1 - (2 2k - 1) = 2 2k 3

divisible by 3? divisible by 3 divisible by 3

Adding 22k _ I to both sides gives

2 2k . 2 2k 3 + 2 2k 1-

divisible by 3? divisible by 3 divisible by 3

Both terms of the sum on the right-hand side of this equation are divisible by 3; hence
the sum is divisible by 3. (See exercise 15 of Section 3.3.) Therefore, the left-hand side
of the equation is also divisible by 3, which is what was to be shown.

This discussion is summarized as follows:

Proposition 4.3.1

For all integers n > 1, 2' - 1 is divisible by 3.

Proof (by mathematical induction):

Let the property P (n) be the sentence "22n - I is divisible by 3."

Show that the property is true for n = 1: To show the property is true for n = 1,
we must show that 22. -1I = 22 - 1 - 3 is divisible by 3. But this is true because
3=3 - 1.

Show that for all integers k > 1, if the property is true for n = k then it is true for
n = k + 1:

[Suppose the property " 22n - I is divisible by 3 " is true when an integer k > I
is substituted for n.]

Suppose 2 2k - 1 is divisible by 3, for some integer k > 1.
[Inductive hypothesis]

continued on page 230
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The next example illustrates the use of mathematical induction to prove an inequality.

Example 4.3.2 Proving an Inequality

Use mathematical induction to prove that for all integers n > 3,

2n + 1 < 2'.

Solution In this example the property P(n) is the inequality

2n + 1 < 2'. *-the property (P(n))

By substitution, the statement for the basis step, P(3), is

2 3+1 <23. | basis (P(3))

The supposition for the inductive step, P(k), is

2k + 1 < 2 k, | inductive hypothesis (P(k))

and the conclusion to be shown is

2(k+I)+l <2k . to show (P(k + I))

By definition of divisibility, this means that

2 2k - I = 3r for some integer r.

[We must show that the property " 2 2 - 1 is divisible by 3" is true when k + I
is substituted for n. ]

We must show that 2 2(k+1) -I is divisible by 3.

But

2 2(k+1) I = 22k+2 - I

2 22k . 22 - by the laws of exponents

= 2 2k 4 I

= 2 2k(3 + 1) - I

2 22k 3 + (2 2k 1) by the laws of algebra

2 22k 3 + 3r by inductive hypothesis

= 3 (2 2k + r) by factoring out the 3.

But 2 2k + r is an integer because it is a sum of products of integers, and so, by
definition of divisibility, 2 2(k+1) I is divisible by 3 [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the
proposition is true.]
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To prove the basis step, observe that the statement P(3) is true because 2 -3 + I =

7,23 = 8, and7 < 8.
To prove the inductive step, suppose P(k) is true for an integer k > 3. [This is the

inductive hypothesis.] This means that 2k + I < 2 k is assumed to be true for an integer
k > 3. Then derive the truth of P(k + 1). Or, in other words, show that the inequality
2(k + 1) + I < 2 k+1 is true. But by multiplying out and regrouping,

2(k + 1) + I = 2k + 3 = (2k + 1) + 2, 4.3.1

and by substitution from the inductive hypothesis,

(2k+ 1)+2 < 2 k+2. 4.3.2

Hence
2(k + l) + I < 2 Tk + 2 The left-most part of equation (4.3.l1)is less than

the right-most part of inequality (4.3.2).

If it can be shown that 2 k + 2 is less than 2 k+t, then the desired inequality will have been
proved. But since the quantity 2k can be added to or subtracted from an inequality without
changing its direction,

2 +2 < 2 2 < 2k+ - 2  2 k( 2 - 1 ) = 2k

And since multiplying or dividing an inequality by 2 does not change its direction,

2< 2  X 1 = 2- < 2= 2 k I by the laws of exponents.
2 2

This last inequality is clearly true for all k > 2. Hence it is true that 2(k + 1) + 1 < 2k+l
This discussion is made more flowing (but less intuitive) in the following formal proof:

Proposition 4.3.2

For all integers n > 3, 2n + I < 2" .

Proof (by mathematical induction):

Let the property P (n) be the inequality

2n + 1 <n.

Show that the property is true for n = 3: To prove the property for n = 3, we must
show that 2 3 + I < 23. But 2 3 + I = 7, 23 = 8, and 7 < 8. Hence the property
is true for n = 3.

Show that for all integers k > 3, if the property is true for n = k then it is true for
n = k + 1:

[Suppose "2n + 1 < 2"" is true when an integer k > 3 is substituted for n.]

Suppose 2k + I < 2 k, for some integer k such that k > 3.
[Inductive hypothesis]

[We must show that " 2n + I < 2"" is true when k + I is substituted for n.j

We must show that 2(k + 1) + 1 < 2 k+1 or, equivalently, 2k + 3 < 2k+.

continued on page 232
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But

2k+3 = (2k+ 1) +2 by algebra

< 2 k + 2 k because 2k + I < 2 k by the inductive hypothesis
and because 2 < 2k for all integers k > 2

2k + 3 < 2 2k = 2 k+1 by the laws of exponents.

[This is what we needed to show.]

[Since we have proved the basis step and the inductive step, we conclude that the
proposition is true.]

.

The last example of this section demonstrates how to use mathematical induction to
show that the terms of a sequence satisfy a certain explicit formula.

Example 4.3.3 Proving a Property of a Sequence

Define a sequence al, a2, a3, ... as follows.*

a, =2

ak = 5ak-1 for all integers k > 2.

a. Write the first four terms of the sequence.

b. Use mathematical induction to show that the terms of the sequence satisfy the property

a, = 2 5 n`l for all integers n > 1.

Solution

a. a, =2.

a 2 =5a2 -1 = 5a, =5-2= 10

a3 = 5a3-1 = 5a2 = 5 10 = 50

a4 = 5a4 -1 = 5a3 = 5 - 50 = 250.

b. To use mathematical induction to show that the property is true in general, you begin
by showing that the first term of the sequence satisfies the property. Then you suppose
that the kth term of the sequence (for some integer k > 1) satisfies the property and
show that the (k + I)st term also satisfies the property.

Show that the property is true for n = 1: For n = 1, the property states that 2 . 51-I =

2 5° = 2 1 = 2. But by definition of the sequence, a, = 2. Hence the property is true
for n 1.

Show that for all integers n > 1, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 1 and suppose that ak 2 . 5 k-1. [This is the
inductive hypothesis.]

*This is an example of a recursive definition. The general subject of recursion is discussed in
Chapter 8.
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We must show that ak+l = 2 . 5(k+1) 1= 2 . 5k

But the left-hand side of the equation is

ak+l = 5a(k+1)-l by definition of a,, a,, 3 ....

= Sak since (k + 1) -I = k

= 5 (2 . 5 k 1) by inductive hypothesis

= 2 . (5 5 k 1) by regrouping

= 2 . 5k by the laws of exponents

which is the right-hand side of the equation [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the
formula holds for all terms of the sequence.] X

Exercise Set 4.3
1. Based on the discussion of the product (1 - ')(1 -)

(1 -). (1 - ) at the beginning of this section, con-
jecture a formula for general n. Prove your conjecture by
mathematical induction.

2. Experiment with computing values of the product
(1 + 1)(I + !)(1 + ) . (1 + 1) for small values of n to
conjecture a formula for this product for general n. Prove
your conjecture by mathematical induction.

3. Observe that

1 1

I 3 3 5 5
1.33

1 1 2

1I 3 3 .5 5

1 1 1 3
+ + =--

1.3 3.5 5.7 7

1 1 1 1 4
+ + -+ - =-

1 3 3-5 5 7 7 9 9

Guess a general formula and prove it by mathematical in-
duction.

H 4. Observe that

= 1,

1 -4= -(1 +2),

1-4+9= 1+2+3,

1 -4+9- 16= -(1+2+3+4),

1 -4+9 - 16+25 = 1 +2+3+4+5.

Guess a general formula and prove it by mathematical in-
duction.

n k
5. Evaluate the sum E - for n = 1, 2, 3, 4, and 5.

k= (k + 1)!
Make a conjecture about a formula for this sum for general
n, and prove your conjecture by mathematical induction.

6. For each positive integer n, let P(n) be the property

5" - 1 is divisible by 4.

a. Write P(0). Is P(0) true?
b. Write P (k).
c. Write P (k + 0).
d. In a proof by mathematical induction that this divisibil-

ity property holds for all integers n > 0, what must be
shown in the inductive step?

7. For each positive integer n, let P (n) be the property

2" < (n + 1)!.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that this inequality

holds for all integers n > 2, what must be shown in the
inductive step?

Prove each statement in 8-23 by mathematical induction.

8. 5" - 1 is divisible by 4, for each integer n > 0.

9. 7" 1 is divisible by 6, for each integer n > 0.

10. n3 -7n + 3 is divisible by 3, for each integer n > 0.

11. 32f - 1 is divisible by 8, for each integer n > 0.

12. For any integer n > 1, 7n - 2" is divisible by 5.

H 13. For any integer n > 1, x" - y' is divisible by x - y, where
x and y are any integers with x ¢ y.

H 14. n3 -n is divisible by 6, for each integer n > 2.

15. n(n2 + 5) is divisible by 6, for each integer n > 1.

16. 2" < (n + 1)!, for all integers n > 2.

17. 1 + 3n < 4n, for every integer n > 0.

18. 5" + 9 < 6, for all integers n > 2.
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19. n2 < 2n, for all integers n > 5.

20. 2' < (n + 2)!, for all integers n > 0.

21. ,fr-< + +** for all integers n > 2.

22. 1 + nx < (I + x), for all real numbers x >-I and inte-
gers n > 2.

23. a. n3 > 2n + 1, for all integers n > 2.
b. n! > n2, for all integers n > 4.

24. A sequence a,, a2, a3 , . . . is defined by letting a, = 3 and
ak = 7 ak-1 for all integers k > 2. Show that a. = 3 7n-1
for all integers n > 1.

25. A sequence bo, bl, b2, . . . is defined by letting bo = 5 and
bk = 4 + bk I for all integers k > 1. Show that (b.) 2 

>

16n2 for all integers n > 0.

26. A sequence co, c1, c2 , . . . is defined by letting co 3 and
Ck = (ck- )2 for all integers k > 1. Show that c, = 32n for
all integers n > 0.

27. A sequence dl, d2 , d3 , . .. is defined by letting di = 2 and

dk = dk-I for all integers k > 2. Show that for all integers
k

2
n > 1, d =--

n!

28. Prove that for all integers n > 1,

1 1+3 1+3+5

3 5+7 7+9+11

+ 3 + ... + (2n -1)

(2n + 1) + + (4n- 1)

29. As each of a group of business people arrives at a meeting,
each shakes hands with all the other people present. Use
mathematical induction to show that if n people come to the
meeting then [n(n -1)]/2 handshakes occur.

In order for a proof by mathematical induction to be valid, the
basis statement must be true for n = a and the argument of the
inductive step must be correct for every integer k > a. In 30 and
31 find the mistakes in the "proofs" by mathematical induction.

30. "Theorem:" For any integer n > 1, all the numbers in a set
of n numbers are equal to each other.

"Proof (by mathematical induction): It is obviously true
that all the numbers in a set consisting of just one number
are equal to each other, so the basis step is true. For the
inductive step, let A = {a,, a2 , - . ., ak, ak+1 I be any set of
k + I numbers. Form two subsets each of size k:

B = .a, a2, a3, .... ak} and

C = (a,,a3,a4, .... ak+l)-

(B consists of all the numbers in A except ak+1, and C
consists of all the numbers in A except a2.) By inductive
hypothesis, all the numbers in B equal a, and all the num-
bers in C equal aI (since both sets have only k numbers).

But every number in A is in B or C, so all the numbers in
A equal a,; hence all are equal to each other."

31. "Theorem:" For all integers n > 1, 3' - 2 is even.

"Proof (by mathematical induction): Suppose the theo-
rem is true for an integer k, where k > 1. That is, suppose
that 3k - 2 is even. We must show that 3k+1 - 2 is even.
But

3 k - 2 3k 3 - 2 = 3k(l + 2 )- 2

= (3 k - 2) + 3k -2.

Now 3k - 2 is even by inductive hypothesis and 3k . 2 is
even by inspection. Hence the sum of the two quantities is
even (by Theorem 3.1.1). It follows that 3kk+1 - 2 is even,
which is what we needed to show."

32. An L-tromino, or tromino for short, is similar to a domino
but is shaped like an L: 11. Call a checkerboard that is formed
using m squares on a side an m x m checkerboard. If one
square is removed from a 4 x 4 checkerboard, the remain-
ing squares can be completely covered by trominos. For
instance, a covering for one such board is the following:

Use mathematical induction to prove that for any integer
n > 1, if one square is removed from a 2" x 2" checker-
board, the remaining squares can be completely covered by
trominos.

33. In a round-robin tournament each team plays every other
team exactly once. If the teams are labeled T1, T2, . . , T_
then the outcome of such a tournament can be represented
by a drawing, called a directed graph, in which the teams
are represented as dots and an arrow is drawn from one dot
to another if, and only if, the team represented by the first
dot beats the team represented by the second dot. For ex-
ample, the directed graph below shows one outcome of a
round-robin tournament involving five teams, A, B, C, D,
and E.

B
A

V

Use mathematical induction to show that in any round-robin
tournament involving n teams, where n > 2, it is possible to

,Vlm�All

I

E

&V 11 11
WO,

10G
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label the teams TX, T2, .. ., T, so that Ti beats [i+, for all i =
1, 2, . . -, n-1. (For instance, one such labeling in the ex-
ample above is T, = A, T2 = B, T3 = C, T4 = E, T5 = D.
(Hint: Given k + 1 teams, pick one-say T'-and apply the
inductive hypothesis to the remaining teams to obtain an or-
dering T1, T2, . . , Tk. Consider three cases: T' beats T1, T

loses to the first m teams (where 1 < m < k -1) and beats
the (m + I)st team, and T' loses to all the other teams.)

H * 34. On the outside rim of a circular disk the integers from I
through 30 are painted in random order. Show that no mat-
ter what this order is, there must be three successive integers
whose sum is at least 45.

4.4 Strong Mathematical Induction
and the Well-Ordering Principle
Mathematics takes us stillfurtherfrom what is human into the region of absolute
necessity, to which not only the actual world, but every possible world, must conform.
- Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is
a technique for establishing the truth of a sequence of statements about integers. Also,
a proof by strong mathematical induction consists of a basis step and an inductive step.
However, the basis step may contain proofs for several initial values, and in the inductive
step the truth of the predicate P (n) is assumed not just for one value of n but for all values
through k - 1, and then the truth of P(k) is proved.

Any statement that can be proved with ordinary mathematical induction can be proved
with strong mathematical induction. The reason is that given any integer k > b, if the
truth of P (k) alone implies the truth of P (k + 1), then certainly the truth of P (a),
P(a + 1), . . ., and P(k) implies the truth of P(k + 1). It is also the case that any state-
ment that can be proved with strong mathematical induction can be proved with ordinary
mathematical induction. A proof is sketched in exercise 25 at the end of this section.

Strictly speaking, the principle of strong mathematical induction can be written without
a basis step if the inductive step is changed to "Vk > a, if P(k) is true then P(k + 1) is
true." The reason for this is that the statement "P (i) is true for all integers i with a < i < k
is vacuously true for k = a. Hence, if the implication in the inductive step is true, then the
conclusion P (a) must also be true,* which proves the basis step. However, in many cases

*1f you have proved that a certain if-then statement is true and if you also know that the hypothesis
is true, then the conclusion must be true.

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers
with a < b. Suppose the following two statements are true:

1. P(a), P(a + 1), . . ., and P(b) are all true. (basis step)

2. For any integer k > b, if P(i) is true for all integers i with a < i < k, then P(k)
is true. (inductive step)

Then the statement

for all integers n > a, P(n)

is true. (The supposition that P (i) is true for all integers i with a < i < k is called
the inductive hypothesis.)
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the proof of the implication for k > b does not work for a < k < b. So it is a good idea
to get into the habit of thinking separately about the cases where a < k < b by explicitly
including a basis step.

The principle of strong mathematical induction is known under a variety of different
names including the second principle of induction, the second principle of finite induction,
and the principle of complete induction.

Applying Strong Mathematical Induction
The divisibility by a prime theorem (Theorem 3.3.2) states that any integer greater than 1
is divisible by a prime number. We prove this theorem below using strong mathematical
induction.

Example 4.4.1 Divisibility by a Prime

Prove that any integer greater than 1 is divisible by a prime number.

Solution Let the property P (n) be the sentence "n is divisible by a prime number." We use
strong mathematical induction to prove that the property is true for every integer n > 2.

Show that the property is true for n = 2: The property is true for n = 2 because 2 is a
prime number and 2 is divisible by 2.

Show that for all integers k > 2, if the property is true for all i with 2 < i < k, then it
is true for k: Let k be an integer with k > 2. Suppose that

For all integers i with 2 < i < k, i is divisible by a prime number.
[This is the inductive hypothesis.]

[We must show that k is divisible by a prime number] Either k is prime or k is not prime.
If k is prime, then k is divisible by a prime number, namely itself. If k is not prime, then
k = ab, where a and b are integers with 2 < a < k and 2 < b < k. By the inductive
hypothesis, a is divisible by a prime number p, and so by transitivity of divisibility, k is
also divisible by p. Hence, regardless of whether k is prime or not, k is divisible by a
prime number [as was to be shown].

[Since we have proved the basis step and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.] E

Sometimes strong mathematical induction must be used to show that the terms of
certain sequences satisfy a certain property.

Example 4.4.2 Proving a Property of a Sequence

Define a sequence a,, a2, a3, ... as follows:

a, -0,

a2 2,

ak = 
3

aLk/2j + 2 for all integers k > 3.

a. Find the first seven terms of the sequence.

b. Prove that a, is even for each integer n > 1.
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Solution

a. a, -0,

a2 -2,

a3  
3aL1/2J + 2 = 3a1 + 2 = 3 0 + 2 = 2,

a4 = 3aL4/21 + 2 = 3a2 + 2 = 3 2 + 2 = 8,

a5  3aL5/2j + 2 = 3a 2 + 2 = 3 2 + 2 = 8,

a 6 =3al6/21 + 2= 3a 3 + 2 = 3 2 + 2 = 8,

a7 = 3al 7/21 + 2 = 3a3 + 2 = 3 * 2 + 2 = 8.

b. Let the property P(n) be the sentence "a, is even." We use strong mathematical
induction to show that the property holds for all integers n > 1.

Show that the property is true for n = 1 and n = 2: The property is true for n = I and
n = 2 because aI = 0 and a2 = 2 and both 0 and 2 are even integers.

Show that for all integers k > 2, if the property is true for all i with 1 < i <c k, then it
is true for k: Let k be an integer with k > 2 and suppose that

a, is even for all integers i with I < i < k.
[This is the inductive hypothesis.]

[We must show that ak is even.] By definition of ai, a2 , a3, . . -

a: = 3 aLk/2j + 2 for all integers k > 3.

Now atk/2n is even by the inductive hypothesis [because k > 2 and so I < Lk/2i < k< .
Thus 3

aLk/21 is even [because odd -even = even], and hence 3
aLk/2j + 2 is even [because

even + even = even-see Section 3.1]. Consequently, ak, which equals 3
aLkl21 + 2, is

even [as was to be shown].

[Since we have proved the basis step and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.] U

Another use of strong induction concerns the computation of products. A product of
four numbers may be computed in a variety of different ways as indicated by the placing
of parentheses. For instance,

((xIx2)x 3)x4 means multiply xi and x2, multiply the result by X3,

and then multiply that number by X4.

And

(xIx 2 )(x3x4 ) means multiply x1 and x2 , multiply X3 and X4,

and then take the product of the two.

Note that in both examples above, although the factors are multiplied in a different order,
the number of multiplications-three-is the same. Strong mathematical induction is
used to prove a generalization of this fact.

Convention

Let us agree to say that a single number xI is a product with one factor and can be
computed with zero multiplications.
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Example 4.4.3 The Number of Multiplications Needed to Multiply n Distinct Numbers

Prove that for any integer n > 1, if x, x2, .. . , x, are n distinct real numbers, then no
matter how the parentheses are inserted into their product, the number of multiplications
used to compute the product is n -1.

Solution Let the property P (n) be the sentence "If xl, x2 , x, are n distinct real numbers,
then no matter how the parentheses are inserted into their product, the number of multi-
plications used to compute the product is n -1." We use strong mathematical induction
to show that the property is true for all integers n > 1.

Show thattheproperty is truefor n = 1: The property is true for n = 1 because by agree-
ment, Xl is a product with one factor and is computed using I - 1, or 0, multiplications.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k, then it
is true for k: Let k > I be an integer and suppose that

For all i with I < i < k, if x, x2, .. .., xi are i distinct real numbers, then
no matter how the parentheses are inserted into their product, the number
of multiplications used to compute the product is i -1.

[This is the inductive hypothesis.]

Consider a product of k distinct factors: x, X2, .Xk. [We must show that no matter
how parentheses are inserted into the product of these factors, the number of multi-
plications is k - 1.] When parentheses are inserted in order to compute the product of
the factors xI, x2, .... , X,, some multiplication must be the final one. (For instance, in
the product ((xlx2 )x3)((x4 (x5X6 ))x7 ), the final multiplication is between ((xlx 2)x3 ) and
((X4(x 5 X 6 ))x 7 ).) Consider the two factors in this final multiplication. Each is itself a
product of fewer than k factors. Say the left-hand product consists of rk and the right-
hand product of Sk factors. Then I < rk < k and I < Sk < k, and so by the inductive
hypothesis, the number of multiplications for the left-hand product is rk - I and the num-
ber of multiplications for the right-hand product is Sk - 1. It follows that the number of
multiplications to compute the product of all the factors xI, x2, . k is

(rk - l) + (Sk - 1) + 1,

where the +1 at the end represents the final multiplication between the left-hand and
right-hand products. But the sum of the factors in the left-hand product plus those in the
right-hand product is the total number of factors in the product. Hence rk + Sk = k, and
the number of multiplications equals

(rk - ) + (Sk -l)+ (rk + Sk) - I = k- 1.

[This is what was to be shown.]

[Since we have proved the basis step and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.] U

Binary Representation of Integers
Strong mathematical induction makes possible a proof of the frequently used fact that
every positive integer n has a unique binary integer representation. The proof looks com-
plicated because of all the notation needed to write down the various steps. But the idea
of the proof is simple. It is that if smaller integers than n have unique representations as
sums of powers of 2, then the unique representation for n as a sum of powers of 2 can be
found by taking the representation for n/2 (or for (n - 1)/2 if n is odd) and multiplying
it by 2.
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Theorem 4.4.1 Existence and Uniqueness of Binary Integer Representations

Given any positive integer n, n has a unique representation in the form

n = cr-2r+cr-1. 2r l+ *--+c 2 *2 2 +ci 2+co,

where r is a nonnegative integer, cr = 1, and cj = 1 or O for all j =0, 1, 2, . . ., r-1.

Proof:

We give separate proofs by strong mathematical induction to show first the existence
and second the uniqueness of the binary representation.

Existence (proof by strong mathematical induction): Consider the formula

n = cr 2 '+Cr-1 2  
1 + -+ c2 2 2+ cl 2 + co,

where r is a nonnegative integer, Cr = 1, and cj = 1 or 0 for al] j = 0, 1, 2, . -.

[This is the property P(n).]

Show that the property is true for n = 1: Let r = 0 and co = 1. Then I = c2',
and so n = 1 can be written in the required form.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k,
then it is true for k: Let k be an integer with k > 1. Suppose that for all integers i
with I < i < k, i can be written in the required form

i = cr 2 r+ Cr- 1 2  
1 + + c2 2 + cl 2 + co,

where r is a nonnegative integer, Cr = 1, and cj = 1 or 0 for all j = 0 l, 2, . . ., r -.
[This is the inductive hypothesis.]

We must show that k can be written as a sum of powers of 2 in the required form:

Case 1 (k is even): In this case k/2 is an integer, and since 1 < k/2 < k, then by
inductive hypothesis,

- = Cr2r + Cr- 2 r +" +c2 2 2 +clp2+co,
2

where r is a nonnegative integer, cr = 1, and cj = 1 or 0 for all j = 0 l, 2, . . .-, r .
Multiplying both sides of the equation by 2 gives

k = Cr .2r+l + cr .2r + + c 2 2 3 + cl .22 + co 2,

which is a sum of powers of 2 of the required form.

Case 2 (k is odd): In this case (k -1)/2 is an integer, and since I < (k - 1)/2 < k,
then by inductive hypothesis,

k = Cr2r + Cr- 2 r 1 + +C2 2 +cl 2+co,
2

where r is a nonnegative integer, cr = 1, and cj = 1 or O for all j = 0, 1, 2, . . ., r -.
Multiplying both sides of the equation by 2 and adding 1 gives

k = Cr .2r+l + Cr- 2r + '+ C2 23 + cl 22 + co .2 + 1,

which is the sum of powers of 2 of the required form.

continued on page 240
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The Well-Ordering Principle for the Integers
The well-ordering principle for the integers looks very different from both the ordinary
and the strong principles of mathematical induction, but it can be shown that all three
principles are equivalent. That is, if any one of the three is true, then so are both of the
others.

Note that when the context makes the reference clear, we will write simply "the well-
ordering principle" rather than "the well-ordering principle for integers."

Example 4.4.4 Finding Least Elements

In each case, if the set has a least element, state what it is. If not, explain why the
well-ordering principle is not violated.

a. The set of all positive real numbers.

b. The set of all nonnegative integers n such that n2 < n.

c. The set of all nonnegative integers of the form 46 - 7k, where k is an integer.

Solution

a. There is no least positive real number. For if x is any positive real number, then x/2 is
a positive real number that is less than x. No violation of the well-ordering principle
occurs because the well-ordering principle refers only to sets of integers, and this set
is not a set of integers.

The preceding arguments show that regardless of whether k is even or odd, k has a
representation of the required form. [Or in other words, P(k) is true as was to be
shown].

[Since we have proved the basis step and the inductive step of the strong mathe-
matical induction, the existence half of the theorem is true.]

Uniqueness: To prove uniqueness, suppose that there is an integer n with two dif-
ferent representations as a sum of nonnegative integer powers of 2. Equating the two
representations and canceling all identical terms gives

2r + c,- 2r-1 + + cl 2 + co = 25 + ds-1 25-l + + d, -2 + do 4.4.1

where r and s are nonnegative integers, r < s, and each ci and each di equal 0 or 1.
But by the formula for the sum of a geometric sequence (Theorem 4.2.3),

2 c + Cr-1 2 *2 + + cl2 + co < 2r+2r + + 2 1 = 2r+1 - 1

< 2s

< 2s +d- 12s- 1 + +di 2+d o ,

which contradicts equation (4.4.1). Hence the supposition is false, so any integer n
has only one representation as a sum of nonnegative integer powers of 2.
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b. There is no least nonnegative integer n such that n2 < n because there is no nonnegative
integer that satisfies this inequality. The well-ordering principle is not violated because
the well-ordering principle refers only to sets that contain at least one element.

c. The following table shows values of 46 - 7k for various values of k.

| k | O 2 |3 |4 |5 |6 | 7 | |-I -2 1-
46-7k 46 39 32 25 18 11 4 -3 * 53 60 |67 |

The table suggests, and you can easily confirm, that 46 - 7k < 0 for k > 7 and that
46 - 7k > 46 for k < 0. Therefore, from the other values in the table it is clear that 4 is
the least nonnegative integer of the form 46 - 7k. This corresponds to k = 6. U

Another way to look at the analysis of Example 4.4.4(c) is to observe that subtracting six
7's from 46 leaves 4 left over and this is the least nonnegative integer obtained by repeated
subtraction of 7's from 46. In other words, 6 is the quotient and 4 is the remainder for
the division of 46 by 7. More generally, in the division of any integer n by any positive
integer d, the remainder r is the least nonnegative integer of the form n - dk. This is
the heart of the following proof of the existence part of the quotient-remainder theorem
(the part that guarantees the existence of a quotient and a remainder of the division of an
integer by a positive integer). For a proof of the uniqueness of the quotient and remainder,
see exercise 18 of Section 3.7.

Quotient-Remand Theorem (Existen Part)

Given any integer n and any positive integer d, there exist integers q and r such that

n--dq+r and 0<r<d.

Proof:

Let S be the set of all nonnegative integers of the form

n - dk,

where k is an integer. This set has at least one element. [For if n is nonnegative, then

n-O - d = n > 0,

and son - 0 -d is in S. And if n is negative, then

n - nd = n(l - d) > 0,

<0 <0 since d is a positive integer

and so n - nd is in S.] It follows by the well-ordering principle that S contains a
least element r. Then, for some specific integer k = q,

n - dq = r

[because every integer in S can be written in this form]. Adding dq to both sides
gives

n = dq + r.

continued on page 242
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Furthermore, r < d. [For suppose r > d. Then

n-d(q + 1) = n-dq-d = r-d > 0O

and so n - d (q + 1) would be a nonnegative integer in S that would be smaller than
r. But r is the smallest integer in S. This contradiction shows that the supposition
r > d must be false.] The preceding arguments prove that there exist integers r and
q for which

n = dq + r and O < r < d.

[This is what was to be shown.]

Another consequence of the well-ordering principle is the fact that any strictly de-
creasing sequence of nonnegative integers is finite. That is, if rl, r2 , r3, . . . is a sequence
of nonnegative integers satisfying

ri > ri+1

for all i > 1, then r1, r2, r3 , . . . is a finite sequence. [For by the well-ordering principle
such a sequence would have to have a least element rk. It follows that rk must be the
final term of the sequence because if there were a term rk+l, then since the sequence is
strictly decreasing, rk+1 < rk, which would be a contradiction.] This fact is frequently
used in computer science to prove that algorithms terminate after a finite number of steps
and to prove that the guard conditions for loops eventually become false. It was also used
implicitly in the proof of Theorem 3.3.2 and to justify the claim in Section 3.8 that the
Euclidean algorithm eventually terminates.

Exercise Set 4.4
1. Suppose al,0, a23, .... is a sequence defined as follows:

a, = I, a2 = 3,

ak = ak-2 + 2ak-1 for all integers k > 3.

Prove that a, is odd for all integers n > 1.

2. Suppose bl, b2, b3, .... is a sequence defined as follows:

bh =4,b2 = 12

bk = bk 2 + bk I for all integers k > 3.

Prove that b, is divisible by 4 for all integers n > 1.

3. Suppose that co, cl, c 2, . is a sequence defined as follows:

co = 2, cl - 2, c2 = 6,

ck = 3 ck 3 for all integers k > 3.

Prove that c,, is even for all integers n > 0.

4. Suppose that di, d2 , d3, .... is a sequence defined as follows:

9 10
di = 9 , d2 =

1 0 IU'

dk = dk-l k 2 for all integers k > 3.

Prove that d, < I for all integers n > 0.

5. Suppose that eo, eI, e2 , ... is a sequence defined as follows:

eo= 1, el = 2, e2 = 3,

ek = ek-l + ek-2 + ek 3 for all integers k > 3.

Prove that en < 3' for all integers n > 0.

6. Suppose that fl, f2, f3, ... is a sequence defined as follows:

f, = 1, fk = 2 fLk/2j for all integers k > 2.

Prove that fn S n for all integers n > 1.

7. Suppose that go, g 1. g2, .. . is a sequence defined as follows:

go = 12, gl - 29,

gk = 5 gk- I 
6
gk-2 for all integers k > 2.

Prove that gn = 5 . 3' + 7 . 2" for all integers n > 0.

8. Suppose that ho, h 1, h2 , .... is a sequence defined as follows:

ho = 1.h, = 2, h2 = 3,

hk = hk- I + hk-2 + hk-3 for all integers k > 3.

a. Prove that h, < 3n for all integers n > 0.
b. Suppose that s is any real number such that s3 

> S
2 

+

s + 1. (This implies that s > 1.83.) Prove that h, < s'
for all n > 2.
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9. Define a sequence al, a2 , a 3, ... as follows: a, = I, a2 = 3,
and ak =ak- + ak - 2 for all integers k > 3. (This sequence
is known as the Lucas sequence.) Use strong mathematical

induction to prove that an < (7) for all integers n > 1.

10. You begin solving a jigsaw puzzle by finding two pieces
that match and fitting them together. Each subsequent step
of the solution consists of fitting together two blocks made
up of one or more pieces that have previously been assem-
bled. Use strong mathematical induction to prove that the
number of steps required to put together all n pieces of a
jigsaw puzzle is n - 1.

H 11. Use strong mathematical induction to prove the existence
part of the unique factorization theorem: Every integer
greater than or equal to 2 is either a prime number or a
product of prime numbers.

12. Any product of two or more integers is a result of successive
multiplications of two integers at a time. For instance, here
are a few of the ways in which a, a2a3a4 might be computed:
(aia 2)(a 3a4) or ((a1a2)a3)a4 ) or a, ((a2a3)a4). Use strong
mathematical induction to prove that any product of two or
more odd integers is odd.

13. Any sum of two or more integers is a result of successive
additions of two integers at a time. For instance, here are a
few of the ways in which a, + a2 + a3 + a4 might be com-
puted: (a, + a2 ) + (a3 + a4 ) or ((a, + a2 ) + a3) + a4 ) or
a, + ((a2 + a3) + a4 ). Use strong mathematical induction
to prove that any sum of two or more even integers is even.

H 14. Use strong mathematical induction to prove that for any in-
teger n > 2, if n is even, then any sum of n odd integers is
even, and if n is odd, then any sum of n odd integers is odd.

15. Compute 41, 42, 43, 44,4 5 , 46, 47 , and 48 . Make a conjec-
ture about the units digit of 4n where n is a positive integer.
Use strong mathematical induction to prove your conjecture.

16. Compute 30, 31, 32, 33, 34, 3', 36, 37, 38, 39, and 3' 0. Make

a conjecture about the units digit of 3" where n is a positive
integer. Use strong mathematical induction to prove your
conjecture.

17. Find the mistake in the following "proof" that purports to
show that every nonnegative integer power of every nonzero
real number is 1.

"Proof: Let r be any nonzero real number and let the prop-
erty P (n) be the equation "rn = 1."

Show that the property is true for n = 0: The property is
true for n = 0 because ro = I by definition of zeroth power.

Show that for all integers k > 0, if the property is true
for all integers i with 0 < i < k, then it is true for k: Let
k > 0 be an integer, and suppose that r' = I for all integers

i with 0 < i < k. [We must show that rk = I.] Now

rk r(k-I )+(k- I)-(k-2) because (k- 1) +
(k -I) -(k-2) = k

rk-
1  

rk-
1

rk -2

=1.1
I

by the laws of exponents

by inductive hypothesis

= 1.

Thus rk =1 [as was to be shown].

[Since we have proved the basis step and the inductive step,
we conclude that rn = I for all integers n > O.]"

* 18. Use the well-ordering principle to prove Theorem 3.3.2:
Every integer greater than I is divisible by a prime number.

19. Use the well-ordering principle to prove that every integer
n greater than I is either a prime number or a product of
prime numbers.

20. The Archimedean property for the rational numbers states
that for all rational numbers r, there is an integer n such that
n > r. Prove this property.

21. Use the result of exercise 20 and the well-ordering principle
for the integers to show that given any rational number r,
there is an integer m such that m < r < m + l.

H 22. Use the well-ordering principle to prove that given any inte-
ger n > 1, there exists an odd integer m and a nonnegative
integer k such that n = 2k . m.

* 23. Use the well-ordering principle to prove that if a and b are
any integers not both zero, then there exist integers u and v
such that gcd(a, b) = ua + vb. (Hint: Let S be the set of
all positive integers of the form ua + vb for some integers
u and v.)

24. Suppose P (n) is a property such that
1. P(0), P(l), P(2) are all true,
2. for all integers k > 0, if P(k) is true, then P(3k) is true.
Must it follow that P(n) is true for all integers n > O? If
yes, explain why; if no, give a counterexample.

25. Prove that if a statement can be proved by strong mathe-
matical induction, then it can be proved by ordinary math-
ematical induction. To do this, let P(n) be a property that
is defined for integers n, and suppose the following two
statements are true:
1. P(a), P(a + 1), P(a + 2), . P(b).
2. For any integer k > b, if P(i) is true for all integers i

with a < i < k, then P(k) is true.
The principle of strong mathematical induction would
allow us to conclude immediately that P(n) is true for all
integers n > a. Can we reach the same conclusion using the
principle of ordinary mathematical induction? Yes! To see
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this, let Q(n) be the property

P (j) is true for all integers j with a < j < n.

Then use ordinary mathematical induction to show that Q (n)
is true for all integers n > b. That is, prove
1. Q(b) is true.
2. For any integer k > b, if Q(k) is true the Q(k + I) is

true.

26. Give examples to illustrate the proof of Theorem 4.4.1.

H 27. It is a fact that every integer n > I can be written in the form

c ' 3' +c 3 + + + C2 32 + cl 3 + co,

Robert W. Floyd
(1936-2002)

Edsger W Dijkstra
(1930-2002)

where c, = I or 2 and ci = 0,1, or 2 for all integers
i = 0, 1, 2, . . ., r-1. Sketch a proof of this fact.

H * 28. Use mathematical induction to prove the existence part of
the quotient-remainder theorem for integers n > 0.

H * 29. Prove that if a statement can be proved by ordinary mathe-
matical induction, then it can be proved by the well-ordering
principle.

* 30. Prove that if a statement can be proved by the well-ordering
principle, then it can be proved by ordinary mathematical
induction.

4.5 Application: Correctness of Algorithms
[Pirogramming reliably-must be an activity of an undeniably mathematical nature
.... You see, mathematics is about thinking, and doing mathematics is always trying to
think as well as possible. -Edsger W. Dijkstra (198 1)

What does it mean for a computer program to be correct? Each program is designed to do
a specific task-calculate the mean or median of a set of numbers, compute the size of the
paychecks for a company payroll, rearrange names in alphabetical order, and so forth. We
will say that a program is correct if it produces the output specified in its accompanying
documentation for each set of input data of the type specified in the documentation.*

Most computer programmers write their programs using a combination of logical
analysis and trial and error. In order to get a program to run at all, the programmer must first
fix all syntax errors (such as writing ik instead of if, failing to declare a variable, or using
a restricted keyword for a variable name). When the syntax errors have been removed,
however, the program may still contain logical errors that prevent it from producing correct
output. Frequently, programs are tested using sets of sample data for which the correct
output is known in advance. And often the sample data are deliberately chosen to test
the correctness of the program under extreme circumstances. But for most programs the
number of possible sets of input data is either infinite or unmanageably large, and so no
amount of program testing can give perfect confidence that the program will be correct
for all possible sets of legal input data.

Since 1967, with the publication of a paper by Robert W. Floyd,t considerable ef-
fort has gone into developing methods for proving programs correct at the time they are
composed. One of the pioneers in this effort, Edsger W. Dijkstra, asserts that "we now
take the position that it is not only the programmer's task to produce a correct program
but also to demonstrate its correctness in a convincing manner."' Another leader in the

*Consumers of computer programs want an even more stringent definition of correctness. If a user
puts in data of the wrong type, the user wants a decent error message, not a system crash.
tR. W. Floyd, "Assigning meanings to programs," Proc. Symp. Appl. Math., Amer. Math. Soc. 19
(1967), 19-32.

tEdsger Dijkstra in 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming
(London: Academic Press, 1972), p. 5.
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field, David Gries, goes so far as to say that "a program and its proof should be developed
hand-in-hand, with the proof usually leading the way."* If such methods can eventually
be used to write large scientific and commercial programs, the benefits to society will be
enormous.

As with most techniques that are still in the process of development, methods for
proving program correctness are somewhat awkward and unwieldy. In this section we
give an overview of the general format of correctness proofs and the details of one crucial
technique, the loop invariant procedure. At this point, we switch from using the term
program, which refers to a particular programming language, to the more general term
algorithm.

Assertions
Consider an algorithm that is designed to produce a certain final state from a certain
initial state. Both the initial and final states can be expressed as predicates involving
the input and output variables. Often the predicate describing the initial state is called
the pre-condition for the algorithm, and the predicate describing the final state is
called the post-condition for the algorithm.

Example 4.5.1 Algorithm Pre-Conditions and Post-Conditions

Here are pre- and post-conditions for some typical algorithms.

a. Algorithm to compute a product of nonnegative integers

Pre-condition: The input variables m and n are nonnegative integers.

Post-condition: The output variable p equals mn.

b. Algorithm to find quotient and remainder of the division of one positive integer by
another

Pre-condition: The input variables a and b are positive integers.

Post-condition: The output variables q and r are integers such that
a = bq + r and 0 < r < b.

c. Algorithm to sort a one-dimensional array of real numbers

Pre-condition: The input variable A[l], A[2], . . ., A[n] is a one-dimensional
array of real numbers.

Post-condition: The output variable B[I], B[2]...., B[n] is a one-dimensional
array of real numbers with same elements as A[l], A[2], . .,
A[n] but with the property that B[il < B [j] whenever i < j. U

A proof of algorithm correctness consists of showing that if the pre-condition for the
algorithm is true for a collection of values for the input variables and if the statements of
the algorithms are executed, then the post-condition is also true.

The divide-and-conquer principle has been useful in many aspects of computer pro-
gramming, and proving algorithm correctness is no exception. The steps of an algorithm

*David Gries, The Science of Programming (New York: Springer-Verlag, 1981), p. 164.
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are divided into sections with assertions about the current state of algorithm variables
inserted at strategically chosen points:

[Assertion 1: pre-condition for the algorithm]

{Algorithm statements)

[Assertion 2]

{Algorithm statements}

[Assertion k - 1]

{Algorithm statements)

[Assertion k: post-condition for the algorithm]

Successive pairs of assertions are then treated as pre- and post-conditions for the
algorithm statements between them. For each i = 1, 2, .. ., k -1, one proves that if
Assertion i is true and all the algorithm statements between Assertion i and Assertion
(i + 1) are executed, then Assertion (i + 1) is true. Once all these individual proofs have
been completed, one knows that Assertion k is true. And since Assertion 1 is the same as
the pre-condition for the algorithm and Assertion k is the same as the post-condition for
the algorithm, one concludes that the entire algorithm is correct with respect to its pre-
and post-conditions.

Loop Invariants
The method of loop invariants is used to prove correctness of a loop with respect to
certain pre- and post-conditions. It is based on the principle of mathematical induction.
Suppose that an algorithm contains a while loop and that entry to this loop is restricted
by a condition G, called the guard. Suppose also that assertions describing the current
states of algorithm variables have been placed immediately preceding and immediately
following the loop. The assertion just preceding the loop is called the pre-condition
for the loop and the one just following is called the post-condition for the loop. The
annotated loop has the following appearance:

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop.
None contain branching statements
that lead outside the loop.]

end while

[Post-condition for the loop]

I. ai a;z

A loop is defined as correct with respect to its pre- and post-conditions if, and
only if, whenever the algorithm variables satisfy the pre-condition for the loop and
the loop terminates after a finite number of steps, the algorithm variables satisfy the
post-condition for the loop.

I
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Establishing the correctness of a loop uses the concept of loop invariant. A loop
invariant is a predicate with domain a set of integers, which is chosen to satisfy three
conditions:

1. It is true before the first iteration of the loop.

2. For each iteration of the loop, if it is true before the iteration, then it is true after the
iteration.

3. If the loop terminates after a finite number of iterations, the truth of the loop invariant
ensures the truth of the post-condition of the loop.

A version of the following theorem, called the loop invariant theorem, was first formulated
by C. A. R. Hoare in 1969.

L
I
I
2
5
I
L

II

C. A. R. Hoare
(born 1934)

Theorem 4.5.1 Loop Invariant Theorem

Let a while loop with guard G be given, together with pre- and post-conditions that
are predicates in the algorithm variables. Also let a predicate I (n), called the loop
invariant, be given. If the following four properties are true, then the loop is correct
with respect to its pre- and post-conditions.

I. Basis Property: The pre-condition for the loop implies that 1(0) is true before
the first iteration of the loop.

II. Inductive Property: For all integers k > 0 if the guard G and the loop invariant
I (k) are both true before an iteration of the loop, then I (k + 1) is true after
iteration of the loop.

III. Eventual Falsity of Guard: After a finite number of iterations of the loop, the
guard G becomes false.

IV. Correctness of the Post-Condition: If N is the least number of iterations after
which G is false and I (N) is true, then the values of the algorithm variables will
be as specified in the post-condition of the loop.

Proof:

The loop invariant theorem follows easily from the principle of mathematical in-
duction. Assume that I (n) is a predicate that satisfies properties I-IV of the loop
invariant theorem. [We will prove that the loop is correct with respect to its pre- and
post-conditions.] Properties I and II are the basis and inductive steps needed to prove
the truth of the following statement:

For all integers n > 0 if the while loop
iterates n times, then 1 (n) is true. 4.5.1

Thus, by the principle of mathematical induction, since both I and II are true, statement
(4.5.1) is also true.

Property III says that the guard G eventually becomes false. At that point the loop
will have been iterated some number, say N, of times. Since I (n) is true after the nth
iteration for every n > 0, then l(n) is true after the Nth iteration. That is, after the
Nth iteration the guard is false and I (N) is true. But this is the hypothesis of property
IV, which is an if-then statement. Since statement IV is true (by assumption) and its
hypothesis is true (by the argument just given), it follows (by modus ponens) that its
conclusion is also true. That is, the values of all algorithm variables after execution
of the loop are as specified in the post-condition for the loop.
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The loop invariant in the procedure for proving loop correctness may seem like a rabbit
in a hat. Where does it come from? The fact is that developing a good loop invariant is
a tricky process. Although learning how to do it is beyond the scope of this book, it is
worth pursuing in a more advanced course. Many people who have become good at the
process claim it has significantly altered their outlook on programming and has greatly
improved their ability to write good code.

Another tricky aspect of handling correctness proofs arises from the fact that execution
of an algorithm is a dynamic process-it takes place in time. As execution progresses, the
values of variables keep changing, yet often their names stay the same. In the following
discussion, when we need to make a distinction between the values of a variable just
before execution of an algorithm statement and just after execution of the statement, we
will attach the subscripts old and new to the variable name.

Example 4.5.2 Correctness of a Loop to Compute a Product

The following loop is designed to compute the product mx for a nonnegative integer m
and a real number x, without using a built-in multiplication operation. Prior to the loop,
variables i and product have been introduced and given initial values i 0 and product
=0.

[Pre-condition: m is a nonnegative integer,
x is a real number, i = 0, and product = 0.]

while (i A m)
1. product := product + x
2.i :=i+l

end while
[Post-condition: product = mx]

Let the loop invariant be

I(n): i = n and product =nx

The guard condition G of the while loop is

G: i 7& m

Use the loop invariant theorem to prove that the while loop is correct with respect to the
given pre- and post-conditions.

Solution

I. Basis Property: [1(0) is true before the first iteration of the loop.]
1(0) is "i = 0 and product = 0 . x", which is true before the first iteration of the

loop because 0 . x = 0.

II. Inductive Property: [If G A I (k) is true before a loop iteration (where k > 0), then
I (k + 1) is true after the loop iteration.]

Suppose k is a nonnegative integer such that G A I (k) is true before an iteration
of the loop. Then as execution reaches the top of the loop, i A m, product = kx,
and i = k. Since i A m, the guard is passed and statement 1 is executed. Before
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execution of statement 1,

producti1 e = kx.

Thus execution of statement 1 has the following effect:

productnew = productOld + x = kx + x = (k + 1)x.

Similarly, before statement 2 is executed,

iold = k,

so after execution of statement 2,

inew = iold + I = k + 1.

Hence after the loop iteration, the statement I (k + 1) (i = k + 1 and product =
(k + 1)x) is true. This is what we needed to show.

111. Eventual Falsity of Guard: [After a finite number of iterations of the loop, G be-

comes false.]

The guard G is the condition i : m, and m is a nonnegative integer. By I and II,
it is known that

for all integers n > 0 if the loop is iterated
n times, then i = n and product = nx.

So after m iterations of the loop, i = m. Thus G becomes false after m iterations of
the loop.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after
which G is false and I (N) is true, then the value of the algorithm variables will be

as specified in the post-condition of the loop.]

According to the post-condition, the value of product after execution of the loop
should be mx. But if G becomes false after N iterations, i = m. And if I (N) is
true, i = N and product = Nx. Since both conditions (G false and I (N) true) are
satisfied, m = i = N and product = mx as required. U

In the remainder of this section, we present proofs of the correctness of the crucial
loops in the division algorithm and the Euclidean algorithm. (These algorithms were
given in Section 3.8.)

Correctness of the Division Algorithm
The division algorithm is supposed to take a nonnegative integer a and a positive integer d
and compute nonnegative integers q and r such that a = dq + r and 0 < r < d. Initially,
the variables r and q are introduced and given the values r = a and q = 0. The crucial
loop, annotated with pre- and post-conditions, is the following:

[Pre-condition: a is a nonnegative integer

and d is a positive integer, r = a, and q = 0.]

while (r > d)

1. r := r - d

2.q :=q+1

end while

[Post-condition: q and r are nonnegative integers

with the property that a = qd + r and O < r < d.]
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Proof:

To prove the correctness of the loop, let the loop invariant be

I(n): r=a-nd > O and n=q.

The guard of the while loop is

|G: r > d|

I. Basis property: [1(0) is true before the first iteration of the loop.]
1(0) is "r = a - 0 d and q = O." But by the pre-condition, r = a. So since

a = a - 0 d, then r = a -0 d. Also q = 0 by the pre-condition. Hence 1(0) is
true before the first iteration of the loop.

II. Inductive Property: [If G A I (k) is true before an iteration of the loop (where
k > 0), then I (k + 1) is true after iteration of the loop.]

Suppose k is a nonnegative integer such that G A I (k) is true before an iteration
of the loop. Since G is true, r > d and the loop is entered. Also since I (k) is true,
r = a -kd > 0 and k = q. Hence, before execution of statements 1 and 2,

roId > d and rold = a -kd and qold = k.

When statements 1 and 2 are executed, then,

rmew = r.ld d= (a-kd)-d = a-(k + l)d 4.5.2

and

qnew = qold + I = k + 1 453

In addition, since rold > d before execution of statements 1 and 2, after execution of
these statements,

r., = r.ld d> d-d > 0. 4.5.4

Putting equations (4.5.2), (4.5.3), and (4.5.4) together shows that after iteration of the
loop,

rnew >_ and rnew = a-(k + l)d and qnew = k + 1.

Hence I (k + 1) is true.

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop, G
becomes false.]

The guard G is the condition r > d. Each iteration of the loop reduces the value
of r by d and yet leaves r nonnegative. Thus the values of r form a decreasing
sequence of nonnegative integers, and so (by the well-ordering principle) there must
be a smallest such r, say rmin. Then rmnj < d. [If rmiin were greater than d, the loop
would iterate another time, and a new value of r equal to rmin - d would be obtained.
But this new value would be smaller than rmin which would contradict the fact that
rmin is the smallest remainder obtained by repeated iteration of the loop.] Hence as
soon as the value r = rmin is computed, the value of r becomes less than d, and so
the guard G is false.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after
which G is false and I (N) is true, then the values of the algorithm variables will be
as specified in the post-condition of the loop.]
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Suppose that for some nonnegative integer N, G is false and I (N) is true. Then
r < d, r = a - Nd, r > 0, and q = N. Since q = N, by substitution,

r = a - qd.

Or, adding qd to both sides,

a = qd + r.

Combining the two inequalities involving r gives

O<r <d.

But these are the values of q and r specified in the post-condition, so the proof is
complete.

Correctness of the Euclidean Algorithm
The Euclidean algorithm is supposed to take integers A and B with A > B > 0 and
compute their greatest common divisor. Just before the crucial loop, variables a, b, and
r have been introduced with a = A, b = B, and r = B. The crucial loop, annotated with
pre- and post-conditions, is the following:

[Pre-condition: A and B are integers
with A > B > 0 a = A, b = B, r = B.]

while (b # 0)

1. r :=a modb
2. a :=b

3. b := r

end while

[Post-condition. a = gcd(A, B)]

Proof:

To prove the correctness of the loop, let the invariant be

I (n): gcd(a, b) = gcd(A, B) and 0 < b <a.

The guard of the while loop is

G: b: #0.

I. Basis Property: [1(0) is true before the first iteration of the loop.]
1(0) is

gcd(A, B) = gcd(a, b) and 0 < b < a.

According to the pre-condition,

a=A, b=B, r=B, and 0<B<A.

Hence gcd(A, B) = gcd(a, b). Since 0 < B < A, b = B, and a = A then
0 < b < a. Hence 1(0) is true.
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II. Inductive Property: [If G A 1 (k) is true before an iteration of the loop (where

k > 0), then I (k + 1) is true after iteration of the loop.]

Suppose k is a nonnegative integer such that G A I (k) is true before an iteration
of the loop. [We must show that I (k + 1) is true after iteration of the loop.] Since G

is true, bold 5 0 and the loop is entered. And since I (k) is true, immediately before
statement I is executed,

gcd(a.1d, bold) = gcd(A, B) and 0 < bold < aold. 4.5.5

After execution of statement 1,

rnew = aold mod bold-

Thus, by the quotient-remainder theorem,

aold = bold * q + rnew for some integer q

and rnew has the property that

0 <_ rnew < bold 4.5.6

By Lemma 3.8.2,

gcd(aold, bold) = gcd(bold, rnew),

and by the equation of (4.5.5),

gcd(aoid, bold) = gcd(A, B).

Hence

gcd(bold, rnew) = gcd(A, B). 4.5.7

When statements 2 and 3 are executed,

anew = bold and bnew = rnew 4.5.8

Substituting equations (4.5.8) into equation (4.5.7) yields

gcd(anew, bnew) = gcd(A, B). 4.5.9

By inequality (4.5.6),

O < rnew < bold

So substituting the values from equations (4.5.8) gives

0 < bnew < anew. 4.5.10

Hence after the iteration of the loop, by equation (4.5.9) and inequality (4.5.10),

gcd(a, b) = gcd(A, B) and O < b < a,

which is I(k + 1). [This is what we needed to show.]

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop, G

becomes false.]

Each value of b obtained by repeated iteration of the loop is nonnegative and
less than the previous value of b. Thus, by the well-ordering principle, there is a
least value bmin. The fact is that bmin = 0. [If bmin were not 0, then since r is given

the value of bmin in statement 3, r would not be 0 either But r 0 0 means that the

guard is true, and so the loop is iterated another time. In this iteration a value of

r is calculated that is less than the previous value of b, bmin. Then the value of b

is changed to r, which is less than bmin. This contradicts the fact that b in is the

least value of b obtained by repeated iteration of the loop. Hence bmin = 0.] Since
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b..in = 0, the guard is false immediately following the loop interation in which bmin

is calculated.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after
which G is false and I (N) is true, then the values of the algorithm variables will be

as specified in the post-condition.]
Suppose that for some nonnegative integer N, G is false and I (N) is true. [We

must show the truth of the post-condition: a = gcd(A, B).] Since G is false, b = 0,
and since I (N) is true,

gcd(a, b) = gcd(A, B). 4.5.11

Substituting b = 0 into equation (4.5.11) gives

gcd(a, 0) = gcd(A, B).

But by Lemma 3.8.1,

gcd(a, 0) = a.

Hence a = gcd(A, B) [as was to be shown].

Exercise Set 4.5
Exercises 1-5 contain a while loop and a predicate. In each case
show that if the predicate is true before entry to the loop, then it
is also true after exit from the loop.

1. loop: while (m > 0 and m < 100)

m :=m + 1
n :=n - 1

end while

predicate: m + n = 100

2. loop: while (m > 0 and m < 100)

m :=m + 4

n :=n- 2

end while

predicate: m + n is odd

3. loop: while (m > 0 and m < 100)

m := 3 m

n :=5 n

end while

predicate: m3 > n2

4. loop: while (n > 0 and n < 100)

n := n + 1

end while

Exercises 6-9 each contain a while loop annotated with a pre-
and a post-condition and also a loop invariant. In each case, use
the loop invariant theorem to prove the correctness of the loop
with respect to the pre- and post-conditions.

6. [Pre-condition: m is a nonnegative integer, x is a real num-
ber, i = 0, and exp= 1.]

while (i A m)

1. exp:= exp . x
2. i := i + 1

end while

[Post-condition: exp - exp nx and i = n]
loop invariant: I (n) is "exp = Xn and i =n."

7. [Pre-condition: largest A A[l] and i = 1]

while (i # m)

1. i =i +
2. if A[i] > largest then largest := A[i]

end while

[Post-condition: largest = maximum value of A[l], A[2],
., A[m]]

loop invariant: 1(n) is "largest = maximum value of A[l],
A[2],...,A[n+l]andi=n+l."

predicate: 2" < (n + 2)!

5. loop: while (n > 3 and n < 100)

n := n + 1

end while

predicate: 2n + 1 < 2'
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8. [Pre-condition: sum = A[I] and i = 1]

while (i 7 m)

1. i := i +1
2. sum: = sum + A[i]

end while

[Post-condition: sum = All] + A[2] + + Alm]]

loop invariant: I (n) is "i = n + 1 and sum = A[1] +
A[21+ + AA[n+ I]."

9. [Pre-condition: a = A and A is a positive integer]

while (a > 0)

l.a :=a -2

end while

[Post-condition: a = O if A is even and a = 1 if A is odd.]

loop invariant: I (n) is "both a and A are even integers or

both are odd integers and a > -. "

H * 10. Prove correctness of the while loop of Algorithm 3.8.3 (in
exercise 24 of Exercise Set 3.8) with respect to the following
pre- and post-conditions:

Pre-condition: A and B are positive integers,
a = A, and b = B.

Post-condition: One of a or b is zero and the other
is nonzero. Whichever is nonzero
equals gcd(A, B).

Use the loop invariant

I (n) "(1) a and b are nonnegative integers with
gcd(a, b) = gcd(A, B).

(2) at most one of a and b equals 0,
(3) 0 < a + b < A + B -n."

I1. The following while loop implements a way to multiply two
numbers that was developed by the ancient Egyptians.

[Pre-condition: A and B are positive integers, x - A,
y = B, and product = 0.]

while (y 0 0)

r := y mod 2

if r = 0
then do x : 2 x

y := y div 2

end do

if r = 1
then do product := product + x

end do

end while

[Post-condition: product - A * B]

Prove the correctness of this loop with respect to its pre- and
post-conditions by using the loop invariant

l(n): "xy+product=A B."

* 12. The following sentence could be added to the loop invariant
for the Euclidean algorithm:

There exist integers u, v, s, and t such that
a=uA+vB and b=sA+tB. 4.5.12

a. Show that this sentence is a loop invariant for

while (b A 0)
r :=a modb

a :=b

b := r

end while

b. Show that if initially a = A and b = B, then sentence
(4.5.12) is true before the first iteration of the loop.

c. Explain how the correctness proof for the Euclidean al-
gorithm together with the results of (a) and (b) above
allow you to conclude that given any integers A and B
with A > B > 0, there exist integers u and v so that
gcd(A, B) = uA + vB.

d. By actually calculating u, v, s, and t at each stage of ex-
ecution of the Euclidean algorithm, find integers u and v
so that gcd(330. 156) = 330u + 156v.



CHAPTER 5

SET THEORY

In the late nineteenth century, Georg Cantor was the first to realize the potential usefulness
of investigating properties of sets in general as distinct from properties of the elements

t that comprise them. Many mathematicians of his time resisted accepting the validity
of Cantor's work. Now, however, abstract set theory is regarded as the foundation of

BE mathematical thought. All mathematical objects (even numbers!) can be defined in terms
of sets, and the language of set theory is used in every mathematical subject.

- In this chapter we introduce the basic definitions and notation of set theory and show
how to establish properties of sets through the use of proofs and counterexamples. We

, also introduce the notion of a Boolean algebra, explain how to derive its properties, and
g0 discuss their relationships to logical equivalencies and set identities. The chapter ends
- with a discussion of a famous "paradox" of set theory and its relation to computer science.

Georg Cantor 5 Bn
(1845-1918) 5.1 Basic Definitions of Set Theory

The introduction of suitable abstractions is our only mental aid to organize and master

complexity. -E. W. Dijkstra, 1930-2002

The words set and element are undefined terms of set theory just as sentence, true, and
false are undefined terms of logic. The founder of set theory, Georg Cantor, suggested
imagining a set as a "collection into a whole M of definite and separate objects of our
intuition or our thought. These objects are called the elements of M." Cantor used the
letter M because it is the first letter of the German word for set: Menge. Following the
spirit of his notation (though not the letter), let S denote a set and a an element of S.
Then, as indicated in Section 2.1, a E S means that a is an element of S, a 0 S means
that a is not an element of S, {1, 2, 31 refers to the set whose elements are 1, 2, and 3, and
{1, 2, 3, ... .} refers to the set of all positive integers. The axiom of extension says that a
set is completely determined by its elements; the order in which the elements are listed is
irrelevant, as is the fact that some elements may be listed more than once.

Example 5.1.1 The f ) Notation for Sets

a. Suppose that Ann, Bob, and Cal are three students in a discrete mathematics class.
Since the following sets all have the same elements-namely Ann, Bob, and Cal-
they all represent the same set:

{Ann, Bob, Call, {Bob, Cal, Ann), {Bob, Bob, Ann, Cal, Ann)

b. {Ann} denotes the set whose only element is Ann, whereas the word Ann denotes Ann
herself. Since these are different {Ann} A Ann.

255
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c. Sets can themselves be elements of other sets. For example, I 1, {I 1 I has two elements:
the number 1 and the set {1}.

d. Sometimes a set may appear to have more elements than it really has. For every
nonnegative integer n, let Un = {-n, n}. Then U2 = {-2, 2} and U1 = {-1, 1} both
have two elements, but

U0 = {-0, 01 = {°)

has only one element since -0 = 0. U

As noted in Section 2.1, a set may also be defined by writing A = {x E S I P(x)),
where the left-hand brace is read "the set of all," the vertical bar is read "such that," and
P(x) is a property. An element x is in A if, and only if, x is in S and P(x) is true.

Occasionally we will write {x I P (x) I without being specific about where the element
x comes from. It turns out that unrestricted use of this notation can lead to genuine
contradictions in set theory. We will discuss one of these in Section 5.4 and will be careful
to use this notation purely as a convenience in cases where the set S could be specified if
necessary.

Example 5.1.2 Sets Given by a Defining Property

Recall that R denotes the set of all real numbers, Z the set of all integers, and Z+ the set
of all positive integers. Describe each of the following sets.

a. {x E R I-2 < x < 5)

b. {x E Z I-2 < x < 51

c. {x E Z+ 1 -2 < x < 5)

Solution

a. {x E R 1 -2 < x < 5} is the open interval of real numbers strictly between -2 and 5.
It is pictured as follows:

-3 -2 -1 0 1 2 3 4 5 6 7 8
< I o I I I I I I I I I

b. {x E Z I-2 < x < 5} is the set of all integers between -2 and 5. It is equal to the set
{-1,0, 1,2,3, 41.

c. Since all the integers in Z+ are positive, {x E Z+ 1-2 < x < 51 = {1, 2, 3, 4}.

Subsets
A basic relation between sets is that of subset.

I I . , u I

every element sof A is also\ anr elm n of B. 000 0 00t0000\0 \00005$\ 0t0

p Thesphrse A is containeiBdBn Aaealnaiys o at

A is asuet of B.
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It follows from the definition of subset that a set A is not a subset of a set B, written
A Z B, if, and only if, there is at least one element of A that is not an element of B.
Symbolically:

A B X 3xsuchthatxEAandx B.

Example 5.1.3 Subsets

Suppose B76, XR3, D54, ES2, and XL5 are the model numbers of certain pieces of
equipment. Let A = {B76, XR3, D54, XL5I, B = {B76, D54J, and C {ES2, XL5}.

a. Is B CA? b. Is CC A? c. Is B CB?

Solution

a. Yes. Both elements of B are in A.

b. No; ES2 is in C but not in A.

c. Yes. Both elements of B are in B. (The definition of subset implies that any set is a
subset of itself.) U

Let A and B be sets. A is a proper subset of B if, and only if, every element of A is
in B but there is at least one element of B that is not in A.

it sets A and B are represented as regions in tne plane, relationships between A anCd Ls
can be represented by pictures, called Venn diagrams, that were introduced by the British
mathematician John Venn in 1881. For instance, the relationship A C B can be pictured
in one of two ways, as shown in Figure 5.1.1.

(a) (b)

Figure 5.1.1 A C B

The relationship A Z B can be represented in three different ways with Venn diagrams,
as shown in Figure 5.1.2. If we allow the possibility that some subregions of Venn diagrams
do not contain any points, then in Figure 5.1.1 diagram (b) can be viewed as a special
case of diagram (a) by imagining that the part of B outside A does not contain any
points. Similarly, diagrams (a) and (c) of Figure 5.1.2 can be viewed as special cases of
diagram (b). To obtain (a) from (b), imagine that the region of overlap between A and
B does not contain any points. To obtain (c), imagine that the part of B that lies outside

A B A

(a) (b) (c)

Figure 5.1.2 A 5 B

John Venn
(1834-1923)

I
I

R
53
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A does not contain any points. However, in all three diagrams it would be necessary to
specify that there is a point in A that is not in B.

Venn diagrams are useful for exploring properties that involve only two or three sets,
but they are not very helpful when the number of sets is four or more. For instance, if
the requirement is made that a Venn diagram must show every possible intersection of
the sets, it is impossible to draw a symmetric Venn diagram for four sets, or, in fact, for
any nonprime number of sets. In 2002, computer scientists/mathematicians Carla Savage
and Jerrold Griggs and undergraduate student Charles Killian solved a longstanding open
problem by proving that it is possible to draw such a symmetric Venn diagram for any
prime number of sets. For n > 5, however, the resulting pictures are very complicated!
The existence of such symmetric diagrams has applications in the area of computer science
called coding theory.

Example 5.1.4 Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational numbers, and real numbers, respec-
tively, Z is a subset of Q because every integer is rational (any integer n can be written
in the form n),and Q is a subset of R because every rational number is real (any rationalQ Q R number can be represented as a length on the number line). Z is a proper subset of Q
because there are rational numbers that are not integers (for example, 2) and Q is a proper

Figre 513 subset of R because there are real numbers that are not rational (for example, VA). This
gu 5..3is shown diagrammatically in Figure 5.1.3. U

It is important to distinguish clearly between the concepts of set membership (e) and
set containment (C). The following example illustrates some distinctions between them.

Example 5.1.5 Distinction between E and C

Which of the following are true statements?

a. 2E{1,2,3} b. {2 {l1,2,31 c. 2C{1,2,3}

d. {2} C {1, 2, 3} e. {2} C {{1}, {21} f. {2} E {{1}, (2}}

Solution Only (a), (d), and (f) are true.
For (b) to be true, the set {1, 2, 3} would have to contain the element {2}. But the only

elements of (1, 2, 3} are 1, 2, and 3, and 2 is not equal to {2}. Hence (b) is false.
For (c) to be true, the number 2 would have to be a set and every element in the set 2

would have to be an element of { 1, 2, 3}. This is not the case, so (c) is false.
For (e) to be true, every element in the set containing only the number 2 would have

to be an element of the set whose elements are {l} and {2}. But 2 is not equal to {1} or
(2}, and so (e) is false. U

Set Equality
Recall that by the principle of extension, sets A and B are equal if, and only if, they have
exactly the same elements. We restate this as a definition using the language of subsets.

a. a

Given sets A and B, A equals B, written A = B, if, and only if, every element of A
is in B and every element of B is in A.

Symbolically:

A=B X ACBandBCA.
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This version of the definition of equality implies the following:

To know that a set A equals a set B, you must know
that A C B and you must also know that B C A.

Example 5.1.6 Set Equality

Let sets A, B, C, and D be defined as follows:

A = {n E Z I n = 2p, for some integer p},

B = the set of all even integers,

C = {m E Z I m = 2q -2, for some integer q},

D = {k e Z I k = 3r + 1, for some integer r}.

a. IsA=B? b. IsA=D? c. IsA=C?

Solution

a. Yes. A = B because every integer of the form 2p, for some integer p, is even (so
A C B), and every integer that is even can be written in the form 2p, for some integer
p (so B C A).

b. No. A 0 Dforthefollowingreason: 2 c Asince2 = 2. 1; but2 ¢ D. Forif2werean
element of D, then 2 would equal 3r + 1, for some integer r. Solving for r would give

3r + 1 = 2

3r = 2- 1
3r = 1

1
3.

This argument shows that if 2 were an element of D, then there would be an integer r
such that r = 1/3. But 1/3 is not an integer, and so 2 V D. Since there is an element
in A that is not in D, A A D.

c. Yes. A = C if, and only if, every element of A is in C and every element of C is in A.
Considering the definitions of A and C, deciding whether A = C involves deciding
whether both of the following questions can be answered yes:

1. Can any integer that can be written in the form 2p, for some integer p, also be
written in the form 2q -2, for some integer q?

2. Can any integer that can be written in the form 2q - 2, for some integer q, also be
written in the form 2p, for some integer p?

To answer question (1), suppose an integer n equals 2p, for some integer p. Can
you find an integer q so that n equals 2q - 2? If so, then

2q - 2 =2p

2q = 2 p+ 2 = 2 (p+ 1)

and thus q = p+ 1.

Now, go backwards through the steps: If n = 2p, where p is an integer, let q = p + 1.
Then q is an integer (since it is a sum of integers) and

2q - 2 = 2 (p + 1) - 2 = 2p - 2 + 2 = 2p.

Hence the answer to question (1) is yes: A C C.
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To answer question (2), suppose an integer m equals 2 q - 2, for some integer q.
Can you find an integer p such that m equals 2p? If so, then

2 p= 2 q - 2 =2 (q- 1)

and thus p = q - 1.

Again go backwards through the steps: If m = 2 q -2, where q is an integer, let
p = q - 1. Then p is an integer (since it is a difference of two integers), and

2p= 2 (q - 1) = 2q - 2.

Hence the answer to (2) is yes: C C A.
Since A C C and C C A, then A = C by definition of set equality.
The type of explanation used in this example is called an element argument. We

discuss element arguments further in the next section. U

Operations on Sets
Most mathematical discussions are carried on within some context. For example, in a
certain situation all sets being considered might be sets of real numbers. In such a situation,
the set of real numbers would be called a universal set or a universe of discourse for the
discussion.

S ! I. .

Giuseppe Peano
(1858-1932)

Let A and B be subsets of a universal set U.

1. The union of A and B, denoted A U B, is the set of all elements x in U such that
xis in A or xis in B.

2. The intersection of A and B, denoted A n B, is the set of all elements x in U
such that x is in A and x is in B.

3. The difference of B minus A (or relative complement of A in B), denoted
B - A, is the set of all elements x in U such that x is in B and x is not in A.

4. The complement of A, denoted AC, is the set of all elements x in U such that x
is not in A.

Symbolically:

A U B = {x E U I X E A or x E B),

AfnB = {x E UIx E Aandx E B},
B -A = {x E U I x E B and x 0 Al,

Ac = {x e U I x 0 Al.

Thus the union of A and B is the set of elements in U that are in at least one of the
sets A and B. The intersection of A and B is the set of elements common to both sets
A and B. The difference of B minus A is the set of elements in B that are not in A.
And the complement of A is the set of elements in the universal set U that are not in A.
The symbols E, U, and n were introduced in 1889 by the Italian mathematician Giuseppe
Peano.
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Example 5.1.7

Example 5.1.8

Unions, Intersections, Differences, and Complements

Let the universal set be the set U = la, b, c, d, e, f, g} and let A = {a, c, e, g) and
B = {d, e, f, g}. Find A U B, A fl B, B - A, and Ac.

Solution AUB=(a,c,d,e,f,g) AfnB={e,g)

B-A = {d, f} Ac = {b,d, f}

An Example with Intervals

Let the universal set be the set R of all real numbers and let A = {x E R I - < x < 0}
and B = {x E R I 0 < x < I}. These sets are shown on the number lines below.

-2 -1 0 1 2

A

-2 -1 0 1 2

B

Find A U B, A n B, and Ac.

Solution AUB={xeRI - <x<OorO<x < lj={xERI-1 <x< 1}.

-2 -1 0 1 2

A UB

A n B = {x E R 1-I < x < O and 0 < x < 1} = -{0.

-2 -1 0 1 2
< I I I I O

A nB

Ac = {x E R I it is not the case that - 1 < x < 01

= {x E R I it is not the case that (-1 < x and x < 0)}

= {x E Rlx < -orx > 0}

by definition of the
double inequality

by De Morgan's
law

-2 -1 0 1 2

The Venn diagram representations for union, intersection, difference, and complement
are shown in Figure 5.1.4.

Shaded region
represents A U B.

Shaded region Shaded region
represents A n B. represents B - A.

Figure 5.1.4

Shaded region
represents A'.
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The Empty Set
We have stated that a set is defined by the elements that compose it. This being so, can
there be a set that has no elements? It turns out that it is convenient to allow such a
set. Otherwise, every time we wanted to take the intersection of two sets or to define a
set by specifying a property, we would have to check that the result had elements and
hence qualified for "sethood." For example, if A = {1, 3} and B = {2, 4), then A n B
has no elements. Neither does {x E R I x2 1 } because no real numbers have negative
squares.

It is somewhat unsettling to talk about a set with no elements, but it often happens
in mathematics that the definitions formulated to fit one set of circumstances are satisfied
by some extreme cases not originally anticipated. Yet changing the definitions to exclude
those cases would seriously undermine the simplicity and elegance of the theory taken as
a whole.

In Section 5.2 we will show that there is only one set with no elements. Because it is
unique, we can give it a special name. We call it the empty set (or null set) and denote it
by the symbol 0. Thus {1, 31 n {2,41 = 0 and {x G R I x2 =-1} = 0.

Example 5.1.9 A Set with No Elements

Describe the set D = {x E R 1 3 < x < 21.

Solution Recall that a < x < b means that a < x and x < b. So X consists of all real
numbers that are both greater than 3 and less than 2. Since there are no such numbers, D
has no elements and so D = 0.

Partitions of Sets
In many applications of set theory, sets are divided up into nonoverlapping (or disjoint)
pieces. Such a division is called a partition.

!. ,

Two sets are called disjoint if, and only if, they have no elements in common.
Symbolically:

A and B are disjoint X A n B = 0.

Example 5.1.10 Disjoint Sets

Let A = {1, 3, 5) and B = {2, 4, 6). Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words,
{1, 3, 5 n {2, 4,6) =0. U

Sets A 1, A2 , . . ., A, are mutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets Ai and Aj with distinct subscripts have any elements in
common. More precisely, for all i, j = 1, 2, . . ., n,

Ai n Aj = 0 whenever i :I j.
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Example 5.1.11 Mutually Disjoint Sets

a. Let Al = {3, 51, A2 = {1, 4, 6}, and A3 = {2}. Are Al, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6), B2 = {3, 7}, and B3 = {4, 5}. Are B1, B2 , and B3 mutually disjoint?

Solution

a. Yes. AI and A2 have no elements in common, Al and A3 have no elements in common,
and A2 and A3 have no elements in common.

b. No. B1 and B3 both contain 4. .

Suppose A, AI, A2 , A3 , and A4 are the sets of points represented by the regions shown
in Figure 5.1.5. Then Al, A2 , A3 , and A4 are subsets of A, and A = AI U A2 U A3 U A4.
Suppose further that boundaries are assigned to the regions representing A2, A3 , and A4
in such a way that these sets are mutually disjoint. Then A is called a union of mutually
disjoint subsets, and the collection of sets {A 1, A2 , A3, A4} is said to be a partition of A.

A

Figure 5.1.5 A Partition of a Set

I. .

A collection of nonempty sets {A 1, A2 , .. ,A,,) is a partition of a set A if, and only
if,

1. A=AIUA 2 U...UA,;

2. Al, A2 , ... , An are mutually disjoint.

Example 5.1.12 Partitions of Sets

a. LetA={1,2,3,4,5,6},AI ={1,2},A 2 ={3,4},andA 3-=5,6}. Is{A 1 ,A2 ,A 3}
a partition of A?

b. Let Z be the set of all integers and let

To = {n E Z I n = 3k, for some integer k},
T, = {n E Z I n = 3k + 1, for some integer k}, and

T2 = {n E Z I n = 3k + 2, for some integer k}.

Is {To, T1, T2} a partition of Z?

Solution

a. Yes. By inspection, A = AI U A2 U A3 and the sets Al, A2 , and A3 are mutually
disjoint.

b. Yes. By the quotient-remainder theorem and exercise 18 of Section 3.7, every integer
n can be represented in exactly one of the three forms

n = 3k or n = 3k + I or n = 3k + 2,
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for some integer k. This implies that no integer can be in any two of the sets To, T1, or
T2. So To, T1, and T2 are mutually disjoint. It also implies that every integer is in one
of the sets To, T 1, or T2 . So Z = To U T1 U T2. E

Power Sets
There are a variety of situations in which it is useful to consider the set of all subsets of a
particular set. The power set axiom guarantees that this is a set.

Given a set A, the power set of A, denoted 0 (A), is the set of all subsets of A.

Example 5.1.13 Power Set of a Set

Find the power set of the set {x, yl. That is, find 5Q({x, y}).

Solution Q({x, yJ) is the set of all subsets of {x, y}. Now since 0 is a subset of every set,
0 E Y({x, y)). Also any set is a subset of itself, so {x, y} E -({x, yJ). The only other
subsets of {x, y} are {x} and {y}, so

Q({x, y}) = {0, {x}, {y}, {x, YD. .

Cartesian Products
Recall that the definition of a set is unaffected by the order in which its elements are listed
or the fact that some elements may be listed more than once. Thus {a, b}, {b, a), and
{a, a, b} all represent the same set. The notation for an ordered n-tuple takes both order
and multiplicity into account.

"I .. aL

Let n be a positive integer and let XI, x2 , .. ., xn be (not necessarily distinct) elements.
The ordered n-tuple, (xi, x2, .. ., x"), consists of xi, x2,.x. .,, together with the
ordering: first xi, then x2 , and so forth up to x,. An ordered 2-tuple is called an
ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (xi, x2 , ... ., x,) and (Y, Y2l, . . . I y,) are equal if, and only
if, x1 = Y1 ,x2 = Y2, . Xn =n

Symbolically:

(XI, X2 , . - -* .X0 0= ' (y, =... 4Y XI : YX23- Y2 . .- Xn = Yn-

In particular,

(a, b) =(c, d) A* a;-c and b = d.

Example 5.1.14 Ordered n-tuples

a. Is (1, 2) = (2, 1)?

b. Is (3, (-2)2, I) = (I,94, ')?
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Solution

a. No. By definition of equality of ordered pairs,

(1, 2) = (2, 1) ¢* I = 2 and 2 = 1.

But 1 0 2, and so the ordered pairs are not equal.

b. Yes. By definition of equality of ordered triples,

(3, (-2)2, 1) = ( , 4, ) 3 = 9 and (-2)2 = 4 and! 23
_6) 2 6'

Because these equations are all true, the two ordered triples are equal. U

a.1 a

: Given two sets A and B, the Cartesian product of A and B, denoted A x B (read
:'A cross B"), is the set of all ordered pairs (a, b), where a is in A and b is in B.

Given sets A1 , A2 , . . - An, the Cartesian product of A1, A2 , . . ., An denoted
AI x A2i x -. - x An, is the set of all ordered n-tuples (a 1,a2 , .. ,an) where
at E A l,a 2 : A2 , .... an E An.
0 :00Symbolically: t;:

A x B = {(a, b) I a e A and b E B),

Al x A2 x ... x A, = {(al,a2 ,. .. ,an) Ia1 E Al,a 2 E A2 ,. . -an £ An.}

Example 5.1.15 Cartesian Products

Let A = {x, y), B = {1, 2,3), and C = {a, b}.

a. Find A x B. b. Find (A x B) x C. c. Find Ax B x C.

Solution

a. A x B = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3))

b. The Cartesian product of A and B is a set, so it may be used as one of the sets making
up another Cartesian product. This is the case for (A x B) x C:

(A x B) x C = {(u, v) I u E A x B and v E C) by definition of Cartesian product

= {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),

((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),

((y, 1), b), ((y, 2), b), ((y, 3), b)}

c. The Cartesian product A x B x C is superficially similar to, but is not quite the same
mathematical object as, (A x B) x C. (A x B) x C is a set of ordered pairs of which
one element is itself an ordered pair, whereas A x B x C is a set of ordered triples.
By definition of Cartesian product,

A x B x C = {(u, v, w) I u E A, v e B, and w E C)

= {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),

(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),

(y, 2, b), (y, 3, b)}-
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An Algorithm to Check Whether One Set Is a Subset
of Another (Optional)

You may get some additional insight into the concept of subset by considering an algorithm
for checking whether one finite set is a subset of another. Order the elements of both sets
and successively compare each element of the first set with each element of the second set.
If some element of the first set is not found to equal any element of the second, then the
first set is not a subset of the second. But if each element of the first set is found to equal
an element of the second set, then the first set is a subset of the second. The following
algorithm formalizes this reasoning.

Example 5.1.16 Tracing Algorithm 5.1.1

Trace the action of Algorithm 5.1.1 on the variables i, j, found, and answer for
m = 3, n = 4, and sets A and B represented as the arrays a[1 ] = u, a[2] = v, a[3] = w,
b[l] = w, b[2] = x, b[3] = y, and b[4] = u.

Algorithm 5.1.1 Testing Whether A c B

[Input sets A and B are represented as one-dimensional arrays a[1], a[2],..., a[m]
and b[l], b[2], . .. , b[n], respectively. Starting with a[l] and for each successive
a[i] in A, a check is made to see whether a[i] is in B. To do this, a[i] is compared
to successive elements of B. If a[i] is not equal to any element of B, then answer
is given the value "A Z B." If a[i] equals some element of B, the next successive
element in A is checked to see whether it is in B. If every successive element of A is
found to be in B, then answer never changes from its initial value "A C B. "]

Input: m [a positive integer], a[ I], a[2], .. ., a[m] [a one-dimensional array rep-
resenting the set A], n [a positive integer], b[l], b[2], . b[n] [a one-dimensional
array representing the set B]

Algorithm Body:

i := 1, answer:= "A C B"

while (i < m and answer = "A C B")

j := 1,found:="no"

while (j < n and found = "no")

if a[i] = b[j] thenfound:= "yes"

j:= j + 1

end while
[Iffound has not been given the value "yes" when execution reaches this
point, then a [i ] 0 B.]

iffound= "no" then answer:= "A Z B"

i :=i +

end while

Output: answer [a string]
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Solution

i1 2 3

1 1 2 3 4 5 1 2 3 4 5

found no yes no

answer A C B == = A Z B

.

In the exercises at the end of this section, you are asked to write an algorithm to check
whether a given element is in a given set. To do this, you can represent the set as a one-
dimensional array and compare the given element with successive elements of the array
to determine whether the two elements are equal. If they are, then the element is in the
set; if the given element does not equal any element of the array, then the element is not
in the set.

Exercise Set 5.1 *
1. Which of the following sets are equal?

A = la,b,c,dl B = {d,e,a,cl
C = {d, b, a, cl D = {a, a, d, e, c, el

2. Is 4 = 14)? Explain.

3. Which of the following sets are equal?

A = {0, 1, 21

B = {x E R l-I < x < 31

C = {x E RI-I < x < 3}
D = Ix E ZI-I < x < 3}
E = {x e Z' I-1 <x <31

4. Indicate the elements in each set defined in (a)-(f).
a. S = In c Z I n = (- )k, for some integer k}.
b. T = Im E Z I m = I + (- )l, for some integer i.
c. U = {r E Z 1 2 < r < -21
d. V = Is E Zis > 2ors < 31
e. W ={t c Z I-1 < t <-31
f. X ={ eZlu <4oru > 1}

5. a. Is the number 0 in 0? Why? b. Is 0 = 101? Why?
c. Is 0 E 101? Why? d. Is 0 E O? Why?

6. Write in words how to read each of the following out loud.
Then write the shorthand notation for each set.
a. {x C U I x EA and x E Bl
b. {xEUIxEAorxeB}
c. {xEUIxeAandxVB}
d. {x E UIx V A)

7. Let A = {c, d, f, gl, B = {f, j1, and C = {d, g). Answer
each of the following questions. Give reasons for your an-
swers.
a. Is B C A? b. Is CC A?

c. Is C C C? d. Is C a proper subset of A?

8. a. Is3 E {1,2, 31?
c. Is {2} E 11, 21?
e. Is 1 e {1}?
g. Is {1 C 11, 21?
i. Is {11 C {1, 12}1?

b. Is 1 C 11}?
d. Is 31 E (11, {21,131}?
f. Is {2} C {1, {2, {31)}?
h. Is 1 E {1}, 2}?
j. Is I} C {11?

9. LetA = {1,3,5,7,9}, B = {3,6,9},andC = (2,4,6,81.
Find each of the following:
a. AUB b. AnB c. AUC d. AnC
e. A-B f. B-A g. BUC h. Bnc

10. Let the universal set be the set R of all real numbers and
let A = {x e R 10 <x <21, B = {x e R I 1 < x <41 and
C = {x E R 13 < x < 91. Find each of the following:
a. AUB b. ACB c. A' d. AUC
e. AnC f. B' g. AfBc
h. A' U Bc i. (A n B)c j. (A U B)'

It. Let the universal set be the set R of all real numbers and
letA=Ix eRi-3 < x<01,B= x eRI-1 <x <2},
and C = {x E R l 6 < x < 81. Find each of the following:
a. AUB b. AnB c. A' d. AUC
e. AnC f. Bc g. AcnBC
h. Ac U B' i. (A n B)' j. (A U B)'

12. Indicate which of the following relationships are true and
which are false:
a. Z+ C Q b. R- C Q
c. QCZ d. Z UZ+ =Z
e. Z n Z+ = 0 f. QnR=Q
g. QUZ=Q h. Z+nR=Z+
i. ZUQ=Z

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.



268 Chapter 5 Set Theory

13. a. Write a negation for the following statement: V sets A,
if A C R then A C Z. Which is true, the statement or its
negation? Explain.

b. Write a negation for the following statement: V sets S, if
S C Q' then S C Q-. Which is true, the statement or
its negation? Explain.

14. Let sets R, 5, and T be defined as follows:

R = (x E Z I x is divisible by 21

S = {y E Z l y is divisible by 3 )

T = {z E Z I z is divisible by 61

a. Is R C T? Explain.
b. Is T C R? Explain.
c. Is T C S? Explain.
d. Find R n S. Explain.

15. Let A = -n E Z I n = 5r for some integer r I and
B = {m E Z I m = 20s for some integer s }.
a. Is A C B?
b. Is B C A?

16. Let C = {n E Z I n = 6r -5 for some integer r } and
D = {m E Z I m = 3s+ I for some integers).
a. IsC C D?
b. Is DC C?

17. Let A = {m E Z I m = Si -1, for some integer i,
B = {n E Z I n = 3j + 2, for some integer jl,
C = {p E Z p - Sr + 4, for some integer r}. and
D = {q c Z I q 3s - 1, for some integer s}.
a. Is A = B? Explain.
b. Is A = C? Explain.
c. Is A = D? Explain.
d. Is B = D? Explain.

18. In each of the following, draw a Venn diagram for sets A,
B, and C that satisfy the given conditions:
a. AcB;CcB;AnC=0
b. CCA;AnC=0

19. Draw Venn diagrams to describe sets A, B, and C that sat-
isfy the given conditions.
a. AnB=0,ACC,CnB#0
b. A c B C C B. A n C 0
c. AnBA0,BnCO0,AnC= 0,A B,CZB

20. Let A = {a, b, c}, B = {b, c, dl, and C = {b, c, e}.
a. Find AU (B A C), (A U B) AC, and

(A U B) n (A U C). Which of these sets are equal?
b. Find A A (B U C), (A n B) U C, and

(A n B) U (A n C). Which of these sets are equal?
c. Find (A - B) -C and A -(B - C). Are these sets

equal?

21. Consider the Venn diagram shown in the next column. For
each of (a)-(f), copy the diagram and shade the region cor-
responding to the indicated set.

a. AnB b. BUC c. A'
d. A-(BUC) e. (A U B)Y f. Ac n Bc

U

22. a. Is {{a, d, el, {b, c}, {d, f 11 a partition of
{a, b, c, d, e, f }?

b. Is {{w, x, v}, {u, y, q}, {p, z}3 a partition of
{p, q, u, v, w, x, y, z1?

c. Is {{S, 4}, {7, 2}, {1, 3, 4}, 16, 8} } a partition of
{1, 2,3,4,5,6,7, 81?

d. Is {{3, 7, 8}, {2, 9}, {1, 4, S}} a partition of
{1, 2,3,4,5,6,7, 8,91?

e. Is {{i,51, {4, 7}, {2, 8, 6, 31} a partition of
{1, 2,3,4,5,6,7, 81?

23. Let E be the set of all even integers and 0 the set of all odd
integers. Is {E, 01 a partition of Z, the set of all integers?
Explain your answer.

24. Let R be the set of all real numbers. Is {RI, R-, 1011 a
partition of R? Explain your answer.

25. Let Z be the set of all integers and let

Ao = {n E Z I n = 4k, for some integer k},

AI = {n E Z I n = 4k + 1, for some integer k},

A2 = {n E Z I n = 4k + 2, for some integer k}, and

A3 = {n E Z I n = 4k + 3, for some integer k).

Is {AO, Al, A2, A31 a partition of Z? Explain your answer.

26. Suppose A = {1, 21 and B = {2, 31. Find each of the fol-
lowing:
a. 9Y(A n B) b. Y(A)
c. J0(A U B) d. Y(A x B)

27. a. Suppose A = ( I) and B = {u, vl. Find f5-(A x B).
b. Suppose X = la, b} and Y = {x, y}. Find JP(X x Y).

28. a. Find Y(0). b. Find £Y(Y?(0)).
c. Find 9(Y(S(0))).

29. Let A = {x, y, z, w} and B = {a, bh. List the elements of
each of the following sets:
a. AxB b. BxA
c. AxA d. B x B
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30. LetA= (1,2,31,B= {u,vl,and C{= m,nl. Listtheel-
ements of each of the following sets:
a. Ax(BxC) b. (AxB)xC c. AxBxC

31. Trace the action of Algorithm 5.1.1 on the variables i, j,
found, and answer for m = 3, n = 3, and sets A and B
represented as the arrays a[l] = a, a[2] = v, a[3] = w,
b[l] = w, b[2] = u, and b[3] = v.

32. Trace the action of Algorithm 5.1.1 on the variables i, j,
found, and answer for m = 4, n = 4, and sets A and B
represented as the arrays a [l ] = u, a[2] = v, a[3] = w,
a[4] = x, b[1] = r, b[2] = u, b[3] = y, b[4] = z.

33. Write an algorithm to determine whether a given element
x belongs to a given set, which is represented as an array
a[l], a[2], . . , a[n].

5.2 Properties of Sets
... only the last line is a genuine theorem here-everything else is in the fantasy.

Douglas Hofstadter, Godel, Escher Bach, 1979

It is possible to list many relations involving unions, intersections, complements, and
differences of sets. Some of these are true for all sets, whereas others fail to hold in
some cases. In this section we show how to establish basic set properties using element
arguments, the most basic method used for proofs involving sets, and we discuss a variation
used to prove that a set is empty. In the next section we will show how to disprove
a proposed set property by constructing a counterexample and how to use an algebraic
technique to derive new set properties from set properties already known to be true.

We begin by listing some set properties that involve subset relations. As you read them,
keep in mind that the operations of union, intersection, and difference take precedence
over set inclusion. Thus, for example, A n B C C means (A n B) C C.

Theorem 5.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

(a) A n B C A and (b) A I B C B.

2. Inclusion in Union: For all sets A and B,

(a)ACAUB and (b)BCAUB.

3. Transitive Property of Subsets: For all sets A, B, and C,

if A C B and B c C, then A C C.

The conclusion of each part of Theorem 5.2.1 states that one set is a subset of another.
Recall that by definition of subset, if X and Y are sets, then

XCY ¢* Vx,ifxEXthenx Y.

Since the definition of subset is a universal conditional statement, the most basic way
to prove that one set is a subset of another is as follows:

Element Argument: The Basic Method for Proving That
One Set Is a Subset of Another

Let sets X and Y be given. To prove that X - Y,

1. suppose that x is a particular but arbitrarily chosen element of X,

2. show that x is an element of Y.
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In most set theoretic proofs, the secret of getting from the assumption that x is in X
to the conclusion that x is in Y is to think of the definitions of basic set operations in
procedural terms. For example, the union of sets X and Y, X U Y, is defined as

XU Y = JXIX e Xorx E Yb.

This means that any time you know an element x is in X U Y, you can conclude that x
must be in X or x must be in Y. Conversely, any time you know that a particular x is in
some set X or is in some set Y, you can conclude that x is in X U Y. Thus, for any sets X
and Y and any element x,

x E X U Y if, and only if, x E Xorx E Y.

Procedural versions of the definitions of the other set operations are derived similarly
and are summarized below.

Example 5.2.1 Proof of a Subset Relation

Prove Theorem 5.2.1(1)(a): For all sets A and B, A n B C A.

Solution We start by giving a proof of the statement and then explain how you can obtain
such a proof yourself.

Proof:

Suppose A and B are any sets and suppose x is any element of A n B.
Then x E A and x E B by definition of intersection. In particular, x E A.

The underlying structure of this proof is not difficult, but it is more complicated than
the brevity of the proof suggests. The first important thing to realize is that the statement to
be proved is universal (it says that for all sets A and B, A n B C A). The proof, therefore,
has the following outline:
Starting Point: Suppose A and B are any (particular but arbitrarily chosen) sets.
To Show: A n B C A
Now to prove that A n B C A, you must show that

Vx, if x E A n Bthenx e A.

But this statement also is universal. So to prove it, you

suppose x is an element in A n B
and then you

show that x is in A.

Procedural Versions of Set Definitions

Let X and Yb ubsets of a univer set U and suppose x and y are elements of U.

1. X E XUY fo xEXOr x E Y

2. XEXnfy 4t XEXandxEY

3. xX-EX Y <* xEXandxSY

4.xEXC xOX

5. (xy)EXx Y 4 xEX y e4YE
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Filling in the gap between the "suppose" and the "show" is easy if you use the proce-
dural version of the definition of intersection: To say that x is in A n B means that

xisinA and xisinB.

This allows you to complete the proof by deducing that, in particular,

x is in A,

as was to be shown. Note that this deduction is just a special case of the valid argument
form

p A q

UP. U

In his book Gddel, Escher Bach,* Douglas Hofstadter introduces the fantasy rule for
mathematical proof. Hofstadter points out that when you start a mathematical argument
with if let, or suppose, you are stepping into a fantasy world where not only are all the
facts of the real world true but whatever you are supposing is also true. Once you are in
that world, you can suppose something else. That sends you into a subfantasy world where
not only is everything in the fantasy world true but also the new thing you are supposing.
Of course you can continue stepping into new subfantasy worlds in this way indefinitely.
You return one level closer to the real world each time you derive a conclusion that makes
a whole if-then or universal statement true. Your aim in a proof is to continue deriving
such conclusions until you return to the world from which you made your first supposition.

Occasionally, mathematical problems are stated in the following form:

Suppose (statement 1). Prove that (statement 2).

When this phrasing is used, the author intends the reader to add statement 1 to his or her
general mathematical knowledge and not to make explicit reference to it in the proof. In
Hofstadter's terms, the author invites the reader to enter a fantasy world where statement
1 is known to be true and to prove statement 2 in this fantasy world. Thus the solver of
such a problem would begin a proof with the starting point for a proof of statement 2.
Consider, for instance, the following restatement of Example 5.2. 1:

Suppose A and B are arbitrarily chosen sets.
Prove that A n B C A.

The proof would begin "Suppose x E A n B," it being understood that sets A and B have
already been chosen arbitrarily.

The proof of Example 5.2.1 is called an element argument because it shows one
set to be a subset of another by demonstrating that every element in the one set is also
an element in the other. In higher mathematics, element arguments are the standard
method of establishing relations among sets. High school students are often allowed to
justify set properties by using Venn diagrams. This method is appealing, but for it to be
mathematically rigorous may be more complicated than you might expect. For instance,
it is impossible to draw a single Venn diagram in which four circular disks represent sets in
such a way that all 16 subsets appear as regions of the diagram. (It is possible to represent
all the subsets if noncircular regions are used.) Even when appropriate Venn diagrams
can be drawn, the verbal explanations needed to justify conclusions inferred from them
are normally as long as a straightforward element proof.

*Gbdel, Escher Bach: An Eternal Golden Braid (New York: Basic Books, 1979).
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Set Identities
An identity is an equation that is universally true for all elements in some set. For example,
the equation a + b = b + a is an identity for real numbers because it is true for all real
numbers a and b. The collection of set properties in the next theorem consists entirely of
set identities. That is, they are equations that are true for all sets in some universal set.

Theorem 5.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)AUB=BUA and (b)AnB=BnA.

2. Associative Laws: For all sets A, B, and C,

(a)(AUB)UC=AU(BUC) and

(b) (A n B) n C = A n (B n C).

3. Distributive Laws: For all sets, A, B, and C,

(a)AU(BfnC)=(AUB)ln(AUC) and

(b) A n (B U C) = (A n B) U (A n C).

4. Identity Laws: For all sets A,

(a)AU0=A and (b)AnU=A.

5. Complement Laws:

(a)AUAc=U and

6. Double Complement Law: For all sets A,

(b) A n AC=0.

(AC)c = A.

7. Idempotent Laws: For all sets A,

(a)AUA=A and (b)AnA=A.

8. Universal Bound Laws: For all sets A,

(a)AUU=U and (b)An0=0.

9. De Morgan's Laws: For all sets A and B,

(a) (A U B)C = Ac n Bc and (b) (A n B)C = AC U BC.

10. Absorption Laws: For all sets A and B,

(a)AU(AnB)=A and (b)A n(AUB)=A.

11. Complements of U and 0:

(a) Uc = 0 and (b) Oc = U.

12. Set Difference Law: For all sets A and B,

A - B = A n BC.
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Proving Set Identities
The conclusion of each part of Theorem 5.2.2 is that one set equals another set. As we
noted in Section 5. 1,

Two sets are equal 4* each is a subset of the other.

The method derived from this fact is the most basic way to prove equality of sets.

Example 5.2.2 Proof of a Distributive Law

Prove that for all sets A, B, and C,

AU (B n C) = (A U B) n (A U C).

Solution The proof of this fact is somewhat more complicated than the proof in Exam-
ple 5.2.1, so we first derive its logical structure, then find the core arguments, and end
with a formal proof as a summary. As in Example 5.2.1, the statement to be proved is
universal, and so, by the method of generalizing from the generic particular, the proof has
the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen sets.

ToShow:AU(BfnC)=(AUB)n(AUC).

Now two sets are equal if, and only if, each is a subset of the other. Hence, the following
two statements must be proved:

A U (B n C) c (A U B) n (A U C)

and

(A U B) n (A U C) C A U (B n C).

Showing the first containment requires showing that

Vx,ifx E AU(BnC)thenx E (AUB)n(AUC).

Showing the second containment requires showing that

Vx,ifx E (AUB)n(AUC)thenx E AU(B nC).

Note that both of these statements are universal. So to prove the first containment, you

suppose you have any element x in A U (B n C),

and then you

showthatx c (AUB)rn (AUC).

And to prove the second containment, you

suppose you have any element x in (A U B) n (A U C),

and then you

show that x E A U (B n C).

Basic Method for Proving That Sets Are Equal

Let sets X and Y be given. To prove that X = Y:

1. Prove that X C Y.

2. Prove that Y C X.
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In Figure 5.2.1, the structure of the proof is illustrated by the kind of diagram that is
often used in connection with structured programs. The analysis in the diagram reduces
the proof to two concrete tasks: filling in the steps indicated by dots in the two center
boxes of Figure 5.2. 1.

Figure 5.2.1

The top inner box goes from the supposition that x e A U (B n C) to the conclusion
that c (AUB) n(AUC).

Now when x c A U (B n C), then by definition of union, x E A or x E B n C. But
either of these possibilities might be the case because x is assumed to be chosen arbitrar-
ily from the set A U (B n C). So you have to show you can reach the conclusion that
x E (A U B) n (A U C) regardless of whether x happens to be in A or x happens to be in
B n C. This leads you to break your analysis into two cases: x E A and x E B n C.

In case x E A, your goal is to show that x G (A U B) n (A U C), which means that
x E A U B and x E A U C (by definition of intersection). But when x E A, both state-
ments x E A U B and x E A U C are true by virtue of x's being in A.

In case x E B n C, your goal is also to show that x c (A U B) n (A U C), which
means that x C A U B and x E A U C. But when x E B n C, then x E B and x E C (by
definition of intersection), and so x c A U B (by virtue of being in B) and x E A U C (by
virtue of being in C).

This analysis shows that regardless of whether x e A or x c B n C, the conclusion
x r (A U B) n (A U C) follows. So you can fill in the steps in the top inner box.

To fill in the steps of the bottom inner box, you need to go from the supposition that
x E (A U B) n (A U C) to the conclusion that x e A U (B n C).

Suppose A, B, and C are sets. (Show A U (B n C) = (A U B) n (A U C). That is,
show A U (B A C) C (A U B) n (A U C) and
(A U B) n (A U C) C A U (B n C).]

Show A U (B n C) C (A U B) n (A U C). [That is, show Vx, if
x E A U (B n C) then
x c (A U B) n (A U C).]

Suppose x E A U (B n C). [Show x e (A U B) n (A U C).]

Thus x C (A U B) n (A U C).

Hence A U (B n C) C (A U B) n (A U C).

Show (AUB) n(AUC) C AU(BnC). [That is, show Vx, if
x E (A U B) n (A U C)
then x E A U (B nc ).]

Supposed E (AUB) n(AUC). [Showx E AU(B n C).]

Thus x E A U (B n C).

Hence (A U B) n (A U C) C A U (B n C).

Thus (A U B) n (A U C) = A U (B n C).
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Now when x E (A U B) n (A U C) and when x happens to be in A, then the statement
"X E A or x E B n C" is certainly true, and so x is in A U (B n C) by definition of union.
But either x is in A or x is not in A. So it remains only to be shown that even in the case
whenx isnotinA,ifx e (AU B)n (AUC),thenx E AU (B nC).

Now to say that x e (A U B) n (A U C) means that x E A U B and x E A U C (by

definition of union). But if x E A U B, then x is in at least one of A or B, so if x is not in
A, then x must be in B. Similarly, if x E A U C, then x is in at least one of A or C, so if
x is not in A, then x must be in C. Thus, when x is not in A and x E (A U B) n (A U C),
then x is in both B and C, which means that x E B n C. It follows that the statement
"x E A or X E B n C" is true, and so x E A U (B n C) by definition of union.

This analysis shows that if x E (A U B) n (A U C), then regardless of whether x E A
or x s A, you can conclude that x E A U (B n C). Hence you can fill in the steps of the
bottom inner box.

A formal proof is shown below.

.

Theorem 5.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C,

A U(B n C) = (A U B)n(A U C).

Proof:

Suppose A and B are sets.

A U(B n C) C (A U B)n(A U C):

Suppose x E A U (B n C). By definition of union, x E A or x E B n C.

Case I (x e A): Since x E A, then x E A U B by definition of union and also
x E A U C by definition of union. Hence x E (A U B) n (A U C) by definition of
intersection.

Case2 (x e B n C): Since x E B n C, then x E B and x E C by definition of in-
tersection. Since x E B, x E A U B and since x E C, x E A U C, both by definition
of union. Hence x E (A U B) n (A U C) by definition of intersection.

Inbothcases,x C (AUB)n(AUC). HenceAU(BnC) C (AUB)n(AUC)
by definition of subset.

(A U B)n(AU C) C AU(B n C):

Suppose x e (A U B) n (A U C). By definition of intersection, x E A U B and
x E A U C. Consider the two cases x E A and x 0 A.

Case 1 (x e A): Since x E A, we can immediately conclude that x E A U (B n C)
by definition of union.

Case2(x 0 A): Since x E A U B,xis in at least one of A or B. But x is not in A;
hence x is in B. Similarly, since x E A U C, x is in at least one of A or C. But x is not
in A; hence x is in C. We have shown that both x E B and x E C, and so by definition
of intersection, x E B n C. It follows by definition of union that x E A U (B n C).

Inbothcasesx E A U (B n C). Hence, by definitionof subset, (A U B) n (A U C) C

A U (B n C).

Since both subset relations have been proved, it follows by definition of set
equality that A U (B n C) = (A U B) n (A U C).
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In the study of artificial intelligence, the types of reasoning used above to derive the
proof of the distributive law are called forward chaining and backward chaining. First
what is to be shown is viewed as a goal to be reached starting from a certain initial
position: the starting point. Analysis of this goal leads to the realization that if a certain
job is accomplished, then the goal will be reached. Call this job subgoal 1: SG]. (For
instance, if the goal is to show that A U (B n C) = (A U B) n (A U C), then SG I would
be to show that each set is a subset of the other.) Analysis of SG, shows that when yet
anotherjob is completed, SG, will be reached. Call this job subgoal 2: SG2 . Continuing
in this way, a chain of argument leading backward from the goal is constructed.

starting point | SG3 - SG 2 -* SG, -- goal

At a certain point, backward chaining becomes difficult, but analysis of the current sub-
goal suggests it may be reachable by a direct line of argument, called forward chaining,
beginning at the starting point. Using the information contained in the starting point,
another piece of information, 1I, is deduced; from that another piece of information, I2,

is deduced; and so forth until finally one of the subgoals is reached. This completes the
chain and proves the theorem. A completed chain is illustrated below.

starting point I, - 12 > 13 - 14 - SG 3 -* SG2 -* SG, -H goal

Since set complement is defined in terms of not, and since unions and intersections are
defined in terms of or and and, it is not surprising that there are analogues of De Morgan's
laws of logic for sets.

Example 5.2.3 Proof of a De Morgan's Law for Sets

Prove that for all sets A and B, (A U B)C = Al n BC.

Solution As in previous examples, the statement to be proved is universal, and so the starting
point of the proof and the conclusion to be shown are as follows:

Starting Point: Suppose A and B are arbitrarily chosen sets.

To Show: (A U B)c = Ac n BC

To do this, you must show that (A U B)C C Ac n Bc and that Ac n BC C (A U B)c. To
show the first containment means to show that

Vx,ifx E (AUB)' thenx E ACnBC.

And to show the second containment means to show that

Vx,ifx E AClnBCthenx E (AUB)C.

Since each of these statements is universal and conditional, for the first containment, you

suppose x E (A U B)C,

and then you

show that x E Ac n Bc.

And for the second containment, you

suppose x E AC n BC,

and then you

show that x E (A U B)C.
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To fill in the steps of these arguments, you use the procedural versions of the definitions
of complement, union, and intersection, and at crucial points you use De Morgan's laws
of logic.

iTheorem 5.2.2(9)( A De Morgan's Law for Sets

Fo l seitsAandB,(AUB)' =fAcflBC.X0X

Proof:

Suppose A and B are sets.

(A U B)C c AC n BC:

[We must show that Vx, if x E (A U B)' then x E AC n BC.]

Suppose x E (A U B)C. [We must show that x e Ac n BC.] By definition of com-
plement,

x ¢ A U B.

But to say that x 0 A U B means that

it is false that (x is in A or x is in B).

By De Morgan's laws of logic, this implies that

x is not in A and x is not in B,

which can be written

xOA and xOB.

Hence x E Ac and x E BC by definition of complement. It follows, by definition
of intersection, that x E AC n BC [as was to be shown]. So (A U B)c C AC n BC by
definition of subset.

AC n BC C (A U B)C:

[We must show that Vx, if x C Ac n BC then x E (A U B)c.]

Suppose x E AC l BC. [We must show that x E (A U B)C.] By definition of in-
tersection, x e AC and x e BC, and by definition of complement,

x 0 A and x 0 B.

In other words,

x is not in A and x is not in B.

By De Morgan's laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written

x 0 A U B

by definition of union. Hence, by definition of complement, x e (A U B)C [as was
to be shown]. It follows that Ac n BC C (A U B)C by definition of subset.

Since both set containments have been proved, (A U B)C = AC n BC by definition
of set equality.
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The set property given in the next theorem says that if one set is a subset of another,
then their intersection is the smaller of the two sets and their union is the larger of the two
sets.

.

The Empty Set
In Section 5.1 we introduced the concept of a set with no elements and promised that in
this section we would show that there is only one such set. To do so, we start with the
most basic-and strangest-property of a set with no elements: It is a subset of every set.
To see why this is true, just ask yourself, "Could it possibly be false? Could there be a
set without elements that is not a subset of some given set?" The crucial fact is that the
negation of a universal statement is existential: If a set B is not a subset of a set A, then
there exists x in B such that x is not in A. But if B has no elements, then no such x can
exist.

Theorem 5.2.3 Intersection and Union with a Subset

For any sets A and B, if A C B. then

(a)AnB=A and (b)AUB=B.

Proof:

Part (a): Suppose A and B are sets with A C B. To show part (a) we must show
both that A n B C A and that A C A fl B. We already know that A n B C A by the
inclusion of intersection property. To show that A C A n B, let x E A. [We must
show that x E A n B.] Since A C B, then x E B also. Hence

xEA and xeB.

and thus

x E AfB

by definition of intersection [as was to be shown].

Proof:

Part (b): The proof of part (b) is left as an exercise.

Theorem 5.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then E C A.

Proof (by contradiction):

Suppose not. [We take the negation of the theorem and suppose it to be true. ] Suppose
there exists a set E with no elements and a set A such that E Z A. [We must deduce
a contradiction.] Then there would be an element of E that is not an element of A
[by definition of subset]. But there can be no such element since E has no elements.
This is a contradiction. [Hence the supposition that there are sets E and A, where E
has no elements and E Z A, is false, and so the theorem is true.]
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The truth of Theorem 5.2.4 can also be understood by appeal to the notion of vacuous
truth. If E is a set with no elements and A is any set, then to say that E C A is the same
as saying that

Vx E E,x E A.

But since E has no elements, this statement is vacuously true.
How many sets with no elements are there? Only one.

It follows from Corollary 5.2.5 that the set of pink elephants is equal to the set of all
real numbers whose square is -1 because each set has no elements! Since there is only
one set with no elements, we are justified in calling it by a special name, the empty set (or
null set) and in denoting it by the special symbol 0.

Note that whereas 0 is the set with no elements, the set {0} has one element, the empty
set. This is similar to the convention in the computer programming languages LISP and
Scheme, in which () denotes the empty list and (()) denotes the list whose one element
is the empty list.

Suppose you need to show that a certain set equals the empty set. By Corollary 5.2.5
it suffices to show that the set has no elements. For since there is only one set with no
elements (namely 0), if the given set has no elements, then it must equal 0.

Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set 0, prove that X has no elements. To
do this, suppose X has an element and derive a contradiction.

Example 5.2.4 Proving That a Set Is Empty

Prove Theorem 5.2.2(8)(b). That is, prove that for any set A, A n 0 = 0.

Solution Let A be a [particular but arbitrarily chosen] set. To show that A n 0 = 0, it
suffices to show that A n 0 has no elements [by the element methodfor proving a set equals
the empty set]. Suppose not. That is, suppose there is an element x such that x E A n 0.
Then, by definition of intersection, x e A and x X 0. In particular, x E 0. But this is
impossible since 0 has no elements. [This contradiction shows that the supposition that
there is an element x in A n 0 is false. So A fl 0 has no elements, as was to be shown.]
Thus A n 0 =0. U

Corollary 5.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

Suppose El and E2 are both sets with no elements. By Theorem 5.2.4, El C E2
since El has no elements. Also E2 C El since E2 has no elements. Thus El = E2
by definition of set equality.
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Example 5.2.5 A Proof for a Conditional Statement

Prove that for all sets A, B, and C, if A C B and B C CC, then A n c = 0.

Solution Since the statement to be proved is both universal and conditional, you start with
the method of direct proof:

Suppose A, B, and C are arbitrarily chosen sets
that satisfy the condition: A C B and B C CC.

Show that A n c = 0.

Since the conclusion to be shown is that a certain set is empty, you can use the principle
for proving that a set equals the empty set. A complete proof is shown below.

Exercise Set 5.2
1. a. To say that an element is in A n (B U C) means that it is

in (I) and in (2).
b. To say that an element is in (A n B) U C means that it is

in (lL or in (2)
c. To say that an element is in A - (B n C) means that it

is in i and not in (2)

2. The following are two proofs that for all sets A and B,
A -B C A. The first is less formal, and the second is more
formal. Fill in the blanks.

a. Proof: Suppose A and B are any sets. To show that
A - B C A, we must show that every element in ilL
is in (2) But any element in A - B is in (3) and not

in (4) (by definition of A - B). In particular, such an
element is in A.

b. Proof: Suppose A and B are any sets and x E A -B.

[We must show that (1) .j By definition of set difference,

x C (2) and x 0 (3) . In particular, x e (4) [which
is what was to be shown].

.

3. The following is a proof that for all sets A, B, and C, if
A C B and B C C, then A C C. Fill in the blanks.

Proof: Suppose A, B, and C are sets and A C B and
B C C. To show that A C C, we must show that every el-
ement in (I) is in (2). But given any element in A, that
element is in (3) (because A C B), and so that element is
also in (4) (because (5) ). Hence A C C.

4. The following is a proof that for all sets A and B, if A C B,
then A U B C B. Fill in the blanks.

Proof: Suppose A and B are any sets and A C B. [We

must show that (a) ] Let x E (b) . [We must show that
(c) .1 By definition of union, x E (d) (e) x E f . In

case E (g) ,thensinceA C BX E (h). Incasex E B,
then clearly x E B. So in either case, x E () [as was to
be shown].

5. Prove that for all sets A and B, B-A = B n A'.

Proposition 5.2.6

For all sets A, B, and C, if A !C B and B c Cc, then A n C = 0.

Proof:

Suppose A, B, and C are any sets such that A C B and B C CC. We must show
that A n C = 0. Suppose not. That is, suppose there is an element x in A n C. By
definition of intersection, x E A and x E C. Then, since A C B, x E B by definition
of subset. Also, since B C CC, then x E Cc by definition of subset again. It follows by
definition of complement that x ¢ C. Thus x E C and x ¢ C, which is a contradiction.
So the supposition that there is an element x in A n C is false, and thus A n C = 0
[as was to be shown].
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6. The following is a proof that for any sets A, B, and C,
A n (B U C) = (A n B) U (A n C). Fill in the blanks.

Proof: Suppose A, B, and C are any sets.

(1) A n (B U C) C (A n B) U (A n C):

Let x c A n (B U C). [We must show that x E (a) .] By
definition of intersection, x e (b) and x E (c) . Thus
x E A and, by definition of union, x e B or (d) .

Case I (x em A and x E B): In this case, by definition
of intersection, x e (e), and so, by definition of union,
x E (AnB)U(AnC).

Case 2 (x E A and x E C): In this case, (f)
Hence in either case, x E (A n B) U (A n C) [as was to be
shown].

[So AA(BUC) C (AAB)U(AnC) by definition of
subset.]

(2) (An B) U (A nC C) C A n (B U C):

Let x e (A n B) U (A n C). [We must show that (a) .] By
definition of union, x E (b) or x C (c)

Case I (x a A n B): In this case, by definition of inter-
section, (d) and (e) . Since x E B, then by definition of
union,x E B U C. Hencex E A andx E BUC,andso,
by definition of intersection, x C (f) .

Case 2 (x E A n C): In this case, (g)

In either case, x E A n (B U C) (as was to be shown]. [Thus
(A n B) U (A n C) C A n (B U C) by definition of subset.]

[Since both subset relations have been proved, it follows, by
definition of set equality, that (h) .]

H 7. Prove that for all sets A and B, (A n B)C = Ac U Bc.

Use an element argument to prove each statement in 8-17. As-
sume that all sets are subsets of a universal set U.

8. For all sets A, B, and C,

(A -B) U (C-B) =(A U C)-B.

9. For all sets A, B, and C,

(A -B)A(C -B)(AnC)-B.

H 10. Forallsets A andB, A U (AA B) = A.

11. For all sets A, A U 0 = A.

12. ForallsetsA,B,andC,ifA C BthenAAC C BnC.

13. ForallsetsA,B,andC, ifA C BthenAUC C BUC.

14. For all sets A and B, if A C B then Bc C AC.

H 15. For all sets A, B, and C, if A C B and A C C then

A C B n C.

16. For all sets A, B, and C,

A x (B U C) = (A x B) U (A x C).

17. For all sets A, B, and C,

A x (B n c) = (A x B) n (A x C).

18. Find the mistake in the following "proof' that for all sets
A, B, and C, if A C B and B C C then A C C.

"Proof: Suppose A, B, and C are sets such that A C B and
B C C. Since A C B, there is an element x such that x E A
and x E B. Since B C C, there is an element x such that
x a B and x a C. Hence there is a element x such that
x e A and x a C and so A C C."

H 19. Find the mistake in the following "proof."

"Theorem:" For all sets A and B, Ac U BC C (A U B)C.

"Proof: Suppose A and B are sets, and x E Ac U BC. Then
x E Ac or x a BC by definition of union. It follows that
x ¢ A or x ¢ B by definition of complement, and so
x ¢ A U B by definition of union. Thus x e (A U B)c by
definition of complement, and hence Ac U Bc C (A U B)c.8

20. Find the mistake in the following "proof" that for all sets A
and B, (A - B) U (A n B) C A.

"Proof: Suppose A and B are sets, and suppose x E
(A-B)U(AnB). IfxEAthenx E A-B. Then,by
definition of difference, x E A and x , B. Hence x a A,
and so (A -B) U (A n B) C A by definition of subset."

21. Consider the Venn diagram below.

U

a. Illustrate one of the distributive laws by shading in the
region corresponding to A U (B n C) on one copy of the
diagram and (A U B) n (A U C) on another.

b. Illustrate the other distributive law by shading in the re-
gion corresponding to A n (B U C) on one copy of the
diagram and (A n B) U (A n c) on another.

c. Illustrate one of De Morgan's laws by shading in the
region corresponding to (A U B)C on one copy of the di-
agram and AC n BC on the other. (Leave the set C out of
your diagrams.)

d. Illustrate the other De Morgan's law by shading in the
region corresponding to (A n B)C on one copy of the di-
agram and Ac U Bc on the other. (Leave the set C out of
your diagrams.)



282 Chapter 5 Set Theory

22. Fill in the blanks in the following proof that for all sets A
andB,(A -B)n(B -A) =0.

Proof: Let A and B be any sets and supppose (A -B) n
(B -A) 7 0. That is, suppose there were an element x
in (a)* By definition of (b), x E A -B and x E (c)
Then by definition of set difference, x e A and x ¢ B and

X E (d) and x (e). In particular x e A and x (f ),
which is a contradiction. Hence [the supposition that

(A -B) n (B -A) A 0 isfalse, and so] (g)

Use the element method for proving a set equals the empty set to
prove each statement in 23-34. Assume that all sets are subsets
of a universal set U.

23. For all sets A and B, (A - B) n (Afn B) =0.

24. For all sets A, B, and C,

(A -C)n(B-C)n(A -B) =0.

25. For all subsets A of a universal set U, A n Ac = 0.

26. If U denotes a universal set, then U' = 0.

27. For all sets A, A x 0 = 0.

28. For all sets A and B, if A C B then A n Bc = 0.

29. Forall sets A and B, if B c Ac then A n B = 0.

30. For all sets A,B, and C, ifACB and B nC-0 then
An C =0.

31. For all sets A, B, and C, if B C C and A n C -0, then
A nB =0.

32. Forall sets A, B, and C, if C C B -A, then A n C = 0.

33. For all sets A, B, and C,

34. For all sets A, B, C, and D,

if A n C = 0 then (A x B) n (C x D) = 0.

Use mathematical induction and the following definitions to
prove each statement in 35-37. If n is an integer with n > 3
and if C1, C2, C3, . . , Cn are any sets,

C1 U C2 U C3 U U Cn = (C U C2 U C3 U .. U C-) U C',

and

CnC2 nC3 n .nC, =(C1 n C2nC3 An .nC,- )n Cn

(More rigorous versions of the definitions are given in Section
8.4.)

35. Generalized Distributive Law for Sets: For any integer
n > 1, if A and B1 , B2, B3, . .. , B, are any sets, then

(A n B,)U (A n B 2) U ... U (A n B,)

= A n (B, U B2 U B3 U .. U B,).

36. For any integer n > 1, if Al, A2, A3, ... , A, and B are any
sets, then

(Al -B) U (A2 -B) U ... U (An- B)

= (Al U A2 U A U U An) -B.

(To prove the inductive step, you can use the result of exer-
cise 8.)

37. For any integer n > 1, if Al, A2, A3, ... , A, and B are any
sets, then

(A -B) n (A 2 -B) n ... n (An -B)

=(AlnA 2 A3 n .. nAn) -B.

(To prove the inductive step, you can use the result of exer-
cise 9.)

if BAcCcA,then(C -A)n(B -A)=0.

5.3 Disproofs, Algebraic Proofs,
and Boolean Algebras
If a fact goes against common sense, and we are nevertheless compelled to accept and

deal with this fact, we learn to alter our notion of common sense.

-Phillip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

In Section 5.2 we gave examples only of set properties that were true. Occasionally,
however, a proposed set property is false. We begin this section by discussing how to
disprove such a proposed property. Then we prove an important theorem about the power
set of a set and go on to discuss an "algebraic" method for deriving new set properties
from set properties already known to be true. We finish the section with an introduction
to Boolean algebras.

Disproving an Alleged Set Property
Recall that to show a universal statement is false, it suffices to find one example (called a
counterexample) for which it is false.
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Example 5.3.1 Finding a Counterexample for a Set Identity

Is the following set property true?

For all setsA,B,andC,(A-B)U(B-C)= A-C.

Solution Observe that the property is true if, and only if,

the given equality holds for all sets A, B, and C.

So it is false if, and only if,

there are sets A, B, and C for which the equality does not hold.

Thus one way to analyze the question is to ask yourself what elements are in each of the
sets (A - B) U (B - C) and A - C and then try to find a condition that A, B, and C could
satisfy so that one of the sets would contain an element that is not in the other set.

Now A - C consists of all the elements that are in A but not in C, and (A - B) U
(B - C) consists of all the elements that are in A but not in B, together with all those that
are in B but not in C. Think, for instance, about an element that is in (A - B) U (B - C)
by virtue of being in A but not in B. Could such an element fail to be in A - C? The
answer is yes, provided that the element is in C. In other words, an element that is in both
A and C but is not in B will be in (A - B) U (B - C), but it will not be in A - C. From
this analysis, you can construct a counterexample to the proposed set property such as the
following. Because you might have made a mistake in your analysis, always be sure to
check that your counterexample works.

Counterexample: Let A = {1, 21, B = {2}, and C = {1}. Then

A - C = {2}, A - B ={}, B - C = 121, and (A - B) U (B - C) = {1, 21.

Since 1 e (A - B) U (B - C) but 1 0 A - C, then (A - B) U (B - C) & A - C.

Alternatively, you could think about an element that is in (A - B) U (B - C) by virtue
of being in B but not in C. Could such an element fail to be in A - C? This time the
answer is yes, provided that the element is not in A. So an element that is in B but not
in either A or C will be in (A -B) U (B - C) but not in A - C. Can you think of sets
A, B, and C that satisfy this condition and confirm that they produce a counterexample
to the proposed property?

A different approach to solving this problem is to picture sets A, B, and C by drawing
a Venn diagram such as that shown in Figure 5.3.1. If you assume that any of the eight
regions of the diagram may be empty of points, then the diagram is quite general.

U

Figure 5.3.1
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Find and shade the region corresponding to (A - B) U (B -C). Then shade the
region corresponding to A - C. These are shown in Figure 5.3.2

(A -B) U (B -C) A-C

(a) (b)

Figure 5.3.2

When you compare the shaded regions, you can see that there may be points in
(A - B) U (B - C) that are not in A -C. The property is therefore false, and a con-
crete counterexample consists of any sets A, B, and C with points inside regions shaded
in one diagram but not the other. For example, A, B, and C could be taken to be the sets
of all points inside each of the disks shown.

Another approach is to use the diagrams to help construct a discrete counterexample.
The shading of the diagrams shows that for sets A, B, and C to be a counterexample, B
must contain points that are not in either A or C, or there must be points in both A and C
that are not in B. For example, you could take

A = {a, b), B = {b, c}, and C = {a, d}.

Then

A-B = {a}, B-C = b, c}, and A -C = {b}.

Hence

(A-B) U (B -C) = {a, b, c whereas A-C = {b}.

So (A-B) U (B -C) A -C. U

Problem-Solving Strategy
How can you discover whether a given universal statement about sets is true or false? There
are two basic approaches: the optimistic and the pessimistic. In the optimistic approach,
you simply plunge in and start trying to prove the statement, asking yourself, "What do I
need to show?" and "How do I show it?" In the pessimistic approach, you start by search-
ing your mind for a set of conditions that must be fulfilled to construct a counterexample.
With either approach you may have clear sailing and be immediately successful or you
may run into difficulty. The trick is to be ready to switch to the other approach if the one
you are trying does not look promising. For more difficult questions, you may alternate
several times between the two approaches before arriving at the correct answer.

The Number of Subsets of a Set
The following theorem states the important fact that if a set has n elements, then its power
set has 2' elements. The proof uses mathematical induction and is based on the following
observations. Suppose X is a set and z is an element of X.

11

)
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1. The subsets of X can be split into two groups: those that do not contain z and those
that do contain z.

2. The subsets of X that do not contain z are the same as the subsets of X -{z.

3. The subsets of X that do not contain z can be matched up one for one with the subsets
of X that do contain z by matching each subset A that does not contain z to the subset
A U {z} that contains z. Thus there are as many subsets of X that contain z as there are
subsets of X that do not contain z. For instance, if X {x, y, z}, the following table
shows the correspondence between subsets of X that do not contain z and subsets of
X that contain z.

Subsets of X That Subsets of X That
Do Not Contain z Contain z

0 < ) 0 U (z = -{z

{xI (xI U Zl = -{x, zl

1{y} yU {z = {y, zl

{x,y A< ) {x,yAU{z} = {x,y, z

Theorem 5.3.1

For all integers n > 0, if a set X has n elements, then 9@'Y(X) has 2' elements.

Proof (by mathematical induction):

Consider the property "Any set with n elements has 2' subsets."

Show that the property is true for n = 0: We must show that a set with zero elements
has 20 subsets. But the only set with zero elements is the empty set, and the only
subset of the empty set is itself. Thus a set with zero elements has one subset. Since
I = 20, the theorem is true for n = 0.

Show that for all integers k > 1, if the property is true for n = k, then it is true for
n = k + 1: Let k be any integer with k > 0 and suppose that any set with k elements
has 2 k subsets. [This is the inductive hypothesis.] We must show that any set with
k + 1 elements has 2 k+t subsets.

Let X be a set with k + 1 elements and pick an element z in X. Observe that
any subset of X either contains z or not. Furthermore, any subset of X that does not
contain z is a subset of X -{z}. And any subset A of X -{z} can be matched up
with a subset B, equal to A U {z), of X that contains z. Consequently, there are as
many subsets of X that contain z as do not, and thus there are twice as many subsets
of X as there are subsets of X -{z}. But X -zI has k elements, and so

the number of subsets of X -{z = 2k by inductive hypothesis.

Therefore,

the number of subsets of X = 2 . (the number of subsets of X -{z})

= 2 * (2 k) by substitution

= 2-k+ by basic algebra.

[This is what was to be shown.]
[Since we have proved both the basis step and the inductive step, we conclude

that the theorem is true. ]
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"Algebraic" Proofs of Set Identities
Let U be a universal set and consider the power set of U, 9(U). To prepare the way for a
discussion of Boolean algebras, let S = Y(U). The set identities given in Theorem 5.2.2
hold for all elements of S. Once a certain number of identities and other properties have
been established, new properties can be derived from them algebraically. It turns out that
only identities (1-5) of Theorem 5.2.2 are needed to prove any other identity involving
only unions, intersections, and complements. With the addition of identity (12), the set
difference law, any set identity involving unions, intersections, complements, and set
differences can be established.

To use known properties to derive new ones, you need to use the fact that such prop-
erties are universal statements. Like the laws of algebra for real numbers, they apply to a
wide variety of different situations. For instance, one of the distributive laws states that

forallsetsA,B,andC, An(BUC) =(A nB)U(AnC).

This law can be viewed as a general template into which any three particular sets can be
placed. Thus, for example, if Al, A2, and A3 represent particular sets, then

Al n (A2 U A3) = (Al n A2) U (Al n A3 ),

A n (B U C) (A n B) U (A n C)

where A1 plays the role of A, A2 plays the role of B, and A3 plays the role of C. Similarly,
if W, X, Y, and Z are any particular sets, then, by the distributive law,

(wnx)n(YuZ) = (f Wn rn Y) u ( W X) n

A n (B U C) (A n B) U (A n C)

where W n X plays the role of A, Y plays the role of B, and Z plays the role of C.

Example 5.3.2 Deriving a Set Difference Property

Use the properties in Theorem 5.2.2 to construct an algebraic proof that for all sets A, B,
and C,

(A U B)-C = (A -C) U (B-C).

Solution Let sets A, B, and C be given. Then

(A U B) - C = (A U B) n Cc by the set difference law

= C' n (A U B) by the commutative law for n

= (Cc n A) U (Cc n B) by the distributive law

= (A n c') U (B n cC) by the commutative law for n

= (A - C) U (B -C) by the set difference law.

Example 5.3.3 Deriving a Set Identity Using Properties of 0

Use the properties in Theorem 5.2.2 to construct an algebraic proof that for all sets A
and B,

A - (A n B) = A - B.
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Solution Suppose A and B are sets. Then

A - (A n B) = A n (A n B)C by the set difference law

= A n (AC U BC) by De Morgan's laws

= (A n AC) U (A n BC) by the distributive law

= 0 U (A n Bc) by the complement law

= (A n BC) U 0 by the commutative law for u

= A n BC by the identity law for U

= A - B by the set difference law. U

To many people an algebraic proof seems more attractive than an element proof. But
often an element proof is actually simpler. For instance, in Example 5.3.3 above, you could
see immediately that A -(A n B) = A -B because for an element to be in A - (A n B)
means that it is in A and not in both A and B, and this is equivalent to saying that it is in
A and not in B.

Example 5.3.4 Deriving a Generalized Associative Law

Prove that for any sets Al, A2, A3, and A4,

((Al U A2 ) U A3 ) U A4 = Al U ((A 2 U A3 ) U A4).

Solution Let sets Al, A2 , A3, and A4 be given. Then

((Al U A 2 ) U A3 ) U A4 = (Al U (A 2 U A 3 )) U A4  by the associative law for U with AI
playing the role of A, A2 playing the role
of B, and A3 playing the role of C

= Al U ((A 2 U A3 ) U A4 ) by the associative law for U with AI
playing the role of A, A2 U A3 playing
the role of B, and A4 playing the role of C.

At Caution! When doing problems similar to Examples 5.3.2-5.3.4, be sure to
use the set properties exactly as they are stated.

Boolean Algebras
If you look back at the logical equivalences of Theorem 1.1.1 and compare them to the
set identities of Theorem 5.2.2, you will notice that numbers 1-11 are very similar. This
reflects a similarity of underlying structure between the set of all statement forms in a
finite number of variables with the operations of v and A and the set of all subsets of a
set together with the operations of U and n. Both are special cases of a general algebraic
structure known as a Boolean algebra. Properties of Boolean algebras are used extensively
in the simplification of digital logic circuits.
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A Boolean algebra is a set B together with two operations, generally denoted +
and *, such that for all a and b in B both a + b and a . b are in B and the following
properties hold:

1. Commutative Laws: For all a and b in B,

(a)a+b=b+a and (b)a.b=b-a.

2. Associative Laws: For all a, b, and c in B,

(a)(a+b)+c=a+(b+c) and (b) (a b) c = a (b c).

3. Distributive Laws: For all a, b, and c in B,

(a)a+(b-c)=(a+b)-(a+c) and (b)a.(b+c)=(a b)+(a-c).

4. Identity Laws: There exist distinct elements 0 and 1 in B such that for all a in B,

(a)a+0=a and (b)a- I =a.

5. Complement Laws: For each a in B, there exists an element in B, denoted a and
called the complement or negation of a, such that

(a) a + j = 1 and (b) a * a-= 0.

For the set of statement forms in a finite number of variables, V and A play the roles
of + and -, the tautology t and contradiction c play the roles of 1 and 0, and - plays the
role of -. For a set of subsets of a nonempty set U, U and n play the roles of + and *,
U and 0 play the roles of 1 and 0, and complementation c plays the role of -. Thus the
set of all subsets of a universal set U is a Boolean algebra with operations U and n, and
the set of all statement forms in a finite number of variables is a Boolean algebra with
operations v and A. It turns out that in any Boolean algebra, the complement of each
element is unique, the quantities 0 and 1 are unique, and identities analogous to numbers
6-11 in Theorem 1.1.1 and Theorem 5.2.2 can be deduced.

Theorem 5.3.2 Properties of a Boolean Algebra

Let B be any Boolean Algebra.

I. Uniqueness of the Complement Law: For all a and x in B, if a + x = 1 and
a *x = 0 then x = a.

2. Uniqueness of 0 and 1: If there exists x in B such that a + x = a for all a in B,
then x = 0, and if there exists y in B such that a y = a for all a in B, then y = 1.

3. Double Complement Law: For all a E B. (i) = a.

4. Idempotent Law: For all a E B,

(a)a+a=a and (b)a.a=a.

5. Universal Bound Law: For all a E B,

(a)a+l=l and (b)a.0=0.
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You may notice that all parts of the definition of a Boolean algebra and most parts of
Theorem 5.3.2 contain paired statements. For instance, the distributive laws state that for
all a, b, and c in B,

(a) a+(b-c) = (a+b) * (a+c) and (b) a *(b+c) = (a *b)+(a *c),

and the identity laws state that for all a in B,

(a) a + O = a and (b) a I = a.

Note that each of the paired statements can be obtained from the other by interchanging
all the + and . signs and interchanging 1 and 0. Such interchanges transform any Boolean
identity into its dual identity. It can be proved that the dual of any Boolean identity is
also an identity. This fact is often called the duality principle for a Boolean algebra.

Example 5.3.5 Proof of the Double Complement Law

Prove that for all elements a in a Boolean algebra B, (a-) = a.

Solution Start by supposing that B is a Boolean algebra and a is any element of B. The
basis for the proof is the uniqueness of the complement law: that each element in B has a
unique complement that satisfies certain equations with respect to it. So if a can be shown
to satisfy those equations with respect to a, then a must be the complement of a.

6. De Morgan Laws: For all a and b e B,

; a)ia+ib0= b and (b)a-b=J+b. X

7. t Absorptin Laws: For all a and b E B,

(a)(a+b)*a=a and (b)(a*b)+a=a.

8. Compements of 0 and 1:

(a)O=1 and (b)1=O.

Proof:

Part 1: Uniqueness of the Complement Law

Suppose a and x are particular, but arbitrarily chosen, elements of B that satisfy the
following hypothesis: a + x = 1 and a * x = 0. Then

X = X 1 because 1 is an identity for

= x (a + a) by the complement law for +

= x a + x a by the distributive law for. over +

= a x + x a by the commutative law for.

= O+x * a by hypothesis

= a* a + x *a by the complement law for

= (a * a) + (a * x) by the commutative law for

= a (a + x) by the distributive law for. over +

= a * 1 by hypothesis

= a because I is an identity for.

Proofs of the other parts of the theorem are discussed in the examples below and in
the exercises.
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Example 5.3.6 Proof of an Idempotent Law

Fill in the blanks in the following proof that for all elements a in a Boolean algebra B,
a + a = a.

Proof:

Suppose B is a Boolean algebra and a is any element of B. Then

a =a+0 (a)

=a+(aa) (b)

=(a + a) *(a + a) (c)

=(a + a) (d)

=a+a (e)

Solution

a. because 0 is an identity for +

b. by the complement law for -

c. by the distributive law for + over-

d. by the complement law for +

e. because 1 is an identity for - .

Exercise Set 5.3
For each of 1-4 find a counterexample to show that the statement
is false. Assume all sets are subsets of a universal set U.

1. For all sets A,B,and C,(AnB)UC=An(BUC).

2. Forallsets A, B, and C, ifA C BthenA n (Bnc)' =0.

3. ForallsetsA, B,andC,ifA Z BandB Z CthenA : C.

4. For all sets A, B, and C, if B n c C A then
(A - B) A (A - C) = 0.

For each of 5-17 prove each statement that is true and find a
counterexample for each statement that is false. Assume all sets
are subsets of a universal set U.

5. ForallsetsA,B,andC,A -(B-C)=(A-B) -C.

Theorem 5.3.2(3) Double Complement Law

For Xatll eleets;a: in~ a X a Booea algbr B, (ii) a.0000 f0

Proof:

Suppose B is a Boolean algebra and a is any element of B. Then

a + a = a + a by the commutative law

= 1 by the complement law for I

and

a a = a *a by the commutative law

= 0 by the complement law for 0.

Thus a satisfies the two equations with respect to ai that are satisfied by the comple-
ment of a. From the fact that the complement of a is unique, we conclude that
(a) =a.



6. For all sets A and B, A n (A U B) = A.

7. For all sets A, B, and C,

(A -B)n(C-B)=A-(BUC).

8. For all sets A and B, ifA' C B then AU B = U.

9. For all sets A, B, and C, if A C C and B C C then
AU B C C.

10. For all sets A and B, if A C B then A n -c = 0.

H 11. For all sets A, B, and C, if A C B and B n C = 0 then H
A n C = 0.

12. For all sets A and B, if A n B = 0 then A x B = 0.

13. For all sets A and B, if A C B then ./(A) C (B).

14. For all sets A and B, 9?(A U B) C J3(A) U .y(B).

H 15. For all sets A and B, fi(A) U J(B) C -7(A U B).

16. For all sets A and B, J(A n B) = 9(A) n -(B).

17. For all sets A and B, _:(A x B) = '9(A) x `(B).

18. Write a negation for each of the following statements. In-
dicate which is true, the statement or its negation. Justify
your answers.
a. V sets S, 3 a set T such that S n T = 0.
b. 3asetSsuchthatVsetsT,SUT=0.

19. Let S = {a, b, cl and for each integer i = 0, 1, 2, 3, let Si
be the set of all subsets of S that have i elements. List the
elements in So, SI, S2, and S3.Is [So, SI, 52, 53) a partition
of .$L(S)?

20. Let S = (a, b, c} and let Sa be the set of all subsets of S that
contain a, let Sb be the set of all subsets of S that contain
b, let S, be the set of all subsets of S that contain c, and let
So be the set whose only element is 0. Is (S., Sb, S_ SO) a
partition of Y(S)?

21. Let A = {t, u, v, w} and let S, be the set of all subsets of A
that do not contain w and S2 the set of all subsets of A that
contain w. H
a. Find SI.
b. Find 52.

c. Are S, and 52 disjoint?
d. Compare the sizes of S, and S2.
e. How many elements are in S, U S2?
f. What is the relation between S, U 52 and Z11(A)?

H * 22. The following problem, devised by Ginger Bolton, appeared
in the January 1989 issue of the College Mathematics Jour- H
nal (Vol. 20, No. 1, p. 68): Given a positive integer n > 2,
let S be the set of all nonempty subsets of (2, 3, . . , n}.
For each Si E S, let Pi be the product of the elements of Si.
Prove or disprove that

21-1 (n + 1)! 1

2
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In 23 and 24 supply a reason for each step in the derivation.

23. For al] sets A, B, and C,

(AU B) n C =(Afn C) U (B fl C).

Proof: Suppose A, B, and C are any sets. Then

(AUB)nC=C n(AUB) by (a)

= (C n A) u (C n B) by (b)

=(A nC)U(Bn C) by (c)

24. For all sets A, B, and C,
(A U B) -(C -A) = A U (B -C).

Proof: Suppose A, B, and C are any sets. Then

(A U B) -(C-A) = (A U B) n (C - A) by (a)

=(AUB)fn(CnAc)' by (b)

= (AUB)fn(Afl C)C by (c)

= (A U B) n ((AC)' U Cc) by (d)

=(AUB)n(AUCC) by (e)

=Au(BnC') by (f)

=Au(B-C) by (g)

In 25-33 use the properties in Theorem 5.2.2 to construct an
algebraic proof for the given statement.

25. For all sets A, B, and C,

(A n B) U C - (A U C) n (B U C).

26. ForallsetsAandB,AU(B -A) =AUB.

27. For all sets A, B, and C,

(A -B)- C=A-(BUC).

28. ForallsetsAandB,A -(A -B)=AnB.

29. For all sets A and B, ((A' U B') - A)' = A.

30. For all sets A and B, (Bc U (B' - A))c = B.

31. Forall sets A and B, A -(An B) = A -B.

32. For all sets A and B,

(A -B)U(B -A)=(AUB)-(A B).

33. For all sets A, B, and C,

(A -B) -(B -C) = A -B.

In 34-36 use the properties in Theorem 5.2.2 to simplify the
given expression.

34. AU((BUAc)UBc)

35. (A -(A n B)) n (B-(A n B))

36. ((A n (B U C)) n (A B)) n (B U Cc)
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37. Consider the following set property: For all sets A and B,
A - B and B are disjoint.

a. Use an element argument to derive the property.
b. Use an algebraic argument to derive the property (by ap-

plying properties from Theorem 5.2.2).
c. Comment on which method you found easier.

38. Consider the following set property: For all sets A, B, and
C,(A -B)U(B -C)=(AUB)-(B C).
a. Use an element argument to derive the property.
b. Use an algebraic argument to derive the property (by ap-

plying properties from Theorem 5.2.2).
c. Comment on which method you found easier.

Definition: Given sets A and B, the symmetric difference
of A and B, denoted A A B, is

AAB=(A -B)U(B -A).

39. LetA = (I,2,3,41,B = {3,4,5,6),andC= {5,6,7,8).
Find each of the following sets:
a. AAB b. BAC
c. AAC d. (AAB)AC

Refer to the definition of symmetric difference given above.
Prove each of 40-45, assuming that A, B, and C are all sub-
sets of a universal set U.

40. AAB=BAA

42. AAA' = U

41. AA0=A

43. AAA=0

H 44. If AAC = BAC,thenA = B.

H 45. (A A B) A C = A A (B A C).

46. Derive the set identity A U (A n B) = A from the proper-
ties listed in Theorem 5.2.2(1)-(5). Start by showing that
for all subsets B of a universal set U, U U B = U. Then
intersect both sides with A and deduce the identity.

47. Derive the set identity A n (A U B) = A from the proper-

ties listed in Theorem 5.2.2(1)-(5). Start by showing that
for all subsets B of a universal set U, 0 = 0 n B. Then take
the union of both sides with A and deduce the identity.

In 48-50 assume that B is a Boolean algebra with operations +
and . Give the reasons needed to fill in the blanks in the proofs,
but do not use any parts of Theorem 5.3.2 unless they have al-
ready been proved. You may use any part of the definition of a
Boolean algebra and the results of previous exercises, however.

48. Foralla in B,a a = a.

Proof: Let a be any element of B. Then

a-a = 1 (a)

=a -(a +a) (b)

=(a a)+ (a a) (c)

= (a a) +0 (d)

49. Foralla in B,a + -= 1.

Proof: Let a be any element of B. Then

a+l =a+(a+a) (a)

-(a + a) + a (b)

= a + a by Example 5.3.6

-I (d)

50. ForallaandbinB,(a+b) a=a.

Proof: Let a and b be any elements of B. Then

(a + b). a =a (a + b) (a)

-a a +-a b (b)

-a+a a (c)

-a I + a b (d)

a (I + b) (d)

=a (b+ I) (e)

=a l

= a

by exercise 49

(f)

In 51-57 assume that B is a Boolean algebra with operations +
and -. Prove each statement without using any parts of Theo-
rem 5.3.2 unless they have already been proved. You may use
any part of the definition of a Boolean algebra and the results of
previous exercises, however.

51. ForallainB,a 0=0.

52. For all a and b in B, (a b) + a = a.

53. 0= 1. 54. 1 = 0

55. For all a and b in B, a . b = a + b. (Hint: Prove that
(a .b) + (a + b) = I and that (a b) (a + b) = 0, and use
the fact that a . b has a unique complement.)

56. For all a and bin B, a + b = a b.

H157. Forallx,y,andzinB,ifx+y=x+zandx y=x z,
then y = z.

58. Let S = {0, 1), and define operations + and . on S by the
following tables:

+ 0 1

0 0 1

1 1 1

0 1

0 0 0

1 0 1

a. Show that the elements of S satisfy the following prop-
erties:
(i) the commutative law for +
(ii) the commutative law for

(iii) the associative law for +
(iv) the associative law for

H (v) the distributive law for + over
(vi) the distributive law for . over +

(e)= a a
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H b. Show that 0 is an identity element for + and that 1 is an H * 59. Prove that the associative laws for a Boolean algebra can
identity element for . be omitted from the definition. That is, prove that the as-

c. Define 0 = 1 and 1 = 0. Show that for all a in S, sociative laws can be derived from the other laws in the
a + a = I and a a = 0. It follows from parts (a)-(c) definition.
that S is a Boolean algebra with the operations + and .

5.4 Russell's Paradox and the Halting Problem
From the paradise createdfor us by Cantor, no one will drive us out.
-David Hilbert 1862-1943

By the beginning of the twentieth century, abstract set theory had gained such wide accep-
tance that a number of mathematicians were working hard to show that all of mathematics
could be built upon a foundation of set theory. In the midst of this activity, the English
mathematician and philosopher Bertrand Russell discovered a "paradox" (really a genuine
contradiction) that seemed to shake the very core of the foundation. The paradox assumes
Cantor's definition of set as "any collection into a whole of definite and separate objects
of our intuition or our thought."

0 Russell's Paradox: Most sets are not elements of themselves. For instance, the set of all
Q integers is not an integer and the set of all horses is not a horse. However, we can imagine
E the possibility of a set's being an element of itself. For instance, the set of all abstract
= ideas might be considered an abstract idea. If we are allowed to use any description of a

Wetrand Russell property as the defining property of a set, we can let S be the set of all sets that are not
1872-1970) elements of themselves:

S = {A I A is a set and A ¢ Al.

Is S an element of itself?
The answer is neither yes nor no. For if S c S, then S satisfies the defining property

for S, and hence S , S. But if S , S, then S is a set such that S i S and so S satisfies
the defining property for S, which implies that S E S. Thus neither is S E S nor is S , S,
which is a contradiction.

To help explain his discovery to lay people, Russell devised a puzzle, the barber puzzle,
whose solution exhibits the same logic as his paradox.

Example 5.4.1 The Barber Puzzle

In a certain town there is a male barber who shaves all those men, and only those men,
who do not shave themselves. Question: Does the barber shave himself?

Solution Neither yes nor no. If the barber shaves himself, he is a member of the class of
men who shave themselves. But no member of this class is shaved by the barber, and so
the barber does not shave himself. On the other hand, if the barber does not shave himself,
he belongs to the class of men who do not shave themselves. But the barber shaves every
man in this class, so the barber does shave himself. E

But how can the answer be neither yes nor no? Surely any barber either does or does
not shave himself. You might try to think of circumstances that would make the paradox
disappear. For instance, maybe the barber happens to have no beard and never shaves.
But a condition of the puzzle is that the barber is a man who shaves all those men who do
not shave themselves. If he does not shave, then he does not shave himself, in which case
he is shaved by the barber and the contradiction is as present as ever. Other attempts at

B
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resolving the paradox by considering details of the barber's situation are similarly doomed
to failure.

So let's accept the fact that the paradox has no easy resolution and see where that
thought leads. Since the barber neither shaves himself nor doesn't shave himself, the
sentence "The barber shaves himself" is neither true nor false. But the sentence arose in
a natural way from a description of a situation. If the situation actually existed, then the
sentence would have to be true or false. Thus we are forced to conclude that the situation
described in the puzzle simply cannot exist in the world as we know it.

In a similar way, the conclusion to be drawn from Russell's paradox itself is that the
object S is not a set. Because if it actually were a set, in the sense of satisfying the general
properties of sets that we have been assuming, then it either would be an element of itself
or not.

In the years following Russell's discovery, several ways were found to define the basic
concepts of set theory so as to avoid his contradiction. The way used in this text requires
that, except for the power set whose existence is guaranteed by an axiom, whenever a set
is defined using a predicate as a defining property, the stipulation must also be made that
the set is a subset of a known set. This method does not allow us to talk about "the set
of all sets that are not elements of themselves." We can speak only of "the set of all sets
that are subsets of some known set and that are not elements of themselves." When this
restriction is made, Russell's paradox ceases to be contradictory. Here is what happens:

Let U be a universal set and suppose that all sets under discussion are subsets of
U. Let

S = {A I A C U and A ¢ A}.

In Russell's paradox, both implications

S C S -S S and S ¢ S S E S

are proved, and the contradictory conclusion

neither S E S nor S V S

is therefore deduced. In the situation in which all sets under discussion are subsets
of U, the implication S E S -÷ S C S is proved in almost the same way as it is for
Russell's paradox: (Suppose S E S. Then by definition of 5, S C U and S 0 S. In
particular, S 0 S.) On the other hand, from the supposition that S 0 S we can only
deduce that the statement S C U and S i S is false. By one of De Morgan's laws, this
means that S % U or S e S. Since S C S would contradict the supposition that S 0 S,
we eliminate it and conclude that S Z U. In other words, the only conclusion we can
draw is that the seeming "definition" of S is faulty-that is, that S is not a set in U.

Russell's discovery had a profound impact on mathematics because even though his
contradiction could be made to disappear by more careful definitions, its existence caused
people to wonder whether other contradictions remained. In 1931 Kurt Godel showed
that it is not possible to prove, in a mathematically rigorous way, that mathematics is free
of contradictions. You might think that Gidel's result would have caused mathematicians
to give up their work in despair, but that has not happened. On the contrary, there has
been more mathematical activity since 1931 than in any other period in history.

The Halting Problem
Well before the actual construction of an electronic computer, Alan M. Turing (1912-
1954) deduced a profound theorem about how such computers would have to work. The
argument he used is similar to that in Russell's paradox. It is also related to those used
by Godel to prove his theorem and by Cantor to prove that it is impossible to write all the

Kurt Gddel
(1906-1978)
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real numbers in an infinitely long list, even given an infinitely long period of time (see
Section 7.5 and Chapter 12).

If you have some experience programming computers, you know how badly an infinite
loop can tie up a computer system. It would be useful to be able to preprocess a program and
its data set by running it through a checking program that determines whether execution
of the given program with the given data set would result in an infinite loop. Can an
algorithm for such a program be written? In other words, can an algorithm be written
that will accept any algorithm X and any data set D as input and will then print "halts"
or "loops forever" to indicate whether X terminates in a finite number of steps or loops
forever when run with data set D? In the 1930s, Turing proved that the answer to this
question is no.

Theorem 5.4.1

There is no computer algoritW that will accept any algorithm X and data set D as
input and then will output, "halts" or '"lops forever" to indicate whether X terminates
in a finite n of stepswhnX is run with dataiset D.

Proof (by contradiction):

Suppose there is an algorithm, CheckHalt, such that if an algorithm X and a data set
D are input, then

CheckHalt(X, D) prints

"halts" if X terminates in a finite number of steps
when run with data set D

or

"loops forever" if X does not terminate in a finite number of
steps when run with data set D.

[To show that no algorithm such as CheckHalt can exist, we will deduce a contra-
diction.]

Observe that the sequence of characters making up an algorithm X can be regarded
as a data set itself. Thus it is possible to consider running CheckHalt with input
(X, X). Define a new algorithm, Test, as follows: For any input algorithm X,

Test(X)

loops forever if CheckHalt(X, X) prints "halts"

or

stops if CheckHalt(X, X) prints "loops forever".

Now run algorithm Test with input Test. If Test(Test) terminates after a finite
number of steps, then the value of CheckHalt(Test, Test) is "halts" and so Test(Test)
loops forever.

On the other hand, if Test(Test) does not terminate after a finite number of steps,
then CheckHalt(Test, Test) prints "loops forever" and so Test(Test) terminates.

The two paragraphs above show that Test(Test) loops forever and also that it
terminates. This is a contradiction. But the existence of Test follows logically
from the supposition of the existence of an algorithm CheckHalt that can check any
algorithm and data set for termination. [Hence the supposition must be false, and
there is no such algorithm.]
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In recent years, the axioms for set theory that guarantee that Russell's paradox will not
arise have been found inadequate to deal with the full range of recursively defined objects
in computer science, and a new theory of "non-well-founded" sets has been developed.
In addition, computer scientists and logicians working on programs to enable computers
to process natural language have seen the importance of exploring further the kinds of
semantic issues raised by the barber puzzle and are developing new theories of logic to
deal with them.

Exercise Set 5.4
In 1-6 determine whether each sentence is a statement. Explain
your answers.

1. This sentence is false.

2. If 1 + 1 = 3, then 1 = 0.

3. The sentence in this box is a lie.

4. All real numbers with negative squares are prime.

5. This sentence is false or 1 + 1 = 3.

6. This sentence is false and 1 + 1 = 2.

7. a. Assuming that the following sentence is a statement, prove
that 1 + 1 = 3:

If this sentence is true, then 1 + 1 = 3.

b. What can you deduce from part (a) about the status of
"This sentence is true"? Why? (This example is known
as Lob's paradox.)

H 8. The following two sentences were devised by the logician
Saul Kripke. While not intrinsically paradoxical, they could
be paradoxical under certain circumstances. Describe such
circumstances.

(i) Most of Nixon's assertions about Watergate are false.

(ii) Everything Jones says about Watergate is true.

(Hint: Suppose Nixon says (ii) and the only utterance Jones
makes about Watergate is (i).)

9. Can there exist a computer program that has as output a list
of all the computer programs that do not list themselves in
their output? Explain your answer.

10. Can there exist a book that refers to all those books and only
those books that do not refer to themselves? Explain your
answer.

11. Some English adjectives are descriptive of themselves (for in-
stance, the word polysyllabic is polysyllabic) whereas others
are not (for instance, the word monosyllabic is not monosyl-
labic). The word heterological refers to an adjective that does
not describe itself. Is heterological heterological? Explain
your answer.

12. As strange as it may seem, it is possible to give a precise-
looking verbal definition of an integer that, in fact, is not a
definition at all. The following was devised by an English
librarian, G. G. Berry, and reported by Bertrand Russell. Ex-
plain how it leads to a contradiction. Let n be "the small-
est integer not describable in fewer than 12 English words."
(Note that the total number of strings consisting of 11 or fewer
English words is finite.)

H 13. Is there an algorithm which, for a fixed quantity a and any
input algorithm X and data set D, can determine whether X
prints a when run with data set D? Explain. (This problem
is called the printing problem.)

14. Use a technique similar to that used to derive Russell's para-
dox to prove that for any set A, JY(A) Z A.



CHAPTER 6

COUNTING AND PROBABILITY

"It's as easy as 1-2-3."
That's the saying. And in certain ways, counting is easy. But other aspects of counting

aren't so simple. Have you ever agreed to meet a friend "in three days" and then realized
that you and your friend might mean different things? For example, on the European
continent, to meet in eight days means to meet on the same day as today one week hence;
on the other hand, in English-speaking countries, to meet in seven days means to meet
one week hence. The difference is that on the continent, all days including the first and
the last are counted. In the English-speaking world, it's the number of 24-hour periods
that are counted.

Continental countries 1 2 3 4 5 6 7 8
t 1 $ $ 1 I

Sun Mon Tue Wed Thu Fri Sat Sun

English-speaking countries 1 2 3 4 5 6 7

The English convention for counting days follows the almost universal convention for
counting hours. If it is 9 A.M. and two people anywhere in the world agree to meet in three
hours, they mean that they will get back together again at 12 noon.

Musical intervals, on the other hand, are universally reckoned the way the Continentals
count the days of a week. An interval of a third consists of two tones with a single tone in
between, and an interval of a second consists of two adjacent tones. (See Figure 6.1.1.)

A ()

C E
Interval of a third

Figure 6.1.1

C D

Interval of a second

Of course, the complicating factor in all these examples is not how to count but
rather what to count. And, indeed, in the more complex mathematical counting problems
discussed in this chapter, it is what to count that is the central issue. Once one knows
exactly what to count, the counting itself is as easy as 1-2-3.
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THERE'S SOMETHING
ABOUT THIS MATH

TEST THAT I DON'T
UNIERSTAND...
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Introduction
Imagine tossing two coins and observing whether 0, 1, or 2 heads are obtained. It would
be natural to guess that each of these events occurs about one-third of the time, but in
fact this is not the case. Table 6.1.1 below shows actual data obtained from tossing two
quarters 50 times.

Table 6.1.1 Experimental Data Obtained from Tossing Two Quarters 50 Times

Frequency Relative Frequency
(Number of times (Fraction of times

Event Tally the event occurred) the event occurred)

2 heads obtained m}1H 11 22%

1 head obtained 0 4 m m m 1 l 27 54%

0 heads obtained Hmm 1 l 12 24%

As you can see, the relative frequency of obtaining exactly 1 head was roughly twice as
great as that of obtaining either 2 heads or 0 heads. It turns out that the mathematical
theory of probability can be used to predict that a result like this will almost always occur.
To see how, call the two coins A and B, and suppose that each is perfectly balanced.
Then each has an equal chance of coming up heads or tails, and when the two are tossed
together, the four outcomes pictured in Figure 6.1.2 are all equally likely.

2 heads obtained I head obtained 0 heads obtained

Figure 6.1.2 Equally Likely Outcomes from Tossing Two Balanced Coins

Figure 6.1.2 shows that there is a I in 4 chance of obtaining two heads and a I in
4 chance of obtaining no heads. The chance of obtaining one head, however, is 2 in 4
because either A could come up heads and B tails or B could come up heads and A tails.
So if you repeatedly toss two balanced coins and record the number of heads, you should
expect relative frequencies similar to those shown in Table 6.1.1.

To formalize this analysis and extend it to more complex situations, we introduce the
notions of random process, sample space, event and probability. To say that a process
is random means that when it takes place, one outcome from some set of outcomes is
sure to occur, but it is impossible to predict with certainty which outcome that will be.
For instance, if an ordinary person performs the experiment of tossing an ordinary coin
into the air and allowing it to fall flat on the ground, it can be predicted with certainty

) )

I

I

6. j
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that the coin will land either heads up or tails up (so the set of outcomes can be denoted
{heads, tails}), but it is not known for sure whether heads or tails will occur. We restricted
this experiment to ordinary people because a skilled magician can toss a coin in a way
that appears random but is not, and a physicist equipped with first-rate measuring devices
may be able to analyze all the forces on the coin and correctly predict its landing position.
Just a few of many examples of random processes or experiments are choosing winners
in state lotteries, selecting respondents in public opinion polls, and choosing subjects to
receive treatments or serve as controls in medical experiments. The set of outcomes that
can result from a random process or experiment is called a sample space.

A sample space is the set of all possible outcomes of a random process or experiment.
An event is a subset of a sample space.

In case an experiment has finitely many* outcomes and all outcomes are equally likely
to occur, the probability of an event (set of outcomes) is just the ratio of the number
of outcomes in the event to the total number of outcomes. Strictly speaking, this result
can be deduced from a set of axioms for probability formulated in 1933 by the Russian
mathematician A. N. Kolmogorov. In Section 6.8 we discuss the axioms and show how to
derive their consequences formally. At present, we take a naive approach to probability
and simply state the result as a principle.

For any finite set, N(A) denotes the number of elements in A.

With this notation, the equally likely probability formula becomes

N (E)

N(S)

Example 6.1.1 Probabilities for a Deck of Cards

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are
diamonds (4) and hearts (9) and the black suits are clubs (4) and spades (4). Each suit
contains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack), Q
(queen), K (king), and A (ace). The cards J, Q, and K are calledface cards.

*In Section 7.3 the concepts of finite and infinite are defined formally.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an event
in S, then the probability of E, denoted P(E), is

P(E = the number of outcomes in E
P(E) the total number of outcomes in S
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Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer
in 1992, showed that seven shuffles are needed to "thoroughly mix up" the cards in an
ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd
Trefethen, a mechanical engineer, used a somewhat different definition of "thoroughly
mix up" to show that six shuffles will nearly always suffice. Imagine that the cards in a
deck have become-by some method-so thoroughly mixed up that if you spread them
out face down and pick one at random, you are as likely to get any one card as any other.

a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card?

Solution

a. The outcomes in the sample space S are the 52 cards in the deck.

b. Let E be the event that a black face card is chosen. The outcomes in E are the jack,
queen, and king of clubs and the jack, queen, and king of spades. Symbolically,

E = {J4, Q4, K4, JO, QO, K*}

c. By part (b), N (E) = 6, and according to the description of the situation, all 52 outcomes
in the sample space are equally likely. Therefore, by the equally likely probability
formula, the probability that the chosen card is a black face card is

N (E) 6_
P (E) - ) = 6 - 11.5%. K

Example 6.1.2 Rolling a Pair of Dice

A die is one of a pair of dice. It is a cube with six sides, each containing from one to six
dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers
of dots that occur face up on each are recorded. The possible outcomes can be listed as
follows, where in each case the die on the left is blue and the one on the right is gray.

[M ONE on INN Ad hi

A more compact notation identifies, say, i i with the string 24,D V with 53,
and so forth.

a. Use the compact notation to write the sample space S of possible outcomes.

b. Use set notation to write the event E that the numbers showing face up have a sum of
6 and find the probability of this event.
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Solution

a. S= {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41,42,43,
44,45, 46,51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.

b. E = {15, 24, 33, 42, 51).

The probability that the sum of the numbers is 6 = P(E) = N(E) = 5
N (S) =

The next example is called the Monty Hall problem after the host of an old game
show, "Let's Make A Deal." When it was originally publicized in a newspaper column
and on a radio show, it created tremendous controversy. Many highly educated people,
even some with Ph.D.'s, submitted incorrect solutions or argued vociferously against the
correct solution. Before you read the answer given below, think about what your own
response to the situation would be.

Example 6.1.3 The Monty Hall Problem

There are three doors on the set for a game show. Let's call them A, B, and C. If you pick
the right door you win the prize. You pick door A. The host of the show, Monty Hall,
then opens one of the other doors and reveals that there is no prize behind it. Keeping
the remaining two doors closed, he asks you whether you want to switch your choice to
the other closed door or stay with your original choice of door A. What should you do if
you want to maximize your chance of winning the prize: stay with door A or switch-or
would the likelihood of winning be the same either way?

I I I

Solution At the point just before the host opens one of the closed doors, there is no infor-
mation about the location of the prize. Thus there are three equally likely possibilities for
what lies behind the doors: (Case 1) the prize is behind A (i.e., it is not behind either B
or C), (Case 2) the prize is behind B; (Case 3) the prize is behind C.

Since there is no prize behind the door the host opens, in Case 1 the host could open
either door and you would win by staying with your original choice: door A. In Case 2
the host must open door C, and so you would win by switching to door B. In Case 3 the
host must open door B, and so you would win by switching to door C. Thus, in two of the
three equally likely cases, you would win by switching from A to the other closed door.
In only one of the three equally likely cases would you win by staying with your original
choice. Therefore, you should switch.

A reality note: The analysis used for this solution applies only if the host always opens
one of the closed doors and offers the contestant the choice of staying with the original
choice or switching. In the original show, Monty Hall made this offer only occasionally-
most often when he knew the contestant had already chosen the correct door. U

Case 1 I Case 2 | Case3 l

1 r I - I I
i
i

II
i

i
i
I
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Many of the fundamental principles of probability were formulated in the mid-1600s in
an exchange of letters between Pierre de Fermat and Blaise Pascal in response to questions
posed by a French nobleman interested in games of chance. In 1812, Pierre-Simon Laplace
published the first general mathematical treatise on the subject and extended the range of
applications to a variety of scientific and practical problems.

Counting the Elements of a List
Some counting problems are as simple as counting the elements of a list. For instance,
how many integers are there from 5 through 12? To answer this question, imagine going
along the list of integers from 5 to 12, counting each in turn.

non Laplace list: 5 6 7 8 9 10 11 12
27) 4 : 4 : t 4: 4

count: 1 2 3 4 5 6 7 8

So the answer is 8.
More generally, if m and n are integers and m < n, how many integers are there from

m through n? To answer this question, note that n = m + (n -m), where n - > 0
[since n > m]. Note also that the element m + 0 is the first element of the list, the element
m + 1 is the second element, the element mn + 2 is the third, and so forth. In general, the
element m + i is the (i + I )st element of the list.

list: m(= m + 0) m + I m + 2 ... , n (= m + (n -m))

count: 1 2 3 ... (n-m) + I

And so the number of elements in the list is n -m + 1.
This general result is important enough to be restated as a theorem, the formal proof of

which uses mathematical induction. (See exercise 33 at the end of this section.) The heart
of the proof is the observation that if the list m, m + 1, . . ., k has k -m + I numbers,
then the list m, m + 1, . . ., k, k + l has (k-m + 1) + I = (k + 1)-m + l numbers.

Theorem 6.1.1 The umber of Elemet in a List

If mi and n are integers a m <n, then there are n - m + 1 integers from m to n
inclusive.;

Example 6.1.4 Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Solution

a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5
and drawing arrows between each such integer and its corresponding multiple of 5.

Pierre-Sih
(1749-18
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From the sketch it is clear that there are as many three-digit integers that are multiples
of 5 as there are integers from 20 to 199 inclusive. By Theorem 6.1.1, there are
199 - 20 + 1, or 180, such integers. Hence there are 180 three-digit integers that are
divisible by 5.

b. By Theorem 6.1.1 the total number of integers from 100 through 999 is 999 - 100 +
1 = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a
randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5. U

Example 6.1.5 Application: Counting Elements of a One-Dimensional Array

Analysis of many computer algorithms requires skill at counting the elements of a one-
dimensional array. Let A[1], A[21, ... , A[n] be a one-dimensional array, where n is a
positive integer.

a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed:

(1) A[1], A[2], . .. , A[m] and (2) A[m + 1], A[m + 2], . A[n].

How many elements does each subarray have?

b. What is the probability that a randomly chosen element of the array has an even subscript

(i) if n is even? (ii) if n is odd?

Solution

a. Array (1) has the same number of elements as the list of integers from 1 through m. So
by Theorem 6.1.1, it has m, or m - 1 + 1, elements. Array (2) has the same number
of elements as the list of integers from m + I through n. So by Theorem 6.1.1, it has
n - m, or n - (m + 1) + 1, elements.

b. (i) If n is even, each even subscript starting with 2 and ending with n can be matched
up with an integer from I to n/2.

1 2 3 4 5 6 7 8 9 10 ... n

2 1 2 2 2 3 2 4 2 5 2 n/2

So there are n/2 array elements with even subscripts. Since the entire array has n
elements, the probability that a randomly chosen element has an even subscript is
n/ 2  1

n 2

(ii) If n is odd, then the greatest even subscript of the array is n - 1. So there are as
many even subscripts between I and n as there are from 2 through n - 1. Then
the reasoning of (i) can be used to conclude that there are (n - 1)/2 array elements
with even subscripts.

1 2 3 4 5 6 .. n-I n

4: 4: 4: 4:
2 -1 2 2 2 - 3 ... 2 - (n -1)/2

Since the entire array has n elements, the probability that a randomly chosen

element has an even subscript is ( )/2 2 Observe that as n gets larger
n 2 .

and larger, this probability gets closer and closer to 1/2.
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Note that the answers to (i) and (ii) can be combined using the floor notation. By The-
orem 3.5.2, the number of array elements with even subscripts is Ln/2j, so the probability

that a randomly chosen element has an even subscript is . U

Exercise Set 6.1 *
1. Toss two coins 30 times and make a table showing the rel-

ative frequencies of 0, 1, and 2 heads. How do your values
compare with those shown in Table 6.1.1 ?

2. In the example of tossing two quarters, what is the prob-
ability that at least one head is obtained? that coin A is a
head? that coins A and B are either both heads or both tails?

In 3-6 use the sample space given in Example 6.1.1. Write each
event as a set, and compute its probability.

3. The event that the chosen card is red and is not a face card.

4. The event that the chosen card is black and has an even
number on it.

5. The event that the denomination of the chosen card is at least
10 (counting aces high).

6. The event that the denomination of the chosen card is at
most 4 (counting aces high).

In 7-10, use the sample space given in Example 6.1.2. Write
each of the following events as a set and compute its probability.

7. The event that the sum of the numbers showing face up is 8.

8. The event that the numbers showing face up are the same.

9. The event that the sum of the numbers showing face up is
at most 6.

10. The event that the sum of the numbers showing face up is
at least 9.

11. Suppose that a coin is tossed three times and the side show-
ing face up on each toss is noted. Suppose also that on each
toss heads and tails are equally likely. Let HHT indicate the
outcome heads on the first two tosses and tails on the third,
THTthe outcome tails on the first and third tosses and heads
on the second, and so forth.
a. List the eight elements in the sample space whose out-

comes are all the possible head-tail sequences obtained
in the three tosses.

b. Write each of the following events as a set and find its
probability:

(i) The event that exactly one toss results in a head.
(ii) The event that at least two tosses result in a head.
(iii) The event that no head is obtained.

12. Suppose that each child born is equally likely to be a boy or
a girl. Consider a family with exactly three children. Let

BBG indicate that the first two children born are boys and
the third child is a girl, let GBG indicate that the first and
third children born are girls and the second is a boy, and so
forth.
a. List the eight elements in the sample space whose out-

comes are all possible genders of the three children.
b. Write each of the following events as a set and find its

probability.
(i) The event that exactly one child is a girl.

(ii) The event that at least two children are girls.
(iii) The event that no child is a girl.

13. Suppose that on a true/false exam you have no idea at all
about the answers to three questions. You choose answers
randomly and therefore have a 50-50 chance of being cor-
rect on any one question. Let CCW indicate that you were
correct on the first two questions and wrong on the third,
let WCW indicate that you were wrong on the first and third
questions and correct on the second, and so forth.
a. List the elements in the sample space whose outcomes are

all possible sequences of correct and incorrect responses
on your part.

b. Write each of the following events as a set and find its
probability:

(i) The event that exactly one answer is correct.
(ii) The event that at least two answers are correct.
(iii) The event that no answer is correct.

14. Three people have been exposed to a certain illness. Once
exposed, a person has a 50-50 chance of actually becom-
ing ill.
a. What is the probability that exactly one of the people

becomes ill?
b. What is the probability that at least two of the people

become ill?
c. What is the probability that none of the three people be-

comes ill?

15. When discussing counting and probability, we often con-
sider situations that may appear frivolous or of little practi-
cal value, such as tossing coins, choosing cards, or rolling
dice. The reason is that these relatively simple examples
serve as models for a wide variety of more complex situ-
ations in the real world. In light of this remark, comment
on the relationship between your answer to exercise 11 and
your answers to exercises 12-14.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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16. Two faces of a six-sided die are painted red, two are painted
blue, and two are painted yellow. The die is rolled three
times, and the colors that appear face up on the first, second,
and third rolls are recorded.
a. Let BBR denote the outcome where the color appearing

face up on the first and second rolls is blue and the color
appearing face up on the third roll is red. Because there
are as many faces of one color as of any other, the out-
comes of this experiment are equally likely. List all 27
possible outcomes.

b. Consider the event that all three rolls produce different
colors. One outcome in this event is RBY and another
RYB. List all outcomes in the event. What is the proba-
bility of the event?

c. Consider the event that two of the colors that appear face
up are the same. One outcome in this event is RRB and
another is RBR. List all outcomes in the event. What is
the probability of the event?

17. Consider the situation described in exercise 16.
a. Find the probability of the event that exactly one of the

colors that appears face up is red.
b. Find the probability of the event that at least one of the

colors that appears face up is red.

18. An urn contains two blue balls (denoted B. and B2) and
one white ball (denoted W). One ball is drawn, its color is
recorded, and it is replaced in the urn. Then another ball is
drawn, and its color is recorded.
a. Let B1 W denote the outcome that the first ball drawn is

B. and the second ball drawn is W. Because the first
ball is replaced before the second ball is drawn, the out-
comes of the experiment are equally likely. List all nine
possible outcomes of the experiment.

b. Consider the event that the two balls that are drawn are
both blue. List all outcomes in the event. What is the
probability of the event?

c. Consider the event that the two balls that are drawn are
of different colors. List all outcomes in the event. What
is the probability of the event?

19. An urn contains two blue balls (denoted B1 and B2) and three
white balls (denoted W,, W2, and W3). One ball is drawn, its
color is recorded, and it is replaced in the urn. Then another
ball is drawn and its color is recorded.
a. Let B. W2 denote the outcome that the first ball drawn is

B. and the second ball drawn is W21. Because the first ball
is replaced before the second ball is drawn, the outcomes
of the experiment are equally likely. List all 25 possible
outcomes of the experiment.

b. Consider the event that the first ball that is drawn is blue.
List all outcomes in the event. What is the probability of
the event?

c. Consider the event that only white balls are drawn. List
all outcomes in the event. What is the probability of the
event?

20. Refer to Example 6.1.3. Suppose you are appearing on a
game show with a prize behind one of five closed doors:

A, B, C, D, and E. If you pick the right door, you win the
prize. You pick door A. The game show host then opens one
of the other doors and reveals that there is no prize behind
it. Then the host gives you the option of staying with your
original choice of door A or switching to one of the other
doors that is still closed.
a. If you stick with your original choice, what is the prob-

ability that you will win the prize?
b. If you switch to another door, what is the probability that

you will win the prize?

21. a. How many positive two-digit integers are multiples
of 3?

b. What is the probability that a randomly chosen positive
two-digit integer is a multiple of 3?

22. a. How many positive three-digit integers are multiples
of 6?

b. What is the probability that a randomly chosen positive
three-digit integer is a multiple of 6?

23. Suppose A[l], A[2], A[3],..., A[n] is a one-dimensional
array and n > 50.
a. How many elements are in the array?
b. How many elements are in the subarray

A[4], A[5], . .. , A[39]?

c. If 3 < m < n, what is the probability that a randomly
chosen array element is in the subarray

A[3], A[4], . . , A[m]?

d. What is the probability that a randomly chosen array el-
ement is in the subarray shown below if n = 39?

A[Ln/2j], A[Ln/2j + 1], . . , A[n]

24. Suppose A[l], A[2],..., A[n] is a one-dimensional array
and n > 2. Consider the subarray

A[l], A[2], . .. , A[Ln/2J].

a. How many elements are in the subarray (i) if n is even?
and (ii) if n is odd?

b. What is the probability that a randomly chosen array
element is in the subarray (i) if n is even? and (ii) if n
is odd?

25. Suppose A[l], A[2], ... , A[n] is a one-dimensional array
and n > 2. Consider the subarray

A[Ln/2j], A[Ln/2j + 1], . .. , A[n].

a. How many elements are in the subarray (i) if n is even?
and (ii) if n is odd?

b. What is the probability that a randomly chosen array
element is in the subarray (i) if n is even? and (ii) if n
is odd?

26. What is the 27th element in the one-dimensional array
A[42], A[43], . .. , A[100]?

27. What is the 62nd element in the one-dimensional array
B[29], B[30], . .. , B[100]?
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28. If the largest of 56 consecutive integers is 279, what is the 32. A non-leap year has 365 days. Assume that January I is a
smallest? Monday.

a. How many Sundays are there in the year?
29. If the largest of 87 consecutive integers is 326, what is the a. How many Mondays are there in the year?

smallest?
* 33. Prove Theorem 6. 1. 1. (Let m be any integer and prove the

30. How many even integers are there between I and 1,001? termb ahmtclidcino .theorem by mathematical induction on n.)
31. How many integers are there between 1 and 1,001 that are

multiples of 3?

6.2 Possibility Trees and the Multiplication Rule
Don't believe anything unless you have thought it through for yourself
-Anna Pell Wheeler, 1883-1966

A tree structure is a useful tool for keeping systematic track of all possibilities in situations
in which events happen in order. The following example shows how to use such a structure
to count the number of different outcomes of a tournament.

Example 6.2.1 Possibilities for Tournament Play

Teams A and B are to play each other repeatedly until one wins two games in a row or a
total of three games. One way in which this tournament can be played is for A to win the
first game, B to win the second, and A to win the third and fourth games. Denote this by
writing A-B-A-A.

a. How many ways can the tournament be played?

b. Assuming that all the ways of playing the tournament are equally likely, what is the
probability that five games are needed to determine the tournament winner?

Solution

a. The possible ways for the tournament to be played are represented by the distinct
paths from "root" (the start) to "leaf" (a terminal point) in the tree shown side-ways in
Figure 6.2.1. The label on each branching point indicates the winner of the game. The
notations in parentheses indicate the winner of the tournament.

Winner of Winner of Winner of Winner of Winner of
game I game 2 game 3 game 4 game 5

A (A wins) A (A wins)
A A A (A wins)

~(B wins)

Start A (A wins) A (A wins)

X- = - B B (B wins)
BI .(wn)NB, (B ~wi ns )

Figure 6.2.1 The Outcomes of a Tournament

The fact that there are ten paths from the root of the tree to its leaves shows that
there are ten possible ways for the tournament to be played. They are (moving from
the top down): A-A, A-B-A-A, A-B-A-B-A, A-B-A-B-B, A-B-B, B-A-A,

l
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B-A-B-A-A, B-A-B-A-B, B-A-B-B, and B-B. In five cases A wins, and in
the other five B wins. The least number of games that must be played to determine a
winner is two, and the most that will need to be played is five.

b. Since all the possible ways of playing the tournament listed in part (a) are assumed to be
equally likely, and the listing shows that five games are needed in four different cases
(A-B-A-B-A, A-B-A-B-B, B-A-B-A-B, and B-A-B-A-A), theprobabilitythat
five games are needed is 4/10 = 2/5 = 40%. U

The Multiplication Rule
Consider the following example. Suppose a computer installation has four input/output
units (A, B, C, and D) and three central processing units (X, Y, and Z). Any input/output
unit can be paired with any central processing unit. How many ways are there to pair an
input/output unit with a central processing unit?

To answer this question, imagine the pairing of the two types of units as a two-step
operation:

Step 1: Choose the input/output unit.

Step 2: Choose the central processing unit.

The possible outcomes of this operation are illustrated in the possibility tree of Figure
6.2.2.

Step 1: Choose the
input/output unit.

Step 2: Choose the
central processing unit.

A

*Y

z

*X

.y

z

*X

*y

z

.X

*y

*

Figure 6.2.2 Pairing Objects Using a Possibility Tree

The top-most path from "root" to "leaf" indicates that input/output unit A is to be
paired with central processing unit X. The next lower branch indicates that input/output
unit A is to be paired with central processing unit Y. And so forth.
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Thus the total number of ways to pair the two types of units is the same as the number
of branches of the tree, which is

3 + 3 ± 3 + 3 = 4. 3 = 12.

The idea behind this example can be used to prove the following rule. A formal proof uses
mathematical induction and is left to the exercises.

Theorem 6.2.1 The Multiplication Rule

If an operation consists of k steps and

the first step can be performed in n I ways,

the second step can be performed in n2 ways [regardless of how the first
step was performed ],

the kth step can be performed in nk ways [regardless of how the preceding
steps were performed],

then the entire oper n can be performed in n I n2 ... nk ways.

To apply the multiplication rule, think of the objects you are trying to count as the
output of a multistep operation. The possible ways to perform a step may depend on how
preceding steps were performed, but the number of ways to perform each step must be
constant regardless of the action taken in prior steps.

Example 6.2.2 Number of Personal Identification Numbers (PINs)

A typical PIN (personal identification number) is a sequence of any four symbols chosen
from the 26 letters in the alphabet and the ten digits, with repetition allowed. How many
different PINs are possible?

Solution Typical PINs are CARE, 3387, B32B, and so forth. You can think of forming a
PIN as a four-step operation.

Step 1: Choose the first symbol.

Step 2: Choose the second symbol.

Step 3: Choose the third symbol.

Step 4: Choose the fourth symbol.

There is a fixed number of ways to perform each step, namely 36, regardless of how
preceding steps were performed. And so, by the multiplication rule, there are 36 . 36.
36. 36 = 364 = 1,679,616 PINs in all. N

Another way to look at the PINs of Example 6.2.2 is as ordered 4-tuples. For example,
you can think of the PIN M2ZM as the ordered 4-tuple (M, 2, Z, M). Therefore, the total
number of PINs is the same as the total number of ordered 4-tuples whose elements are
either letters of the alphabet or digits. One of the most important uses of the multiplication
rule is to derive a general formula for the number of elements in any Cartesian product
of a finite number of finite sets. In Example 6.2.3, this is done for a Cartesian product of
four sets.
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Example 6.2.3 The Number of Elements in a Cartesian Product

Suppose Al, A2, A3 , and A4 are sets with n 1, n2, n3, and n4 elements, respectively. Show
that the set Al x A2 x A3 x A4 has nin2 n3 n4 elements.

Solution Each element in Al x A2 x A3 x A4 is an ordered 4-tuple of the form
(a1, a2, a3, a4), where al E A1, a2 E A2 , a3 e A3, and a4 E A4. Imagine the process of
constructing these ordered tuples as a four-step operation:

Step 1: Choose the first element of the 4-tuple.

Step 2: Choose the second element of the 4-tuple.

Step 3: Choose the third element of the 4-tuple.

Step 4: Choose the fourth element of the 4-tuple.

There are nI ways to perform step 1, n2 ways to perform step 2, n3 ways to perform step
3, and n4 ways to perform step 4. Hence, by the multiplication rule, there are nin2n3n4

ways to perform the entire operation. Therefore, there are n I n2n3 n4 distinct 4-tuples in
Al x A2 x A3 x A4.

Example 6.2.4 Number of PINs without Repetition

In Example 6.2.2 we formed PINs using four symbols, either letters of the alphabet or
digits, and supposing that letters could be repeated. Now suppose that repetition is not
allowed.

a. How many different PINs are there?

b. If all PINs are equally likely, what is the probability that a PIN chosen at random
contains no repeated symbol?

Solution

a. Again think of forming a PIN as a four-step operation: Choose the first symbol, then the
second, then the third, and then the fourth. There are 36 ways to choose the first symbol,
35 ways to choose the second (since the first symbol cannot be used again), 34 ways to
choose the third (since the first two symbols cannot be reused), and 33 ways to choose
the fourth (since the first three symbols cannot be reused). Thus, the multiplication rule
can be applied to conclude that there are 36 35 . 34. 33 = 1,413,720 different PINs
with no repeated symbol.

b. By part (a) there are 1,413,720 PINs with no repeated symbol, and by Example 6.2.2
there are 1,679,616 PINs in all. Thus the probability that a PIN chosen at random

1,413,720
contains no repeated symbol is .8417. In other words, approximately

1,679,616
84% of PINs have no repeated symbol. U

Any circuit with two input signals P and Q has an input/output table consisting of four
rows corresponding to the four possible assignments of values to P and Q: 1, 10, 01,
and 00. The next example shows that there are only 16 distinct ways in which such a
circuit can function.
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Example 6.2.5 Number of Input/Output Tables for a Circuit with Two Input Signals

Consider the set of all circuits with two input signals P and Q. For each such circuit an
input/output table can be constructed, but, as shown in Section 1.4, two such input/output
tables may have the same values. How many distinct input/output tables can be constructed
for circuits with input/output signals P and Q?

Solution Fix the order of the input values for P and Q. Then two input/output tables are
distinct if their output values differ in at least one row. For example, the input/output
tables shown below are distinct, because their output values differ in the first row.

P Q Otp Output

1 0 0
0 1 1 1 1 1
0 X 0 0X 0 X 0 1X

For a fixed ordering of input values, you can obtain a complete input/output table by
filling in the entries in the output column. You can think of this as a four-step operation:

Step 1: Fill in the output value for the first row.

Step 2: Fill in the output value for the second row.

Step 3: Fill in the output value for the third row.

Step 4: Fill in the output value for the fourth row.

Each step can be performed in exactly two ways: either a 1 or a 0 can be filled in. Hence,
by the multiplication rule, there are

22-.222 = 16

ways to perform the entire operation. It follows that there are 24 = 16 distinct input/output
tables for a circuit with two input signals P and Q. This means that such a circuit can
function in only 16 distinct ways. U

I. L; LL.

Let n be a positive integer. Given a finite set S, a string of length n over S is an ordered
n-tuple of elements of S written without parentheses or commas. The elements of S
are called the characters of the string. The null string over S is defined to be the
"string" with no characters. It is usually denoted e and is said to have length 0. If
S = {0, II, then a string over S is called a bit string.

Observe that in Examples 6.2.2 and 6.2.4, the set of all PINs of length 4 is the same
as the set of all strings of length 4 over the set

S = {x I x is a letter of the alphabet or x is a digit}.

Also observe that another way to think of Example 6.2.5 is to realize that there are as many
input/output tables for a circuit with two input signals as there are bit strings of length 4
(written vertically) that can be used to fill in the output values. As another example, here
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is a listing of all bit strings of length 3:

000, 001, 010, 100, 011, 101, 110, 111.

Example 6.2.6 Counting the Number of Iterations of a Nested Loop

Consider the following nested loop:

fori := I to4
for j := I to 3

[Statements in body of inner loop.
None contain branching statements
that lead out of the inner loop.]

next j
next i

How many times will the inner loop be iterated when the algorithm is implemented and
run?

Solution The outer loop is iterated four times, and during each iteration of the outer loop,
there are three iterations of the inner loop. Hence by the multiplication rule, the total
number of iterations of the inner loop is 4 * 3 = 12. This is illustrated by the trace table
below.

ill 2 1 3:J 4

1 1 2 3 1 2 3 1 2 3 1 2"3

3 + 3 + 3 + 3 12 U

When the Multiplication Rule is Difficult
or Impossible to Apply

Consider the following problem:

Three officers-a president, a treasurer, and a secretary-are to be chosen
from among four people: Ann, Bob, Cyd, and Dan. Suppose that, for various
reasons, Ann cannot be president and either Cyd or Dan must be secretary.
How many ways can the officers be chosen?

It is natural to try to solve this problem using the multiplication rule. A person might
answer as follows:

There are three choices for president (all except Ann), three choices for trea-
surer (all except the one chosen as president), and two choices for secretary
(Cyd or Dan). Therefore, by the multiplication rule, there are 3 . 3 * 2 = 18
choices in all.

Unfortunately, this analysis is incorrect. The number of ways to choose the secretary
varies depending on who is chosen for president and treasurer. For instance, if Bob is
chosen for president and Ann for treasurer, then there are two choices for secretary: Cyd
and Dan. But if Bob is chosen for president and Cyd for treasurer, then there is just one
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choice for secretary: Dan. The clearest way to see all the possible choices is to construct
the possibility tree, as is shown in Figure 6.2.3.

Step 1: Choose
the president.

Step 2: Choose
the treasurer.

Step 3: Choose
the secretary.

-. Is
LYa

Start

Dan

Dan

Cyd

Dan

Dan

Cyd

Cyd

Figure 6.2.3

From the tree it is easy to see that there are only eight ways to choose a president,
treasurer, and secretary so as to satisfy the given conditions.

Another way to solve this problem is somewhat surprising. It turns out that the steps
can be reordered in a slightly different way so that the number of ways to perform each
step is constant regardless of the way previous steps were performed.

Example 6.2.7 A More Subtle Use of the Multiplication Rule

Reorder the steps for choosing the officers in the example above so that the total number
of ways to choose officers can be computed using the multiplication rule.

Solution

Step 1: Choose the secretary.

Step 2: Choose the president.

Step 3: Choose the treasurer.

There are exactly two ways to perform step 1 (either Cyd or Dan may be chosen), two ways
to perform step 2 (neither Ann nor the person chosen in step 1 may be chosen but either of
the other two may), and two ways to perform step 3 (either of the two people not chosen
as secretary or president may be chosen as treasurer). Thus, by the multiplication rule, the
total number of ways to choose officers is 2 * 2 * 2 = 8. A possibility tree illustrating this
sequence of choices is shown in Figure 6.2.4. Note how balanced this tree is compared
with the one in Figure 6.2.3.
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Step 1: Choose Step 2: Choose Step 3: Choose
the secretary. the president. the treasurer.

Ann

Start

Figure 6.2.4 .

Permutations
A permutation of a set of objects is an ordering of the objects in a row. For example, the
set of elements a, b, and c has six permutations.

abc acb cba bac bca cab

In general, given a set of n objects, how many permutations does the set have? Imagine
forming a permutation as an n-step operation:

Step 1: Choose an element to write first.

Step 2: Choose an element to write second.

Step n: Choose an element to write nth.

Any element of the set can be chosen in step 1, so there are n ways to perform step
1. Any element except that chosen in step I can be chosen in step 2, so there are n - I
ways to perform step 2. In general, the number of ways to perform each successive step
is one less than the number of ways to perform the preceding step. At the point when the
nth element is chosen, there is only one element left, so there is only one way to perform
step n. Hence, by the multiplication rule, there are

n(n - l)(n - 2) ... 2. 1 =n!

ways to perform the entire operation. In other words, there are n! permutations of a set of
n elements. This reasoning is summarized in the following theorem. A formal proof uses
mathematical induction and is left as an exercise.
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Example 6.2.8 Permutations of the Letters in a Word

a. How many ways can the letters in the word COMPUTER be arranged in a row?

b. How many ways can the letters in the word COMPUTER be arranged if the letters CO
must remain next to each other (in order) as a unit?

c. If letters of the word COMPUTER are randomly arranged in a row, what is the proba-
bility that the letters CO remain next to each other (in order) as a unit?

Solution

a. All the eight letters in the word COMPUTER are distinct, so the number of ways in
which we can arrange the letters equals the number of permutations of a set of eight
elements. This equals 8! = 40,320.

b. If the letter group CO is treated as a unit, then there are effectively only seven objects
that are to be arranged in a row.

C-omMF R

Hence there are as many ways to write the letters as there are permutations of a set of
seven elements, namely 7! = 5,040.

c. When the letters are arranged randomly in a row, the total number of arrangements is
40,320 by part (a), and the number of arrangements with the letters CO next to each
other (in order) as a unit is 5,040. Thus the probability is

5,040 1

40,320 8

Example 6.2.9 Permutations of Objects Around a Circle

At a meeting of diplomats, the six participants are to be seated around a circular table.
Since the table has no ends to confer particular status, it doesn't matter who sits in which
chair. But it does matter how the diplomats are seated relative to each other. In other
words, two seatings are considered the same if one is a rotation of the other. How many
different ways can the diplomats be seated?

Solution Call the diplomats by the letters A, B, C, D, E, and F. Since only relative position
matters, you can start with any diplomat (say A), place that diplomat anywhere (say in
the top seat of the diagram shown in Figure 6.2.5), and then consider all arrangements of
the other diplomats around that one. B through F can be arranged in the seats around
diplomat A in all possible orders. So there are 5! = 120 ways to seat the group.

A '. -. y

Five other
diplomats
to be seated:
B, C, D, E, F

Figure 6.2.5 .
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Permutations of Selected Elements
Given the set fa, b, c}, there are six ways to select two letters from the set and write them
in order.

ab ac ba bc ca cb

Each such ordering of two elements of {a, b, c} is called a 2-pernutation of {a, b, c}.

I. 1

An r-permnutatin of a set of n elements is an ordered selection of r elements taken
from the set of n elements. The number of r-permutations of a set of n elements is
denoted P(n, r).

A formal proof of this theorem uses mathematical induction and is based on the mul-
tiplication rule. The idea of the proof is the following.

Suppose a set of n elements is given. Formation of an r-permutation can be thought
of as an r-step process. Step 1 is to choose the element to be first. Since the set has n
elements, there are n ways to perform step 1. Step 2 is to choose the element to be second.
Since the element chosen in step 1 is no longer available, there are n - 1 ways to perform
step 2. Step 3 is to choose the element to be third. Since neither of the two elements
chosen in the first two steps is available, there are n - 2 choices for step 3. This process
is repeated r times, as shown below.

Position I Position 2 Position 3 ... Position r

The number of ways to perform each successive step is one less than the number of ways
to perform the preceding step. Step r is to choose the element to be rth. At the point just
before step r is performed, r -1 elements have already been chosen, and so there are

n - (r - 1) = n - r + 1

Theorem 6.2.3

If n and r are integers and 1 < r < n, then the number of r-permutations of a set of
n elements is given by the formula

P(n, r) = n(n-l)(n-2) ... (n-r + 1) firstversion

or, equivalently,

P(n, r) second version.
(n -r)! s
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left to choose from. Hence there are n -r + 1 ways to perform step r. It follows by the
multiplication rule that the number of ways to form an r-permutation is

P(n,r) =n(n-l)(n- 2) ... (n -r+ ).

Note that

n! n(n - )(n -2) .. (n -r +1) ( *- *

(n-r)!

=n(n-1)(n -2)...(n-r+l).

Thus the formula can be written as

n!
P(n, r) =

The second version of the formula is easier to remember. When you actually use it,
however, first substitute the values of n and r and then immediately cancel the numerical
value of (n -r)! from the numerator and denominator. Because factorials become so large
so fast, direct use of the first version of the formula without cancellation can overload your
calculator's capacity for exact arithmetic even when n and r are quite small. For instance,
if n = 15 and r = 2, then

n! 15! 1,307,674,368,000

(n -r)! 13! 6,227,020,800

But if you cancel (n -r)! = 13! from numerator and denominator before multiplying out,
you obtain

n! 15 15 1 z =15 * 14 = 210.
(n-r)! 13! 1 1 4 0

In fact, many scientific calculators allow you to compute P(n, r) simply by entering the
values of n and r and pressing a key or making a menu choice. Alternative notations for
P (n, r) that you may see in your calculator manual are n Pr, Pnr and ' Pr.

Example 6.2.10 Evaluating r-Permutations

a. Evaluate P(5, 2).

b. How many 4-permutations are there of a set of seven objects?

c. How many 5-permutations are there of a set of five objects?

Solution
5! _ _ _ _ _ __f .,

a. P(5, 2) = - = -20
(5 -2)! ' ,

b. The number of 4-permutations of a set of seven objects is

7! 7 .6 .5 .4 -9.,Z .X
P (7, 4) = * = = 7 6 5 4 =840.

(7 -4)!'A-
c. The number of 5-permutations of a set of five objects is

5! 5! 5!
P (5, 5)- -~ - =- = 5!120.

(5 -5)! 0! 1



6.2 Possibility Trees and the Multiplication Rule 317

Note that the definition of 0! as I makes this calculation come out as it should, for the
number of 5-permutations of a set of five objects is certainly equal to the number of
permutations of the set. U

Example 6.2.11 Permutations of Selected Letters of a Word

a. How many different ways can three of the letters of the word BYTES be chosen and
written in a row?

b. How many different ways can this be done if the first letter must be B?

Solution

a. The answer equals the number of 3-permutations of a set of five elements. This equals

5! 5 -4 -3 .Z
P (5, 3) = X = 5 4 3 = 60.

(5 -3)! I

b. Since the first letter must be B, there are effectively only two letters to be chosen and
placed in the other two positions. And since the B is used in the first position, there
are four letters available to fill the remaining two positions.

11

Position I Position 2 Position 3

Hence the answer is the number of 2-permutations of a set of four elements, which is

4! 4 -3 . Z JP (4, 2)= = / = 4 .3 = 12. E
(4 -2)! -

In many applications of the mathematics of counting, it is necessary to be skillful in
working algebraically with quantities of the form P(n, r). The next example shows a
kind of problem that gives practice in developing such skill.

Example 6.2.12 Proving a Property of P (n, r)

Prove that for all integers n > 2,

P(n, 2) + P(n, 1) = n2 .

Solution Suppose n is an integer that is greater than or equal to 2. By Theorem 6.2.3,

P (n, 2) n(n - 1)

(n -2)!

and
P(n,1) = n! = n ( I n.

Hence
P(n,2)+P(n, 1) =n (n-1)+n =n2 n+n = 2

which is what we needed to show. .
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Exercise Set 6.2
In 1-4, use the fact that in baseball's World Series, the first team
to win four games wins the series.

1. Suppose team A wins the first three games. How many ways
can the series be completed? (Draw a tree.)

2. Suppose team A wins the first two games. How many ways
can the series be completed? (Draw a tree.)

3. How many ways can a World Series be played if team A
wins four games in a row?

4. How many ways can a World Series be played if no team
wins two games in a row?

5. In a competition between players X and Y, the first player
to win three games in a row or a total of four games wins.
How many ways can the competition be played if X wins the
first game and Y wins the second and third games? (Draw
a tree.)

6. One urn contains two black balls (labeled B. and B2) and
one white ball. A second urn contains one black ball and
two white balls (labeled WI and W2). Suppose the following
experiment is performed: One of the two urns is chosen at
random. Next a ball is randomly chosen from the urn. Then
a second ball is chosen at random from the same urn without
replacing the first ball.
a. Construct the possibility tree showing all possible out-

comes of this experiment.
b. What is the total number of outcomes of this experiment?
c. What is the probability that two black balls are chosen?
d. What is the probability that two balls of opposite color

are chosen?

7. One urn contains one blue ball (labeled B.) and three red
balls (labeled R., R2, and R3). A second urn contains two
red balls (R4 and R5) and two blue balls (B2 and B3). An
experiment is performed in which one of the two urns is
chosen at random and then two balls are randomly chosen
from it, one after the other without replacement.
a. Construct the possibility tree showing all possible out-

comes of this experiment.
b. What is the total number of outcomes of this experiment?
c. What is the probability that two red balls are chosen?

8. A person buying a personal computer system is offered a
choice of three models of the basic unit, two models of
keyboard, and two models of printer. How many distinct
systems can be purchased?

9. Suppose there are three roads from city A to city B and five
roads from city B to city C.
a. How many ways is it possible to travel from city A to

city C via city B?
b. How many different round-trip routes are there from city

A to B to C to B and back to A?

c. How many different routes are there from city A to B
to C to B and back to A in which no road is traversed
twice?

10. Suppose there are three routes from North Point to Boul-
der Creek, two routes from Boulder Creek to Beaver Dam,
two routes from Beaver Dam to Star Lake, and four routes
directly from Boulder Creek to Star Lake. (Draw a sketch.)
a. How many routes from North Point to Star Lake pass

through Beaver Dam?
b. How many routes from North Point to Star Lake bypass

Beaver Dam?

11. a. A bit string is a finite sequence of 0's and I's. How many
bit strings have length 8?

b. How many bit strings of length 8 begin with three 0's?
c. How many bit strings of length 8 begin and end with

a I?
d. In Section 1.5 we showed how integers can be repre-

sented by strings of 0's and I's inside a digital computer.
In fact, through various coding schemes, strings of 0's
and l's can be used to represent all kinds of symbols.
One commonly used code is the Extended Binary-Coded
Decimal Interchange Code (EBCDIC) in which each
symbol has an 8-bit representation. How many distinct
symbols can be represented by this code?

12. Hexadecimal numbers are made using the sixteen digits 0,
1,2, 3,4, 5, 6, 7, 8, 9, A, B, C, D, E, F. They are denoted by
the subscript 16.
a. How many hexadecimal numbers begin with one of the

digits 3 through B, end with one of the digits 5 through
F and are 5 digits long?

b. How many hexadecimal numbers begin with one of the
digits 4 through D, end with one of the digits 2 through
E and are 6 digits long?

13. A coin is tossed four times. Each time the result H for heads
or T for tails is recorded. An outcome of HHTT means that
heads were obtained on the first two tosses and tails on the
second two. Assume that heads and tails are equally likely
on each toss.
a. How many distinct outcomes are possible?
b. What is the probability that exactly two heads occur?
c. What is the probability that exactly one head occurs?

14. Suppose that in a certain state, all automobile license plates
have four letters followed by three digits.
a. How many different license plates are possible?
b. How many license plates could begin with A and end

in 0?
c. How many license plates could begin with TGIF?
d. How many license plates are possible in which all the

letters and digits are distinct?
e. How many license plates could begin with AB and have

all letters and digits distinct?

U



15. A combination lock requires three selections of numbers,
each from I through 30.
a. How many different combinations are possible?
b. Suppose the locks are constructed in such a way that no

number may be used twice. How many different combi-
nations are possible?

16. The diagram below shows the keypad for an automatic teller
machine. As you can see, the same sequence of keys repre-
sents a variety of different PINs. For instance, 2133, AZDE,
and BQ3F are all keyed in exactly the same way.

I
r

a. How many different PINs are represented by the same
sequence of keys as 2133?

b. How many different PINs are represented by the same
sequence of keys as 5031?

c. At an automatic teller machine, each PIN corresponds to
a four-digit numeric sequence. For instance, TWJM cor-
responds to 8956. How many such numeric sequences
contain no repeated digit?

17. Three officers-a president, a treasurer, and a secretary-
are to be chosen from among four people: Ann, Bob, Cyd,
and Dan. Suppose that Bob is not qualified to be treasurer
and Cyd's other commitments make it impossible for her to
be secretary. How many ways can the officers be chosen?
Can the multiplication rule be used to solve this problem?

18. Modify Example 6.2.4 by supposing that a PIN must not
begin with any of the letters A-M and must end with a digit.
Continue to assume that no symbol may be used more than
once and that the total number of PINs is to be determined.
a. Find the error in the following "solution."

"Constructing a PIN is a four-step process.

Step 1: Choose the left-most symbol.

Step 2: Choose the second symbol from the left.

Step 3: Choose the third symbol from the left.

Step 4: Choose the right-most symbol.

Because none of the thirteen letters from A through M
may be chosen in step 1, there are 36 - 13 = 23 ways
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to perform step 1. There are 35 ways to perform step
2 and 34 ways to perform step 3 because previously
used symbols may not be used. Since the symbol cho-
sen in step 4 must be a previously unused digit, there
are 10 - 3 = 7 ways to perform step 4. Thus there are
23 . 35 * 34 -7 = 191,590 different PINs that satisfy the
given conditions."

b. Reorder steps 1-4 in part (a) as follows:

Step 1: Choose the right-most symbol.

Step 2: Choose the left-most symbol.

Step 3: Choose the second symbol from the left.

Step 4: Choose the third symbol from the left.

Use the multiplication rule to find the number of PINs
that satisfy the given conditions.

19. a. How many integers are there from 10 through 99?
b. How many odd integers are there from 10 through 99?
c. How many integers from 10 through 99 have distinct

digits?
d. How many odd integers from 10 through 99 have distinct

digits?
e. What is the probability that a randomly chosen two-digit

integer has distinct digits? has distinct digits and is odd?

20. a. How many integers are there from 1000 through 9999?
b. How many odd integers are there from 1000 through

9999?
c. How many integers from 1000 through 9999 have dis-

tinct digits?
d. How many odd integers from 1000 through 9999 have

distinct digits?
e. What is the probability that a randomly chosen four-digit

integer has distinct digits? has distinct digits and is odd?

In each of 21-25, determine how many times the innermost loop
will be iterated when the algorithm segment is implemented and
run. (Assume that m, n, p, a, b, c, and d are all positive inte-
gers.)

21. for i := I to 30

for j := I to 15
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

22. forj := 1to m

fork := I to n
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next k

next j

I

I

i
I
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23. for i := I to m

for j := I to n

fork := I to p
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next k

next j

next i

24. for i := 5 to 50

for j := 10 to 20
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

25. Assume a < b and c < d.

for i :=a to b

for :=c to d
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

H *26. Consider the numbers 1 through 99,999 in their ordinary
decimal representations. How many contain exactly one of
each of the digits 2, 3, 4, and 5?

*27. Let n = pk, pk2 ... pkm where PI, P2 . Pm are distinct
prime numbers and k1, k2, . km are positive integers.
How many ways cann be written as aproduct of two positive
integers that have no common factors
a. assuming that order matters (i.e., 8 . 15 and 15 . 8 are

regarded as different)?
b. assuming that order does not matter (i.e., 8 . 15 and

15 , 8 are regarded as the same)?

* 28. a. If p is a prime number and a is a positive integer, how
many divisors does pa have?

b. If p and q are prime numbers and a and b are positive
integers, how many possible divisors does paqb have?

c. If p, q, and r are prime numbers and a, b, and c are pos-
itive integers, how many possible divisors does p'qbrc

have?
d. If PI, P2, ... , Pm are prime numbers and al, a2, ... , am

are positive integers, how many possible divisors does
pa, pa2 ... pa- have?

e. What is the smallest positive integer with exactly 12 di-
visors?

29. a. How many ways can the letters of the wordALGORlTHM
be arranged in a row?

b. How many ways can the letters of the wordALGORITHM
be arranged in a row if A and L must remain together (in
order) as a unit?

c. How many ways can the letters of the wordALGORITHM
be arranged in a row if the letters GOR must remain to-
gether (in order) as a unit?

30. Six people attend the theater together and sit in a row with
exactly six seats.
a. How many ways can they be seated together in the row?
b. Suppose one of the six is a doctor who must sit on the

aisle in case she is paged. How many ways can the peo-
ple be seated together in the row with the doctor in an
aisle seat?

c. Suppose the six people consist of three married couples
and each couple wants to sit together with the husband on
the left. How many ways can the six be seated together
in the row?

31. Five people are to be seated around a circular table. Two
seatings are considered the same if one is a rotation of the
other. How many different seatings are possible?

32. Write all the 2-permutations of {W, X, Y, Z1.

33. Write all the 3-permutations of Is, t, u, v).

34. Evaluate the following quantities.
a. P(6, 4) b. P(6, 6) c. P(6, 3) d. P(6, 1)

35. a. How many 3-permutations are there of a set of five ob-
jects?

b. How many 2-permutations are there of a set of eight ob-
jects?

36. a. How many ways can three of the letters of the word
ALGORITHM be selected and written in a row?

b. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row?

c. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row if the
first letter must be A?

d. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row if the
first two letters must be OR?

37. Prove that for all integers n > 2,

P(n+1,3) =n 3 -n.

38. Prove that for all integers n > 2,

P(n + 1, 2) - P(n, 2) = 2P(n, 1).

39. Prove that for all integers n > 3,

P(n + 1,3) - P(n, 3) = 3P(n, 2).

40. Prove that for all integers n > 2,

P(n, n) = P(n, n -1).

41. Prove Theorem 6.2.1 by mathematical induction.

H 42. Prove Theorem 6.2.2 by mathematical induction.

* 43. Prove Theorem 6.2.3 by mathematical induction.
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6.3 Counting Elements of Disjoint Sets:
The Addition Rule
The whole of science is nothing more than a refinement of everyday thinking.
-Albert Einstein, 1879-1955

In the last section we discussed counting problems that can be solved using possibility
trees. In this section we look at counting problems that can be solved by counting the
number of elements in the union of two sets, the difference of two sets, or the intersection
of two sets.

The basic rule underlying the calculation of the number of elements in a union or
difference or intersection is the addition rule. This rule states that the number of elements
in a union of mutually disjoint finite sets equals the sum of the number of elements in each
of the component sets.

A formal proof of this theorem uses mathematical induction and is left to the exercises.

Example 6.3.1 Counting Passwords with Three or Fewer Letters

A computer access password consists of from one to three letters chosen from the 26 in
the alphabet with repetitions allowed. How many different passwords are possible?

Solution The set of all passwords can be partitioned into subsets consisting of those of
length 1, those of length 2, and those of length 3 as shown in Figure 6.3.1.

Set of All Passwords of Length < 3

words
oflength 1

passwords
of length 2

passors
of length 3

Figure 6.3.1

By the addition rule, the total number of passwords equals the number of passwords of
length 1, plus the number of passwords of length 2, plus the number of passwords of
length 3. Now the

number of passwords of length 1 = 26 because there are 26 letters in the alphabet

number of passwords of length 2 = 262

number of passwords of length 3 = 263

because forming such a word can be
thought of as a two-step process in which
there are 26 ways to perform each step

because forming such a word can be thought
of as a three-step process in which
there are 26 ways to perform each step.

Hence the

total number of passwords = 26 + 262 + 263 = 18,278.

Theorem 6.3.1 The Addition Rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets Al,
A2, ... , Ak. Then

N(A) = N(Ai) + N(A 2 ) + * .. + N(Ak).

.
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Example 6.3.2 Counting the Number of Integers Divisible by 5

How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

Solution One solution to this problem was discussed in Example 6.1.4. Another approach
uses the addition rule. Integers that are divisible by 5 end either in 5 or in 0. Thus the
set of all three-digit integers that are divisible by 5 can be split into two mutually disjoint
subsets Al and A2 as shown in Figure 6.3.2.

Three-Digit Integers That Are Divisible by 5

the-digit integers three-digit iners
that end in 0 that end in 5

Al A2

Figure 6.3.2

Now there are as many three-digit integers that end in 0 as there are possible choices
for the left-most and middle digits (because the right-most digit must be a 0). As illustrated
below, there are nine choices for the left-most digit (the digits 1 through 9) and ten choices
for the middle digit (the digits 0 through 9). Hence N (AI)-9 9 10 = 90.

t 1t 1'
9 choices 10 choices number ends in ()

1,2,3,4,5,6,7,8,9 0,1,2,3,4,5,6,7,8,9

Similar reasoning (using 5 instead of 0) shows that N(A2 ) = 90 also. So

the number of
three-digit integers = N(At) + N(A2 ) = 90 + 90 = 180. U
that are divisible by 5

The Difference Rule
An important consequence of the addition rule is the fact that if the number of elements in
a set A and the number in a subset B of A are both known, then the number of elements
that are in A and not in B can be computed.

Theorem 6.3.2 The Difference Rule

If A is a finite set and B is a subset of A, then

N(A - B) = N(A) - N(B).

The difference rule is illustrated in Figure 6.3.3.

I
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A (n elements)

B=keemns A B (n k elements)

Figure 6.3.3 The Difference Rule

The difference rule holds for the following reason: If B is a subset of A, then the two
sets B and A - B have no elements in common and B U (A - B) = A. Hence, by the
addition rule,

N(B) + N(A-B) = N(A).

Subtracting N(B) from both sides gives the equation

N(A - B) = N(A) - N(B).

Example 6.3.3 Counting PINs with Repeated Symbols

The PINs discussed in Examples 6.2.2 and 6.2.4 are made from exactly four symbols
chosen from the 26 letters of the alphabet and the ten digits, with repetitions allowed.

a. How many PINs contain repeated symbols?

b. If all PINs are equally likely, what is the probability that a randomly chosen PIN
contains a repeated symbol?

Solution

a. According to Example 6.2.2, there are 364 = 1,679,616 PINs when repetition is al-
lowed, and by Example 6.2.4, there are 1,413,720 PINs when repetition is not allowed.
Thus, by the difference rule, there are

1,679,616 - 1,413,720 = 265,896

PINs that contain at least one repeated symbol.

b. By Example 6.2.2 there are 1,679,616 PINs in all, and by part (a) 265,896 of these
contain at least one repeated symbol. Thus, by the equally likely probability formula,

the probability that a randomly chosen PIN contains a repeated symbol is 265,896
1, 679,616

0.158 = 15.8%. U

An alternative solution to Example 6.3.3(b) is based on the observation that if S is the
set of all PINs and A is the set of all PINs with no repeated symbol, then S - A is the set
of all PINs with at least one repeated symbol. It follows that

P(S-A) = A by definition of probability in the equally likely case
N(S)

N(S) -N(A)
N(S) by the difference rule

N (S)

N(S) _N(A)
= - by the laws of fractions

N(S) N(S)

= 1 -P (A) by definition of probability in the equally likely case

I - 0.842 by Example 6.2.4

0.158 = 15.8%
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This solution illustrates a more general property of probabilities: that the probability of
the complement of an event is obtained by subtracting the probability of the event from
the number 1. In Section 6.8 we derive this formula from the axioms for probability.

Formula for the Probability of the Complement of an Event

If S is a finite sample space and A is an event in S, then

P(AC) = 1-P(A).

Example 6.3.4 Number of Python Identifiers of Eight or Fewer Characters

In the computer language Python, identifiers must start with one of 53 symbols: either one
of the 52 letters of the upper- and lower-case Roman alphabet or a hyphen (-). The initial
character may stand alone, or it may be followed by any number of additional characters
chosen from a set of 63 symbols: the 53 symbols allowed as an initial character plus the
ten digits. Certain keywords, however, such as and, if, print, and so forth, are set aside
and may not be used as identifiers. In one implementation of Python there are 29 such
reserved keywords, none of which has more than eight characters. How many Python
identifiers are there that are less than or equal to eight characters in length?

Solution The set of all Python identifiers with eight or fewer characters can be partitioned
into eight subsets-identifiers of length 1, identifiers of length 2, and so on-as shown in
Figure 6.3.4. The reserved words have various lengths (all less than or equal to 8), so the
set of reserved words is shown overlapping the various subsets.

Set of Python Identifiers with Eight or Fewer Characters

eng length length length length length length leng
1 2 3 4 5 6 7 8

C Reserved words )

I .
Figure 6.3.4

According to the rules for creating Python identifiers, there are

53 potential identifiers of length 1

53 * 63 potential identifiers of length 2

53 -632 potential identifiers of length 3

53 * 637 potential identifiers of length 8

because there are 53 choices for the first character

because the first character can be any one of
53 symbols, and the second character can be
any one of 63 symbols

because the first character can be any one of
53 symbols, and each of the next two char-
acters can be any one of 63 symbols

because the first character can be any one
of 53 symbols, and each of the next seven
characters can be any one of 63 symbols.
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Thus, by the addition rule, the number of potential Python identifiers with eight or fewer
characters is

53 + 53 * 63 + 53 * 632 + 53 * 633 + 53 634 + 53 * 635 + 53 * 636 + 53. 637( 638 - I
= 53I

(63 - I

= 212,133,167,002,880.

Now 29 of these potential identifiers are reserved, so by the difference rule, the actual
number of Python identifiers with eight or fewer characters is

212,133,167,002,880 - 29 = 212,133,167,002,851.

Example 6.3.5 Internet Addresses

In order to communicate effectively, each computer in a network needs a distinguishing
name called an address. For the Internet this address is currently a 32-bit number called
the Internet Protocol (IP) address (although 128-bit addresses are being phased in to
accommodate the growth of the Internet). For technical reasons some computers have
more than one address, whereas other sets of computers, which use the Internet only
sporadically, may share a pool of addresses that are assigned on a temporary basis. Like
telephone numbers, IP addresses are divided into parts: one, the network ID, specifies the
local network to which a given computer belongs, and the other, the host ID, specifies the
particular computer.

An example of an IP address is 10001100 11000000 00100000 10001000, where the
32 bits have been divided into four groups of 8 for easier reading. To make the reading
even easier, IP addresses are normally written as "dotted decimals," in which each group
of 8 bits is converted into a decimal number between 0 and 255. For instance, the IP
address above converts into 140.192.32.136.

In order to accommodate the various sizes of the local networks connected through
the Internet, the network IDs are divided into several classes, the most important of which
are called A, B, and C. In every class, a host ID may not consist of either all O's or all 1's.

Class A network IDs are used for very large local networks. The left-most bit is set
to 0, and the left-most 8 bits give the full network ID. The remaining 24 bits are used for
individual host IDs. However, neither 00000000 nor 01111111 is allowed as a network
ID for a class A IP address.

r Network ID [Host ID

ClassA: I I IT||

Class B network IDs are used for medium to large local networks. The two left-most
bits are set to 10, and the left-most 16 bits give the full network ID. The remaining 16 bits
are used for individual host IDs.

rNetwork ID r Host ID

Class B: 1 l
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Class C network IDs are used for small local networks. The three left-most bits are set
to 110, and the left-most 24 bits give the full network ID. The remaining 8 bits are used
for individual host IDs.

Network ID r Host ID

ClassC: II1 I 0 I I II =

a. Check that the dotted decimal form of 10001100 11000000 00100000 10001000 is
140.192.32.136.

b. How many Class B networks can there be?

c. What is the dotted decimal form of the IP address for a computer in a Class B network?

d. How many host IDs can there be for a Class B network?

Solution

a. 100011001= 27+1 *23+1 *22= 128+8+4= 140

11000000 = 1 27 + 1 26 = 128 + 64 = 192

00100000 = 1 25 = 32

10001000 = I 27 + 1 * 23 = 128 + 8 = 136

b. The network ID for a Class B network consists of 16 bits and begins with 10. Because
there are two choices for each of the remaining 14 positions (either 0 or 1), the total
number of possible network IDs is 214, or 16,384.

c. The network ID part of a Class B IP address goes from

1000000000000000 to 10111111 11111111.

As dotted decimals, these numbers range from 128.0 to 191.255 because 100000002 =

1281o, 000000002 = 01o, 1011111 12 = 191lo, and 11111 112 = 2551o. Thus the dot-
ted decimal form of the IP address of a computer in a Class B network is w .x .y .z, where
128 < w < 191,0<x < 255,0< y <255,and0<z <255. However,yandzare
not allowed both to be 0 or both to be 255 because host IDs may not consist of either
all O's or all I's.

d. For a class B network, 16 bits are used for host IDs. Having two choices (either 0 or 1)
for each of 16 positions gives a potential total of 216, or 65,536, host IDs. But because
two of these are not allowed (all O's and all l's), the total number of host IDs is 65,534.

The Inclusion/Exclusion Rule
The addition rule says how many elements are in a union of sets if the sets are mutually
disjoint. Now consider the question of how to determine the number of elements in a
union of sets when some of the sets overlap. For simplicity, begin by looking at a union
of two sets A and B, as shown in Figure 6.3.5.
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Figure 6.3.5

First observe that the number of elements in A U B varies according to the number of
elements the two sets have in common. If A and B have no elements in common, then
N(A U B) = N(A) + N(B). If A and B coincide, then N(A U B) = N(A). Thus any
general formula for N(A U B) must contain a reference to the number of elements the
two sets have in common, N(A n B), as well as to N(A) and N(B).

The simplest way to derive a formula for N(A U B) is to reason as follows:* The
number N(A) counts the elements that are in A and not in B and also the elements that
are in both A and B. Similarly, the number N(B) counts the elements that are in B and
not in A and also the elements that are in both A and B. Hence when the two numbers
N(A) and N(B) are added, the elements that are in both A and B are counted twice. To
get an accurate count of the elements in A U B, it is necessary to subtract the number of
elements that are in both A and B. Because these are the elements in A n B,

N(A U B) = N(A) + N(B) - N(A n B).

A similar analysis gives a formula for the number of elements in a union of three sets, as
shown in Theorem 6.3.3.

It can be shown using mathematical induction (see exercise 36 at the end of this
section) that formulas analogous to those of Theorem 6.3.3 hold for unions of any finite
number of sets.

Example 6.3.6 Counting Elements of a General Union

a. How many integers from I through 1,000 are multiples of 3 or multiples of 5?

b. How many integers from I through 1,000 are neither multiples of 3 nor multiples of 5?

*An alternative proof is outlined in exercise 34 at the end of this section.

AUB

Theorem 6.3.3 The Inclusion/Exclusion Rule for Two or Three Sets

If A, B, and C are any finite sets, then

N(A U B) = N(A) + N(B) - N(A n B)

and

N(A U B U C) = N(A) + N(B) + N(C) - N(A n B) - N(A n C)
-N(BnC)+N(AnBnC).
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Solution

a. Let A = the set of all integers from 1 through 1,000 that are multiples of 3.
Let B = the set of all integers from 1 through 1,000 that are multiples of 5.

Then

A U B = the set of all integers from I through 1,000 that are multiples of 3
or multiples of 5

and

A n B = the set of all integers from I through 1,000 that are multiples
of both 3 and 5

= the set of all integers from 1 through 1,000 that are multiples of 15.

[Now calculate N(A), N(B), and N(A n B) and use the inclusion/exclusion rule to
solve for N(A U B).]
Because every third integer from 3 through 999 is a multiple of 3, each can be repre-
sented in the form 3k, for some integer k from 1 through 333. Hence there are 333
multiples of 3 from 1 through 1,000, and so N(A) = 333.

Similarly, each multiple of 5 from 1 through 1,000 has the form 5k, for some integer
k from 1 through 200.

Thus there are 200 multiples of 5 from 1 through 1,000 and N(B) = 200.
Finally, each multiple of 15 from 1 through 1,000 has the form 15k, for some integer
k from 1 through 66 (since 990 = 66- 15).

Hence there are 66 multiples of 15 from 1 through 1,000, and N(A n B) = 66.
It follows by the inclusion/exclusion rule that

N(A U B) = N(A) + N(B) - N(A n B)

= 333 + 200 - 66

= 467.

Thus there are 467 integers from 1 through 1,000 that are multiples of 3 or multiples
of 5.

b. There are 1,000 integers from 1 through 1,000, and by part (a), 467 of these are multiples
of 3 or multiples of 5. Thus, by the set difference rule, there are 1,000 - 467 = 533
that are neither multiples of 3 nor multiples of 5. U
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Note that the solution to part (b) of Example 6.3.6 hid a use of De Morgan's law. The
number of elements that are neither in A nor in B is N(AC n BC), and by De Morgan's
law, AC n BC = (A U B)c. So N((A U B)X) was then calculated using the set difference
rule: N((A U B)C) = N(U) - N(A U B), where theuniverse U was the setof allintegers
from 1 through 1,000. Exercises 30-32 at the end of this section explore this technique
further.

Example 6.3.7 Counting the Number of Elements in an Intersection

A professor in an advanced computer course takes a survey on the first day of class to
determine how many students know certain computer languages. The finding is that out
of a total of 50 students in the class,

30 know Java;

18 know C++;

26 know C#;

9 know both Java and C++;

16 know both Java and C#;

8 know both C++ and C#;

47 know at least one of the three languages.

Note that when we write "30 students know Java," we mean that the total number of
students who know Java is 30, and we allow for the possibility that some of these students
may know one or both of the other languages. If we want to say that 30 students know
Java only (and not either of the other languages), we will say so explicitly.

a. How many students know none of the three languages?

b. How many students know all three languages?

c. How many students know Java and C++ but not C#? How many students know Java
but neither C++ nor C#?

Solution

a. By the difference rule, the number of students who know none of the three languages
equals the number in the class minus the number who know at least one language.
Thus the number of students who know none of the three languages is

50 - 47 = 3.

b. Let

J = the set of students who know Java

P = the set of students who know C++

S = the set of students who know C#.

Then, by the inclusion/exclusion rule,

N(J U P U S) = N(J) + N(P) + N(S) - N(J n P) - N(J n S)

- N(P n S) + N(J n P n S)

Substituting known values, we get

47 = 30+26+18-9-l6-8+N(JnPnS).

Solving for N(J n P n S) gives

N(J n P n S) = 6.
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Hence there are six students who know all three languages. In general, if you know
any seven of the eight terms in the inclusion/exclusion formula for three sets, you can
solve for the eighth term.

c. To answer the questions of part (c), look at the diagram in Figure 6.3.6.

The number o
students who
know all three
languages

The number o
students who
know both
Java and C++
but not C#

Since N(J n P n S) = 6, put the number 6 inside the innermost region. Then work
outward to find the numbers of students represented by the other regions of the diagram.
For example, since nine students know both Java and C++ and six know all three
languages, 9 -6 = 3 students know Java and C++ but not C#. Similarly, since 16
students know Java and C# and six know all three languages, 16 - 6 = 10 students
know Java and C# but not C++. Now the total number of students who know Java is
30. Of these 30, three also know C++ but not C#, ten know C# but not C++, and six
know both C++ and C#. That leaves 11 students who know Java but neither of the
other two languages.

A similar analysis can be used to fill in the numbers for the other regions of the
diagram. .

Exercise Set 6.3
1. a. How many bit strings consist of from one through four

digits? (Strings of different lengths are considered dis-
tinct. Thus 10 and 0010 are distinct strings.)

b. How many bit strings consist of from five through eight
digits?

2. a. How many strings of hexadecimal digits consist of from
one through three digits? (Recall that hexadecimal num-
bers are constructed using the 16 digits 0, 1, 2, 3, 4, 5, 6,
7, 8,9, A, B, C, D, E, F.)

b. How many strings of hexadecimal digits consist of from
two through five digits?

3. a. How many integers from I through 999 do not have any
repeated digits?

b. What is the probability that an integer chosen at random
from 1 through 999 has at least one repeated digit?

4. How many arrangements in a row of no more than three let-
ters can be formed using the letters of the word NE7WORK
(with no repetitions allowed)?

5. a. How many five-digit integers (integers from 10,000
through 99,999) are divisible by 5?

b. What is the probability that a five-digit integer chosen at
random is divisible by 5?

6. In a certain state, license plates consist of from zero to three
letters followed by from zero to four digits, with the provi-
sion, however, that a blank plate is not allowed.
a. How many different license plates can the state produce?
b. Suppose 85 letter combinations are not allowed because

of their potential for giving offense. How many different
license plates can the state produce?

* 7. A calculator has an eight-digit display and a decimal point
that is located at the extreme right of the number displayed,
at the extreme left, or between any pair of digits. The cal-
culator can also display a minus sign at the extreme left of
the number. How many distinct numbers can the calcula-
tor display? (Note that certain numbers are equal, such as
1.9, 1.90, and 01.900, and should, therefore, not be counted
twice.)



8. a. Consider the following algorithm segment:

for i := I to 4

for j := I to i
[Statements in body of inner loop.
None contain branching statements
that lead outside the loop. I
next j

next i

How many times will the inner loop be iterated when the
algorithm is implemented and run?

b. Let n be a positive integer, and consider the following
algorithm segment:

for i := I ton

for j := I to i
[Statements in body of inner loop.
None contain branching statements
that lead outside the loop. I
next j

next i

How many times will the inner loop be iterated when the
algorithm is implemented and run?

9. a. How many ways can the letters of the word QUICK be
arranged in a row?

b. How many ways can the letters of the word QUICK be
arranged in a row if the Q and the U must remain next
to each other in the order Q U?

c. How many ways can the letters of the word QUICK be
arranged in a row if the letters Q U must remain together
but may be in either the order QU or the order UQ?

10. a. How many ways can the letters of the word THEORY be
arranged in a row?

b. How many ways can the letters of the word THEORY be
arranged in a row if T and H must remain next to each
other as either TH or HT.

11. A group of eight people are attending the movies together.
a. Two of the eight insist on sitting side-by-side. In how

many ways can the eight be seated together in a row?
b. Two of the people do not like each other and do not want

to sit side-by-side. Now how many ways can the eight
be seated together in a row?

12. An early compiler recognized variable names according to
the following rules: Numeric variable names had to begin
with a letter, and then the letter could be followed by an-
other letter or a digit or by nothing at all. String variable
names had to begin with the symbol $ followed by a letter,
which could then be followed by another letter or a digit or
by nothing at all. How many distinct variable names were
recognized by this compiler?
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H 13. Identifiers in a certain database language must begin with a
letter, and then the letter may be followed by other charac-
ters, which can be letters, digits, or underscores (_). How-
ever, 82 keywords (all consisting of 15 or fewer characters)
are reserved and cannot be used as identifiers. How many
identifiers with 30 or fewer characters are possible? (Write
the answer using summation notation and evaluate it using
a formula from Section 4.2.)

14. a. If any seven digits could be used to form a telephone num-
ber, how many seven-digit telephone numbers would not
have any repeated digits?

b. How many seven-digit telephone numbers would have
at least one repeated digit?

c. What is the probability that a randomly chosen seven-
digit telephone number would have at least one repeated
digit?

15. a. How many strings of four hexadecimal digits do not have
any repeated digits?

b. How many strings of four hexadecimal digits have at
least one repeated digit?

c. What is the probability that a randomly chosen string of
four hexadecimal digits has at least one repeated digit?

16. Just as the difference rule gives rise to a formula for the prob-
ability of the complement of an event, so the addition and
inclusion/exclusion rules give rise to formulas for the prob-
ability of the union of mutually disjoint events and for a gen-
eral union of (not necessarily mutually exclusive) events.
a. Prove that for mutually disjoint events A and B,

P(A U B) = P(A) + P(B).

b. Prove that for any events A and B.

P(A U B) = P(A) + P(B) - P(A n B).

H 17. A combination lock requires three selections of numbers,
each from 1 through 39. Suppose the lock is constructed in
such a way that no number can be used twice in a row but
the same number may occur both first and third. How many
different combinations are possible?

* 18. a. How many integers from I through 100,000 contain the
digit 6 exactly once?

b. How many integers from I through 100,000 contain the
digit 6 at least once?

c. If an integer is chosen at random from I through 100,000,
what is the probability that it contains two or more oc-
currences of the digit 6?

H * 19. Six new employees, two of whom are married to each other,
are to be assigned six desks that are lined up in a row. If
the assignment of employees to desks is made randomly,
what is the probability that the married couple will have
nonadjacent desks? (Hint: First find the probability that
the couple will have adjacent desks, and then subtract this
number from 1.)
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20. Consider strings of length n over the set {a, b, c, d).
a. How many such strings contain at least one pair of adja-

cent characters that are the same?
b. If a string of length ten over {a, b, c, d) is chosen at ran-

dom, what is the probability that it contains at least one
pair of adjacent characters that are the same?

21. a. How many integers from I through 1,000 are multiples
of 4 or multiples of 7?

b. Suppose an integer from I through 1,000 is chosen at
random. Use the result of part (a) to find the probability
that the integer is a multiple of 4 or a multiple of 7.

c. How many integers from I through 1,000 are neither
multiples of 4 nor multiples of 7?

22. a. How many integers from I through 1,000 are multiples
of 2 or multiples of 9?

b. Suppose an integer from I through 1,000 is chosen at
random. Use the result of part (a) to find the probability
that the integer is a multiple of 2 or a multiple of 9.

c. How many integers from I through 1,000 are neither
multiples of 2 nor multiples of 9?

23. Refer to Example 6.3.5.
a. Write the following IP address in dotted decimal form:

11001010 00111000 01101011 11101110

b. How many Class A networks can there be?
c. What is the dotted decimal form of the IP address for a

computer in a Class A network?
d. How many host IDs can there be for a Class A network?
e. How many Class C networks can there be?
f. What is the dotted decimal form of the IP address for a

computer in a Class C network?
g. How many host IDs can there be for a Class C network?
h. How can you tell, by looking at the first of the four num-

bers in the dotted decimal form of an IP address, what
kind of network the address is from? Explain.

i. An IP address is 140.192.32.136. What class of network
does it come from?

j. An IP address is 202.56.107.238. What class of network
does it come from?

24. Assume that birthdays are equally likely to occur in any one
of the 12 months of the year.
a. Given a group of four people, A, B, C, and D. What is

the total number of ways in which birth months could be
associated with A, B, C, and D? (For instance, A and B
might have been born in May, C in September, and D in
February. As another example, A might have been born
in January, B in June, C in March, and D in October.)

b. How many ways could birth months be associated with
A, B. C, and D so that no two people would share the
same birth month?

c. How many ways could birth months be associated with
A, B, C, and D so that at least two people would share
the same birth month?

d. What is the probability that at least two people out of
A, B, C, and D share the same birth month?

e. How large must n be so that in any group of n people, the
probability that two or more share the same birth month
is at least 50%?

H 25. Assuming that all years have 365 days and all birthdays oc-
cur with equal probability, how large must n be so that in
any randomly chosen group of n people, the probability that
two or more have the same birthday is at least 1/2? (This is
called the birthday problem. Many people find the answer
surprising.)

26. A market research project studied student readership of cer-
tain news magazines by asking students to place checks un-
derneath the names of all news magazines they read occa-
sionally. Out of a sample of 100 students, it was found
that 28 checked Time, 26 checked Newsweek, 14 checked
U.S. News and World Report, 8 checked both Time and
Newsweek, 4 checked both Time and U.S. News, 3 checked
both Newsweek and U.S. News, and 2 checked all three.
Note that some students who checked Time may also have
checked one or both of the other magazines. A similar oc-
currence may be true for the other data.
a. How many students checked at least one of the maga-

zines?
b. How many students checked none of the magazines?
c. Let T be the set of students who checked Time, N the

set of students who checked Newsweek, and U the set of
students who checked U.S. News. Fill in the numbers for
all eight regions of the diagram below.

Sample of Students

d. How many students read Time and Newsweek but not
U.S. News?

e. How many students read Newsweek and U.S. News but
not Time?

f. How many students read Newsweek but neither of the
other two?

27. A study was done to determine the efficacy of three differ-
ent drugs-A, B, and C-in relieving headache pain. Over
the period covered by the study, 50 subjects were given the



chance to use all three drugs. The following results were
obtained:

21 reported relief from drug A.

21 reported relief from drug B.

31 reported relief from drug C.

9 reported relief from both drugs A and B.

14 reported relief from both drugs A and C.

15 reported relief from both drugs B and C.

41 reported relief from at least one of the drugs.

Note that some of the 21 subjects who reported relief from
drug A may also have reported relief from drugs B or C. A
similar occurrence may be true for the other data.
a. How many people got relief from none of the drugs?
b. How many people got relief from all three drugs?
c. Let A be the set of all subjects who got relief from drug

A, B the set of all subjects who got relief from drug B,
and C the set of all subjects who got relief from drug C.
Fill in the numbers for all eight regions of the diagram
below.

d. How many subjects got relief from A only?

28. An interesting use of the inclusion/exclusion rule is to check
survey numbers for consistency. For example, suppose a
public opinion polltaker reports that out of a national sam-
ple of 1,200 adults, 675 are married, 682 are from 20 to 30
years old, 684 are female, 195 are married and are from 20
to 30 years old, 467 are married females, 318 are females
from 20 to 30 years old, and 165 are married females from
20 to 30 years old. Are the polltaker's figures consistent?
Could they have occurred as a result of an actual sample
survey?
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29. Fill in the reasons for each step below. If A and B are sets
in a finite universe U, then

N(A n B) = N(U) -N((A n B)y) (a)

-N(U)- N(A' U B') (b)

= N(U) -(N(A') + N(B') - N(A' n Bc)) (c)

For each of exercises 30-32 below, the number of elements in a
certain set can be found by computing the number in some larger
universe that are not in the set and subtracting this from the total.
In each case, as indicated by exercise 29, De Morgan's laws and
the inclusionlexclusion rule can be used to compute the number
that are not in the set.

30. How many positive integers less than 1,000 have no com-
mon factors with 1,000?

* 31. How many permutations of abude are there in which the first
character is a, b, or c and the last character is c, d, or e?

* 32. How many integers from I through 999,999 contain each of
the digits 1,2, and 3 at least once? (Hint: For each i = 1, 2,
and 3, let Ai be the set of all integers from I through 999,999
that do not contain the digit i.)

33. Use mathematical induction to prove Theorem 6.3.1.

34. Prove the inclusion/exclusion rule for two sets A and B
by showing that A U B can be partitioned into A n B,
A -(A n B), and B -(A n B), and then using the addi-

tion and difference rules.

35. Prove the inclusion/exclusion rule for three sets.

H *36. Use mathematical induction to prove the general inclu-
sion/exclusion rule:

If AI, A 2 , . .. , A, are finite sets, then

N(A, U A2 U . U A,)

= E N(Ai)- N(Ai nA 2 )
<Jian ,i<ijan

+ E N(A, n Ai A Ak)

- + (-I)'+'N(A, n A2 n ... n A,).

(The notation Y,<i<jn N(Ai n A,) means that quantities
of the form N(Ai n Ai) are to be added together for all
integers i and j with I < i < j < n.)
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6.4 Counting Subsets of a Set: Combinations
"But 'glory' doesn 't mean 'a nice knock-down argument, "' Alice objected. "When I use
a word, " Humpty Dumpty said, in rather a scornful tone, "it means just what I choose it
to mean-neither more nor less. "- Lewis Carroll, Through the Looking Glass, 1872

Consider the following question:

Suppose five members of a group of twelve are to be chosen to work as a team
on a special project. How many distinct five-person teams can be selected?

This question is answered in Example 6.4.5. It is a special case of the following more
general question:

Given a set S with n elements, how many subsets of size r can be chosen from S?

The number of subsets of size r that can be chosen from S equals the number of subsets
of size r that S has. Each individual subset of size r is called an recombination of the set.

Let n and r be nonnegative integers with r < n. An r-combination of a set of n
elements is a subset of r of the n elements. The symbol (,), which is read "n choose
r," denotes the number of subsets of size r (r-combinations) that can be chosen from
a set of n elements.

Note that on a calculator the symbol C(n, r), nC,, Cwr, or 'C, is sometimes used in-

stead of (n).

Example 6.4.1 3-Combinations

Let S = {Ann, Bob, Cyd, Dan}. Each committee consisting of three of the four people in

S is a 3-combination of S.

a. List all such 3-combinations of S. b. What is (4)?

Solution

a. Each 3-combination of S is a subset of S of size 3. But each subset of size 3 can be

obtained by leaving out one of the elements of S. The 3-combinations are

{Bob, Cyd, Dan} leave out Ann

{Ann, Cyd, Dan} leave out Bob

{Ann, Bob, Dan) leave out Cyd

{Ann, Bob, Cydi leave out Dan.

b. Because (4) is the number of 3-combinations of a set with four elements, by part (a),

(3) = 4.

There are two distinct methods that can be used to select r objects from a set of n

elements. In an ordered selection, it is not only what elements are chosen but also the

order in which they are chosen that matters. Two ordered selections are said to be the
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same if the elements chosen are the same and also if the elements are chosen in the same
order. An ordered selection of r elements from a set of n elements is an r-permutation of
the set.

In an unordered selection, on the other hand, it is only the identity of the chosen
elements that matters. Two unordered selections are said to be the same if they consist of
the same elements, regardless of the order in which the elements are chosen. An unordered
selection of r elements from a set of n elements is the same as a subset of size r or an
recombination of the set.

Example 6.4.2 Unordered Selections

How many unordered selections of two elements can be made from the set {O, 1, 2, 31?

Solution An unordered selection of two elements from {O, 1, 2, 3} is the same as a 2-
combination, or subset of size 2, taken from the set. These can be listed systematically as
follows:

{O, 1), (O, 2), {O, 3} subsets containing 0

{1, 2}, 11, 34 subsets containing I but not already listed

{2, 34 subsets containing 2 but not already listed.

Since this listing exhausts all possibilities, there are six subsets in all. Thus (2) = 6, which
is the number of unordered selections of two elements from a set of four. U

When the values of n and r are small, it is reasonable to calculate values of (n) using the
method of complete enumeration (listing all possibilities) illustrated in Examples 6.4.1
and 6.4.2. But when n and r are large, it is not feasible to compute these numbers by
listing and counting all possibilities.

The general values of (n) can be found by a somewhat indirect but simple method. An
equation is derived that contains (G) as a factor. Then this equation is solved to obtain a
formula for (n). The method is illustrated by Example 6.4.3.

Example 6.4.3 Relation between Permutations and Combinations

Write all 2-permutations of the set (0, 1, 2, 31. Find an equation relating the number of
2-permutations, P (4, 2), and the number of 2-combinations, (2), and solve this equation
for (2).

Solution According to Theorem 6.2.3, the number of 2-permutations of the set JO, 1, 2, 31
is P (4, 2), which equals

4! 4 3 ./I
____ = 12.

(4-2)! Z. *,

Now the act of constructing a 2-permutation of {0, 1, 2, 31 can be thought of as a
two-step process:

Step 1: Choose a subset of two elements from {0, 1, 2, 3}.

Step 2: Choose an ordering for the two-element subset.

This process can be illustrated by the possibility tree shown in Figure 6.4. 1.
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Step 1: Write the 2-combinations Step 2: Order the 2-combinations
of {0, 1, 2, 3 ). to obtain 2-permutations.
In 11

Start

01

10

02

20

03

30
12

21

13

31

23

32

Figure 6.4.1 Relation between Permutations and Combinations

The number of ways to perform step 1 is (2), the same as the number of subsets of size
2 that can be chosen from {O, 1, 2, 3}. The number of ways to perform step 2 is 2!, the
number of ways to order the elements in a subset of size 2. Because the number of ways
of performing the whole process is the number of 2-permutations of the set {O, 1, 2, 3},
which equals P (4, 2), it follows from the product rule that

P(4, 2) = (4) 2!. This is an equation that relates P(4, 2) and (4).

Solving the equation for (4) gives
(4)- P(4,2)
2( 2!

4!
Recall that P(4, 2) = ( 2! Hence, substituting yields

4!
4\ - (4 -2)! 4!

= I- = 6. IN
(2J 2! 2!(4 -2)!

The reasoning used in Example 6.4.3 applies in the general case as well. To form an
r-permutation of a set of n elements, first choose a subset of r of the n elements (there are
(n) ways to perform this step), and then choose an ordering for the r elements (there are
r! ways to perform this step). Thus the number of r-permutations is

P (n, r) = (n) .r!.

Now solve for (n) to obtain the formula

(n) P(n, r)
tr r!

Since P(n, r) = , substitution gives
(n -r) !

n!

(n) (n - _r)! n!

try r! r!(n -r)!

The result of this discussion is summarized and extended in Theorem 6.4.1.
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Note that the analysis presented before the theorem proves the theorem in all cases
where n and r are positive. If r is zero and n is any nonnegative integer, then (n) is the
number of subsets of size zero of a set with n elements. But you know from Section 5.3
that there is only one set that does not have any elements. Consequently, (n) = 1. Also

! = $I= I
0!(n - )! - -

since 0! = 1 by definition. (Remember we said that definition would turn out to be
convenient!) Hence the formula

(n) n!
0 0! (n - )!

holds for all integers n > O. and so the theorem is true for all nonnegative integers n and
r with r < n.

Many electronic calculators have keys for computing values of (n). Theorem 6.4.1
enables you to compute these by hand as well.

Example 6.4.4 Computing (n) by Hand
r

Compute (5).

Solution By Theorem 6.4.1,

( 8) 8 !
t5 5!(8 -5)!

8 * 7 .,6 .,5 A,4 *3-2- always cancel common factors

( *A /- 1). * ) before multiplying

=56. U

Example 6.4.5 Calculating the Number of Teams

Consider again the problem of choosing five members from a group of twelve to work as
a team on a special project. How many distinct five-person teams can be chosen?

Solution The number of distinct five-person teams is the same as the number of subsets of
size 5 (or 5-combinations) that can be chosen from the set of twelve. This number is (5).

By Theorem 6.4.1,

12) T12! 12I .11 to10. 9 8 71.
= 115= 9 = 792.

Thus there are 792 distinct five-person teams.

Theorem 6.4.1

The number of subsets of size r (or r-combinations) that can be chosen from a set of
n elements, (C), is given by the formula

(n) P(nr) first version
r r!

or, equivalently,

() r!(n-r)! second version

where n and r are nonnegative integers with r < n.

.
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The formula for the number of r-combinations of a set can be applied in a wide variety
of situations. Some of these are illustrated in the following examples.

Example 6.4.6 Teams That Contain Both or Neither

Suppose two members of the group of twelve insist on working as a pair-any team must
contain either both or neither. How many five-person teams can be formed?

Solution Call the two members of the group that insist on working as a pair A and B. Then
any team formed must contain both A and B or neither A nor B. The set of all possible
teams can be partitioned into two subsets as shown in Figure 6.4.2 below.

Because a team that contains both A and B contains exactly three other people from
the remaining ten in the group, there are as many such teams as there are subsets of three
people that can be chosen from the remaining ten. By Theorem 6.4.1, this number is

3 4
(10) lo! 10 4l , . 7f 2

Because a team that contains neither A nor B contains exactly five people from the
remaining ten, there are as many such teams as there are subsets of five people that can
be chosen from the remaining ten. By Theorem 6.4.1, this number is

2 2
t10) lo! 1W- 9 *A- 7 -6 * '

__ =252.
t5 5! -5! i -4 sI =25

Because the set of teams that contain both A and B is disjoint from the set of teams
that contain neither A nor B, by the addition rule,

number of teams containing number of teams number of teams
both A and B or = containing + containing
neither A nor B both A and B neither A nor B

= 120 + 252 = 372.

This reasoning is summarized in Figure 6.4.2.

All Possible Five-Person Teams
Containing Both or Neither

So the total number of teams
that contain either both A and B
or neither A nor B is
120 + 252 = 372.

There are There are

( 3 ) 120 of these. ( 5) = 252 of these.

Figure 6.4.2 l
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Example 6.4.7 Teams That Do Not Contain Both

Suppose two members of the group don't get along and refuse to work together on a team.
How many five-person teams can be formed?

Solution Call the two people who refuse to work together C and D. There are two different
ways to answer the given question: One uses the addition rule and the other uses the
difference rule.

To use the addition rule, partition the set of all teams that don't contain both C and D
into three subsets as shown in Figure 6.4.3 below.

Because any team that contains C but not D contains exactly four other people from
the remaining ten in the group, by Theorem 6.4.1 the number of such teams is

3

1io 10! 10 , 7_ - 6210
I = 210.

4/ v 4!(10-4)! 4 A,3 7 1 * 61

Similarly, there are (10) = 210 teams that contain D but not C. Finally, by the same
reasoning as in Example 6.4.6, there are 252 teams that contain neither C nor D. Thus,
by the addition rule,

[number of teams that do =210 + 210 + 252 = 672.
not contain both C and D

This reasoning is summarized in Figure 6.4.3.

All Possible Five-Person Teams
That Do Not Contain Both C and D

(teams that teams that teams that So the total number of teams that
contain C contain D contain neither do not contain both C and D is
but not D but not C C nor D 210 + 210 + 252 = 672.

There are There are There are

('4)-l (0) -210(4 = =210 (4 )=210 (5 )=252
of these. of these. of these.

Figure 6.4.3

The alternative solution by the difference rule is based on the following observation:
The set of all five-person teams that don't contain both C and D equals the set difference
between the set of all five-person teams and the set of all five-person teams that contain
both C and D. By Example 6.4.5, the total number of five-person teams is ( 12) = 792.
Thus, by the difference rule,

number of teams that don't] Ltotal number of] [number of teams that
contain both C and D (teams of five 7 contain both C and D

= 12) _ (10°) = 792 - 120 = 672.

This reasoning is summarized in Figure 6.4.4.
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There are
All Five-Person Teams 4 / 12 \

( ) = 792 of these.

teams that do teams that
not contain contains
both CandD both Cand :

So there are There are
792 - 120 = 672 of these. 10 =

3) = 120 of these.

Figure 6.4.4 I

Before we begin the next example, a remark on the phrases at least and at most is in
order:

The phrase at least n means "n or more."
The phrase at most n means "n or fewer."

For instance, if a set consists of three elements and you are to choose at least two, you
will choose two or three; if you are to choose at most two, you will choose none, or one,
or two.

Example 6.4.8 Teams with Members of Two Types

Suppose the group of twelve consists of five men and seven women.

a. How many five-person teams can be chosen that consist of three men and two women?

b. How many five-person teams contain at least one man?

c. How many five-person teams contain at most one man?

Solution

a. To answer this question, think of forming a team as a two-step process:

Step 1: Choose the men.

Step 2: Choose the women.

There are (5) ways to choose the three men out of the five and (7) ways to choose the
two women out of the seven. Hence, by the product rule,

number of teams of five that - (7\ 5! 7!
contain three men and two women] (3 k2- 3!2! 2!5!

7*6 5 * I
4. I .1Z I .2.

= 210.

b. This question can also be answered either by the addition rule or by the difference rule.
The solution by the difference rule is shorter and is shown first.
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Observe that the set of five-person teams containing at least one man equals the
set difference between the set of all five-person teams and the set of five-person teams
that do not contain any men. See Figure 6.4.5 below.

Now a team with no men consists entirely of five women chosen from the seven
women in the group, so there are (7) such teams. Also, by Example 6.4.5, the total
number of five-person teams is (12) = 792. Hence, by the difference rule,

number of teams total number number of teams
with at least of teams - of five that do not
one man of five contain any men

= (12) (7) 792 -_ 7

3

= 792 - =792 - 21 = 771.

This reasoning is summarized in Figure 6.4.5.

There are
All Five-Person Teams I - ( ) = 792 of these

So there are There are
792 - 21 = 771 of these. (7)

-=21 of these.

Figure 6.4.5

Alternatively, to use the addition rule, observe that the set of teams containing at
least one man can be partitioned as shown in Figure 6.4.6 on page 342. The number of
teams in each subset of the partition is calculated using the method illustrated in part
(a). There are

(1) (7) teams with one man and four women

(2) (4) teams with two men and three women

(3) (7) teams with three men and two women

(2) (3) teams with four men and one woman

(5) (7) teams with five men and no women.

\ D / . __ _.
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Hence, by the addition rule,

number of teams with]
[at least one man

(1 ) (7) + (2) () + (3) (7) + (4) (7) + (5) ()

5! 7! 5! 7! 5! 7! 5! 7! 5! 7!

1!4! 4!3! 2!3! 3!4! 3!2! 2!5! 4!1! l!6! 5!0! 0!7!
2 2 3

5 . 7 .,.5 M4 5 XY -7-,6.5 .4r 5-4Y3! 7.-6 .

Y+ 3'-2*44*2 +
544.7.cr 4 A!52*4 1 7y
5 -4!-f 7 - V 5f - X!

+ 44.f ±+

= 175 + 350 + 210 + 35 + I - 771.

This reasoning is summarized in Figure 6.4.6.

Teams with At Least One Man

teams with
two men

.t

There are

(5 )(7) 3
2 3hs 350

of these.

teams with
three men

.t

There are

(3)) =210
of these.

teams with
four men

.t

There are

(D(
of these.

Figure 6.4.6

teams with
five men

*tv

So the total number of
teams with at least
one man is
175 + 350 + 210 + 35 + I =771.

There are

(fts) = I
of these.

c. As shown in Figure 6.4.7 below, the set of teams containing at most one man can be
partitioned into the set that does not contain any men and the set that contains exactly
one man. Hence, by the addition rule,

number of teams number of number of
with at teams without + teams with
most one man any men one man

() (7) + (5) (7 = 21 + 175 196.

This reasoning is summarized in Figure 6.4.7.

Teams with At Most One Man

So the total number of
teams with at most one
man is 21 + 175 = 196.

There are

() 7= 175
of these.

Figure 6.4.7

a s with
one man

t

There are

(1(4) -175

of these.

There are

( 5) ( 7)=of th =21

of these.

.
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Example 6.4.9 Poker Hand Problems

The game of poker is played with an ordinary deck of cards (see Example 6.1.1). Var-
ious five-card holdings are given special names, and certain holdings beat certain other
holdings. The named holdings are listed from highest to lowest below.

Royal flush: 10, J, Q, K, A of the same suit

Straight flush: five adjacent denominations of the same suit but not a royal flush-aces
can be high or low, so A, 2, 3, 4, 5 of the same suit is a straight flush.

Four of a kind: four cards of one denomination-the fifth card can be any other in the
deck

Full house: three cards of one denomination, two cards of another denomination

Flush: five cards of the same suit but not a straight or a royal flush

Straight: five cards of adjacent denominations but not all of the same suit-aces can
be high or low

Three of a kind: three cards of the same denomination and two other cards of different
denominations

Two pairs: two cards of one denomination, two cards of a second denomination, and
a fifth card of a third denomination

One pair: two cards of one denomination and three other cards all of different de-
nominations

No pairs: all cards of different denominations but not a straight or straight flush or
flush

a. How many five-card poker hands contain two pairs?

b. If a five-card hand is dealt at random from an ordinary deck of cards, what is the
probability that the hand contains two pairs?

Solution

a. Consider forming a hand with two pairs as a four-step process:

Step 1: Choose the two denominations for the pairs.

Step 2: Choose two cards from the smaller denomination.

Step 3: Choose two cards from the larger denomination.

Step 4: Choose one card from those remaining.

The number of ways to perform step 1 is (13 ) because there are 13 denominations
in all. The number of ways to perform steps 2 and 3 is (2) because there are four cards
of each denomination, one in each suit. The number of ways to perform step 4 is ( I )
because removing the eight cards in the two chosen denominations from the 52 in the
deck leaves 44 from which to choose the fifth card. Thus[the total number of 1 _133 (4) (4) (44

[hands with two pairs] 2 1x 2J 2 )()1 )

13! 4! 4! 44!

2!(13 -2)! 2!(4 -2)! 2!(4 -2)! 1!(44 - 1)!

13- 12 11! 4 .3. 2! 4 .3. 2! 44 43!

(2 1) 11! (2 . 1) * 2! (2 . 1) * 2! 1 43!

-78 6 * 6 * 44 = 123,552.
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b. The total number of five-card hands from an ordinary deck of cards is (") = 2,598,960.
Thus if all hands are equally likely, the probability of obtaining a hand with two pairs
is 123,552 _

is ~~ =4.75%.
2,598,960

Example 6.4.10 Number of Bit Strings with Fixed Number of I's

How many eight-bit strings have exactly three l's?

Solution To solve this problem, imagine eight empty positions into which the 0's and l's
of the bit string will be placed.

1 2 3 4 5 6 7 8

Once a subset of three positions has been chosen from the eight to contain I's, then the
remaining five positions must all contain 0's (since the string is to have exactly three I's).
It follows that the number of ways to construct an eight-bit string with exactly three l's
is the same as the number of subsets of three positions that can be chosen from the eight
into which to place the I's. By Theorem 6.4.1, this equals

___- 8.. -5 56. U(3) 3! 5! 3-2 SoY

Example 6.4.11 Permutations of a Set with Repeated Elements

Consider various ways of ordering the letters in the word MISSISSIPPI:

IIMSSPISSIP ISSSPM11PIS, PIMISSSS11P, and so on.

How many distinguishable orderings are there?

Solution This example generalizes Example 6.4.10. Imagine placing the 11 letters of
MISSISSIPPI one after another into 11 positions.

~MISSISSIPPI
/ g to be placed

A/ > into the
positions

1 2 3 4 5 6 7 8 9 10 11

Because copies of the same letter cannot be distinguished from one another, once the
positions for a certain letter are known, then all copies of the letter can go into the positions
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in any order. It follows that constructing an ordering for the letters can be thought of as a
four-step process:

Step 1: Choose a subset of four positions for the S's.

Step 2: Choose a subset of four positions for the Fs.

Step 3: Choose a subset of two positions for the P's.

Step 4: Choose a subset of one position for the M.

Since there are II positions in all, there are (1 1) subsets of four positions for the S's.
Once the four S's are in place, there are seven positions that remain empty, so there are (7)

subsets of four positions for the I's. After the I's are in place, there are three positions left
empty, so there are (2) subsets of two positions for the P's. That leaves just one position
for the M. But 1 = (1). Hence by the multiplication rule,

number of ways to ' - 11i (7) (3) (1)
[position all the letters = 4 ( t4) ( 2) ( (

11! 7> Y1 0
4 !7! 4 2!2/! 1!i1

4! 41 2! I! = 34,650. U

In exercise 18 at the end of the section, you are asked to show that changing the order in
which the letters are placed into the positions does not change the answer to this example.

The same reasoning used in this example can be used to derive the following general
theorem.

Some Advice about Counting
Students learning counting techniques often ask, "How do I know what to multiply and
what to add? When do I use the multiplication rule and when do I use the addition rule?"
Unfortunately, these questions have no easy answers. You need to imagine, as vividly as
possible, the objects you are to count. You might even start to make an actual list of the
items you are trying to count to get a sense for how to obtain them in a systematic way.

Theorem 6.4.2

Suppose a collection consists of n objects of which

n1 are of type 1 and are indistinguishable from each other

n2 are of type 2 and are indistinguishable from each other

nk are of type k and are indistinguishable from each other,

and suppose that n I + n2 + + nk = n. Then the number of distinct permutations
of the n objects is

(n) (n - ni) (n- n-n2) .(n-n-n2- -nk-
n i n2 n3 nk

n!
n 1! n2! n3! ... nk!
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You should then construct a model that would allow you to continue counting the objects
one by one if you had enough time. If you can imagine the elements to be counted as
being obtained through a multistep process (in which each step is performed in a fixed
number of ways regardless of how preceding steps were performed), then you can use the
multiplication rule. The total number of elements will be the product of the number of
ways to perform each step. If, however, you can imagine the set of elements to be counted
as being broken up into disjoint subsets, then you can use the addition rule. The total
number of elements in the set will be the sum of the number of elements in each subset.

One of the most common mistakes students make is to count certain possibilities more
than once.

Example 6.4.12 Double Counting

Consider again the problem of Example 6.4.8(b). A group consists of five men and seven
women. How many teams of five contain at least one man?

/Caution! The following is a false solution. Imagine constructing the teamO as a two-step process:

Step 1: Choose a subset of one man from the five men.

Step 2: Choose a subset of four others from the remaining eleven people.

Hence, by the multiplication rule, there are (5) . (1) = 1,650 five-person teams
that contain at least one man.

Analysis of the False Solution: The problem with the solution above is that some teams
are counted more than once. Suppose the men are Anwar, Ben, Carlos, Dwayne, and Ed
and the women are Fumiko, Gail, Hui-Fan, Inez, Jill, Kim, and Laura. According to the
method described above, one possible outcome of the two-step process is as follows:

Outcome of step 1: Anwar

Outcome of step 2: Ben, Gail, Inez, and Jill.

In this case the team would be {Anwar, Ben, Gail, Inez, Jill). But another possible out-
come is

Outcome of step 1: Ben

Outcome of step 2: Anwar, Gail, Inez, and Jill,

which also gives the team {Anwar, Ben, Gail, Inez, Jill). Thus this one team is given by
two different branches of the possibility tree, and so it is counted twice. U

The best way to avoid mistakes such as the one described above is to visualize the
possibility tree that corresponds to any use of the multiplication rule and the set partition
that corresponds to a use of the addition rule. Check how your division into steps works
by applying it to some actual data-as was done in the analysis above-and try to pick
data that are as typical or generic as possible.

It often helps to ask yourself (1) "Am I counting everything?" and (2) "Am I counting
anything twice?" When using the multiplication rule, these questions become (1) "Does
every outcome appear as some branch of the tree?" and (2) "Does any outcome appear on
more than one branch of the tree?" When using the addition rule, the questions become
(1) "Does every outcome appear in some subset of the diagram?" and (2) "Do any two
subsets in the diagram share common elements?"
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Exercise Set 6.4
1. a. List all 2-combinations for the set {xl, X2 , X31. Deduce

the value of (2)'

b. List all unordered selections of four elements from the
set {a, b, c, d, e}. Deduce the value of (4).

2. a. List all 3-combinations for the set {xI, x2 , x3, x4, x 5}.
Deduce the value of (53).

b. List all unordered selections of two elements from the
set {xI, X2 , X3, X4 , X5 , X6}. Deduce the value of (2)

3. Write an equation relating P(7, 2) and (7).

4. Write an equation relating P(8, 3) and (31).

5. Compute each of the following.

a. (5) b. (I) c. (5)

d. (5) e. (5) f. (5)

6. A student council consists of 15 students.
a. In how many ways can a committee of six be selected

from the membership of the council?
b. Two council members have the same major and are not

permitted to serve together on a committee. How many
ways can a committee of six be selected from the mem-
bership of the council?

c. Two council members always insist on serving on com-
mittees together. If they can't serve together, they won't
serve at all. How many ways can a committee of six be
selected from the council membership?

d. Suppose the council contains eight men and seven
women.
(i) How many committees of six contain three men and

three women?
(ii) How many committees of six contain at least one

woman?
e. Suppose the council consists of three freshmen, four

sophomores, three juniors, and five seniors. How many
committees of eight contain two representatives from
each class?

7. A computer programming team has 13 members.
a. How many ways can a group of seven be chosen to work

on a project?
b. Suppose seven team members are women and six are

men.
(i) How many groups of seven can be chosen that con-

tain four women and three men?
(ii) How many groups of seven can be chosen that con-

tain at least one man?
(iii) How many groups of seven can be chosen that con-

tain at most three women?
c. Suppose two team members refuse to work together on

projects. How many groups of seven can be chosen to
work on a project?

d. Suppose two team members insist on either working to-
gether or not at all on projects. How many groups of
seven can be chosen to work on a project?

H 8. An instructor gives an exam with twelve questions. Students
are allowed to choose any ten to answer.
a. How many different choices of ten questions are there?
b. Suppose five questions require proof and seven do not.

(i) How many groups of ten questions contain four that
require proof and six that do not?

(ii) How many groups of ten questions contain at least
one that requires proof?

(iii) How many groups of ten questions contain at most
three that require proof?

c. Suppose the exam instructions specify that at most one of
questions I and 2 may be included among the ten. How
many different choices of ten questions are there?

d. Suppose the exam instructions specify that either both
questions 1 and 2 are to be included among the ten or
neither is to be included. How many different choices of
ten questions are there?

9. A club is considering changing its by-laws. In an initial
straw vote on the issue, 24 of the 40 members of the club
favored the change and 16 did not. A committee of six is to
be chosen from the 40 club members to devote further study
to the issue.
a. How many committees of six can be formed from the

club membership?
b. How many of the committees will contain at least three

club members who, in the preliminary survey, favored
the change in the by-laws?

(If you do not have a calculator that computes values of 0)
write your answers as numeric expressions using the symbol
(n) for some particular values of n and r.)

10. Two new drugs are to be tested using a group of 60 labo-
ratory mice, each tagged with a number for identification
purposes. Drug A is to be given to 22 mice, drug B is to be
given to another 22 mice, and the remaining 16 mice are to
be used as controls. How many ways can the assignment of
treatments to mice be made? (A single assignment involves
specifying the treatment for each mouse-whether drug A,
drug B, or no drug.)

* 11. Refer to Example 6.4.9. For each poker holding below, (1)
find the number of five-card poker hands with that holding;
(2) find the probability that a randomly chosen set of five
cards has that holding.
a. royal flush b. straight flush c. four of a kind
d. full house e. flush f. straight
g. three of a kind h. one pair
i. no repeated denomination and not of five adjacent de-

nominations

12. How many pairs of two distinct integers chosen from the set
{1, 2, 3, . . , 1011 have a sum that is even?
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13. A coin is tossed ten times. In each case the outcome H (for
heads) or T (for tails) is recorded. (One possible outcome
of the ten tossings is denoted THHTTTHTTH.)
a. What is the total number of possible outcomes of the

coin-tossing experiment?
b. In how many of the possible outcomes are exactly five

heads obtained?
c. In how many of the possible outcomes are at least eight

heads obtained?
d. In how many of the possible outcomes is at least one head

obtained?
e. In how many of the possible outcomes is at most one

head obtained?

14. a. How many 16-bit strings contain exactly seven l's?
b. How many 16-bit strings contain at least thirteen I 's?
c. How many 16-bit strings contain at least one 1?
d. How many 16-bit strings contain at most one 1?

15. a. How many even integers are in the set

{1,2,3,..., 100)?

b. How many odd integers are in the set

11,2,3,..., 1001?

c. How many ways can two integers be selected from the
set {1, 2, 3, . . ., 1001 so that their sum is even?

d. How many ways can two integers be selected from the
set {1, 2, 3, . .. , 1001 so that their sum is odd?

16. Suppose that three computer boards in a production run of
forty are defective. A sample of five is to be selected to be
checked for defects.
a. How many different samples can be chosen?
b. How many samples will contain at least one defective

board?
c. What is the probability that a randomly chosen sample

of five contains at least one defective board?

17. Ten points labeled A, B, C, D, E, F, G, H, I, J are ar-
ranged in a plane in such a way that no three lie on the
same straight line.
a. How many straight lines are determined by the ten

points?
b. How many of these straight lines do not pass through

point A?
c. How many triangles have three of the ten points as ver-

tices?
d. How many of these triangles do not have A as a vertex?

18. Suppose that you placed the letters in Example 6.4.11 into
positions in the following order: first the M, then the I's,
then the S's, and then the P's. Show that you would obtain
the same answer for the number of distinguishable order-
ings.

19. a. How many distinguishable ways can the letters of the
word HULLABALOO be arranged?

b. How many distinguishable arrangements of the letters of
HULLABALOO begin with U and end with L?

c. How many distinguishable arrangements of the letters of
H U L L A B A L OO contain the two letters H U next to
each other in order?

20. a. How many distinguishable ways can the letters of the
word MILLIMICRON be arranged?

b. How many distinguishable arrangements of the letters of
MILLIMICRON begin with M and end with N?

c. How many distinguishable arrangements of the letters of
MILLIMICRON contain the letters CR next to each
other in order and also the letters ON next to each other
in order?

21. When the expression (a + b)4 is multiplied out, terms of
the form aaaa, abaa, baba, bbba, and so on are obtained.
Consider the set S of all strings of length 4 over {a, b).
a. What is N(S)? In other words, how many strings of

length 4 can be constructed using a's and b's?
b. How many strings of length 4 over (a, bI have three a's

and one b?
c. How many strings of length 4 over {a, bh have two a's

and two b's?

22. In Morse code, symbols are represented by variable-length
sequences of dots and dashes. (For example, A= -,
I = - -- -, ? = - -- .) How many different sym-
bols can be represented by sequences of seven or fewer dots
and dashes?

23. Each symbol in the Braille code is represented by a rectan-
gular arrangement of six dots, each of which may be raised
or flat against a smooth background. For instance, when the
word Braille is spelled out, it looks like this:

Given that at least one of the six dots must be raised, how
many symbols can be represented in the Braille code?

24. On an 8 x 8 chessboard, a rook is allowed to move any
number of squares either horizontally or vertically. How
many different paths can a rook follow from the bottom-left
square of the board to the top-right square of the board if all
moves are to the right or upward?

25. The number 42 has the prime factorization 2 . 3 . 7. Thus
42 can be written in four ways as a product of two positive
integer factors: I 42, 6 7, 14 3, and 2 21.
a. List the distinct ways the number 210 can be written as

a product of two positive integer factors.
b. If n = PIP2P3P4, where the pi are distinct prime num-

bers, how many ways can n be written as a product of
two positive integer factors?

c. If n = pIp2p 3p4p 5,wherethe pi aredistinctprimenum-
bers, how many ways can n be written as a product of
two positive integer factors?

d. If n = pi P2 .pk where the pi are distinct prime num-
bers, how many ways can n be written as a product of
two positive integer factors?



H * 26. A student council consists of three freshmen, four sopho-
mores, four juniors, and five seniors. How many commit-
tees of eight members of the council contain at least one
member from each class?

* 27. An alternative way to derive Theorem 6.4.1 uses the follow-
ing division rule: Let n and k be integers so that k divides n.
If a set consisting of n elements is divided into subsets that
each contain k elements, then the number of such subsets is
n/k. Explain how Theorem 6.4.1 can be derived using the
division rule.

28. Find the error in the following reasoning: "Consider form-
ing a poker hand with two pairs as a five-step process.

6.5 r-Combinations with Repetition Allowed 349

Step 1: Choose the denomination of one of the pairs.

Step 2: Choose the two cards of that denomination.

Step 3: Choose the denomination of the other of the pairs.

Step 4: Choose the two cards of that second denomination.

Step 5: Choose the fifth card from the remaining denomi-
nations.

There are (17) ways to perform step 1, (2) ways to perform
step 2, ( 12) ways to perform step 3, (4) ways to perform
step 4, and (4l) ways to perform step 5. Therefore, the total
number of five-card poker hands with two pairs is 13 . 6
12. 6 44 = 247,104."

6.5 r-Combinations with Repetition Allowed
The value of mathematics in any science lies more in disciplined analysis and abstract

thinking than in particular theories and techniques. -Alan Tucker, 1982

In Section 6.4 we showed that there are (G) r combinations, or subsets of size r, of a set
of n elements. In other words, there are (n) ways to choose r distinct elements without

regard to order from a set of n elements. For instance, there are (4) = 4 ways to choose
three elements out of a set of four: { I, 2, 31, l,2, 4}, {1, 3, 41, {2, 3, 41.

In this section we ask: How many ways are there to choose r elements without regard
to order from a set of n elements if repetition is allowed? A good way to imagine this is
to visualize the n elements as categories of objects from which multiple selections may
be made. For instance, if the categories are labeled 1, 2, 3, and 4 and three elements are
chosen, it is possible to choose two elements of type 3 and one of type 1, or all three of
type 2, or one each of types 1, 2 and 4. We denote such choices by [3, 3, 1], [2, 2, 2], and
[1, 2, 4], respectively. Note that because order does not matter, [3, 3, 1] = [3, 1, 3] =

[1, 3, 3], for example.

An recombination with repetition allowed, or multis
X of n elements is an unordered selection of elements
allowed. If X = {xI,x2, ..- xn},we wrteanr-combin
or multiset of size r, as [xi, xi,, . . . , xi,) where each; u
may equal each other.

Example 6.5.1 r-Combinations with Repetition Allowed

Write a complete list to find the number of 3-combinations with repetition allowed, or
multisets of size 3, that can be selected from {1, 2, 3, 41. Observe that because the order
in which the elements are chosen does not matter, the elements of each selection may be
written in increasing order, and writing the elements in increasing order will ensure that
no combinations are overlooked.
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Solution [1,1, 1]; [1, 1,2]; [1, 1,3]; [1, 1,4] allcombinationswithl,l

[1, 2, 2]; [1, 2, 3]; [1, 2, 4]; all additionalcombinations with 1, 2

[1, 3, 3]; [1, 3, 4]; [1, 4, 4]; all additional combinations with 1, 3 or 1, 4

[2, 2, 2]; [2, 2, 3]; [2, 2, 4]; all additional combinations with 2, 2

[2, 3, 3]; [2, 3, 4]; [2, 4, 4]; all additional combinations with 2, 3 or 2, 4

[3, 3, 3]; [3, 3, 4]; [3, 4, 4]; all additional combinations with 3, 3 or 3, 4

[4, 4, 4] the only additional combination with 4, 4

Thus there are twenty 3-combinations with repetition allowed. U

How could the number twenty have been predicted other than by making a complete
list? Consider the numbers 1, 2, 3, and 4 as categories and imagine choosing a total of
three numbers from the categories with multiple selections from any category allowed.
The results of several such selections are represented by the table below.

Category 1 Category 2 Category 3 Category 4 Result of the Selection

I I x 1 from category 2
2 from category 4

x I I x I each from categories
1, 3, and 4

x x x I 3 from category I

As you can see, each selection of three numbers from the four categories can be represented
by a string of vertical bars and crosses. Three vertical bars are used to separate the four
categories, and three crosses are used to indicate how many items from each category are
chosen. Each distinct string of three vertical bars and three crosses represents a distinct
selection. For instance, the string

xxi IXI

represents the selection: two from category 1, none from category 2, one from category 3,
and none from category 4. Thus the number of distinct selections of three elements that can
be formed from the set { 1, 2, 3, 41 with repetition allowed equals the number of distinct
strings of six symbols consisting of three l's and three x's. But this equals the number of
ways to select three positions out of six because once three positions have been chosen
for the x 's, the l's are placed in the remaining three positions. Thus the answer is

(6) -( 6! - 5 4 - 20
3J 3!(6 -3)! .9-Z I1- M

as was obtained earlier by a careful listing.
The analysis of this example extends to the general case. To count the number of

r-combinations with repetition allowed, or multisets of size r, that can be selected from a
set of n elements, think of the elements of the set as categories. Then each recombination
with repetition allowed can be represented as a string of n -1 vertical bars (to separate
the n categories) and r crosses (to represent the r elements to be chosen). The number
of x's in each category represents the number of times the element represented by that
category is repeated.
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Category 1 Category 2 Category 3 Category n - 1 Category n

k I I ... I I

: x's ob pae in categories

The number of strings of n - 1 vertical bars and r crosses is the number of ways to choose
r positions, into which to place the r crosses, out of a total of r + (n - 1) positions,
leaving the remaining positions for the vertical bars. But by Theorem 6.4.1, this number
is (r+n- 1).

This discussion proves the following theorem.

Example 6.5.2 Selecting 15 Cans of Soft Drinks of Five Different Types

A person giving a party wants to set out 15 assorted cans of soft drinks for his guests. He
shops at a store that sells five different types of soft drinks.

a. How many different selections of cans of 15 soft drinks can he make?

b. If root beer is one of the types of soft drink, how many different selections include at
least six cans of root beer?

c. What is the probability that a randomly chosen selection of 15 soft drinks includes at
least six cans of root beer?

Solution

a. Think of the five different types of soft drinks as the n categories and the 15 cans of
soft drinks to be chosen as the r objects (so n = 5 and r = 15). Each selection of
cans of soft drinks is represented by a string of 5 - 1 = 4 vertical bars (to separate the
categories of soft drinks) and 15 crosses (to represent the cans selected). For instance,
the string

xxx xxxxxxxI IxxxIxx

represents a selection of three cans of soft drinks of type 1, seven of type 2, none of
type 3, three of type 4, and two of type 5. The total number of selections of 15 cans
of soft drinks of the five types is the number of strings of 19 symbols, 5 - 1 = 4 of
them I and 15 of them x:

6 2
15 + 5 - 1) =(19 19 *-17 * 6 W =3,876.

Theorem 6.5.1

The number of r-combinations with repetition allowed (multisets of size r) that can
be selected from a set of n elements is

(r + n - 1
r )

This equals the number of ways r objects can be selected from n categories of objects
with repetition allowed.
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b. If at least six cans of root beer are included, we can imagine choosing six such cans
first and then choosing 9 additional cans. The choice of the nine additional cans can be
represented as a string of 9 x's and 4 l's. For example, if root beer is type 1, then the
string x x x I I x x I x x x x I represents a selection of three cans of root beer (in
addition to the six chosen initially), none of type 2, two of type 3, four of type 4, and
none of type 5. Thus the total number of selections of 15 cans of soft drinks of the five
types, including at least six cans of root beer, is the number of strings of 13 symbols,
4 (= 5 -1) of them l and 9 of them x:

5

c. The probability that a randomly chosen selection of cans will include at least six of
root beer is the ratio of the number of selections that contain at least six cans of root
beer (the answer to (b)) to the total number of selections (the answer to (a)). Therefore,
the probability is 715/3, 876 - 18.45%. U

Example 6.5.3 Counting Triples (i, j, k) with 1 < i < j < k < n

If n is a positive integer, how many triples of integers from 1 through n can be formed
in which the elements of the triple are written in increasing order but are not necessarily
distinct? In other words, how many triples of integers (i, j, k) are there with 1 < i < j <
k < n?

Solution Any triple of integers (i, j, k) with 1 < i < j < k < n can be represented as a
string of n -1 vertical bars and three crosses, with the positions of the crosses indicating
which three integers from 1 to n are included in the triple. The table below illustrates this
for n = 5.

g1 2 3 4 Result of the Selection

I xx I I x (3,3,5)

x I x I I x I (1,2,4)

Thus the number of such triples is the same as the number of strings of (n - 1) I's and
3 x's, which is

3 +(n- 1)0 tn +2 (n+2)!

( 3 )(n 3 3!(n + 2-3)!

(n + 2)(n + )n n(n + l)(n + 2)

3!tW 6

Note that in Examples 6.5.2 and 6.5.3 the reasoning behind Theorem 6.5.1 was used
rather than the statement of the theorem itself. Alternatively, in either example we could
invoke Theorem 6.5.1 directly by recognizing that the items to be counted either are
r-combinations with repetition allowed or are the same in number as such combinations.
For instance, in Example 6.5.3 we might observe that there are exactly as many triples of
integers (i, j, k) with I < i < j < k < n as there are 3-combinations of integers from 1
through n with repetition allowed because the elements of any such 3-combination can be
written in increasing order in only one way.
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Example 6.5.4 Counting Iterations of a Loop

How many times will the innermost loop be iterated when the algorithm segment below
is implemented and run? (Assume n is a positive integer.)

fork := 1 ton

forj :=1 tok

for i := to j
[Statements in the body of the inner loop,
none containing branching statements that lead
outside the loop]

next i
next j

next k

Solution Construct a trace table for the values of k, j, and i for which the statements in the
body of the innermost loop are executed. (See the table that follows.) Because i goes
from 1 to j, it is always the case that i < j. Similarly, because j goes from 1 to k, it
is always the case that j < k. To focus on the details of the table construction, consider
what happens when k = 3. In this case, j takes each value 1, 2, and 3. When j = 1, i
can only take the value 1 (because i < j). When j = 2, i takes each value 1 and 2 (again
because i < j). When j = 3, i takes each value 1, 2, and 3 (yet again because i < j).

kc 1 2 3 n
1 | 1 2 - | 1 2 3 - 2 -|| n | l l l l | ,

J I l | 2 1 1 2 1 1 n

Observe that there is one iteration of the innermost loop for each column of this table,
and there is one column of the table for each triple of integers (i, j, k) with 1 < i < j <
k < n. But Example 6.5.3 showed that the number of such triples is [n(n + 1)(n + 2)]/6.
Thus there are [n(n + 1)(n + 2)]/6 iterations of the innermost loop. A

This solution in Example 6.5.4 is the most elegant and generalizable (see exercises 8
and 9) to the given problem. An alternative solution using summations is outlined in
exercise 20.

Example 6.5.5 The Number of Integral Solutions of an Equation

How many solutions are there to the equation xi + X2 + X3 + X4 = 10 if xl, X2, X 3 , and
X4 are nonnegative integers?

Solution Think of the number 10 as divided into ten individual units and the variables
XI, X2 , X3 , and X4 as four categories into which these units are placed. The number of units
in each category xi indicates the value of xi in a solution of the equation. Each solution
can, then, be represented by a string of three vertical bars (to separate the four categories)
and ten crosses (to represent the ten individual units). For example, in the following table,
the two crosses under xl, five crosses under x2 , and three crosses under X4 represent the
solution xl = 2, x2 = 5, X3 = 0, and X4 = 3.
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Categories Solution to the equation x1 + X2 + X3 + X4 = 10
x1  X2X 3  X4

xx xx x x x x x x xi = 2, X2 = 5, X3 = 0, and X4 = 3

xxx x x xx x x x I x, = 4, x2 = 6, X3 = 0, and X4 = 0

Therefore, there are as many solutions to the equation as there are strings of ten crosses
and three vertical bars, namely

10 + 3_ (13) 13! 13*12*11 1W( ~ - _ _____ = =286.10 / p10, 10!(13 -10)! W.0- 3 -2 1

Example 6.5.6 illustrates a variation on Example 6.5.5.

Example 6.5.6 Additional Constraints on the Number of Solutions

How many integer solutions are there to the equation xl + x2 + X3 + X4 = 10 if each
xi > 1?

Solution In this case imagine starting by putting one cross in each of the four categories.
Then distribute the remaining six crosses among the categories. Such a distribution can
be represented by a string of three vertical bars and six crosses. For example, the string

xxxi IxxIx

indicates that there are three more crosses in category xi in addition to the one cross
already there (so xi = 4), no more crosses in category x2 in addition to the one already
there (so x2 = 1), two more crosses in category X3 in addition to the one already there (so
X3 = 3), and one more cross in category X4 in addition to the one already there (so X4 = 2).
It follows that the number of solutions to the equation that satisfy the given condition is
the same as the number of strings of three vertical bars and six crosses, namely

6+3 9' 6! 39 = -76! 84
6 J 6J 6!(9 -6)! 6! 3 2 1

An alternative solution to this example is based on the observation that since each xi >
1, we may introduce new variables y, = xi-1 for each i = 1, 2, 3, 4. Then each y, > 0,
and yi + Y2 + Y3 + y4 = 6. Thus the number of solutions of yi + Y2 + y3 + y4 6 in
nonnegative integers is the same as the number of solutions of xi + x2 + X3 + X4 = l0in
positive integers. U

Which Formula To Use?
Sections 6.2-6.5 have discussed four different ways of choosing k elements from n. The
order in which the choices are made may or may not matter, and repetition may or may
not be allowed. The following table summarizes which formula to use in which situation.

Order Matters Order Does Not Matter

Repetition Is Allowed n( n k -)

Repetition Is Not Allowed P (n, k) (nk)
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Exercise Set 6.5
1. a. According to Theorem 6.5.1, how many 5-combinations

with repetition allowed can be chosen from a set of three
elements?

b. List all of the 5-combinations that can be chosen with
repetition allowed from (1, 2, 3).

2. a. According to Theorem 6.5.1, how many multisets of size
four can be chosen from a set of three elements?

b. List all of the multisets of size four that can be chosen
from the set {x, y, zi.

3. A bakery produces six different kinds of pastry.
a. How many different selections of twenty pastries are

there?
b. Assuming that eclairs are one kind of pastry produced,

how many different selections of twenty pastries are there
if at least three must be eclairs?

c. If a selection of twenty pastries is chosen randomly, what
is the probability that at least three are eclairs?

d. If a selection of twenty pastries is chosen randomly, what
is the probability that exactly three are eclairs?

4. A camera shop stocks eight different types of batteries.
a. How many ways can a total inventory of 30 batteries be

distributed among the eight different types?
b. Assuming that one of the types of batteries is A76, how

many ways can a total inventory of 30 batteries be dis-
tributed among the eight different types if the inventory
must include at least four A76 batteries?

c. If an inventory of 30 batteries is selected at random from
the eight different types, what is the probability that at
least four A76 batteries will be included?

d. If an inventory of 30 batteries is selected at random from
the eight different types, what is the probability that ex-
actly four A76 batteries will be included?

5. If n is a positive integer, how many 4-tuples of integers from
I through n can be formed in which the elements of the
4-tuple are written in increasing order but are not necessar-
ily distinct? In other words, how many 4-tuples of integers
(i, j, k, m) are there with I < i <j <k <m <n?

6. If n is a positive integer, how many 5-tuples of integers from
I through n can be formed in which the elements of the
5-tuple are written in decreasing order but are not necessar-
ily distinct? In other words, how many 5-tuples of integers
(h, i, j, k, m) are there within> >i > j> k>m > I?

7. Another way to count the number of nonnegative integral so-
lutions to an equation of the form xi + x2 + . + x,, = m
is to reduce the problem to one of finding the number of n-
tuples (yl, y2, . . ., y,,) with 0 < yj S y 2 _< ' ' ' S . Y Sm.

The reduction results from letting y, = xI + x2 + i - xi
for each i = 1, 2, . . , n. Use this approach to derive a gen-
eral formula for the number of nonnegative integral solu-
tionstox 1+x 2 + +x, =m.

In 8 and 9, how many times will the innermost loop be iterated
when the algorithm segment is implemented and run? Assume
n, m, k, and j are positive integers.

8. form := I ton

fork := I to m

for j := I to k

for i := I to j
[Statements in the body of the inner loop,
none containing branching statements that
lead outside the loop]

next i

next j

next k

next m

9. fork := I to n

forj := k ton

for i := jton
[Statements in the body of the inner loop,
none containing branching statements that
lead outside the loop]

next i

next j

next k

In 10-14, find how many solutions there are to the given equation
that satisfy the given condition.

10. XI + X2 + X3 = 20, each xi is a nonnegative integer.

11. Xi + X2 + X3 = 20, each xi is a positive integer.

12. yI + Y2 + y3 + y4 = 30, each y, is a nonnegative integer.

13. YI + Y2 + Y3 + y4 = 30, each y, is an integer that is at least
2.

14. a+b+c+d+e=500,eachofa,b,c,d,andeisanin-
teger that is at least 10.

15. a. A store sells 30 kinds of balloons. How many different
combinations of 12 balloons can be chosen?

b. What is the probability that a combination of 12 balloons
chosen at random will contain at least one balloon of each
kind?

16. A large pile of coins consists of pennies, nickels, dimes, and
quarters (at least 30 of each).
a. How many different collections of 30 coins can be cho-

sen?
b. What is the probability that a collection of 30 coins cho-

sen at random will contain at least four coins of each
type?
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* 17. For how many integers from I through 99,999 is the sum of
their digits equal to 9?

* 18. Suppose the bakery in exercise 3 has only ten eclairs but has
at least twenty of each of the other kinds of pastry.
a. How many different selections of twenty pastries are

there?
b. Suppose in addition to having only ten eclairs, the bak-

ery has only eight napoleon slices. How many different
selections of twenty pastries are there?

* 19. Suppose the camera shop in exercise 4 can obtain at most
ten A76 batteries but can get at least 30 of each of the other
types.

a. How many ways can a total inventory of 30 batteries be
distributed among the eight different types?

b. Suppose that in addition to being able to obtain only ten
A76 batteries, the store can get only six of type D303.
How many ways can a total inventory of 30 batteries be
distributed among the eight different types?

20. Observe that the number of columns in the trace table for
Example 6.5.4 can be expressed as the sum

1+ (1+ 2) +(1+ 2 +3) + .. + (1+ 2+ + n).

Explain why this is so, and show how this sum simplifies to
the same expression given in the solution of Example 6.5.4.

6.6 The Algebra of Combinations
Let us grant that the pursuit of mathematics is a divine madness of the human spirit, a
refuge from the goading urgency of contingent happenings.
-Alfred North Whitehead, 1861-1947

In this section we derive a number of useful formulas that give values of (') in special

cases and explore relations among different values of (n).

Example 6.6.1 Values of (n)' (n 1)' Qn-2)
Show that for all integers n > 0,

(n) l 61 6 6
n

(n )

tn(:0)
(n)

( n - 1

( n

En -2/

if n > I 6.6.2

6.6.3

= - ~ = - II since 0! = I by definition
PI (n -n)! 0!

n !

(n - 1)!(n -(n - I))!

n (a-! n
= = - =n
(-(n -n + n )! 1

n!

(n -2)! (n -(n -2))!

.
n (n- 1) 4! n(n-1)

4-2!T 2

Note that the result derived algebraically above, that (n) equals 1, agrees with the fact
that a set with n elements has just one subset of size n, namely itself. Similarly, exercise
I at the end of the section asks you to show algebraically that (n) = 1, which agrees with

Solution

n - 1) if n > 2.
(n - 2) . n(n2
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the fact that a set with n elements has one subset, the empty set, of size 0. In exercise 2
you are also asked to show algebraically that (7) = n. This result agrees with the fact that
there are n subsets of size I that can be chosen from a set with n elements, namely the
subsets consisting of each element taken alone.

Example 6.6.2 (n) = nr)

In exercise 5 at the end of the section you are asked to verify algebraically that

() = (n L r)

for all nonnegative integers n and r with r < n.
An alternative way to deduce this formula is to interpret it as saying that a set A with

n elements has exactly as many subsets of size r as it has subsets of size n -r. Derive
the formula using this reasoning.

Solution Observe that any subset of size r can be specified either by saying which r elements
lie in the subset or by saying which n -r elements lie outside the subset.

A, A Set with n Elements

Any subset B with r
B, a subset A -B a subset elements completely
with r with n - r determines a subset,
elements elements A Bwith n - r elements.

Suppose A has k subsets of size r: B1, B2 , . .. , Bk. Then each Bi can be paired up
with exactly one set of size n -r, namely its complement A -Bi as shown below.

Subsets of Size r Subsets of Size n - r

B 1  - A - B,

B2  A - B2

Bk N A - Bk

All subsets of size r are listed in the left-hand column, and all subsets of size n -r are
listed in the right-hand column. The number of subsets of size r equals the number of
subsets of size n - r, and so (n) = (nr)

The type of reasoning used in this example is called combinatorial, which means that
a result is obtained by counting things that are combined in different ways. A number of
theorems have both combinatorial proofs and proofs that are purely algebraic.
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Example 6.6.3 New Formulas from Old by Substitution

The formulas established in Example 6.6.1 are true for all integers n in some specified
range. For example, formula (6.6.3) states that

'n 2) =nn -) for all integers n > 2. 6.6.4

The letter n in this formula is a dummy variable; it can be replaced by any other symbol
or expression as long as each occurrence is replaced and the new symbol or expression
represents an integer that is at least 2. Write the formulas obtained by substituting each
of the following for n: m + 1, s - 1, and n + 2. Simplify the result, and give the range
of values of each variable for which the formula holds.

Solution

a. m + + 2)( + for all integers (m + 1) > 2.
((m++l) 2/ 2

So (m-n ) m(m2± for all integersm > 1.

b. ( 1 2) (s 2)((s ) ) for all integers (s- 1) > 2.

So (s )= ( )(s 2) for all integerss > 3.

c n + 2 (n + 2)((n + 2) -) forallintegersn+2>2.
* (n + 2)- 2J 2

So (n+2) = (n + 1)(n + 2) for all integers n > 0. U

Pascal's Formula
Pascal's formula, named after the seventeenth-century French mathematician and philoso-
pher Blaise Pascal, is one of the most famous and useful in combinatorics (which is the
formal term for the study of counting and listing problems). It relates the value of (nrl

to the values of (rn l) and (n). Specifically, it says that

o n + I) (n )+ (n)

whenever n and r are positive integers with r < n. This formula makes it easy to compute
= higher combinations in terms of lower ones: If all the values of (GI) are known, then the
= values of (n~I) can be computed for all r such that 0 < r < n.

Blaise Pa
(1623-16

scal Pascal's triangle, shown in Table 6.6.1, is a geometric version of Pascal's formula.
62) Sometimes it is simply called the arithmetic triangle because it was used centuries before

Pascal by Chinese and Persian mathematicians. But Pascal discovered it independently,
and ever since 1654, when he published a treatise that explored many of its features, it
has generally been known as Pascal's triangle.
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Table 6.6.1 Pascal's Triangle (Values of (n))

Each entry in the triangle is a value of (n). Pascal's formula translates into the fact that the
entry in row n + 1, column r equals the sum of the entry in row n, column r - I plus the
entry in row n, column r. That is, the entry in a given interior position equals the sum of
the two entries directly above and to the above left. The left-most and right-most entries
in each row are I because (n) = 1 by Example 6.6.1 and (') = I by exercise I at the end
of this section.

Example 6.6.4 Calculating (n) Using Pascal's Triangle

Use Pascal's triangle to compute the values of

(6) and (6).

Solution By construction, the value in row n, column r of Pascal's triangle is the value of
('), for every pair of positive integers n and r with r < n. By Pascal's formula, (n +)

can be computed by adding together (rn ) and (n), which are located directly above and

above left of (n+1). Thus,

(6) = (5) + ( 5 + 10 = 15 and

(6) = (2) + (3) 10 + 10 = 2

Pascal's formula can be derived by two entirely different arguments. One is algebraic;
it uses the formula for the number of r-combinations obtained in Theorem 6.4.1. The other
is combinatorial; it uses the definition of the number of r-combinations as the number of
subsets of size r taken from a set with a certain number of elements. We give both proofs
since both approaches have applications in many other situations.

0 1 2 3 4 5 ... r-1 r ...

0 1 ...

1 1 1 ...
2 1 2 1 ...

3 1 3 3 1 ...

4 1 4 6 + 4 1
5 1 5 10 = 10 5...

..

. ...

n (nO) (n) (n2) (n3) (n) (n) ..

n + I (n + 1) n + 1) n + 1) ( + I ( + I

. ) .

...

...

...
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Theorem 6.6.1 Pascal's Formula

Let n and r be positive integers and suppose r < n. Then

(n + 1)( n ) + (n)

Proof (algebraic version):

Let n and r be positive integers with r < n. By Theorem 6.4.1,

(r 1) + (r) (r - l)!(n- (r -1))! r!(n- r)!

n! n!
= +

(r -l)!(n - r + 1)! r!(n -r)!

To add these fractions, a common denominator, is needed, so multiply the numera-
tor and denominator of the left-hand fraction by r and multiply the numerator and
denominator of the right-hand fraction by (n - r + 1). Then

_n _ + _n - n! r n! (n -r+ )

(r -1 Vr (r - )!(n -r + 1!r r!(n -r)! (n -r + 1

r n ! r *n! +n!

(n -r + 1)!r(r - 1)! (n - r + 1)(n -r)!r!

a.---+ n!- n- r+ n! n!(n +1)

(n-r+1)!r! (n+ -r)!r!

(n + 1) ! - n +

((n + 1) -r)!r! V r\

Proof (combinatorial version):

Let n and r be positive integers with r < n. Suppose S is a set with n + 1 elements.
The number of subsets of S of size r can be calculated by thinking of S as consisting
of two pieces: one with n elements {x, x2, ... ,j and the other with one element
{xn+1 1.

Any subset of S with r elements either contains x,+1 or it does not. If it contains
Xn+I, then it contains r - 1 elements from the set {xI, x2, .. , n.}. If it does not
contain Xn+l, then it contains r elements from the set {xl, x2 , . Xn.

Subsets of Size r of (xI, x2 , . *, XI+I I

susets of sze r
that consist entirely
of elements from
{X 1 , X2, *. ., XJ}

-

subsets of size r
that contain xn+1
and r- I elements
from (xI, x 2 , . * ., xJ1

l I
There are There are

( n )of these. ( r - I ) of these.



6.6 The Algebra of Combinations 361

By the addition rule,

number of subsets of number of subsets of number of subsets of
{XI, X2 .  Xn Xn+l = {XI, X 2 . Xn 1+ {XIv X2. . Xn} 1
of size r of size r1 ] Lof size r

By Theorem 6.4.1, the set {xI, x2, . . . , xn, xn+jI has (nz+) subsets of size r, the set
{xI, x 2 , . - x,) has (r-n) subsets of size r -1, and the set {xl, x2, . ,} has ('i)

subsets of size r. Thus

(n + 1) (rn ) + (n)

as was to be shown.

Example 6.6.5 Deriving New Formulas from Pascal's Formula

Use Pascal's formula to derive a formula for (n+2) in terms of values of (n), (fl 1), andl
(n2). Assume n and r are nonnegative integers and 2 < r < n.

Solution By Pascal's formula,

(n + 2) (n+ 1) + (n+ 1)

Now apply Pascal's formula to (n) and (n+l) and substitute into the above to obtain

an + 20 n n i n ) (n)]
( r 2) = r [r2) + (r 1)1+ [(r ' + r

Combining the two middle terms gives

(o l ) = (r - 2) (r - n + 2r

for all nonnegative integers n and r such that 2 < r <n + 2.

Exercise Set 6.6
In 1-4, use Theorem 6.4.1 to compute the values of the indicated
quantities. (Assume n is an integer.)

2. (1), for n > I

4. 3 forn > 3

1. (n), for n > 0

3. (2)' for n > 2

5. Use Theorem 6.4.1 to prove algebraically that ("r) = - r).
for integers n and r with 0 < r < n. (This can be done by
direct calculation; it is not necessary to use mathematical in-
duction.)

Apply substitution to the formulas of Example 6.6.1 to derive
the formulas in 6-8. (Assume n, k, and r are integers.)

6. n + k-) = n + k,forn + k > I

.

(n+3>3 (nf+ 3 )(nf+ 2 ),Jorn> 1
En + 1 = 2 ,fo >-

8. (k r) =1, for k - r > 0

9. Use Pascal's triangle given in Table 6.6.1 to compute the v I
ues of (6) and (6)

10. Complete the row of Pascal's triangle that corresponds i',
n =7.

11. The row of Pascal's triangle that corresponds to n = 8 is
follows:

1 8 28 56 70 56 28 8 1.

What is the row that corresponds to n = 9?

12. Use Pascal's formula repeatedly to derive a formula for ( )

in terms of values of (') with k < r. (Assume n and r a,
integers with n + 3 > r > 0.)
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13. Prove that for all nonnegative integers n and r with r + 1 < n,

n 1) n -r (n)

Or + r + l Or -

14. Prove by mathematical induction that if n is an integer and
n > 1, then

2) = (2) + (3) + _+ (n +)

(n + 2)
3v

H 15. Prove that if n is an integer and n > 1, then

I1 2 +2 3 + + n(n +1) = 2 n+ 2)

16. Prove the following generalization of exercise 14: Let r be a
fixed nonnegative integer. For all integers n with n > r,

E(i ) = (n ++ 1 ).

17. The sequence of Catalan numbers, named after the Belgian
mathematician Eugene Catalan (1814-1894), arises in a va-
riety of different contexts. It is defined as follows: For each
integer n > 1,

n~ + (2n)
n + I (n)

a. Find C1, C2, and C3 .

b. Provethat Cn = I 2n+2+1 ,for any integer n > 1.
4n + 2 ( n +I/

18. Think of a set with m + n elements as composed of two parts,
one with m elements and the other with n elements. Give a
combinatorial argument to show that

where m and n are positive integers and r is an integer that is
less than or equal to both m and n.

This identity gives rise to many useful additional identi-
ties involving the quantities ('). Because Alexander Vander-
monde published an influential article about it in 1772, it is
generally called the Vandermonde convolution. However, it
was known at least in the 1 300s in China by Chu Shih-chieh.

H 19. Prove that for all integers n > 0O

(n)' + (n)' + + (n)2 = (In)

20. Let m be any nonnegative integer. Use mathematical induc-
tion and Pascal's formula to prove that for all integers n > 0,

(m) + (m + I) +.. + ( n ) = (m n )

21. Prove that if p is a prime number and r is an integer with
0 < r < p, then (a) is divisible by p.

NI_Z
531

1

I

1�
I
R

E
2I
I

Eugene Catalan
(1814-1894)

( + (m) (n) +(1m) (r-n1) (m) (n),

6.7 The Binomial Theorem
I'm very well acquainted, too, with matters mathematical, I understand equations both

the simple and quadratical. About binomial theorem I am teaming with a lot of news,

With many cheerful facts about the square of the hypotenuse.

-William S. Gilbert, The Pirates of Penzance, 1880

In algebra a sum of two terms, such as a + b, is called a binomial. The binomial theorem

gives an expression for the powers of a binomial (a + b)', for each positive integer n and
all real numbers a and b.
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Consider what happens when you calculate the first few powers of a + b. According
to the distributive law of algebra, you take the sum of the products of all combinations of
individual terms:

(a + b)2 = (a + b) (a + b) = aa + ab + ba + bb,

(a + b)3 = (a + b).(a + b) (a + b)

= aaa + aab + aba + abb + baa + bab + bba + bbb,

(a + b)4 = (a + b) . (a + b) -(a + b) -(a + b)

Ist 2nd 3rd 4th
factor factor factor factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb

+ baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb.

Now focus on the expansion of (a + b) 4. (It is concrete, and yet it has all the features
of the general case.) A typical term of this expansion is obtained by multiplying one of
the two terms from the first factor times one of the two terms from the second factor times
one of the two terms from the third factor times one of the two terms from the fourth
factor. For example, the term abab is obtained by multiplying the a's and b's marked
with arrows below.

(a + b) -(a+ b) -(a + b) -(a+ b)

Since there are two possible values-a or b-for each term selected from one of the four
factors, there are 24 = 16 terms in the expansion of (a + b)4.

Now some terms in the expansion are "like terms" and can be combined. Consider
all possible orderings of three a's and one b, for example. By the techniques of Section
6.4, there are (4) = 4 of them. And each of the four occurs as a term in the expansion of
(a + b)4:

aaab aaba abaa baaa.

By the commutative and associative laws of algebra, each such term equals a3 b, so all
four are "like terms." When the like terms are combined, therefore, the coefficient of a3b
equals (,).

Similarly, the expansion of (a + b)4 contains the (4) = 6 different orderings of two
a's and two b's,

aabb abab abba baab baba bbaa,

all of which equal a 2b2, so the coefficient of a 2b2 equals (2). By a similar analysis, the coef-
ficient of ab3 equals (4). Also, since there is only one way to order four a's, the coefficient

of a4 is 1 (which equals (0), and since there is only one way to order four b's, the coefficient
of b4 is I (which equals (4)). Thus, when all of the like terms are combined,

(a + b)4 = (4) a4 + (4) a3b + (42) a2b2 + (4) ab3 + (4) b4

= a4 + 4a3b + 6a2 b2 + 4ab3 + b4.

The binomial theorem generalizes this formula to an arbitrary nonnegative integer n.
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Theorem 6.7.1 Binomial Theorem

Given any real numbers a and b and any nonnegative integer n,

(a + b)= E ()an kbk

an + (n) an-l bl + (n) an-2b2 + .+ n1 )abn+bn

Note that the second expression equals the first because (n) I l and (n) = 1, for all
nonnegative integers n.

It is instructive to see two proofs of the binomial theorem: an algebraic proof and a
combinatorial proof. Both require a precise definition of integer power.

For any real number a and any nonnegative integer n, the nonnegative integer
powers of a are defined as follows:

nJI if n = 0
l a''if n> 0

In some mathematical subjects, 00 is left undefined. Defining it to be l, as is done

here, makes it possible to write general formulas such as E xi - without having
i=o -x

to exclude values of the variables that result in the expression 0O.*
The algebraic version of the binomial theorem uses mathematical induction and calls

upon Pascal's formula at a crucial point.

Proof of the Binomial Theorem (algebraic version):

Suppose a and b are real numbers. We use mathematical induction and let the property
be the equation

(+ )n = d(n) an k.k(a +bY k-' kb

k=O

Show that the property is true for n = 0: When n = 0, the binomial theorem states
that

(a + b)0 = E a0 kbk

*See The Art of Computer Programming, Volume 1: Fundamental Algorithms, Second Edition, by
Donald E. Knuth (Reading, Mass.: Addison-Wesley, 1973), p. 56.
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But the left-hand side is (a + b)0 = I [by definition of power], and the right-hand
side is

E (0) a0 
kbk = (0) a0 0 b0

0! 1

0! -(O - )!l

also [since 0! = 1, a0 = 1, and bo = 1]. Hence the binomial theorem is true for
n = 0.

Show that for all integers m > 0, if the property is true for n = m then it is true
for n = m + 1: Let an integer m > 0 be given, and suppose the property holds for
m. That is, suppose

(a + b)-m = k (7) am- kbk [This is the inductive hypothesis.]
k=O

We need to show that the property holds for n = m + 1:

m+m1)-
(a + b)ln+l = E k ) a(mml) kbk

k=O /

Now, by definition of the (m + I) st power,

(a + b)m+l = b) +b)(a + b)m ,

so by substitution from the inductive hypothesis,

(a +b)m+l = (a +b) * E (k)am kbk
k=O

= a k (7) am- kbk + b - (m) am- kbk

m m by the generalized distributive
= E m am+l kbk + am kbk+1 law and the facts that

k I k amI a am-k = al+m k = a.+l-k
k= 0 k=O and b . bk = bl+k = bk+l.

We transform the second summation on the right-hand side by making the change of
variable] = k + . When k =0, then]j =. When k = m, then = m + 1. And
since k = j - 1, the general term is

()am-k bk+1 = (j m ) at -(m -)b = (j m ) am+l-j

Hence the second summation on the right-hand side above is

m+t

continued on page 366
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It is instructive to write out the product (a + b). (a + b) m without using the summation
notation but using the inductive hypothesis about (a + b)m :

(a + b)m'+ = (a + b) [am + ()am b + +(mnam (k l)bk-I

+ ()am-kbk + '+ In ) abml + bm]

You will see that the first and last coefficients are clearly 1 and that the term containing
am+I-kbk is obtained from multiplying am -kbk by a and am -(k-1 )bk- by b [because
m + I -k = m -(k - 1)]. Hence the coefficient of am+l -kbk equals the sum of (k) and
(km l). This is the crux of the algebraic proof.

But the j in this summation is a dummy variable; it can be replaced by the letter k,
as long as the replacement is made everywhere the j occurs:

m+1 M±I

E (jm1) am+'- jbj (k n1)aml -b.
j=Zm1a k= kb

Substituting back, we get

(a + b)m+l E k )am+1 kbk+ E(m )a am+1 kbk.

[The reason for the above maneuvers was to make the powers of a and b agree so
that we can add the summations together term by term, except for the first and the
last terms, which we must write separately.]

Thus

(a + b)m+l () a' b + A [(7) + (k- )]a b

+ ((i +1) 1) am+l-(m+l)bm+l

am+l + E [(m) + ( m ) am+l -kbk + bm+1

k=1 since a0 = b° I and

(M) (m)
But

[(7)+(Vkml)>( l) J=by Pascal's formula.

Hence

(a + b)m+l = am+l + d (m + 1) a kbk + bm+l
k=I

m+ 1 because ( r0 +l
L(m +l)(m~l) kbk +O (M

w i to +sM+l
k=O and VM 0 + IJ

which is what we needed to show.
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If n and r are nonnegative integers and r < n, then (n) is called a binomial coefficient
because it is one of the coefficients in the expansion of the binomial expression (a + b)n.

The combinatorial proof of the binomial theorem follows.

Example 6.7.1 Substituting into the Binomial Theorem

Expand the following expressions using the binomial theorem:

a. (a+b)5  b. (x -4y) 4

Solution

a. (a+ b)5  = ( kbk

=a a5 + (5)a5- lb' (5) a5- 2 b2 ± (5)a5- 3b3 ± (5)a5 4 b4 ± b5

(1 )2) (3) (4)

= a5 + 5a4 b + 10a3b2 + l0a2b3 + 5ab4 + b5

b. Observe that (x - 4y)
4 

= (x + (-4y))
4

. So let a = x and b = (-4y), and substitute
into the binomial theorem.

(x -4y) = E (k) x4 -(-4y)k

= X4 + ()x4 1(-4y)l+(4)x4-2(-4y)2+(4)X4- 3(-4y)3 +(-4y) 4

= x4 + 4x 3 (-4y) + 6x2 (16y2 ) + 4x1 (-64y3
) + (256y4

)

4- 16x
3 y + 96x2 y2 - 256xy3 + 256y4

Proof of Binomial Theorem (combinatorial version):

[The combinatorial argument used here to prove the binomial theorem works only
for n > 1. If we were giving only this combinatorial proof we would have to prove
the case n = 0 separately. Since we have already given a complete algebraic proof
that includes the case n = 0, we do not prove it again here.]

Let a and b be real numbers and n an integer that is at least 1. The expression
(a + b)' can be expanded into products of n letters, where each letter is either a or
b. For each k = 0, 1, 2, . . ., n, the product

a'-kbk = a a a a b b b b

n -k factors k factors

occurs as a term in the sum the same number of times as there are orderings of
(n - k) a's and k b's. But this number is (n), the number of ways to choose k
positions into which to place the b's. [The other n -k positions will be filled by a 's.]
Hence, when the like terms are combined, the coefficient of an-kbk in the sum is (k).
Thus

(a + b) = ()an kbk
kTO

This is what was to be proved.

.
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Example 6.7.2 Deriving Another Combinatorial Identity from the Binomial Theorem

Use the binomial theorem to show that

2 E (n) = (n) + (1) + (2) + + (n)
k=O

for all integers n > 0.

Solution Since 2 = 1 + 1, 2' = (1 + M)W. Apply the binomial theorem to this expression
by letting a = I and b = 1. Then

2" = Ad (n) . In-k lk = sa (n) 1 1

k=O k=0

since in k = 1 and lk 1. Consequently,

2n = () = (n) + (1) + (2) + + (n)

Example 6.7.3 Using a Combinatorial Argument to Derive the Identity

According to Theorem 5.3.5, a set with n elements has 2n subsets. Apply this fact to give
a combinatorial argument to justify the identity

() (1) () () (n)= 2.

Solution Suppose S is a set with n elements. Then every subset of S has some number of
elements k, where k is between 0 and n. It follows that the total number of subsets of
S, N(`(S)), can be expressed as the following sum:

number of number of number of number of
subset subseso + subseso + + subsets of
of S size 0 size 1 size n

Now the number of subsets of size k of a set with n elements is (n) Hence the

number of subsets of S = (n) + (1) + (2) + + (n)

But by Theorem 5.3.5, S has 2" subsets. Hence

(°) + (1) + (2) + () + .+ (n) = 2n. U

Example 6.7.4 Using the Binomial Theorem to Simplify a Sum

Express the following sum in closed form (without using a summation symbol and without
using an ellipsis ... ):

(n=) 9k

k0
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Solution When the number I is raised to any power, the result is still 1. Thus

E (n) 9k =E (n) lIn-kgk

k=O k=O

= (1 + 9)n by the binomial theorem with a = I and b = 9
= IOn. M

Exercise Set 6.7
Expand the expressions in 1-9 using the binomial theorem.

I. (I + x)7 2- (p + q)' 3. (I- x)6

4. (u - v)5  5. (p - 2q)4  6. (u2 
- 3v) 4

7(x+) 8.( a ) 9. (X2 + 1 )57. 8. QI.)

10. In Example 6.7.1 it was shown that

(a + b)5 
= a5 + 5a 4 b + 10a3 b2 + 10a2b3 + 5ab4 

+ b5
.

Evaluate (a + b)
6 by substituting the expression above into

the equation

(a + b)
6 = (a + b). (a + b)5

and then multiplying out and combining like terms.

In 11-16, find the coefficient of the given term when the expres-
sion is expanded by the binomial theorem.

11. x6 y3 in (x + y)9  12. x7 in (2x + 3)10

13. a
5

b
7 in (a -2b)

1 2  
14. u1 6

v
4 in (u 2 

- v
2

)
1 0

15. p1
6

q
7 in (3p

2 
- 2q)1

5  16. x yt0 in (2x - 3y2)14

Use the binomial theorem to prove each statement in 17-22.

17. For all integers n > 1,

(n) _ (n) + (n) - ,+ (_1). (nt) = 0.

(Use the fact that I + (- 1)- 0.)

H 18. For all integers n > 0,

n(°n) +2(n) +2(22)+ +2 (n)

19. For all integers m > 0, Z(1)'(in)2'~ -

20. For all integers n > 0, E(-l (n ) 3' 2n.

21. For all integers n > 0 and for all positive real numbers
x, 1 + nx < (I + x)'.

H 22. For all integers n > 1,

0O 2 t1 + 2 t2 23 3J

1 o if n is even
+*+2 )" 1 (nl - I

+ '-1 if n is odd

23. Use mathematical induction to prove that for all integers
n > 1, if S is a set with n elements, then S has the same
number of subsets with an even number of elements as with
an odd number of elements. Use this fact to give a combi-
natorial argument to justify the identity of exercise 17.

Express each of the sums in 24-35 in closed form (without using
a summation symbol and without using an ellipsis .).

24. n '25. n)4(,k ) (i)
k=O i=O

26. E i ) x )(k k)

0= k~O

2n (2n)x

28 0,-~j i x

32. (- O' (m)
E ,0 2

31. n I

k=O ( )

33. E(- 1) (n) 32n-2k22k

() ) 35 (l)k () 32n-2k2 2k

0 kki=O k=O

* 36. (For students who have studied calculus)
a. Explain how the equation below follows from the bino-

mial theorem:

(I + x)n = ( k

k(~xk
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b. Write the formula obtained by taking the derivative of
both sides of the equation in part (a) with respect to x.

c. Use the result of part (b) to derive the formulas below.

(i) 2n-1 = [(n) + 2 (n) + 3 (n) + + (n)]

(ii) Sk(n) (_1)k = 0

k=1

d. Express ,k (n) 3 k in closed form (without using a
k=m

summation sign or .. ).

6.8 Probability Axioms and Expected Value
The theory of probability is at bottom nothing but common sense reduced to a calculus.
-Pierre-Simon Laplace (1749-1827)

Up to this point, you have calculated probabilities only for situations, such as tossing a
fair coin or rolling a pair of balanced dice, where the outcomes in the sample space are all
equally likely. But coins are not always fair and dice are not always balanced. How is it
possible to calculate probabilities for these more general situations?

The following axioms were formulated by A. N. Kolmogorov in 1933 to provide a
theoretical foundation for a far-ranging theory of probability. In this section we state the
axioms, derive a few consequences, and introduce the notion of expected value.

Recall that a sample space is a set of all outcomes of a random process or experiment
and that an event is a subset of a sample space.

Example 6.8.1 Applying the Probability Axioms

Suppose that A and B are events in a sample space S. If A and B are mutually disjoint,
could P(A) = 0.6 and P(B) = 0.8?

Solution No. Probability axiom 3 would imply that P(A U B) = P(A) + P(B) = 0.6 +
0.8 = 1.4, and since 1.4 > 1, this result would violate probability axiom 1. N

Example 6.8.2 The Probability of the Complement of an Event

Suppose that A is an event in a sample space S. Deduce that P (A') = I -P (A).

Solution By Theorem 5.2.2(5), with S playing the role of the universal set U,

AnAl=0 and AUAK=S.

Thus S is the disjoint union of A and A', and so

P(A U A') = P(A) + P(AC) = P(S) = 1.

Subtracting P(A) from both sides gives the result that P(AC) = I-P(A).

Andrei Nikolaevich
Kolmogorov
(1903-1987)

Probability Axioms

Let S be a sample space, and let A and B be any events in S. Then

1. 0 < P(A) < 1

2. P(0) = 0 and P(S) = 1

3. If A and B are mutually disjoint (that is, if A n B = 0), then the probability of
the union of A and B is

P(A U B) = P(A) + P(B).

.
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Probability of the Complement of an Event

If A is any event in a sample space S, then

P(AC) = 1 - P(A). 6.8.1

It is important to check that Kolmogorov's probability axioms are consistent with
the results obtained using the equally likely probability formula. To see that this is the
case, let S be a finite sample space with outcomes a], a2, a3 , .. ., a,. It is clear that all
the singleton sets la, 1, {a2 l, {a3}, . .. , {a,} are mutually disjoint and that their union is S.
Since P(S) = 1, probability axiom 3 can be applied multiple times (see exercise 13 at the
end of this section) to obtain

n

P({atI U (a2 }lU {a3  . U ({an})= E P(tak}) = .
k=I

If, in addition, all the outcomes are equally likely, there is a positive real number c so that

P({al}) = P({a2 1) = P({a3 J) = ... = P({aJ}) = c.

Hence

n

1=:c=c+c+.. +c=nc,
k= I n terms

and thus

1
C= -.

n

It follows that if A is any event with outcomes ail, ai2, a,~ ... , ai., then

M M N(A)
= n n N(S)

k=l k=1

which is the result given by the equally likely probability formula.

Example 6.8.3 The Probability of a General Union of Two Events

Follow the steps outlined in parts (a) and (b) below to prove the following formula:

Probability of a General Union of Two Events

If S is any sample space and A and B are any events in S, then

P(A U B) = P(A) + P(B) - P(A n B). 6.8.2

In both steps, suppose that A and B are any events in a sample space S.

a. Show that A U B is a disjoint union of the following sets: A -(A n B), B - (A n B),
and A n B.

b. In exercise 12 at the end of the section, you are asked to prove that for any events
U and V in a sample space S. if U C V then P(V -U) = P(V) - P(U). Use this
result and the result of part (a) to finish the proof of the formula.
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Solution

a. Refer to Figure 6.8.1 as you read the following explanation. Elements in the set
A - (A n B) are in the region shaded blue, elements in B -(A n B) are in the region
shaded gray, and elements in A n B are in the white region.

Figure 6.8.1

Part 1: Show that A U B C (A - (A n B)) U (B - (A n B)) U (A n B): Given any
element x in A U B, x satisfies exactly one of the following three conditions:

(1) x c A and x E B

(2) x E A and x B

(3) x i B and x A

1. In the first case, x E A n B, and so x E (A - (A n B)) U (B - (A n B)) U (A n B)
by definition of union.

2. In the second case, x 0 A n B (because x 0 B), and so x C A - (A n B). Therefore
x E (A - (A n B)) U (B - (A n B)) U (A n B) by definition of union.

3. In the third case, x ¢ A n B (because x 0 A), and hence x E B - (A n B). So, again,
x E (A - (A n B)) U (B - (A n B)) U (A n B) by definition of union.

Hence, in all three cases, x E (A - (A n B)) U (B - (A n B)) U (A n B), which com-
pletes the proof of part 1.

Moreover, since the three conditions are mutually exclusive, the three sets A -(A n B),
B -(A n B), and A n B are mutually disjoint.

Part 2: Show that (A - (A n B)) U (B - (A n B)) U (A n B) C A U B: Suppose x
is any element in (A - (A n B)) U (B - (A n B)) U (A n B). By definition of union,
x G A - (A n B) or x C B - (A n B) or x e A n B.

1. In case x C A -(A n B), then x C A and x 0 A n B by definition of set difference.
In particular, x e A and so x c A U B.

2. In case x E B -(A n B), then x E B and x 0 A n B by definition of set difference.
In particular, x e B and so x c A U B.

3. In case x c A n B, then in particular, x e A and so x E A U B.

Hence, in all three cases, x c A U B, which completes the proof of part 2.

U

I
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b. P(A U B) = P((A - (A n B)) U (B - (A n B)) U(A n B)) bypart(a)

= P(A-(ArnB))+P(B -(AnB))+P(ArnB)
by exercise 13 at the end of the section and the fact that
A -(A n B), B -(A n B), and A n B are mutually disjoint

= P(A) - P(A n B) + P(B) - P(A In B) + P(A n B)
by exercise 12 at the end of the section
because A n B C A and A n B C B

= P(A) + P(B) - P(A n B) by algebra. U

Example 6.8.4 Computing the Probability of a General Union of Two Events

Suppose a card is chosen at random from an ordinary 52-card deck (see Section 6.1).
What is the probability that the card is a face card (jack, queen, or king) or is from one of
the red suits (hearts or diamonds)?

Solution Let A be the event that the chosen card is a face card, and let B be the event that
the chosen card is from one of the red suits. The event that the card is a face card or is from
one of the red suits is A U B. Now N(A) = 4. 3 = 12 (because each of the four suits
has three face cards), and so P(A) = 12/52. Also N(B) = 26 (because half the cards are
red), and so P(B) = 26/52. Finally, N(A n B) = 6 (because there are three face cards
in hearts and another three in diamonds), and so P (A n B) = 6/52. It follows from the
formula for the probability of a union of any two events that

12 26 6 32
P(A U B) = P(A) + P(B) - P(A n B) - + - - -= - 2- 61.5%.

52 52 52 52

Thus the probability that the chosen card is a face card or is from one of the red suits is
approximately 61.5%. U

Expected Value
People who buy lottery tickets regularly often justify the practice by saying that, even
though they know that on average they will lose money, they are hoping for one significant
gain, after which they believe they will quit playing. Unfortunately, when people who
have lost money on a string of losing lottery tickets win some or all of it back, they
generally decide to keep trying their luck instead of quitting.

The technical way to say that on average a person will lose money on the lottery is to
say that the expected value of playing the lottery is negative.

l i. , J!

Suppose the possible outcomes of an experiment, or random process, are real numbers
al, a2, a3, . -,an, which occur with probabilities Pi, P2, P3,.. pn. The expected
value of the process is

n

E akPk = alPl + a2P2 + a3P3 + * * + anon.
k=1
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Example 6.8.5 Expected Value of a Lottery

Suppose that 500,000 people pay $5 each to play a lottery game with the following prizes:
a grand prize of $1,000,000, 10 second prizes of $1,000 each, 1,000 third prizes of $500
each, and 10,000 fourth prizes of $10 each. What is the expected value of the game?

Solution Each of the 500,000 people has the same chance as any other of picking a win-
1

ning lottery number, and so pk = for all k = 1, 2, 3, ... , 500000. Let a,, a2,
500000

a3 , . . ., a5 00ooo be the net gains of the people playing the lottery. Let al = 999995 (the
net gain for the grand prize winner, which is one million dollars minus the $5 cost of the
winning ticket), a2 = a3 = ... = a,, = 995 (the net gain for each of the 10 second prize
winners), a12 = a]3 = .= aloii = 495 (the net gain for each of the 1,000 third prize
winners), anda 1012 = a1013 = ... = alo, = 5 (thenetgainforeachofthe l0,O00fourth
prize winners). Since the remaining 488,989 people just lose their $5, a, 1012 = al1 013 -

* = a5 0OOO0 =-5. The expected value of the game is therefore

500000 500000 1

E akpk . (ak 500000) because each Pk = 1/500000

500000

500000 E ak
by Theorem 4.1.1(2)

1
= - (999995 + 10 995 + 1000 495 + 10000 .5 + (-5). 488989)

500000

= - (999995 + 9950 + 495000 + 50000 - 2444945)
500000

= -1.78.

In other words, a person who continues to play this lottery for a very long time will
probably win some money occasionally but on average will lose $1.78 per game. U

Exercise Set 6.8
1. In any sample space S, what is P(0)?

2. Suppose A, B, and C are mutually exclusive events in a
sample space S, A U B U C = S, and A and B have proba-
bilities 0.3 and 0.5, respectively.
a. What is P(A U B)? b. What is P(C)?

3. Suppose A and B are mutually exclusive events in a sample
space S, C is another event in S, A U B U C = S, and A and
B have probabilities 0.4 and 0.2 respectively.
a. What is P(AU B)?
b. Is it possible that P(C) = 0.2? Explain.

4. Suppose A and B are events in a sample space S with
probabilities 0.8 and 0.7, respectively. Suppose also that
P(A n B) = 0.6. What is P(A U B)?

5. Suppose A and B are events in a sample space S and sup-
pose that P(A) = 0.6, P(B') = 0.4, and P(A n B) = 0.2.
What is P(A U B)?

6. Suppose U and V are events in a sample space S and sup-
pose that P(U') = 0.3, P(V) = 0.6, and P(U' U V') =
0.4. What is P(U U V)?

7. Suppose a sample space S consists of three outcomes: 0,
1, and 2. Let A = {0}, B = {I), and C = {2), and suppose
P(A) - 0.4, and P(B) = 0.3. Find each of the following:
a. P(A U B) b. P(C) c. P(A U C)
d. P(A') e. P(AI n B') f. P(A' U B')

8. Redo exercise 7 assuming that P(A) = 0.5 and P(B) =
0.4.

9. Let A and B be events in a sample space S, and let
C = S -(A U B). Suppose P(A) = 0.4, P(B) = 0.5, and
P(A n B) = 0.2. Find each of the following:
a. P(A U B) b. P(C) c. P(Ac)
d. P(A' n B') e. P(A' U B') f. P(B' n C)

10. Redo exercise 9 assuming that P(A) = 0.7, P(B) = 0.3,
and P(A n B) =0.1.

H 11. Prove that if S is any sample space and U and V are events
in S with U C V, then P(U) < P(V).

H 12. Prove that if S is any sample space and U and V are any
events in S, then P(V -U) P(V) -P(U n V).

M
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H 13. Use the axioms for probability and mathematical induction
to prove that for all integers n > 2, if Al, A2, A3 , . ., A,
are any mutually disjoint events in a sample space S, then

P(Al U A2 U A3 U ... U A) =EP(Ak).
k=l

14. A lottery game offers $2 million to the grand prize winner,
$20 to each of 10,000 second prize winners, and $4 to each
of 50,000 third prize winners. The cost of the lottery is $2
per ticket. Suppose that 1.5 million tickets are sold. What
is the expected gain or loss of a ticket?

15. A company sends millions of people an entry form for
a sweepstakes accompanied by an order form for maga-
zine subscriptions. The first, second, and third prizes are
$10,000,000, $1,000,000, and $50,000, respectively. In or-
der to qualify for a prize, a person is not required to order
any magazines but has to spend 60 cents to mail back the
entry form. If 30 million people qualify by sending back
their entry forms, what is a person's expected gain or loss?

16. An urn contains four balls numbered 2, 2, 5, and 6. If a per-
son selects a set of two balls at random, what is the expected
value of the sum of the numbers on the balls?

18. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of three balls at random, what is the
expected value of the sum of the numbers on the balls?

19. When a pair of balanced dice are rolled and the sum of the
numbers showing face up is computed, the result can be any
number from 2 to 12, inclusive. What is the expected value
of the sum?

H 20. Suppose a person offers to play a game with you. In this
game, when you draw a card from a standard 52-card deck,
if the card is a face card you win $3, and if the card is any-
thing else you lose $1. If you agree to play the game, what
is your expected gain or loss?

21. A person pays $1 to play the following game: The person
tosses a fair coin four times. If no heads occur, the person
pays an additional $2, if one head occurs, the person pays an
additional $1, if two heads occur, the person just loses the
initial dollar, if three heads occur, the person wins $3, and if
four heads occur, the person wins $4. What is the person's
expected gain or loss?

H 22. A fair coin is tossed until either a head comes up or four tails
are obtained. What is the expected number of tosses?

17. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of two balls at random, what is the
expected value of the sum of the numbers on the balls?

6.9 Conditional Probability, Bayes' Formula,
and Independent Events
It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge .... The most
important questions of life are, for the most part, really only problems of probability.
-Pierre-Simon Laplace 1749-1827

In this section we introduce the notion of conditional probability and discuss Bayes'
Theorem and the kind of interesting results to which it leads. We then define the concept
of independent events and give some applications.

Conditional Probability
Imagine a couple with two children, each of whom is equally likely to be a boy or a girl.
Now suppose you are given the information that one is a boy. What is the probability that
the other child is a boy?

Figure 6.9.1 shows the four equally likely combinations of gender for the children.

You can imagine that the first letter refers to the older child and the second letter to the
younger. Thus the combination B G indicates that the older child is a boy and the younger
is a girl.

GG

Figure 6.9.1
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The combinations where one of the children is a boy are shaded gray, and the combination
where the other child is also a boy is shaded blue. Given that you know one child is a
boy, only the three combinations in the gray region could be the case, so you can think
of the set of those outcomes as a new sample space with three elements, all of which are
equally likely. Within the new sample space, there is one combination where the other
child is a boy (in the region shaded blue-gray). Thus it would be reasonable to say that
the likelihood that the other child is a boy, given that at least one is a boy, is 1/3 = 331%.
Note that because the original sample space contained four outcomes,

P(at least one child is a boy and the other child is also a boy) I 1
P(at least one child is a boy) 3 3

also. A generalization of this observation forms the basis for the following definition.

IU L

Let A and B be events in a sample space S. If P(A) A 0, then the conditional
probability of B given A, denoted P (B I A), is

:::: : : :P(A fl B)
P(B A) = P(A) 6.9.1

P (A)

Example 6.9.1 Computing a Conditional Probability

A pair of fair dice, one blue and the other gray, are rolled. What is the probability that the
sum of the numbers showing face up is 8, given that both of the numbers are even?

Solution The sample space is the set of all 36 outcomes obtained from rolling the two dice
and noting the numbers showing face up on each. As in Section 6.1, denote by ab the
outcome that the number showing face up on the blue die is a and the one on the gray die is b.
Let A be the event that both numbers are even and B the event that the sum of the numbers is
8. Then A = {22, 24, 26, 42, 44, 46, 62, 64, 661, B = {26, 35, 44, 53, 621, and A fl B =
{26, 44, 62). Because the dice are fair (so all outcomes are equally likely), P(A) =
9/36, P(B) = 5/36 and P(A n B) = 3/36. By definition of conditional probability,

P(B|A) P(A n B) = 36 3 1

P(A) - 9 9 3
36

Note that when both sides of the formula for conditional probability (formula 6.9.1)
are multiplied by P(A), a formula for P(A n B) is obtained:

P (A 0 B) = P(B I A) . P(A). 6.9.2

Dividing both sides of formula (6.9.2) by P(B A) gives a formula for P(A):

P(A) = P(A n B) 6.9.3
P(B IA)
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Example 6.9.2 Further Applications of the Conditional Probability Formula

An urn contains 5 blue and 7 gray balls. Let us say that 2 are chosen at random, one after
the other, without replacement.

a. What is the probability that both balls are blue?

Wh 7a- iq the nrh +kltl ht the. q----f hA ll iq hl- hilt th- f;-+t hf-ll iq -- t9
(it, L- ...uL13Lfl JJLLuLIIY tI... tL..., 1 -tLALI -i -. -if 1t -UC tt... 11 - -ua -S -ll

c. What is the probability that the second ball is blue?

d. What is the probability that at least one of the balls is blue?

e. If the experiment of choosing 2 balls from the urn were repeated many times over,
what would be the expected value of the number of blue balls?

Solution Let S denote the sample space of all possible choices of two balls from the urn,
let E be the event that the first ball is blue, and let F be the event that the second ball is
blue.

a. The probability that both balls are blue is P(E n F). Because there are 12 balls of
which 5 are blue, the probability that the first ball is blue is

5
P(E) = 12

If the first ball is blue, then when the second ball is chosen the urn will contain 4 blue
and 7 gray balls. Thus P(F I E) = 4/11, so by formula (6.9.2),

4 5 20
P(E n F) = P(F IE) P(E) = 11 12 = - 3

11 12 132

b. The probability that the second ball is blue but the first ball is not is P(F n EC). To
compute this number, note that because there are 12 balls of which 7 are not blue,
P(E') = 7/12. Also if the first ball is not blue, then when the second ball is chosen,
the urn will contain 5 blue and 6 gray balls, and thus P(F EC) = 5/11. Hence, by
formula 6.9.2,

P(F n EC) = P(F I EC). P(EC) = 5 1 7 35

c. The event that the second ball is blue can occur in one of two mutually exclusive ways:
Either the first ball is blue and the second is also blue, or the first ball is gray and the
second is blue. In other words, F is the disjoint union of F n E and F n EC. Hence

P(F) = P((F n E)U(F n EC))

= P(F n E) + P(F n EC) by probability axiom 3

20 35
- + 1 by parts (a) and (b)

132 132

55 5

132 12
Thus the probability that the second ball is blue is 5/12, the same as the probability
that the first ball is blue.
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d. By formula 6.8.2, for the union of any two events,

P(E U F) = P(E) + P(F)-P(E n F)

5 5 20
- + - - - by parts (a) and (c)

12 12 132

90 15

132 22

Thus the probability is 15/22, or approximately 68.2%, that at least one of the balls is
blue.

e. The event that neither ball is blue is the complement of the event that at least one of
the balls is blue, so

P(O blue balls) = 1- P (at least one ball is blue) by formula 6.8.1

15
22 by part (d)

22-7

22

The event that one ball is blue can occur in one of two mutually exclusive ways: Either
the second ball is blue and the first is not, or the first ball is blue and the second is
not. Part (b) showed that the probability of the first way is T32 , and the same technique
shows that the probability of the second way is also -3.5. Thus, by probability axiom 3,

P (1 blue ball) = 35 + 35 1327
132 132 13

Finally, by part (a),

P(2 blue balls) = 2
132'

Therefore,

the expected value of 0-P( lebls Ibu al
[the number of blue balls] = (O e ba ) + ( blue b )

+ 2. P (2 blue balls)

7 70 20
22 132 132

110 08
=132 - 0.8.v132

Bayes' Theorem
Suppose that one urn contains 3 blue and 4 gray balls and a second urn contains 5 blue
and 3 gray balls. A ball is selected by choosing one of the urns at random and then picking
a ball at random from that urn. If the chosen ball is blue, what is the probability that it
came from the first urn?

This problem can be solved by carefully interpreting all the information that is known
and putting it together in just the right way. Let A be the event that the chosen ball is blue,
B1 the event that the ball came from the first urn, and B2 the event that the ball came from
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the second urn. Because 3 of the 7 balls in urn one are blue, and 5 of the 8 balls in urn
two are blue,

3 5
P(A B,) = and P(A B2)=-

7 8

And because the urns are equally likely to be chosen,

P(BI) P(B 2 )=1
2

Moreover, by formula (6.9.2),

31 3
P(An B) =P(A B,) P(BI) =- -=- , and

7 2 14

5 1 5
P(A n B2) =P(A B2) P(B2) -- -

8 2 16

- But A is the disjoint union of (A n B1) and (A n B2), so by probability axiom 3,

3 5 59
P(A) = P((A fn B1) U (A n B2)) = P(A n B,) + P(A fl B2) = 3 + - = 59

14 16 112'

Finally, by definition of conditional probability,

P(Bi n A) _ 336
P(BuIIA) = - = _-_40.7%.

P (A) 159 826

Thus, if the chosen ball is blue, the probability is approximately 40.7% that it came from
the first urn.

The steps used to derive the answer in the example above can be generalized to prove
Bayes' Theorem. (See exercises 8 and 9 at the end of this section.) Thomas Bayes was
an English Presbyterian minister who devoted much of his energies to mathematics. The
theorem that bears his name was published posthumously in 1763. The portrait at the left
is the only one attributed to him, but its authenticity has recently come into question.

Theorem 6.9.1 Bayes' Theorem

Suppose that a sample space S is a union of mutually disjoint events B,, B2, B3 , . . -

Bn, and suppose A is an event in S with P(A) 0 0. If k is an integer with 1 < k < n,
then

P(Bk I A) = P(A I Bk) * P(Bk)
P(A I B,)- P(BI) + P(A IB2) P(B2) + - + P(A IB.) - P(B.)

Example 6.9.3 Applying Bayes' Theorem

Most medical tests occasionally produce incorrect results, called false positives and false
negatives. When a test is designed to determine whether a patient has a certain disease,
a false positive result indicates that a patient has the disease when the patient does not
have it. A false negative result indicates that a patient does not have the disease when the
patient does have it.

Thoi
(176

nas Bayes
72-1761)
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When large-scale health screenings are performed for diseases with relatively low
incidence, those who develop the screening procedures have to balance several consid-
erations: the per-person cost of the screening, follow-up costs for further testing of false
positives, and the possibility that people who have the disease will develop unwarranted
confidence in the state of their health.

Consider a medical test that screens for a disease found in 5 people in 1,000. Suppose
that the false positive rate is 3% and the false negative rate is 1%. Then 99% of the time a
person who has the condition tests positive for it, and 97% of the time a person who does
not have the condition tests negative for it. (See exercise 3 at the end of this section.)

a. What is the probability that a randomly chosen person who tests positive for the disease
actually has the disease?

b. What is the probability that a randomly chosen person who tests negative for the disease
does not indeed have the disease?

Solution Consider a person chosen at random from among those screened. Let A be the
event that the person tests positive for the disease, B. the event that the person actually
has the disease, and B2 the event that the person does not have the disease. Then

P(A I B.) = 0.99, P(AC I B.) = 0.01, P(A' I B2 ) = 0.97, and P(A I B2) = 0.03.

Also, because 5 people in 1,000 have the disease,

P(BI) = 0.005 and P(B 2 ) = 0.995.

a. By Bayes' Theorem,

P(BI [A) -P(A[IBJ. -P(BI)

P(A [ B). P(B 1 ) + P(A I B 2). P(B2 )

(0.99). (0.005)

(0.99). (0.005) + (0.03) . (0.995)

0.1422 - 14.2%.

Thus the probability that a person with a positive test result actually has the disease is
approximately 14.2%.

b. By Bayes' Theorem,

P(B 2 [ A') P (A' I B 2 ) . P(B 2 )

P(Ac [ B.) P(BI) + P(AC I B2) P(B2 )

(0.97) * (0.995)

(0.01). (0.005) + (0.97). (0.995)

- 0.999948 - 99.995%.

Thus the probability that a person with a negative test result does not have the disease is
approximately 99.995%.

You might be surprised by these numbers, but they are fairly typical of the situation
where the screening test is significantly less expensive than a more accurate test for the
same disease yet produces positive results for nearly all people with the disease. Using the
screening test limits the expense of unnecessarily using the more costly test to a relatively
small percentage of the population being screened, while only rarely indicating that a
person who has the disease is free of it. U
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Independent Events
Suppose a coin is tossed twice. It seems intuitively clear that the outcome of the first toss
does not depend in any way on the outcome of the second toss, and conversely. In other
words, if, for instance, A is the event that a head is obtained on the first toss and B is
the event that a head is obtained on the second toss, then if the coin is tossed randomly
both times, events A and B should be independent in the sense that P(A I B) = P(A)
and P(B IA) = P(B). This intuitive idea of independence is supported by the following
analysis. If the coin is fair, then the four outcomes HH, HT, TH, and TT are equally
likely, and

A = {HH, HT}, B = {TH, HH}, A n B = {HH}.

Hence

2 1
P(A) P(B) = - = 2

4 2

But also

PAB= (A nB) I P(AAnB) I((B) ) = - and P(BI A)= P(A)

andthus P(A B) = P(A) and P(BI A) = P(B).
To obtain the final form for definition of independence, observe that

if P(B) # O and P(AI B) = P(A), then P(A n B) = P(AI B). P(B) = P(A). P(B).

By the same argument,

if P(A) 0 0 and P(BI A) = P(B), then P(A n B) = P(A). P(B).

Conversely (see exercise 17 at the end of this section),

if P(A n B) = P(A) P(B) and P(A) 0, then P(B IA) = P(B),

and

if P(A n B) = P(A) P(B) and P(B) 0, then P(AIB) = P(A).

Thus, for convenience and to eliminate the requirement that the probabilities be nonzero,
we use the following product formula to define independent events.

l I. u

If A and B are events in a sample space S, then A and B are independent if, and
only if,

P(A n B) = P(A) * P(B).

It would be natural to think that mutually disjoint events would be independent, but
in fact almost the opposite is true: Mutually disjoint events with nonzero probabilities are
dependent.
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Example 6.9.4

Example 6.9.5

Mutually Disjoint Events and Independence

Let A and B be events in a sample space S, and suppose A n B = 0, P(A) A 0, and
P(B) P 0. Show that P(A n B) = P(A) . P(B).

Solution Because A n B = 0, P(A fn B)= 0 by probability axiom 2. But P(A). P(B) #
0 because neither P(A) nor P(B) equals zero. Thus P(A n B) : P(A) * P(B). U

The following example, and its immediate consequence, show how the independence
of two events extends to their complements.

The Probability of A fn BC When A and B Are Independent Events

Suppose A and B are independent events in a sample space S. Show that A and BC are
also independent.

Solution Observe that

(A n B) U (A n BC) = A n (B U BC) by the distributive law for sets

= A n S by the complement law for union

= A by the identity law for intersection

Also (A n B) n (A n BC) = 0 because B n Bc = 0. Apply probability axiom 3 to the
above equality to obtain

P((A n B) U (A n BC)) = P(A n B) + P(A n BC) = P(A).

Solving for P(A n BC) gives that

P(A n BC) = P(A)-P(A n B)

= P(A) - P(A) . P(B) because A and B are independent

= P(A)(I - P(B)) by factoring out P(A)

= P(A) . P(BC) by formula 6.8.1.

Thus A and BC are independent events. B

It follows immediately from Example 6.9.5 that if A and B are independent, then AC
and B are also independent and so are Ac and BC. (See exercises 21 and 22 at the end of
this section.) These results are applied in Example 6.9.6.

Example 6.9.6 Computing Probabilities of Intersections of Independent Events

A coin is loaded so that the probability of heads is 0.6. Suppose the coin is tossed twice.
Although the probability of heads is greater than the probability of tails, there is no reason
to believe that whether the coin lands heads or tails on one toss will affect whether it lands
heads or tails on the other toss. Thus it is reasonable to assume that the results of the
tosses are independent.

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head?
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Solution The sample space S consists of the four outcomes {HH, HT, TH, TTI, which
are not equally likely. Let E be the event that a head is obtained on the first toss, and let F
be the event that a head is obtained on the second toss. Then P(E) = P(F) = 0.6, and
it is to be assumed that E and F are independent.

a. The probability of obtaining two heads is P(E n F). Because E and F are independent,

P (two heads) = P(E n F) = P(E). P(F) = (0.6)(0.6) = 0.36 = 36%.

b. One head can be obtained in two mutually exclusive ways: head on the first toss and
tail on the second, or tail on the first toss and head on the second. Thus, the event of
obtaining exactly one head is (E n FC) U (EC n F). Also (E n FC) n (EC n F) = 0,
and, moreover, by the formula for the probability of the complement of an event,
P(EC) = P(FC) = I - 0.6 = 0.4. Hence

P(one head) = P((E n F') U (El n F))

= P(E) * P(FC) + P(EC) * P(F) by Example 6.9.5 and exercise 21

= (0.6)(0.4) + (0.4)(0.6)

= 0.48 = 48%.

c. The probability of obtaining no heads is P(EC n F'). By exercise 22,

P(no heads) = P(EC n Fr) = P(EC) * P(F') = (0.4)(0.4) = 0.16 = 16%.

d. There are two ways to solve this problem. One is to observe that because the event of
obtaining one head and the event of obtaining two heads are mutually disjoint,

P(at least one head) = P(one head) + P(two heads)

= 0.48 + 0.36 by parts (a) and (b)

= 0.84 = 84%.

The second way is to use the fact that the event of obtaining at least one head is the
complement of the event of obtaining no heads. So

P(at least one head) = 1 - P(no heads)

= 1-0.16 bypart(c)

= 0.84 = 84%.

Example 6.9.7 Expected Value of Tossing a Loaded Coin Twice

Suppose that a coin is loaded so that the probability of heads is 0.6, and suppose the coin
is tossed twice. If this experiment is repeated many times, what is the expected value of
the number of heads?

Solution Think of the outcomes of the coin tossings as just 0, 1, or 2 heads. Example 6.9.6
showed that the probabilities of these outcomes are 0.16, 0.48, and 0.36, respectively.
Thus, by definition of expected value, the

expected number of heads = 0 * (0.16) + I * (0.48) + 2 * (0.36) = 1.2. V

What if a loaded coin is tossed more than twice? Suppose it is tossed ten times, or a
hundred times. What are the probabilities of various numbers of heads? To answer this
question, it is necessary to expand the notion of independence to more than two events.
For instance, we say three events A, B, and C are pairwise independent if, and only if,

P(A n B) = P(A) * P(B), P(A n C) = P(A) * P(C), and P(B n C) = P(B) * P(C).
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The next example shows that events can be pairwise independent without satisfying the
condition P(A n B n C) = P(A) . P(B) . P(C). Conversely, they can satisfy the con-
dition P (A n B n C) = P (A) .P (B). P (C) without being pairwise independent (see
exercise 26 at the end of this section).

Example 6.9.8 Exploring Independence for Three Events

Suppose that a fair coin is tossed twice. Let A be the event that a head is obtained on the
first toss, B the event that a head is obtained on the second toss, and C the event that either
two heads or two tails are obtained. Show that A, B, and C are pairwise independent but
do not satisfy the condition P(A n B n C) = P(A). P(B) - P(C).

Solution Because there are four equally likely outcomes-HH, HT, TH, and TT-it is
clear that P(A) = P(B) = P(C) = 2. You can also see that A n B = (HHJ, A n c =
JHH}, BnC=IHH), and AnBAC={HH}. Hence P(AAB)=P(AnC)=
P(B nC) = 1, and so P(A n B) = P(A) P(B), P(A nC) = P(A) P(C), and
P(B n C) = P(B). P(C). Thus A, B, and C are pairwise independent. But

P(A n B n C) = P({HH1) = )=P(A) P(B) P(C). U

Because of situations like that in Example 6.9.6, four conditions must be included in
the definition of independence for three events.

I. i * ,

Let A, B, and C be events in a sample space S. A, B, and C are pairwise independent
if, and only if, they satisfy conditions 1-3 below. They are mutually independent
if, and only if, they satisfy all four conditions below.

1. P(A n B) = P(A) P(B)

2. P(A n c) = P(A). P(C)

3. P(B n c) = P(B) P(C)

4. P(A n B n C) = P(A) . P(B) . P(C)

The definition of mutual independence for any collection of n events with n > 2 general-
izes the two definitions given previously.

Events A1, A2, A3 . , A. in a sample space S are mutually independent if, and
only if, the probability of the intersection of any subset of the events is the product
of the probabilities of the events in the subset.

Example 6.9.9 Tossing a Loaded Coin Ten Times

A coin is loaded so that the probability of heads is 0.6 (and thus the probability of tails is
0.4). Suppose the coin is tossed ten times. As in Example 6.9.6, it is reasonable to assume
that the results of the tosses are mutually independent.
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a. What is the probability of obtaining eight heads?

b. What is the probability of obtaining at least eight heads?

Solution

a. For each i = 1, 2, 10, let Hi be the event that a head is obtained on the ith toss,
and let Ti be the event that a tail is obtained on the ith toss. Suppose that the eight
heads occur on the first eight tosses and that the remaining two tosses are tails. This
is the event HI Cn H2 Cn H3 n H4 (1 H5 Cn H6 n H7 n H8 Cn T9 Cn TbO. For simplicity, we
denote it as H H H H H H H H T T. By definition of mutually independent events,

P(HHHHHHHHTT) = (0.6)8(0.4)2.

Because of the commutative law for multiplication, if the eight heads occur on any other
of the ten tosses, the same number is obtained. For instance, if we denote the event
H, n H2 n T3 n H4 n 5 CnH6 n H7 n H8 n T9 nl HIo by HHTHHHHHTH, then

P(HHTHHHHHTH) = (0.6)2(0.4)(0.6)5(0.4)(0.6) = (0.6)8(0.4)2.

Now there are as many different ways to obtain eight heads in ten tosses as there are
subsets of eight elements (the toss numbers on which heads are obtained) that can be
chosen from a set of ten elements. This number is (1'). It follows that, because the
different ways of obtaining eight heads are all mutually exclusive,

P(eight heads) = (I0) (0.6)8(0.4)2.

b. By reasoning similar to that in part (a),

the number of different]
P(nine heads) = ways nine heads can be * (0.6)9(0.4)' = (9) (0.6)9(0.4),

L obtained in ten tosses 9

and

the number of different] 10
P((ten heads) = ways ten heads can be * 6)l0(0.4)0 (0.6)10.

obtained in ten tosses

Because obtaining eight, obtaining nine, and obtaining ten heads are mutually disjoint
events,

P(at least eight heads) = P(eight heads) + P(nine heads) + P(ten heads)

= (10) (0.6)8(0.4)2 + (10) (0.6)9(0.4) + ('2) (0.6)10

0.167 = 16.7%. U

Note the occurrence of the binomial coefficients (k) in solutions to problems like the
one in Example 6.9.9. For that reason, probabilities of the form

nk k

where 0 < p < 1, are called binomial probabilities. Binomial probabilities occur in
situations with multiple, mutually independent repetitions of a random process, with the
same two possible outcomes that have the same probabilities on each repetition.



386 Chapter 6 Counting and Probability

Exercise Set 6.9
1. Suppose P(A I B) = 1/2 and P(A n B) = 1/6. What is

P(B)?

2. Suppose P(X I Y) = 1/3 and P(Y) = 1/4. What is
P(X n Y)?

3. a. Prove that if A and B are any events in a sample space
S, with P(B) 7#0, then P(A' I B) = 1 - P(A I B).

b. Explain how this resultjustifies the following statements:
(1) If the probability of a false negative on a test for a
condition is 4%, then there is a 96% probability that a
person who does not have the condition will have a neg-
ative test result. (2) If the probability of a false positive
on a test for a condition is 1%, then there is a 99% proba-
bility that a person who does have the condition will test
positive for it.

H 4. Suppose that A and B are events in a sample space S and that
P (A), P (B), and P (A I B) are known. Derive a formula for
P(A I B').

5. An urn contains 25 red balls and 15 blue balls. Two are cho-
sen at random, one after the other, without replacement.
a. What is the probability that both balls are red?
b. What is the probability that the second ball is red but the

first ball is not?
c. What is the probability that the second ball is red?
d. What is the probability that at least one of the balls is

red?

6. Redo exercise 5 assuming that the urn contains 30 red balls
and 40 blue balls.

7. A pool of 10 semifinalists for a job consists of 7 men and
3 women. Because all are considered equally qualified, the
names of two of the semifinalists are drawn, one after the
other, at random, to become finalists for the job.
a- What is the probability that both finalists are women?
b. What is the probability that both finalists are men?

H C. What is the probability that one finalist is a woman and
the other is a man?

H 8. Prove Bayes' Theorem for n = 2. That is, prove that if a
sample space S is a union of mutually disjoint events B.
and B2, if A is an event in S with P(A) A 0, and if k I
or k = 2, then

P(Bk I A) P(A I Bk) * P(Bk)

P(A I B1) . P(B1) + P(A I B2). P(B2)

H 9- Use the result of exercise 8 and mathematical induction to
prove Bayes' Theorem.

10. One urn contains 12 blue balls and 7 white balls, and a sec-
ond urn contains 8 blue balls and 19 white balls. An urn is
selected at random, and a ball is chosen from the urn.
a. What is the probability that the chosen ball is blue?
b. If the chosen ball is blue, what is the probability that it

came from the first urn?

11. Redo exercise 10 assumuing that the first urn contains 4 blue
balls and 16 white balls and the second urn contains 10 blue
balls and 9 white balls.

H 12. One urn contains 10 red balls and 25 green balls, and a sec-
ond urn contains 22 red balls and 15 green balls. A ball
is chosen as follows: First an urn is selected by tossing a
loaded coin with probability 0.4 of landing heads up and
probability 0.6 of landing tails up. If the coin lands heads
up, the first urn is chosen; otherwise, the second urn is cho-
sen. Then a ball is picked at random from the chosen urn.
a. What is the probability that the chosen ball is green?
b. If the chosen ball is green, what is the probability that it

was picked from the first urn?

13. A drug-screening test is used in a large population of peo-
ple of whom 4% actually use drugs. Suppose that the false
positive rate is 3% and the false negative rate is 2%. Thus
a person who uses drugs tests positive for them 97% of the
time, and a person who does not use drugs tests negative for
them 98% of the time.
a. What is the probability that a randomly chosen person

who tests positive for drugs actually uses drugs?
b. What is the probability that a randomly chosen person

who tests negative for drugs does not use drugs?

14. Two different factories both produce a certain automobile
part. The probability that a component from the first fac-
tory is defective is 2%, and the probability that a component
from the second factory is defective is 5%. In a supply of
180 of the parts, 100 were obtained from the first factory
and 80 from the second factory.
a. What is the probability that a part chosen at random from

the 180 is from the first factory?
b. What is the probability that a part chosen at random from

the 180 is from the second factory?
c. What is the probability that a part chosen at random from

the 180 is defective?
d. If the chosen part is defective, what is the probability that

it came from the first factory?

H 15. Three different suppliers-X, Y, and Z-provide produce
for a grocery store. Twelve percent of produce from X is
superior grade, 8% of produce from Y is superior grade and
15% of produce from Z is superior grade. The store obtains
20% of its produce from X, 45% from Y, and 35% from Z.
a. If a piece of produce is purchased, what is the probability

that it is superior grade?
b. If a piece of produce in the store is superior grade, what

is the probability that it is from X?

16- Prove that if A and B are events in a sample space S with
the property that P(A I B) = P(A) and P(A) 0 0. then
P(B I A) = P(B).

17. Prove that if P(A n B) = P(A). P(B), P(A) # 0, and
P(B) # 0, then P(A I B) = P(A) and P(B I A) = P(B).
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18. A pair of fair dice, one blue and the other gray, are rolled.
Let A be the event that the number face up on the blue die
is 2, and let B be the event that the number face up on
the gray die is 4 or 5. Show that P(A I B) = P(A) and
P(B I A) = P(B).

19. Suppose a fair coin is tossed three times. Let A be the
event that a head appears on the first toss, and let B be the
event that an even number of heads is obtained. Show that
P(A I B) = P(A) and P(B I A) = P(B).

20. If A and B are events in a sample space S and both
A n B = 0, what must be true in order for A and B to be
independent? Explain.

21. Prove that if A and B are independent events in a sample
space S, then A' and B are also independent.

22. Prove that if A and B are independent events in a sample
space S, then A' and B' are also independent.

23. A student taking a multiple-choice exam does not know the
answers to two questions. All have five choices for the an-
swer. For one of the two questions, the student can eliminate
two answer choices as incorrect but has no idea about the
other answer choices. For the other question, the student
has no clue about the correct answer at all. Assume that
whether the student chooses the correct answer on one of
the questions does not affect whether the student chooses
the correct answer on the other question.
a. What is the probability that the student will answer both

questions correctly?
b. What is the probability that the student will answer ex-

actly one of the questions correctly?
c. What is the probability that the student will answer nei-

ther question correctly?

24. A company uses two proofreaders X and Y to check a cer-
tain manuscript. X misses 12% of typographical errors and
Y misses 15%. Assume that the proofreaders work indepen-
dently.
a. What is the probability that a randomly chosen typo-

graphical error will be missed by both proofreaders?
b. If the manuscript contains 1,000 typographical errors,

what number can be expected to be missed?

25. A coin is loaded so that the probability of heads is 0.7 and
the probability of tails is 0.3. Suppose that the coin is tossed
twice and that the results of the tosses are independent.
a. What is the probability of obtaining exactly two heads?
b. What is the probability of obtaining exactly one head?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?

*26. Describe a sample space and events A, B, and C, where
P(A n B n C) = P(A) P(B) P(C) but A. B, and C are
not pairwise independent.

H 27. The example used to introduce conditional probability de-
scribed a family with two children each of whom was equally
likely to be a boy or a girl. The example showed that if it
is known that one child is a boy, the probability that the

other child is a boy is 1/3. Now imagine the same kind of
family-two children each of whom is equally likely to be a
boy or a girl. Suppose you meet one of the children and see
that it is a boy. What is the probability that the other child is
a boy? Explain. (Be careful. The answer may surprise you.)

28. A coin is loaded so that the probability of heads is 0.7 and
the probability of tails is 0.3. Suppose that the coin is tossed
ten times and that the results of the tosses are mutually in-
dependent.
a. What is the probability of obtaining exactly seven heads?
b. What is the probability of obtaining exactly ten heads?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?

29. Suppose that ten items are chosen at random from a large
batch delivered to a company. The manufacturer claims that
just 3% of the items in the batch are defective. Assume that
the batch is large enough so that even though the selection
is made without replacement, the number 0.03 can be used
to approximate the probability that any one of the ten items
is defective. In addition, assume that because the items are
chosen at random, the outcomes of the choices are mutually
independent. Finally, assume that the manufacturer's claim
is correct.
a. What is the probability that none of the ten is defective?
b. What is the probability that at least one of the ten is de-

fective?
c. What is the probability that exactly four of the ten are

defective?
d. What is the probability that at most two of the ten are

defective?

30. Suppose the probability of a false positive result on a mam-
mogram is 4%, and suppose that the radiologists' interpre-
tations of mammograms are mutually independent in the
sense that whether or not a radiologist finds a positive re-
sult on one mammogram does not influence whether or not
the radiologist finds a positive result on another mammo-
gram. Assume that a woman without breast cancer has a
mammogram every year for ten years.
a. What is the probability that she will have no false positive

results during that time?
b. What is the probability that she will have at least one

false positive result during that time?
c. What is the probability that she will have exactly two

false positive results during that time?
d. Suppose that the probability of a false negative result on

a mammogram is 2%.
(i) If a woman has a positive test result one year, what

is the probability that she actually has breast cancer?
(ii) If a woman has a negative test result one year, what

is the probability that she actually has breast cancer?

3 1. Empirical data indicate that approximately 103 out of every
200 children born are male. Hence the probability of a new-
born being male is about 51.5%. Suppose that a family has
six children, and suppose that the genders of all the children
are mutually independent.
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H a. What is the probability that none of the children is male?
b. What is the probability that at least one of the children is

male?
c. What is the probability that exactly five of the children

are male?

32. A person takes a multiple-choice exam in which each ques-
tion has four possible answers. Suppose that the person
has no idea about the answers to three of the questions and
simply chooses randomly for each one.
a. What is the probability that the person will answer all

three questions correctly?

b. What is the probability that the person will answer ex-
actly two questions correctly?

c. What is the probability that the person will answer ex-
actly one question correctly?

d. What is the probability that the person will answer no
questions correctly?

e. Suppose that the person gets one point of credit for each
correct answer and that 1/3 point is deducted for each
incorrect answer. What is the expected value of the per-
son's score for the three questions?



CHAPTER 7

FUNCTIONS

Functions are ubiquitous in mathematics and computer science. That means you can
hardly take two steps in these subjects without running into one. In this book we have
already referred to truth tables and input/output tables (which are really Boolean functions),
sequences (which are really functions defined on sets of integers), mod and div (which are
really functions defined on Cartesian products of integers), and floor and ceiling (which
are really functions from R to Z).

In this chapter we consider a wide variety of functions, focusing on those defined
on discrete sets (such as finite sets or sets of integers). We then look at properties of
functions such as one-to-one and onto, existence of inverse functions, and the interaction
of composition of functions and the properties of one-to-one and onto. We end the chapter
with a discussion of sizes of infinite sets and an application to computability.

7.1 Functions Defined on General Sets
The theory that has had the greatest development in recent times is without any doubt
the theory offunctions. -Vito Volterra, 1888

As used in ordinary language, the word function indicates dependence of one varying
quantity on another. If your teacher tells you that your grade in a course will be a function
of your performance on the exams, you interpret this to mean that the teacher has some
rule for translating exam scores into grades. To each collection of exam scores there
corresponds a certain grade.

More generally, suppose two sets of objects are given-a first set and a second set-
and suppose that with each element of the first set is associated a particular element of
the second set. The relationship between the elements of the sets is called a function.
Functions are generally denoted by single letters such as f, g, h, F, G, and so forth,
although special functions are denoted by strings of letters or other symbols such as log,
exp, and mod.

389
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A function f from a set X to a set Y is a relation* between elements of X, called
inputs, and elements of Y, called outputs, with the property that each input is related
to one and only one output. The notation f: X -* Y means that f is a function from
X to Y. X is called the domain of f, and Y is called the co-domain of f.

Given an input element x in X, there is a unique output element y in Y that is
frelated to x by f. We say that "f sends x to y" and write xB-y or f: x -- y. The

unique element y to which f sends x is denoted

f (x) and is called f of x, or
the output of f for the input x, or
the value of f at x, or
the image of x under f.

The set of all values of f taken together is called the range of f or the image of
X under f. Symbolically,

range of f = image of X under f = [y E Y I y = f (x), for some x in X}.

Given an element y in Y, there may exist elements in X with y as their image. If
f (x) = y, then x is called a preimage of y or an inverse image of y. The set of all
inverse images of y is called the inverse image of y. Symbolically,

inverse image of y = {x E X I f(x) = y}.

The concept of function was developed over a period of centuries. The definition given
above was first formulated for sets of numbers by the German mathematician Lejeune
Dirichlet (DEER-ish-lay) in 1837.

Arrow Diagrams
If X and Y are finite sets, you can define a function f from X to Y by making a list of
elements in X and a list of elements in Y and drawing an arrow from each element in
X to the corresponding element in Y. Such a drawing is called an arrow diagram. An
example of an arrow diagram is shown in Figure 7.1. 1.

x f Y

Johann Peter Gustav
Lejeune Dirichlet
(1805-1859)

Figure 7.1.1

The definition of function implies that the arrow diagram for a function f has the
following two properties:

1. Every element of X has an arrow coming out of it.

2. No element of X has two arrows coming out of it that point to two different elements
of Y.

*In Chapter 1O we give a precise definition of the term relation.

a

I I



7.1 Functions Defined on General Sets 391

Property I holds because the definition of function says that each element of X is sent
to a unique element of Y. Property 2 holds because the definition of function says that
each element of X is sent to a unique element of Y.

The range of f consists of all points in Y that have arrows pointing to them. The
inverse image of an element y consists of all points in X that have arrows pointing from
them to y.

Note that once X and Y have been given, the arrow diagram can also be specified
by writing the set of all ordered pairs (x, y) for which there is an arrow from x to
y. For instance, instead of drawing the arrows in Figure 7.1 .1, we could write the set
{(Xl, y3), (X2, yO), (X3 , yA), (X4 , y4)). In Chapter 10 we will discuss the formal definition
of function, which specifies that a function from a set X to a set Y is a subset of X x Y
satisfying certain properties.

Example 7.1.1 A Function Defined by an Arrow Diagram

Let X = {a, b, c} and Y = {1, 2, 3, 4}. Define a function f from X to Y by the arrow
diagram in Figure 7.1.2.

Figure 7.1.2

a. Write the domain and co-domain of f.

b. Find f (a), f (b), and f (c).

c. What is the range of f ?

d. Is c an inverse image of 2? Is b an inverse image of 3?

e. Find the inverse images of 2, 4, and 1.

f. Represent f as a set of ordered pairs.

Solution

a. domain of f = {a, b, c}, co-domain of f = {1, 2, 3, 4)

b. f (a) = 2, f (b) = 4, f (c) = 2

c. range of f = {2, 4}

d. Yes, No

e. inverse image of 2 = {a, c)
inverse image of 4 = {b)
inverse image of I = 0 (since no arrows point to 1)

f. {(a, 2), (b, 4), (c, 2)} U

In Example 7.1.1 there are no arrows pointing to the I or the 3. This illustrates the
fact that although each element of the domain of a function must have an arrow pointing
out from it, there can be elements of the co-domain to which no arrows point. Note also
that there are two arrows pointing to the 2-one coming from a and the other from c.
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This illustrates the fact that although no two arrows can start from the same element of the
domain, there can be two or more arrows pointing to the same element of the co-domain.

Example 7.1.2 Functions and Nonfunctions

Which of the arrow diagrams in Figure 7.1.3 define functions from X = (a, b, c} to Y =
{1, 2, 3, 41?

(a) (b) (c)

Figure 7.1.3

Solution Only (c) defines a function. In (a) there is an element of X, namely b, that is not
sent to any element of Y; that is, there is no arrow coming out of b. And in (b) the element
c is not sent to a unique element of Y; that is, there are two arrows coming out of c, one
pointing to 2 and the other to 3.

Function Machines
Another useful way to think of a function is as a machine. Suppose f is a function from
X to Y and an input x of X is given. Imagine f to be a machine that processes x in a
certain way to produce the output f (x). This is illustrated in Figure 7.1.4.

x
Input

J(x) Output

Figure 7.1.4

Example 7.1.3 Functions Defined by Formulas

The squaring function f: R -÷ R is defined by the formula f (x) = x2 for all real
numbers x. This means that no matter what real number input is substituted for x, the
output of f will be the square of that number. This idea can be represented by writing
f(D) = E2 . In other words, f sends each real number x to X 2, or, symbolically, f: x -*

x2. Note that the variable x is a dummy variable; any other symbol could replace it, as
long as the replacement is made everywhere the x appears.

The successor function g: Z -- Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(CI) = O + 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n - n + 1.

An example of a constant function is the function h: Q Z defined by the for-
mula h(r) = 2 for all rational numbers r. This function sends each rational number r
to 2. In other words, no matter what the input, the output is always 2: h(D) = 2 or
h: r -* 2.

----
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The functions f, g, and h are represented by the function machines in Figure 7.1.5.

x

f(X)=X
2

(a)

n

successor 0 a
function

g(n) = n + I

(b)

Figure 7.1.5

r

h(r) = 2

(c)

.

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, or log.

I!.i I

Suppose f and g are functions from X to Y. Then f equals g, written f = g, if,
and only if,

f(x) = g(x) forallX E X.

Note that if functions are defined formally as in Chapter 10, the definition given above
is an immediate consequence of the function definition.

Example 7.1.4 Equality of Functions

a. Define f: R -# R and g: R -+ R by the following formulas:

f(x) = Ix for all x E R,
g(x) = v forallX E R.

Does f = g?

b. Let F: R -* R and G: R -+ R be functions. Define new functions F + G: R R
and G + F: R -* R as follows:

(F + G)(x) = F(x) + G(x) for all x E R,

(G + F)(x) = G(x) + F(x) for all x E R.

Does F + G = G + F?

Caution! In some mathematical contexts, the notation f (x) is used to refer
both to the value of f at x and to the function f itself. Because using the
notation this way can lead to confusion, we avoid it whenever possible. In this
book, unless explicitly stated otherwise, the symbol f (x) always refers to the
value of the function f at x and not to the function f itself.

AI
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Solution

a. Yes. Because the absolute value of a number equals the square root of its square,
xI = x2 forallx e R.

Hence f = g.

b. Again the answer is yes. For all real numbers x,

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by the commutative law for addition of real numbers

= (G + F) (x) by definition of G + F

Hence F + G = G + F. R

Examples of Functions
The following examples illustrate some of the wide variety of different types of functions.

Example 7.1.5 The Identity Function on a Set

Given a set X, define a function ix from X to X by

ix(x)=x forallxinX.

The function ix is called the identity function on X because it sends each element of X to
the element that is identical to it. Thus the identity function can be pictured as a machine
that sends each piece of input directly to the output chute without changing it in any way.

Let X be any set and suppose that akj and O(z) are elements of X. Find ix(ak) and
ix((Z))

Solution Whatever is input to the identity function comes out unchanged, so ix (alj) = adj
and ix (O(z)) =0(z).

Example 7.1.6 Sequences

The formal definition of sequence specifies that a sequence is a function defined on the set
of integers that are greater than or equal to a particular integer. For example, the sequence
denoted

1 1 1 1 ()n

2' 3 4 5 n + 1

can be thought of as the function f from the nonnegative integers to the real numbers
that associates O 1, lI- 2' , 3 + -, 4 5, and, in general, n- s- In2 3-. 4~. 4.5 n n+I*
other words, f: Znonneg R is the function defined as follows:

Send each integer n > O to f (n) = .

In fact, there are many functions that can be used to define a given sequence. For
instance, express the sequence above as a function from the set of positive integers to the
set of real numbers.

Solution Define g: Z+ -- R by g(n) = n for each n E Z+. Then g(l) = 1, g( 2 ) =n

-2 g(3) = 4, and in general

+1=( ) l= )=
g(n±+1)= - = f(n).U

n +l n +l

R
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Example 7.1.7 A Function Defined on a Power Set

Recall from Section 5.3 that 9(A) denotes the set of all subsets of the set A. Define a
function F: -({a, b, c}) -* Znonneg as follows: For each X E Y({a, b, c}),

F(X) = the number of elements in X.

Draw an arrow diagram for F.

Solution

.

Example 7.1.8 Function Defined on a Set of Strings

In automata theory, the fundamental objects are sets of strings. Let S be the set of all
strings of a's and b's, and let E represent the null string (the "string" with no characters).
Define a function g: S -* Z as follows: For each string s E S,

g(s) = the number of a's in s.

Find the following.

a. g(c) b. g(bb) c. g(ababb) d. g(bbbaa)

Solution

a. 0 b. 0 c. 2 d. 2 D

Example 7.1.9 The Logarithmic Function

Let b be a positive real number. For each positive real number x, the logarithm with base
b of x, written logb x, is the exponent to which b must be raised to obtain x.* Symbolically,

logbx=y X by=x.

The logarithmic function with base b is the function from R+ to R that takes each
positive real number x to logb x. Find the following:

a. log3 9 b. 10g 2 (l) c. loglo(l) d. 1og 2(2m )

Solution

a. 1og 3 9 = 2 because 3 2 = 9. a.~b logg3) 9bcue =- ease3b. 1g2(O ) =-I because 2-' =

c. log1 0 (l) = 0 because 100 = 1.

d. 1og 2 (2m) = m because the exponent to which 2 must be raised to obtain 2m is m. X

*It is not obvious, but it is true, that for any positive real number x there is a unique real number y
such that by = x. Most calculus books contain a discussion of this result.



396 Chapter 7 Functions

Example 7.1.10 Encoding and Decoding Functions

Digital messages consist of finite sequences of O's and l's. When they are communicated
across a transmission channel, they are frequently coded in special ways to reduce the
possibility that they will be garbled by interfering noise in the transmission lines. For
example, suppose a message consists of a sequence of O's and I's. A simple way to
encode the message is to write each bit three times. Thus the message

00101111

would be encoded as

000000111000111111111111.

The receiver of the message decodes it by replacing each section of three identical bits by
the one bit to which all three are equal.

Let A be the set of all strings of O's and I's, and let T be the set of all strings of O's and I's
that consist of consecutive triples of identical bits. The encoding and decoding processes
described above are actually functions from A to T and from T to A. The encoding
function E is the function from A to T defined as follows: For each string s E A,

E(s) = the string obtained from s by replacing each
bit of s by the same bit written three times.

The decoding function D is defined as follows: For each string t e T,

D(t) = the string obtained from t by replacing each consecutive
triple of three identical bits of t by a single copy of that bit.

The advantage of this particular coding scheme is that it makes it possible to do a
certain amount of error correction when interference in the transmission channels has
introduced errors into the stream of bits. If the receiver of the coded message observes
that one of the sections of three consecutive bits that should be identical does not consist
of identical bits, then one bit differs from the other two. In this case, if errors are rare, it
is likely that the single bit that is different is the one in error, and this bit is changed to
agree with the other two before decoding. U

Example 7.1.11 The Hamming Distance Function

The Hamming distance function, named after the computer scientist Richard W. Hamming,
is very important in coding theory. It gives a measure of the "difference" between two
strings of O's and I's that have the same length. Let S, be the set of all strings of O's and I's
of length n. Define a function H: Sn x S, -* znonneg as follows: For each pair of strings
(s, t) G Sn X Sn

H(s, t) = the number of positions in which s and t have different values.

Thus, letting n = 5,

H(11111, 00000) -5

because 11111 and 00000 differ in all five positions, whereas

H (I11000, 00000) = 2

Richard
(1915-1

Hamming because 11000 and 00000 differ only in the first two positions.
998)

a. Find H(00101,01110). b. Find H(10001,01111).

Solution

a. 3 b. 4 .
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Boolean Functions
In Section 1.4 we showed how to find input/output tables for certain digital logic cir-
cuits. Any such input/output table defines a function in the following way: The elements
in the input column can be regarded as ordered tuples of O's and 1's; the set of all such
ordered tuples is the domain of the function. The elements in the output column are all
either 0 or 1; thus (0, I I is taken to be the co-domain of the function. The relationship
is that which sends each input element to the output element in the same row. Thus, for
instance, the input/output table of Figure 7.1.6(a) defines the function with the arrow
diagram shown in Figure 7.1.6(b).

More generally, the input/output table corresponding to a circuit with n input wires
has n input columns. Such a table defines a function from the set of all n-tuples of O's and
I's to the set (0, I ).

(a) (b)
Figure 7.1.6 Two Representations of a Boolean Function

An (-place) Boolean function f is a function whose domain is the set of all ordered
n-tuples of O's and l's and whose co-domain is the set {0, 1}. More formally, the
domain of a Boolean function can be described as the Cartesian product of n copies
of the set {0, 1}, which is denoted {0, l). Thus f: {{0, If -(0 1} .

It is customary to omit one set of parentheses when referring to functions defined on
Cartesian products. For example, we write f (l, 0, 1) rather than f ((l, 0, 1)).

Example 7.1.12 A Boolean Function

Consider the three-place Boolean function defined from the set of all 3-tuples of O's and
l's to {0, 1) as follows: For each triple (xI, X2, X3) of O's and l's,

f(xl, x2 , X3) = (xI + x2 + X3) mod 2.

Describe f using an input/output table.

Solution f(l, 1, 1) = (1 + I + 1) mod2 = 3mod2 = I

f (, 1, 0) = (I + 1 + 0) mod 2 = 2 mod 2 = 0

Input Output

P Q R S

I I 1 1

1 1 0 1

1 0 1 0

1 0 0 1

o I 1 0

o I O 1

o 0 1 0

o O 0 0
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The rest of the values of f can be calculated similarly to obtain the following table.

Input Output

XI X2  X3  (XI + X2 + X3) mod 2

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

o 1 0 1
o 0 1 1
o o 0 0

Checking Whether a Function Is Well Defined
It can sometimes happen that what appears to be a function defined by a rule is not really
a function at all. To give an example, suppose we wrote, "Define a function f: R -* R
by the formula

f (x) = x2  for all real numbers x."

This definition is contradictory: On the one hand, f is supposed to be a function from
the real numbers to the real numbers, but on the other hand, /-x 2 is a real number only
when x = 0. In a situation like this we say that f is not well defined because the formula
does not define a function.

Example 7.1.13 A Function That Is Not Well Defined

Recall that Q represents the set of all rational numbers. Suppose you read that a function
f: Q -* Z is to be defined by the formula

f rn) = m for all integers m and n with n 0 O.

That is, the integer associated by f to the number m is m. Is f well defined? Why?n

Solution The function f is not well defined. The reason is that fractions have more than one
representation as quotients of integers. For instance, 2 = 6. Now if f were a function,

2 3

then the definition of a function would imply that f ( 2) = f ( 6) since 2 3 But applying
the formula for f, you find that

f (2) = land f ( 3

and so

f (2 A7 f (3).

This contradiction shows that f is not well defined and is, therefore, not a function. U

Note that the phrase well-definedfunction is actually redundant; for a function to be
well defined really means that it is worthy of being called a function.

'I
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Exercise Set 7.1 *
1. Let X = {1, 3, 51 and Y = {s, t, u, v). Define f: X -- Y

by the following arrow diagram.

X f

X y

y

d.

Write the domain of f and the co-domain of f.
Find f (), f (3), and f (s).
What is the range of f ?
Is 3 an inverse image of s? Is I an inverse image of u?
What is the inverse image of s? of u? of v?
Represent f as a set of ordered pairs.

X Y

e. X Y

2. Let X = (1, 3, 51 and Y = la, b, c, d). Define g: X -+ Y
by the following arrow diagram.

X y

a. Write the domain of g and the co-domain of g.
b. Find g(l), g(3), and g(5).
c. What is the range of g?
d. Is 3 an inverse image of a? Is 1 an inverse image of b?
e. What is the inverse image of b? of c?
f. Represent g as a set of ordered pairs.

3. Let X = (2, 4, 5) and Y = (1, 2, 4, 6). Which of the fol-
lowing arrow diagrams determine functions from X to Y?
a. X Y

b. X Y

4. Indicate whether the statements in parts (a)-(d) are true or
false. Justify your answers.
a. If two elements in the domain of a function are equal,

then their images in the co-domain are equal.
b. If two elements in the co-domain of a function are equal,

then their preimages in the domain are also equal.
c. A function can have the same output for more than one

input.
d. A function can have the same input for more than one

output.

5. a. Find all functions from X = la, b} to Y = {u, v).
b. Find all functions from X = {a, b, c) to Y = {u}.
c. Find all functions from X = {a, b, c) to Y = {u, v).

6. a. How many functions are there from a set with three ele-
ments to a set with four elements?

b. How many functions are there from a set with five ele-
ments to a set with two elements?

c. How many functions are there from a set with m elements
to a set with n elements, where m and n are positive in-
tegers?

7. Define functions f and g from R to R by the following for-
mulas:

For all x E R,

2x3 + 2x
f(x) = 2x and g(x) = x2 + I

Show that f = g.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.

a.
b.
C.

d.
e.
f.



400 Chapter 7 Functions

8. Define functions H and K from R to R by the following
formulas:

For all x E R,

H(x) = Lxj + I and K(x) = Fx].

Does H = K? Explain.

9. Let F and G be functions from the set of all real numbers
to itself. Define the product functions F . G: R -* R and
G F: R -* R as follows:

(F. G)(x) = F(x) G(x) for allx E R,

(G- F)(x) = G(x) F(x) for allX E R.

Does F . G = G . F? Explain.

10. Let F and G be functions from the set of all real num-
bers to itself. Define new functions F -G: R -* R and
G -F: R R as follows:

(F -G)(x) = F(x)- G(x) for allX E R,

(G -F)(x) = G(x)-F(x) forallx R.

Does F - G = G - F? Explain.

11. Let iz be the identity function defined on the set of all in-
tegers, and suppose that e, b/k, K(t), and Ukj all represent
integers. Find
a. iz(e) b. iz(b0k) c. iz(K(t)) d. iz(Ukj)

12. Find functions defined on the set of nonnegative integers
that define the sequences whose first six terms are given
below.

a. 1, 5,79 b. 0,-2,4, -6, 8, -10

13. Let A = { 1, 2, 3, 4, 5} and define a function F: .1/(A) -* Z
as follows: For all sets X in 94(A),

0 if X has an even
number of elements

(X) I if X has an odd

number of elements

Find the following:
a. F({l, 3, 4))
c. F({2, 3})

b. F(0)
d. F({2,3,4,51)

14. Let S be the set of all strings of a's and b's.
a. Define f: S -* Z as follows: For each string s in

the number of b's to the left
f(s) = of the left-most a in s

0 if s contains no a's

Find f (aba), f (bbab), and f (b). What is the range
of f?

b. Define g: S S as follows: For each string s in 5,

g(s) = the string obtained by writing the
characters of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the range of g?

15. Use the definition of logarithm to fill in the blanks below.
a. log2 8 = 3 because
b. log 5 ( 25 -2 because -.
c. log 4 4 = 1 because
d. log3(3Y) = n because
e. log4 1 = 0 because

16. Find exact values for each of the following quantities. Do
not use a calculator.
a. log 3 81 b. log2 1024 c. 1og 3( 21)
d. log2 1 e. log, 0(10) f. log, 3
g. log2(2k)

17. Use the definition of logarithm to prove that for any positive
real number b with b A 1 lg9b b = 1.

18. Use the definition of logarithm to prove that for any positive
real number b with b # 1 , logb I = 0.

19. If b is any positive real number and x is any real number, b-x

is defined as follows: b-A - - Use this definition and the

definition of logarithm to prove that log, ( - ) =-log, (u)

for all positive real numbers u and b.

H 20. Use the unique factorization theorem (Section 3.3) and the
definition of logarithm to prove that log3 (7) is irrational.

21. If b and y are positive real numbers such that logb Y = 3,
what is log, b(y)? Why?

22. If b and y are positive real numbers such that log, y = 2,
what is logb2 (y)? Why?

23. Let A = {2, 3, 51 and B = {x, y}. Let p, and P2 be the
projections of A x B onto the first and second coordi-
nates. That is, for each pair (a, b) e A x B, p, (a, b) = a
and p 2 (a, b) = b.
a. Find p, (2, y) and p, (5, x). What is the range of pI ?
b. Find p2(2, y) and P2 (5, x). What is the range of p 2?

24. Observe that mod and div can be defined as functions from
Zno... x Z+ to Z. For each ordered pair (n, d) consisting
of a nonnegative integer n and a positive integer d, let

mod(n, d) = n mod d (the nonnegative remainder
obtained when n is divided by d).

div(n, d) = n div d (the integer quotient
obtained when n is divided by d).

Find each of the following:
a. mod (67, 10) and div (67, 10)
b. mod (59, 8) and div (59, 8)
c. mod (30, 5) and div (30, 5)

25. Consider the coding and decoding functions E and D de-
fined in Example 7.1.10.
a. Find E(0110) and D(111111000111).
b. Find E(I010) and D(000000IIIIIl).

26. Consider the Hamming distance function defined in Exam-
ple 7.1.11.
a. Find H(10101,0001).
b. Find H(00110, 10111).
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27. A permutation on a set can be regarded as a function from
the set to itself. For instance, one permutation of { 1, 2, 3, 4}
is 2341. It can be identified with the function that sends
each position number to the number occupying that posi-
tion. Since position I is occupied by 2, 1 is sent to 2 or
I 2; since position 2 is occupied by 3, 2 is sent to 3 or
2 3; and so forth. The entire permutation can be written
using arrows as follows:

1 2 3 4

2 3 4 1

a. Use arrows to write each of the six permutations of
11, 2, 3}.

b. Use arrows to write each of the permutations of
{ I, 2, 3, 41 that keep 2 and 4 fixed.

c. Which permutations of { 1, 2, 31 keep no elements fixed?
d. Use arrows to write all permutations of (1, 2, 3, 41 that

keep no elements fixed.

28. Draw arrow diagrams for the Boolean functions defined by
the following input/output tables.
a.

Input Output

P Q R

1 1 0

1 0 1

0 1 0

0 0

b.

29. Fill in the following table to show the values of all possible
two-place Boolean functions.

Input fif2jf3|f 4 fjf6 f 7 f8 f 9 fioff 12f1 3fi 4fisfi 6

1 0

0 1

0 0

30. Consider the three-place Boolean function f defined by the
following rule: For each triple (xl, x2, X3) of 0's and l's,

f (xI, x 2 , X3) = (4x, + 3x2 + 2x 3 ) mod 2.

a. Find f(1, 1, 1) and f(0, 0, 1).
b. Describe f using an input/output table.

31. Student A tries to define a function g: Q -- Z by the rule

g(-) = m -n, for all integers m and n with n A 0.

Student B claims that g is not well defined. Justify student
B's claim.

32. Student C tries to define a function h: Q Q by the rule

h (m) -,for all integers m and n with n # 0.
n n

Student D claims that h is not well defined. Justify student
D's claim.

33. On certain computers the integer data type goes from
-2,147,483,648 through 2,147,483,647. Let S be the set of
all integers from -2,147,483,648 through 2,147,483,647.
Try to define a function f: S -S by the rule f (n) = n2 for
each n in S. Is f well defined? Why?

34. Given a set S and a subset A, the characteristic function
of A, denoted XA, is the function defined from S to Z with
the property that for all u e S,

[I if u e AXA(U){IO if¢

Show that each of the following holds for all subsets A and
BofSandallu E S.
a. XACB(U) = XA(U) .XB

b. XAUB(U) = XA(U) + XB(u) - XA(U) - XB(U)

Each of exercises 35-39 refers to the Euler phi function, denoted
X, which is defined as follows: For each integer n > 1, P (n) is
the number of positive integers less than or equal to n that have
no common factors with n except ± 1. For example, 0 (10) = 4
because there are four positive integers less than or equal to 10
that have no common factors with 10 except +1; namely, 1, 3,
7, and 9.

35. Find each of the following:
a. 0(15) b. 0 (2)
d. 0(12) e. 0(11)

c. (5)
f. 04l)

* 36. Prove that if p is a prime number and n is an integer with
n > 1, then />(p') = pn - pn-1.

H 37. Prove that there are infinitely many integers n for which
q> (n) is a perfect square.

H 38. Use the inclusion/exclusion principle to prove the follow-
ing: If n = pq, where p and q are distinct prime numbers,
then ¢ (n) = (p -I)(q -1).

Input Output

P Q R S

I I I I
1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

o 0 1 0
o o 0 1
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39. Usetheinclusion/exclusionprincipletoprovethefollowing: 40. For all subsets A and B of X, if A C B, then f (A) C f (B).
If n = pqr, where p, q, and r are distinct prime numbers, 41. For all subsets A and B of X, f (A U B) = f (A) U f (B).
then,(n) = (p- )(q- l)(r- 1).

Exercises 40-47 refer to the following definition: 42. For all subsets A and B of X, f (A n B) = f (A) n f (B).

Aq Far-o11 c,,1,etc A -nd R of Y f (A - Pl - f {AA- f-PR

44. For all subsets C and D of Y, if C C D, then

f -'(C) C f l'(D).

H 45. For all subsets C and D of Y,

f -' (C U D) = f -'(C) U f -l(D).

46. For all subsets C and D of Y,

f -(C n D) = f -(C) n f '(D).

47. For all subsets C and D of Y,
Determine which of the properties in 40-47 are true for all func -I D - -I C - lD

tions f from a set X to a set Y and which are false for some f ( )-f (C) f (D)
function f. Justify your answers.

7.2 One-to-One and Onto, Inverse Functions
Don 't accept a statement just because it is printed. -Anna Pell Wheeler, 1883-1966

In this section we discuss two important properties that functions may satisfy: the property
of being one-to-one and the property of being onto. Functions that satisfy both properties
are called one-to-one correspondences or one-to-one onto functions. When a function is a
one-to-one correspondence, the elements of its domain and co-domain match up perfectly,
and we can define an inverse function from the co-domain to the domain that "undoes"
the action of the function.

One-to-One Functions
In Section 7.1 we noted that a function may send several elements of its domain to the
same element of its co-domain. In terms of arrow diagrams, this means that two or more
arrows that start in the domain can point to the same element in the co-domain. On the
other hand, a function may associate a different element of its co-domain to each element
of its domain, which would mean that no two arrows that start in the domain would point
to the same element of its co-domain. A function with this property is called one-to-one
or invective. For a one-to-one function, each element of the range is the image of at most
one element of the domain.

I. ,

Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and
only if, for all elements xi and x2 in X,

if F(xl) = F(x2 ), then xl = x2.

Or, equivalently,

if x1 A x2 , then F(x1 ) 0 F(X2)-

Symbolically,

F: X -* Y is one-to-one 4 VX1 , X2 E X, if F(x1 ) = F(x 2 ) then xl = x2.

Definition: iff: X -* YisafunctionandA C XandC C Y,
then

f(A) = {y E YIy = f(x)forsomexinAl

and

f- (C)-{xeXIf(x)eC1.

f(A) is called the image of A, and f - 1(C) is called the
inverse image of C.
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To obtain a precise statement of what it means for a function not to be one-to-one, take
the negation of one of the equivalent versions of the definition above. Thus:

A function F: X -* Y is not one-to-one X~ 3 elements xl and x2 in X with
F(xl) = F(x2 ) andx1 0 x2 .|

That is, if elements x] and x2 can be found that have the same function value but are not
equal, then F is not one-to-one.

In terms of arrow diagrams, a one-to-one function can be thought of as a function that
separates points. That is, it takes distinct points of the domain to distinct points of the
co-domain. A function that is not one-to-one fails to separate points. That is, at least two
points of the domain are taken to the same point of the co-domain. This is illustrated in
Figure 7.2.1.

X = domain of F F Y = co-domain of F

Any two distinct elements
of X are sent to two
distinct elements of Y.

Figure 7.2.1(a) A One-to-One Function Separates Points

X = domain of F F Y= co-domain of F

Two distinct elements
of X are sent to
the same element of Y.

Figure 7.2.1(b) A Function That Is Not One-to-One Collapses Points Together

Example 7.2.1 Identifying One-to-One Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

Domain of F Co-domain of F Domain of G Co-domain of G

X Y X Y

Figure 7.2.2

b. Let X = {1, 2, 3} and Y = la, b, c, d}. Define H: X -* Y as follows: H(1) = c,
H(2) = a, and H(3) = d. Define K: X -- Y as follows: K(l) = d, K(2) = b, and
K(3) = d. Is either H or K one-to-one?

Solution

a. F is one-to-one but G is not. F is one-to-one because no two different elements of X
are sent by F to the same element of Y. G is not one-to-one because the elements a
and c are both sent by G to the same element of Y: G(a) = G(c) = w but a :A c.
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b. H is one-to-one but K is not. H is one-to-one because each of the three elements of
the domain of H is sent by H to a different element of the co-domain: H (I) 0 H (2),
H(l) A H(3), and H(2) 0 H(3). K, however, is not one-to-one because K(l) =
K(3) = d but I 3.

Consider the problem of writing a computer algorithm to check whether a function
F is one-to-one. If F is defined on a finite set and there is an independent algorithm to
compute values of F, then an algorithm to check whether F is one-to-one can be written as
follows: Represent the domain of F as a one-dimensional array a[l ], a[2j, ... , a[n] and
use a nested loop to examine all possible pairs (a[i], a[j]), where i < j. If there is a pair
(a[i], a[j]) for which F(a[i]) = F(a[j]) and a[i] :A a[j], then F is not one-to-one. If,
however, all pairs have been examined without finding such a pair, then F is one-to-one.
You are asked to write such an algorithm in exercise 53 at the end of this section.

One-to-One Functions on Infinite Sets
Now suppose f is a function defined on an infinite set X. By definition, f is one-to-one
if, and only if, the following universal statement is true:

Vx 1 , x 2 E X, if f(x) = f(X 2 ) then xl = X2.

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose xi and x2 are elements of X such that f (x) = f(x 2 )

and

show that xI = x2.

To show that f is not one-to-one, you will ordinarily

find elements xl and x2 in X so that f (xl) = f(X 2 ) but xi A x2.

Example 7.2.2 Proving or Disproving That Functions Are One-to-One

Define f: R -i R and g: Z -* Z by the rules

f (x) = 4x-1 for all x E R

and

g(n) = n2  for all n c Z.

a. Is f one-to-one? Prove or give a counterexample.

b. Is g one-to-one? Prove or give a counterexample.

Solution It is usually best to start by taking a positive approach to answering questions
like these. Try to prove the given functions are one-to-one and see whether you run into
difficulty. If you finish without running into any problems, then you have a proof. If
you do encounter a problem, then analyzing the problem may lead you to discover a
counterexample.

a. The function f: R R is defined by the rule

f (x) = 4x - 1 for all real numbers x.
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To prove that f is one-to-one, it is necessary to prove that

V real numbers xl and X2, if f (xl ) = f (x2 ) then xl = x2.

Substituting the definition of f into the outline of a direct proof, you

suppose xi and x2 are any real numbers such that 4x -I = 4x 2 - 1,

and

show that xl = X2 .

Can you reach what is to be shown from the supposition? Of course. Just add 1 to
both sides of the equation in the supposition and then divide both sides by 4.

This discussion is summarized in the following formal answer.

b. The function g: Z -* Z is defined by the rule

g(n) = n2 for all integers n.

As above, you start as though you were going to prove that g is one-to-one. Substituting
the definition of g into the outline of a direct proof, you

22suppose n X and n2 are integers such that n I = n2-

and

try to show that nI = n2.

Can you reach what is to be shown from the supposition? No! It is quite possible for
two numbers to have the same squares and yet be different. For example, 22 = (-2)2
but 2 A -2.

Thus, in trying to prove that g is one-to-one, you run into difficulty. But analyzing
this difficulty leads to the discovery of a counterexample, which shows that g is not
one-to-one.

Answer to (a):

If the function f: R -* R is defined by th rule f (x) 4x - 1, for all real num-
bers x, then f is one-to-one.

Proof:

Suppose xI and x2 are real numbers such that f(x 1 ) = f(x 2 ). [We must show that

xI = x2 .] By definition of f,

4x1 - I = 4x2 - 1.

Adding I to both sides gives

4x, = 4x2,

and dividing both sides by 4 gives

xi =X2,

which is what was to be shown.
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This discussion is summarized as follows:

Answer to (b):

If the function g: Z -* Z is defined by the rule g(n) = n2 , for all n E Z, then g is
not one-to-one.

Counterexample:

Let n1 = 2 and n2 = -2. Then by definition of g,

g(n1 ) = g(2) = 22 = 4 and also

g(n2) = g(-2) = (-2)2 = 4.

Hence

g(ni) = g(n2) but ni A n2,

and so g is not one-to-one.

.

Application: Hash Functions
Imagine a set of student records, each of which includes the student's social security
number, and suppose the records are to be stored in a table in which a record can be
located if the social security number is known. One way to do this would be to place the
record with social security number n into position n of the table. However, since social
security numbers have nine digits, this method would require a table with 999,999,999
positions. The problem is that creating such a table for a small set of records would be
very wasteful of computer memory space. Hash functions are functions defined from
larger to smaller sets of integers, frequently using the mod function, which provide part
of the solution to this problem. We illustrate how to define and use a hash function with
a very simple example.

Example 7.2.3 A Hash Function

Suppose there are no more than seven student records. Define a function h from the set
of all social security numbers (ignoring hyphens) to the set {0, 1, 2, 3, 4, 5, 6} as follows:

h(n) = n mod 7 for all social security numbers n.

To use your calculator to find n mod 7, use the formula n mod 7 = n -7 (n div 7). (See

Table 7.2.1 Section 3.4.) In other words, divide n by 7, multiply the integer part of the result by 7,
and subtract that number from n. For instance, since 328343419/7 = 46906202.71 ..

356-63-3102

513-40-8716

223-79-9061

328-34-3419

h(328-34-3419) = 328343419 - (7 * 46906202) = 5.

As a first approximation to solving the problem of storing the records, try to place the
record with social security number n in position h (n). For instance, if the social security
numbers are 328-34-3419, 356-63-3102, 223-79-9061, and 513-40-8716, the positions of
the records are as shown in Table 7.2.1.

The problem with this approach is that h may not be one-to one; h might assign
the same position in the table to records with different social security numbers. Such
an assignment is called a collision. When collisions occur. various collision resolution

0

1

2

3

4

5

6
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methods are used. One of the simplest is the following: If, when the record with social
security number n is to be placed, position h (n) is already occupied, start from that position
and search downward to place the record in the first empty position that occurs, going
back up to the beginning of the table if necessary. To locate a record in the table from its
social security number, n, you compute h (n) and search downward from that position to
find the record with social security number n. If there are not too many collisions, this is
a very efficient way to store and locate records.

Suppose the social security number for another record to be stored is 908-37-1011.
Find the position in Table 7.2.1 into which this record would be placed.

Solution When you compute h you find that h(908-37-1011) = 2, which is already occu-
pied by the record with social security number 513-40-8716. Searching downward from
position 2, you find that position 3 is also occupied but position 4 is free.

908-37-1011 h 2 3 4
A t T

occupied occupied free

Therefore, you place the record with social security number n into position 4. U

Onto Functions
It was noted in Section 7.1 that there may be an element of the co-domain of a function
that is not the image of any element in the domain. On the other hand, a function may
have the property that every element of its co-domain is the image of some element of its
domain. Such a function is called onto or surjective. When a function is onto, its range is
equal to its co-domain.

ISI Aili I

Let F be a function from a set X to a set Y. F is onto (or subjective) if, and only if,
given any element y in Y, it is possible to find an element x in X with the property
that y = F(x).

Symbolically:

F: X -Y is onto X Vy E Y, 3x E X such that F(x) = y.

To obtain a precise statement of what it means for a function not to be onto, take the
negation of the definition of onto:

F: X-* Y is not onto X 3y in Y such that Vx E X, F(x) W Y.

That is, there is some element in Y that is not the image of any element in X.
In terms of arrow diagrams, a function is onto if each element of the condomain has

an arrow pointing to it from some element of the domain. A function is not onto if at least
one element in its co-domain does not have an arrow pointing to it. This is illustrated in
Figure 7.2.3.

l
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Each element y in
Y equals F(x) for
at least one x in X.

Figure 7.2.3(a) A Function That Is Onto

At least one element in Y
does not equal F(x)
for any x in X.

Figure 7.2.3(b) A Function That Is Not Onto

Example 7.2.4 Identifying Onto Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

Domain of F Co-domain of F

X Y

Domain of G Co-domain of G
X Y

Figure 7.2.4

b. Let X = {1, 2, 3, 4) and Y = {a, b, c}. Define H: X -* Y as follows: H(1) = c,
H(2) = a, H(3) = c, H(4) = b. Define K: X -*Y asfollows: K(1) = c, K(2) = b,
K(3) = b, and K(4) = c. Is either H or K onto?

Solution

a. F is not onto because b :A F(x) for any x in X. G is onto because each element of Y
equals G(x) for some x in X: a = G(3), b = G (1), c = G(2) = G(4), and d = G(5).

b. H is onto but K is not. H is onto because each of the three elements of the co-domain
of H is the image of some element of the domain of H: a = H(2), b = H(4), and
c = H(1) = H(3). K, however, is notontobecausea 7A K(x) foranyx in {1, 2, 3, 41.

.

It is possible to write a computer algorithm to check whether a function F is onto, pro-
vided F is defined from a finite set X to a finite set Y and there is an independent algorithm
to compute values of F. Represent X and Y as one-dimensional arrays a [ 1 ], a [2], . . , a [n]
and b[l], b[2], ... , b[m], respectively, and use a nested loop to pick each element y of Y
in turn and search through the elements of X to find an x such that y is the image of x. If
any search is unsuccessful, then F is not onto. If each such search is successful, then F
is onto. You are asked to write such an algorithm in exercise 54 at the end of this section.
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Onto Functions on Infinite Sets
Now suppose F is a function from a set X to a set Y, and suppose Y is infinite. By
definition, F is onto if, and only if, the following universal statement is true:

Vy E Y, 3x E X such that F(x) = y.

Thus to prove F is onto, you will ordinarily use the method of generalizing from the
generic particular:

suppose that y is any element of Y

and

show that there is an element of X with F(x) = y.

To prove F is not onto, you will usually

find an element y of Y such that y y F(x) for any x in X.

Example 7.2.5 Proving or Disproving That Functions Are Onto

Define f: R R and h: Z -* Z by the rules

f(x)=4x-1 foralixER

and

h(n) = 4n-I for all n E Z.

a. Is f onto? Prove or give a counterexample.

b. Is h onto? Prove or give a counterexample.

Solution

a. The best approach is to start trying to prove that f is onto and be alert for difficulties
that might indicate that it is not. Now f: R -* R is the function defined by the rule

f (x) = 4x - I for all real numbers x.

To prove that f is onto, you must prove

Vy E Y, 3x E X such that f(x) =y.

Substituting the definition of f into the outline of a proof by the method of generalizing
from the generic particular, you

suppose y is a real number

and

show that there exists a real number x such that y = 4x - 1.

Scratch Work: If such a real number x exists, then

4x - 1 = y

4x = y + 1 by adding 1 to both sides

x by dividing both sides by 4.
4
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Thus if such a number x exists, it must equal (y + 1)/4. Does such a number exist?
Yes. To show this, let x = (y + 1)/4, and then check that (1) x is a real number and (2)
the steps above are valid, if followed in reverse order, to conclude y = 4x - 1. The
following formal answer summarizes this process.

b. The function h: Z --. Z is defined by the rule

Ih(n) = 4n - I for all integers n.

To prove that h is onto, it would be necessary to prove that

V integers m, 3 an integer n such that h (n) = m.

Substituting the definition of h into the outline of a proof by the method of generalizing
from the generic particular, you

suppose m is any integer

and

try to show that there is an integer n with 4n - I = m.

Can you reach what is to be shown from the supposition? No! If 4n - = m, then

m+ 1
n = by adding I and dividing by 4.

4

But n must be an integer. And when, for example, m = 0, then

0+1 1

4 4

which is not an integer.
Thus, in trying to prove that h is onto, you run into difficulty, and this difficulty

reveals a counterexample that shows h is not onto.

Answer to (a):

If f: R -> R is the function defined by the rule f (x) = 4x - 1 for all real numbers
x, then f is onto.

Proof:

Let y e R. (We must show that 3x in R such that f (x) = y.] Let x = (y + 1)/4.
Then x is a real number since sums and quotients (other than by 0) of real numbers
are real numbers. It follows that

f (x) = f ( 4 ) by substitution

= 4 ( ) )-I by definition off

= (y + t) 1 - y by basic algebra.

This is what was to be shown.
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This discussion is summarized in the following formal answer.

.

The Exponential and Logarithmic Functions
The exponential function with base b, denoted expb, is the function from R to R+ defined
as follows: For all real numbers x,

expb(x) = bX

where bo = 1 and b-x = l/bx.*
When working with the exponential function, it is useful to recall the laws of exponents

from elementary algebra.

The logarithmic function with base b was defined in Example 7.1.9 to be the function
from R+ to R with the property that for each positive real number x,

logb (x) = the exponent to which b must be raised to obtain x.

*That the quantity bx is a real number for any real number x follows from the least-upper-bound
property of the real number system. (See Appendix A.)

Answer to (b):

If the function h: Z -* Z is defined by the rule h(n) = 4n - 1 for all integers n,
then h is not onto.

Counterexample:

The co-domain of h is Z and 0 E Z. But h(n) # 0 for any integer n. For if
h(n) = O then

4n -1 = 0 by definition of h

4n = I by adding I to both sides

1
n = - by dividing both sides by 4.

4

But 1/4 is not an integer. Hence there is no integer n for which f (n) = 0, and so
f is not onto.

Laws of Exponents

If b and c are any positive real numbers and u and v are any real numbers, the
following laws of exponents hold true:

bubv = bu+v 7.2.1

(bu)v = buV 7.2.2

by -- = bu-v 7.2.3
by

(bc)u = bucu 7.2.4
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Or, equivalently, for each positive real number x and real number y,

logbx=y As bW=x.

It can be shown using calculus that both the exponential and logarithmic functions are
one-to-one and onto. Therefore, by definition of one-to-one, the following properties hold
true:

These properties are used to derive many additional facts about exponents and logarithms.
One example is given below.

Example 7.2.6 Using the One-to-Oneness of the Exponential Function

Use the definition of logarithm, the laws of exponents, and the one-to-oneness of the
exponential function (property 7.2.5) to show that for any positive real numbers b, c, and
x, with c :A 1,

loIg, x= - .I& 7.2.7|
logb C

Solution Suppose positive real numbers b, c, and x are given. Let

(1) u = logb c (2) v= log, x (3) w = logb x.

Then, by definition of logarithm,

(1') c = bu (2') x = c (3') x = b.

Substituting (1') into (2') gives

X = CV = (b
1

)" = buv by 7.2.2

But by (3), x = bV also. Hence

buv = Ve,

and so by the one-to-oneness of the exponential function (property 7.2.5),

uV = w.

Substituting from (1), (2), and (3) gives that

(logh c)(logc X) = log6 X.

And dividing both sides by logh c (which is nonzero because c :A 1) results in

log = c

For any positive real number b,

if b' = bV then u = v for all numbers u and v, 7.2.5

and

if logb u = logb v then u = v for all positive real numbers u and v. 7.2.6
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Example 7.2.7 Computing Logarithms with Base 2 on a Calculator

In computer science it is often necessary to compute logarithms with base 2. Most calcu-
lators do not have keys to compute logarithms with base 2 but do have keys to compute
logarithms with base 10 (called common logarithms and often denoted simply log) and
logarithms with base e (called natural logarithms and usually denoted In). Suppose your
calculator shows that In 5 - 1.609437912 and In 2 - 0.6931471806. Use formula (7.2.7)
from Example 7.2.6 to find an approximate value for log2 5.

Solution By formula (7.2.7),

In5 1.609437912
10g 2 5= - -'2.321928095.

In 2 0.6931471806

One-to-One Correspondences
Consider a function F: X --. Y that is both one-to-one and onto. Given any element x in
X, there is a unique corresponding element y = F(x) in Y (since F is a function). Also
given any element y in Y, there is an element x in X such that F(x) = y (since F is onto)
and there is only one such x (since F is one-to-one). Thus, a function that is one-to-one
and onto sets up a pairing between the elements of X and the elements of Y that matches
each element of X with exactly one element of Y and each element of Y with exactly one
element of X. Such a pairing is called a one-to-one correspondence or bijection and is
illustrated by the arrow diagram in Figure 7.2.5. In Chapter 6 we frequently used one-
to-one correspondences to count the number of elements in a set. The pairing of Figure
7.2.5, for example, shows that there are five elements in the set X.

Figure 7.2.5 An Arrow Diagram for a One-to-One Correspondence

A one-to-one correspondence (or bijection) from a set X to a set Y is a function
: X - Y that is both one-to-one and onto.

Example 7.2.8 A Function from a Power Set to a Set of Strings

Let £Y'({a, b}) be the set of all subsets of {a, b} and let S be the set of all strings of length 2
made up of 0's and I's. Then Y({a, b}) = {0, {a}, {b), (a, bl} and S = {00, 01, 10, 11}.
Define a function h from .Y({a, bl) to S as follows: Given any subset A of {a, bh, a is
either in A or not in A, and b is either in A or not in A. If a is in A, write a I in the first
position of the string h(A). If a is not in A, write a 0 in the first position of the string
h (A). Similarly, if b is in A, write a I in the second position of the string h (A). If b is not
in A, write a 0 in the second position of the string h(A). This definition is summarized in
the following table.
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h

Is h a one-to-one correspondence?

Solution The arrow diagram shown in Figure 7.2.6 shows clearly that h is a one-to-one
correspondence. It is onto because each element of S has an arrow pointing to it. It is
one-to-one because each element of S has no more than one arrow pointing to it.

9(1a, bl) h S

lb). .01

{a~b)e .11

Figure 7.2.6

Example 7.2.9 A String-Reversing Function

Let T be the set of all finite strings of x's and y's. Define g: T --* T by the rule

For all strings s E T,

g(s) = the string obtained by writing the
characters of s in reverse order.

Is g a one-to-one correspondence from T to itself?

Solution The answer is yes. To show that g is a one-to-one correspondence, it is necessary
to show that g is one-to-one and onto.

To see that g is one-to-one, suppose that for some strings s, and S2 in T, g(sl) = g(s2).
[We must show that s, = s2.] Now to say that g(si) = g(s2) is the same as saying that the
string obtained by writing the characters of s, in reverse order equals the string obtained
by writing the characters of s2 in reverse order. But if s1 and S2 are equal when written in
reverse order, then they must be equal to start with. In other words, sI = S2 [as was to be
shown].

To show that g is onto, suppose t is a string in T. [We must find a string s in T such
that g(s) = t. Let s = g(t). By definition of g, s = g(t) is the string in T obtained by
writing the characters of t in reverse order. But when the order of the characters of a string
is reversed once and then reversed again, the original string is recovered. Thus

g(s) = g(g(t)) = the string obtained by writing the characters
of t in reverse order and then writing those
characters in reverse order again

= t.

Subset of (a, b) Status of a Status of b String in S

0 not in not in 00
la) in not in 10
[b) notin in 01
{a, b I in in 11

This is what was to be shown. .
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Inverse Functions
If F is a one-to-one correspondence from a set X to a set Y, then there is a function from Y
to X that "undoes" the action of F; that is, it sends each element of Y back to the element
of X that it came from. This function is called the inverse function for F.

The proof of Theorem 7.2.1 follows immediately from the definition of one-to-one
and onto. Given an element y in Y, there is an element x in X with F(x) = y because F
is onto; x is unique because F is one-to-one.

I. . I

The function F-` of Theorem 7.2.1 is called the inverse function for F.

Note that according to this definition, the logarithmic function with base b > 0 is the
inverse of the exponential function with base b.

The diagram that follows illustrates the fact that an inverse function sends each element
back to where it came from.

X = domain of F Y = co-domain of F

Example 7.2.10 Finding an Inverse Function for a Function Given by an Arrow Diagram

Define the inverse function for the one-to-one correspondence h given in Example 7.2.8.

Solution The arrow diagram for h-1 is obtained by tracing the h-arrows back from S to
60({a, b}) as shown below.

S

h-'(00)=0 h 1(10)=[a)

h-'(01)- =(b h-/(11) = {a, b}

.

Theorem 7.2.1

Suppose F: X -+ Y is a one-to-one correspondence; that is, suppose F is one-to-one
and onto. Then there is a function F-1: Y -- X that is defined as follows:

Given any element y in Y,

F-' (y) that unique element x in X such that F(x) equals y.

In other words,

F- (y) = x X y = F(x).
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Example 7.2.11 Finding an Inverse Function for a Function Given in Words

Define the inverse function for the one-to-one correspondence g given in Example 7.2.9.

Solution The function g: T -* T is defined by the rule

For all strings t in T,

g(t) = the string obtained by writing the
characters of t in reverse order.

Now if the characters of t are written in reverse order and then written in reverse order
again, the original string is recovered. Thus given any string t in T,

g- (t) = the unique string that, when written
in reverse order, equals t

= the string obtained by writing the
characters of t in reverse order

= g(t).

Hence g-1: T -* T is the same as g, or, in other words, g-1 = g. U

Example 7.2.12 Finding an Inverse Function for a Function Given by a Formula

The function f: R -* R defined by the formula

f (x) = 4x -1 for all real numbers x

was shown to be one-to-one in Example 7.2.2 and onto in Example 7.2.5. Find its inverse
function.

Solution By definition of f

f -I(y) = that unique real number y such that f (x) = y.

But

f (x) = y

X 4x-1 = y by definition of f

x = by adding I and dividing both sides by 4.
4

Hence f (y) = U
4

The following theorem follows easily from the definitions.

Proof:

F-1 is one-to-one: Suppose Yi and Y2 are elements of Y such that F- 1 (yi) =

F-1 (Y2)* [We must show that yl = Y2.] Let x = F-1 (y1) = F-1 (Y2). Then x C X,

and by definition of F-1,

F(x) = yl since x = F- (yi)
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and

F(x)=Y2  sincex=F 1(Y2).

Consequently, yi = Y2 since each is equal to F(x). This is what was to be shown.

F-1 is onto: Suppose x e X. [We must show that there exists an element y in Y such
that F-' (y) = x.] Let y = F(x). Then y e Y, and by definition of F-', F- (y) =
x. This is what was to be shown.

Exercise Set 7.2
1. The definition of one-to-one is stated in two ways:

Vx 1 , x2 C X, if F(xl) = F(x2) then xl = x2

and

Vx 1, x2 E X, if x] A x2 then F(xl) :A F(X2 ).

Why are these two statements logically equivalent?

2. Fill in each blank with the word most or least.
a. A function F is one-to-one if, and only if, each element

in the co-domain of F is the image of at - one
element in the domain of F.

b. A function F is onto if, and only if, each element in the
co-domain of F is the image of at - one element
in the domain of F.

3. When asked to state the definition of one-to-one, a student
replies, "A function f is one-to-one if, and only if, every el-
ement of X is sent by f to exactly one element of Y. Give a
counterexample to show that the student's reply is incorrect.

H 4. Let f: X -# Y be a function. True or false? A sufficient
condition for f to be one-to-one is that for all elements y in
Y, there is at most one x in X with f (x) = y.

H 5. All but two of the following statements are correct ways to
express the fact that a function f is onto. Find the two that
are incorrect.
a. f is onto X every element in its co-domain is the image

of some element in its domain.
b. f is onto * every element in its domain has a corre-

sponding image in its co-domain.
c. f is onto X Vy E Y, 3x E X such that f(x) = y.
d. f is onto • Vx E X, 3y E Y such that f(x) = y.
e. f is onto > the range of f is the same as the co-domain

off.

6. LetX = {l,5,9} andY = {3,4,7}.
a. Define f: X -* Y by specifying that

f(l)= 4, f(5)= 7, f(9)= 4.

Is f one-to-one? Is f onto? Explain your answers.
b. Define g: X -- Y by specifying that

g(l) = 7, g(5) = 3, g(9) = 4 .

Is g one-to-one? Is g onto? Explain your answers.

7. Let X = {a, b, c, d} and Y = {x, y, z}. Define functions F
and G by the arrow diagrams below.

Domain of F Co-domain of F
X F Y

Domain of G Co-domain of G

a. Is F one-to-one? Why or why not? Is it onto? Why or
why not?

b. Is G one-to-one? Why or why not? Is it onto? Why or
why not?

8. Let X = {a, b, c} and Y = {w, x, y, z}. Define functions H

and K by the arrow diagrams below.

Domain of H Co-domain of H
X L Y

i-I

Domain of K Co-domain of K

a. Is H one-to-one? Why or why not? Is it onto? Why or
why not?

b. Is K one-to-one? Why or why not? Is it onto? Why or
why not?
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9. LetX = {1,2,3},Y = {1,2,3,4},andZ = {1,2}.
a. Define a function f: X Y that is one-to-one but not

onto.
b. Define a function g: X Z that is onto but not one-to-

one.
c. Define a function h: X X that is neither one-to-one

nor onto.
d. Define a function k: X X that is one-to-one and onto

but is not the identity function on X.

10. a. How many one-to-one functions are there from a set with
three elements to a set with four elements?

b. How many one-to-one functions are there from a set with
three elements to a set with two elements?

c. How many one-to-one functions are there from a set with
three elements to a set with three elements?

d. How many one-to-one functions are there from a set with
three elements to a set with five elements?

H e. How many one-to-one functions are there from a set with
m elements to a set with n elements, where m < n?

11. a. How many onto functions are there from a set with three
elements to a set with two elements?

b. How many onto functions are there from a set with three
elements to a set with five elements?

H c. How many onto functions are there from a set with three
elements to a set with three elements?

d. How many onto functions are there from a set with four
elements to a set with two elements?

e. How many onto functions are there from a set with four
elements to a set with three elements?

H * f. Let cm,, be the number of onto functions from a set of m
elements to a set of n elements, where m > n > 1. Find
a formula relating cm,, to cm-," and cm-1,n-I.

12. a. Define f: Z -* Z by the rule f (n) = 2n, for all inte-
gers n.
(i) Is f one-to-one? Prove or give a counterexample.
(ii) Is f onto? Prove or give a counterexample.

b. Let 2Z denote the set of all even integers. That is, 2Z =
{n E Z I n = 2k, for some integer ki. Define h: Z -- 2Z
by the rule h (n) = 2n, for all integers n. Is h onto? Prove
or give a counterexample.

13. a. Define g: Z -- Z by the rule g(n) = 4n - 5, for all in-

tegers n.
(i) Is g one-to-one? Prove or give a counterexample.
(ii) Is g onto? Prove or give a counterexample.

b. Define G: R -R by the rule G (x) = 4x- 5for all real
numbers x. Is G onto? Prove or give a counterexample.

14. a. Define H: R -* R by the rule H(x) = x2
, for all real

numbers x.
(i) Is H one-to-one? Prove or give a counterexample.
(ii) Is H onto? Prove or give a counterexample.

b. Define K: R'...ng - R.no by the rule K(x) = x2 , for
all nonnegative real numbers x. Is K onto? Prove or
give a counterexample.

15. Explain the mistake in the following "proof."

Theorem: The function f: Z -* Z defined by the formula
f (n) = 4n + 3, for all integers n, is one-to-one.

"Proof: Suppose any integer n is given. Then by defini-
tion of f, there is only one possible value for f (n), namely,
4n + 3. Hence f is one-to-one."

In each of 16-19 a function f is defined on a set of real num-
bers. Determine whether or not f is one-to-one and justify your
answer.

x+
16. f (x) = ,for all real numbers x # 0

X
17. f (x) = 2 1, for all real numbers x

3x -1
18. f(x) = - forallrealnumbersx # 0

19. f (x) = -, for all real numbers x #z 1
x-

20. Referring to Example 7.2.3, assume that records with the
following social security numbers are to be placed in se-
quence into Table 7.2.1. Find the position into which each
record is placed.
a. 417-30-2072 b. 364-98-1703 c. 283-09-0787

21. Define Floor: R -÷ Z by the formula Floor(x) = Lxi, for
all real numbers x.
a. Is Floor one-to-one? Prove or give a counterexample.
b. Is Floor onto? Prove or give a counterexample.

22. Let S be the set of all strings of O's and l's, and define
1: S -* Z"....g by

l(s) = the length of s, for all strings s in S.

a. Is I one-to-one? Prove or give a counterexample.
b. Is 1 onto? Prove or give a counterexample.

23. Let S be the set of all strings of O's and l's, and define
D: S Z as follows: For all s E S,

D(s) - the number of l's in s minus the number of O's ins.

a. Is D one-to-one? Prove or give a counterexample.
b. Is D onto? Prove or give a counterexample.

24. Define F: 9({a, b, c}) -> Z as follows: For all A in

IJ({a, b, c}),

F(A) = the number of elements in A.

a. Is F one-to-one? Prove or give a counterexample.
b. Is F onto? Prove or give a counterexample.

25. Let S be the set of all strings of a's and b's, and define
N: S-- Z by

N(s) = the number of a's in s, for all s e S.

a. Is N one-to-one? Prove or give a counterexample.
b. Is N onto? Prove or give a counterexample.
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26. Let S be the set of all strings in a's and b's, and define
C: S -. S by

C(s) = as, for all s E S.

(C is called concatenation by a on the left.)
a. Is C one-to-one? Prove or give a counterexample.
b. Is C onto? Prove or give a counterexample.

*27. Define F: Z+ x Z+- Z+ and G: Z+ x Z+ -Z+ as fol-
lows: for all (n, m) E Z+ x Z+,

F(n,m)=3'5m  and G(n,m)=3%6'.

a. Is F one-to-one? Prove or give a counterexample.
b. Is G one-to-one? Prove or give a counterexample.

28. a. Is log8 27 = log2 3? Why or why not?
b. Is log1 6 9 = log4 3? Why or why not?

The properties of logarithms established in 29 and 30 are used
in Sections 9.4 and 9.5.

29. Prove that for all positive real numbers b, x, and y with
b # 1,

log, (-) =1og X logb Y

30. Prove that for all positive real numbers b, x, and y with
b # 1,

logb (xy) = logb X + lg 6 Y

31. Prove that for all real numbers a, b, and x with b and x
positive and b A 1,

logb (X) = a log, X.

Exercises 32 and 33 use the following definition: If f: R R
and g: R -* R are functions, then the function (f + g): R R
is defined by the formula (f + g)(x) = f (x) + g(x) for all real
numbers x.

32. If f: R -* R and g: R -+ R are both one-to-one, is f + g
also one-to-one? Justify your answer.

33. If f: R --* R and g: R -*R are both onto, is f + g also
onto? Justify your answer.

Exercises 34 and 35 use the following definition: If f: R -* R
is a function and c is a nonzero real number, the function
(c. f): R -* R is defined by the formula (c- f)(x) = c. f(x)
for all real numbers x.

34. Let f: R -* R be a function and c a nonzero real number.
If f is one-to-one, is c f also one-to-one? Justify your
answer.

35. Let f: R -+ R be a function and c a nonzero real number.
If f is onto, is c f also onto? Justify your answer.

LetX=fa,b,c,d,el andY=Is,t,u,v,w). Ineachof36
and 37 a one-to-one correspondence F: X -- Y is defined by an
arrow diagram. In each case draw an arrow diagram for F- .

36. V V

37.

In 38-51 indicate which of the functions in the referenced exer-
cise are one-to-one correspondences. For each function that is a
one-to-one correspondence, find the inverse function.

38. Exercise 12a

40. Exercise 13a

42. Exercise 14b

44. Exercise 22

46. Exercise 24

39. Exercise 12b

41. Exercise 13b

43. Exercise 21

45. Exercise 23

47. Exercise 25

48. Exercise 16 with the co-domain taken to be the set of all real
numbers not equal to 1.

H 49. Exercise 17 with the co-domain taken to be the set of all real
numbers.

50. Exercise 18 with the co-domain taken to be the set of all real
numbers not equal to 3.

51. Exercise 19 with the co-domain taken to be the set of all real
numbers not equal to 1.

52. In Example 7.2.8 a one-to-one correspondence was defined
from the power set of {a, b} to the set of all strings of O's
and l's that have length 2. Thus the elements of these two
sets can be matched up exactly, and so the two sets have the
same number of elements.
a. Let X = {xI, X2, . . ., x.j be a set with n elements. Use

Example 7.2.8 as a model to define a one-to-one corre-
spondence from Ja(X), the set of all subsets of X, to the
set of all strings of O's and l's that have length n.

b. Use the one-to-one correspondence of part (a) to deduce
that a set with n elements has 2' subsets. (This provides
an alternative proof of Theorem 5.3.5.)

H 53. Write a computer algorithm to check whether a function
from one finite set to another is one-to-one. Assume the
existence of an independent algorithm to compute values of
the function.

H 54. Write a computer algorithm to check whether a function
from one finite set to another is onto. Assume the exis-
tence of an independent algorithm to compute values of the
function.



420 Chapter 7 Functions

7.3 Application: The Pigeonhole Principle
The shrewd guess, the fertile hypothesis, the courageous leap to a tentative
conclusion-these are the most valuable coin of the thinker at work.

Jerome S. Bruner, 1960

The pigeonhole principle states that if n pigeons fly into m pigeonholes and n > m, then at
least one hole must contain two or more pigeons. This principle is illustrated in Figure 7.3.1
for n = 5 and m = 4. Illustration (a) shows the pigeons perched next to their holes, and
(b) shows the correspondence from pigeons to pigeonholes. The pigeonhole principle
is sometimes called the Dirichlet box principle because it was first stated formally by
J. P. G. L. Dirichlet (1805-1859).

Pigeons Pigeonholes

(a) (b)

Figure 7.3.1

Illustration (b) suggests the following mathematical way to phrase the principle.

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: There must
be a least two elements in the domain that have the same image in the co-domain.

Thus an arrow diagram for a function from a finite set to a smaller finite set must have
at least two arrows from the domain that point to the same element of the co-domain. In
Figure 7.3.1(b), arrows from pigeons 1 and 4 both point to pigeonhole 3.

Since the truth of the pigeonhole principle is easy to accept on an intuitive basis,
we move immediately to applications, leaving a formal proof to the end of the section.
Applications of the pigeonhole principle range from the totally obvious to the extremely
subtle. A representative sample is given in the examples and exercises that follow.

Example 7.3.1 Applying the Pigeonhole Principle

a. In a group of six people, must there be at least two who were born in the same month?
In a group of thirteen people, must there be at least two who were born in the same
month? Why?

b. Among the residents of New York City, must there be at least two people with the same
number of hairs on their heads? Why?

VU

I1011' -,
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Solution

a. A group of six people need not contain two who were born in the same month. For
instance, the six people could have birthdays in each of the six months January through
June.

A group of thirteen people, however, must contain at least two who were born in
the same month, for there are only twelve months in a year and 13 > 12. To get at the
essence of this reasoning, think of the thirteen people as the pigeons and the twelve
months of the year as the pigeonholes. Denote the thirteen people by the symbols
Xi, X2, . . ., X13 and define a function B from the set of people to the set of twelve
months as shown in the following arrow diagram.

13 people (pigeons)

B

B(xi) = birth month of xi

1 months (pigeonholes)

* Feb

Xe

The pigeonhole principle says that no matter what the particular assignment of months
to people, there must be at least two arrows pointing to the same month. Thus at least
two people must have been born in the same month.

b. The answer is yes. In this example the pigeons are the people of New York City and
the pigeonholes are all possible numbers of hairs on any individual's head. Call the
population of New York City P. It is known that P is at least 5,000,000. Also the
maximum number of hairs on any person's head is known to be no more than 300,000.
Define a function H from the set of people in New York City {Xt, x2, .... , xp) to the
set 10, 1, 2, 3, ... , 300 0001, as shown below.

People in New York City
(pigeons)

Possible number of hairs on
a person's head (pigeonholes)

H

H(x,) = the number of
hairs on xi's head

Since the number of people in New York City is larger than the number of possible
hairs on their heads, the function H is not one-to-one; at least two arrows point to the
same number. But that means that at least two people have the same number of hairs
on their heads. U
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Example 7.3.2 Finding the Number to Pick to Ensure a Result

A drawer contains ten black and ten white socks. You reach in and pull some out without
looking at them. What is the least number of socks you must pull out to be sure to get a
matched pair? Explain how the answer follows from the pigeonhole principle.

Solution If you pick just two socks, they may have different colors. But when you pick a
third sock, it must be the same color as one of the socks already chosen. Hence the answer
is three.

This answer could be phrased more formally as follows: Let the socks pulled out be
denoted si, S2, S3 . s, and consider the function C that sends each sock to its color, as
shown below.

Socks pulled out (pigeons) Colors (pigeonholes)

C

C(si) = color of Si w

* black

If n = 2, C could be a one-to-one correspondence (if the two socks pulled out were of
different colors). But if n > 2, then the number of elements in the domain of C is larger
than the number of elements in the co-domain of C. Thus by the pigeonhole principle, C
is not one-to-one: C(si) = C(sj) for some se : sj. This means that if at least three socks
are pulled out, then at least two of them have the same color. U

Example 7.3.3 Selecting a Pair of Integers with a Certain Sum

Let A = {1, 2,3,4,5,6,7, 8}.

a. If five integers are selected from A, must at least one pair of the integers have a sum
of 9?

b. If four integers are selected from A, must at least one pair of the integers have a sum
of 9?

Solution

a. Yes. Partition the set A into the following four disjoint subsets:

{1, 8}, {2, 7}, {3, 61, and {4, 5}

Observe that each of the integers in A occurs in exactly one of the four subsets and that
the sum of the integers in each subset is 9. Thus if five integers from A are chosen,
then by the pigeonhole principle, two must be from the same subset. It follows that the
sum of these two integers is 9.

To see precisely how the pigeonhole principle applies, let the pigeons be the five
selected integers (call them al, a2, a3 , a4 , and a5) and let the pigeonholes be the subsets
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of the partition. The function P from pigeons to pigeonholes is defined by letting P (a,)
be the subset that contains ai.

The 5 selected integers The 4 subsets in the partition of A
(pigeons) (pigeonholes)

P-Al

P(ai) = the subset that
contains a, . 2,1

.{3,6)

X{,5

The function P is well defined because for each integer a, in the domain, a, belongs
to one of the subsets (since the union of the subsets is A) and as does not belong to
more than one subset (since the subsets are disjoint).

Because there are more pigeons than pigeonholes, at least two pigeons must go
to the same hole. Thus two distinct integers are sent to the same set. But that implies
that those two integers are the two distinct elements of the set, so their sum is 9. More
formally, by the pigeonhole principle, since P is not one-to-one, there are integers ai
and ai such that

P(ai) = P(aj) and ai : aj.

But then, by definition of P, ai and aj belong to the same subset. Since the elements
in each subset add up to 9, a, + aj = 9.

b. The answer is no. This is a case where the pigeonhole principle does not apply; the
number of pigeons is not larger than the number of pigeonholes. For instance, if you
select the numbers 1, 2, 3, and 4, then since the largest sum of any two of these numbers
is 7, no two of them add up to 9. I

Application to Decimal Expansions of Fractions
One important consequence of the piegonhole principle is the fact that

the decimal expansion of any rational number either terminates or repeats.

A terminating decimal is one like

3.625,

and a repeating decimal is one like

2.38246,

where the bar over the digits 246 means that these digits are repeated forever.*
Recall that a rational number is one that can be written as a ratio of integers-in other

words, as a fraction. Recall also that the decimal expansion of a fraction is obtained by

*Strictly speaking, a terminating decimal like 3.625 can be regarded as a repeating decimal by adding
trailing zeros: 3.625 = 3.6250. This can also be written as 3.6249.
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dividing its numerator by its denominator using long division. For example, the decimal
expansion of 4/33 is obtained as follows:

.1 2 1 2 1 2 1 2 ...

33 F@. 0000000000
33

7 0 These are the same number.
66

33
70
66

Because the number 4 reappears as a remainder in the long-division process, the sequence
of quotients and remainders that give the digits of the decimal expansion repeats forever;
hence the digits of the decimal expansion repeat forever.

In general, when one integer is divided by another, it is the pigeonhole principle
(together with the quotient-remainder theorem) that guarantees that such a repetition of
remainders and hence decimal digits must always occur. This is explained in the following
example. The analysis in the example uses an obvious generalization of the pigeonhole
principle, namely that a function from an infinite set to a finite set cannot be one-to-one.

Example 7.3.4 The Decimal Expansion of a Fraction

Consider a fraction a/b, where for simplicity a and b are both assumed to be positive.
The decimal expansion of a/b is obtained by dividing the a by the b as illustrated here
for a = 3 and b = 14.

.2142857142857 ...

14 1(0_000000000000000

2 8 -r 0 =3

(2) ° >ri = 2
1 4

(V> r2 = 6

56
> r3 = 4

28
(Do ) r4 = 12

1 12
(0 > r5 = 8

70

(j) -- r6 = 10

98
)° ) r7=2=rl

1 4
- * > r 8 =6=r 2

5 6

(-O ) rg = 4 = r3
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Let ro = a and let ri, r2 , r3 , . . . be the successive remainders obtained in the long division
of a by b. By the quotient-remainder theorem, each remainder must be between 0 and
b - 1. (In this example, a is 3 and b is 14, and so the remainders are from 0 to 13.) If
some remainder ri = 0, then the division terminates and a/b has a terminating decimal
expansion. If no ri = 0, then the division process and hence the sequence of remainders
continues forever. By the pigeonhole principle, since there are more remainders than
values that the remainders can take, some remainder value must repeat: rj = rk, for some
indices j and k with j < k. This is illustrated below for a = 3 and b = 14.

Sequence of remainders Values of remainders when b = 14

If follows that the decimal digits obtained from the divisions between rj and rk-1 repeat
forever. In the case of 3/14, the repetition begins with r 7 = 2 = rl and the decimal
expansion repeats the quotients obtained from the divisions from r1 through r6 forever:
3/14 = 0.2142857. M

Note that since the decimal expansion of any rational number either terminates or
repeats, if a number has a decimal expansion that neither terminates nor repeats, then
it cannot be rational. Thus, for example, the following number cannot be rational:
0.01011011101111011111 ... (where each string of l's is one longer than the previous
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly into m pigeonholes
and, for some positive integer k, n > km, then at least one pigeonhole contains k + 1
or more pigeons. This is illustrated in Figure 7.3.2 for m = 4, n = 9, and k = 2. Since
9 > 2 * 4, at least one pigeonhole contains three (2 + 1) or more pigeons. (In this example,
it is pigeonhole 3 that contains three pigeons.)

Pigeons Pigeonholes

(a) (b)

Figure 7.3.2
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Generalized Pigeonhole Principle

For any function f from a finite set X to a finite set Y and for any positive integer
k, if N(X) > k. N(Y), then there is some y E Y such that y is the image of at least
k + I distinct elements of X.

Example 7.3.5 Applying the Generalized Pigeonhole Principle

Show how the generalized pigeonhole principle implies that in a group of 85 people, at
least 4 must have the same last initial.

Solution In this example the pigeons are the 85 people and the pigeonholes are the 26
possible last initials of their names. Note that

85 > 3 - 26 = 78.

Consider the function I from people to initials defined by the following arrow diagram.

85 people (pigeons) 26 initials (pigeonholes)

A<
*B

I(xi) = the initial of
x,'s last name

Since 85 > 3 * 26, the generalized pigeonhole states that some initial must be the image
of at least four (3 + 1) people. Thus at least four people have the same last initial. U

Consider the following contrapositive form of the generalized pigeonhole principle.

You may find it natural to use the contrapositive form of the generalized pigeonhole
principle in certain situations. For instance, the result of Example 7.3.5 can be explained
as follows:

Suppose no 4 people out of the 85 had the same last initial. Then at most 3 would share
any particular one. By the generalized pigeonhole principle (contrapositive form), this
would imply that the total number of people is at most 3 . 26 = 78. But this contradicts
the fact that there are 85 people in all. Hence at least 4 people share a last initial.

Generalized Pigenohole Principle (Contrapositive Form)

For any function f from a finite set X to a finite set Y and for any positive integer
k, if for each y E Y, f -'(y) has at most k elements, then X has at most k * N(Y)
elements.
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Example 7.3.6 Using the Contrapositive Form of the Generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. Each students uses exactly 1
computer, and no computer is used by more than 6 students. Show that at least 5 computers
are used by 3 or more students.

Solution

a. Using an Argument by Contradiction: Suppose not. Suppose that 4 or fewer com-
puters are used by 3 or more students. [A contradiction will be derived.] Then 8 or
more computers are used by 2 or fewer students. Divide the set of computers into two
subsets: Cl and C2. Into Cl place 8 of the computers used by 2 or fewer students; into
C2 place the computers used by 3 or more students plus any remaining computers (to
make a total of 4 computers in C2 ). (See Figure 7.3.3.)

The Set of 12 Computers

Each of these computers
serves at most 2 students.
So the maximum number
served by these computers is
2 8 = 16.

EJ 0
Some or all of these computers serve|
3 or more students. Each computer
serves at most 6 students. So the
maximum number served by these
computers is 6 .4 = 24./

I 1
C, C2

Figure 7.3.3

Since at most 6 students are served by any one computer, by the contrapositive
form of the generalized pigeonhole principle, the computers in set C2 serve at most
6 - 4 = 24 students. Since at most 2 students are served by any one computer in C1,
by the generalized pigeonhole principle (contrapositive form), the computers in set C1
serve at most 2. 8 = 16 students. Hence the total number of students served by the
computers is 24 + 16 = 40. But this contradicts the fact that each of the 42 students
is served by a computer. Therefore, the supposition is false: At least 5 computers are
used by 3 or more students.

b. Using a Direct Argument: Let k be the number of computers used by 3 or more
students. [We must show that k > 5.] Because each computer is used by at most 6
students, these computers are used by at most 6k students (by the contrapositive form of
the generalized pigeonhole principle). Each of the remaining 12 - k computers is used
by at most 2 students. Hence, taken together, they are used by at most 2(12 -k) =

24 - 2k students (again, by the contrapositive form of the generalized pigeonhole
principle). Thus the maximum number of students served by the computers is 6k +
(24 -2k) = 4k + 24. Because 42 students are served by the computers, 4k + 24 > 42.
Solving for k gives that k > 4.5, and since k is an integer, this implies that k > 5 [as
was to be shown]. U
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Proof of the Pigeonhole Principle
The truth of the pigeonhole principle depends essentially on the sets involved being finite.
Formal definitions of finite and infinite can be stated as follows:

A set is called finite if, and only if, it is the empty set or there is a one-to-one
correspondence from 1(, 2, . . 4 , n} to it, where n is a positive integer. In the first case
the number of elements in the set is said to be 0, and in the second case it is said to
be n. A set that is not finite is called infinite.

Note that it follows immediately from the definition that for a set to be finite means
that it either is empty or can be written in the form {x,, x2X..,} where n is a positive
integer.

An important theorem that follows from the pigeonhole principle states that a function
from one finite set to another finite set of the same size is one-to-one if, and only if, it is
onto. We will show in Section 7.5 that this result does not hold for infinite sets.

Theorem 7.3.1 The Pigeonhole Principle

For any function f from a finite set X to a finite set Y, if N(X) > N(Y), then f is
not one-to-one.

Proof:

Suppose f is any function from a finite set X to a finite set Y, where N(X) > N(Y).
Let N(Y) = m, and denote the elements of Y by Yi, Y2, . m, Recall that for
each y, in Y, the inverse image set f -(yi) = {x c X I f(x) = yi. Now consider
the collection of all the inverse image sets for all the elements of Y:

f _(Yl)7 f _(Y2), * .. 1..V (Y.)
By definition of function, each element of X is sent by f to some element of Y.
Hence each element of X is in one of the inverse image sets, and so the union of all
these sets equals X. But also, by definition of function, no element of X is sent by f
to more than one element of Y. Thus each element of X is in only one of the inverse
image sets, and so the inverse image sets are mutually disjoint. By the addition rule,
therefore,

N(X) = N(f '(yI)) + N(f '(Y2)) + * + N(f '(y)) 7.3.1

Now suppose that f is one-to-one [which is the opposite of what we want to
prove]. Then each set f - l (yi) has at most one element, and so

N(f -'(yi)) + N(f -'(Y2)) + + N(f l (yn,)) <' I + I + + I = m 7.3.2
m terms

Putting equations (7.3.1) and (7.3.2) together gives that

N(X) < m = N(Y).

This contradicts the fact that N(X) > N(Y), and so the supposition that f is one-to-
one must be false. Hence f is not one-to-one [as was to be shown].
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Note that Theorem 7.3.2 applies in particular to the case X = Y. Thus a one-to-one
function from a finite set to itself is onto, and an onto function from a finite set to itself is
one-to-one. Such functions can be identified with permutations of the sets on which they
are defined. For instance, the function defined by the diagram below can be identified
with the permutation cdba obtained by listing the images of a, b, c, and d in order.

Theorem 7.3.2 One-to-One and Onto for Finite Sets

Let X and Y be finite sets with the same number of elements and suppose f is a
function from X to Y. Then f is one-to-one if, and only if, f is onto.

Proof:

Suppose f is a function from X to Y, where X and Y are finite sets each with m
elements. Let X = (XI, X2,..., Xml and Y = {y], Y2, .Y, m}

If f is one-to-one, then f isonto: Suppose f is one-to-one. Then f(x ), f(x 2),...,
f (Xm ) are all distinct. Consider the set S of all elements of Y that are not the image
of any element of X:

Then the sets

{f(x1)}, {f(x2)}, ... , {f (xm )} and S

are mutually disjoint. By the addition rule,

N(Y) = N({f(xi)}) + N(f(X2)1) + + N({f(xr,,)}) + N(S)

1 + I + + I + N(S) because each {f(xi))
is a singleton set

m terms

= m + N(S).

Thus

m = m + N(S) because N(Y) m,

X N(S) = 0 by subtracting in from both sides.

Hence S is empty, and so there is no element of Y that is not the image of some
element of X. Consequently, f is onto.

If f is onto, then f is one-to-one: Suppose f is onto. Then f (yi) # 0 and so
N(f t (yi)) > I for all i = 1, 2, . . , m. As in the proof of the pigeonhole principle
(Theorem 7.3.1), X is the union of the mutually disjoint sets f -] (Y), f ] (Y).
f '(y). By the addition principle,

N(X) N(f 1 (yi)) + N(f- '(Y2)) + + N(f t-(y)) > m. 7.3.3

m terms, each > I

Now if any one of the sets f -(yi) has more than one element, then the sum in equation
(7.3.3) is greater than m. But we know this is not the case because N (X) = m. Hence
each set f 1 (yi) has exactly one element, and thus f is one-to-one [as was to be
shown].
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Exercise Set 7.3
1. a. If 4 cards are selected from a standard 52-card deck, must

at least 2 be of the same suit? Why?
b. If 5 cards are selected from a standard 52-card deck, must

at least 2 be of the same suit? Why?

2. a. If 13 cards are selected from a standard 52-card deck,
must at least 2 be of the same denomination? Why?

b. If 20 cards are selected from a standard 52-card deck,
must at least 2 be of the same denomination? Why?

3. A small town has only 500 residents. Must there be 2 resi-
dents who have the same birthday? Why?

4. In a group of 700 people, must there be 2 who have the same
first and last initials? Why?

5. a. Given any set of four integers, must there be two that
have the same remainder when divided by 3? Why?

b. Given any set of three integers, must there be two that
have the same remainder when divided by 3? Why?

6. a. Given any set of seven integers, must there be two that
have the same remainder when divided by 6? Why?

b. Given any set of seven integers, must there be two that
have the same remainder when divided by 8? Why?

H 7. Let S = [3, 4, 5, 6, 7, 8,9, 10, 11, 12). Suppose six inte-
gers are chosen from S. Must there be two integers whose
sum is 15? Why?

8. Let T = {I, 2, 3, 4, 5, 6, 7, 8, 9). Suppose five integers are
chosen from T. Must there be two integers whose sum is
10? Why?

9. a. If seven integers are chosen from between I and 12 in-
clusive, must at least one of them be odd? Why?

b. If ten integers are chosen from between I and 20 inclu-
sive, must at least one of them be even? Why?

10. If n + I integers are chosen from the set

(I, 2, 3, .. ., 2n1,

where n is a positive integer, must at least one of them be
odd? Why?

11. If n + I integers are chosen from the set

(1,2,3, . .,2n),

where n is a positive integer, must at least one of them be
even? Why?

12. How many cards must you pick from a standard 52-card
deck to be sure of getting at least I red card? Why?

13. Suppose six pairs of similar-looking boots are thrown to-
gether in a pile. How many individual boots must you pick
to be sure of getting a matched pair? Why?

14. How many integers from 0 through 60 must you pick in or-
der to be sure of getting at least one that is odd? at least one
that is even?

15. If n is a positive integer, how many integers from 0 through
2n must you pick in order to be sure of getting at least one
that is odd? at least one that is even?

16. How many integers from I through 100 must you pick in
order to be sure of getting one that is divisible by 5?

17. How many integers must you pick in order to be sure that
at least two of them have the same remainder when divided
by 7?

18. How many integers must you pick in order to be sure that
at least two of them have the same remainder when divided
by 15?

19. How many integers from 100 through 999 must you pick
in order to be sure that at least two of them have a digit in
common? (For example, 256 and 530 have the common
digit 5.)

20. If repeated divisions by 20,483 are performed, how many
distinct remainders can be obtained?

21. When 5/20483 is written as a decimal, what is the maximum
length of the repeating section of the representation?

22. Is 0.10100l000I0000I0000001 ... (where each string of O's
is one longer than the previous one) rational or irrational?

23. Is 56.556655566655556666. . .(where the strings of 5's and
6's become longer in each repetition) rational or irrational?

24. Show that within any set of thirteen integers chosen from 2
through 40, there are at least two integers with a common
divisor greater than 1.

25. In a group of 30 people, must at least 3 have been born in
the same month? Why?

26. In a group of 30 people, must at least 4 have been born in
the same month? Why?

27. In a group of 2,000 people, must at least 5 have the same
birthday? Why?

28. Aprogrammer writes 500 lines of computer code in 17 days.
Must there have been at least I day when the programmer
wrote 30 or more lines of code? Why?

29. A certain college class has 40 students. All the students in
the class are known to be from 17 through 34 years of age.
You want to make a bet that the class contains at least x
students of the same age. How large can you make x and
yet be sure to win your bet?

30. A penny collection contains twelve 1967 pennies, seven
1968 pennies, and eleven 1971 pennies. If you are to pick
some pennies without looking at the dates, how many must
you pick to be sure of getting at least five pennies from the
same year?
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H 31. A group of 15 executives are to share 5 secretaries. Each
executive is assigned exactly 1 secretary, and no secretary
is assigned to more than 4 executives. Show that at least 3
secretaries are assigned to 3 or more executives.

H * 32. Let A be a set of six positive integers each of which is less
than 13. Show that there must be two distinct subsets of
A whose elements when added up give the same sum. (For
example, ifA = (5, 12, 10, 1,3,41, thentheelementsofthe
subsets SI = 11, 4, 10) and S2 = {5, 10} both add up to 15.)

33. Let S be a set of ten integers chosen from 1 through 50.
Show that the set contains at least two different (but not
necessarily disjoint) subsets of four integers that add up
to the same number. (For instance, if the ten numbers are
{3, 8, 9, 18, 24, 34, 35, 41, 44,50), the subsets can be taken
tobe{8, 24, 34, 351 and{9, 18, 24, 50. Thenumbersinboth
of these add up to 101.)

H * 34. Given a set of 52 distinct integers, show that there must be
2 whose sum or difference is divisible by 100.

H *35. Showthatif 101 integersarechosenfrom I to200inclusive,
there must be 2 with the property that one is divisible by the
other.

* 36. a. Suppose a,, a2 , . . ., a. is a sequence of n integers none
of which is divisible by n. Show that at least one of the
differences a,- aX (for i * j) must be divisible by n.

H b. Show that every finite sequence xI, x2,... I, X of n in-
tegers has a consecutive subsequence xi+], Xi+2, 2 . ., Xi

whose sum is divisible by n. (For instance, the sequence
3, 4, 17, 7, 16 has the consecutive subsequence 17, 7, 16
whose sum is divisible by 5.)*

H *37. Observe that the sequence 12, 15, 8, 13, 7, 18, 19, 11, 14,
10 has three increasing subsequences of length four: 12, 15,
18, 19; 12, 13, 18, 19; and 8, 13, 18, 19. It also has one de-
creasing subsequence of length four: 15, 13, 11, 10. Show
that in any sequence of n2 + I distinct real numbers, there
must be a sequence of length n + 1 that is either strictly
increasing or strictly decreasing.

* 38. What is the largest number of elements that a set of integers
from 1 through 100 can have so that no one element in the
set is divisible by another? (Hint: Imagine writing all the
numbers from I through 100 in the form 2 k . m, where k > 0
and m is odd.)

39. Suppose X and Y are finite sets, X has more elements than
Y, and F: X -* Y is a function. By the pigeonhole princi-
ple, there exist elements a and b in X such that a :A b and
F(a) = F(b). Write a computer algorithm to find such a
pair of elements a and b.

*James E. Schultz and William F. Burger, "An Approach
to Problem-Solving Using Equivalence Classes Modulo n,"
College Mathematics Journal (15), No. 5, 1984, 401-405.

7.4 Composition of Functions
It is no paradox to say that in our most theoretical moods we may be nearest to our most
practical applications. -Alfred North Whitehead

Consider two functions, the successor function and the squaring function, defined from Z
(the set of integers) to Z, and imagine that each is represented by a machine. If the two
machines are hooked up so that the output from the successor function is used as input to
the squaring function, then they work together to operate as one larger machine. In this
larger machine, an integer n is first increased by I to obtain n + 1; then the quantity n + 1
is squared to obtain (n + 1)2. This is illustrated in the following drawing.

n

successo functo squ~aring fnto

n1 (n+1)
2

Combining functions in this way is called composing them; the resulting function is
called the composition of the two functions. Note that the composition can be formed
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only if the output of the first function is acceptable input to the second function. That is,
the range of the first function must be contained in the domain of the second function.

Im a

Let f: X -* Y' and g: Y -- Z be functions with the property that the range of f is
a subset of the domain of g. Define a new function g o f: X -* Z as follows:

(gof)(x) =g(f(x)) forallXe X,

where g o f is read "g circle f" and g(f(x)) is read "g of f of x." The function
g o f is called the composition of f and g. (We put the f first when we say "the
composition of f and g" because an element x is acted upon first by f and then by g.)

This definition is shown schematically below.

x y 7

Example 7.4.1 Composition of Functions Defined by Formulas

Let f: Z -+ Z be the successor function and let g: Z -- Z be the squaring function. Then
f(n)=n+lforalln EZandg(n)=n 2 foralln EZ.

a. Find the compositions g o f and f o g.

b. Isgof = f og? Explain.

Solution

a. The functions g o f and f o g are defined as follows:

(g o f)(n) = g(f(n)) = g(n + l) (n + 1) 2 for all n E Z,

and

(f o g)(n) = f (g(n)) = f(n2 ) = n2 + I for all n E Z.

Thus

(g o f)(n) = (n + 1)
2  and (f o g)(n) = n2 + I for all n E Z.

b. Two functions from one set to another are equal if, and only if, they take the same
values. In this case,

(g o f)(I) = (1 + 1)2 = 4, whereas (f o g)(l) = 12 + I -2.

Thus the two functions g o f and f o g are not equal:

gof 7&fog. .

Example 7.4.1 illustrates the important fact that composition of functions is not a
commutative operation: For general functions F and G, F o G need not necessarily
equal G o F (although the two may be equal).
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Example 7.4.2 Composition of Functions Defined on Finite Sets

Let X = (1, 2, 3}, Y' = {a, b, c, d}, Y = {a, b, c, d, el, and Z = {x, y, z). Define func-
tions f: X -- Y' and g: Y -- Z by the arrow diagrams below.

y

That is, f(l) = c, f(2) = b, f(3) = a, and g(a) = y, g(b) = y, g(c) = z, g(d) = z,
and g(e) = z. Find the arrow diagram for g o f . What is the range of g o f ?

Solution To find the arrow diagram for g o f, just trace the arrows all the way across from
X to Z through Y. The result is shown below.

(g o f)(1) = g(f ()) = g(c) = z
(g o f)(2) = g(f(2)) = g(b) = y

(g o f)(3) = g(f(3)) = g(a) = y

The range of g o f is {y, z}. .

Recall that the identity function on a set X, ix, is the function from X to X defined by
the formula

ix(x)=x forallxEX.

That is, the identity function on X sends each element of X to itself. What happens when
an identity function is composed with another function?

Example 7.4.3 Composition with the Identity Function

Let X = {a, b, c, d} and Y = fu, v, w}, and suppose f: X -* Y is given by the arrow
diagram shown below.

Find f o ix and iy o f.

vv
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Solution The values of f o ix are obtained by tracing through the arrow diagram shown
below.

x x V

(f o ix)(a) = f(ix(a)) = f(a) = u

(f o ix)(b) = f(ix(b)) = f(b) = v

(f o ix)(c) = f(ix(c)) = f(c) = v

(f o ix)(d) = f(ix(d)) = f(d) = u

Note that for all elements x in X,

(f a ix)(x) = f(x).

By definition of equality of functions, this means that f o ix = f.
Similarly, the equality iy o f = f can be verified by tracing through the arrow diagram

below for each x in X and noting that in each case, (iy o f)(x) = f (x).

V V V

)

More generally, the composition of any function with an identity function equals the
function.

Thoe 74.1 Composition00000;::00 wit an IentiyFuctio

(Ian fox ;fon X, and iy(i ff

Proof:
Part (a): Suppose f is a function from a set X to a set Y and ix is the identity
function on X. Then, for all x in X,

(f O ix)(X) = f(ix(x)) = f(x).

Hence, by definition of equality of functions, f o ix = f, as was to be shown.

Part (b): This is exercise 13 at the end of this section.
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Now let f be a function from a set X to a set Y, and suppose f has an inverse function
f -. Recall that f -1 is the function from Y to X with the property that

f -(Y) = x X f(x) = y.

What happens when f is composed with f -I ? Or when f -1 is composed with f ?

Example 7.4.4 Composing a Function with Its Inverse

Let X = {a, b, c} and Y = {x, y, zi. Define f: X -- Y by the following arrow diagram.

Then f is one-to-one and onto. Thus f- 1 exists and is found by tracing the arrows
backwards, as shown below.

Now f - o f is found by following the arrows from X to Y by f and back to X by f
If you do this, you will see that

(f _' o f)(a) =f '(f(a)) =f -(z) a

(f o f)(b) =f '(f(b)) =f 1(x) b

and

(f 1 f)(c) f- (f(c)) - f- (y) =c.

Thus the composition of f and f - sends each element to itself. So by definition of the
identity function,

f of =ix.

In a similar way, you can see that

fof- =iy.

More generally, the composition of any function with its inverse (if it has one) is an
identity function. Intuitively, the function sends an element in its domain to an element
in its co-domain and the inverse function sends it back again, so the composition of the
two sends each element to itself. This reasoning is formalized in Theorem 7.4.2.

By v
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Composition of One-to-One Functions
The composition of functions interacts in interesting ways with the properties of being
one-to-one and onto. What happens, for instance, when two one-to-one functions are
composed? Must their composition be one-to-one? For example, let X - {a, b, c}, Y =
Iw, x, y, zi, and Z = {1, 2, 3, 4, 5}, and define one-to-one functions f: X Y and
g: Y -. Z as shown in the arrow diagrams of Figure 7.4.1.

x z

Figure 7.4.1

Theorem 7.4.2 Composition of a Function with Its Inverse

If f: X -* Y is a one-to-one and onto function with inverse function f I: Y -*X,

then

(a) f - 1 o f = ix and (b) f o f iy.

Proof:

Part (a): Suppose f: X Y is a one-to-one and onto function with inverse function
f 1: Y - X. [To show that f- o f = ix, we must show thatfor all x E X, (f o
f)(x) = x.] Let x be an element in X. Then

(f - o f)(x) = f -' (f (x))

by definition of composition of functions. Now the inverse function f satisfies the
condition

f 1(b) = a * f(a) = b for all a E X and b E Y. 7.4.1

Let

x' = f -I (f (x)). 7.4.2

Apply property (7.4.1) with x' playing the role of a and f(x) playing the role of b.
Then

f (x') = f (x).

But since f is one-to-one, this implies that x' = x. Substituting x for x' in equation
(7.4.2) gives

x = f -] (f (x)).

Then by definition of composition of functions,

(f ' o f)(x) = x,

as was to be shown.

Part (b): This is exercise 14 at the end of this section.
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Then g o f is the function with the arrow diagram shown in Figure 7.4.2.

x V f Z

Figure 7.4.2

From the diagram it is clear that for these particular functions, the composition is one-
to-one. This result is no accident. It turns out that the compositions of two one-to-one
functions is always one-to-one.

Theorem 7.4.3

If f: X -* Y and g: Y -* Z are both one-to-one functions, then g o f is one-to-one.

By the method of direct proof, the proof of Theorem 7.4.3 has the following starting
point and conclusion to be shown.

Starting Point: Suppose f is a one-to-one function from X to Y and g is a one-to-one
function from Y to Z.

To Show: g o f is a one-to-one function from X to Z.

The conclusion to be shown says that a certain function is one-to-one. How do you
show that? The crucial step is to realize that if you substitute g o f into the definition of
one-to-one, you see that

g o f is one-to-one ¢# Vx 1, x2 E X, if (g o f)(xI) = (g of )(X 2 ) then xi = x2.

By the method of direct proof, then, to show g o f is one-to-one, you

suppose x1 and X2 are elements of X such that (g o f)(x) = (g o (X2),

and you

show that xl = X2.

Now the heart of the proof begins. To show that xl = x2, you work forward from the
supposition that (g o f)(xI) = (g o f)(x 2 ), using the fact that f and g are both one-to-
one. By definition of composition,

(g o f)(xI) = g(f(xI)) and (g o f)(x2 ) = g(f(x2 ))

Since the left-hand sides of the equations are equal, so are the right-hand sides. Thus

g(f(x1)) = g(f(x2 )).

Now just stare at the above equation for a moment. It says that

g(something) = g(something else).
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Because g is a one-to-one function, any time g of one thing equals g of another thing,
those two things are equal. Hence

f(xI) = f(x2).

But f is also a one-to-one function. Any time f of one thing equals f of another thing,
those two things are equal. Therefore,

xI = X2

This is what was to be shown!
This discussion is summarized in the following formal proof.

Composition of Onto Functions
Now consider what happens when two onto functions are composed. For example, let
X = {a, b, c, d, e}, Y = {w, x, y, z}, and Z = {1, 2, 3}. Define onto functions f and g
by the following arrow diagrams.

x z

Then g o f is the function with the arrow diagram shown below.

It is clear from the diagram that g o f is onto.

Proof of Theorem 7.4.3:

Suppose f: X -* Y and g: Y -* Z are both one-to-one functions. [We must show
that g o f is one-to-one.] Suppose Xi and X2 are elements of X such that

(g of )(XI) = (g of )(x2).

[We must show that XI = x2.] By definition of composition of functions,

g(f(X1 )) = g(f(X2 )).

Since g is one-to-one,

f(Xi) = f(X2).

And since f is one-to-one,

XI = X2.

This is what was to be shown. Hence g o f is one-to-one.
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It turns out that the composition of any two onto functions (that can be composed) is
onto.

l Theoem 7.4.4

If f: X -Y and g: Y -+ Z are both onto functions, then g o f is onto.

By the method of direct proof, the proof of Theorem 7.4.4 has the following starting
point and conclusion to be shown:

Starting Point: Suppose f is an onto function from X to Y, and g is an onto function
from Y to Z.

To Show: g o f is an onto function from X to Z.

The conclusion to be shown says that a certain function is onto. How do you show that?
The crucial step is to realize that if you substitute g o f into the definition of onto, you
see that

g o f: X - Z is onto X* given any element of Z, it is possible to find an
element of X such that (g o f ) (x) = z.

Since this statement is universal, to prove it you

suppose z is a [particular but arbitrarily chosen] element of Z

and

show that there is an element x in X such that (g o f)(x) = z.

Hence you must start the proof by supposing you are given a particular but arbitrarily
chosen element in Z. Let us call it z. Your job is to find an element x in X such that
(gof)(x) =z.

To find x, reason from the supposition that z is in Z, using the fact that both g and f
are onto. Imagine arrow diagrams for the functions f and g.

x Y z

f IC

gof

You have a particular element z in Z, and you need to find an element x in X such that
when x is sent over to Z by g o f, its image will be z. Since g is onto, z is at the tip of
some arrow coming from Y. That is, there is an element y in Y such that

guy) = z. 7.4.3
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This means that the arrow diagrams can be drawn as follows:

x y z

gof

But f also is onto, so every element in Y is at the tip of an arrow coming from X. In
particular, y is at the tip of some arrow. That is, there is an element x in X such that

f (x) = y.
The diagram, therefore, can be drawn as shown below.

X y

g O f

Now just substitute equation (7.4.4) into equation (7.4.3) to obtain

g(f (x)) = z.

But by definition of g o f,

g(f (x)) = (g o f)(x).

Hence

(go f)(x)=z.

Thus x is an element of X that is sent by g o f to z, and so x is the element you were
supposed to find.

This discussion is summarized in the following formal proof.

7.4.4

z

Proof of Theorem 7.4.4:

Suppose f: X -* Y and g: Y -÷ Z are both onto functions. [We must show that
g o f is onto]. Let z be a [particular but arbitrarily chosen] element of Z. [We must
show the existence of an element x in X such that (g o f )(x) = z.] Since g is onto,
there is an element y in Y such that g(y) = z. And since f is onto, there is an element
x in X such that f (x) = y. Hence there exists an element x in X such that

(g O f)(x) = g(f (x)) = g(y) = z.

If follows that g o f is onto.
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Example 7.4.5 An Incorrect "Proof" That a Function Is Onto

To prove that a composition of onto functions is onto, a student wrote,

"Suppose f: X -- Y and g: Y -* Z are both onto. Then
Vy E Y, 3x e X such that f (x) = y(*)

and

Vz e Z, By E Y such that f(y) = z.
So

(g o f)(x) = g(f(x)) = g(y) =Z,

and thus g o f is onto."

Explain the mistakes in this "proof."

Solution To show that g o f is onto, you must be able to meet the following challenge: If
someone gives you an element z in Z (over which you have no control), you must be able
to explain how to find an element x in X such that (g o f)(x) = z. Thus a proof that g o f
is onto must start with the assumption that you have been given a particular but arbitrarily
chosen element of Z. This proof does not do that.

Moreover, note that statement (*) simply asserts that f is onto. An informal version
of (*) is the following: Given any element in the co-domain of f, there is an element in
the domain of f that is sent by f to the given element. Use of the symbols x and y to
denote these elements is arbitrary. Any other two symbols could equally well have been
used. Thus, if we replace the x and y in (*) by u and v, we obtain a logically equivalent
statement, and the "proof" becomes the following:

"Suppose f: X -* Y and g: Y -* Z are both onto. Then
VV E Y, 3u E X such that f (u) = v

and

Vz E Z, By E Y such that f(y) = z.

So (??!)

(g o f)(x) = g(f(x)) = g(y) = Z,
and thus g o f is onto."

From this logically equivalent version of the "proof," you can see that the statements
leading up to the word So do not provide a rationale for the statement that follows it.
The original reason for writing So was based on a misinterpretation of the meaning of the
notation. U

Exercise Set 7.4
1 .1 A I -wn a) {lr+;r -¢ror by _ - -r -lf~o 1a) Vora V Y

m1 each 01 I and A, Wu1cIuRns j MMa g arCe UeCILeU 0Y a110W

diagrams. Find g o f and f o g and determine whether g o f
equals f o g.

1 V V V V

In each of 3-6, functions F and G are defined by formulas. Find
G o F and F o G and determine whether G o F equals F o G.

3. F(x) = x' and G(x) = x - 1, or all real numbers x.

4. F(x) = x5 and G(x) = x 115 for all real numbers x.

A A

A A
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5. F(n) = 2n and G(n) = Ln/2j, for all integers n.

6. F(x) = 3x, G(x) = Lx/3J for all real numbers x.

7. Let S be the set of all strings in a's and b's and let L: S -> Z
be the length function:

For all strings s E S,

L(s) = the number of characters ins.

Let T: Z --- (0, 1, 2} be the mod 3 function:

For all integers n, T(n) = n mod 3.

What is (T o L)(abaa)? (T o L)(baaab)? (T o L)(aaa)?

8. Define F: R -* R and G: R Z by the following formu-
las: F(x) = x 2 /3 and G(x) - Lxi for all x E R. What is
(G o F)(2)? (G o F)(-3)? (G o F)(5)?

The functions of each pair in 9-11 are inverse to each other.
For each pair, check that both compositions give the identity
function.

9. F: R- R and F-: R- R are defined by

F(x)=3x+2, forallxeR

and

y -2
F '(y) = , for all y E R.

10. G: R+ -- R+ and G ': R+ -R are defined by

G(x) = x 2, for all x e R+

and

G 1(x) = x, for all x e R+.

11. H and H are both defined from R -{l) to R -{l by
the formula

x +1
H(x) = H (x) = ,1 forallx E {l).

12. Explain how it follows from the definition of logarithm that
a. log,(bx) = x, for all real numbers x.
b. bl'gb x = x, for all positive real numbers x.

H 13. Prove Theorem 7.4.1(b): If f is any function from a set X
to a set Y, then iy o f = f, where iy is the identity function
on Y.

14. Prove Theorem 7.4.2(b): If f: X -* Y is a one-to-one
and onto function with inverse function f ': Y -- X, then
f o f-' = iy, where iy is the identity function on Y.

15. Suppose Y and Z are sets and g: Y -- Z is a one-to-one
function. This means that if g takes the same value on any
two elements of Y, then those elements are equal. Thus, for
example, if a and b are elements of Y and g (a) = g (b), then

it can be inferred that a = b. What can be inferred in the
following situations?
a. Sk and S. are elements of Y and g(Sk) = g(Sm).

b. z/2 and t/2 are elements of Y and g(z/2 ) = g(t/2).
c. f(xi) and f(x2 ) are elements of Y and g(f(x1 ))-

g(f(x2 )).

16. If f: X Y and g: Y- Z are functions and g o f is one-
to-one, must both f and g be one-to-one? Prove or give a
counterexample.

17. If f: X -- Y and g: Y -- Z are functions and g o f is onto,
must both f and g be onto? Prove or give a counterexample.

H 18. If f: X Y and g: Y -- Z are functions and g o f is one-
to-one, must f be one-to-one? Prove or give a counterex-
ample.

H 19. If f: X -*Y and g: Y - Z are functions and g o f is onto,
must g be onto? Prove or give a counterexample.

20. Let f: W X, g: X Y, and h: Y - Z be functions.
Musth o (g o f) = (h o g) o f? Proveorgive acounterex-
ample.

21. True or False? Given any set X and given any functions
f: X -* X, g: X X, and h: X - X, if h is one-to-one
and h o f = h o g, then f = g. Justify your answer.

22. True or False? Given any set X and given any functions
f: X X, g: X - X, and h: X -> X, if h is one-to-one
and f o h = g o h, then f = g. Justify your answer.

In 23 and 24 find g o f, (gof) ',g ', f -', and f-' o g- 1, and
state how (g o f ) - and f o g-' are related.

23. Let X-={a,c,b),Y ={x,y,z}, and Z={u,u,w). De-
fine f: X -* Y and g: Y - Z by the arrow diagrams below.

X f. y g z

24. Define f: R -* R and g: R - R by the formulas

f (x) = x + 3 and g(x) =-x for all x E R.

25. Prove or give a counterexample: If f: X -- Y and g: Y
X are functions such that g o f = ix and f o g = iy, then
f and g are both one-to-one and onto and g = f '.

H 26. Suppose f: X -+ Y and g: Y -* Z are both one-to-one and

onto. Prove that (g o f)- exists and that (g o f)
f- Iog '.

Exercises 27-31 refer to the definition given immediately before
exercise 40 in Section 7. 1. Determine which of the properties in
27-30 are true for all functions f: X -÷ Y and which are false
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for some function f. Also determine whether the property in 29. For all subsets C of Y, f (f -1() C C.
31 is true for all functions f: X ---* Y and g: Y --* Z or false for 3.FralsbesCo ,CCf( 'C)
some functions f and g. Justify your answers.

27. For all subsets A of X, f -'(f (A)) C A. 3 1. For all subsets E of Z, (g o f)-'(E) =f -'(g- 1(E)).

28. For all subsets A of X, A C f -1(f (A)).

7.5 Cardinality with Applications to Computability
There are as many squares as there are numbers because they are just as numerous as
their roots. -Galileo Galilei, 1632

Historically, the term cardinal number was introduced to describe the size of a set ("This
set has eight elements") as distinguished from an ordinal number that refers to the order
of an element in a sequence ("This is the eighth element in the row"). The definition of
cardinal number derives from the primitive technique of representing numbers by fingers
or tally marks. Small children, when asked how old they are, will usually answer by
holding up a certain number of fingers, each finger being paired with a year of their life.
As was discussed in Section 7.2, a pairing of the elements of two sets is called a one-to-one
correspondence. We say that two finite sets whose elements can be paired by a one-to-one
correspondence have the same size. This is illustrated by the following diagram.

A B

The elements of set A can
be put into one-to-one
correspondence with the
elements of B.

Now a finite set is one that has no elements at all or that can be put into one-to-
one correspondence with a set of the form { 1, 2,. .,n } for some positive integer n. By
contrast, an infinite set is a nonempty set that cannot be put into one-to-one correspondence
with {l, 2,. .,n I for any positive integer n. Suppose that, as suggested by the quote from
Galileo at the beginning of this section, we extend the concept of size to infinite sets by
saying that one infinite set has the same size as another if, and only if, the first set can be put
into one-to-one correspondence with the second. What consequences follow from such
a definition? Do all infinite sets have the same size, or are some infinite sets larger than
others? These are the questions we address in this section. The answers are sometimes

Galileo Galilei surprising and have interesting applications to determining what can and what cannot be
(1564-1 642) computed on a computer.

LtA and B be any sets. A has the same cardinality as B if , and only if, there is a
oeto-one correspondence from A to B. In other words, A has the same cardinality

asB if, and only if, there is a function f from A to B that is one-to-one and onto.
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The following theorem gives some basic properties of cardinality, most of which
follow from statements proved earlier about one-to-one and onto functions.

Note that Theorem 7.5.1(b) makes it possible to say simply that two sets have the
same cardinality instead of always having to say that one set has the same cardinality as
another. That is, the following definition can be made.

, thi L. Or

A and Bt¢ have the same cardinality: if, and only if, Af has :the: same card~inality Was B@

t~or Bl~t ts A 0 has0 the\00 same cadialt as00;0 A. 0;

The following example illustrates a very important property of infinite sets-namely,
that an infinite set can have the same cardinality as a proper subset of itself. This property
is sometimes taken as the definition of infinite set. The example shows that even though
it may seem reasonable to say that there are twice as many integers as there are even
integers, the elements of the two sets can be matched up exactly, and so, according to the
definition, the two sets have the same cardinality.

Theorem 7.5.1

For all sets A, B, and C,

a. (Reflexive property of cardinality) A has the same cardinality as A.

b. (Symmetric property of cardinality) If A has the same cardinality as B, then B
has the same cardinality as A.

c. (Transitive property of cardinality) If A has the same cardinality as B and B
has the same cardinality as C, then A has the same cardinality as C.

Proof:
Part (a), Reflexivity: Suppose A is any set. [To show that A has the same cardinality
as A, we must show there is a one-to-one correspondence from A to A.] Consider the
identity function iA from A to A. This function is one-to-one because if xl and x2
are any elements in A with iA(XI) = iA(X2), then, by definition of iA, XI = X2. The
identity function is also onto because if y is any element of A, then y = iA(y) by
definition of iA. Hence iA is a one-to-one correspondence from A to A. [So there
exists a one-to-one correspondence from A to A, as was to be shown.]

Part (b), Symmetry: Suppose A and B are any sets and A has the same cardinality
as B. [We must show that B has the same cardinality as A.] Since A has the same
cardinality as B, there is a function f from A to B that is one-to-one and onto. But
then, by Theorems 7.2.1 and 7.2.2, there is a function f - from B to A that is also
one-to-one and onto. Hence B has the same cardinality as A [as was to be shown].

Part (c), Transivity: Suppose A, B, and C are any sets and A has the same cardinality
as B and B has the same cardinality as C. [We must show that A has the same
cardinality as C.] Since A has the same cardinality as B, there is a function f from
A to B that is one-to-one and onto, and since B has the same cardinality as C, there
is a function g from B to C that is one-to-one and onto. But then, by Theorems 7.4.3
and 7.4.4, g o f is a function from A to C that is one-to-one and onto. Hence A has
the same cardinality as C [as was to be shown].
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Example 7.5.1 An Infinite Set and a Proper Subset Can Have the Same Cardinality

Let 2Z be the set of all even integers. Prove that 2Z and Z have the same cardinality.

Solution Consider the function H from Z to 2Z defined as follows:

H(n) = 2n foralln E Z.

A (partial) arrow diagram for H is shown below.

Z 2Z

To show that H is one-to-one, suppose H(n1 ) = H(n2) for some integers n1 and n2.
Then 2nI = 2n2 by definition of H, and dividing both sides by 2 gives nI = n2. Hence h
is one-to-one.

To show that H is onto, suppose m is any element of 2Z. Then m is an even integer,
and so m = 2k for some integer k. It follows that H (k) = 2k = m. Thus there exists k in
Z with H(k) = m, and hence H is onto.

Therefore, by definition of cardinality, Z and 2Z have the same cardinality. U

Theorem 7.3.2 states that a function from one finite set to another set of the same size
is one-to-one if, and only if, it is onto. This result does not hold for infinite sets. Although
it is true that for two infinite sets to have the same cardinality there must exist a function
from one to the other that is both one-to-one and onto, it is also always the case that:

If A and B are infinite sets with the same cardinality, then there
exist functions from A to B that are one-to-one but not onto and
functions from A to B that are onto but not one-to-one.

For instance, since the function H in Example 7.5.1 is one-to-one and onto, Z and 2Z have
the same cardinality. But the "inclusion function" I from 2Z to Z, given by I (n) = n for
all even integers n, is one-to-one but not onto. And the function J from Z to 2Z defined
by J(n) = 2 Ln/2j, for all integers n, is onto but not one-to-one. (See exercise 6 at the
end of this section.)

Countable Sets
The set Z' of counting numbers {1, 2, 3, 4, . . .} is, in a sense, the most basic of all infinite
sets. A set A having the same cardinality as this set is called countably infinite. The reason
is that the one-to-one correspondence between the two sets can be used to "count" the
elements of A: If F is a one-to-one and onto function from Z+ to A, then F(1) can be
designated as the first element of A, F(2) as the second element of A, F(3) as the third



446 Chapter 7 Functions

element of A, and so forth. This is illustrated graphically in Figure 7.5.1. Because F is
one-to-one, no element is ever counted twice, and because it is onto, every element of A
is counted eventually.

Z+ A

Figure 7.5.1 "Counting" a Countably Infinite Set

W I MaMiM

A set is called countably infinite if, and only if, it has the same cardinality as the
set of positive integers Z+. A set is called countable if, and only if, it is finite or
countably infinite. A set that is not countable is called uncountable.

Example 7.5.2 Countability of Z, the Set of All Integers

Show that the set Z of all integers is countable.

Solution The set Z of all integers is certainly not finite, so if it is countable, it must be
because it is countably infinite. To show that Z is countably infinite, find a function from
the positive integers Z+ to Z that is one-to-one and onto. Looked at in one light, this
contradicts common sense; judging from the diagram below, there appear to be more than
twice as many integers as there are positive integers.

positive integers

*-5 - 4 - 3 - 2 - 1 0 1 2 3 4 5--.
all integers

But you were alerted that results in this section might be surprising. Try to think of a
way to "count" the set of all integers anyway.

The trick is to start in the middle and work outward systematically. Let the first
integer be 0, the second 1, the third -1, the fourth 2, the fifth -2, and so forth as shown
in Figure 7.5.2, starting at 0 and swinging outward in back-and-forth arcs from positive
to negative integers and back again, picking up one additional integer at each swing.

Integers: 5 -4 -3 -2 -1 0 1 2 3 4 5 ...

Ine count of each integer:

Figure 7.5.2 "Counting" the Set of All Integers

To
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It is clear from the diagram that no integer is counted twice (so the function is one-to-
one) and every integer is counted eventually (so the function is onto). Consequently, this
diagram defines a function from Z+ to Z that is one-to-one and onto. Even though in one
sense there seem to be more integers than positive integers, the elements of the two sets
can be paired up one for one. It follows by definition of cardinality that Z+ has the same
cardinality as Z. Thus Z is countably infinite and hence countable.

The diagrammatic description of the above function is acceptable as given. You can
check, however, that the function can also be described by the explicit formula

| 2 if n is an even positive integer

F (n) = -
l- n if n is an odd positive integer U

Example 7.5.3 Countability of 2Z, the Set of All Even Integers

Show that the set 2Z of all even integers is countable.

Solution Example 7.5.2 showed that Z+ has the same cardinality as Z, and Example 7.5.1
showed that Z has the same cardinality as 2Z. Thus, by the transitive property of cardin-
ality, Z' has the same cardinality as 2Z. It follows by definition of countably infinite that
2Z is countably infinite and hence countable. U

The Search for Larger Infinities:
The Cantor Diagonalization Process

Every infinite set we have discussed so far has been countably infinite. Do any larger
infinities exist? Are there uncountable sets? Here is one candidate.

Imagine the number line as shown below.

-4 -3 -2 -1 0 1 2 3 4 ...
( I I I I I I I I I >

As noted in Section 2. 1, the integers are spread along the number line at discrete intervals.
The rational numbers, on the other hand, are dense: Between any two rational numbers
(no matter how close) lies another rational number (the average of the two numbers, for
instance; see exercise 17). This suggests the conjecture that the infinity of the set of
rational numbers is larger than the infinity of the set of integers.

Amazingly, this conjecture is false. Despite the fact that the rational numbers are
crowded onto the number line whereas the integers are quite separated, the set of all
rational numbers can be put into one-to-one correspondence with the set of integers. The
next example gives a partial proof of this fact. It shows that the set of all positive rational
numbers can be put into one-to-one correspondence with the set of all positive integers.
In exercise 16 at the end of this section you are asked to use this result, together with a
technique similar to that of Example 7.5.2, to show that the set of all rational numbers is
countable.
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Example 7.5.4 The Set of All Positive Rational Numbers Is Countable

Show that the set Q+ of all positive rational numbers is countable.

Solution Display the elements of the set Q+ of positive rational numbers in a grid as shown
in Figure 7.5.3.

1 1 1 1 1 1

i6

2

3

6

4

6

i6

6 6 6 6 6 6
1 2 3 4 5 6

Figure 7.5.3

Define a function F from Z+ to Q+ by starting to count at l and following the arrows as
indicated, skipping over any number that has already been counted.

To be specific: Set F(1) = 1, F(2) = i, and F(3) = 2. Then skip 2 since 2=11 12 2

which was counted first. After that, set F(4) = 3, F(5) = 3, F(6) = -, F(7) =
F(8) = 2' F(9) = 4, and F(10) = 5. Then skip 2' 3, and 4 (since 4 = 2, - = and

= andsetF( = 1 . Continue in this way,defining F(n) for each positiveinteger n.
Note that every positive rational number appears somewhere in the grid, and the

counting procedure is set up so that every point in the grid is reached eventually. Thus
the function F is onto. Also, skipping numbers that have already been counted ensures
that no number is counted twice. Thus F is one-to-one. Consequently, F is a function
from Z+ to Q+ that is one-to-one and onto, and so Q+ is countably infinite and hence
countable. U

In 1874 the German mathematician Georg Cantor achieved success in the search for
a larger infinity by showing that the set of all real numbers is uncountable. His method of
proof was somewhat complicated, however. We give a proof of the uncountability of the
set of all real numbers between 0 and 1 using a simpler technique introduced by Cantor
in 1891 and now called the Cantor diagonalization process. Over the intervening years,
this technique and variations on it have been used to establish a number of important
results in logic and the theory of computation.
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Before stating and proving Cantor's theorem, we note that every real number, which
is a measure of location on a number line, can be represented by a decimal expansion of
the form

ao.aja 2 a3 ....

where ao is an integer (positive, negative, or zero) and for each i > 1, a, is an integer from
0 through 9.

This way of thinking about numbers was developed over several centuries by mathe-
maticians in the Chinese, Hindu, and Islamic worlds, culminating in the work of Ghiydth
al-Din Jamshid al-Kashi in 1427. In Europe it was first clearly formulated and success-
fully promoted by the Flemish mathematician Simon Stevin in 1585. We illustrate the
concept with an example.

Consider the point P in Figure 7.5.4. Figure 7.5.4(a) shows P located between 1 and
2. When the interval from I to 2 is divided into ten equal subintervals (see Figure 7.5.4(b))
P is seen to lie between 1.6 and 1.7. If the interval from 1.6 to 1.7 is itself divided into
ten equal subintervals (see Figure 7.5.4(c)), the P is seen to lie between 1.62 and 1.63 but
closer to 1.62 than to 1.63. So to two-decimal-place accuracy, the decimal expansion for
P is 1.62.

(a)
P

i i i ~ i a k .

-3 -2 -l 1 2\

P(b) 1
I1.0 .51.6 t 2.0

P

1.60 1.62 1.63 1.65 1.70

Figure 7.5.4
2)
-P

Assuming that any interval of real numbers, no matter how small, can be divided into
ten equal subintervals, the process of obtaining additional digits in the decimal expansion
for P can, in theory, be repeated indefinitely. If at any stage P is seen to be a subdivision
point, then all further digits in the expansion may be taken to be 0. If not, then the process
gives an expansion with an infinite number of digits.

The resulting decimal representation for P is unique except for numbers that end in
infinitely repeating 9's or infinitely repeating O's. For example (see exercise 25 at the end
of this section),

0.199999... = 0.200000....

Let us agree to express any such decimal in the form that ends in all O's.

al-Kashi
(1380-1429)

Simon Stevin
(1548-1620)

r,I
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Theorem 7.5.2 (Cantor)

The set of all real numbers between 0 and I is uncountable.

Proof (by contradiction):

Suppose the set of all real numbers between 0 and I is countable. Then the decimal
representations of these numbers can be written in a list as follows:

O.ajal2a... a,

O.a 2 ja 2 2 a2 3  a2nf

O.a3a32a33... a3 n.

O.anjan2an3  ann ...,

[We will derive a contradiction by showing that there is a number between 0 and 1
that does not appear on this list.]

For each pair of positive integers i and j, the jth decimal digit of the ith number
on the list is aij. In particular, the first decimal digit of the first number on the list is
all, the second decimal digit of the second number on the list is a22, and so forth. As
an example, suppose the list of real numbers between 0 and 1 starts out as follows:

0.( 0 1 4 8 8 0 2...
0. 1 0 6 6 6 0 2 1...
0. 0 3 (I 5 3 3 2 0...
0. 9 6 7 (j 6 8 0 9...
0. 0 0 0 3 0 0 0 2...

The diagonal elements are circled: all is 2, a22 is 1, a33 is 3, a44 is 7, a55 is 1, and so
forth.

Construct a new decimal number d = O.d d2d3 ... d, as follows:

d" I1 if a,,,, 1
d=2 if a,,, I

In the above example,

d1 is 1 because all 2 7 1,

d2 is 2 because a22 = 1,

d3 is 1 because a33 = 3 # 1,

d4 is 1 because a44 = 7 # 1,

d5 is 2 because as5 = 1,

and so forth. Hence d would equal 0.12112 ....
The crucial observation is that for each integer n, d differs in the nth decimal

position from the nth number on the list. But this implies that d is not on the list!
In other words, d is a real number between 0 and I that is not on the list of all real
numbers between 0 and 1. This contradiction shows the falseness of the supposition
that the set of all numbers between 0 and 1 is countable. Hence the set of all real
numbers between 0 and I is uncountable.
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Along with demonstrating the existence of an uncountable set, Cantor developed a
whole arithmetic theory of infinite sets of various sizes. One of the most basic theorems
of the theory states that any subset of a countable set is countable.

An immediate consequence of Theorem 7.5.3 is the following corollary.

Theorem 7.5.3

Any subset of any countable set is countable.

Proof:

Let A be a particular but arbitrarily chosen countable set and let B be any subset of
A. [We must show that B is countable.] Either B is finite or it is infinite. If B is
finite, then B is countable by definition of countable, and we are done. So suppose
B is infinite. Since A is countable, the distinct elements of A can be represented as
a sequence

al , a2, a3 ,

Define a function g: Z+ -* B inductively as follows:

1. Search sequentially through elements of al, a2, a3, . . . until an element of B is
found. [This must happen eventually since B C A and B A 0.] Call that element
g(l).

2. For each integer k > 2, suppose g(k - 1) has been defined. Then g(k - 1) = as
for some ai in {a,, a2, a3 , . . .}. Starting with ai+±, search sequentially through
ai+i, ai+2, ai+3, .... trying to find an element of B. One must be found eventually
because B is infinite, and {g(l), g(2), ... ,g(k - 1)} is a finite set. When an
element of B is found, define it to be g(k).

By (1) and (2) above, the function g is defined for each positive integer.
Since the elements of al, a2, a3, .. . are all distinct, g is one-to-one. Furthermore,

the searches for elements of B are sequential: Each picks up where the previous one
left off. Thus every element of A is reached during some search. But all the elements
of B are located somewhere in the sequence al, a2, a3 , ... , and so every element of
B is eventually found and made the image of some integer. Hence g is onto. These
remarks show that g is a one-to-one correspondence from Z+ to B. So B is countably
infinite and thus countable.

Corollary 7.5.4

Any set with an uncountable subset is uncountable.

Proof:

Consider the following equivalent phrasing of Theorem 7.5.3: For all sets S and for
all subsets A of S, if S is countable, then A is countable. The contrapositive of this
statement is logically equivalent to it and states: For all sets S and for all subsets A
of S, if A is uncountable then S is uncountable. But this is an equivalent phrasing
for the corollary. So the corrollary is proved.
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Corollary 7.5.4 implies that the set of all real numbers is uncountable because the
subset of numbers between 0 and I is uncountable. In fact, as Example 7.5.5 shows, the
set of all real numbers has the same cardinality as the set of all real numbers between 0
and 1! This fact is further explored in exercises 13 and 14 at the end of this section.

Example 7.5.5 The Cardinality of the Set of All Real Numbers

Show that the set of all real numbers has the same cardinality as the set of real numbers
between 0 and 1.

Solution Solution Let S be the open interval of real numbers between 0 and 1:

S = {x E R O < x < I}.

Imagine picking up S and bending it into a circle as shown below. Since S does not include
either endpoint 0 or l, the top-most point of the circle is omitted from the drawing.

2

Define a function F: S --. R as follows:
Draw a number line and place the interval, S, somewhat enlarged and bent into a circle,

tangent to the line above the point 0. This is shown below.

Number line

* -3 -2

L

F(x)

1 - 0 0 1 2 3

For each point x on the circle representing S, draw a straight line L through the top-
most point of the circle and x. Let F(x) be the point of intersection of L and the number
line. (F(x) is called the projection of x onto the number line.)

It is clear from the geometry of the situation that distinct points on the circle go to
distinct points on the number line, so F is one-to-one. In addition, given any point y on
the number line, a line can be drawn through y and the top-most point of the circle. This
line must intersect the circle at some point x, and, by definition, y = F(x). Thus F is
onto. Hence F is a one-to-one correspondence from S to R, and so S and R have the same
cardinality. U

Application: Cardinality and Computability
Knowledge of the countability and uncountability of certain sets can be used to answer a
question of computability. We begin by showing that a certain set is countable.

3
4



7.5 Cardinalitywith Applications to Computability 453

Example 7.5.6 Countability of the Set of Computer Programs in a Computer Language

Show that the set of all computer programs in a given computer language is countable.

Solution This result is a consequence of the fact that any computer program in any language
can be regarded as a finite string of symbols in the (finite) alphabet of the language.

Given any computer language, let P be the set of all computer programs in the lan-
guage. Either P is finite or P is infinite. If P is finite, then P is countable and we are done.
If P is infinite, set up a binary code to translate the symbols of the alphabet of the language
into strings of 0's and l's. (For instance, either the seven-bit American Standard Code
for Information Interchange, known as ASCII, or the eight-bit Extended Binary-Coded
Decimal Interchange Code, known as EBCDIC, might be used.)

For each program in P, use the code to translate all the symbols in the program into 0's
and F's. Order these strings by length, putting shorter before longer, and order all strings
of a given length by regarding each string as a binary number and writing the numbers in
ascending order.

Define a function F: Z+ -- P by specifying that

F(n) = the nth program in the list for each n E Z+.

By construction, F is one-to-one and onto, and so P is countably infinite and hence
countable. As a simple example, suppose the following are all the programs in P that
translate into bit strings of length less than or equal to 5:

10111, 11, 0010, 1011, 01, 00100, 1010, 00010.

Ordering these by length gives

length 2: 11, 01

length 4: 0010, 1011, 1010

length 5: 10111,00100,00010

And ordering those of each given length by the size of the binary number they represent
gives

01 = F(l)
11 = F(2)

0010 - F(3)
1010 = F(4)
1011 - F(S)

00010 = F(6)

00100 = F(7)

10111 = F(8)

Note that when viewed purely as numbers, ignoring leading zeros, 0010 = 00010.
This shows the necessity of first ordering the strings by length before arranging them in
ascending numeric order. U

The final example of this section shows that a certain set is uncountable and hence
that there must exist a noncomputable function.
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Example 7.5.7 The Cardinality of a Set of Functions and Computability

a. Let T be the set of all functions from the positive integers to the set {O, 1, 2, 3, 4,
5, 6, 7, 8, 9}. Show that T is uncountable.

b. Derive the consequence that there are noncomputable functions. Specifically, show
that for any computer language there must be a function F from Z+ to {O, 1, 2, 3, 4,
5, 6, 7, 8, 9) with the property that no computer program can be written in the language
to take arbitrary values as input and output the corresponding function values.

Solution

a. Let S be the set of all real numbers between 0 and 1. As noted before, any number in
S can be represented in the form

O.ala2a3 ... a,

where each ai is an integer from 0 to 9. This representation is unique if decimals that
end in all 9's are omitted.

Define a function F from S to a subset of T (the set of all functions from Z+ to
{O, 1, 2, 3, 4, 5, 6, 7, 8, 9)) as follows:

F(0.aja2 a3 ... a,...) = the function that sends each
positive integer n to a,.

Choose the co-domain of F to be exactly that subset of T that makes F onto. That is,
define the co-domain of F to equal the image of F. Note that F is one-to-one because
if F(x1 ) = F(x2 ), then each decimal digit of xi equals the corresponding decimal digit
of x2, and so xI = x2. Thus F is a one-to-one correspondence from S to a subset of T.
But S is uncountable by Theorem 7.5.2. Hence T has an uncountable subset, and so,
by Theorem 7.5.3, T is uncountable.

b. Part (a) shows that the set T of all functions from Z+ to (0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is
uncountable. But Example 7.5.6 shows that given any computer language, the set of
all programs in that language is countable. Consequently, in any computer language
there are not enough programs to compute values of every function in T. There must
exist functions that are not computable! E

Exercise Set 7.5
1. When asked what it means to say that set A has the same car-

dinality as set B, a student replies, "A are B are one-to-one
and onto." What should the student have replied? Why?

2. Show that "there are as many squares as there are numbers"
by exhibiting a one-to-one correspondence from the positive
integers, Z+, to the set S of all squares of positive integers:

S = In E Z' I n = k2, for some positive integer kl.

3. Let 3Z = In E Z I n = 3k, for some integer k}. Prove that
Z and 3Z have the same cardinality.

4. Let 0 be the set of all odd integers. Prove that 0 has the
same cardinality as 2Z, the set of all even integers.

5. Let 25Z be the set of all integers that are multiples of 25.
Prove that 25Z has the same cardinality as 2Z, the set of all
even integers.

H 6. Use the functions I and J defined in the paragraph following
Example 7.5.1 to show that even though there is a one-to-one
correspondence, H, from 2Z to Z, there is also a function
from 2Z to Z that is one-to-one but not onto and a function
from Z to 2Z that is onto but not one-to-one. In other words,
show that I is one-to-one but not onto, and show that J is
onto but not one-to-one.

7. a. Check that the formula for F given at the end of Example
7.5.2 produces the correct values for n = 1, 2, 3, and 4.

b. Use the floor function to write a formula for F as a single
algebraic expression for all positive integers n.

8. Use the result of exercise 3 to prove that 3Z is countable.

9. Show that the set of all nonnegative integers is countable
by exhibiting a one-to-one correspondence between Z+ and
znonneg.

V



In 10-14, S denotes the set of real numbers strictly between 0
and 1. That is, S = {x e R I ° < x < 11.

10. Let U = {x e R 0 < x < 21. Prove that S and U have the
same cardinality.

H 11. Let V = {x E R 2 < x < 5}. Prove that S and V have the
same cardinality.

12. Let a and b be real numbers with a < b, and suppose that
W = {x E R I a < x < b}. Prove that S and W have the
same cardinality.

13. Draw the graph of the function f defined by the following
formula:

For all real numbers x with 0 < x < 1,

f (x) = tan (rx

Use the graph to explain why S and R have the same cardi-
nality.

* 14. Define a function g from the set of real numbers to S by the
following formula:

For all real numbers x,

I x \ I
g(x) = . J +

Prove that g is a one-to-one correspondence. (It is possible
to prove this statement either with calculus or without it.)
What conclusion can you draw from this fact?

15. Show that the set of all bit strings (strings of O's and I's) is
countable.

16. Show that Q, the set of all rational numbers, is countable.

17. Show that the set Q of all rational numbers is dense along the
number line by showing that given any two rational num-
bers r1 and r2 with r1 < r2 , there exists a rational number x
such that r, < x < r2 .

H 18. Must the average of two irrational numbers always be irra-
tional? Prove or give a counterexample.

H * 19. Show that the set of all irrational numbers is dense along the
number line by showing that given any two real numbers,
there is an irrational number in between.

20. Give two examples of functions from Z to Z that are one-
to-one but not onto.

21. Give two examples of functions from Z to Z that are onto
but not one-to-one.

H 22. Define a function g: Z+ x Z+- Z+ by the formula
g(m, n) = 2'3' for all (m, n) e Z+ x Z+. Show that g
is one-to-one and use this result to prove that Z+ x Z+ is
countable.
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23. a. Explain how to use the following diagram to show that
Znonneg X Znonneg and Znonneg have the same cardinality.

(0, 0 0) 0) 0).0)

(0;1f (4, 1) ...

(° /, < 3 2) (4, 2) ...

(° i (,3) (3, 3) (4, 3)..

4 (1, 4) (2, 4) (3, 4) (4, 4) *

H * b. Define a function H: Znonneg X Znonneg _. Znonneg by the

formula

(m + n)(m + n + 1)
H(m,n)=n± 2

for all nonnegative integers m and n. Interpret the action
of H geometrically using the diagram of part (a).

* 24. Prove that the function H defined in exercise 23 is a one-to-
one correspondence.

H 25. Prove that 0.1999 ... = 0.2.

26. Prove that any infinite set contains a countably infinite sub-
set.

27. If A is any countably infinite set, B is any set, and g: A -- B
is onto, then B is countable.

H 28. Prove that a union of any two countably infinite sets is count-
ably infinite.

H 29. Use the result of exercise 28 to prove that the set of all
irrational numbers is uncountable.

30. Prove that a union of any finite set and any countably infinite
set is countably infinite.

31. Use the results of exercises 28 and 30 to prove that a union
of any two countable sets is countable.

H 32. Prove that Z x Z, the Cartesian product of the set of integers
with itself, is countably infinite.

33. Use the results of exercises 27, 30, and 32 to prove the fol-
lowing: If R is the set of all solutions to all equations of the
form x2 + bx + c = 0, where b and c are integers, then R
is countable.

H 34. Let 4;(S) be the set of all subsets of set S, and let T be the
set of all functions from S to (0, 1 1. Show that 9a(S) and T
have the same cardinality.

H 35. Let S be a set and let 9•0(S) be the set of all subsets of S.
Show that S and .63a(S) do not have the same cardinality.

7r)
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* 36. The Schroeder-Bernstein theorem states the following: If
A and B are any sets with the property that there is a one-
to-one function from A to B and a one-to-one function from
B to A, then A and B have the same cardinality. Use this
theorem to prove that there are as many functions from Z+
to {O, 1, 2, 3, 4, 5, 6, 7, 8, 9) as there are functions from Z+
to {O, 1}.

H 37. Prove that if A and B are any countably infinite sets, then
A x B is countably infinite.

* 38. Suppose A 1, A2, A3, .. . is an infinite sequence of countable
sets. Let

U Ai = {x I x E Ai for some i}.
i=1

Prove that U°° Ai is countable. (In other words, prove that
a countably infinite union of countable sets is countable.)



CHAPTER 8

RECURSION

A sequence is said to be defined recursively if certain initial values are specified and later
terms of the sequence are defined by relating them to a number of earlier terms. In the first
section of this chapter, we give a variety of examples that show how to analyze certain
kinds of problems by thinking recursively to obtain a recursively defined sequence. In the
next two sections we address the problem of finding an explicit formula for a sequence
that is defined recursively. And in the final section we discuss more general recursive
definitions, such as the one used for the careful formulation of the concept of Boolean
expression, and the idea of recursive function.

8.1 Recursively Defined Sequences
So, Nat 'ralists observe, a Flea/Hath smaller Fleas that on him prey, /And these have
smaller Fleas to bite 'em, lAnd so proceed ad infinitum. -Jonathan Swift, 1733

A sequence can be defined in a variety of different ways. One informal way is to write
the first few terms with the expectation that the general pattern will be obvious. We might
say, for instance, "consider the sequence 3, 5, 7, .... " Unfortunately, misunderstandings
can occur when this approach is used. The next term of the sequence could be 9 if we
mean the sequence of odd integers, or it could be 11 if we mean the sequence of odd prime
numbers.

A second way to define a sequence is to give an explicit formula for its nth term. For
example, a sequence ao, ai, a2, ... can be specified by writing

a,= 1 for all integers n > 0.

The advantage of defining a sequence by such an explicit formula is that each term of the
sequence is uniquely determined and any term can be computed in a fixed, finite number
of steps. In this case, for instance,

(I)0 (-I), I__
= 1, a, =11 -2 and so forth.

A third way to define a sequence is to use recursion. This requires giving both an
equation, called a recurrence relation, that relates later terms in the sequence to earlier

457
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terms and a specification, called initial conditions, of the values of the first few terms of
the sequence. The initial conditions are also called the base or bottom of the recursion. For
instance, define a sequence bo, bl, b2 , . .. recursively as follows: For all integers k > 2,

(1) bk = bk- I + bk-2 recurrence relation

(2) bo = 1, b, = 3 initial conditions.

Since bo and b1 are given, b2 can be computed using the recurrence relation.

b2 = b1 + bo by substituting k = 2 into (1)

= 3 + 1 sinceb- = 3 andbo = I by (2)

(3) .:. b 2 = 4

Then, since both b, and b2 are now known, b3 can be computed using the recurrence
relation.

b3 = b2 + b1  by substituting k = 3 into (1)

= 4 + 3 since b2 = 4 by (3) and bi = 3 by (2)

(4) b3 = 7

In general, the recurrence relation says that any term of the sequence after a certain given
term is the sum of the two preceding terms. Thus

b4= b3 + b2 =7 + 4 = 1I,

b5 = b4 +b3 = 11 +7 = 18,

and so forth. It should be clear that any later term of the sequence can be computed from
this point by continuing in a step-by-step fashion.

Sometimes it is very difficult or impossible to find an explicit formula for a sequence,
but it is possible to define the sequence using recursion. Note that defining sequences
recursively is similar to proving theorems by mathematical induction. The recurrence
relation is like the inductive step and the initial conditions are like the basis step. Indeed,
the fact that sequences can be defined recursively is equivalent to the fact that mathematical
induction works as a method of proof.

IT !-HIM

'A recurrence relation for a sequence ao0, a,, 2.... is a foimuia that relates each
term ak to c inofitsred sorts akak2, . - aksj, where i is an integer
and k fisany ieger great han or equal to i. The initial conditions for such a
recurrence relation; spec the vaues of al , a2 a ... ai- I, if i is a fixed integer, or
a0 , al . a ;, where is aninteger with m > 0, if i depends on k.

Example 8.1.1 Computing Terms of a Recursively Defined Sequence

Define a sequence co, cl, C2 ... recursively as follows: For all integers k > 2,

(1) Ck = Ck I + kck 2 + I recurrence relation

(2) Co = I and ct = 2 initial conditions.

Find c2, C3, and C4.
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Solution c2 = c} + 2co + I by substituting k = 2 into (1)

=2 + 2 1 + 1 sincecl = 2andco =I by(2)

(3) C2 = 5

C3 = C2 + 3c, + 1 by substituting k = 3 into (1)

=5-+ 3-2 + I since 2 =Sby(3)andcI = 2by(2)

(4) .. 3 = 12

C4 = c3 + 4c2 + I by substituting k = 4 into (1)

= 12 + 4 * 5 + 1 since C3 = 12 by (4) and c 2 = S by (3)

(5) .*. = 33

A given recurrence relation may be expressed in several different ways.

Example 8.1.2

Example 8.1.3

Writing a Recurrence Relation in More Than One Way

Let so, s 2, ... be a sequence that satisfies the following recurrence relation:

for all integers k > 1, Sk = 3 Sk - 1.

Explain why the following statement is true:

for all integers k > 0, Sk+t = 3
Sk - 1.

Solution In informal language, the recurrence relation says that any term of the sequence
equals 3 times the previous term minus 1. Now for any integer k > 0 the term previous
to Sk+I is Sk. Thus for any integer k > 0, Sk+I = 

3
Sk -1. IU

A sequence defined recursively need not start with a subscript of zero. Also, a given
recurrence relation may be satisfied by many different sequences; the actual values of the
sequence are determined by the initial conditions.

Sequences That Satisfy the Same Recurrence Relation

Let al, a2, a3, . . . and bl, b2, b3, . . . satisfy the recurrence relation that the kth term equals
3 times the (k -l)st term for all integers k > 2:

(i) ak = 3
ak-I and bk = 3bk-1*

But suppose that the initial conditions for the sequences are different:

(2) a, = 2 and bt = 1.

Find (a) a2, a3, a4 and (b) b2 , b3, b4.

Solution

a. a2 = 3a 1 = 3 * 2 = 6 b. b2 = 3bI = 3 1 = 3

a3 = 3a 2 = 3 -6 = 18 b3 = 3b 2 = 3 3 = 9

a4 =3a3 =3-18=54 b4 = 3b 3 =3-9=27

Thus

a], a2, a3, .. . begins 2, 6, 18, 54, .. .and

bl, b2 , b3 , ... begins 1, 3, 9, 27, .. ..

.

.
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Example 8.1.4 Showing That a Sequence Given by an Explicit Formula Satisfies a Certain
Recurrence Relation

Show that the sequence 1, -1!, 2!, -3!, 4!,..., (-)n!, . for n > 0, satisfies the re-
currence relation

Sk =(-k)Sk-l for all integers k > 1.

Solution The recurrence relation specifies that the kth term of the sequence equals -k times
the (k - l)st term. Call the general term of the sequence s, starting with so = 1. Then by
definition of the sequence,

S- = (-I)nn! foreachintegern > 0.

Substitute k and k -I for n to get

Sk = (-I)'k! 8.1.1

Sk- I = (-I) (k 1)! 8.1.2

It follows that

(-k)sk- = (-k)[(- j)k- (k- I)!] by substitution from (8.1.2)

= (-I)k(- I)k- (k- 1)!

= (-)( I)k- k(k-l)!

- (-I)'k! by basic algebra

= by substitution from (8. 1.1).

Examples of Recursively Defined Sequences
Recursion is one of the central ideas of computer science. To solve a problem recursively
means to find a way to break it down into smaller subproblems each having the same form
as the original problem-and to do this in such a way that when the process is repeated
many times, the last of the subproblems are small and easy to solve and the solutions of
the subproblems can be woven together to form a solution to the original problem.

Probably the most difficult part of solving problems recursively is to figure out how
knowing the solution to smaller subproblems of the same type as the original problem
will give you a solution to the problem as a whole. You suppose you know the solutions
to smaller subproblems and ask yourself how you would best make use of that knowledge
to solve the larger problem. The supposition that the smaller subproblems have already
been solved has been called the recursive paradigm or the recursive leap offaith. Once
you take this leap, you are right in the middle of the most difficult part of the problem, but
generally, the path to a solution from this point, though difficult, is short. The recursive
leap of faith is similar to the inductive hypothesis in a proof by mathematical induction.

Example 8.1.5 The Tower of Hanoi

In 1883 a French mathematician, Edouard Lucas, invented a puzzle that he called The
Tower of Hanoi (La Tour D'Hanof). The puzzle consisted of eight disks of wood with
holes in their centers, which were piled in order of decreasing size on one pole in a row
of three. A facsimile of the cover of the box is shown in Figure 8.1. 1. Those who played
the game were supposed to move all the disks one by one from one pole to another, never
placing a larger disk on top of a smaller one. The directions to the puzzle claimed it was
based on an old Indian legend:
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On the steps of the altar in the temple of Benares, for many, many years
Brahmins have been moving a tower of sixty-four golden disks from one

pole to another, one by one, never placing a larger on top of a smaller.
When all the disks have been transferred the Tower and the Brahmins will
fall, and it will be the end of the world.

Edouard Lucas
(1842-1891)

-SnA

Io

I

Figure 8.1.1

The puzzle offered a prize of ten thousand francs (about $34,000 dollars today) to anyone
who could move a tower of 64 disks by hand while following the rules of the game. (See
Figure 8.1.2.) Assuming that you transferred the disks as efficiently as possible, how
many moves would be required to win the prize?

64

A B C

Figure 8.1.2

Solution An elegant and efficient way to solve this problem is to think recursively. Sup-
pose that you, somehow or other, have found the most efficient way possible to transfer a
tower of k - I disks one by one from one pole to another, obeying the restriction that you
never place a larger disk on top of a smaller one. What is the most efficient way to transfer a

I
I
I
M

5
I
E

II
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tower of k disks from one pole to another? The answer is sketched in Figure 8.1.3, where
pole A is the initial pole and pole C is the target pole, and is described below.

Step 1: Transfer the top k - I disks from pole A to pole B. If k > 2, execution of this step
will require a number of moves of individual disks among the three poles. But
the point of thinking recursively is not to get caught up in imagining the details
of how those moves will occur.

Step 2: Move the bottom disk from pole A to pole C.

Step 3: Transfer the top k -I disks from pole B to pole C. (Again, if k > 2, execution
of this step will require more than one move.)

To see that this sequence of moves is most efficient, observe that to move the bottom
disk of a stack of k disks from one pole to another, you must first transfer the top k- I
disks to a third pole to get them out of the way. Thus transferring the stack of k disks from
pole A to pole C requires at least two transfers of the top k -1 disks: one to transfer them
off the bottom disk to free the disk so that it can be moved and another to transfer them
back on top of the bottom disk after the bottom disk has been moved to pole C. If the
bottom disk were not moved directly from pole A to pole C but were moved to pole B first,
at least two additional transfers of the top k -1 disks would be necessary: one to move
them from pole A to pole C so that the bottom disk could be moved from pole A to pole
B and another to move them off pole C so that the bottom disk could be moved onto pole
C. This would increase the total number of moves and result in a less efficient transfer.

Thus the minimum sequence of moves must include going from the initial position (a)
to position (b) to position (c) to position (d). If follows that

the minimum the minimum The minimum the minimum
number of moves number of number of number of
needed to transfer moves needed + moves needed + moves needed 81.3
a tower of k disks -to go from to go from togo from..
from pole A to position (a) position (b) position (c)
pole C to position (b) to position (c) to position (d)

For each integer n > 1, let

-, = the minimum number of moves needed to transfers
- Fa tower of n disks from one pole to another

Note that the numbers mn are independent of the labeling of the poles; it takes the same
minimum number of moves to transfer n disks from pole A to pole C as to transfer n disks
from pole A to pole B, for example. Also the values of m, are independent of the number
of larger disks that may lie below the top n, provided these remain stationary while the
top n are moved. Because the disks on the bottom are all larger than the ones on the top,
the top disks can be moved from pole to pole as though the bottom disks were not present.

Now going from position (a) to position (b) requires mk- i moves, going from position
(b) to position (c) requires just one move, and going from position (c) to position (d)
requires mk-I moves. By substitution into equation (8.1.3), therefore,

Mk =k 1+1 + mkk-

= 2mk-I + I for all integers k > 2.

The initial condition, or base, of this recursion is found by using the definition of the
sequence. Because just one move is needed to move one disk from one pole to another,

[the minimum number of moves needed to move
[a tower of one disk from one pole to another J
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Tower of

A
A B C

Initial Position

(a)

Tower of k

A B C

Position after Transferring k - I Disks from A to B

(b)

Tower of k - I

A B C

Position after Moving the Bottom Disk from A to C

(c)

Tower of

A B C

Position after Transferring k - I Disks from B to C

(d)

Figure 8.1.3 Moves for the Tower of Hanoi

iiii



464 Chapter 8 Recursion

Hence the complete recursive specification of the sequence mlI, m2, M3, .... is as follows:
For all integers k > 2,

(1) Mk 
2

Mk-l + I recurrence relation

(2) m I 1 initial condition

Here is a computation of the next five terms of the sequence:

(3) M2 = 2m1 + 1 = 2 I + I = 3 by(l)and(2)

(4) M3 = 2m2 + I = 2 * 3 + I = 7 by (1) and (3)

(5) M4 = 2m3 + I = 2 . 7 + I = 15 by (1) and (4)

(6) M5 = 2m4 + I = 2 15 + I 31 by(1)and(5)

(7) M6 = 2m5 + I = 2 * 31 + I = 63 by (1) and (6)

Going back to the legend, suppose the priests work rapidly and move one disk every
second. Then the time from the beginning of creation to the end of the world would be
M6 4 seconds. In the next section we derive an explicit formula for mi,. Meanwhile, we
can compute m64 on a calculator or a computer by continuing the process started above
(Try it!). The approximate result is

1.844674 x 1019 seconds 5.84542 x 1011 years

- 584.5 billion years,

which is obtained by the estimate of

60 60 24* (365.25) = 31,557,600
tt1i\ 8\ '1

seconds per minutes hours days seconds
minute per per per per

hour day year year

seconds in a year (figuring 365.25 days in a year to take leap years into account). Surpris-
ingly, this figure is close to some scientific estimates of the life of the universe! K

Example 8.1.6 The Fibonacci Numbers

One of the earliest examples of a recursively defined sequence arises in the writings
of Leonardo of Pisa, commonly known as Fibonacci, who was the greatest European
mathematician of the Middle Ages. In 1202 Fibonacci posed the following problem:

A single pair of rabbits (male and female) is born at the beginning of a year.
Assume the following conditions:

1. Rabbit pairs are not fertile during their first month of life but thereafter give birth
to one new male/female pair at the end of every month.

2. No rabbits die.

How many rabbits will there be at the end of the year?

Q Solution One way to solve this problem is to plunge right into the middle of it using
Fibonacci (Leonardo of Pisa) recursion. Suppose you know how many rabbit pairs there were at the ends of previous
(ca. 1175-1250) months. How many will there be at the end of the current month?

The crucial observation is that the number of rabbit pairs born at the end of month
k is the same as the number of pairs alive at the end of month k -2. Why? Because
it is exactly the rabbit pairs that were alive at the end of month k - 2 that were fertile
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during month k. The rabbits born at the end of month k - 1 were not.

month k-2 k - I k

Each pair alive here t gives birth to a pair here t.

Now the number of rabbit pairs alive at the end of month k equals the ones alive at the
end of month k - 1 plus the pairs newly born at the end of the month. Thus

the number
of rabbit
pairs alive
at the end
of month k j

the number
of rabbit

= pairs alive
at the end

Lof month k-I

the number
of rabbit

= pairs alive
at the end

-of month k-I

[the number
of rabbit

+ pairs born
at the end

l-of month k j
[the number

of rabbit
+ pairs alive

at the end
l-of month k-2

For each integer n > 1, let

Fn = [the number of rabbit pairs 1
F Lalive at the end of month n]

and let

Fo = the initial number of rabbit pairs

= 1.

Then by substitution into equation (8.1.4), for all integers k > 2,

Fk = Fk I + Fk-2-

Now Fo = 1, as already noted, and F1 = 1 also, because the first pair of rabbits is not
fertile until the second month. Hence the complete specification of the Fibonacci sequence
is as follows: For all integers k > 2,

(1) Fk = Fk-I + Fk-2

(2) Fo = 1, F 1 = I

recurrence relation

initial conditions.

To answer Fibonacci's question, compute F2, F3, and so forth through F12:

(3) F2 = F, + Fo = I + 1 = 2 by(1)and(2)

(4) F3 = F2 + F1  = 2 + I = 3 by (1), (2) and (3)

(5) F 4 = F3 + F2  = 3 + 2 = 5 by (1), (3) and (4)

(6) F 5 = F4 + F3  = 5 + 3 = 8 by (1), (4) and (5)

(7) F6 = F5 + F4  = 8 + 5 = 13 by (1), (5) and (6)

(8) F7 = F6 + F5  = 13 + 8 = 21 by (1), (6) and (7)

(9) F8 = F7 + F6  = 21 + 13 = 34 by(l),(7)and(8)

(10) F9 = Fs + F7 = 34 + 21 = 55 by (1), (8) and (9)

(11) Flo =

(12) F11 =

(13) Ft2 =

F9 +F 8  =55+34 =89 by (1), (9) and (10)

Fo + F9 =89 + 55 =144 by (1), (10) and (11)

F1I + Flo = 144 + 89 = 233 by (1), (11) and (12)

At the end of the twelfth month there are 233 rabbit pairs, or 466 rabbits in all. U

8.1.4
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Example 8.1.7 Compound Interest

On your twenty-first birthday you get a letter informing you that on the day you were
born an eccentric rich aunt deposited $100,000 in a bank account earning 4% interest
compounded annually and she now intends to turn the account over to you, provided you
can figure out how much it is worth. What is the amount currently in the account?

Solution To approach this problem recursively, observe that

the amount in the amount in the interest
the account at - the account at + earned on the
the end of any the end of the account during
particular year previous year -the year

Now the interest earned during the year equals the interest rate, 4% = 0.04 times the
amount in the account at the end of the previous year. Thus

the amount in the amount in
the account at the account at
the end of any Lthe end of the
particular year previous year

the amount in
+ (0.04) * the account at

the end of the
-previous year]

For each positive integer n, let

A = the amount in the account]
[ at the end of yeac

and let

A( = [the initial amount -

Lin the account I

Then for any particular year k, substitution into equation (8.1.5) gives

Ak = Ak-1 + (0.04) . Ak-l

= (1 + 0.04) . Ak-1 = (1.04) .Ak-1 by factoring out Ak- 1

Consequently, the values of the sequence AO, Al, A2, . . . are completely specified as
follows: for all integers k > 1,

(I) Ak = (1.04) Ak-, recurrence relation

(2) Ao = $100,000 initial condition.

The number 1.04 is called the growthfactor of the sequence.
In the next section we derive an explicit formula for the value of the account in any

year n. The value on your twenty-first birthday can also be computed by repeated substi-
tution as follows:

(3) Al = 1.04 AO = (1.04) $100,000 = $104,000

(4) A2 = 1.04-AI = (1.04).$104,000 = $108,160

(5) A3 = 1.04 * A2 = (1.04) .$108,160 = $112,486.40

(22) A20 = 1.04 . A 19  (1.04) . $210,684.92 $219,112.31

(23) A21 = 1.04 . A20 - (1.04)- $219,112.31 - $227,876.81

by (1) and (2)

by (I) and (3)

by (1) and (4)

by (I) and (21)

by (1) and (22)

The amount in the account is $227,876.81 (to the nearest cent). Fill in the dots (to
check the arithmetic) and collect your money! N

8.1.5
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Example 8.1.8 Compound Interest with Compounding Several Times a Year

When an annual interest rate of i is compounded m times per year, the interest rate paid
per period is i/m. For instance, if 3% = 0.03 annual interest is compounded quarterly,
then the interest rate paid per quarter is 0.03/4 = 0.0075.

For each integer k > 1, let Pk = the amount on deposit at the end of the kth period,
assuming no additional deposits or withdrawals. Then the interest earned during the kth
period equals the amount on deposit at the end of the (k - I)st period times the interest
rate for the period:

interest earned during kth period = Pk-, (-)
m

The amount on deposit at the end of the kth period, Pk, equals the amount at the end of
the (k - I)st period, Pk- I, plus the interest earned during the kth period:

Pk = Pk-I + Pk-I (-) = Pk-] (I + -
m m

8.1.6

Suppose $10,000 is left on deposit at 3% compounded quarterly.

a. How much will the account be worth at the end of one year, assuming no additional
deposits or withdrawals?

b. The annual percentage rate (APR) is the percentage increase in the value of the
account over a one-year period. What is the APR for this account?

Solution

a. For each integer n > 1, let P, = the amount on deposit after n consecutive quarters,
assuming no additional deposits or withdrawals, and let Po be the initial $ 10,000. Then
by equation (8.1.6) with i = 0.03 and m = 4, a recurrence relation for the sequence
PO, PI, P2, .is

(l) Pk = Pk- (I + 0.0075) = (1.0075) * Pk- for all integers k > 1.

The amount on deposit at the end of one year (four quarters), P4 , can be found by
successive substitution:

(2)P = $10,000

(3) PI = 1.0075 * P0 = (1.0075) $10,000.00 = $10,075.00 by (1) and (2)

(4) P2 = 1.0075. PI = (1.0075) $10,075.00 = $10,150.56 by (1) and (3)

(5) P3 = 1.0075- P2  (1.0075) $10,150.56 = $10,226.69 by (1) and (4)

(6) P4 = 1.0075 * P3  (1.0075)* $10,226.69 = $10,303.39 by (1) and (5)

Hence after one year there is $10,303.39 (to the nearest cent) in the account.

b. The percentage increase in the value of the account, or APR, is

10303.39 - 10000
10303.39 - ____ = 0.03034 = 3.034%.

10000
.

Example 8.1.9 Number of Bit Strings with a Certain Property

a. Recall that a bit string is a sequence of O's and l's, with e denoting the null string, or
string with no characters. Make a list of all bit strings of lengths 0, 1, 2, and 3 that do
not contain the bit pattern 11.
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b. For each integer n > 0, let[ the number of bit strings of length n1
S [ that do not contain the pattern 11 J

Find so, sI, s2 , and s3.

c. Find the number of bit strings of length ten that do not contain the pattern 1.

Solution

a. One way to solve this problem is to make a list of all bit strings of lengths 0, 1, 2, and
3 and to cross off all those that contain the pattern 1:

length 0: e

length 1: 0, 1

length 2: 00, 01, 10, k4

length 3: 000, 001, 010, 1, 100, 101,11, 1d

b. Counting the number of strings of each length that are listed in part (a) gives

so = 1, sI = 2, S2 = 3, and S3 = 5.

c. To find the number of strings of length ten that do not contain the pattern 11, you could
list all 210 = 1,024 strings of length ten and cross off those that contain the pattern 11,
as was done in part (a). However, this approach would be very time-consuming. A
more efficient solution uses recursion.

Suppose you know the number of bit strings that have length less than some integer
k and do not contain the pattern 11. To use recursion to find the number of bit strings
that have length k and do not contain the pattern 11, you have to describe strings that do
not contain the pattern 11 in terms of shorter strings that do not contain the pattern 11.

Consider the set of all bit strings of length k that do not contain the pattern 1.
Any string in the set begins with either a 0 or a 1. If the string begins with a 0, the
remaining k - I characters can be any sequence of 0's and l's except that the pattern
1 cannot appear. If the string begins with a 1, then the second character must be a 0,

for otherwise the string would contain the pattern 11; the remaining k - 2 characters
can be any sequence of 0's and l's that does not contain the pattern 11. Thus the set of
all bit strings of length k that do not contain the pattern 11 can be partitioned into two
mutually disjoint subsets as shown in Figure 8.1.4.

Set of All Bit Strings of Length k That Do Not Contain the Pattern 11

et of al bit strings Set of all bit strings
/ of the form of the form

0--- 10--

These positions may be filled These positions may be filled
in with any string of k- I in with any string of k - 2
O's and I's that does not O's and l's that does not
contain the pattern 11. contain the pattern 11.

There are Sk-1 strings There are Sk-2 strings
that start with a 0. that start with a 1.

Figure 8.1.4 Partition of a Set of Bit Strings
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By the addition rule, the number of elements in the entire set equals the sum of the
numbers of elements in the two disjoint subsets:

the number of the number of the number of
bit strings of bit strings of bit strings of
length k that = length k -1 that + length k - 2 that 8.1.7
do not contain do not contain do not contain
the pattern 11 the pattern 11 -the pattern 11

Thus by substitution into equation (8.1.7), for all integers k > 2,

(1) Sk = Sk-l + Sk-2 recurrence relation

and by part (b),

(2) so = I sI = 2 initial conditions.

It follows that

(3) S2 = SI + So = 2 + I = 3 by (1) and (2)

(4) S3 =S2+Sl = 3 + 2 =5 by (1), (2) and (3)

(5) S4 S3 + S2 = 5 + 3 = 8 by (1), (3) and (4)

(10) si0 = s9 + s8 = 89 + 55 = 144 by (1), (8) and (9).

Hence there are 144 bit strings of length ten that do not contain the bit pattern 1.
Note that, because of the similarity in the defining relation, the sequence so, s1 , S2, ...

has almost the same set of values as the Fibonacci sequence.

The Number of Partitions of a Set Into r Subsets
In an ordinary (or singly indexed) sequence, integers n are associated to numbers an. In a
doubly indexed sequence, ordered pairs of integers (m, n) are associated to numbers am n .
For example, combinations can be thought of as terms of the doubly indexed sequence
defined by Cnr = (') for all integers n and r with 0 < r < n.

An important example of a doubly indexed sequence is the sequence of Stirling num-
bers of the second kind. These numbers, named after the Scottish mathematician James
Stirling ( 1692-1770), arise in a surprisingly large variety of counting problems. They are
defined recursively and can be interpreted in terms of partitions of a set.

Observe that if a set of three elements {X1, X2, X3} is partitioned into two subsets, then
one of the subsets has one element and the other has two elements. Therefore, there are
three ways the set can be partitioned:

{XI, X2 }{X 3 } put x3 by itself

{XI, X3}{X21} put X2 by itself

{X2, X31{XI)} put xI by itself

In general, let

Snr = number of ways a set of size n
can be partitioned into r subsets

Then, by the above, S3,2 = 3. The numbers Sn,, are called Stirling numbers of the second
kind.
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Example 8.1.10 Values of Stirling Numbers

Find S4, 1, 54,2, S4,3 , and S4 4.

Solution Given a set with four elements, denote it by {xI, X 2, X 3, X4 }. The Stirling number
S4,1 = 1 because a set of four elements can be partitioned into one subset in only one way:

{Xl, X2, X 3 , X 4}.

Similarly, S4 ,4 = I because there is only one way to partition a set of four elements into
four subsets:

{XII{X2}{X31{X4}.

The number S4.2 = 7. The reason is that any partition of {xI, X2 , X3 , X4} into two
subsets must consist either of two subsets of size two or of one subset of size three and
one subset of size one. The partitions for which both subsets have size two must pair xl
with x2, with X3 , or with X4, which gives rise to these three partitions:

{XI, X2 ){X3, X4} X2 paired with xi

{XI, X3 }{X2, X4} X3 paired with x I

{XI, X4}{X2, X31 x4 pairedwithxI

The partitions for which one subset has size one and the other has size three can have any
one of the four elements in the subset of size one, which leads to these four partitions:

{X1I{X2, X3 , X4} xi by itself

{X2}{XI, X3, X4} X2 by itself

{X 3 }{XI, X2, X4 } X3 by itself

{X4}{Xl, X2, X3} x4 by itself

It follows that the total number of ways that the set (xI, X2 , X3 , X4} can be partitioned into
two subsets is 3 + 4 = 7.

Finally, 54.3 = 6 because any partition of a set of four elements into three subsets must
have two elements in one subset and the other two elements in subsets by themselves.
There are (4) = 6 ways to choose the two elements to put together, which results in the
following six possible partitions:

{Xl, X2J{X 3}{X4 1 {X2 , X3}{X1 }{X4}

{X1 , X3J{X 2}{X4} {x2 , x 4 {XI I}{X3}

{Xl, X4}{X2}{X3} {x3 , x 4 }{xI}{x 2}

Example 8.1.11 Finding a Recurrence Relation for Sn,,,

Find a recurrence relation relating St, to values of the sequence with lower indices than
n and r, and give initial conditions for the recursion.

Solution To solve this problem recursively, suppose a procedure has been found to count
both the number of ways to partition a set of n - I elements into r - 1 subsets and the
number of ways to partition a set of n - 1 elements into r subsets. The partitions of a
set of n elements {XI, X2, .. ., x,,} into r subsets can be divided, as shown in Figure 8.1.5,
into those that contain the set {x, I and those that do not.

To obtain the result shown in Figure 8.1.5, first count the number of partitions of
(xI, x2, . .x , xn I into r subsets where one of the subsets is {Ix j. To do this, imagine taking
any one of the S .Ir-1 partitions of {xI, X2, . . ., x,- } into r - 1 subsets and adding the
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Partitions of {xl, x2 , . . ., x,, I nto r Subsets

Thus the total number of partitions
of {xl, X2, . . ., x.) into r subsets
is1S-,r I+Sn-ir-

Th
tho

ere are S,-,, r partitions There are S,,-1 r partitions
it include {Ix }. that do not include {x}.

Figure 8.1.5

subset {xn I to the partition. For example, if n = 4 and r = 3, you would take one of the
three partitions of {xl, x2, X3} into two subsets, namely

{xI, x2 }{x3}, {XI, x31{x 21, or {X2, X34{Xl},

and add {X4 1. The result would be one of the partitions

{xI, x2}{x 3}{x 4}, {xI, x3}{x21{x 41, or {x2, x3}(xi }(x 4}.

Clearly, any partition of {x1 , x2, ... , x, } into r subsets with {Xn I as one of the subsets can
be obtained in this way. Hence Sn IrI is the number of partitions of {xl, x2, . X, I
into r subsets of which one is {x, }.

Next, count the number of partitions of (xI, x2, X.. , I into r subsets where (x, } is
not one of the subsets of the partition. Imagine taking any one of the Sn -,r partitions
of (x1, x2, ..., Xn- I into r subsets. Now imagine choosing one of the r subsets of the
partition and adding in the element xn. The result is a partition of (xI, x2, ... , Xn} into r
subsets none of which is the singelton subset {x,, }. Since the element xn could have been
added to any one of the r subsets of the partition, it follows from the multiplication rule
that there are rS, - r partitions of this type. For instance, if n = 4 and r = 3, you would
take the (unique) partition of (xl, x2, X3} into three subsets, namely (xl ){x2}{x3A, and add
X4 to one of these sets. The result would be one of the partitions

(xl, x4}{x2}{x3}, (x I}(X2, X41}X 3}, or (xl}{x2}{x3, X4}.

X4 is added to [xi) X4 is added to (x2} X4 is added to (x3 1

Clearly, any partition of (xl, X2, . . ., x} into r subsets, none of which is xn, }, can be
obtained in the way described above, for when xn is removed from whatever subset
contains it in such a partition, the result is a partition of (x], x2, . ... , .n- I into r subsets.
Hence rSn- l r is the number of partitions of [xI, x2, . . , Xn ) that do not contain {xn j.

Since any partition of (xi, x2, . .. , x,/ } either contains (xn I or does not,

the number of partitions [the number of partitions of

of (xl, x 2 , .  ., 1n-I (x, x 2 , .  .., Xn} into r subsets
into r subsets Lof which ({x I is one

the number of partitions of
+ (xl, x2 , . . ., X.} into r subsets

none of which is ({x I
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Thus

Sn,r = Sn-],r-I + rSn-l,r

for all integers n and r with I < r < n.
The initial conditions for the recurrence relation are

S, = 1 and Snn = I for all integers n > I

because there is only one way to partition (xl, x2 , .  . - Xn} into one subset, namely

{X 1 , X2, . . .e Xn}

and only one way to partition {xl, x2, .x . - XnI into n subsets, namely

{Xi}{X2}. * * - f{xn }

Find the first four terms of each of the recursively defined
sequences in 1-8.

1. ak = 2ak-, I + k, for all integers k > 2
a, = 1

2. bk bk- + 3k, for all integers k > 2
b - 1

3. ck = k(ck I)2, for all integers k > I
CO= 1

4. dk = k(dk 1)2, for all integers k > 1
do = 3

5. S = Sk- I + 2Sk 2, for all integers k > 2
SO = 1, sI = I

6. tk = tk-I + 2tk-2, for all integers k > 2
to =-1, t1 = 2

7. Uk = kuk-I k 2, for all integers k > 3
UI 1, u 2 = 1

8. Vk =vk-I + vk-2 + 1, for all integers k > 3
V= 1, V2 = 3

9. Let ao, a,, a 2,... be defined by the formula a, = 3n + 1,
for all integers n > 0. Show that this sequence satisfies the
recurrence relation ak = ak1 I + 3, for all integers k > 1.

10. Let bo, bI, b2 , . .. be defined by the formula bn = 4', for all
integers n > 0. Show that this sequence satisfies the recur-
rence relation bk = 4bk-1, for all integers k > 1.

11. Show that the sequence 0, 1, 3, 7, .. ., 2' - 1, . defined
for n > 0, satisfies the recurrence relation

Ck = 2ck- + I for all integers k > 1.

.

1 -lI (_ I)n d-
12. Show thatthe sequence 1, 1- I - - ( ... ,de-

''2'3! n'
fined for n > 0 satisfies the recurrence relation

Sk = k for all integers k > 1.

13. Show that the sequence 2, 3, 4, 5, . 2 + n, . defined
for n > 0, satisfies the recurrence relation

tk = 2t-I -tk 2 for all integers k > 2.

14. Show that the sequence 0,1, 5, 19, 3' - 21, . de-
fined for n > 0 satisfies the recurrence relation

dk = 5dk I - 6
dk 2 for all integers k > 2.

15. Define a sequence ao, a,, a2, .. . by the formula

L 21 [ (-2) 2  if n is even
an ((-2)(nI-)/2 if n is odd

for all integers n > 0. Show that this sequence satisfies the
recurrence relation ak = -2 ak-2, for all integers k > 2.

16. The sequence of Catalan numbers was defined in Exercise

Set 6.6 by the formula C, = l for each integer
fl + I \fl/)

n > 1. Show that this sequence satisfies the recurrence re-
4k -2

lation Ck = k Ck i, for all integers k > 2.

17. Use the recurrence relation and values for the Tower of
Hanoi sequence ml1, M2 , Mi3 , ... discussed in Example 8.1.5
to compute M7 and m8.

18. Tower of Hanoi with Adjacency Requirement: Suppose that
in addition to the requirement that they never move a larger
disk on top of a smaller one, the priests who move the disks

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.

Exercise Set .1*
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of the Tower of Hanoi are also allowed only to move disks
one by one from one pole to an adjacent pole. Assume poles
A and C are at the two ends of the row and pole B is in the
middle. Let

the minimum number of moves]
a, = needed to transfer a tower of n

disks from pole A to pole C

a. Find a,, a2, and a3. b. Find a4.
c. Find a recurrence relation for a,, a2 , a3 ....

19. Tower of Hanoi with Adjacency Requirement: Suppose the
same situation as in exercise 18. Let

the minimum number of moves]
b, = needed to transfer a tower of n

disks from pole A to pole B

a. Find b 1, b2, and b3 . b. Find b4.
c. Show that bk = ak I + 1 + bk - for all integers k > 2,

where a,, a2 , a3, .. . is the sequence defined in exercise
18.

d. Show that bk < 3bk-I + i for all integers k > 2.
* H e. Show that bk = 3bk- + I for all integers k > 2.

20. Four-Pole Tower of Hanoi: Suppose that the Tower of Hanoi
problem has four poles in a row instead of three. Disks can
be transferred one by one from one pole to any other pole,
but at no time may a larger disk be placed on top of a smaller
disk. Let s, be the minimum number of moves needed to
transfer the entire tower of n disks from the left-most to the
right-most pole.
a. Find sl. 52 , and s 3. b. Find s4.
c. Show that Sk < 2 Sk 2 + 3 for all integers k > 3.

21. Double Tower of Hanoi: In this variation of the Tower of
Hanoi there are three poles in a row and 2n disks, two of
each of n different sizes, where n is any positive integer. Ini-
tially one of the poles contains all the disks placed on top of
each other in pairs of decreasing size. Disks are transferred
one by one from one pole to another, but at no time may a
larger disk be placed on top of a smaller disk. However, a
disk may be placed on top of one of the same size. Let t, be
the minimum number of moves needed to transfer a tower
of 2n disks from one pole to another.
a. Find t1 and t2. b. Find r3.
c. Find a recurrence relation for t1 , t2, t3 ,.

22. Fibonacci Variation: A single pair of rabbits (male and fe-
male) is born at the beginning of a year. Assume the follow-
ing conditions (which are more realistic than Fibonacci's):
(1) Rabbit pairs are not fertile during their first month of

life but thereafter give birth to four new male/female
pairs at the end of every month.

(2) No rabbits die.
a. Let r, = the number of pairs of rabbits alive at the end

of month n, for each integer n > 1, and let ro = 1. Find
a recurrence relation for ro, r, r2,.

b. Compute ro, ri, r2, r3, r4, r5, and r6.
c. How many rabbits will there be at the end of the year?

23. Fibonacci Variation: A single pair of rabbits (male and fe-
male) is born at the beginning of a year. Assume the follow-
ing conditions:
(1) Rabbit pairs are not fertile during their first two months

of life, but thereaftergive birth to three new male/female
pairs at the end of every month.

(2) No rabbits die.
a. Let s, = the number of pairs of rabbits alive at the end

of month n, for each integer n > 1, and let so = 1. Find
a recurrence relation for so, s1, S2,

b. Compute so, si, s 2 , S3, s 4, and s 5.
c. How many rabbits will there be at the end of the year?

In 24-32, Fo, FI, F2, ... is the Fibonacci sequence.

24. Use the recurrence relation and values for Fo, Ft, F2,
given in Example 8.1.6 to compute F13 and F14.

25. The Fibonacci sequence satisfies the recurrence relation
Fk = Fk-l + Fk-2, for all integers k > 2.
a. Explain why the following is true:

Fk,+, = Fk + Fk-l for all integers k > 1.

b. Write an equation expressing Fk+2 in terms of Fk+1 and
Fk.

c. Write an equation expressing Fk+3 in terms of Fk+2 and
Fk I

26. Prove that Fk 3Fk-3 + 2Fk-4 for all integers k > 4.

27. Prove that Fk2-Fk2- = FkFk+I - Fk+iFk-l, for all inte-
gers k > 1.

28. Prove that Fk, 1 -IFk2F = 2FkFk-,, for all integers
k> 1.

29. Prove that Fk+I - Fk - Fk-I Fk+2, for all integers k > 1.

30. Use mathematical induction to prove that for all integers
n > O, F,+2F, - FI = (-I)'.

31. (For students who have studied calculus) Find

lim ( , assuming that the limit exists.
I-C F,

H * 32. (For students who have studied calculus) Prove that

lim ( ni) exists.
n- (c Fn

33. (For students who have studied calculus) Define
x>, xI, x2 , .. . as follows:

Xk = 2 +xk for all integers k > I

xO = 0

Find lim,,, x,. (Assume that the limit exists.)

34. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 4% annual interest com-
pounded quarterly. For each positive integer n, let R, = the
amount on deposit at the end of the nth quarter, assuming no
additional deposits or withdrawals, and let Ro be the initial
amount deposited.



474 Chapter 8 Recursion

a. Find a recurrence relation for Ro, RI, R2.
b. If Ro = $5000, find the amount of money on deposit at

the end of one year.
c. Find the APR for the account.

35. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 3% annual interest com-
pounded monthly. For each positive integer n, let Sn = the
amount on deposit at the end of the nth month, and let S0 be
the initial amount deposited.
a. Find a recurrence relation for So, Si, 52. assuming

no additional deposits or withdrawals during the year.
b. If So = $10,000, find the amount of money on deposit at

the end of one year.
c. Find the APR for the account.

36. Counting Strings:
a. Make a list of all bit strings of lengths zero, one, two,

three, and four that do not contain the bit pattern 1 I 1.
b. For each integer n > 0, let d, = the number of bit strings

of length n that do not contain the bit pattern 1I1. Find
do,di,d 2 ,di, and d4.

c. Find a recurrence relation for do, di, d ....
d. Use the results of parts (b) and (c) to find the number of

bit strings of length five that do not contain the pattern
111.

37. Counting Strings: Consider the set of all strings of a's, b's,
and c's.
a. Make a list of all of these strings of lengths zero, one,

two, and three that do not contain the pattern aa.
b. For each integer n > 0, let s, = the number of strings of

a's, b's, and c's of length n that do not contain the pattern
aa. Find so, sI, s2, and s3.

H c. Find a recurrence relation for so, s I, 2..

d. Use the results of parts (b) and (c) to find the number
of strings of a's, b's, and c's of length four that do not
contain the pattern aa.

38. For each integer n > 0, let a,, be the number of bit strings
of length n that do not contain the pattern 101.
a. Show that ak = ak- I + ak-3 + + ao + 2, for all inte-

gers k > 3.
b. Use the result of part (a) to show that if k > 3, then

ak = 
2
ak I -ak-2 + ak-3

39. With each step you take when climbing a staircase, you can
move up either one stair or two stairs. As a result, you can
climb the entire staircase taking one stair at a time, taking
two at a time, or taking a combination of one- and two-stair
increments. For each integer n > 1, if the staircase consists
of n stairs, let cn be the number of different ways to climb
the staircase. Find a recurrence relation for c,, C2, C3 ....

40. A set of blocks contains blocks of heights 1, 2, and 4 inches.
Imagine constructing towers by piling blocks of different
heights directly on top of one another. (A tower of height
6 inches could be obtained using six I-inch blocks, three

2-inch blocks, one 2-inch block with one 4-inch block on
top, one 4-inch block with one 2-inch block on top, and so
forth.) Let t, be the number of ways to construct a tower of
height n inches using blocks from the set. (Assume an infi-
nite supply of block of each size.) Find a recurrence relation
for t1 , t2 , t3 .-' ' '

*41. For each integer n > 2 let a, be the number of permuta-
tions of (1, 2, 3, . nl in which no number is more than
one place removed from its "natural" position. Thus a I = I
since the one permutation of (I 1, namely 1, does not move
I from its natural position. Also a2 = 2 since neither of the
two permutations of 11, 2), namely 12 and 21, moves either
number more than one place from its natural position.
a. Find a3.
b. Find a recurrence relation for a,, a,, a3 ....

* 42. A row in a classroom has n seats. Let s, be the number of
ways nonempty sets of students can sit in the row so that no
student is seated directly adjacent to any other student. (For
instance, a row of three seats could contain a single student
in any of the seats or a pair of students in the two outer seats.
Thus S3 = 4.) Find a recurrence relation for s1, S2, S3, ....

* 43. Let P, be the number of partitions of a set with n elements.
Show that

Pn = (n P" _ , + n 1 n- + En POJ

for all integers n > 1.

Exercises 44-50 refer to the sequence of Stirling numbers of the
second kind.

44. Find 55,4 by exhibiting all the partitions of {xI, X2, X3, X4 , X5 )

into four subsets.

45. Use the values computed in Example 8.1.10 and the recur-
rence relation and initial conditions found in Example 8. 1.11
to compute S5.2-

46. Use the values computed in Example 8.1.10 and the recur-
rence relation and initial conditions found in Example 8.1.11
to compute 55,3.

47. Find the total number of different partitions of a set with five
elements.

48. Use mathematical induction and the recurrence relation
found in Example 8.1.11 to prove that for all integers
n > 2, Sn 2 = 2- -1.

49. Use mathematical induction and the recurrence relation
found in Example 8.1.11 to prove that for all integers
n > 2, En., (3 5Sk 2) = S,+I 3.

H 50. If X is a set with n elements and Y is a set with m elements,
express the number of onto functions from X and Y using
Stirling numbers of the second kind. Justify your answer.



In 51 and 52, assume that FO, F1 , F2, ... is the Fibonacci se-
quence.

* 51. Use strong mathematical induction to prove that F. < 2'
for all integers n > 1.

H *52. Prove that for all integers n > O, gcd(Fn+,C F,) = 1.

53. A gambler decides to play successive games of blackjack
until he loses three times in a row. (Thus the gambler could
play five games by losing the first, winning the second, and
losing the final three or by winning the first two and los-
ing the final three. These possibilities can be symbolized as
LWLLL and WWLLL.) Let g, be the number of ways the
gambler can play n games.

a. Find g3, g4 , and g5.

b. Find g96
H c. Find a recurrence relation for g3, g4, g5 ,.

* 54. A derangement of the set { 1, 2, . . , n} is a permutation that
moves every element of the set away from its "natural" posi-
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tion. Thus 21 is aderangementof {1, 2), and 231 and 312 are
derangements of { 1, 2, 31. For each positive integer n, let
d, be the number of derangements of the set {1, 2, . n).
a. Find dl, d2, and d3.
b. Find d4.

H c. Find a recurrence relation for di, d2, d3, ....

55. Note that a product x 1x2 x3 may be parenthesized in two dif-
ferent ways: (xIx 2 )x3 and x,(x 2 x3 ). Similarly, there are
several different ways to parenthesize xlx2x3x4. Two such
ways are (xiX2 )(X3X4) and x1 ((X2 X3 )X4 ). Let Pn be the num-
ber of different ways to parenthesize the product xl x2 ... Xn
Show that if Pi = 1, then

n-I

P, - A P P, -k for all integers n > 2.
k=l

(It turns out that the sequence PI, P2, P3, ... is the same as
the sequence of Catalan numbers.)

8.2 Solving Recurrence Relations by Iteration
The keener one's sense of logical deduction, the less often one makes hard andfast
inferences. -Bertrand Russell, 1872-1970

Suppose you have a sequence that satisfies a certain recurrence relation and initial con-
ditions. It is often helpful to know an explicit formula for the sequence, especially if
you need to compute terms with very large subscripts or if you need to examine general
properties of the sequence. Such an explicit formula is called a solution to the recurrence
relation. In this section and the next, we discuss methods for solving recurrence relations.
In the text and exercises of this section, we will show that the Tower of Hanoi sequence
of Example 8.1.5 satisfies the formula

mn = 2' - 1,

and that the compound interest sequence of Example 8.1.7 satisfies

A, = (1.04)" . $100,000.

In Section 8.3 we will show that the Fibonacci sequence of Example 8.1.6 satisfies the
formula

1 [(I )_ (I 5)n+l

The Method of Iteration
The most basic method for finding an explicit formula for a recursively defined sequence
is iteration. Iteration works as follows: Given a sequence ao, a], a2 , .... defined by a
recurrence relation and initial conditions, you start from the initial conditions and calculate
successive terms of the sequence until you see a pattern developing. At that point you
guess an explicit formula.
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Example 8.2.1 Finding an Explicit Formula

Let ao, a,, a2 , .... be the sequence defined recursively as follows: For all integers k > 1,

(1) ak = ak I + 2 recurrence relation

(2) ao = 1 initial condition.

Use iteration to guess an explicit formula for the sequence.

Solution Recall that to say

ak = ak 1 + 2 for all integers k > I

means

aF =aF l +2 no matter what positive integer is
placed into the box C.

In particular,

a, = ao + 2,

a2= a +2,

a3 = a2 + 2,

and so forth. Now use the initial condition to begin a process of successive substitutions
into these equations, not just of numbers (as was done in Section 8.1) but of numerical
expressions.

The reason for using numerical expressions rather than numbers is that in these prob-
lems you are seeking a numerical pattern that underlies a general formula. The secret of
success is to leave most of the arithmetic undone. However, you do need to eliminate
parentheses as you go from one step to the next. Otherwise, you will soon end up with a
bewilderingly large nest of parentheses. Also, it is nearly always helpful to use shorthand
notations for regrouping additions, subtractions, and multiplications. Thus, for instance,
you would write

5-2 insteadof 2+2+2+2+2

and

25 insteadof 2-2 2-2.2.

Notice that you don't lose any information about the number patterns when you use these
shorthand notations.

Here's how the process works for the given sequence:

ao = I the initial condition

al = a, + 2 I 1 + 2

a2=al +2= (1+2)+2 - 1+2+2

a3 =a 2 +2= (1+2+2)+2 - 1+2+2+2

a4 = a3 + 2 = (1 + 2 + 2 + 2) + 2- + 2 + 2 + 2 + 2

by substitution

eliminate parentheses

eliminate parentheses again; write
3 . 2 instead of2 + 2 + 2?

eliminate parentheses again;
definitely write 4- 2 instead of
2 + 2 + 2 + 2-the length of the
string of 2's is getting out of hand.
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Since it appears helpful to use the shorthand k . 2 in place of 2 + 2 +... + 2 (k times),
we do so, starting again from ao.

a0 = I

a, = ao + 2 = 1 + 2

= I + 0. 2 the initial condition

= I + I . 2 by substitution

a2 =a, + 2 = (I +2)+ 2 = I + 2 2

a 3 =a 2 +2=(I+2 2)+2=1+3-2

a4 = a3 + 2 = (1 + 3.2) + 2 = 1 + 4.2

a5 = a4+2= (1+4.2)+2 = 1 +5.2

At this point it certainly seems likely that
the general pattern is 1 + n * 2; check
whether the next calculation supports this.

It does! So go ahead and write an answer.
It's only a guess, after all.

Guess: a,= l +n 2=1 +2n

The answer obtained for this problem is just a guess. To be sure of the correctness of this
guess, you will need to check it by mathematical induction. Later in this section, we will
show how to do this. A

A sequence like the one in Example 8.2.1, in which each term equals the previous term
plus a fixed constant, is called an arithmetic sequence. In the exercises at the end of this
section you are asked to show that the (n + I)st term of an arithmetic sequence always
equals the initial value of the sequence plus n times the fixed constant.

w i aL M-

Ad rithmetic sequence it, nd only if, there is a

Lik =ak. +d; for allinegersk> 1.

ao + dn for all integers n > 0.

Example 8.2.2 An Arithmetic Sequence

Under the force of gravity, an object falling in a vacuum falls about 9.8 meters farther
each second than it fell the second before. Thus, neglecting air resistance, a skydiver
leaving an airplane falls approximately 9.8 meters between 0 and I seconds after departure,
9.8 + 9.8 = 19.6 meters between I and 2 seconds after departure, and so forth. If air
resistance is neglected, how many meters would the diver fall between 60 and 61 seconds
after leaving the airplane?

Solution Let d, be the distance the skydiver would fall between n and n + I seconds after
exiting the airplane if there were no air resistance. Thus do is the distance fallen between 0
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and 1 seconds after exiting, d, is the distance fallen between 1 and 2 seconds after exiting,
and so forth. Then do = 9.8, and since the diver would fall 9.8 meters farther each second
than the second before,

dk = dk- + 9.8 meters for all integers k > 1.

It follows that do, dj, d2, . . . is an arithmetic sequence with a constant adder of 9.8 and
that

d, = do + n . (9.8) for each integer n > 0.

Hence between the 60th and the 61st seconds after exiting, the diver would fall

d60 = 9.8 + 60 . (9.8) = 597.8 meters.

Note that 597.8 meters is approximately equal to 1,961 feet or about three or four city
blocks, which is a long way to fall in one second. Of course, this result was obtained by
neglecting air resistance, which in fact cuts the diver's speed considerably. U

In an arithmetic sequence, each term equals the previous term plus a fixed constant.
In a geometric sequence, each term equals the previous term times a fixed constant.
Geometric sequences arise in a large variety of applications, such as compound interest,
certain models of population growth, radioactive decay, and the number of operations
needed to execute certain computer algorithms.

Example 8.2.3 The Explicit Formula for a Geometric Sequence

Let r be a fixed nonzero constant, and suppose a sequence ao, a,, a2, . .. is defined recur-
sively as follows:

ak = rak1 for all integers k > 1,

ao = a.

Use iteration to guess an explicit formula for this sequence.

Solution ao = a

a, = rao = ra

2
a2 = ral = r (ra) = 2a

a3 = ra2 = r (r2 a) = 
3 a

a4 = ra3 = r (r 3a) = r4a

Guess: a, = rna = arn for any arbitrary integer n > 0

In the exercises at the end of this section, you are asked to prove that this formula is
correct. M
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A sequence ao, al, a2, ... is called a geometric sequence if, and only if, there is a
constant r such that

ak rakt for all integers k > 1.

Or, equivalently,:

an-ao r' for all integers n > 0.

Example 8.2.4 A Geometric Sequence

As shown in Example 8.1.7, if a bank pays interest at a rate of 4% per year compounded
annually and A, denotes the amount in the account at the end of year n, then Ak =

(1.04 )Ak-1, for all integers k > 1, assuming no deposits or withdrawals during the year.
Suppose the initial amount deposited is $100,000, and assume that no additional deposits
or withdrawals are made.

a. How much will the account be worth at the end of 21 years?

b. In how many years will the account be worth $1,000,000?

Solution

a. AO, Al, A2 , ... is a geometric sequence with initial value 100,000 and constant multi-
plier 1.04. Hence,

A, = $100,000- (1.04)' for all integers n > 0.

After 21 years, the amount in the account will be

A21 = $100,000. (1.04)21 - $227,876.81.

This is the same answer as that obtained in Example 8.1.7 but is computed much more
easily (at least if a calculator with a powering key, such as E or X, is used).

b. Let t be the number of years needed for the account to grow to $1,000,000. Then

$1,000,000 = $100,000- (1.04)t.

Dividing both sides by 100,000 gives

10 = (1.04)',

and taking natural logarithms of both sides results in

ln(10) = ln(I.04)t.

Then

In(0)-t In(1.04) because Iogb(x") = alogb(x)
(see exercise 30 of Section 7.2)

and so
ln(10)

_____ =58.7
ln(l .04)

Hence the account will grow to $1,000,000 in approximately 58.7 years.
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An important property of a geometric sequence with constant multiplier greater than
I is that its terms increase very rapidly in size as the subscripts get larger and larger. For
instance, the first ten terms of a geometric sequence with a constant multiplier of 10 are

1, low 102, 103, 104, 105, 106, 107, 108, 109.

Thus, by its tenth term, the sequence already has the value 109 = 1,000,000,000 = I bil-
lion. The following box indicates some quantities that are approximately equal to certain
powers of 10.

= 07 number of seconds in a year

1011 number of neurons in a human brain

1017 age of the universe in seconds (according to one theory)

1030 number of bytes of memory in a personal computer

1031 - number of seconds to process all possible positions of a checkers game if
moves are processed at a rate of 1 per billionth of a second

1081 number of atoms in the universe

10111 number of seconds to process all possible positions of a chess game if
moves are processed at a rate of I per billionth of a second

Using Formulas to Simplify Solutions
Obtained by Iteration

Explicit formulas obtained by iteration can often be simplified by using formulas such as
those developed in Section 4.2. For instance, according to the formula for the sum of a
geometric sequence with initial term I (Theorem 4.2.3), for each real number r except
r = 1,

1+r +r + ..* +rn = for all integers n > 0.
r - 1 _

And according to the formula for the sum of the first n integers (Theorem 4.2.2),

1 + 2 + 3 + * + n = ( 2 ) for all integers n > 1.
2

Example 8.2.5 An Explicit Formula for the Tower of Hanoi Sequence

Recall that the Tower of Hanoi sequence mI, M2 , M3 , ... of Example 8.1.5 satisfies the
recurrence relation

mk = 2 mk- I + I for all integers k > 2

and has the initial condition

mI = 1.

Use iteration to guess an explicit formula for this sequence, and make use of a formula
from Section 4.2 to simplify the answer.
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Solution By iteration

ml= 1

ma=2m+I1=2 1+1 =2X+1,

my = 2m2 + 1 = 2 (2 + 1) + 1 = 2® + 2 + 1,

These calculations show that each term UP to m5 is a sum of successive powers of 2,
starting with 20 = 1 and going up to 2k, where k is I less than the subscript of the term.
The pattern would seem to continue to higher terms because each term is obtained from
the preceding one by multiplying by 2 and adding 1; multiplying by 2 raises the exponent
of each component of the sum by 1, and adding 1 adds back the 1 that was lost when the
previous 1 was multiplied by 2. For instance, for n = 6,

m6 = 2m5 + 1 = 2(24 + 23 + 22 + 2 + 1) + 1 = 25 + 24 + 23 + 22 + 2 + 1.

Thus it seems that, in general,

Mn = 2 + 2 2 + + 2 2 + 2 + 1.

By the formula for the sum of a geometric sequence (Theorem 4.2.3),

2n + 2n + 22 + 2 + - =2-1.
2-

Hence the explicit formula seems to be

m, = 2' - I for all integers n > 1. A

2.(2+1)+1I (22+2)+1 2 2+2+1.

Caution! It is not true that

2 This is false.

A common mistake people make when doing problems such as this is to misuse
the laws of algebra. For instance, by the distributive law,

a- (b + c) = a b + a c for all real numbers a, b, and c.

Thus, in particular, for a = 2, b = 2, and c = 1,

2 (2+1) =2 2+2 1=22+2.

It follows that

A
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Example 8.2.6 Using the Formula for the Sum of the First n Integers

Let K,, be the picture obtained by drawing n dots (which we call vertices) and joining
each pair of vertices by a line segment (which we call an edge). (In Chapter 11 we discuss
these objects in a more general context.) Then K1, K2 , K3, and K4 are as follows:

KK2 K3  K4

Observe that K5 may be obtained from K4 by adding one vertex and drawing edges
between this new vertex and all the vertices of K4 (the old vertices). The reason this
procedure gives the correct result is that each pair of old vertices is already joined by an
edge, and adding the new edges joins each pair of vertices consisting of an old one and
the new one.

New vertex

K95

Thus

the number of edges of K5 = 4 + the number of edges of K 4.

By the same reasoning, for all integers k > 2, the number of edges of Kk is k - I more
than the number of edges of Kk- I. That is, if for each integer n > I

s- = the number of edges of K,,,

then

Sk = Sk-l + (k-1) for all integers k > 2.

Use iteration to find an explicit formula for sI, S2, S3,.

Solution Because

Sk = sk-1 + (k - 1) for all integers k > 2

and

s(D =

then, in particular, 2 t

S3z = Si + I = X, C
- s 1 + 13-0+0

t 3-i

s® =s 2 +2= (0+1)+2=-0l+0I

4 1

SQ = S3 +3= (0+1+2) +3 -0 +12 +,

5 - I

Ss =S4+4=(0+ 1 +2+3) +4=0+1+2+3+ ®,

Guess: s= o + I + 2 + *+
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But by Theorem 4.2.2,

0 +1+ 2 +3 + - (n (n )n n(n 1)
kI 2 2

Hence it appears that

n(n -)
sn= .E

2

Checking the Correctness of a Formula
by Mathematical Induction

As you can see from some of the previous examples, the process of solving a recurrence
relation by iteration can involve complicated calculations. It is all too easy to make a
mistake and come up with the wrong formula. That is why it is important to confirm your
calculations by checking the correctness of your formula. The most common way to do
this is to use mathematical induction.

Example 8.2.7 Using Mathematical Induction to Verify the Correctness of a Solution
to a Recurrence Relation

In Example 8.2.5 we obtained a formula for the Tower of Hanoi sequence. Use mathe-
matical induction to show that this formula is correct.

Solution What does it mean to show the correctness of a formula for a recursively defined
sequence? You are given a sequence of numbers that satisfies a certain recurrence relation
and initial condition. Your job is to show that each term of the sequence satisfies the
proposed explicit formula. To do this, you need to prove the following statement:

To prove this by mathematical induction, you prove a basis step (that the formula holds
for n = 1) and an inductive step (that if the formula holds for an integer n = k, then it
holds for n = k + 1). In other words, you show that

1. ml =2 1  1

2. If mk = 2k _ 1, for some integer k > 1, then mk+1 = 2 k+±_1.

Proof of Correctness:

Show that the formula holds for n = 1: Observe that ml = 1 by definition of the se-
quence ml, Mi2 , M3, .... And 21 -1 = 1 by basic algebra. Hence mlI = 21 -1, and so
the formula holds for n = 1.

Show that for all integers k > 1, if the formula holds for n = k, then it holds for
n = k + 1: Suppose that

mk = 2k _1 for some integer k > 1. This is the inductive hypothesis.

We must show that

Mk+1 = 2 k+ - 1.

If ml, M2 , M3 , . .. is the sequence defined by

mk = 2 mk-I + 1 for all integers k > 2, and

m = 1,
then m, = 2' - I for all integers n > 1.
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But the left-hand side of this equation is

mk+1 -
2 m(k+])-l + 1 by definition of ml, m2, m3,....

= 2
mk + I

= 2(2- }1) + 1 by substitution from the inductive hypothesis

= 2 k+ -2 + 1 by the distributive law and the fact that 2 -2k = 2k+

= 2 k+ 1 - 1 by basic algebra

which equals the right-hand side of the equation. [Since the basis and inductive steps
have been proved, it follows by mathematical induction that the given formula holds for
all integers n > 1. ] E

Discovering That an Explicit Formula Is Incorrect
The following example shows how the process of trying to verify a formula by mathe-
matical induction may reveal a mistake.

Example 8.2.8 Using Verification by Mathematical Induction to Find a Mistake

Let co, cl, c2, ... be the sequence defined as follows:

ck = 
2
ck- 1 + k for all integers k > 1,

Co= 1.

Suppose your calculations suggest that cO, c1, c2, ... satisfies the following explicit for-
mula:

cn = 2' + n for all integers n > 0.

Is this formula correct?

Solution Start to prove the statement by mathematical induction and see what develops. The
proposed formula passes the basis step of the inductive proof with no trouble, for on the one
hand, co = 1 by definition of cO, c, c2 , . and on the other hand, 2 0 + 0 = 1 + 0 = I
also.

In the inductive step, you suppose

ck = 2k+ k for some integer k > 0 This is the inductive hypothesis.

and then you must show that

Ck+t = 2 k+1 + (k + 1).

To do this, you start with Ck+l, substitute from the recurrence relation, and then use the
inductive hypothesis as follows:

ck+]= 
2
ck + (k + 1) by the recurrence relation

= 2 (2 k + k) + (k + 1) by substitution from the inductive hypothesis

= 2 k+1 + 3k + 1 by basic algebra

To finish the verification, therefore, you need to show that

2 k+t + 3 k + I = 2k+ + (k + 1).

Now this equation is equivalent to

2k = 0 by subtracting 2 k+1 + k + I from both sides,
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which is equivalent to

k = 0 by dividing both sides by 2.

But this is false since k may be any nonnegative integer. Hence the sequence co, cl, ....
does not satisfy the proposed formula. U

Once you have found a proposed formula to be false, you should look back at your
calculations to see where you made a mistake, correct it, and try again.

Exercise Set 8.2
1. The formula

I +2+3+. n =n(n + 1)

is true for all integers n > 1. Use this fact to solve each of
the following problems:
a. If k is an integer and k > 2, find a formula for the ex-

pression I + 2 + 3 + + (k - 1).
b. If n is an integer and n > 1, find a formula for the ex-

pression3+2+4+6+8+ +2n.
c. If n is an integer and n > 1, find a formula for the ex-

pression3+3 2+3 3+ . +3 n+n.

2. The formula

rn+l - I

r-I

is true for all real numbers r except r = I and for all in-
tegers n > 0. Use this fact to solve each of the following
problems:
a. If i is an integer and i > 1, find a formula for the ex-

pression I + 2 + 22 + .+ 2'.
b. If n is an integer and n > 1, find a formula for the ex-

pression 3`1 + 3n- 2 + .. + 32+ 3 + l.
c. If n is an integer and n > 2, find a formula for the expres-

sion 2' + 2'-2 . 3 + 2-3 . 3 + ... +223+ 2 3 + 3.
d. If n is an integer and n > 1, find a formula for the expres-

sion 2' - 2-1 + 2'-2 - 2"-3 + + (- I 2 +
(-I)n.

In each of 3-15 a sequence is defined recursively. Use iteration
to guess an explicit formula for the sequence. Use the formulas
from Section 4.2 to simplify your answers whenever possible.

3. ak = kak-1, for all integers k > I
ao = 1

4. bk = lk , I for all integers k > I
I+ bk-I

bo = l

5. Ck = 3
Ck-I + 1, for all integers k> 2

c, = I

H 6. dk = 2dk 1 + 3, for all integers k> 2
d = 2

7. ek = 
4

ek + 5, for all integers k > 1
eo = 2

8. fk - fk-1 + 2 k, for all integers k > 2

-1-

H 9. gk = 9k I ,for all integers k > 2

10. hk = 2k- hk-1, for all integers k > I
ho = I

11. Pk = 
2

Pk-1 + 3

Pi = 2

12. Sk = Sk- I + 2k, for all integers k > I
so = 3

13. tk = tk I + 3k + 1, for all integers k > I
to = 0

* 14. xk = 3Xk-I + k, for all integers k > 2
xI = I

15. A = Yk- + k2, for all integers k > 2
Yi = 1

16. Solve the recurrence relation obtained as the answer to ex-
ercise 18(c) of Section 8.1.

17. Solve the recurrence relation obtained as the answer to ex-
ercise 21(c) of Section 8.1.

18. Suppose d is a fixed constant and ao, al, a2, .... is a sequence
that satisfies the recurrence relation ak = ak-1 + d, for all
integers k > 1. Use mathematical induction to prove that
a, = ao + nd, for all integers n > 0.

19. A worker is promised a bonus if he can increase his produc-
tivity by 2 units a day every day for a period of 30 days. If
on day 0 he produces 170 units, how many units must he
produce on day 30 to qualify for the bonus?

20. A runner targets herself to improve her time on a certain
course by 3 seconds a day. If on day 0 she runs the course
in 3 minutes, how fast must she run it on day 14 to stay on
target?

21. Suppose r is a fixed constant and ao, al, a 2 ... is a sequence
that satisfies the recurrence relation ak = rak-1, for all in-
tegers k > 1 and ao = a. Use mathematical induction to
prove that a, = ar', for all integers n > 0.

I + r + r2+ - - - + rn =
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22. As shown in Example 8.1.8, if a bank pays interest at a
rate of i compounded m times a year, then the amount of
money Pk at the end of k time periods (where one time
period = I/mth of a year) satisfies the recurrence relation
Pk = [I + (i/m)]Pk- with initial condition P0 = the initial
amount deposited. Find an explicit formula for P_

23. Suppose the population of a country increases at a steady
rate of 3% per year. If the population is 50 million at a
certain time, what will it be 25 years later?

24. A chain letter works as follows: One person sends a copy
of the letter to five friends, each of whom sends a copy to
five friends, each of whom sends a copy to five friends, and
so forth. How many people will have received copies of the
letter after the twentieth repetition of this process, assuming
no person receives more than one copy?

25. A certain computer algorithm executes twice as many op-
erations when it is run with an input of size k as when it is
run with an input of size k -I (where k in an integer that is
greater than 1). When the algorithm is run with an input of
size 1, it executes seven operations. How many operations
does it execute when it is run with an input of size 25?

26. A person saving for retirement makes an initial deposit of
$1,000 to a bank account earning interest at a rate of 3%
per year compounded monthly, and each month she adds an
additional $200 to the account.
a. For each nonnegative integer n, let A, be the amount in

the account at the end of n months. Find a recurrence
relation relating Ak to Ak-I.

H b. Use iteration to find an explicit formula for A,
c. Use mathematical induction to prove the correctness of

the formula you obtained in part (b).
d. How much will the account be worth at the end of 20

years? At the end of 40 years?
H e. In how many years will the account be worth $10,000?

27. A person borrows $3,000 on a bank credit card at a nominal
rate of 18% per year, which is actually charged at a rate of
1.5% per month.
a. What is the annual percentage rate (APR) for the card?

(See Example 8.1.8 for a definition of APR.)
b. Assume that the person does not place any additional

charges on the card and pays the bank $150 each month
to pay off the loan. Let B, be the balance owed on the
card after n months. Find an explicit formula for B_

c. How long will be required to pay off the debt?
d. What is the total amount of money the person will have

paid for the loan?

In 28-42 use mathematical induction to verify the correctness of
the formula you obtained in the referenced exercise.

28. Exercise 3 29. Exercise 4

31. Exercise 6 32. Exercise 7

34. Exercise 9 H 35. Exercise 10 36. Exercise 11

H 37. Exercise 12 38. Exercise 13 39. Exercise 14

40. Exercise 15 41. Exercise 16 42. Exercise 17

In each of 43-49 a sequence is defined recursively. (a) Use it-
eration to guess an explicit formula for the sequence. (b) Use
strong mathematical induction to verify that the formula of part
(a) is correct.

ak-I
43. ak = - I, for all integers k > I

2ak-1 , -I
ao = 2

2
44. bk =- bk I.for all integers k > 2

bI = 1

45. Vk = VLk121 + VL(k+1)12J + 2, for all integers k > 2,
VI = 1.

H 46. Sk = 2Sk-2, for all integers k > 2,
so = 1,s] =2.

47. tk = k -tk- 7 for all integers k > 1,
to = 0.

H 48. Wk = Wk 2 + k, for all integers k > 3,
I = 1,w 2 = 2.

H 49. Uk = Uk-2 Uk-, for all integers k > 2,
uo = ul = 2.

In 50 and 51 determine whether the given recursively defined
sequence satisfies the explicit formula a. = (n - 1)2, for all in-
tegers n > 1.

50. ak = 
2
ak - + k -I, for all integers k > 2

a, =0

51. ak (ak- + 1)
2
, for all integers k > 2

a, -0

52. A single line divides a plane into two regions. Two lines (by
crossing) can divide a plane into four regions; three lines
can divide it into seven regions (see the figure). Let P. be
the maximum number of regions into which n lines divide
a plane, where n is a positive integer.

Line 3

Line 2

30. Exercise 5

33. Exercise 8
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H a. Derive a recurrence relation for Pk in terms of Pk I, for
all integers k > 2.

b. Use iteration to guess an explicit formula for P,.

H 53. Compute [I T for small values of n (up to about 5 or 6).

Conjecture explicit formulas for the entries in this matrix,
and prove your conjecture using mathematical induction.

54. In economics the behavior of an economy from one period
to another is often modeled by recurrence relations. Let Yk

be the income in period k and Ck be the consumption in
period k. In one economic model, income in any period is
assumed to be the sum of consumption in that period plus in-
vestment and government expenditures (which are assumed
to be constant from period to period), and consumption in
each period is assumed to be a linear function of the income

of the preceding period. That is,

Yk = Ck + E where E is the sum of investment
plus government expenditures

Ck = C + mYk M where c and m are constants.

Substituting the second equation into the first gives Yk =

E+c+mYk l.
a. Use iteration on the above recurrence relation to obtain

Y -= (E+c)( ) +mYo

for all integers n > 1.

b. (For students who have studied calculus) Show that if

0 < m < 1, then lim Y, -
o 1o m

8.3 Second-Order Linear Homogeneous
Recurrence Relations with Constant Coefficients
Genius is 1% inspiration and 99% perspiration. -Thomas Alva Edison, 1932

In section 8.2 we discussed finding explicit formulas for recursively defined sequences
using iteration. This is a basic technique that does not require any special tools beyond
the ability to discern patterns. In many cases, however, a pattern is not readily discernible
and other methods must be used. A variety of techniques are available for finding explicit
formulas for special classes of recursively defined sequences. The method explained in
this section is one that works for the Fibonacci and other similarly defined sequences.

I. 1 gi1^;

A second-order linear homogeneous recurrence relation with constant coeffi-
cients is a recurrence relation of the form

ak = Aak-l + Bak-2 for all integers k > some fixed integer,

where A and B are fixed real numbers with B A 0.

"Second-order" refers to the fact that the expression for ak contains the two previous
terms ak-1 and ak-2, "linear" to the fact that ak-l and ak 2 appear in separate terms and
to the first power, "homogeneous" to the fact that the total degree of each term is the same
(thus there is no constant term), and "constant coefficients" to the fact that A and B are
fixed real numbers that do not depend on k.

Example 8.3.1 Second-Order Linear Homogeneous Recurrence Relations
with Constant Coefficients

State whether each of the following is a second-order linear homogeneous recurrence
relation with constant coefficients:

a. ak = 3ak-I + 2ak-2 b. bk =bk X+bbk 22+bk 3

C. Ck = 2 ck-I - 7 Ck-2 d. dk = dk-I + dk- I dk-2
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e. ek = 2ek-2 f. A= 2fk 1+ 1

g- g9k = k-I +gk-2 h. hk =(-I)hk-I + (k- l)hk-2

Solution

a. Yes;A=3andB=2

b. No; not second-order

c. Yes; A = and B = - 7

d. No; not linear

e. Yes; A = 0 and B = 2

f. No; not homogeneous

g. Yes; A = I and B = I

h. No; nonconstant coefficients M

The Distinct-Roots Case
Consider a second-order linear homogeneous recurrence relation with constant coeffi-
cients:

ak = Aak-I + Bak-2 for all integers k > 2, 8.3.1

where A and B are fixed real numbers. Suppose that for some number t with t :A 0, the
sequence

It, t2, t3,. . tn,.

satisfies relation (8.3.1). This means that each term of the sequence equals A times the
previous term plus B times the term before that. So for all integers k > 2,

tk = Atk-l + Btk-2.

Since t 7& 0, this equation may be divided by tk-2 to obtain

t2 = At + B,

or, equivalently,

t2 - At-B = 0. 8.3.2

This is a quadratic equation, and the values of t that make it true can be found either by
factoring or by using the quadratic formula.

Now work backward. Suppose t is any number that satisfies equation (8.3.2). Does the
sequence 1, t, t2, t3 , . . ., tn. . . . satisfy relation (8.3.1)? To answer this question, multiply
equation (8.3.2) by tk-2 to obtain

k-2 2 k-2 k-2
t .t _t *At _tk 

2 B =0.

This is equivalent to

tk - Atk-I - Btk 2 0

or

tk= Atk-I + Btk-2

Hence the answer is yes: 1, t, t2 , t3, . ., t' . . . satisfies relation (8.3.1).
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This discussion proves the following lemma.

Let Aand be eal umber. A ecurencerelattion ~ofthefr

fon~8330

A 1 t2, t3,= A .a . + . 8.3is satisfiediby the sequence

whr ti nneo elnubr if, andonly if, ;t satisfies the equation ;

tV -at-B0=X 8.3.2

Equation (8.3.2) is called the characteristic equation of the recurrence relation.

,I ME 'I

Given a second-order linear homogeneous recurrence relation with constant coeffi-
cients:

ak = Aak-1 + Bak-2 for all integers k > 2, 8.3.1

the characteristic equation of the relation is

t 2 - At-B = O. 8.3.2

Example 8.3.2 Using the Characteristic Equation to Find Solutions to a Recurrence Relation

Consider the recurrence relation that specifies that the kth term of a sequence equals the
sum of the (k - I)st term plus twice the (k - 2)nd term. That is,

ak = ak-1 + 2 ak-2 for all integers k > 2. 8.3.3

Find all sequences that satisfy relation (8.3.3) and have the form

It, t , t3 .  t.

where t is nonzero.

Solution By Lemma 8.3.1, relation (8.3.3) is satisfied by a sequence 1, t, t
2 , t3 ., tn

if, and only if, t satisfies the characteristic equation

t2 - t-2 = O.

Since

_ t - 2 = (t - 2)(t + 1),

the only possible values of t are 2 and -1. It follows that the sequences

1, 2,22 23, ... ,2',. and 1, _1 (_1)2, (_1)3, (_I)n

are both solutions for relation (8.3.3) and there are no other solutions of this form. Note
that these sequences can be rewritten more simply as

1, 2, 22,23, ... , 2', . . . and 1, -1, 1,-I... - . (-1)n, E

The example above shows how to find two distinct sequences that satisfy a given
second-order linear homogeneous recurrence relation with constant coefficients. It turns
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out that any linear combination of such sequences produces another sequence that also
satisfies the relation.

Given a second-order linear homogeneous recurrence relation with constant coeffi-
cients, if the characteristic equation has two distinct roots, then Lemmas 8.3.1 and 8.3.2
can be used together to find a sequence that satisfies both the recurrence relation and the
specific initial conditions.

Example 8.3.3 Finding the Linear Combination That Satisfies the Initial Conditions

Find a sequence that satisfies the recurrence relation of Example 8.3.2,

ak = ak + 2 ak-2 for all integers k > 2,

and that also satisfies the initial conditions

8.3.3

ao = I and a, = 8.

Lemma 8.3.2

If rO, rl, r2, -.*. and so, sI, s2, ... are sequences that satisfy the same second-order
linear homogeneous recurrence relation with constant coefficients, and if C and D
are any numbers then the sequence ao, ai, a2 , .. defined by the formula

a, = Cr, : Ds,,0 forall integers n > 0

alsosatiesthesame recurrence relation.

Proof:

Suppose ro, r1, r2 , ... and so, St, S2, . . . are sequences that satisfy the same second-
order linear homogeneous recurrence relation with constant coefficients. In other
words, suppose that for some real numbers A and B,

rk = Ark-I + Brk-2 and Sk = Ask-I + BSk-2 8.3.4

for all integers k > 2. Suppose also that C and D are any numbers. Let ao, a I, a2, ...

be the sequence defined by

a, = Cr, + Ds, for all integers n > 0. 8.3.5

[We must show that ao, al, a2 , . . . satisfies the same recurrence relation as ro, rl,
r2, ... and so, sI, S2 ..... That is, we must show that ak = Aak-I + Bak-2, for all
integers k > 2.]

For all integers k > 2,

Aak 1 + Bak-2 - A(Crk-I + Dsk- ) + B(Crk-2 + Dsk-2) by substitution
from (8.3.5)

= C(Ark-I + Brk 2) + D(ASk + Bsk-2) by basic algebra

= Crk + Dsk by substitution
from (8.3.4)

= ak by substitution
from (8.3.5).

Hence ao, a,, a2 , ... satisfies the same recurrence relation as ro, ri, r2, .... and
So, SI, S2, .... [as was to be shown].
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Solution By Example 8.3.2, the sequences

1, 2, 22, 23, . . . , 2', . . . and 1, -1, 1, -1, . . . , (_-I)n,...

both satisfy relation (8.3.3) (though neither satisfies the given initial conditions). By
Lemma 8.3.2, therefore, any sequence ao, a,, a2 , . .. that satisfies an explicit formula of
the form

a, = C. 2n + D(-l), 8.3.6

where C and D are numbers, also satisfies relation (8.3.3). You can find C and D so that
ao, a,, a2, ... satisfies the specified initial conditions by substituting n = 0 and n = 1 into
equation (8.3.6) and solving for C and D:

ao=l=C 20 +D(-1)0,

al = 8- C 2' + D(-1)'.

When you simplify, you obtain the system

I =C+D

8= 2C -D,

which can be solved in various ways. For instance, if you add the two equations, you get

9 = 3C,

and so

C = 3.

Then, by substituting into I = C + D, you get

D =-2.

If follows that the sequence a0, a1, a2 , . .. given by

an = 3 * 2- + (-2) (- I)- = 3 * 2' - 2(- 1)'

for integers n > 0, satisfies both the recurrence relation and the given initial condi-
tions. U

The techniques of Examples 8.3.2 and 8.3.3 can be used to find an explicit formula for
any sequence that satisfies a second-order linear homogeneous recurrence relation with
constant coefficients for which the characteristic equation has distinct roots, provided that
the first two terms of the sequence are known. This is made precise in the next theorem.

Theorem 8.3.3 Distincts-Roots Theorem

Suppose a sequence ao, al, a2 , . .. satisfies a recurrence relation

ak = Aak-l + Bak-2 8.3.1

for some real numbers A and B and all integers k > 2. If the characteristic equation

t2- At-B = 0 8.3.2

has two distinct roots r and s, then ao, a,, a2, .... satisfies the explicit formula

a = Cr' + Ds',

where C and D are the numbers whose values are determined by the values ao and a,.
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Note: To say "C and D are determined by the values of a0 and al" means that C and D
are the solutions to the system of simultaneous equations

ao=Cr +Ds0  and a, = Cr + Ds ,

or, equivalently,

ao=C+D and a, =Cr+Ds.

In exercise 19 at the end of this section you are asked to verify that this system always
has a solution when r A s.

Proof:

Suppose that for some real numbers A and B, a sequence a0, al, a2, . . . satisfies
the recurrence relation ak = Aak-I + Bak-2, for all integers k > 2, and suppose the
characteristic equation t2 - At -B = 0 has two distinct roots r and s. We will show
that

for all integers n > 0, a, =Cr + Ds',

where C and D are numbers such that

ao = Cr0 + Ds0  and a, -Cr 1 + Ds1 .

Consider the formula

a, = Cr" + Ds'.

We use strong mathematical induction to prove that the formula holds for all integers
n > 0. In the basis step, we prove not only that the formula holds for n = 0 but also
that it holds for n = 1. The reason we do this is that in the inductive step, we need
the formula to hold for n = 0 and n = I in order to prove that it holds for n = 2.

Show that the formula holds for n = 0 and n = 1: The truth of the formula for
n = 0 and n = I is automatic because C and D are exactly those numbers that make
the following equations true:

ao=Cr +Ds0  and a, = Cr +Ds t .

Show that for all integers k, if k > 2 and the formula holds for all integers i
with 0 < i < k, then it holds for k: Suppose that k > 2 and for all integers i with
0 < i <k,

ai = Cr' + Ds' This is the inductive hypothesis.

We must show that
k k

ak =Cr +Ds

Now by the inductive hypothesis,

ak = Crk + Dsk and ak-2 = Cr + Ds
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Remark: The t of Lemma 8.3.1 and the C and D of Lemma 8.3.2 and Theorem 8.3.3 are
referred to simply as numbers. This is to allow for the possibility of complex as well as
real number values. If both roots of the characteristic equation of the recurrence relation
are real numbers, then C and D will be real. But if the roots are nonreal complex numbers,
then C and D will be nonreal complex numbers.

The next example shows how to use the distinct-roots theorem to find an explicit
formula for the Fibonacci sequence.

Example 8.3.4 A Formula for the Fibonacci Sequence

The Fibonacci sequence F0, F1, F2 , ... satisfies the recurrence relation

Fk = Fk-I + Fk-2 for all integers k > 2

with initial conditions

Fo = F. = 1.

Find an explicit formula for this sequence.

Solution The Fibonacci sequence satisfies part of the hypothesis of the distinct-roots theo-
rem since the Fibonacci relation is a second-order linear homogeneous recurrence relation
with constant coefficients (A = 1 and B = 1). Is the second part of the hypothesis also
satisfied? Does the characteristic equation

t2_t 1 =0

have distinct roots? By the quadratic formula, the roots are

I+ 11-2
1 = I /1 -4 4(-1) 2

2 - -

2

and so the answer is yes. It follows from the distinct-roots theorem that the Fibonacci
sequence satisfies the explicit formula

F- = C ( 2 ) + D ( 2 ) for all integers n > 0 8.3.7

so

ak = Aak-1 + Bak-2 by definition of
ao, al, a20

= A(Crk-1 + DSk-1) + B(Crk-2 + Dsk-2) by inductive hypothesis

= C(Ark-1 + Brk-2) + D(Ask-1 + BSk-2) by combining terms
involving C and D together

= Crk + Dsk by Lemma 8.3.1.

This is what was to be shown.

[The reason the last equalityfollowsfrom Lemma 8.3.1 is that since r and s satisfy the
characteristic equation (8.3.2), the sequences r0

, ri, r2, . . . and s0, s 2, .2 . satisfy

the recurrence relation (8.3.1).]
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where C and D are the numbers whose values are determined by the fact that Fo = F1 = 1.
To find C and D, write

Fo l C(>' +/D) +D( 2 /) 0 = C 1±+D 1 C+D

and

F1  C 1 C ( l+ ) + D ( I )

(12 )±( 2)

Thus the problem is to find numbers C and D such that

C+D= 1

and

C (1 2) + D(1 )=.
( 2 ) ( 2 )

This may look complicated, but in fact it is just a system of two equations in two unknowns.
In exercise 7 at the end of this section, you are asked to show that

C = and D = (I )

Substituting these values for C and D into formula (8.3.7) gives

( d) ( I + )n +( l ))nF, = I+Vf (1(2)_ ~ '/5~) (1 2),f

or, simplifying,

F = 1 ( ) ,n+ ( I I )n+1 8.3.8

for all integers n > 0. Remarkably, even though the formula for Fn involves V5, all of the
values of the Fibonacci sequence are integers. It is also interesting to note that the numbers
(1 + 35_)/2 and (1 - V5)/2 are related to the golden ratio of Greek mathematics. (See
exercise 24 at the end of this section.) U

The Single-Root Case
Consider again the recurrence relation

ak = Aak-1 + Bak-2 for all integers k > 2, 8.3.1

where A and B are real numbers, but suppose now that the characteristic equation

t 2 - At-B = 0 8.3.2

has a single real root r. By Lemma 8.3. 1, one sequence that satisfies the recurrence relation
is

1r2 3 r n,r, r , r ,... ...
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But another sequence that also satisfies the relation is

0, r, 2r2 , 3r3 nr.

To see why this is so, observe that since r is the unique root of t2 - At-B - 0, the
left-hand side of the equation can be factored as (t - r)2 , and so

t2 - At-B = (t-r)2 = t2 - 2rt + r2 . .3.9

Equating coefficients in equation (8.3.9) gives

A=2r and B=-r2 . 8.3.10

Let so, SI, S2, ... be the sequence defined by the formula

Sn = nrn for all integers n > 0.

Then

Ask-I + Bsk-2 = A(k - l)rk-I + B(k -2)rk 2 by definition

= 2r(k - I)rk-I - r2(k- 2)rk-2 by substitution from (8.3.10)

= 2(k- l)rk - (k -2)rk

= (2k - 2 - k + 2)rk

= krk by basic algebra

= Sk by definition.

Thus so, sI, s2, ... satisfies the recurrence relation. This argument proves the following
lemma.

Lemmas 8.3.2 and 8.3.4 can be used to establish the single-root theorem, which tells
how to find an explicit formula for any recursively defined sequence satisfying a second-
.order linear homogeneous recurrence relation with constant coefficients for which the
characteristic equation has just one root. Taken together, the distinct-roots and single-root
theorems cover all second-order linear homogeneous recurrence relations with constant
coefficients. The proof of the single-root theorem is very similar to that of the distinct-roots
theorem and is left as an exercise.

Lemma 8.3.4

Let A and B be real numbers and suppose the characteristic equation

t2 - At - B = 0

has a single root r. Then the sequences 1, r , r , r3 , . . ., r', . . . and 0, r, 2r2 ,
3r3 , . . ., nr', . . . both satisfy the recurrence relation

ak = Aak- I + Bak-2

for all integers k > 2.
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Example 8.3.5 Single-Root Case

Suppose a sequence bo, bl, b2.... satisfies the recurrence relation

bk = 4 bk-1 -4bk-2 for all integers k > 2, 8.3.11

with initial conditions

bo = l and b1 = 3.

Find an explicit formula for bo, bl, b2, ....

Solution This sequence satisfies part of the hypothesis of the single-root theorem because it
satisfies a second-order linear homogeneous recurrence relation with constant coefficients
(A = 4 and B = -4). The single-root condition is also met because the characteristic
equation

t2 - 4t + 4 = 0

has the unique root r = 2 [since t2 
- 4t + 4 = (t -2)2].

It follows from the single-root theorem that bo, bl, b2, . .. satisfies the explicit formula

b C 2n + Dn2n for all integers n > 0, 8.3.12

where C and D are the real numbers whose values are determined by the fact that bo = 1
and b, = 3. To find C and D, write

bo 1 = C .20 + D 0. 20 = C

and

b=3 = C * 21 + D 1 2' = 2C + 2D.

Hence the problem is to find numbers C and D such that

C = 1

and

2C + 2D = 3.

Substitute C = 1 into the second equation to obtain

2 + 2D =3,

and so
1

2

Suposea squece o, 1, 2, .. atifie recurrence relation

ak Aak.1 ± Bak' 2

forsoerealnumes A a0 r a rsk > 2. If the charcter-a
isticequationt 2 At- B = 0 hasasin )root ,,tn aa, a2 , . safies

the expici formulaff

C adD are the real number e adeby the vles of

a0 and any other known value of the sequence.
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Now substitute C = 1 and D = i into formula (8.3.12) to conclude that

b= 2n + I n2' = 2' (1 + 2) for all integers n >0. U

Example 8.3.6 Gambler's Ruin

A gambler repeatedly bets $1 that a coin will come up heads when tossed. Each time the
coin comes up heads, the gambler wins $1; each time it comes up tails, he loses $1. The
gambler will quit playing either when he is ruined (loses all his money) or when he has
$M (where M is a positive number he has decided in advance). Let P, be the probability
that the gambler is ruined if he begins playing with $n. Then if the coin is fair (has an
equal chance of coming up heads or tails),

1 1
Pk- = -Pk + - Pk-2 for each integer k with 2 < k < M.

2 2

(This follows from the fact that if the gambler has $(k -1), then he has equal chance of
winning $1 or losing $1, and if he wins $1, then his chance of being ruined is Pk, whereas
if he loses $1, then his chance of being ruined is Pk-2.) Also Po = 1 (because if he has
$0, he is certain of being ruined) and PM = 0 (because once he has $M, he quits and
so stands no chance of being ruined). Find an explicit formula for P,. How should the
gambler choose M to minimize his chance of being ruined?

Solution Multiplying both sides of Pk-, = 2PPk + Pk-2 by 2 and subtracting Pk-2 from
both sides gives

Pk = 2Pk-j - Pk-2,

which is a second-order homogeneous recurrence relation with constant coefficients. Its
characteristic equation is

t2 -2t+1 =0,

which has the single root r = 1. Thus, by the single-root theorem,

P = Cr' + Dnr' = C + Dn

(since r = 1), where C and D are determined by two values of the sequence. But P0 = I
and PM = 0. Hence

I = Po = C + D 0 = C,

0 = PM = C + DM = I + DM.

1
It follows that C = I and D =--, and so

1 M-

Pn = I- n - M for each integer n with 0 < n < M.
M M

For instance, a gambler who starts with $20 and decides to quit either if his total grows to
$100 or if he goes broke has the following chance of going broke:

100 - 20 80
P20 = - = 80%.

100 100

Observe that the larger M is relative to n, the closer Pn is to 1. In other words, the larger
the amount of money the gambler sets himself as a target, the more likely he is to go broke.
Conversely, the more modest he is in his goal, the more likely he is to reach it. U
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Exercise Set 8.3
1. Which of the following are second-order linear homoge-

neous recurrence relations with constant coefficients?
a. ak = 

2
ak-I -5ak-2 b. bk = kbk- I +k 2

c. ck=
3

Ck 1Ck 2 d. dk = 3dk-I + dk-2

e. rk = rk-I -rk-2 - 2 f. Sk = lSk 2

2. Which of the following are second-order linear homoge-
neous recurrence relations with constant coefficients?
a. ak= (k - I)ak-I + 2kak-2
b. bk =-bk-I + 7bk 2

C. Ck = 
3
Ck I + 1

d. dk = 3dk2_j + dk-2
e. rk= rk-I -6rk 3

f. Sk= Sk I + lOSk-2

3. Let ao, a,, a2 , ... be the sequence defined by the explicit
formula

a, = C 2' + D for all integers n > 0,

where C and D are real numbers.
a. Find C and D so that ao = I and a, = 3. What is a2 in

this case?
b. Find C and D so that ao = 0 and aI = 2. What is a2 in

this case?

4. Let bo, b,, b2, . . . be the sequence defined by the explicit
formula

bn = C . 3' + D(-2)' for all integers n > 0,

where C and D are real numbers.
a. Find C and D so that bo = O and b, = 5. What is b2 in

this case?
b. Find C and D so that bo = 3 and b, = 4. What is b2 in

this case?

5. Let ao, a,, a 2, . .. be the sequence defined by the explicit
formula

an = C 2' + D for all integers n > 0,

where C and D are real numbers. Show that for any choice
of C and D,

ak = 
3
ak-I -2ak-2 for all integers k > 2.

6. Let bo, b1, b2, ... be the sequence defined by the explicit
formula

b, = C .3' + D (-2) for all integers n > 0,

where C and D are real numbers. Show that for any choice
of C and D,

bk = bk I + 6bk 2 for all integers k > 2.

7. Solve the system of equations in Example 8.3.4 to obtain

C = and D= 13
2V5 2

In each of 8-10: (a) suppose a sequence of the form
1, t, t

2 , t3, . . ., tn. . . . where t 0 0, satisfies the given recur-
rence relation (but not necessarily the initial conditions), and
find all possible values of t; (b) suppose a sequence satisfies the
given initial conditions as well as the recurrence relation, and
find an explicit formula for the sequence.

8. ak = 
2
ak-I + 

3
ak 2 , for all integers k > 2

ao = 1, a, 2

9. bk = 7bk 1 0- bk-2, for all integers k > 2
bo= 2,hb =2

10. Ck = Ck I + 6Ck- 2 , for all integers k > 2
co = 0, c; = 3

In each of 11-15 suppose a sequence satisfies the given recur-
rence relation and initial conditions. Find an explicit formula
for the sequence.

11. dk = 
4

dk 2, for all integers k > 2
do = I, dl =1-

12. ek = 9 ek 2, for all integers k > 2
eo O,ej =2

13. rk = 2 rk- -rk-2, for all integers k > 2
ro = ,r, =-4

14. Sk =-4Sk- - 4
Sk 2, for all integers k > 2

SO =, s --

15. tk = 
6
tk-l 

9
tk-2, for all integers k > 2

to = 1, tj = 3

H 16. Find an explicit formula for the sequence of exercise 37 in
Section 8.1.

17. Find an explicit formula for the sequence of exercise 39 in
Section 8.1.

18. Suppose that the sequences sO, sI, S 2 , ... and to, ti, t2 ,
both satisfy the same second-order linear homogeneous re-
currence relation with constant coefficients:

Sk = 5Sk-l-4Sk 2 for all integers k > 2,

tk = Stk-I -4tk-2 for all integers k > 2.

Show that the sequence 2so + 3to, 2s, + 3t,, 2s2 + 3t2, . . .
also satisfies the same relation. In other words, show that

2
Sk + 3tk = 5(

2
Sk-I + 

3
tk-1) -

4
(

2
Sk 2 + 3

tk 2)

for all integers k > 2. Do not use Lemma 8.3.2.

19. Show that if r, s, ao, and a, are numbers with r T s, then
there exist unique numbers C and D so that

C + D =ao

Cr + Ds = a,.
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20. Show that if r is a nonzero real number, k and m are distinct
integers, and ak and am are any real numbers, then there
exist unique real numbers C and D so that

Crk + KDr = ak

Cr' + I Drm = am.

H 21. Prove Theorem 8.3.5 for the case where the values of C and
D are determined by ao and a,.

Exercises 22 and 23 are intended for students who are familiar
with complex numbers.

22. Find an explicit formula for a sequence ao, al, a2 , . . . that
satisfies

ak = 2ak - 2ak-2 for all integers k > 2

with initial conditions ao = I and a, = 2.

23. Find an explicit formula for a sequence bo, bl, b2 , ... that
satisfies

bk = 2bk - 5bk-2 for all integers k > 2

with initial conditions bo = I and b1 = 1.

24. The numbers I and I that appear in the explicit
2 2

formula for the Fibonacci sequence are related to a quantity
called the golden ratio in Greek mathematics. Consider a
rectangle of length 0 units and height 1, where 0 > l.

411

Divide the rectangle into a rectangle and a square as shown
in the preceding diagram. The square is 1 unit on each side,
and the rectangle has sides of lengths I and 4- 1. The an-
cient Greeks considered the outer rectangle to be perfectly
proportioned (saying that the lengths of its sides were in a
golden ratio to each other) if the ratio of the length to the
width of the outer rectangle equaled the ratio of the length
to the width of the inner rectangle. That is,

4 1
I 4)-I

a. Show that 4 satisfies the following quadratic equation:
t2-t_1 =0.

b. Find the two solutions of t2 t- _I = 0 and call them
41 and 02.

c. Express the explicit formula for the Fibonacci sequence
in terms of 01 and 02.

H 25. A gambler repeatedly bets that a die will come up 6 when
rolled. Each time the die comes up 6, the gambler wins
$1; each time it does not, the gambler loses $1. He will
quit playing either when he is ruined or when he wins $300.
If P, is the probability that the gambler is ruined when he
begins play with $n, then Pk-I = I Pk + 6 Pk-2 for all inte-
gers k with 2 < k < 300. Also P0 = I and P300 = 0. Find
an explicit formula for P. and use it to calculate P20.

* 26. A circular disk is cut into n distinct sectors, each shaped like
a piece of pie and all meeting at the center point of the disk.
Each sector is to be painted red, green, yellow, or blue in
such a way that no two adjacent sectors are painted the same
color. Let Sn be the number of ways to paint the disk.

H a. Find a recurrence relation for Sk in terms of Sk-l and
Sk-2 for each integer k > 4.

b. Find an explicit formula for S, for n > 2.

8.4 General Recursive Definitions
GENIE: Oh, aren't you acquainted with recursive acronyms? I thought everybody knew
about them. You see, "GOD" stands for "GOD Over Djinn "-which can be expanded
as "GOD Over Djinn, Over DJinn "-and that can, in turn, be expanded to "GOD Over
Djinn, Over Djinn, Over Djinn "-which can, in its turn, be further expanded.... You
can go as far as you like.
ACHILLES: But I'll neverfinish!
GENIE: Of course not. You can never totally expand GOD.
-Douglas Hofstadter, Gddel, Escher, Bach, 1979

Sequences of numbers are not the only objects that can be defined recursively. In this
section we discuss recursive definitions for sets, sums, products, unions, intersections,
and functions.
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Recursively Defined Sets
To define a set of objects recursively, you identify a few core objects as belonging to the
set and give rules showing how to build new set elements from old. More formally, a
recursive definition for a set consists of the following three components:

I. BASE: A statement that certain objects belong to the set.

II. RECURSION: A collection of rules indicating how to form new set objects from
those already known to be in the set.

III. RESTRICTION: A statement that no objects belong to the set other than those coming
from I and II.

Example 8.4.1 Recursive Definition of Boolean Expressions

The set of Boolean expressions was introduced in Section 1.4 as "legal" expressions
involving letters from the alphabet such as p, q, and r, and the symbols A, v, and
- [a legal expression being, for instance, p A (q V -r) and an illegal one being
A-pqrv]. To make precise which expressions are legal, the set of Boolean expressions
over a general alphabet is defined recursively.

I. BASE: Each symbol of the alphabet is a Boolean expression.

II. RECURSION: If P and Q are Boolean expressions, then so are

(a) (P A Q) and (b) (P v Q) and (c) -P.

III. RESTRICTION: There are noBoolean expressions overthe alphabetotherthanthose
obtained from I and II.

Derive the fact that the following is a Boolean expression over the English alphabet
{a, b, c, ... ,x, y, z:

(-(p A q) v (-r A p)).

Solution (1) By I, p, q, and r are Boolean expressions.

(2) By (1) and 11(a) and (c), (p A q) and -r are Boolean expressions.

(3) By (2) and 11(c) and (a), -(p A q) and (-r A p) are Boolean expressions.

(4) By (3) and 11(b), (-(p A q) V (-r A p)) is a Boolean expression. U

Example 8.4.2 The Set of Strings over an Alphabet

Consider the set S of all strings in a's and b's. S is defined recursively as follows:

I. BASE: c is in S, where c is the null string.

II. RECURSION: If s e S, then

(a) sa E S and (b) sb E S,

where sa and sb are the concatenations of s with a and b respectively.

III. RESTRICTION: Nothing is in S other than objects defined in I and 11 above.

Derive the fact that ab E S.
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Solution (1) By I, c E S.

(2) By (1) and 11(a), ca E S. But Ea is the concatenation of the null string

and a, which equals a. So a e S.

(3) By (2) and 11(b), ab E S. U

Example 8.4.3 Sets of Strings with Certain Properties

In Godel, Escher; Bach, Douglas Hofstadter introduces the following recursively defined
set of strings of M's, I's, and U's, which he calls the MI U-system*:

I. BASE: MI is in the MIU-system.

II. RECURSION:

a. IfxI is in the MIU-system, where x is a string, then xIU is in the MIU-system.
(In other words, you can add a U to any string that ends in I. For example, since
MI is in the system, so is MI U.)

b. If Mx is in the MI U-system, where x is a string, then Mxx is in the MI U-system.
(In other words, you can repeat all the characters in a string that follow an initial
M. For example, if MUI is in the system, so is MUI UI.)

c. If xIIy is in the MIU-system, where x and y are strings (possibly null), then
xUy is also in the MI U-system. (In other words, you can replace III by U. For
example, if Ml I I I is in the system, so are MI U and MUI .)

d. If xUUy is in the MIU-system, where x and y are strings (possibly null), then
xUy is also in the MI U-system. (In other words, you can replace UU by U. For
example, if MIIUU is in the system, so is MIIU.)

III. RESTRICTION: No strings other than those derived from I and II are in the MI U-
system.

Derive the fact that MUIU is in the MI U-system.

Solution (1) By I, MI is in the MI U-system.

(2) By (1) and 11(b), MII is in the MIU-system.

(3) By (2) and 11(b), MlIII is in the MIU-system.

(4) By (3) and 11(c), MUI is in the MIU-system.

(5) By (4) and 11(a), MUIU is in the MIU-system. U

Example 8.4.4 Parenthesis Structures

Certain configurations of parentheses in algebraic expressions are "legal" [such as (()()
and ()()(0], whereas others are not [such as ) ()) and ()) (((]. Here is a recursive definition
to generate the set P of legal configurations of parentheses.

I. BASE: ( is in P.

II. RECURSION:

a. If Eis in P, so is (E).

b. If E and F are in P, so is EF.

'Douglas Hofstadter, Gddel, Escher, Bach (New York: Basic Books), pp. 33-35.
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III. RESTRICTION: No configurations of parentheses are in P other than those derived
from I and II above.

Derive the fact that (()( is in P.

Solution (1) By I, ( is in P.

(2) By (1) and 11(a), (() is in P.

(3) By (2), (1), and 11(b), (()( is in P. U

Proving Properties about Recursively Defined Sets
When a set has been defined recursively, a version of mathematical induction, called
structural induction, can be used to prove that every object in the set satisfies a given
property.

Example 8.4.5 A Property of the Set of Parenthesis Structures

Consider the set P of all grammatical configurations of parentheses defined in Example
8.4.4. Prove that every configuration in P contains an equal number of left and right
parentheses.

Solution
Proof (by structural induction): Let the property be the following sentence: "The paren-
thesis configuration has an equal number of left and right parentheses."

Show that each object in the BASE for P satisfies the property: The only object in the
base for P is (, which has one left parenthesis and one right parenthesis, so it has an equal
number of left and right parentheses.

Show that for each rule in the RECURSION for P, if the rule is applied to an object
in P that satisfies the property, then the object defined by the rule also satisfies the
property: The recursion for P consists of two rules denoted 11(a) and 11(b).

Suppose E is a parenthesis configuration that has an equal number of left and right
parentheses. When rule 11(a) is applied to E, the result is (E), so both the number of
left parentheses and the number of right parentheses are increased by one. Since these
numbers were equal to start with, they remain equal when each is increased by one.

Suppose E and F are parenthesis configurations with equal numbers of left and right
parentheses. Say E has m left and right parentheses, and F has n left and right parentheses.
When rule 11(b) is applied, the result is EF, which has an equal number, namely m + n,
of left and right parentheses.

0Structural nduction for Recursively Defined Sets

LetSbeda stthdi consider a property that objects
inSmao pss o p atery obect in possesses the pty:

property., 04 +;P:0 t ~objc in~e nl0 0

Becus n ojecs thr ha thseobaied hrug te ASE and RECURSION
con n a itect in S possesses t

property.\ ~ L\ X L$fat \0\iff\000;ffff t00;0 fff0 ff;



8.4 General Recursive Definitions 503

Thus when each rule in the RECURSION is applied to a configuration of parentheses
in P with an equal number of left and right parentheses, the result is a configuration with
an equal number of left and right parentheses.

Therefore, every structure in P has an equal number of left and right parentheses. U

Recursive Definitions of Sum, Product, Union,
and Intersection

Addition and multiplication are called binary operations because only two numbers can
be added or multiplied at a time. Careful definitions of sums and products of more than
two numbers use recursion.

I.| .,|

Given numbers a,, a2 , .. ., an, where n is a positive integer, the summation from
i = 1 to n of the ai, denoted E! , ai, is defined as follows:

1 n /nl\

ai = a, and ai = Eai+ an, if n > 1.
1 ~ i-i =

The product from i = 1 to n of the ai, denoted fl'i ai, is defined by
1 n /nl\

7ai = a, and Hai =(Haian, if n > 1.
i=1 i=1 i=

The effect of these definitions is to specify an order in which sums and products of
more than two numbers are computed. For example,

Lai ( a) + a4 = ( aj) + a3) + a4 = ((a, + a2) + a3) + a4-

Sometimes these recursive definitions are started at n = 0 by decreeing that =I ai =

0 and Fl=lai = 1. Before rejecting these definitions as formalistic nonsense, observe that
the usual computer algorithms to compute sums and products use them in a very natural
way. For instance, to compute the sum of a[I], a[2], . a [n ], one normally writes

sum := 0

fork:= 1 ton

sum := sum + a[k]

next k.

The recursive definitions are used with mathematical induction to establish various
properties of general finite sums and products.

Example 8.4.6 A Sum of Sums

Prove that for any positive integer n, if a 1, a2 . a, and bi, b2 , bn are real numbers,
then

n n n

E(ai + bi) = Eai + bi.
i I i-I i 1

l l
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Solution The proof is by mathematical induction.

Show that the formula holds for n = 1: Suppose aI and b, are real numbers. Then

I

E(ai + b,) = a, + b, by definition ofZ

= Eaj + b- i also by definition of .
i=t i=1

Show that for all integers k > 1, if the formula holds for n = k, then it holds for
n = k + 1: Suppose a,, a2, . ak, ak+l and b, b2, .. bk, bk+l are real numbers and
that for some k > 1

k k k

(a, + bi) = )7 a, + bi. This is the inductive hypothesis.
1 ~ 1~ ~

We must show that
k+l k+l k+l

Y(ai + bi) = Eai + Eb i.
i=t i=1

[We will show that the left-hand side of this equation equals the right-hand side.]

But the left-hand side of the equation is

k+I k

D(a, + bi) = E(a + bi) + (ak+1 + bk+I) by definition of

= (fai + £bi) + (ak+l + bk+I) by inductive hypothesis

ai + ak+l ) + bi + bk+l by the associative and cummutative(fE I laws of algebra

k+l k+l

- Eai + ) bi by definition of
i i=l

which equals the right-hand side of the equation. This is what was to be shown. U

Like sum and product, union and intersection are binary operations, and unions and
intersections of more than two sets can be defined recursively.

I. I!

Gw in theuion of th Ai from

UA,'A):A:0 ;: :

Theinersetionft f romitd l Ai, is defined by

f A A 1  an rdAI - \fl .
f;0XV0XX :t ;ti >t:e> : ~::n1n:t
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Example 8.4.7 A Generalized De Morgan's Law

Prove that for all integers n > 1, if Al, A2 . , An are sets, then

U(AS)c = n(Ai)c.

=~l i=l

Solution The proof is by mathematical induction.

Show that the formula holds for n = 1: We must show that

(I~c ) (Ij( )

But

Show that for all integers k > 1, if the formula is true for n = k, then it is true for
n = k + 1: Suppose that for some integer k > 1,

/k c k(u Ai) = n(Ai)C. This is the inductive hypothesis.

Wi=h i=t

We must show that

k+I c

U Ai)

But

( i =l ) = ((i=l ))

= ((J Ai) uAn)c

= (Jkf(A) c

= (k+l(AX)

h i=iw tatbs n

This is what was to be shown.

k+I

= n(Ai)C.

i=l

by the recursive definition of union

by De Morgan's law for two sets

by inductive hypothesis

by the recursive definition of intersection.

.

Recursive Functions
A function is said to be defined recursively or to be a recursive function if its rule
of definition refers to itself. Because of this self-reference, it is sometimes difficult to
tell whether a given recursive function is well defined. Recursive functions are of great
importance in the theory of computation in computer science.

I c I C
Ai (Ai)' = nAi

(=1 i=1
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Example 8.4.8 McCarthy's 91 Function

The following function M: Z+ -*. Z was defined by John McCarthy, a pioneer in thetheory of computation and in the study of artificial intelligence:

n -10 if n > 100
M(n) = IM(M(n + 11)) if n < 100

for all positive integers n. Find M(99).
Solution By repeated use of the definition of M,

M(99) = M(M(1l0)) since 99 < 100
= M(100) since 110 > 100
= M(M(111)) since 100 < 100

= M(101) since 111 > 100
= 91 since 101 > 100

Carthy The remarkable thing about this function is that it takes the value 91 for all positive integers?7) less than or equal to 101. (You are asked to show this in exercise 27 at the end of this
section.) Of course, for n > 101, M(n) is well defined because it equals n - 10. E

Example 8.4.9 The Ackermann Function

In the 1920s the German logician and mathematician Wilhelm Ackermann first defined aversion of the function that now bears his name. This function is important in computerscience because it helps answer the question of what can and what cannot be computedon a computer. It is defined on the set of all pairs of nonnegative integers as follows:
A(0, n) = n + 1 for all nonnegative integers n 8.4.1

A(m, 0) = A(m - 1, 1) for all positive integers m 8.4.2
A(m, n) = A(m - 1, A(m, n - 1)) for all positive integers m and n 8.4.3

Find A(1, 2).

ckermann I.JUIUI.Iu A(1, 2) = A(0, A(1, 1)) by (8.4.3) with = I andn =2i2) = A(0, A(0, A(1, 0))) by (8.4.3) with m = I and n = I
= A(0, A(0, A(0, 1))) by (8.4.2) with m = I
= A (0, A (0, 2)) by (8.4.1) with n = I
= A(0, 3) by (8.4.1) with n = 2
= 4 by (8.4.1) with n =3.

The special properties of the Ackermann function are a consequence of its phenomenal rateof growth. While the values of A(0, 0) = 1, A(1, 1) = 3, A(2, 2) = 7, and A(3, 3) = 61are not especially impressive,

A (4, 4) 2 222

and the values of A(n, n) continue to increase with extraordinary rapidity thereafter. U

The argument is somewhat technical, but it is not difficult to show that the Ackermannfunction is well defined. The following is an example of a recursive "definition" that doesnot define a function.

John Mco
(born 19.

Wilhelm A
(1896-19e
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Example 8.4.10 A Recursive "Function" That Is Not Well Defined

Consider the following attempt to define a recursive function G from Z+ to Z. For all
integers n > 1,

1

G(n)= l+G(n)

G(3n - 1)

if n is 1

if n is even

if nisoddandn > 1

Is G well defined? Why?

Solution Suppose G is a function. Then by definition of G,

G(1) = 1,

G(2) = 1 + G(1) = 1 + 1 = 2,

G(3) = G(8) = 1 + G(4) = 1 + (1 + G(2)) = 1 + (1 + 2) = 4,

G(4) 1 + G(2) = 1 + 2 =3.

However,

G(5) = G(14) = 1 + G(7) = 1 + G(20)

= 1 + (1 + G(10)) = 1 + (1 + (1 + G(5))) = 3 + G(5).

Subtracting G(5) from both sides gives 0 3, which is false. Since the supposition that
G is a function leads logically to a false statement, it follows that G is not a function. U

A slight modification of the formula of Example 8.4.10 produces a "function" whose
status of definition is unknown. Consider the following formula: For all integers n > 1,

T(n) = IT(n)
T(3n -J

if n is 1

if n is even .

- 1) if n is odd

In the 1930s, a student, Luther Collatz, became interested in the behavior of a related
function g, which is defined as follows: g(n) = n/2 if n is even, and g(n) = 3n + 1
if n is odd. Collatz conjectured that for any initial positive number n, computation of
successive values of g(n), g2 (n), g 3 (n),... would eventually produce the number 1.
Determining whether this conjecture is true or false is called the 3n + 1 problem (or the
3x + 1 problem). If Collatz's conjecture is true, the formula for T defines a function; if
the conjecture is false, T is not well defined. As of the publication of this book the answer
is not known, although computer calculation has established that it holds for extremely
large values of n.

Exercise Set 8.4
1. Consider the set of Boolean expressions defined in Exam-

ple 8.4.1. Give derivations showing that each of the fol-
lowing is a Boolean expression over the English alphabet
{a, b, c, ... , x, y, zi.
a. (-p V (q A (r V -s)))
b. ((p v q) V -((p A -S) A r))

2. Let S be defined as in Example 8.4.2. Give derivations
showing that each of the following is in S.
a. aab b. bb

3. Consider the MIU-system discussed in Example 8.4.3.
Give derivations showing that each of the following is in
the MIU-system.
a. MIUI b. MUIIU
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H* 4. Is the string MU in the MIU-system?

5. Consider the set P of parenthesis structures defined in Ex-
ample 8.4.4. Give derivations showing that each of the fol-
lowing is in P.
a. ( ) (( )) b. ())

* 6. Determine whether either of the following parenthesis struc-
tures is in the set P defined in Example 8.4.4.
a. ( )(( ) b. (( ) ( )))(( )

7. The set of arithmetic expressions over the real numbers can
be defined recursively as follows:

I. BASE: Each real number r is an arithmetic expression.

II. RECURSION: If u and v are arithmetic expressions,
then the following are also arithmetic expressions:
a. (+u) b. (- u) c. (u + v)

d. (u -v) e. (no) f. (-)
III. RESTRICTION: There are no arithmetic expressions

over the real numbers other than those obtained from I
and II.

(Note that the expression (-) is legal even though the value

of v may be 0.) Give derivations showing that each of the
following is an arithmetic expression.

a. ((2- (0.3 4.2)) + (-7)) b. ( (9( - 2))
((4 -7)6) 6I

8. Define a set S recursively as follows:

I. BASE: I E S

II. RECURSION: If s E S, then
a. Os E S b. Is E S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every string in S ends
in a 1.

9. Define a set S recursively as follows:

I. BASE: a E S

II. RECURSION: If SE S, then,
a. sa e S b. sb e S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every string in S be-
gins with an a.

10. Define a set S recursively as follows:

L BASE: e E S

11. RECURSION: If s E S, then
a. bs E S b. sb E S
c. saa E S d. aas E S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every string in S con-
tains an even number of a's.

11. Define a set S recursively as follows:

I. BASE: I e S, 2 E 5, 3 E S, 4 e S, 5 C S, 6 E S,
7 E 5, 8 e 5, 9 5 S

II. RECURSION: If s E S and t e S, then
a. sO E S b. st e S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that no string in S repre-
sents an integer with a leading zero.

H 12. Define a set S recursively as follows:

I. BASE: 1ES,3E5,5E5,7S5,9eS

II. RECURSION: If s E S and t E S then
a. st e S b. 2s e S c. 4s e S
d. 6s E S e. 8s E S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every string in S rep-
resents an odd integer.

H 13. Define a set S recursively as follows:

I. BASE: 0 c S, 5 E S

II. RECURSION: If S C S and t E S then
a. s+t E S b. s-t E S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every integer in S is
divisible by 5.

14. Define a set S recursively as follows:

I. BASE: 0 X S

II. RECURSION: If s E S, then
a. s+3 E S b. s-3 e S

III. RESTRICTION: Nothing is in S other than objects de-
fined in I and II above.

Use structural induction to prove that every integer in S is
divisible by 3.

15. Give a recursive definition for the set of all strings of 0's
and I's that have the same number of 0's as I's.

16. Give a recursive definition for the set of all strings of 0's
and l's for which all the 0's precede all the l's.

17. Give a recursive definition for the set of all strings of a's
and b's that contain an odd number of a's.

18. Give a recursive definition for the set of all strings of a's
and b's that contain exactly one a.
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19. Use the recursive definition of summation, together with
mathematical induction, to prove the generalized distribu-
tive law that for all positive integers n, if a,, a2 . a. and
c are real numbers, then

n /
ca - c (E a)

20. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a,, a2 . a, and bl, b2 , . bn are real numbers, then

n (fi)(

21. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if al, a2 . a, and c are real numbers, then

(ca ) = Cn n|1 a, )

H 22. The triangle inequality for absolute value states that for all
realnumbersa andb, la + bl < lal + Ibl. Use the recursive
definition of summation, the triangle inequality, the defini-
tion of absolute value, and mathematical induction to prove
that for all positive integers n, if al, a2 . a, are real num-
bers, then

I 'n

Lai< E ' Ial

23. Use the recursive definitions of union and intersection to
prove the following general distributive law: For all posi-
tive integers, n, if A and B1, B2 , . . . , B, are sets, then

An UB) U(AnB,).
(Al )=i~']

24. Use the recursive definitions of union and intersection to
prove the following general distributive law: For all posi-
tive integers n, if A and B1, B2, . . ., B, are sets, then

A U nBj n(A UBj).
(="l ) = (

25. Use the recursive definitions of union and intersection to
prove the following general De Morgan's law: For all pos-
itive integers n, if Al, A2 , . . ., A, are sets, then

nAj) = U(A).

26. Use the definition of McCarthy's 91 function in Example
8.4.8 to show the following:
a. M(86) = M(91) b. M(91) = 91

* 27. Prove that McCarthy's 91 function equals 91 for all positive
integers less than or equal to 101.

28. Use the definition of the Ackermann function in Example
8.4.9 to compute the following:
a. A(l, 1) b. A(2, 1)

29. Use the definition of the Ackermann function to show the
following:
a. A(1, n) = n + 2, for all nonnegative integers n.
b. A(2, n) = 3 + 2n, for all nonnegative integers n.
c. A(3, n) = 8 .2 - 3, for all nonnegative integers n.

30. Compute T(2), T(3), T(4), T(5), T(6), and T(7) for the
"function" T defined after Example 8.4.10.

31. Student A tries to define a function F: Z+ -* Z by the rule

I if n is I

F(n) = F( 2 ) if n is even

I + F(5n -9) if n is odd and n > I

for all integers n > 1. Student B claims that F is not well
defined. Justify student B's claim.

32. Student C tries to define a function G: Z+ - Z by the rule

I if n is I

G(n) = G (2) if n is even

2G(3n -2) if n is odd and n > I

for all integers n > 1. Student D claims that G is not well
defined. Justify student D's claim.



CHAPTER 9

THE EFFICIENCY
OF ALGORITHMS

In 1637 the French mathematician and philosopher Ren6 Descartes published his great
philosophical work Discourse on Method. An appendix to this work, called "Geometry,"
laid the foundation for the subject of analytic geometry, in which geometric methods are
applied to the study of algebraic objects, such as functions, equations, and inequalities,
and algebraic methods are used to study geometric objects, such as straight lines, circles,
and half-planes.

The analytic geometry of Descartes provides the foundation for the main topic of
this chapter: the big-O, big-Omega, and big-Theta notations and their application to the
analysis of algorithms. In Section 9.1 we briefly discuss certain properties of graphs of
real-valued functions of a real variable that are needed to understand these notations. In

Rene Descartes section 9.L we aenne the notations and apply them to power and polynomial functions,
(1596-1650) and in Section 9.3 we show how the notations are used to study the efficiency of algo-

rithms. Because the analysis of algorithms often involves logarithmic and exponential
functions, we develop the needed properties of these functions in Section 9.4 and use
them to analyze several algorithms in Section 9.5.

9. 1 Real- Valued Functions of a Real Variable
and Their Graphs
The first precept was never to accept a thing as true until I knew it as such without a

single doubt - Ren6 Descartes, 1637

A Cartesian plane or two-dimensional Cartesian coordinate system is a pictorial rep-
resentation of R x R obtained by setting up a one-to-one correspondence between ordered
pairs of real numbers and points in a Euclidean plane. To obtain it, two perpendicular
lines, called the horizontal and vertical axes, are drawn in the plane. Their point of in-
tersection is called the origin, and a unit of distance is chosen for each axis. An ordered
pair (x, y) of real numbers corresponds to the point P that lies Ix units to the right or
left of the vertical axis and IyI units above or below the horizontal axis. On each axis the
positive direction is marked with an arrow.

A real-valued function of a real variable is a function from one set of real numbers
to another. If f is such a function, then for each real number x in the domain of f, there
is a unique corresponding real number f (x). Thus it is possible to define the graph of f
as follows:

510
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I. aiL

Let f be a real-valued function of a real variable. The graph of f is the set of all
points (x, y) in the Cartesian coordinate plane with the property that x is in the domain
off and y = f (x).

The definition of graph (see figure 9.1.1) means that for all x in the domain of f:

y = f(x) '} the point (x, y) lies on the graph of f.

Figure 9.1.1 Graph of a Function f

Note that if f(x) can be written as an algebraic expression in x, the graph of the
function f is the same as the graph of the equation y = f(x) where x is restricted to lie
in the domain of f.

Power Functions
A function that sends a real number x to a particular power, xa, is called a powerfunc-
tion. For applications in computer science, we are almost invariably concerned with situ-
ations where x and a are nonnegative, and so we restrict our definition to these cases.

I. !. , !

Let a be any nonnegative number. Define Pa, the power function with exponent a,
as follows:

Pa (x) = xa for each nonnegative real number x.

Example 9.1.1 Graphs of Power Functions

Plot the graphs of the power functions po, P112, Pi, and P2 on the same coordinate axes.

Solution Because the power function with exponent zero satisfies po(x) = xO = 1 for all
nonnegative numbers x,* all points of the form (x, 1) lie on the graph of po for all such x. So

*As in Section 6.7 (see page 364), we simply define 00 = 1.
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the graph is just a horizontal half-line of height 1 lying above the horizontal axis. Similarly,
pi (x) = x for all nonnegative numbers x, and so the graph of Pi consists of all points of
the form (x, x) where x is nonnegative. The graph is therefore the half-line of slope 1 that
emanates from (0, 0).

Since for each nonnegative number x, pI/ 2(x) = xl/2 = , any point with coordi-
nates (x, x), where x is nonnegative, is on the graph of P1/2. For instance, the graph of
P1/2 contains the points (0,0 ), (1, 1), (4, 2), and (9, 3). Similarly, since p2 (x) = x2 , any
point with coordinates (x, x2 ) lies on the graph of P2. Thus, for instance, the graph of P2
contains the points (0, 0), (1, 1), (2, 4), and (3, 9).

The graphs of all four functions are shown in Figure 9.1.2.

Figure 9.1.2 Graphs of Some Power Functions .

The Floor Function
The floor and ceiling functions arise in many computer science contexts. Example 9.1.2
illustrates the graph of the floor function. In exercise 5 at the end of this section you are
asked to draw the graph of the ceiling function.

Example 9.1.2 Graph of the Floor Function

Recall that each real number either is an integer itself or sits between two consecutive
integers: For each real number x, there exists a unique integer n such that n < x < n + 1.
The floor of a number is the integer immediately to its left on the number line. More
formally, the floor function F is defined by the rule

For each real number x,

F(x) = Lxj

= the greatest integer that is less than or equal to x

= the unique integer n such that n < x < n + 1.

Graph the floor function.
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Solution If n is any integer, then for each real number x in the interval n < x < n + 1, the
floor of x, Lxj, equals n. Thus on each such interval, the graph of the floor function is
horizontal; for each x in the interval, the height of the graph is n.

It follows that the graph of the floor function consists of horizontal line segments, like
a staircase, as shown in Figure 9.1.3. The open circles at the right-hand edge of each step
are used to show that those points are not on the graph.

y

3-

2 -

I1-

I 3 - 1
-5 -4 -3 -2 -1

07-1

-0 -2-

-O -3

- : 3_

- O:3_

1 2 I
1 2 3 4 5

Figure 9.1.3 Graph of the Floor Function

Graphing Functions Defined on Sets of Integers
Many real-valued functions used in computer science are defined on sets of integers
and not on intervals of real numbers. Suppose you know what the graph of a function
looks like when it is given by a certain formula on an interval of real numbers. You
can obtain the graph of the function defined by the same formula on the integers in the
interval by selecting out only those points on the known graph with integers as their first
coordinates. For instance, if f is the function defined by the same formula as the power
function p1 but having as its domain the set of nonnegative integers, then f (n) = n for
all nonnegative integers n. The graphs of pl, reproduced from Example 9.1.2, and f are
shown side-by-side below.

4 -

2 -

1 -

I-n

4 -

3 -

2 -

I1-

1 2 3 4

.

I I 2 34
1 2 3 4

Graph of pI where pI(x) = x
for all nonnegative real numbers x

Graph of f where f(n) = n
for all nonnegative integers n

Example 9.1.3 Graph of a Function Defined on a Set of Integers

Consider an integer version of the power function P1/2- In other words, define a function
g by the formula g (n) = nt /2 for all nonnegative integers n. Draw the graph of g.

y = Lx]

x

.

r

. a
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Solution Look back at the graph of pt/2 in Figure 9.1.2. Draw the graph of g by reproducing
only those points on the graph of P1/2 with integer first coordinates. Thus for each
nonnegative integer n, the point (n, n 1/2) is on the graph of g.

4-

3-

2 -

I1-

S * * *

S

1 2 3 4 5 6 7 8 9 10 1 12

Graph of g where g(n) = n /2 for all nonnegative integers n

Graph of a Multiple of a Function

.

A multiple of a function is obtained by multiplying every value of the function by a fixed
number. To understand the concept of 0-notation, it is helpful to understand the relation
between the graph of a function and the graph of a multiple of the function.

Let f be a real-valued function of a real variable and let M be any real number.
The function Mf, called the multiple of f by M or M times f, is the real-valued
function with the same domain as f that is defined by the rule

(Mf )(x) = Mf (x) for all x E domain of f.

If the graph of a function is known, the graph of any multiple can easily be de-
duced. Specifically, if f is a function and M is a real number, the height of the graph of
Mf at any real number x is M times the quantity f (x). To sketch the graph of Mf from
the graph of f, you plot the heights Mf (x) on the basis of knowledge of M and visual
inspection of the heights f (x).

Example 9.1.4 Graph of a Multiple of a Function

Let f be the function whose graph is shown below. Sketch the graph of 2f.

A 2

6 5 3 h

Graph of f- i X

i 2 3 4 5

Solution At each real number x, you obtain the height of the graph of 2f by measuring the
height of the graph of f at x and multiplying that number by 2. The result is the following

6
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graph. Note that the general shapes of f and 2f are very similar, but the graph of 2f is
"stretched out": the "highs" are twice as high and the "lows" are twice as low.

4

3

2-

-3

-4

6

.

Increasing and Decreasing Functions
Consider the absolute value function, A, which is defined as follows:

A(x) = [xj = x ifx 0 for all real numbers x.

When x > 0, the graph of A is the same as the graph of y = x, the straight line with slope
1 that passes through the origin (0, 0). For x < 0, the graph of A is the same as the graph
of y = -x, which is the straight line with slope -1 that passes through (0, 0). (See Figure
9.1.4.)

4-

3 -

2-

1-

4 -3 -12
-I

=y XI

I . . .

i 1 2 3 x

Figure 9.1.4 Graph of the Absolute Value Function

Note that as you trace from left to right along the graph to the left of the origin, the
height of the graph continually decreases. For this reason, the absolute value function is
said to be decreasing on the set of real numbers less than 0. On the other hand, as you
trace from left to right along the graph to the right of the origin, the height of the graph
continually increases. Consequently, the absolute value function is said to be increasing
on the set of real numbers greater than 0.

Since the height of the graph of a function f at a point x is f (x), these geometric
concepts translate to the following analytic definition.

.
.

I.
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S. I

Let f be a real-valued function defined on a set of real numbers, and suppose the
domain of f contains a set S. We say that f is increasing on the set S if, and only
if,

for all real numbers xl and x2 in S, if xl < x2 then f(xi) < f(X2 ).

We say that f is decreasing on the set S if, and only if,

for all real numbers xi and x2 in S, if xl < x2 then f (xi) > f(x 2 ).

We say that f is an increasing (or decreasing) function if, and only if, f is increasing
(or decreasing) on its entire domain.

Figure 9.1.5 illustrates the analytic definitions of increasing and decreasing.

f(XI) < f(X2) f(X I)> f(X 2 )

An Increasing Function

(a)

A Decreasing Function

(b)

Figure 9.1.5

It follows almost immediately from the definitions that both increasing functions and
decreasing functions are one-to-one. You are asked to show this in the exercises.

Example 9.1.5 A Positive Multiple of an Increasing Function Is Increasing

Suppose that f is a real-valued function of a real variable that is increasing on a set S of
real numbers, and suppose M is any positive real number. Show that Mf is also increasing
on S.

Solution Suppose xi and x2 are particular but arbitrarily chosen elements of S such that

XI < X 2.

[Wemustshowthat (Mf)(xi) < (Mf)(x 2 ).] From the facts thatxi < x 2 and f is increas-
ing, it follows that

f(x]) < f(x2).

t2,t(-2 ))

X
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Then

Mf(xl) < Mf(x2),

since multiplying both sides of the inequality by a positive number does not change the
direction of the inequality. Hence, by definition of Mf,

(Mf)(xj) < (Mf)(X 2),

and, consequently, Mf is increasing on S. .

It is also true that a positive multiple of a decreasing function is decreasing, that a
negative multiple of a increasing function is decreasing, and that a negative multiple of a
decreasing function is increasing. The proofs of these facts are left to the exercises.

Exercise Set 9.1 *
1. The graph of a function f is shown below.

a. Is f (0) positive or negative?
b. For what values of x does f (x) = O?
c. As x increases from -3 to- 1, do the values of f increase

or decrease?
d. As x increases from 0 to 4, do the values of f increase

or decrease?

2. Draw the graphs of the power functions p 13 and P 14 on the
same set of axes. When 0 < x < 1, which is greater: Xl/3
or x '1/4? When x > 1, which is greater: x 1/3 or x' 1/4?

3. Draw the graphs of the power functions p3 and P4 on the
same set of axes. When 0 < x < 1, which is greater: x3 or
x4? When x > 1, which is greater: x3 or x4?

4. Draw the graphs of y = 2 Lxj andy = L2xj for all real num-
bers x. What can you conclude from these graphs?

Graph each of the functions defined in 5-8 below.

5. g(x) = Fxl for all real numbers x (Recall that the ceil-
ing of x, [xl, is the least integer that is greater than or
equal to x. That is, [xl = the unique integer n such that
n - I < x < n.)

6. h(x) = x] - [x for all real numbers x

7. F(x) - Lx' 2 for all real numbers x

8. G(x) = x-Lx] for all real numbers x

In each of 9-12 a function is defined on a set of integers. Graph
each function.

9. f (n) = Iln for each integer n

10. g(n) = (n/2) + I for each integer n

11. h(n) = Ln/21 for each integern > 0

12. k(n) = Ln 1 2 j for each integer n > 0

13. The graph of a function f is shown below. Find the inter-
vals on which f is increasing and the intervals on which f
is decreasing.

/ \- I/

14. Show that the function f: R -+ R defined by the formula
f (x) = 2x -3 is increasing on the set of all real numbers.

15. Show that the function g: R -+ R defined by the formula
g(x) =-(x/3) + I is decreasing on the set of all real num-
bers.

16. Let h be the function from R to R defined by the formula
h(x) = x2 for all real numbers x.
a. Show that h is decreasing on the set of all real numbers

less than zero.
b. Show that h is increasing on the set of all real numbers

greater than zero.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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17. Letk: R -- Rbethefunctiondefinedbytheformulak(x) =

(x - I)/x for all real numbers x 0 0.
a. Show that k is increasing for all real numbers x > 0.
b. Is k increasing or decreasing for x < 0? Prove your an-

swer.

18. Show that if a function f: R -+ R is increasing, then f is
one-to-one.

19. Given real-valued functions f and g with the same domain
D, the sum of f and g, denoted f + g, is defined as follows:

For all real numbers x, (f + g)(x) = f (x) + g(x).

Show that if f and g are both increasing on a set S, then
f + g is also increasing on S.

20. a. Let m be any positive integer, and define f (x) = x' for
all nonnegative real numbers x. Use the binomial theo-
rem to show that f is an increasing function.

b. Letm and n be any positive integers, and let g(x) = x-ln
for all nonnegative real numbers x. Prove that g is an in-
creasing function.

The results of this exercise are used in the exercises for Sec-
tions 9.2 and 9.4.

21. Let f be the function whose graph is shown below. Draw
the graph of 3f.

Graph of f

I I I I \

I -

-5/4 -3 -2
V-

1 2 3 4 5 r

22. Let h be the function whose graph is shown below. Draw
the graph of 2h.

3.-

2 -

I-

51 - 2
-I

- Graph ofh

K1 , ,111

1 2345

23. Let f be a real-valued function of a real variable. Show that
if f is decreasing on a set S and if M is any positive real
number, then Mf is decreasing on S.

24. Let f be a real-valued function of a real varaible. Show that
if f is increasing on a set S and if M is any negative real
number, then Mf is decreasing on S.

25. Let f be a real-valued function of a real variable. Show that
if f is decreasing on a set S and if M is any negative real
number, then Mf is increasing on S.

In 26 and 27, functions f and g are defined. In each case draw
the graphs of f and 2g on the same set of axes and find a num-
ber x0 so that f (x) < 2g(x) for all x > x0. You can find x0 by
solving a quadratic equation, or you can find an approximate
value for x0 by using the zoom and trace features on a graphing
calculator.

26. f(x) = x2 + lOx + 11 and g(x) = x2 for all real numbers
x >0

27. f(x) = 2x 2 + 125x + 254 and g(x) = 3x2 for all real
numbers x > 0

9.2 0, 2, and E) Notations
Although this may seem a paradox, all exact science is dominated by the idea of
approximation. -Bertrand Russell, 1872-1970

It often happens that any one of several algorithms could be used to do a certain job but

the time or memory space they require varies dramatically. The 0-, Q-, and 9-notations

provide approximations that make it easy to evaluate large-scale differences in algorithm

efficiency, while ignoring differences of a constant factor and differences that occur only

for small sets of input data.

The oldest of the notations, 0-notation (read "big- 0 notation"), was introduced by the

German mathematician Paul Bachmann in 1894 in a book on analytic number theory. Both

the Q- (read "big-Omega") and 6- (read "big-Theta") notations were developed by Donald

Knuth, one of the pioneers of the science of computer programming.

The idea of the notations is this. Suppose f and g are real-valued functions of a real

variable x.

1. If, for sufficiently large values of x, the values of If I are less than those of a multiple

of Ig i, then f is of order at most g, or f (x) is O (g(x)).

,__,_7�
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2. If, for sufficiently large values of x, the values of I f I are greater than those of a multiple
of Igl, then f is of order at least g, or f (x) is Q (g(x)).

3. If, for sufficiently large values of x, the values of If I are bounded both above and
below by those of multiples of Ig1, then f is of order g, or f (x) is O (g(x)).

These relationships are illustrated in Figure 9.2. 1.

ftx) is Qfyx s(YA

f(x) is @(x)

Figure 9.2.1

RA ,

Let f and g be real-valued functions defined on the same set of nonnegative real
numbers. Then

1. f is of order at least g, written f (x) is 2(g(x)), if, and only if, there exist
positive real numbers A and a such that

Afg(x)j < if (x)j for all real numbers x > a.

2. f is of order at most g, written f (x) is O(g(x)), if, and only if, there exist
positive real numbers B and b such that

If(x)I < BIg(x)I forallrealnumbersx > b.

3. f is of order g, written f (x) is O(g(x)), if, and only if, there exist positive real
numbers A, B, and k such that

Ajg(x)I < If(x)I < BIg(x)j forallrealnumbersx > k.
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Remark on Notation: In Section 7.1 we stated that we would generally make a careful
distinction between a function f and its value f (x). The traditional use of the order
notation violates this general rule. For instance, in the statement "f(x) is 0 (g(x))," the
symbols f (x) and g(x) are understood to refer to the functions f and g defined by the
expressions f (x) and g(x), respectively. Thus the statement

3 + 4 is (0 (x"/2)

means that f is of order g where f and g are defined by f (x) = 3,/x + 4 and g(x) = x112
with some common domain (usually the largest set of nonnegative real numbers for which
both function formulas are defined).

Example 9.2.1 Translating to 0-Notation

Use 0-notation to express the statement

10jx 6
1 < 117x 6 - 45x3 + 2x + 81 < 30jx 6

1 for all real numbers x > 2.

Solution Let A = 10, B = 30, and k = 2. By definition of 9-notation, the statement trans-
lates to

17x6 -45x 3 +-2x+8 is a(x 6 ). U

Example 9.2.2 Translating to 0- and 2-Notations

a. Use Q and 0 notations to express the statements

(i) 1 5 1 I < | -( + 9) for all real numbers x > 0.

1517(Ix I 9

(ii) | ( l ) < 45 axd, for all real numbers x > 7.

b. Justify the statement 15Vx(2x + 9) is 0(aji).
X +

Solution

a. (i) Let A = 15 and a 0. By definition of 0-notation, the statement translates to

15x(2x + 9) is 2 (afX).

(ii) Let B = 45 and b = 7. By definition of 0-notation, the statement translates to

15,/x(2x + 9) i
X + I is 0CV/X).

b. Let A = 10, B = 30, and let k be the larger of 0 and 7. Then when x > k, both
inequalities in a(i) and a(ii) are satisfied, and so

Ajl,/xj < 15| 72x +9 ) < Bjlaxj for all real numbers x > k.
X + 1

Hence by definition of 0-notation, 151i(2x ± 9) is E) (a/). U
X + 1

Part (b) of Example 9.2.2 illustrates the fact that if you know both that f is of order
at most g and that f is of order at least g, then you may take x0 to be the larger of the
numbers a and b promised in the definitions for big-Omega and big-0 and conclude that
f is of order g. Conversely, if f is of order g, then both a and b may be taken to be the
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number xO promised in the definition for big-Theta to show that f is of order at most g
and f is of order at least g. These results are stated formally in the following theorem,
along with a number of other useful properties of the notations.

Theorem 9.2.1 Properties of 0-, 2-, and 1-Notations

Let f and g be real-valued functions defined on the same set of nonnegative real
numbers.

1. f (x) is Q (g(x)) and f (x) is O(g(x)) if, and only if f (x) is 6(g(x)).

2. f(x) is £2(g(x)) if, and only if, g(x) is 0(f(x)).

3. f(x) is 0(f(x)), f(x) is Q (f(x)), and f(x) is O (f(x)).

4. If f (x) is O(g(x)) and g(x) is O(h(x)), then f (x) is O(h(x)).

5. If f (x) is 0 (g (x)) and c is any nonzero real number, then cf (x) is 0 (g(x)).

6. If f(x) is 0(h(x)) and g(x) is O(k(x)), then f(x) + g(x) is 0(G(x)) where
G (x) = max(Ih (x) l, Ik(x) l) for each x in the domain of the functions.

7. If f (x) is 0(h(x)) and g(x) is O(k(x)), then f (x)g(x) is 0(h(x)k(x)).

Proof:

1. The proof of this property was given before the statement of the theorem.

2. We first show that if f (x) is Q (g(x)), then g(x) is O(f (x)). Thus, suppose f (x)
is Q(g(x)). By definition of Q-notation, there exist positive real numbers A and
a such that

A Ig (x) I < I f (x) j for all real numbers x > a.

Divide both sides by A to obtain

1
Ig(x)I < - If(x)I for all real numbers x > a.

A

Let B = 1/A and b = a. Then

Ig(x)[ < BIf(x)I for all real numbers x > b,

and so g(x) is 0(f(x)) by definition of 0-notation. The proof that if g(x) is
0(f(x)) then f(x) is Q (g(x)) is left as an exercise.

4. Suppose f (x) is 0 (g(x)) and g (x) is 0 (h (x)). By definition of 0-notation, there
exist positive real numbers B1, bl, B2, and b2 such that

If(x)I < B1 Ig(x)I for all real numbers x > b ,

and

Ig(x)I < B2Ih(x)I for all real numbers x > b2.

(If B2 < 1, we can redefine it to equal 1 and the inequality will still hold.) Let
B = B1 B2 and b be the greater of bI and b2 . Then if x > b,

If(x)I < Bjlg(x)I < Bj(B2Ih(x)I) < Blh(x)l.

Thus, by definition of 0-notation, f(x) is 0(h(x)).

3, 5-7. The proofs of these properties are left as exercises.
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Orders of Power Functions
Observe that if

1 <x,

then

x < x2 multiplying both sides by x (which is positive)

and so

x2 < X3 multiplying again by x.

Thus if 1 < x, then

1 < x < x2 < x3 by transitivity of <.

The following generalization of this result is developed in exercises 15 and 50 at the
end of this section.

For any rational numbers r and s,

if x > 1andr <s,thenxr <Xs. 9.2.1

Property (9.2.1) has the following consequence for orders.

For any rational numbers r and s,

if r < s, then Xr is O(xs). 9.2.2

The relation among the graphs of various positive power functions of x for x > 1 is
shown graphically in Figure 9.2.2.

YA

4-

3-

2-

If r < s, the graph of
y = xr lies underneath the
graph of y = xs for x > 1.

I I I I -

1 2 3 4 x

Figure 9.2.2 Graphs of Powers of x for x > 1
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Orders of Polynomial Functions
The following example shows how to use property (9.2.1) to derive a polynomial in-
equality.

Example 9.2.3 A Polynomial Inequality

Show that for any real number x,

if x > 1, then 3x3 + 2x + 7 < 12x3.

Solution Suppose x is a real number and x > 1. Then by property (9.2.1),

X < X3  and I < x3.

Multiply the left-hand inequality by 2 and the right-hand inequality by 7 to get

2x < 2x3 and 7 < 7x3 .

Now add 3x3 < 3x3, 2x < 2x3 , and 7 < 7x3 to obtain

3x3 +2x+7 ' 3x3 + 2x3 + 7x3 12x3 . .

The method of Example 9.2.3 is used in the next example (more compactly) to show
that a polynomial function has a certain order.

Example 9.2.4 Using the Definitions to Show That a Polynomial Function
with Positive Coefficients Has a Certain Order

Use the definitions of big-Omega, big-O, and big-Theta to show that 2x4 + 3x3 + 5 is
O(x4).

Solution Define functions f and g as follows. For all nonnegative real numbers x,

f (x) = 2x4 + 3x3 + 5, and

g(x) = x 4 .

Observe that for all real numbers x > 0,

2x4 < 2x4 + 3X3 + 5 because 3x3 + 5 > O for x > 0,

and so

21X41 < 12X4 + 3X3 + 51 because all terms on both sides
of the inequality are positive.

Let Ml = 2 and xl = 0. Then

Alx4I < 12X4 + 3X3 + 51 for all x > a,

and so by definition of 0-notation, 2x4 + 3x + 5 is Q (x4).
Also for x > 1,

2x 4 + 3x3 + 5 < 2x4 + 3X4 + 5x4  because by (9.2. 1), x3 < x 4 and 1 <X 4,
and so 3X

3 
< 3x

4 
and 5 < 5x4

= 2X4 + 3X3 + 5 < lOx4  because 2 + 3 + 5 = 10

12X4 + 3X3 + 51 < 101x4 1 because all terms on both sides
-2 of the inequality are positive

(When the implication arrow, A, is placed at the beginning of a line, it means that the
truth of the statement in that line is implied by the truth of the statement in the line above).
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Example 9.2.5

Let B = 10 and b = 1. Then

12x 4 + 3x3 + 51 < Blx4l for all x > b,

and so, by definition of 0-notation, 2x4 + 3x3 + 5 is 0(x4 ).
Since 2x4 + 3x3 + 5 is both Q(x4) and O(x4 ), by Theorem 9.2.1, it is 0(x4 ). U

The technique used in Example 9.2.4 can be generalized to show that any polynomial
with nonnegative coefficients is big-Theta of its highest-power term. Taken together, the
next two examples show that such a result can hold for a polynomial with negative as well
as positive coefficients.

A Big- 0 Approximation for a Polynomial with Some Negative Coefficients

a. Use the definition of O-notation to show that 3x3 - l000x - 200 is 0(x 3 ).

b. Show that 3x3 - l000x - 200 is O(x') for all integers s > 3.

Solution

a. According to the triangle inequality for absolute value (see exercise 53 in Section 3.4),

la + bl < lal + bl for all real numbers a and b.

If -b is substituted in place of b, the result is

la-bl = la + (-b)l < lal + I-bl = lal + Ibl,

la- bl lal + Ibl.

It follows that for all real numbers x > 1,

13x 3 - lOOOx - 2001 < 13X 3 1 + IlOOOxI + 12001

X 13x 3
- lOOOx -2001 < 3x3

1 + IlOOOxl + 12001 becauseal]

=> 13x 3 - l000x - 2001 < 3x3+ I000x 3 + 200x 3

triangle inequality

or

I terms on the right side
of the inequality are positive
when x > I

because by (9.2.1),x c<x3 and
1 < x 3 , and so l000x < 1000x3

and 200 < 200x 3

= 13x 3 -000x -2001 < 1203x3  because 3+ 1000+ 200= 1203

=X 13x 3  lOOOx -2001 < 12031x 3
i because x

3 
is positive.

Let b = I and B = 1203. Then

13x 3 
- 000x -2001 < Blx3 l for all real numbers x > b.

So, by definition of O-notation, 3x3 
_ lOIO x - 200 is O(x 3 ).

b. Suppose s is an integer with s > 3. By property (9.2.1), x3 < x' for all real numbers
x > 1. So Blx3

1 < Blx' I for all real numbers x > b (because b = I), and thus by part
(a),

13x 3 -lOOOx -2001 < BIxsI for all real numbers x > b.

Hence, by definition of O-notation, 3x3 
_ lOOOx - 200 is 0 (xS) for all integers s > 3.

U
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Example 9.2.6 A Big-Omega Approximation for a Polynomial with Some Negative Coefficients

a. Use the definition of U-notation to show that 3x 3 -_ OOOx - 100 is Q2(x 3).

b. Show that 3x 3 
- lOOOx - 200 is Q (xT) for all integers r < 3.

Solution

a. To show that 3x 3 - lOOOx - 200 is Q (x3), you need to find numbers a and A so that
A x31 < 13x 3 - lOOOx - 1001 for all real numbers x > a. Exercise 27 at the end of
the section shows that the following procedure for choosing a will always produce an
A that will give the desired result.

Choose a as follows: Add up the absolute values of the coefficients of the lower-
order terms of 3x 3 

- lOOOx - 100, divide by the absolute value of the highest-power
term, and multiply the result by 2. The result is a = 2(1000 + 200)/3, which equals
800. If you follow the steps below, you will see that when a is chosen in this way, A can
be taken to be one-half of the absolute value of the highest power of the polynomial.
Accordingly, assume that x > a. Then

x > 800

>2 ( 1000 + 200)

2 .1000 2 .200

3 3

2 .1000 1 2-200 1
x > ~.-+.

3 x 3 x2

3 X> 1000x + 200
2

2x 3- 3> 1000x±+200

=X 3x 3 - lOOOx - 200 >

=X 13X3 - lOOOx - 2001 >

33
2

2

because
2(1000 + 200)/3 = 800

by the rules for adding
fractions

because x > 800 and so by
I I

(9.2.1), 1 > - and I > 2
X X

by multiplying both sides
by 32

because 3 = 3--2

by adding
2 - tOOOx -200
to both sides

because the expressions on
both sides of the inequality
are positive when x > 800.

Let A = 3 and let a = 800. Then

AIx 3 1 < 13x 3 
- 1000x -1001 for all real numbers x > a.

So, by definition of 0-notation, 3x 3 - lOOOx - 100 is Q (x3 ).

b. Suppose r is an integer with r < 3. By property (9.2.1), xr < x3 for all real numbers
x > 1. So, since a = 800 > 1, A xrI < AIx 3 1 for all real numbers x > a. Thus, by

part (a),

AjxrI < 13x 3 
- 1000x - 2001 for all real numbers x > a.

Hence, by definition of U-notation, 3x 3 - 1000x -200 is Q (Xr) for all integers r < 3.
.

By Theorem 9.2.1, it follows immediately from Examples 9.2.5(a) and 9.2.6(a) that
3x 3 

- lOOOx - 100 is big-Theta of x3 , and the techniques used in the examples can be
generalized to show that every polynomial is big-Theta of the power function of its highest
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power. Moreover, the findings in parts (b) of the examples-that 3x3 
- 100Ox - 100 is

also big- 0 of xs for every integer s greater than 3 and is big-Omega of xr for every integer
r less than 3-can also be generalized to all polynomials. These facts are summarized in
the next theorem.

Theorem 9.2.2 On Polynomial Orders

Suppose ao, a,, a2, . . ., an are real numbers and a, ¢ 0.

1. anoX + a"_ixn-1 + *- * + aIx + ao is O(xs) for all integers s > n.

2. anx' + an-lixn ** + +ax+ ao is Q (xr) for all integers r < n.

3. anxn + aIxnt-I + + aix + ao is 9(xn).

Theorem 9.2.2 can easily be proved using calculus. As suggested by Examples 9.2.5
and 9.2.6, however, it can also be derived without calculus. (See exercises 26, 27, and 49
at the end of this section.)

Example 9.2.7 Calculating Polynomial Orders Using the Theorem on Polynomial Orders

Use the theorem on polynomial orders to find orders for the functions given by the fol-
lowing formulas.

a. f (x) = 7x 5 + 5x 3 - x + 4, for all real numbers x.

(x - 1)(x + 1)
b. g(x) = 4 for all realnumbers x.

Solution

a. By direct application of the theorem on polynomial orders, 7xV + 5x 3 - x + 4 is

0 (x5)
(x-( +X 1)

b. g (x) = (X-1(X+1
4

1X2
4

1 2 1
=x - by algebra

Thus g(x) is E0(x2) by the theorem on polynomial orders. D

Example 9.2.8 Showing That Two Power Functions Have Different Orders

Show that x2 is not 0(x), and deduce that x2 is not (i(x).

Solution [Argue by contradiction.] Suppose that x2 is O(x). [Derive a contradiction.] By
the supposition that x2 is 0 (x), there exist a positive real number B and a real number b
such that

[x2 1 < B for all real numbers x > b. (*

Let x be a positive real number that is greater than both B and b. Then

x * x > B * x by multiplying both sides of

x > B by x which is positive

=> 1x2 1 > Blxj because b is positive.
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Thus there is a real number x > b such that

1x21 > Bjx[.

This contradicts (*). Hence the supposition is false, and so x2 is not 0(x).
By Theorem 9.2.1, if x2 is ((x), then x2 is 0(x). But x2 is not 0(x), and thus x2 is

not #)(x). U

The technique used in Example 9.2.8 can be extended and generalized to prove that
any polynomial function in x of degree n is not big-0 (or big-Theta) of the mth power
function xm for any m < n. (See exercise 53 at the end of this section.)

It follows from Theorems 9.2.2 and 9.2.3 that integral power functions are convenient
benchmarks for comparisons among general polynomial functions because every polyno-
mial function has the same order as some power function, and no power function has the
same order as any other.

Orders for Functions of Integer Variables
It is traditional to use the symbol x to denote a real number variable, whereas n is used to
represent an integer variable. Thus, given a statement of the form

f(n) is 9(g(n)),

we assume that f and g are functions defined on sets of integers. If it is true that

f(x) is 0 (g(x)),

where f and g are functions defined for real numbers, then it is certainly true that f (n)
is 0 (g(n)). The reason is that if f(x) is E3(g(x)), then an inequality AIg(x)I < If(x)I <
B I g (x) I holds for all real numbers x > k. Hence, in particular, the inequality A Ig (n) I <
If(n)I < BIg(n)I holds for all integers n > k.

Example 9.2.9 An Order for the Sum of the First n Integers

Sums of the form 1 + 2 + 3 + * * * + n arise in the analysis of computer algorithms such
as selection sort. Show that for a positive integer variable n,

1+2+3+.--+n is 0(n2).

Solution By the formula for the sum of the first n integers (see Theorem 4.2.2), for all
positive integers n,

1+2+3+ +n = n(n 1)

Theorem 9.2.3 Limitation on Orders of Polynomial Functions

Let n be a positive integer, and let ao, a,, a. . , an be real numbers with an A 0. If
m is any integer with m < n, then

anxn + an-lx -1 +v-+al x+ao isnot O(Xm)

and so also

aXn+an- + *X * t +aix+a0 isnot 6(xm).
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But

n(n + I) 1 2 1
2 =2 n -2 n by basic algebra.

And, by the theorem on polynomial orders,

-2 + n is 8(n 2
).

2 '±2 F

Hence

1+2+3+- -+n is (0(n2 ). U

Extension to Functions Composed of Rational
Power Functions

Consider a function of the form

(x3/2 + 3)(x - 2)2 x7/
2 - 4x 5

/
2 + 4x3

/
2 + 3x- 12x + 12

x 1 /2 (2x 1
/2 + 1) 2x + x 1

/2

When the numerator and denominator are expanded, each is a sum of terms of the form
axr, where a is a real number and r is a positive rational number. The degree of such a
sum can be taken to be the largest exponent of x that occurs in one of its terms. If the
difference between the degree of the numerator and that of the denominator is called the
degree of the function and denoted d, then it can be shown that f (x) is 0 (xd), that f (x) is
O(xc) for all real numbers c > d, and that f (x) is not O(xc) for any real number c < d.
For the example given above, this means that d = 7/2 -1 = 5/2 and that

(x 3/2 + 3)(x - 2)2 is #)(x5/2 ),

x 1/2 (2x 1 /2 ± 1)

( 3/2 + 3)(x 2)2 is O(xc) for all real numbers c > 5/2,
XI/ 2 (2xl/2 + 1)

and

(x3/2 + 3)(x - 2)2 is not O(xc) for any real number c < 5/2.
xl/2 (2x]/ 2 + 1)

We state the general result as Theorem 9.2.4.

Theorem9.2.4Ords of FunconsComposed of Rational Power Functions

tanb osv ir letr, r, r2 ,...,r andsa Si, s2.--, S. benon-
negatvertiolumers w ri0 < r2 < ... < r, and so < sl < S2 < ' <

Gm ue m1 ,a.~adb, bi, b2 ,..., b be real numbers with a, 7 0 and

+ a +(x +).

b\ +: AI5'~ +X... + b~' + b~ is O~xc)for all real numbers c > r~ .

b~ ~ .. + + ~ i no O~c) or ny ealnumer c <r * Sm-.:
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Exercise Set 9.2
1. The following is a formal definition for 0-notation, written

using quantifiers and variables: f(x) is Q (g(x)) if, and only
if, 3 positive real numbers a and A such that Vx > a,

AIg(x)I < If(x)l.

a. Write the formal negation for the definition using the
symbols V and 3.

b. Restate the negation less formally without using the sym-
bols V and 3.

2. The following is a formal definition for 0-notation, writ-
ten using quantifiers and variables: f (x) is 0 (g(x)) if, and
only if, 3 positive real numbers b and B such that Vx > b,

If(x)I ' Blg(x)l.

a. Write the formal negation for the definition using the
symbols V and 3.

b. Restate the negation less formally without using the sym-
bols V and 3.

3. The following is a formal definition for 0-notation, written
using quantifiers and variables: f (x) is 9(g (x)) if, and only
if, 3 positive real numbers k, A, and B such that Vx > k,

Alg(x)l ' If(x)I ' Blg(x)l.

a. Write the formal negation for the definition using the
symbols V and 3.

b. Restate the negation less formally without using the sym-
bols V and 3.

In 4-9, express each statement using Q-, 0-, or 0-notation.

4. I5x 8 
- 9X

7 + 2x5 + 3x - 11 < 6Ix81 for all real numbers
x > 3. (Use 0-notation.)

5. x < (x 2 1)(12x + 25) < 6IxI for all real numbers

x > 2.

6. Ix7 1
< (x 2 - 7) 2 (I <X/2 + 3) for all real numbers

x > 4. (Use Q-notation.)

7. 13x 6 + 5x 4 
- X31 < 91x61 for all real numbers x > 1. (Use

0-notation.)

8. • - 50x3 + 1i for all real numbers x > 101. (Use
Q-notation.)

9 ±x2 < -3x2 80x + 71 < 31x21 for all real numbers x >
25.

In each of 10-14 assume f and g are real-valued functions de-
fined on the same set of nonnegative real numbers.

10. Prove that if g(x) is 0 (f (x)), then f (x) is Q (g(x)).

11. Prove that if f (x) is 0(g(x)) and c is any nonzero real
number, then cf (x) is 0(g(x)).

12. Prove that if f (x) is 0(h(x)) and g(x) is 0(k(x)), then
f (x) + g(x) is O(G(x)), where, for each x in the domain,
G(x) = max(Ih(x)l, Ik(x)D).

13. Prove that f (x) is 9( (f (x)).

H 14. Prove that if f(x) is 0(h(x)) and g(x) is O(k(x)), then
f (x)g(x) is 0(h(x)k(x)).

15. a. Use mathematical induction to prove that if x is any real
number with x > 1, then x' > I for all integers n > 1.

H b. Prove that if x is any real number with x > 1, then
xm < x" for any integers m and n with m < n.

16. a. Show that for any real number x,

if x > I then Ix21 < 12x2 + 15x + 41.

b. Show that for any real number x,

if x > I then 12x 2 + 15x +41 < 21x 21.

c. Use the Q- and 0 -notations to express the results of parts
(a) and (b).

d. What can you deduce about the order of 2x2 + 1 5x + 4?

17. a. Show that for any real number x,

if x > I then lx 4l < 123X4 + 8x2 + 4xl.

b. Show that for any real number x,

if x > I then 123x 4 + 8x2 + 4xI < 351x 41.

c. Use the Q- and 0-notations to express the results of parts
(a) and (b).

d. What can you deduce about the order of 23x4 + 8x2 +
4x?

18. Use the definition of 0-notation to show that

5x3 + 65x + 30 is O(x
3 ).

19. Use the definition of 09-notation to show that

X+ +l x+ 88 is ((x2).

20. a. Show that for any real number x, if x > 1 then 1x21 <

I~x211.
b. Show that for any real number x, if x > 1 then

X2]r21 < IX21.
c. Use the Q- and 0-notations to express the results of parts

(a) and (b).
d. What can you deduce about the order of Fx2l ?

21. a. Show that for any real number x, if x > I then I [LT <
1vI.

b. Showthatforanyrealnumberx,ifx > 1 then >17- I
I Lxii.

c. Use the Q- and 0-notation to express the results of parts
(a) and (b).

d. What can you deduce about the order of LV/i ?
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22. a. Show that for any real number x, if x > 1 then
17X4 - 95x3 + 31 < 1051x 41.

b. Use O-notation to express the result of part (a).

23. a. Show that for any real number x, if x > 1 then
l5x2- 42x - 81 < 51lxl

b. Use O-notation to express the result of part (a).

24. a. Show that for any real number x, if x > 1 then
4x 5 - 50x3 + 3x + 121 < 661x 5 l.

b. Use O-notation to express the result of part (a).

H 25. Show that x5 is not 0 (x2).

26. Suppose ao, a,, a2 , ... , a, are real numbers and an, 0.
Use the generalization of the triangle inequality to n integers
(exercise 22, Section 8.4) to show that

anxy + a,-)x'- + + alx + ao is O(Xn).

27. Suppose ao, a,, a2, ... , a, are real numbers and a. 0 0.
Show that anX" + a, lX- + + ajx + ao is Q (xn) by
letting

X 2( la, )

In 28-30: (a) Let a be the number obtained by adding up the
absolute values of the coefficients of the lower-order terms of the
given polynomial, dividing by the absolute value of the highest-
order term, and multiplying the result by 2, and let A be half the
coefficient of the absolute value of the highest-order term of the
polynomial. (b) Show that if x > a, the absolute value of the
polynomial will be greater than the product of A and the absolute
value of the highest-order term of the polynomial. (c) Deduce
the result given in the exercise.

28. 7x4- 95x 3 + 3is (x4).

29. X2 -42x -8 is Q(x2).

30. x5 -50x3 + 3x + 12 is 2(x 5 ).

31. Refer to the results of exercises 22 and 28 to find an order
for 7x4- 95x3 + 3 from among the set of power functions.

32. Refer to the results of exercises 23 and 29 to find an order
for 5x 2 

-42x -8 from among the set of power functions.

33. Refer to the results of exercises 24 and 30 to find an or-
derfor x5 - 50x 3 + 3x + 12 from among the set of power
functions.

Use the theorem on polynomial orders to prove each of the state-
ments in 34-39.

(x + l)(x-2) is (X 2).
4

35. X (4x 2 
-1) is 6(x 3 ).

3

36. x (x 1 + 3x is 0)(x 2 ).
2

37 n(n + 1)(2n + 1) is (n 3)
6

38. [n + ] is 0(n 4).

n(n +1) tn(n -) 2
39. 2(n-1) + 2 + 4 s2 / (n2

Prove each of the statements in 40-47, assuming n is a vari-
able that takes positive integer values. (Use formulas from the
exercise set of Section 4.2 and the theorem on polynomial orders
as appropriate.)

40. 12 +2 2 +3 2 +.. +n 2 is 0(n3 ).

41. 1 3 +2 3 +3 3 +-..+n 3 i is (n4 ).

42. 2+4+6+ +2nis0(n2 ).

43. 5+ 10 + 15 + 20 + 25 +.. + 5n is 0(n2 ).

44. Y(4i - 9) is O(n2).
i=I

H 46. Ei(i + 1) is 0(n 3).
i=I

45. ,(k + 3) is 9(n 2).
k=l

n

47. J(k2 2k) is 0(n 3 ).

k=3

H 48. (Requires the concept of limit from calculus)
a. Let ao, a,, a2 . a, be real numbers with a. t- 0.

Prove that

la, Xn +a a 1x
1-+ +-+a~x+ao

xDeo anX'

b. Use the result of part (a) and the definition of limit to
prove that

a,,x + an-X, I" + . +alx+a is 8(x ).

49. Another approach to proving part of the theorem on poly-
nomial orders uses properties of O-notation.
a. Show that if f, g, and h are functions from R to R and

f(x) is 0(h(x)) and g(x) is O(f(x)) then f(x) + g(x)
is 0(h(x)).

b. How does it follow from part (a) and Theorem 9.2.1(4)
that x4 +x 2 is 0(x4)?

c. Show that if f is a function from R to R, f(x) is 0(g(x)),
and c is any nonzero real number, then cf (x) is 0 (g (x)).

d. How does it follow from parts (a) and (c) that
12x 5 - 34X2 + 7 is O(x5 )?

e. Use the results of parts (a) and (c) to show that if n is a
positive integer and a,, a2 , . . , a, are real numbers, then

a,,x + a,-x-l + . + alx + ao is O(x ).

50. a. Let x be any positive real number. Use mathematical in-
duction to prove that for all integers n > 1, if x < 1 then
xn < 1.
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b. Explain how it follows from part (a) that if x is any pos-
itive real number, then for all integers n > 1, if x" > I
then x > 1.

c. Explain how it follows from part (b) that if x is any pos-
itive real number, then for all integers n > 1, if x > I
then x /" > 1.

H d. Let p, q, and s be positive integers, let r be a nonneg-
ative integer, and suppose p/q > ris. Use part (c) and
the result of exercise 15 to show that for any real number
x, if x > 1 then Xplq > X,,.

Explain how each statement in 51 and 52 follows from
exercise 50 and parts (a) and (c) of exercise 49.

51. 4x4/1 3  15x + 7 is 0(X4
/3).

52. /'(38x 5 + 9) is O(x /2).

H 53. Prove that if r and s are rational numbers with r > s, then
x' is not O(x').

In 54-56, use Theorem 9.2.4 to find an order for each of the
given functions from among the set of rational power functions.

54. f(x) x(3x+5)

(2X7/2 -I 1)(X 1)
55. f (x) = (X'/2 + l)(x - 1)

56. f (x) = 52+1(f- )
4X

3
/
2 - 2x

*57. a. Use mathematical induction to prove that

for +all + 3+t+e<rn.3/2

for all integers n > 1.

Charles Babbage
(1792-1871)

H b. Use mathematical induction to prove that

I2n3 I /I + X2 + X3 + + an.

c. What can you conclude from parts (a) and (b) about an
order of vI + / + 3 + * + >/i;?

*58. a. Use mathematical induction to prove that
11/3 + 21/3 + * . + n1/3 < n4/ 3 , for all integers n > 1.

b. Use mathematical induction to prove that

1 4/3 < 11/3 + 21/3 + 31/3 + + n1/3.
2

c. What can you conclude from parts (a) and (b) about an
order for 11/3 + 2'13 + 31/3 + . + n1/3 ?

Exercises 59-61 use the following definition, which requires the
concept of limit from calculus.

59. Prove that if f (x) is o(g(x)), then f (x) is O(g(x)).

60. Prove that if f (x) and g(x) are both o(h(x)), then for all
real numbers a and b, af (x) + bg(x) is o(h(x)).

61. Prove that for any positive real numbers a and b, if a < b
then xa is o(xb).

9.3 Application: Efficiency of Algorithms I
As soon as an Analytical Engine exists, it will necessarily guide the future course of the
science. Whenever any result is sought by its aid, the question will then arise-by what
course of calculation can these results be arrived at by the machine in the shortest time?
-Charles Babbage, 1864

Charles Babbage's Analytical Engine was similar in concept to a modem computer. The
above quotation suggests that Babbage anticipated the importance of analyzing the effi-
ciencies of computer algorithms well over a hundred years ago. In the 1950s and 1960s, a
number of mathematicians and computer scientists contributed to the development of al-
gorithm analysis, especially Donald Knuth, whose multivolume work The Art of Computer

S Programming provides a foundation for the subject that is both elegant and mathematically
rigorous.*

*Donald E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd ed.
(1997); vol. 2: Seminumerical Algorithms, 3rd ed., (1997); vol. 3: Searching and Sorting, 2nd ed.
(1998) (Reading, MA: Addison-Wesley).

Definition: If f and g are real-valued functions of a real
variable and limbos g(x) A 0, then

f(x)iso(g(x)) X lim f(=) =0.zoo g(x)

The notation f(x) is o(g(x)) is read "f(x) is little-oh of

g(x)."
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Understanding the relative efficiencies of algorithms designed to do the same job is of
much more than academic interest. In industrial and scientific settings, the choice of an
efficient over an inefficient program may result in the saving of many thousands of dollars
or may make the difference between being able or not being able to do a project at all.

Two aspects of algorithm efficiency are important: the amount of time required to
execute the algorithm and the amount of memory space needed when it is run. In this
chapter we introduce basic techniques for calculating time efficiency. Similar techniques
exist for calculating space efficiency. Occasionally, one algorithm may make more efficient
use of time but less efficient use of memory space than another, forcing a trade-off based
on the resources available to the user.

Time Efficiency of an Algorithm
How can the time efficiency of an algorithm be calculated? The answer depends on several
factors. One is the size of the set of data that is input to the algorithm; for example, it takes
longer for a sort algorithm to process 1,000,000 items than 100 items. Consequently, the
execution time of an algorithm is generally expressed as a function of its input size.

Another factor that may affect the run time of an algorithm is the nature of the input
data. For instance, a program that searches sequentially through a list of length n to find a
data item requires only one step if the item is first on the list, but it uses n steps if the item
is last on the list. Thus algorithms are frequently analyzed in terms of their "best case,"
"worst case," and "average case" performances for an input of size n.

Roughly speaking, the analysis of an algorithm for time efficiency begins by trying to
count the number of elementary operations that must be performed when the algorithm
is executed with an input of size n (in the best case, worst case, or average case). What
is classified as an "elementary operation" may vary depending on the nature of the prob-
lem the algorithms being compared are designed to solve. For instance, to compare two
algorithms for evaluating a polynomial, the crucial issue is the number of additions and
multiplications that are needed, whereas to compare two algorithms for searching a list
to find a particular element, the important distinction is the number of comparisons that
are required. For simplicity, we will classify the following as elementary operations:
addition, subtraction, multiplication, division, and comparison.

When algorithms are implemented in a particular programming language and run on
a particular computer, some operations are executed faster than others, and, of course,
there are differences in execution times from one machine to another. In certain practical
situations these factors are taken into account when we decide which algorithm or which
machine to use to solve a particular problem. In other cases, however, the machine is
fixed, and rough estimates are all that we need to determine the clear superiority of one
algorithm over another. Since each elementary operation is executed in time no longer
than the slowest, the time efficiency of an algorithm is approximately proportional to the
number of elementary operations required to execute the algorithm.

Consider the example of two algorithms, A and B, designed to do a certain job. Sup-
pose that for an input of size n, the number of elementary operations needed to perform
algorithm A is between l On and 20n (at least for large n) and the number of elementary
operations needed to perform algorithm B is between 2n2 and 4n2 . Note that 20n < 2n2

whenever n > 10, which means that the maximum number of operations required to ex-
ecute A is less than the minimum number of operations required to execute B whenever
n > 10. In fact, 20n is very much less than 2n2 when n is large. For instance, if n = 1000,
then 20n = 20,000, whereas 2n2 = 2,000, 000. We say that in the worst case, algorithm
A is (9(n) (or has worst-case order n) and that in the worst case, algorithm B is a (n2) (or
has worst-case order n2).

Donald Knuth
(born 1938)
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p . a L] 1

Let A be an algorithm.

1. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on n alone and not on the nature of the input data; say
it equals f (n). If f (n) is O(g(n)), we say that A is 0(g(n)) or A is of order
g(n).

2. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on the nature of the input data as well as on n.

a. Let b(n) be the minimum number of elementary operations required to execute
A for all possible input sets of size n. If b(n) is 0(g(n)), we say that in the
best case, A is 0 (g(n)) or A has a best case order of g(n).

b. Let w(n) be the maximum number elementary operations required to execute
A for all possible input sets of size n. If w(n) is EO(g(n)), we say that in the
worst case, A is 0 (g(n)) or A has a worst case order of g(n).

Some of the orders most commonly used to describe algorithm efficiencies are shown
in Table 9.3.1. As you see from the table, differences between the orders of various types
of algorithms are more than astronomical. The time required for an algorithm of order
2' to operate on a data set of size 100,000 is approximately 1029.976 times the estimated
15 billion years since the universe began (according to one theory of cosmology). On the
other hand, an algorithm of order log2 n needs at most a fraction of a second to process
the same data set.

Table 9.3.1 Time Comparisons of Some Algorithm Orders

Approximate Time to Execute f (n) Operations Assuming One Operation per Nanosecond

f(n) n = 1O n = 1,000 n = 100,000 n = 10,000,000

log 2 n 3.3 x 10-9 sec 10-8 sec 1.7 x 10-8 sec 2.3 x 10-8 sec
n 10-8 sec 10-6 sec 0.0001 sec 0.01 sec

n log 2 n 3.3 x 10-8 sec 10-5 sec 0.0017 sec 0.23 sec
n2 10-7 sec0.001 sec 10 sec27.8 min
n3  10-6 sec I sec 1.6 days 31,688 yr
2 1 10-6 sec 3.4 x 10284 yr 3.2 x 1030091 yr 3.1 x 10301022 yr

*one nanosecond = 10-9 second

Example 9.3.1 Computing an Order of an Algorithm Segment

Assume n is a positive integer and consider the following algorithm segment:

p := 0, x := 2

for i :2 ton

p : (p + i) x

next

a. Compute the actual number of additions and multiplications that must be performed
when this algorithm segment is executed.

b. Find an order for this algorithm segment from among the set of power functions.
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Solution

a. There are one multiplication and one addition for each iteration of the loop, so there
are twice as many multiplications and additions as there are iterations of the loop. Now
the number of iterations of the for-next loop equals the top index of the loop minus the
bottom index plus 1; that is, n -2 + I = n - 1. Hence there are 2(n - 1) = 2n -2
multiplications and additions.

b. By the theorem on polynomial orders,

2n-2 is (9(n),

and so this algorithm segment is E0(n). U

The next example looks at an algorithm segment that contains a nested loop.

Example 9.3.2 An Order for an Algorithm with a Nested Loop

Assume n is a positive integer and consider the following algorithm segment:

S := 0

for i := I to n

for j := 1 to i

s :=s + j (i - j + 1)

next j
next i

a. Compute the actual number of additions, subtractions, and multiplications that must
be performed when this algorithm segment is executed.

b. Find an order for this algorithm segment from among the set of power functions.

Solution

a. There are two additions, one multiplication, and one subtraction for each iteration of
the inner loop, so the total number of additions, multiplications, and subtractions is
four times the number of iterations of the inner loop. Now the inner loop is iterated

one time when i = 1,

two times when i = 2,

three times when i = 3,

n times when i = n.

You can see this easily if you construct a table that shows the values of i and j for
which the statements in the inner loop are executed. There is one iteration for each
column in the table.

I )2 1 4 n i i iIi II1 2 - 3 3- I 4 ... I n -

j 1 1 2 1 2 3 1 2 3 4 ... 1 2 3 ... n
1 2 4
1 2 3 4 n
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Hence the total number of iterations of the inner loop is

1 + 2 + 3 + + n = 2 by Theorem 4.2.2,

and so the number of additions, subtractions, and multiplications is

n(n + 1)
4 - 2 ) = 2n(n + 1).

2

An alternative method for computing the number of columns of the table uses an
approach discussed in Section 6.5. Observe that the number of columns in the table is
the same as the number of ways to place two x's in n categories, 1, 2, . .. , n, where
the location of the x's indicates the values of i and j. By Theorem 6.5.1, this number
is

n-1 + 2' on + I (n + 1)! (n + l)n(n-1)! n(n + 1)

2 ) 2 2 ( 2!((n + 1)-2)! 2(n-1)! 2

Although, for this example, the alternative method is more complicated than the one
preceding it, it is simpler when the number of loop nestings exceeds two. (See exer-
cise 19.)

b. By the theorem on polynomial orders, 2n(n + 1) = 2n2 + 2n is O(n2 ), and so this
algorithm segment is 0)(n 2 ). M

Example 9.3.3 When the Number of Iterations Depends on the Floor Function

Assume n is a positive integer and consider the following algorithm segment:

for i := Ln/2j to n

a :=n -i

next i

a. Compute the actual number of subtractions that must be performed when this algorithm
segment is executed.

b. Find an order for this algorithm segment from among the set of power functions.

Solution

a. There is one subtraction for each iteration of the loop, and the loop is iterated

n - [2j + 1 times. If n is even, then [LJ = 2 , and so the number of subtractions is

2 21=2

If n is odd, then [Lj = 2 and so the number of subtractions is

InI n 1 -I 2n-(n-1)+2 n+3

b. By the theorem on polynomial orders,

2 is ()0(n) and 2 is ((n)
2 2

also. Hence, regardless of whether n is even or odd, this algorithm segment is 0(n).
U
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The Sequential Search Algorithm
The object of a search algorithm is to hunt through an array of data in an attempt to find a
particular item x. In a sequential search, x is compared to the first item in the array, then
to the second, then to the third, and so on. The search is stopped if a match is found at any
stage. On the other hand, if the entire array is processed without finding a match, then x is
not in the array. An example of a sequential search is shown diagrammatically in Figure
9.3.1.

a[l] a[2] a[3] a[4] a[5] a[6] a[7]

Figure 9.3.1 Sequential Search of a[l], a[2], .. ., a[7] for x where x = a[5]

Example 9.3.4 Best- and Worst-Case Orders for Sequential Search

Find best- and worst-case orders for the sequential search algorithm from among the set
of power functions.

Solution Suppose the sequential search algorithm is applied to an input array al[], a[2],
... , a[n] to find an item x. In the best case, the algorithm requires only one compari-
son between x and the items in a[l], a[2], ... , a[n]. This occurs when x is the first item
in the array. Thus in the best case, the sequential search algorithm is 0(1). (Note that
0(1) = 0(no).) In the worst case, however, the algorithm requires n comparisons. This
occurs when x = a[n] or when x does not appear in the array at all. Thus in the worst
case, the sequential search algorithm is ((n). U

The Insertion Sort Algorithm
Insertion sort is an algorithm for arranging the items in an array into ascending order.
Initially, the second item is compared to the first. If the second item is less than the first,
their values are interchanged, and as a result the first two array items are in ascending
order. The idea of the algorithm is gradually to lengthen the section of the array that is
known to be in ascending order by inserting each subsequent array item into its correct
position relative to the preceding ones. When the last item has been placed, the entire
array is in ascending order.

Figure 9.3.2 illustrates the action of step k of insertion sort on an array all], a[21,
a [3], . .. , a [n].

Figure 9.3.2 Step k of Insertion Sort

sorted subarray

a[l], a[2], a[3], . . ., a[k - 1], a[k], a[k + 1], . . ., a[n]

Step k: Insert the value of a[k] into its proper position relative to
a[l], a[2], . . ., a[k -1]. At the end of this step aol], a[2], . . ., a[k] is sorted.
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The following is a formal algorithm for insertion sort.

Figure 9.3.3 shows the result of each step when insertion sort is applied to the particular
array

a[l] = 6, a[2] = 3, a[3] = 5, a[4] = 7, and a[5] = 2.

a[l] a[2] a[3] a[4] a[5]

Initial 6 3 5 7 2

Resultofstep 1 3 6 5 7 2

Result of step 2 3 5 6 7 2

Resultofstep33 3 j 5 6 7 2

Resultofstep4 2 3 5 6 7

The top row of the table shows the initial values of the
array, and the bottom row shows the final values. The result
of each step is shown in a separate row. For each step,
the sorted section of the array is shaded.

Figure 9.3.3 Action of Insertion Sort on an Array

Algorithm 9.3.1 Insertion Sort

[The aim of this algorithm is to take an array a [ 1 , a [2], a [3], a [n ], where n > 1,
and reorder it. The output array is also denoted a [1i], a [2], a [3], . .. , a [n]. It has the
same values as the input array, but they are in ascending order In the kth step,
a[l], a[2], a[3],...,a[k - 1] is in ascending order, and a[k] is inserted into the
correct position with respect to it.]

Input: n [a positive integer], a[1], a[2], a[3], . a[n] [an array of data items ca-
pable of being ordered]

Algorithm Body:

fork := 2 ton
[Compare a[k] toprevious items inthearraya[l], a[2], a[3], . a[k - 1], start-
ing from the largest and moving downward. Whenever a[i - 1] < a[k] < a[i],
interchange the values of a [k] and a [i]. If a [k] is greater than or equal to a [k - 1],
then leave it as a[k].]

do

x a[k]

j k - 1
while (j # 0 and a[j] > x)

do a[j + 1] :=a[j]

j := j -

end do

a[j + 1] := x

end while

end do

next k

Output: a[l], a[2], a[3],..., a[n] in ascending order
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Example 9.3.5 develops a trace table for the action of insertion sort on a particular
array.

Example 9.3.5 A Trace Table for Insertion Sort

Construct a trace table showing the action of insertion sort on the array

a[l] = 6, a[2] = 3, a[3] = 5, a[4] = 7, a[5] = 2.

Solution The first column shows the state of the variables before the first iteration of the
for-next loop. When the for-next loop is first iterated, k is assigned the value 2; x the value
of a [2], which is 3; and j the value of k -1, which is 1. Because j :A 0 and a [ 1 ] > x, the
while loop is entered. Then a [2] is assigned the value of a [ I ], which is 6 and j is assigned
the value of j - 1, which is 0. The condition governing the while loop is tested again,
but since j = 0, it is not satisfied, and so the while loop is not entered. Thus the value
of k is incremented by 1 (so that it equals 3), and the for-next loop is entered a second
time. This process continues until the value of k has been incremented to 6. Because 6 is
greater than the top value in the for-next loop, execution of the algorithm ceases, and the
array items are seen to be in ascending order.

n 5

a[1] 6 3 2

a [2] 3 6 5 2 3

a[3] 5 6 2 5

a[4] 7 2 6

a[5] 2 = 7 =

kc 2 3 4 5 6

x 3 5 7 2

= 1 0 2 1 3 4 3 2 1 0 = U

Example 9.3.6 Finding a Worst-Case Order for Insertion Sort

a. What is the maximum number of comparisons that are performed when insertion sort
is applied to the array alI], a[2], a[3], . . , a[n]?

b. Find a worst-case order for insertion sort from among the set of power functions.

Solution

a. In each attempted iteration of the while loop, two comparisons are made: one to
test whether j 74 0 and the other to test whether a[j] > x. During the time that a[k]
is put into position relative to a[l], a[2], .. ., a[k - 1], the maximum number of at-
tempted iterations of the while loop is k. This happens when a[k] is less than every
al[], a[2], ... [, ark-1]; on the kth attempted iteration, the condition of the while loop
is not satisfied because j = 0. Thus the maximum number of comparisons for a given
value of k is 2k. Because k goes from 2 to n, it follows that the maximum total number
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of comparisons occurs when the items in the array are in reverse order, and it equals

2.2+2.3+..*+2-n = 2(2+3+ *.+±n) by factoring out the 2

= 2[(1 + 2 + 3 + .. * + n)-1] by adding and subtracting I

= 2 1) - by Theorem 4.2.2

= n(n+l)-2

= n2 + n-2 by algebra.

b. By the theorem on polynomial orders, n2 + n - 2 is E)(n 2 ), and so the insertion sort
algorithm has worst-case order 0(n 2). U

The definition of expected value that was introduced in Section 6.8 can be used to find
an average-case order for insertion sort.

Example 9.3.7 Finding an Average-Case Order for Insertion Sort

a. What is the average number of comparisons that are performed when insertion sort is
applied to the array a [ 1 ], a [2], a [3], . . , a [n]?

b. Find an average-case order for insertion sort from among the set of power functions.

Solution

a. Let En be the average, or expected, number of comparisons used to sort a [ 1 ], a [2], . .
a[n] with insertion sort. Note that for each integer k = 2, 3, ... , n,

the expected number of
comparisons used to
sort a[l], a[2], ... , a[k]

the expected number of the expected number of comparisons
= comparisons used to + used to place a [k] into position

sort a[l], a[2], . .. , a[k- 1] relative to a[l], a[2], ... ,a[k- 1]]

Thus

the expected number of comparisons
Ek = Ek-1 + used to place a k] into position

relative to a[1], a[2], . .. , a[k -1 ]
Also, El = 0 because when there is just one item in the array, n = 1 and no iterations
of the outer loop are performed.

Now at the time a[k] is placed relative to a[1 ], a[2], . . ., a k-1], it is equally
likely to belong in any one of the first k positions. Thus the probability of its belonging
in any particular position is 1/ k. If it actually belongs in position j, then 2(k - j + 1)
comparisons will be used in moving it, because there will be k - j + 1 attempted
iterations of the while loop and there are 2 comparisons per attempted iteration.
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According to the definition of expected value given in Section 6.8, the expected
number of comparisons used to place a[k] relative to a[l], a[2], ... , a[k - 1] is there-
fore

= 2[k+(k-I)+.*.+3+2+l]
-k

=2 (k(k + 1)N)
k ( 2 )

= k+I

by writing the summation
in expanded form

by Theorem 4.2.2

by algebra.

Ek = Ek-I + k + 1 for all integers k > 2, and

El =0.

Exercise 27 at the end of the section asks you to solve this recurrence relation to show
that

n2 + 3n-+4
En, = 2 for each integer n > 1.

b. By the theorem on polynomial orders, n 2+3n 4= In2+3n-2is (2) d

so the average-case order of insertion sort is also E) (n2). U

Exercise Set 9.3
1. Suppose a computer takes 1 nanosecond (= 10-9 second)

to execute each operation. Approximately how long will
it take for the computer to execute the following numbers
of operations? Convert your answers into seconds, minutes,
hours, days, weeks, or years, as appropriate. For example,
instead of 25° nanoseconds, write 13 days.
a. log2 200 b. 200 c. 200log2 200
d. 2002 e. 200' f. 2200

2. Suppose an algorithm requires cn2 operations when per-
formed with an input of size n (where c is a constant).
a. How many operations will be required when the input

size is increased from m to 2m (where m is a positive
integer)?

b. By what factor will the number of operations increase
when the input size is doubled?

c. By what factor will the number of operations increase
when the input size is increased by a factor of ten?

3. Suppose an algorithm requires cn3 operations when per-
formed with an input of size n (where c is a constant).
a. How many operations will be required when the input

size is increased from m to 2m (where m is a positive
integer)?

b. By what factor will the number of operations increase
when the input size is doubled?

c. By what factor will the number of operations increase
when the input size is increased by a factor of ten?

Exercises 4-5 explore the fact that for relatively small values
of n, algorithms with larger orders can be more efficient than
algorithms with smaller orders.

4. Suppose that when run with an input of size n, algorithm
A requires 2n2 operations and algorithm B requires 80n

3
/2

operations.
a. What are orders for algorithms A and B from among the

set of power functions?
b. For what values of n is algorithm A more efficient than

algorithm B?
c. For what values of n is algorithm B at least 100 times

more efficient than algorithm A?

5. Suppose that when run with an input of size n, algorithm
A requires 106n2 operations and algorithm B requires n

3

operations.
a. What are orders for algorithms A and B from among the

set of power functions?
b. For what values of n is algorithm A more efficient than

algorithm B?
c. For what values of n is algorithm B at least 100 times

more efficient than algorithm A?

For each of the algorithm segments in 6-14, assume that n
is a positive integer. (a) Compute the actual number of addi-
tions, subtractions, multiplications, divisions, and comparisons
that must be performed when the algorithm segment is exe-
cuted. For simplicity, however, count only comparisons that

E -2(k - j + 1)
j=I

Hence
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occur within if-then statements; ignore those implied by for-
next loops. (b) Find an order for the algorithm segment from
among the set of power functions.

6. fori :=3ton-I
a :=3.n+2 i-I

next i

7. max:= a[l]

for i :=2 ton

if max < a[i] then max := a[i]

next i

8. for i 1 to Ln/2i
a n - i

next i

9. for i := I ton

for j I to 2n
a 2 n+i j

next j
next i

10. fork :=2ton

for j 1 to 3n
x a[k]-b[j]

next j
next k

11. fork := I to n-I

for] := Itok+1
x := a[k] + b[j]

next j

next k

12. fork := I ton - I
max:= a[k]

fori :=k+lton

if max < a[i] then max:= a[i]

next i

a[k]:= max

next k

13. fori:=lton-1

for] :=i+lton

if a[j] > a[i] then do
temp:= a[i]
a[i] :=a[j]
a[j] := temp

end do
next j

next i

14. t :=0

fori I ton
s 0

for j = to i
s s + a[j]

next j
t := t +S 2

next i

15. r := 0

for i := ton
p 1
q 1

for] :i=i+lton
p :=p c[j]]
q :=q C[j]2

next j
r p + q

next i

16. t := 0

fork 1 to n
s 0

for j 1 to i -1
s s + j (i - j + 1)

next j
r :=s2

next k

17. for i := I to n

forj= 1 to L(i + 1)/21
a :=(n -i) (n-j)

next j

next i

18. for i := I to n

for j := I to 2n

fork 1 to n
x :=i j k

next k

next j

next i

H*19. fori := lton

forj := Itoi

fork I:toj
x i j . k

next k

next j

next i

20. Construct a table showing the result of each step when inser-
tion sort is applied to the array a[l] 6, a[2] = 2, a[3] =
1, a[4] = 8, and a[5] = 4.
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21. Construct a table showing the result of each step when inser-
tion sort is applied to the array a[l] = 7, a[2] = 3, a[3]
6, a[4] = 9, and a[5] = 5.

22. Construct a trace table showing the action of insertion sort
on the array of exercise 20.

23. Construct a trace table showing the action of insertion sort
on the array of exercise 21.

24. How many comparisons between values of a[j] and x ac-
tually occur when insertion sort is applied to the array of
exercise 20?

25. How many comparisons between values of a[j] and x ac-
tually occur when insertion sort is applied to the array of
exercise 21?

26. According to Example 9.3.6, the maximum number of com-
parisons needed to perform insertion sort on an array of
length five is 52 - 5 + 2 = 22. Find an array of length five
that requires the maximum number of comparisons when
insertion sort is applied to it.

H 27. Consider the recurrence relation that arose in Example 9.3.7:
El = 0 and Ek = Ek-1 + k + 1, for all integers k > 2.
a. Use iteration to find an explicit formula for the sequence.
b. Use mathematical induction to verify the correctness of

the formula.

Exercises 28-35 refer to selection sort, which is another algo-
rithm to arrange the items in an array in ascending order.

The action of selection sort can be represented pictorially as
follows:

a[l]a[2]... a[k a[k+ 1] ... a[n]

kth step: Compare a[k] to each of
a[k + 1], . . ., a[n] and interchange values
each time a[k] is greater.

28. Construct a table showing the interchanges that occur
when selection sort is applied to the array a[ [] = 5, a[2] =

3,a [3] =4,a[4] =6, and a [5 = 2.

29. Construct a table showing the interchanges that occur
when selection sort is applied to the array a [1 = 6, a[21 =

4, a[3] = 5, a[4] = 8, and a[5] = 1.

30. Construct a trace table showing the action of selection sort
on the array of exercise 28.

31. Construct a trace table showing the action of selection sort
on the array of exercise 29.

32. When selection sort is applied to the array of exercise 28,
how many times is the comparison in the if-then statement
performed?

33. When selection sort is applied to the array of exercise 29,
how many times is the comparison in the if-then statement
performed?

34. When selection sort is applied to an array ail], a[2], a[3],
a[4], how many times is the comparison in the if-then state-
ment performed?

35. Consider applying selection sort to an array a[l], a[2],
a[3], . . , a[n].
a. How many times is the comparison in the if-then state-

ment performed when a [1] is compared to each of a [2],
a[3], . . , a[n]?

b. How many times is the comparison in the if-then state-
ment performed when a [2] is compared to each of a[3],
a[4], . . , a[n]?

c. How many times is the comparison in the if-then state-
ment performed when a[k] is compared to each of
a[k + 1], a[k + 2], . . , a[n]?

H d. Using the number of times the comparison in the if-then
statement is performed as a measure of the time effi-
ciency of selection sort, find an order for selection sort
from among the set of power functions.

Exercises 36-39 refer to the following algorithm to compute the
value of a real polynomial.

Algorithm 9.3.2 Selection Sort
[The aim of this algorithm is to take an array a[1], a[2],
a[3], ... , a[n] (where n > 1) and interchange its values if
necessary to put them in ascending order In thefirst step, the
array item with the least value is found, and its value is as-
signed to all]. In general, in the kth step, a[k] is compared
to each a[i] for i = k + 1, 2, . . ., n. Whenever the value of
a[k] is greater than that of a[i], the two values are inter-
changed. The process continues through the (n -1)st step,
after which the array items are in ascending order]

Input: n [a positive integer], a[l], a[2], a[3], . a[n] [an
array of data items capable of being ordered]

Algorithm Body:

fork:=l ton- 1

for i := k + I to n

if a[iI < a[k] then

do temp :=a[k]
a[k] := a[i]
a[i] := temp

end do

next i

next k

Output: all], a[2], a[3], ... , a[n] in ascending order
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36. TraceAlgorithm9.3.3 fortheinputn = 3, a[O] = 2, a[1] =
I,a[2] =-1,a[3] =3, andx =2.

37. Trace Algorithm 9.3.3 for the input n = 2,a[O] = 5, a[l] =
-1,a[2] =2, andx =3.

38. Let sn = the number of additions and multiplications that
must be performed when Algorithm 9.3.3 is executed for a
polynomial of degree n. Express sn as a function of n.

39. Find an order for Algorithm 9.3.3 from among the set of
power functions.

Exercises 40-43 refer to another algorithm, known as Homer's
rule, for finding the value of a real polynomial.

40. TraceAlgorithm 9.3.4 forthe input n = 3, a[0] = 2, a[l] =

1, a[2] =-1, a[3] = 3, and x = 2.

41. TraceAlgorithm 9.3.4 fortheinputn = 2, a[0] = 5, a[1] =
-1, a[2] = 2, andx = 3.

H 42. Let t, = the number of additions and multiplications that
must be performed when Algorithm 9.3.4 is executed for a
polynomial of degree n. Express t, as a function of n.

43. Find an order for Algorithm 9.3.4 from among the set of
power functions. How does this order compare with that of
Algorithm 9.3.3?

9.4 Exponential and Logarithmic Functions:
Graphs and Orders
We ought never to allow ourselves to be persuaded of the truth of anything unless on the
evidence of our own reason. -Rend Descartes, 1596-1650

Exponential and logarithmic functions are of great importance in mathematics in general
and in computer science in particular. Several important computer algorithms have exe-
cution times that involve logarithmic functions of the size of the input data (which means
they are relatively efficient for large data sets), and some have execution times that are
exponential functions of the size of the input data (which means they are quite inefficient
for large data sets). In addition, since exponential and logarithmic functions arise natu-
rally in the descriptions of many growth and decay processes and in the computation of
many kinds of probabilities, these functions are used in the analysis of computer operating
systems, in queuing theory, and in the theory of information.

Algorithm 9.3.3 Term-by-Term Polynomial Evaluation
[This algorithm computes the value of the real polynomial
a[n]xn + a[n-1 ]x'-' +  * + a[2]x 2 + a[l]x + a[0] by
computing each term separately, starting with a[0], and
adding it on to an accumulating sum.]

Input: n [a nonnegative integer], a[0], a[1], a[2]., a[n]
[an array of real numbers], x[a real number]

Algorithm Body:

polyval:= a[O]

for i := I to n
term a[iI

for j i to i
term := term x

next j
polyval := polyval + term

next
[At this point

polyval = a[n]x' + a[n- 1]x'-
+ + a[2]x2 + a[l]x + a[O].]

Output: polyval [a real number]

Algorithm 9.3.4 Horner's Rule
[This algorithm computes the value of the real polynomial
a[n]x' + a[n -1]x- + .+ a[2]x2 + a[1]x + a[O] by
nesting successive additions and multiplications as indi-
cated in the following parenthesization:

((... ((a[n]x + a[n-1])x + a[n -2])x

+ .. + a[2])x + a[i])x + a[O].

At each stage, starting with a[n], the current value of poly-
val is multiplied by x and the next lower coefficient of the
polynomial is added on.]

Input: n [a nonnegative integer] a[O], a[l], a[2], . a[n]
[an array of real numbers], x [a real number]

Algorithm Body:

polyval := a[n|

for i := 1 to n
polyval :=polyval x + a[n- i

next
[At this point

polyval = a[n]x' + a[n -l]x"

+ ... + a[2]x2 + a[1]x + a[O].]
Output: polyval [a real number]
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Graphs of Exponential Functions
As defined in Section 7.2, the exponential function with base b > 0 is the function that
sends each real number x to bx. The graph of the exponential function with base 2 (together
with a partial table of its values) is shown in Figure 9.4.1. Note that the values of this
function increase with extraordinary rapidity. If we tried to continue drawing the graph
using the scale shown in Figure 9.4.1, we would have to plot the point (10, 2110) more than
21 feet above the horizontal axis. And the point (30, 230) would be located more than
610,080 miles above the axis-well beyond the moon!

x

0
1
2
3

-1

-2

-3

0.5

-0.5

2X

20 = 1

21 =2

22 =4

23=8

2-1 - 0.5

2-2 = 0.25

2-3 = 0.125
205- 1.414

2-u-z 0.707 -3 -2 -1 I 1 2 3 x

Figure 9.4.1 The Exponential Function with Base 2

The graph of any exponential function with base b > 1 has a shape that is similar to
the graph of the exponential function with base 2. If 0 < b < 1, then l/b > 0 and the
graph of the exponential function with base b is the reflection across the vertical axis of
the exponential function with base I /b. These facts are illustrated in Figure 9.4.2.

,fb> I

Graph of the exponential function Graph of the exponential function
with base b > 1 with base b where 0 < b < I

(a) (b)

Figure 9.4.2 Graphs of Exponential Functions

Graphs of Logarithmic Functions
Logarithms were first introduced by the Scotsman John Napier. Astronomers and naviga-
tors found them so useful for reducing the time needed to do multiplication and division
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John Napier (1550-1617)

that they quickly gained wide acceptance and played a crucial role in the remarkable
development of those areas in the seventeenth century. Nowadays, however, electronic
calculators and computers are available to handle most computations quickly and conve-
niently, and logarithms and logarithmic functions are used primarily as conceptual tools.

Recall the definition of the logarithmic function with base b from Section 7.1. We
state it formally below.

I. ! gs1!1

The logarithmic function with base b, 10gb: R+ -* R, is the function that sends
each positive real number x to the number logb x, which is the exponent to which b
must be raised to obtain x.

If b is a positive real number not equal to 1, then the logarithmic function with base
b is, in fact, the inverse of the exponential function with base b. (See exercise 10 at the
end of this section.) It follows that the graphs of the two functions are symmetric with
respect to the line y = x. The graph of the logarithmic function with base b > 1 is shown
in Figure 9.4.3.

Figure 9.4.3 The Graph of the Logarithmic Function with Base b > 1

Observe that if its base b is greater than 1, the logarithmic function is increasing. An-
alytically, this means that

if b > 1, then for all positive numbers xl and x2,

if x 1 < x2, then logb(xI) < logb(x2). 9.4.1

Corresponding to the rapid growth of the exponential function, however, is the very
slow growth of the logarithmic function. Thus you must go very far out on the horizontal
axis to find points whose logarithms are large numbers. For instance, log2 (1,024) is only
10 and log2 (1,048,576) is just 20.
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The following example shows how to make use of the increasing nature of the loga-
rithmic function with base 2 to derive a remarkably useful property.

Example 9.4.1 Base 2 Logarithms of Numbers between Two Consecutive Powers of 2

Prove the following property:

a.
If k is an integer and x is a real number with

2k < x < 2 k+1, then [log 2 xI = k. 9.4.2

b. Describe property (9.4.2) in words and give a graphical interpretation of the property
forx > 1.

Solution

a. Suppose that k is an integer and x is a real number with

2k < X < 2k+

Because the logarithmic function with base 2 is increasing, this implies that

log2 (2 k) < log2 x < log 2 (2 k+).

Butlog2( 2k) = k [the exponentto which youmust raise2to get 2k isk] andlog2 (2k+l) =

k + 1 [for a similar reason]. Hence

k < log2 x < k + 1.

By definition of the floor function, then,

Llog2 xI = k.

b. Recall that the floor of a positive number is its integer part. For instance, [2.82] =

2. Hence property (9.4.2) can be described in words as follows:

If x is a positive number that lies between two consecutive integer powers of 2,
the floor of the logarithm with base 2 of x is the exponent of the smaller power
of 2.

A graphical interpretation follows:

2 k+1

U

One consequence of property (9.4.2) does not appear particularly interesting in its own
right but is frequently needed as a step in the analysis of algorithm efficiency.

V = lo1,X
OX

A I
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Example 9.4.2 When [log 2 (n - 1)] = L10g2 nj

Prove the following property:

For any odd integer n > 1, Llog2 (n - 1)j =log2 nj. 9.4.3

Solution If n is an odd integer that is greater than 1, then n lies strictly between two suc-
cessive powers of 2:

2k < n < 2k+1l for some integer k > 0. 9.4.4

It follows that 2k < n - 1 because 2k < n and both 2 k and n are integers. Consequently,

2 k < n - 1 < 2k+1 945

Applying property (9.4.2) to both (9.4.4) and (9.4.5) gives

[log2 nj = k and also [log2(n - 1)j = k.

Hence [log2 nJ = [log2(n -1)J.

Application: Number of Bits Needed to Represent
an Integer in Binary Notation

Given a positive integer n, how many binary digits are needed to represent n? To answer
this question, recall from Section 4.4 that any positive integer n can be written in a unique
way as

n = 2k±+ Ck- 1-2 +k * * + C2 2 + cl .2 + c,

where k is a nonnegative integer and each co, C1, C2, . . . Ck-1 is either 0 or 1. Then the
binary representation of n is

lCk-lCk-2 ... C2CICO,

and so the number of binary digits needed to represent n is k + 1.
What is k + 1 as a function of n? Observe that since each cj < 1,

n = 2k +ck 2 k 1 + + c2 -22 +cli2+co < 2 k + 2 k-I + * + 22+ 2 + 1

But by the formula for the sum of a geometric sequence (Theorem 4.2.3),

2 k+ 2 k-1 + .. *+ 2 2+ 2 +1 = 2k1-I= 2 k+' - 1.~~ 2k+ -1 I

Hence, by transitivity of order,
n < 2k+1 -1 < 2 k+1 9.4.6

In addition, because each ci > 0,

2 < 2 + Ck-1- 2 +1 * *+ Cc2 2 + cl-2 + co = n. 9.4.7

Putting inequalities (9.4.6) and (9.4.7) together gives the double inequality

2 < n < 2+.

But then, by property (9.4.2),

k = Llog 2 nj.

Thus the number of binary digits needed to represent n is [log2 nj + 1.
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Example 9.4.3 Number of Bits in a Binary Representation

How many binary digits are needed to represent 52,837 in binary notation?

Solution If you compute the logarithm with base 2 using formula (7.3.6) in Example 7.3.6
and a calculator that gives you approximate values of logarithms with base 10, you find
that

l logl 0(52,837) _ 4.722938151
1025287 2- - 15.7.

log10 (2) = 0.3010299957

Thus the binary representation of 52,837 has L15.71 + 1 = 15 + 1 = 16 binary digits.
.

Application: Using Logarithms to Solve
Recurrence Relations

In Chapter 8 we discussed methods for solving recurrence relations. One class of recurrence
relations that is very important in computer science has solutions that can be expressed in
terms of logarithms. One such recurrence relation is discussed in the next example.

Example 9.4.4 A Recurrence Relation with a Logarithmic Solution

Define a sequence a1 , a2 , a3 , .... recursively as follows:

a, = 1,

ak = 2 a[k/2j for all integers k > 2.

a. Use iteration to guess an explicit formula for this sequence.

b. Use strong mathematical induction to confirm the correctness of the formula obtained
in part (a).

Solution

a. Begin by iterating to find the values of the first few terms of the sequence.

a, = 1I= 20

/a2 = 2aL2/21 = 2aI = 2 1l = 2 2 = 2'

/--a3 = 2aL3/21 = 2a, = 2 I = 21

a 4 = 2aL4/2j = 2a 2 = 2 2= 4 4 = 22

/a 5 = 2aL5/2 ] = 2a2 = 2 2= 4

a6 = 2aL6/21 = 2a3 = 2 2= 4

a7 = 2aL7/2J = 2a3 = 2.2 = 4
a8 = 2aL8/2 1 = 2a 4 = 2 4 = 8 8 = 23

-ag = 2a[ 9 /21 = 2a4 = 2 4 = 8

a15 = 2 aLI5/21 = 2a7 = 2 4 = 8

al6 = 2 aLI6/21 = 2a8 = 2 8 = 16J 16 = 24

Note that in each case when the subscript n is between two powers of 2, a, equals the
smaller power of 2. More precisely:

If 2' < n < 21l, then an = 2'. 9.4.8
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But since n satisfies the inequality

2' <n <2'+

then (by property 9.4.2)

i = [log 2 nJ.

Substituting into statement (9.4.8) gives

an = 2[log2 nJ

b. The following proof shows that if a,, a2, a3 , .... is a sequence of numbers that satisfies

a1  1,

and

ak = 
2 aLk/21 for all k > 2,

then the sequence satisfies the formula

a, = 2[log2 nJ for all integers n > 1.

Proof:

Show that the sequence satisfies theformulaforn = 1: By definition of the sequence,
al = 1. And 2Llog2 1= 20 = 1 also. Hence a, = 2 -10g2 '], and so the formula holds for
n = 1.

Show thatfor all integers k > 2, if the sequence satisfies theformulafor all integers i
with 1 < i < k, then the sequence satisfies theformulafork: Let k be an integer that
is greater than or equal to 2, and suppose ai = 21092 i] for all integers i with 1 < i < k.
Now either k is odd or k is even.

Case I (k is odd): In this case,

ak = 
2

aLk/2j

= 
2

a(k-1)/2

= 2 2 Llog2((k-1)/2)]

= 2[log2((k-1)/2)1+1

= 2Llog 2(k -1) -102 2j+I

= 2Llo2 (k-1)-11+1

= 2 Llog 2(k-l)J-1+1

= 2 Llog 2(k-1)]

= 2 1log2kj

by definition of a,, a2, a3, ....

because Lk/21 = (k -1)/2 since k is odd

by inductive hypothesis (since k > 2,1 < k/2 < k)

by the laws of exponents from algebra (7.2. 1)

by the identity logb (x/y) = logb X - logb y derived
in exercise 29 of Section 7.2

since 1og 2 2 = I

by substituting x = 1og 2 (k 1) into the identity
Lx - 1i = Lxj - I derivedin exercise l5ofSection3.5

by property (9.4.3)

Case 2 (k is even): The analysis of this case is very similar to that of case 1 and is left
as an exercise.

Thus in either case, an = 2 LIog2 nj, as was to be shown. .

Exponential and Logarithmic Orders
Now consider the question "How do graphs of logarithmic and exponential functions
compare with graphs of power functions?" It turns out that for large enough values of
x, the graph of the logarithmic function with any base b > 1 lies below the graph of any
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positive power function, and the graph of the exponential function with any base b > 1 lies
above the graph of any positive power function. In analytic terms, this says the following:

For all real numbers b and r with b > 1 and r > 0,

logb x <r for all sufficiently large values of x. 9.4.9

and

Xr < b' for all sufficiently large values of x. 9.4.10

These statements have the following implications for O-notation.

For all real numbers b and r with b > 1 and r > 0,

logb x is O(x ) 9.4.11

and

xr is O(bx) 9.4.12

Another important function in the analysis of algorithms is the function f defined by
the formula

f (x) = x logb x for all real numbers x > 0.

For large values of x, the graph of this function fits in between the graph of the identity
function and the graph of the squaring function. More precisely:

For all real numbers b with b > 1 and for all sufficiently large values of x,

x < x logb x <9 . 9.4.13

The O-notation versions of these facts are as follows:

For all real numbers b > 1,

x is O(xlogbx) and xlogbx is O(x ). 9.4.14

Although proofs of some of these facts require calculus, proofs of some cases can be
obtained using the algebra of inequalities. (See the exercises at the end of this section.)
Figure 9.4.4 illustrates the relationships among some power functions, the logarithmic
function with base 2, the exponential function with base 2, and the function defined by the
formula x -÷ x log 2 x. Note that different scales are used on the horizontal and vertical
axes.

Example 9.4.5 shows how to use inequalities such as (9.4.9), (9.4.10), and (9.4.13) to
derive additional orders involving the logarithmic function.
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y

2 3 4 x

Figure 9.4.4 Graphs of Some Logarithmic, Exponential, and Power Functions

Example 9.4.5 Deriving an Order from Logarithmic Inequalities

Show that x + x log2 x is EO (x log2 x) .

Solution First observe that x + x log2 x is Q (x) because for all real numbers x > 1,

x 1og 2 x x + x 10g2 x,

and since all quantities are positive,

Ix og2 xI ' Ix+xlog 2 xI.

LetA = 1 anda = 1. Then

Alxlog2 xI < Ix+x log2 Xf forallx>a.

Hence, by definition of Q-notation,

x+xlog2 x is Q(x log 2 x).

To show that x + x log2 x is 0(x), note that according to property (9.4.13) with b = 2,
there is a number x2 such that for all x > x2,

x <xlog2 x

X x + x log2 x < 2x log2 x by adding x log 2 x to both sides

Thus, if x2 is taken to be greater than 2, then

Ix +xl°g2 XI < 21xl°g2 X| because when x > 2, x log2 x > O, and so
Ix + x 1g2 x x + x 1og2 x and
10g 2 x = Ix 10g2 X I .

x2
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Let B = 2. Then

Ix + xlog2 xI < B Ix log 2 xI for all x > b.

Hence, by definition of 0-notation

x+x0og 2 x is O(x0og 2 x).

Therefore, since x + x log2 x is Q (x) and x + x log2 x is 0 (x), by Theorem 9.2.1,

x+xlog 2 x is 0)(x). U

Example 9.4.5 illustrates a special case of a useful general fact about O-notation: If
one function "dominates" another (in the sense of being larger for large values of the
variable), then the sum of the two is big-0 of the dominatingfunction. (See exercise 49a
at the end of Section 9.2.)

Example 9.4.6 shows that any two logarithmic functions with bases greater than I
have the same order.

Example 9.4.6 Logarithm with Base b Is Big-Theta of Logarithm with Base c

Show that if b and c are real numbers such that b > 1 and c > 1, then 1ogb x is (1og, x).

Solution Suppose b and c are real numbers and b > 1 and c > 1. To show that logb X is
0 (log, x), positive real numbers A, B, and k must be found such that

A| Ilogc x <_ I ogb x| < B Ilogc xI for all real numbers x > k.

By property (7.2.7) in Example 7.2.6,

1og9 x logX = (__1 b)logcx (*)
log, b (logb

Since b > 1 and the logarithmic function with base c is strictly increasing, then logc b >
1

log, 1 = 0, and so > 0 also. Furthermore, if x > 1, then logb x > 0 and logc x > 0.
log, b

It follows from equation (*), therefore, that

(2 log b )Iogc x _< logb x < ( log b )l1og, x *

1 2
for all real numbers x > 1. Accordingly, let A = , B = , and k = 1. Then,

2 log b' logc b
since all quantities in (**) are positive,

A I logcx < lgb x I < B Ilogcx for all real numbers x > k.

Hence, by definition of 0-notation,

ogb X is 0(logcx). C

Example 9.4.7 shows how a logarithmic order can arise from the computation of a
certain kind of sum. It requires the following fact from calculus:

The area underneath the graph of y = 1/x between x = I and x = n equals In n,
where In n = loge n. This fact is illustrated in Figure 9.4.5.
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1 -

Graph of Y =

X 1,

= In n

i n x

1
Figure 9.4.5 Area Under Graph of y =- Between x = 1 and x = n

x

Example 9.4.7 Order of Harmonic Sum

Sums of the form I + - + * + - are called harmonic sums. They occur in the analysis
2 nI II .

of various computer algorithms such as quick sort. Show that 1 + + - + * + - is
Q (In n) by performing the following steps: 2 3 n

a. Interpret Figure 9.4.6 to show that

1 + - +. + - < Inn.
2 3 n

and

Inn < I + - + - + +
2 3 n

b. Show that if n is an integer that is at least 3, then 1 < In n.

c. Deduce from (a) and (b) that if the integer n is greater than or equal to 3, then

Inn < 1+-+ ±+ .+- < 21nn.
2 3 n

d. Deduce from (c) that

i+2+ +***+- is E(lnn).
2 3 n

Solution

a. Figure 9.4.6(a) shows rectangles whose bases are the intervals between each pair of
integers from 1 to n and whose heights are the heights of the graph of y = 1 /x above
the right-hand endpoints of the intervals. Figure 9.4.6(b) shows rectangles with the

1 -
Graph of y = -

\ I I ) Total area under graph
(1')from I ton=Inn

(2, 2

t, 14) (n- 1, n-I) (,p I)
-n

1 2 3 4 n-.I n X

k9

Graph of y = I

(1 1) Total area under oranh
from 1 to n = In n

(4 ) (n1- 1, n )(on n)

1 2 3 4 ... nl 2n X

(a) (b)

Figure 9.4.6

I-
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same bases but whose heights are the heights of the graph above the left-hand endpoints
of the intervals.

Now the area of each rectangle is its base times its height. Since all the rectangles
have base 1, the area of each rectangle equals its height. Thus in Figure 9.4.6(a),

the area of the rectangle from I to 2 is -

the area of the rectangle from 2 to 3 is ;

the area of the rectangle from n -1 to n is -.
n

So the sum of the areas of all the rectangles is - + - + * + -. From the picture it is
2 3 n

clear that this sum is no larger than the area underneath the graph of f between x = 1
and x = n, which is known to equal In n. Hence

1 1 1
+ - + + < Inn.

2 3 n

A similar analysis of the areas of the combined blue and gray rectangles in Fig-
ure 9.4.6(b) shows that

Inn < 1 + - + - + -
2 3 n

b. Suppose n is an integer and n > 3. Since e - 2.718, then n > e. Now the logarithmic
function with base e is strictly increasing. Thus since e < n, then I = In e < In n.

c. By part (a),

- + - +* + - < Inn,
2 3 n

and by part (b),

I <Inn.

Adding these two inequalities together gives

I + - + - + + - < 2In n for any integer n > 3.
2 3 n

d. Putting together the results of parts (a) and (c) leads to the conclusion that for all
integers n > 3,

Inn < I ++ -+ + < 21nn.
2 3 n

And because all the quantities are positive for n > 3,

1 11
llnnj < Il + - + - +'+ <a 211nnl.

Let A =1, B = 2, andk = 3. Then

AIlnnI < |1 +2+ + +-| < Blinni foralln>k.
23
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Hence by definition of 0-notation,

1 1 1
1+-+-+ .. +- is E)(lnn).

2 3 n
.

Graph each function defined in 1-8 below.

1. f(x) = 3x for all real numbers x

2. g (x) = () for all real numbers x

3. h (x) = log1 x for all positive real numbers x

4. k(x) = log2 x for all positive real numbers x

5. F(x) = [log2 x] for all positive real numbers x

6. G(x) = [log2 xl for all positive real numbers x

7. H(x) = x log2 x for all positive real numbers x

8. K(x) = x log10 x for all positive real numbers x

9. The scale of the graph shown in Figure 9.4.1 is one-fourth
inch to each unit. If the point (2, 264) is plotted on the graph
of y = 2X, how many miles will it lie above the horizontal
axis? What is the ratio of the height of the point to the dis-
tance of the earth from the sun? (There are 12 inches per
foot and 5,280 feet per mile. The earth is approximately
93,000,000 miles from the sun on average.)
(inch - 0.635 cm, I mile - 0.62 km)

10. a. Use the definition of logarithm to show that log~bx = x
for all real numbers x.

b. Use the definition of logarithm to show that b'Ogbx = x
for all positive real numbers x.

c. By the result of exercise 26 in Section 7.4, if f: X -+ Y
and g: Y - X are functions and g o f = ix and f o g =
iy, then f and g are inverse functions. Use this result to
show that log, and expb (the exponential function with
base b) are inverse functions.

11. Let b > 1.
a. Use the fact that u = logb v X* v = bu to show that a

point (u, v) lies on the graph of the logarithmic function
with base b if, and only if, (v, u) lies on the graph of the
exponential function with base b.

b. Plot several pairs of points of the form (u, v) and (v, u)
on a coordinate system. Describe the geometric relation-
ship between the locations of the points in each pair.

c. Draw the graphs of y = log2 x and y = 2X. Describe the
geometric relationship between these graphs.

12. Give a graphical interpretation for property (9.4.2) in Ex-
ample 9.4.1(a) for 0 < x < 1.

H 13. Suppose a positive real number x satisfies the inequality
10' < x < I0O"' where m is an integer. What can be in-
ferred about [log,0 x] ? Justify your answer.

14. a. Prove that if x is a positive real number and k is a nonneg-
ative integer such that 2 k- < x < 2 k, then Flog 2 xl = k.

b. Describe in words the statement proved in part (a).

15. If n is an odd integer and n > 1, is rlog2(n- 1)] =
[log2 (n)]? Justify your answer.

H 16. If n is an odd integer and n > 1, is rlog2(n + 1)] =
flog2 (n)I? Justify your answer.

17. If n is an odd integer and n > 1, is Llog 2(n + 1)j =
Llog 2 (n)j ? Justify your answer.

In 18 and 19, indicate how many binary digits are needed to rep-
resent the numbers in binary notation. Use the method shown in
Example 9.4.3.

18. 148,206 19. 5,067,329

20. It was shown in the text that the number of binary digits
needed to represent a positive integer n is [log2 nj + 1. Can
this also be given as [log2 nl ? Why or why not?

In each of 21 and 22, a sequence is specified by a recurrence
relation and initial conditions. In each case, (a) use iteration to
guess an explicit formula for the sequence; (b) use strong math-
ematical induction to confirm the correctness of the formula you
obtained in part(a).

21. ak = a[k/2J + 2, for all integers k > 2
a, =

22. bk = brk/21 + 1, for all integers k > 2
b= 1.

H 23. Define a sequence cl, C2, C3, . recursively as follows:

c = 0,

Ck = 2 ckl2j + k, for all integers k > 2.

Use strong mathematical induction to show that c, < n
2 for

all integers n > 1.

* H 24. Use strong mathematical induction to show that for the se-
quence of exercise 23, c, < n log2 n, for all integers n > 4.

Exercises 25-28 refer to properties 9.4.9 and 9.4.10. To solve
them, think big!

25. Find a real number x > 3 such that log2 x < x'/'.

26. Find a real number x > I such that x50 < 2x.

27. Find a real number x > 2 such that x < 1.0001X.

Exercise Set 9.4
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28. Use a graphing calculator or computer graphing program
to find two distinct approximate values of x such that x =
1.0001X. On what approximate intervals is x > 1.0001x?
On what approximate intervals is x < 1.0001X?

29. Use 0-notation to express the following statement:

1x21 S 17X2 +3xlog 2xi < 10Ix21,

for all real numbers x > 2.

Derive each statement in 30-33.

30. 2x + log 2 x is E(x).

31. x 2 + 5x log2 x is EO(x2 ).

32. n2 + 2n is 19(2n).

H 33. 2` ' is E0(2n).

H 34. Show that 4n is not 0(2n).

Prove each of the statements in 35-40, assuming n is an integer
variable that takes positive integer values. Use identities from
Section 4.2 as needed.

35. 1 + 2 + 22 + 23 + + 2 is 0(2n).

H 36. 4 + 42 + 4' + .. + 4nis (9((4n).

37. 2 + 2 .3 2+ 2 34+ . + 2 . 32n is 6(32n).

1 4 424
38. + - + -is 19 ((4 .5 52 53 + 5+

n n n
39. n + -+ - ++ + is 0(n).

2 4 2

2n 2n 2n 2n
40 - + + + + +- is (i(n).3 32 T33 3

41. Quantities of the form

kn + kn log2 n for positive integers k and n

arise in the analysis of the merge sort algorithm in computer
science. Show that for any positive integer k,

kn+knlog2 n is 0(nlog2 n).

42. Calculate the values of the harmonic sums

1+ + + +- forn=2,3,4, and5.
2 3 n

43. Use part (d) of Example 9.4.7 to show that

n n fl
n + - + - + + is E(nlnn).

2 3 n

44. Use the fact that log2 x = (I 2) loge x and loge , =

In x, for all positive numbers x, and part (c) of Example 9.4.7
to show that

45. a. Show that Llog2 nJ is a0(log 2 n).
b. Show that [log2 nj + 1 is E)(log 2 n).

46. Prove by mathematical induction that n < 10' for all inte-
gers n > 1.

H 47. Prove by mathematical induction that log2 n < n for all
integers n > 1.

H 48. Show that if n is a variable that takes positive integer values,
then 2' is 0(n!).

49. Let n be a variable that takes positive integer values.
a. Show that n! is 0(n').
b. Use part (a) to show that log2(n!) is 0(n log 2 n).

H c. Show that n' < (n!)2 for all integers n > 2.
d. Use part (c) to show that log2(n!) is Q2(n log2 n).
e. Use parts (b) and (d) to find an order for log2(n!).

* 50. a. For all real numbers u, log 2 u < u. Use this fact to show
that for any positive integer n, log2 x < nx 1 n for all real
numbers x > 0.

b. Interpret the statement of part (a) using 0-notation.

51. a. For all positive real numbers x, x < 2x. Use this fact to
show that for any positive integer n, x' < nn2x for all
real numbers x > 0.

b. Interpret the statement of part (a) using 0-notation.

* 52. For all positive real numbers u, log2 u < u. Use this fact
and the result of exercise 20 in Section 9.1 to prove the
following: For all integers n > 1, log2 x < x11 n for all real
numbers x > (2n) 2.

53. Use the result of exercise 52 above to prove the follow-
ing: For all integers n > 1, xn < 2x for all real numbers
x > (2n)2 ,.

Exercises 54 and 55 use L'H6pital's rule from calculus.

54. a. Let b be any real number greater than 1. Use L'Hopital's
rule and mathematical induction to prove that for all in-
tegers n > 1,

lim -= 0.
x oo bx

b. Use the result of part (a) and the definitions of limit and
of 0-notation to prove that x" is 0(b') for any integer
n > 1.

55. a. Let b be any real number greater than 1. Use L'Hopital's
rule to prove that for all integers n > 1,

lim log5 x 0

b. Use the result of part (a) and the definitions of limit and of
0-notation to prove that logb x is 0(x1/n) for any integer
n > 1.

1+ 3 + 1+ n s (log2 n).
2 3 n
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9.5 Application: Efficiency of Algorithms 11
Have you ever played the "guess my number" game? A person thinks of a number between
two other numbers, say 1 and 10 or 1 and 100 for example, and you try to figure out what it
is, using the least possible number of guesses. Each time you guess a number, the person
tells you whether you are correct, too low, or too high.

If you have ever played this game, you have probably already hit upon the most
efficient strategy: Begin by guessing a number as close to the middle of the two given
numbers as possible. If your guess is too high, then the number is between the lower of
the two given numbers and the one you first chose. If your guess is too low, then the
number is between the number you first chose and the higher of the two given numbers.
In either case, you take as your next guess a number as close as possible to the middle of
the new range in which you now know the number lies. You repeat this process as many
times as necessary until you have found the person's number.

The technique described above is an example of a general strategy called divide and
conquer, which works as follows: To solve a problem, reduce it to a fixed number of
smaller problems of the same kind, which can themselves be reduced to the same fixed
number of smaller problems of the same kind, and so forth until easily resolved problems
are obtained. In this case, the problem of finding a particular number in a given range of
numbers is reduced at each stage to finding a particular number in a range of numbers
approximately half as long.

It turns out that algorithms using a divide-and-conquer strategy are generally quite
efficient and nearly always have orders involving logarithmic functions. In this section we
define the binary search algorithm, which is the formalization of the "guess my number"
game described above, and we compare the efficiency of binary search to the sequential
search discussed in Section 9.3. Then we develop a divide-and-conquer algorithm for
sorting, merge sort, and compare its efficiency with that of insertion sort and selection
sort, which were also discussed in Section 9.3.

Binary Search
Whereas a sequential search can be performed on an array whose elements are in any
order, a binary search can be performed only on an array whose elements are arranged in
ascending (or descending) order. Given an array a [l], a [2], .. ., a [n] of distinct elements
arranged in ascending order, consider the problem of trying to find a particular element x
in the array.

To use binary search, first compare x to the "middle element" of the array. If the
two are equal, the search is successful. If the two are not equal, then because the array
elements are in ascending order, comparing the values of x and the middle array element
narrows the search either to the lower subarray (consisting of all the array elements below
the middle element) or to the upper subarray (consisting of all array elements above the
middle element).

The search continues by repeating this basic process over and over on successively
smaller subarrays. It terminates either when a match occurs or when the subarray to which
the search has been narrowed contains no elements. The efficiency of the algorithm is a
result of the fact that at each step, the length of the subarray to be searched is roughly half
the length of the array of the previous step. This process is illustrated in Figure 9.5.1.
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Figure 9.5.1 One Iteration of the Binary Search Process

To write down a formal algorithm for binary search, we introduce a variable index
whose final value will tell us whether or not x is in the array and, if so, will indicate
the location of x. Since the array goes from a[l] to a[n], we intialize index to be 0. If
and when x is found, the value of index is changed to the subscript of the array element
equaling x. If index still has the value 0 when the algorithm is complete, then x is not one
of the elements in the array. Figure 9.5.2 shows the action of a particular binary search.

7[l] < a[2] S a[3] < a[4] S5 a[5] < a[61 a[7]

Figure 9.5.2 Binary Search of a[l], a[2], . . ., a[7] for x where x = a[5S

Formalizing a binary search algorithm also requires that we be more precise about
the meaning of the "middle element" of an array. (This issue was side-stepped by careful
choice of n in Figure 9.5.2.) If the array consists of an even number of elements, there are
two elements in the middle. For instance, both a [6] and a[71 are equally in the middle of
the following array.

a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]

three elements two middle three elements
elements

In a case such as this, the algorithm must choose which of the two middle elements to
take, the smaller or the larger. The choice is arbitrary-either would do. We will write the
algorithm to choose the smaller. The index of the smaller of the two middle elements is
the floor of the average of the top and bottom indices of the array. That is, if

bot = the bottom index of the array,

top = the top index of the array, and

mid = the lower of the two middle indices of the array,

left subarray middle element right subarray

a~r] ... a[mid- I] a [mid I amid + II ... a~sl

Compare x to a[midj. If the two
/ ~md are equal, the search ends. [md

|Search the left subarray | earch h right subarray |
[a[r], ,amdlfr. I . a a[mid + 1l] , ,a[s] for x. I

-7

i
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then

mid = bot + top|
L 2 1

In this case, bot = 3 and top = 10, so the index of the "middle element" is

mid = [310 =[ = L6.5J = 6.
T 2 f a 2 s

The following is a formal algorithm for a binary search.

Algorithm 9.5.1 Binary Search

[The aim of this algorithm is to search for an element x in an ascending array of
elements a[l], a[2], . . , a[n]. If x is found, the variable index is set equal to the
index of the array element where x is located. If x is notfound, index is not changed
from its initial value, which is 0. The variables bot and top denote the bottom and top
indices of the array currently being examined.]

Input: n [a positive integer], a[I], a[2], . . , a[n] [an array of data items given in
ascending order], x [a data item of the same data type as the elements of the array]

Algorithm Body:
index:=0, bot:= 1, top := n
[Compute the middle index of the array, mid. Compare x to a[mid]. If the two
are equal, the search is successful. If not, repeat the process eitherfor the lower
orfor the upper subarray, either giving top the new value mid - 1 or giving bot
the new value mid + 1. Each iteration of the loop either decreases the value of
top or increases the value of bat. Thus, if the looping is not stopped by success
in the search process, eventually the value of top will become less than the value
of bot. This occurrence stops the looping process and indicates that x is not an
element of the array.]

while (top > bot and index = 0)

mid:= bot + top

if a[mid] = x then index := mid

if a[mid] > x

then top:= mid - 1

else bot := mid + I

end while
[If index has the value 0 at this point, then x is not in the array. Otherwise,
index gives the index of the array where x is located.]

Output: index [a nonnegative integer].
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Example 9.5.1 Tracing the Binary Search Algorithm

Trace the action of Algorithm 9.5.1 on the variables index, bot, top, mid, and the values
of x given in (a) and (b) below for the input array

a [ I ] = Ann, a [2] = Dawn, a [3] = Erik, a [4] = Gail, a [5] = Juan,

a[6] = Matt, a[7] = Max, a[8] = Rita, a[9] = Tsuji, a[10] = Yuen

where alphabetical ordering is used to campare elements of the array.

a. x =Max b. x = Sara

Solution

a. II I I I I h I I - I I -
index I 7

bot 1 6 7

top 10 7

mid 5 8 6 7

index U

bot 1 6 9

top 10 8

mid 5 8 9

The Efficiency of the Binary Search Algorithm
The idea of the derivation of the efficiency of the binary search algorithm is not diffi-
cult. Here it is in brief. At each stage of the binary search process, the length of the new
subarray to be searched is approximately half that of the previous one, and in the worst case,
every subarray down to a subarray with a single element must be searched. Consequently,
in the worst case, the maximum number of iterations of the while loop in the binary search
algorithm is 1 more than the number of times the original input array can be cut approx-
imately in half. If the length n of this array is a power of 2 (n = 2k for some integer k),
then n can be halved exactly k = log 2 n = log2 nj times before an array of length I is
reached. If n is not a power of 2, then n = 2 k + m for some integer k (where m < 2k), and
so n can be split approximately in half k times also. So in this case, k = [log2 nJ also.
Thus in the worst case, the number of iterations of the while loop in the binary search
algorithm, which is proportional to the number of comparisons required to execute it, is
[log2 nj + 1. The derivation is concluded by noting that [log2 nJ + 1 is O(log 2 n).

The details of the derivation are developed in Examples 9.5.2-9.5.6. Throughout the
derivation, for each integer n > 1, let

|Wn = the number of iterations of the while loop
in a worst-case execution of the binary search
algorithm for an input array of length n.

The first issue to consider is this. If the length of the input array for one iteration of
the while loop is known, what is the greatest possible length of the array input to the next
iteration?

Example 9.5.2 The Length of the Input Array to the Next Iteration of the Loop

Prove that if an array of length k is input to the while loop of the binary search algorithm,
then after one unsuccessful iteration of the loop, the input to the next iteration is an array
of length at most Lk/2J.

IJ .
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Solution Consider what occurs when an array of length k is input to the while loop in the
case where x :A aj[mid]:

a[bot, a[botl 1 amid ], a[mid], amidd] atop - 1], atop.

new input to the while new input to the while

loop if x < a[mid] element" loop if x > a[mid I

Since the input array has length k, the value of mid depends on whether k is odd or
even. In both cases we match up the array elements with the integers from 1 to k and
analyze the lengths of the left and right subarrays. In case k is odd, both the left and the
right subarrays have length Lk/2i. In case k is even, the left subarray has length Lk/2J - 1
and the right subarray has length Lk/2j. The reasoning behind these results is shown in
Figure 9.5.3.

kodd: a[bot] .. a[mid- I] a[mid] a[mid + I] ... a[top]

k÷ 1 I- + +l k
2 2 2

length=k+ 1 k =L middle length = k - (k + 1 + 1 k 2I= k
element

even: a[bot] ... a[mid -1] a[mid] a[mid + 1] * a[top]

I k 1 k k+ * k

length = 1k I middle length-k + 1 2 =2
2 Lielement O 1

Figure 9.5.3 Lengths of the Left and Right Subarrays

Because the maximum of the numbers Lk/2i and Lk/2j - 1 is Lk/2j, in the worst case
this will be the length of the array input to the next iteration of the loop. U

To find the order of the algorithm, a formula for Wt, W2, W3, ... is needed. The next
example derives a recurrence relation for the sequence.

Example 9.5.3 A Recurrence Relation for wl, w2, W3 , . . .

Prove that the sequence WI2, w, .W.. satisfies the recurrence relation and initial
condition

WI = 1,

Wk = I + W[k123 for all integers k > 1.

Solution Example 9.5.2 showed that given an input array of length k to the while loop, the
worst that can happen is that the next iteration of the loop will have to search an array
of length Lk/21. Hence the maximum number of iterations of the loop is I more than the
maximum number necessary to execute it for an input array of length Lk/2j. In symbols,

Wk I + WLk/23.

Also

W- =I
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Example 9.5.4

because for an input array of length 1 (bot = top), the while loop iterates only one time.
.

Now that a recurrence relation for wI, W2, W 3 , ... has been found, iteration can be
used to come up with a good guess for an explicit formula.

An Explicit Formula for w1, w2, W3, . . .

Apply iteration to the recurrence relation found in Example 9.5.3 to conjecture an explicit
formula for WI, W2, W3, ....

Solution Begin by iterating to find the values of the first few terms of the sequence.

wCD = ( 20; 1 = -0+
I= ] + 2/2J = I + WI = I + I = (XI 2=2';2 1 + 1

/Ws = I + W[ 3 /2] = 1+Wl = I + I = 2 f

w I +wL4/2 = 1+W2 1+2= () 4=22;3=2+1

w5 = 1l+ wL5/2 l = I + W2 = I+ 2 = 3

W6 = W+Lw6/2 = I + W3 = 1+ 2 = 3
W7= 1+ w1 7 /2 1 = 1 + W3 = 1+2 = 3
Ws = I+ WL8/2 = I + W4 = I+ 

3 = 8 = 23; 4 = 3 +

Wg= l+ wL9/2j = + W4 = 1+ 3 = 4

W15 =1+ wl-5/ 2 = 1+ W7 = I + 3 = 4
WO= 1+ wL6/2 = 1+ w8 = I + 4 = 16 = 24; 5 = 4+1

Note that in each case when the subscript n is between two powers of 2, w, is I more than
the exponent of the lower power of 2. In other words:

If 2' < n < 21+1, then wn = i + 1. 9.5.1

But if

2' < n < 2'+

then [by property (9.4.2) of Example 9.4.1]

i = Llog2 nj.

Substitution into statement (9.5.1) gives the conjecture that

W- = [log2 n] + 1. .

Now mathematical induction can be used to verify the correctness of the formula found
in Example 9.5.4.

Example 9.5.5 Verifying the Correctness of the Formula

Use strong mathematical induction to show that if w1, W2 , W3 , . .. is a sequence of numbers
that satisfies the recurrence relation and initial condition

WI = 1,

Wk = 1 + WLk/2j for all integers k > 1,
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then the sequence satisfies the formula

wn = [log2 nj + 1 for all integers n > 1.

Solution

Show that the sequence satisfies the formula for n = 1: For n = 1, w1 = 1 and also
[log2 1J + 1 = LOJ + 1 = 1. Hence the sequence satisfies the formula for n = 1.

Show that all integers k > 2, if the sequence satisfies the formula for all integers i with
1 < i < k, then it satisfies the formula for k: Suppose that for some integer k > 2,

Wi = L1og 2 ii + 1 for all integers i with 1 < i < k. This is the inductive hypothesis.

We must show that

Wk = [log2 kj + 1.

Consider the two cases: k is odd and k is even.

k-I
Case I (k is odd): In this case [k/2j = 2 and so

Wk = 1 + WLk/2]

= 1 + W(k-1)/2

= 1 ± (L10o2 (k -2 j + 1 )

= [log2 (k- 1)-1og 2 2 + 2

= [log2 (k - 1) - 1J + 2
= ([log2 (k - 1)] - 1) + 2

= L1og 2 kJ + 1

by the recurrence relation

because Lk/2j = (k -1)/2 since k is odd

by inductive hypothesis

by substituting into the identity
log b(x/y) = logb x - logb y derived in
exercise 28 of Section 7.2

since log 2 2 = I

by substituting x = 1g 2 (k 1) into the identity
Lx- 11 = LxJ - I derived in exercise 15 of Section 3.5

by property (9.4.3) in Example 9.4.2

Case 2 (k is even): In this case, it can also be shown that Wk = [log2 kJ + 1. The analysis
is very similar to that of case 1 and is left as an exercise.

Hence regardless of whether k is odd or k is even,

Wk = [0g 2 kj + 1,

as was to be shown.

[Since both the basis and the inductive steps have been demonstrated, the proof by strong
mathematical induction is complete.] U

The final example shows how to use the formula for w1, W2, w3, . . . to find a worst-case
order for the algorithm.

Example 9.5.6 The Binary Search Algorithm Is Logarithmic

Given that by Example 9.5.5, for all positive integers n,

w, = [log2 nj + 1,

show that in the worst case, the binary search algorithm is 0(0lg 2 n).
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Solution For any integer n > 2,

WI = [log2 nj + I by Example 9.5.5

x
1 because - < Lxj + 1 and LxJ < x

109 2 n < w, < 1og2 n + 1 2
2 for all real numbers x

1102 < < 10g 2 n log 2 n since the logorithm with base 2 is increasing,
og2  if 2 < n, then I = 10g2 2 < 1og2 n

X 2 log2 n < Wn < 21og 2 n.

Both WI and log 2 n are positive for n > 2. Therefore,

1
2 11og 2 nj < WnI < 211og 2 nI for all integers n > 2.

Let A- = B=2andk=2. Then

Alog2 nI < IwIJ < Blog2 nI forallintegersn > k.

Hence by definition of 6-notation,

WI is (l0og 2 n).

But W,, the number of iterations of the while loop, is proportional to the number of
comparisons performed when the binary search algorithm is executed. Thus the binary
search algorithm is a (10g 2 n). N

Examples 9.5.2-9.5.6 show that in the worst case, the binary search algorithm has
order lg 2 n. As noted in Section 9.3, in the worst case the sequential search algorithm has
order n. This difference in efficiency becomes increasingly more important as n gets larger
and larger. Assuming one loop iteration is performed each nanosecond, then performing n
iterations for n = 100,000,000 requires 0.1 second, whereas performing log2 n iterations
requires 0.000017 second. For n = 100,000,000,000 the times are 1.67 minutes and
0.000027 second, respectively. And for n = 100,000,000,000,000 the respective times
are 2.78 hours and 0.000037 second.

Merge Sort
Note that it is much easier to write a detailed algorithm for sequential search than for binary
search. Yet binary search is much more efficient than sequential search. Such trade-offs
often occur in computer science. Frequently, the straightforward "obvious" solution to a
problem is less efficient than a clever solution that is more complicated to describe.

In the text and exercises for Section 9.3, we gave two methods for sorting, insertion
sort and selection sort, both of which are formalizations of methods human beings often
use in ordinary situations. Can a divide-and-conquer approach be used to find a sorting
method more efficient than these? It turns out that the answer is an emphatic "yes." In fact,
over the past few decades, computer scientists have developed several divide-and-conquer
sorting methods all of which are somewhat more complex to describe but are significantly
more efficient than either insertion sort or selection sort.

One of these methods, merge sort, is obtained by thinking recursively. Imagine that
an efficient way for sorting arrays of length less than k is already known. How can such
knowledge be used to sort an array of length k? One way is to suppose the array of length
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k is split into two roughly equal parts and each part is sorted using the known method. Is
there an efficient way to combine the parts into a sorted array? Sure. Just "merge" them.

Figure 9.5.4 illustrates how a merge works. Imagine that the elements of two ordered
subarrays, 2, 5, 6, 8 and 3, 6, 7, 9, are written on slips of paper (to make them easy to
move around). Place the slips for each subarray in two columns on a tabletop, one at
the left and one at the right. Along the bottom of the tabletop, set up eight positions into
which the slips will be moved. Then, one-by-one, bring down the slips from the bottoms
of the columns. At each stage compare the numbers on the slips currently at the column
bottoms, and move the slip containing the smaller number down into the next position in
the array as a whole. If at any stage the two numbers are equal, take, say, the slip on the
left to move into the next position. And if one of the columns is empty at any stage, just
move the slips from the other column into position one-by-one in order.

I Tabletop

F2 6 E 6 @ F @ E

Figure 9.5.4 Merging Two Sorted Subarrays to Obtain a Sorted Array

One important observation about the merging algorithm described above: It requires
memory space to move the array elements around. A second set of array positions as long
as the original one is needed into which to place the elements of the two subarrays in
order. In Figure 9.5.4 this second set of array positions is represented by the positions set
up at the bottom of the tabletop. Of course, once the elements of the original array have
been placed into this new array, they can be moved back in order into the original array
positions.

In terms of time, however, merging is efficient because the total number of comparisons
needed to merge two subarrays into an array of length k is just k - 1. You can see why
by analyzing Figure 9.5.4. Observe that at each stage, the decision about which slip to
move is made by comparing the numbers on the slips currently at the bottoms of the two
columns-execpt when one of the columns is empty, in which case no comparisons are
made at all. Thus in the worst case there will be one comparison for each of the k positions
in the final array except the very last one (because when the last slip is placed into position,
the other column is sure to be empty), or a total of k - 1 comparisons in all.

The merge sort algorithm is recursive: Its defining statements include references to
itself. The algorithm is well defined, however, because at each stage the length of the array
that is input to the algorithm is shorter than at the previous stage, so that, ultimately, the
algorithm has to deal only with arrays of length 1, which are already sorted. Specifically,
merge sort works as follows.
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Figure 9.5.5 illustrates a merge sort in a particular case.

Initial array:

Sorted array:

Figure 9.5.5 Applying Merge Sort to the Array 5, 2, 4, 6, 1, 3, 2, 6

As in the case of the binary search algorithm, in order to formalize merge sort we
must decide at exactly what point to split each array. Given an array denoted by a [bot],
a[bot + 1], . . ., atopp, let mid = L(bot + top)/2j. Take the left subarray to be a[bot],
a[bot + 1], . . ., a[mid] and the right subarray to be a[mid + 1], a[mid + 2], . .a., atop].

The following is a formal version of merge sort.

Algorithm 9.5.2 Merge Sort

[The aim of this algorithm is to take an array of elements a[r], a[r + 1], . . ., a[s]
(where r < s) and to order it. The output array is denoted a r], a(r + I1, . . ., a(s]
also. It has the same values as the input array, but they are in ascending order. The
input array is split into two nearly equal-length subarrays, each of which is ordered
using merge sort. Then the two subarrays are merged together.]

Given an array of elements that can be put into order, if the array consists of a single
element, leave it as it is. It is already sorted. Otherwise:

1. Divide the array into two subarrays of as nearly equal length as possible.

2. Use merge sort to sort each subarray.

3. Merge the two subarrays together.
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Input: r and s [positive integers with r < s], a[r], a[r + 1], . . ., a[s] [an array of
data items that can be ordered]

Algorithm Body:

bot := r, top := s

while (bot < top)

mid := bot + top

call merge sort with input bot, mid, and
a[bot], a[bot + 1], . . ., a[mid]

call merge sort with input mid + 1, top and
a[mid + 1], a[mid + 2], .. - a[top]

[After these steps are completed, the arrays a [bot], a [bot +
and a[mid + 1], a[mid + 2], . .. , a[top] are both in order.]

merge a[bot], a[bot + 1], . . ., a[mid] and
a[mid + 1], a[mid + 2], ... , atop]

[This step can be done with a call to a merge algorithm. To put the final array
in ascending order, the merge algorithm must be written so as to take two
arrays in ascending order and merge them into an array in ascending order.]

end while

Output: a [r], a [r + 1], . . ., a [s] [an array with the same elements as the input array
but in ascending order]

To derive the efficiency of merge sort, let

m, = the maximum number of comparisons used
when merge sort is applied to an array of length n.

Then ml = 0 because no comparisons are used when merge sort is applied to an array
of length 1. Also for any integer k > 1, consider an array a [bot], a [bot + 1], . . ., a[top]

of length k that is split into two subarrays, a[bot], a[bot + 1], . .. , a[mid] and
a[mid + 1], a[mid + 2], ... , a[top], where mid [ L(bot + top)/2j. In exercise 24 you
are asked to show that the right subarray has length Lk/2] and the left subarray has length
[k/2]. From the previous discussion of the merge process, it is known that to merge two
subarrays into an array of length k, at most k - 1 comparisons are needed.

Consequently,

the number of comparisons] the number of ,
when merge sort is applied I= when merge so
to an array of length k I to an array of 1e

the number of comparisons
+ when merge sort is applied

to an array of length [k/21

comparisons
,rt is applied
length Lk/2]

I
L]

the number of comparisons
+ used to merge two subarrays

into an array of length k

Or, in other words,

mk = mLkl21 + mIk121 + (k - 1) for all integers k > 1.

-I.

1],._.., a[mid]
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In exercise 25 you are asked to use this recurrence relation to show that

n log2 n < m, < 2n 1og 2 n for all integers n > 1.

It follows that merge sort is 0 (n log2 n).
In the text and exercises for Section 9.3, we showed that insertion sort and selection

sort are both G (n2). How much difference can it make that merge sort is (9 (n log2 n)? If
n = 100,000,000 and a computer is used that performs one operation each nanosecond,
the time needed to perform n log2 n operations is about 2.7 seconds, whereas the time
needed to perform n2 operations is over 115 days.

Tractable and Intractable Problems
At an opposite extreme from an algorithm such as binary search, which has logarithmic
order, is an algorithm with exponential order. For example, consider an algorithm to
direct the movement of each of the 64 disks in the Tower of Hanoi puzzle as they are
transferred one by one from one pole to another. In Section 8.2 we showed that such a
transfer requires 264 - 1 steps. If a computer took a nanosecond to calculate each transfer
step, the total time to calculate all the steps would be

(2 64 ) (!) () ( ) ( ) .( ) 584 years.

number of moves seconds minutes hours days
moves per per per per per

second minute hour day year

Problems whose solutions can be found with algorithms whose worst-case order with
respect to time is a polynomial are said to belong to class P. They are called polynomial-
time algorithms and are said to be tractable. Problems that cannot be solved in poly-
nomial time are called intractable. For certain problems, it is possible to check the
correctness of a proposed solution with a polynomial-time algorithm, but it may not be
possible to find a solution in polynomial time. Such problems are said to belong to class
NP.* The biggest open question in theoretical computer science is whether every problem
in class NP belongs to class P. This is known as the P vs. NP problem. The Clay Institute,
in Cambridge, Massachusetts, has offered a prize of $1,000,000 to anyone who can either
prove or disprove that P = NP.

In recent years, computer scientists have identified a fairly large set of problems, called
NP-complete, that all belong to class NP but are widely believed not to belong to class
P. What is known for sure is that if any one of these problems is solvable in polynomial
time, then so are all the others. One of the NP-complete problems, commonly known as
the traveling salesman problem, is discussed in Section 11.2.

A Final Remark on Algorithm Efficiency
This section and the previous one on algorithm efficiency have offered only a partial view
of what is involved in analyzing a computer algorithm. For one thing, it is assumed that
searches and sorts take place in the memory of the computer. Searches and sorts on disk-
based files require different algorithms, though the methods for their analysis are similar.

*Technically speaking, a problem whose solution can be verified on an ordinary computer (or deter-
ministic sequential machine) with a polynomial-time algorithm can be solved on a nondeterministic
sequential machine with a polynomial-time algorithm. This is the reason why such problems are
called NP, which stands for nondeterministic polynomial-time algorithm.
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For another thing, as mentioned at the beginning of Section 9.3, time efficiency is not
the only factor that matters in the decision about which algorithm to choose. The amount
of memory space required is also important, and there are mathematical techniques to
estimate space efficiency very similar to those used to estimate time efficiency. Further-
more, as parallel processing of data becomes increasingly prevalent, current methods of
algorithm analysis are being modified and extended to apply to algorithms designed for
this new technology.

Exercise Set 9.5
1. Use the facts that log2 10 - 3.32 and that for all real

numbers a, log2(10') = a log 2 10 to find log2 (l,000),
log2 (1,000,000), and log2 (1,000,000,000,000).

2. Suppose an algorithm requires c log2 nj operations when
performed with an input of size n (where c is a constant).
a. How many operations will be required when the input

size is increased from m to m2 (where m is a positive
integer power of 2)?

b. By what factor will the number of operations increase
when the input size is increased from m to m '° (where m
is a positive integer power of 2)?

c. When n increases from 128 (= 27) to 268,435,456
(= 228), by what factor is c [log2 nj increased?

Exercises 3 and 4 illustrate that for relatively small values of n, al-
gorithms with larger orders can be more efficient than algorithms
with smaller orders. Use a graphing calculator or computer to
answer these questions.

3. For what values of n is an algorithm that requires n op-
erations more efficient than an algorithm that requires
L50 log 2, ] operations?

4. For what values of n is an algorithm that requires Ln2/ 10O
operations more efficient than an algorithm that requires
Ln log2 nj operations?

In 5 and 6, trace the action of the binary search algorithm (Algo-
rithm 9.5.1) on the variables index, bot, top, mid, and the given
values of x for the input array a [] = Chia, a [2] = Doug, a [3] =
Jan, a[4] = Jim, a[5] = Jose, a[6] =Mary, a[7] = Rob, a[8] =
Roy, a[9] = Sue, a[10] = Usha, where alphabetical ordering is
used to compare elements of the array.

5. a. x = Chia b. x = Max

6. a. x = Amanda b. x = Roy

7. Suppose bot and top are positive integers with bot < top.
Consider the array

ajbot], a[bot + 1], atopp.

a. How many elements are in this array?
b. Show that if the number of elements in the array is odd,

then the quantity bot + top is even.
c. Show that if the number of elements in the array is even,

then the quantity bot + top is odd.

Exercises 8-11 refer to the following algorithm segment. For
each positive integer n, let an be the number of iterations of the
while loop.

while (n > 0)
n := n div 2

end while

8. Trace the action of this algorithm segment on n when the
initial value of n is 27.

9. Find a recurrence relation for an.

10. Find an explicit formula for a,.

11. Find an order for this algorithm segment.

Exercises 12-15 refer to the following algorithm segment. For
each positive integer n, let b, be the number of iterations of the
while loop.

while (n > 0)
n := n div 3

end while

12. Trace the action of this algorithm segment on n when the
initial value of n is 424.

13. Find a recurrence relation for be.

H 14. a. Use iteration to guess an explicit formula for bn.
b. Prove that if k is an integer and x is a real number with

3k < x < 3", then [log3 xj = k.
c. Prove that for all integers m > 1,

Llog3(3m)J = Llog3(3- + 1)] = Llog3(3m + 2)j.

d. Prove the correctness of the formula you found in part (a).

15. Find an order for the algorithm segment.

16. Complete the proof of case 2 of the strong induction argu-
ment in Example 9.5.5. In other words, show that if k is
an even integer and w, = Llog2 i J + I for all integers i with
1 < i < k, then Wk = log2 kg + 1.

For 17-19, modify the binary search algorithm (Algorithm 9.5. 1)
to take the upper of the two middle array elements in case the
input array has even length. In other words, in Algorithm 9.5.1
replace

Io bot+ top I . rbot+ top]
mid:= L l withmid:= l 2 t

L 2 ]1 2
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17. Trace the modified binary search algorithm for the same
input as was used in Example 9.5.1.

18. Suppose an array of length k is input to the while loop of
the modified binary search algorithm. Show that after one
iteration of the loop, if amid] A x, the input to the next
iteration is an array of length at most Lk/2j.

19. Let w, be the number of iterations of the while loop in
a worst-case execution of the modified binary search al-
gorithm for an input array of length n. Show that Wvk =

1 + W[k/2J for k > 2.

In 20 and 21, draw a diagram like Figure 9.5.4 to show how to
merge the given subarrays into a single array in ascending order.

20. 3,5,6,9, 12and2,4,7,9, 11

21. F, K, L, R, U and C, E, L, P, W (alphabetical order)

In 22 and 23, draw a diagram like Figure 9.5.5 to show how
merge sort works for the given input arrays.

22. R, G, B, U, C, F, H, G (alphabetical order)

23. 5,2,3,9,7,4,3,2

24. Show that given an array a[bot], a [bot +1] . a[top] of
length k, if mid = L(bot + top) /21 then
a. the subarray a [mid + 1], a [mid + 2], . . , a[top] has

length Lk/21.
b. the subarray a[bot], a[bot + 1], . . ., a[mid] has length

Fk/21.

H 25. The recurrence relation for i 1, M2 , M3, . which arises in
the calculation of the efficiency of merge sort, is

ml =0

Mk = Mik/2j + mrk/21 + k - 1.

Show that for all integers n > 1,
a. n 10g2 n <ml b. mn, < 2n 1og 2 n

26. You might think that n - I multiplications are needed to
compute x', since

xn = X X X.

n-1 multiplications

But observe that, for instance, since 6 = 4 + 2,

X6 = xx = (X
2

)
2

X
2

.

Thus x6 can be computed using three multiplications: one
to compute x2, one to compute (x2) 2, and one to multiply
(x2)2 times x2. Similarly, since 11 = 8 + 2 + 1,

x = x x2x' = ((x
2

)
2

)
2

x
2

x

and so x" can be computed using five multiplications:
one to compute x2, one to compute (x2)2, one to compute
((x2)2)2, one to multiply ((x2)2)2 times x2, and one to mul-
tiply that product by x.
a. Write an algorithm to take a real number x and a positive

integer n and compute x' by
(i) calling Algorithm 4.1.1 to find the binary represen-

tation of n:

(r[k] r[k- 1] ... r[0])2,

where each r[i] is 0 or 1;
(ii) computing x2, x22, 2

.
.... x2 by squaring, then

squaring again, and so forth,
(iii) computing xn using the fact that

Xn= ±Xr[k,23+ +[212
2
+r[I12-+r[012

0

= Xr,[k2k . . Xr.212 .Xr[2 . Xr[0]20

b. Show that the number of multiplications performed
by the algorithm of part (a) is less than or equal to
2[log2 nj.

I
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RELATIONS

There are many kinds of relationships in the world. For instance, we say that two people are
related by blood if they share a common ancestor and that they are related by marriage if one
shares a common ancestor with the spouse of the other. We also speak of the relationship
between boyfriend and girlfriend, between student and teacher, between people who work
for the same employer, and between people who share a common ethnic background.

Similarly, the objects of mathematics and computer science may be related in various
ways. Two digital logic circuits may be said to be related if they have the same input/output
table. A set A may be said to be related to a set B if A is a subset of B, or if A is not a
subset of B, or if A is the complement of B. A number x may be said to be related to
a number y if x < y, or if x divides y, or if x2 + y 2 

= 1. Two identifiers in a computer
program may be said to be related if they have the same first eight characters, or if the
same memory location is used to store their values when the program is executed. And
the list could go on!

In this chapter we discuss the mathematics of relations defined on sets, focusing on
ways to represent relations and exploring various properties they may have. The concept of
equivalence relation is introduced in Section 10.3 and applied in Section 10.4 to modular
arithmetic and cryptography. Partial order relations are discussed in Section 10.5, and
an application is given showing how to use these relations to help coordinate and guide
the flow of individual tasks that must be performed to accomplish a complex, large-scale
project.

I0. 1 Relations on Sets
Strange as it may sound, the power of mathematics rests on its evasion of all unnecessary
thought and on its wonderful saving of mental operations. - Ernst Mach, 1838-1916

Let A = {0, 1, 2} and B = {1, 2, 31. Let us say that an element x in A is related to an
element y in B if, and only if, x is less than y. Let us use the notation x R y as a shorthand
for the sentence "x is related to y." Then

OR1 since 0 < 1,

OR2 since 0 < 2,

OR3 since 0< 3,

1R2 since 1< 2,

1 R3 since 1< 3, and

2R3 since 2<3.

571
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On the other hand, if the notation x K y represents the sentence "x is not related to y,"
then

0X0 since 0 li 0,

1X1 since 1 ca 1,

2X 1 since 2 -A 1, and

2X2 since 2 >4 2.

Recall that the Cartesian product of A and B, A x B, consists of all ordered pairs
whose first element is in A and whose second element is in B:

A x B = t(x, y) x E A andy E B}.
In this case,

A x B {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

The elements of some ordered pairs in A x B are related, whereas the elements of other
ordered pairs are not. Consider the set of all ordered pairs in A x B whose elements are
related:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which
elements are related to which. The relation itself can therefore be thought of as the
totality of ordered pairs whose elements are related by the given condition. The formal
mathematical definition of relation, based on this idea, was introduced by the American
mathematician and logician C. S. Peirce in the nineteenth century.

L. L;.

Let And Bbesets.A (bn ry)relo R fro A to B is a subset Of A x B. Given
an ordered pair(x Gym) ina A x Bx is related to by Rt,; written x R y, if, and onl

The notation for relations may be written symbolically as follows:

xRy X (x,y) R

The notation x(f y means that x is not related to y by R.

xXy X (x,y) R

The term binary is used in the definition above to refer to the fact that the relation is
a subset of the Cartesian product of two sets. Because we mostly discuss binary relations
in this text, when we use the term relation by itself, we will mean binary relation. A more
general type of relation, called an n-ary relation, is defined later in this section.

Example 10.1.1 A Binary Relation as a Subset

Let A = 11, 21 and B = { 1, 2, 31 and define a binary relation R from A to B as follows:

Given any (x, y) E A x B, (x, y) E R E x-y is even.

a. State explicitly which ordered pairs are in A x B and which are in R.

b. Is I R 3? Is 2 R 3? Is 2 R 2?
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Solution

a. A x B = {(l, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. To determine explicitly the com-
position of R, examine each ordered pair in A x B to see whether its elements satisfy
the defining condition for R.

(1, 1) E R because I - 1 = 0 and 0 is even since 0 = 2 0.

(1, 2) 0 R because 1-2 =-l and-I is not even since -1 -2k, for any integer k.

(1, 3) E R because -3 =-2 and -2 is even.

(2, 1) R because 21 = I and 1 is not even.

(2, 2) E R because 2 -2 = 0 and 0 is even.

(2, 3) 0 R because 2- 3 = -1 and-I is not even.

Thus

R = {(l, 1), (1, 3), (2, 2)}.

b. Yes, 1 R 3 since (1, 3) E R.
No, 2Ri3 since (2, 3) ¢ R.
Yes, 2 R 2 since (2, 2) E R. U

Example 10.1.2 The Congruence Modulo 2 Relation

Generalize the relation defined in Example 10.1.1 to the set of all integers Z. That is,
define a binary relation E from Z to Z as follows:

Forall(m, n) E Z x Z, m En m-n is even.

a. Is 4 E O? Is 2 E 6? Is 3 E (-3)? Is 5 E 2?

b. List five integers that are related by E to 1.

c. Prove that if n is any odd integer, then n E 1.

Solution

a. Yes, 4 E 0 because 4-0 = 4 and 4 is even.
Yes, 2 E 6 because 2 - 6 = -4 and -4 is even.
Yes, 3 E (-3) because 3 - (-3) = 6 and 6 is even.
No, 5 E 2 because 5 - 2 = 3 and 3 is not even.

b. There are many such lists. One is

1 because 1-1 = 0 is even,

3 because 3-1 = 2 is even,

5 because 5-1 = 4 is even,

-1 because -1 - 1 = -2 is even,

-3 because -3 - 1 = -4 is even.

c. Proof: Suppose n is any odd integer. Then n = 2k + 1 for some integer k. Now by
definition of E, n E 1 if, and only if, n -1 is even. But by substitution,

n - I = (2k + 1) - I = 2k,

and since k is an integer, 2k is even. Hence n E 1 [as was to be shown].

It can be shown (see exercise 4 at the end of this section) that integers m and n are related
by E if, and only if, m mod 2 = n mod 2 (that is, that both are even or both are odd).
When this occurs m and n are said to be congruent modulo 2. U
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Example 10.1.3 The Circle Relation

Define a binary relation C from R to R as follows:

Forany (x, y) E R x R, (x, y) E C X x2 +y 2 = .

a. Is (l, 0) E C? Is (0, 0) E C?lIs (-, '/3) E C? Is -2 C 0? Is 0C (-l)? Is I C I?

b. Draw a graph for C by plotting the points of C in the Cartesian plane.

Solution

a. Yes, (1,0) E C because 12 + 02 = 1.
No, (0, 0) 0 C because 02 + 02 -0 0 1.

Yes, (-2 A,~) E C because (_1)2 + (,"3)2 = I + 4 I

No, -2 t 0 because (-2)2 + 02 = 4 0 1.
Yes, 0 C (-1) because 02 + (_1)2 = 1.
No, 1 0 1 because 12 + 12 = 2 :A 1.

b.

Example 10.1.4 A Relation on a Set of Strings

Let A be the set of all strings of length 6 consisting of x's and y's. Define a binary relation
R from A to A as follows: For all strings s and t in A,

s R t X the first four characters of s equal
the first four characters of t.

Is xxyxyx R xxxyxy? Is yxyyyx R yxyyxy? Is xyxxxx R yxxxxx?

Solution No, xxyxyxfxxxyxy because xxyx 7 xxxy.

Yes, yxyyyx R yxyyxy because yxyy = yxyy.

No, xyxxxxfyxxxxx because xyxx 7 yxxx.

Arrow Diagram of a Relation
Suppose R is a relation from a set A to a set B. The arrow diagram for R is obtained as
follows:

1. Represent the elements of A as points in one region and the elements of B as points in
another region.

2. For each x in A and y in B, draw an arrow from x to y if, and only if, x is related to y
by R. Symbolically:

Draw an arrow from x to y * x R y * (x, y) E R.

U
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Example 10.1.5 Arrow Diagrams of Relations

Let A = {1, 2, 3) and B = {1, 3, 5} and define relations S and T from A to B as follows:
For all (x, y) E A x B,

(x, y) E S X* x < y S is a "less than" relation.

T = {(2, 1), (2, 5)1.

Draw arrow diagrams for S and T.

'J"ULtlullQrvl o - .

These example relations illustrate that it is possible to have several arrows coming out
of the same element of A pointing in different directions. Also, it is quite possible to have
an element of A that does not have an arrow coming out of it. U

Relations and Functions
With the introduction of Georg Cantor's set theory in the late nineteenth century, it began
to seem possible to put mathematics on a firm logical foundation by developing all the
different branches of mathematics from logic and set theory alone. In 1914, a crucial
breakthrough in using sets to specify mathematical structures was made by Norbert Wiener
(1894-1964), a young American who had recently received his Ph.D. from Harvard.
What Wiener showed was that an ordered pair can be defined as a certain type of set.
Unfortunately, his definition was somewhat awkward. At about the same time, the German
mathematician Felix Hausdorff (1868-1942) offered another definition, but it turned out
to have a slight flaw. Finally, in 1921, the Polish mathematician Kazimierez Kuratowski
(1896-1980) published the version of the definition that has since become standard. It
specifies that

(a, b) = {{a), {a, bhi.

Note that this definition implies the fundamental property of ordered pairs:

(a,b)=(c,d) X. a=candb=d.

The importance of this definition is that it makes it possible to define binary relations using
nothing other than set theory, because Cartesian products are defined as sets of ordered
pairs and binary relations are defined as subsets of Cartesian products. The concept of
function is then defined as the following special kind of a binary relation.

I. ! a

A function F from a set A to a set B is a relation from A to B that satisfies the
following two properties:

1. For every element x in A, there is an element y in B such that (x, y) E F.

2. For all elements x in A and y and z in B,

if (x, y) E F and (x, z) X F, then y = z.

If F is a function from A to B, we write

y = F(x) <* (x, y) E F.
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Note that y = F(x) if, and only if, y is the second element of an ordered pair in F
whose first element is x. Note also that properties (1) and (2) can be stated less formally
as follows: A binary relation F from A to B is a function if, and only if:

1. Every element of A is the first element of an ordered pair of F.

2. No two distinct ordered pairs in F have the same first element.

Example 10.1.6 Functions and Relations on Finite Sets

Let A = {2, 4, 6} and B = {1, 3, 51. Which of the relations R and S defined below are
functions from A to B?

a. R = {(2, 5), (4, 1), (4, 3), (6, 5)1.

b. For all (x, y) E A x B, (x, y) E S y = x +1.

Solution

a. R is not a function because it does not satisfy property (2). The ordered pairs (4, 1)
and (4, 3) have the same first element but different second elements. You can see this
graphically if you draw the arrow diagram for R.

A

b. S is not a function because it does not satisfy property (1). It is not true that every
element of A is the first element of an ordered pair in S. For example, 6 E A but there
is no y in B such that y = 6 + 1 = 7. You can also see this graphically by drawing the
arrow diagram for S.

A -

U

Example 10.1.7 Functions and Relations on Sets of Real Numbers

a. In Example 10.1.3 the circle relation C was defined as follows:

For all (x, y) E R x R, (x, y) E C X2 + y 2 = 1.

Is C a function?

b. Define a relation from R to R as follows:

Forall(x,y)ERxR, (x,y)EL X y=x-1.

Is L a function?

P
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Solution

a. The graph of C, shown below, indicates that C does not satisfy either function property.
To see why C does not satisfy property (1), observe that there are many real numbers
x such that (x, y) V C for any y.

12'2 /

x=2

2

For instance, when x = 2, there is no real number y so that

x+Y = 22 + Y= 4 + = 1

because if there were, then it would have to be true that

y2 = -3,

which is not the case for any real number y.
To see why C does not satisfy property (2), note that for some values of x there

are two distinct values of y so that (x, y) E C. One way to see this graphically is to
observe that there are vertical lines, such as x = , that intersect the graph of C at two
separate points: (2, 3) and (, -23).

b. L is a function. For each real number x, y = x - I is a real number, and so there is a
real number y with (x, y) E L. Also if (x, y) E L and (x, z) E L, then y = x - 1 and
z = x - 1, and soy = z.

You can also check these results by inspecting the graph of L, shown below. Note
that for every real number x, the vertical line through (x, 0) passes through the graph
of L exactly once. This indicates both that every real number x is the first element of
an ordered pair in L and also that no two distinct ordered pairs in L have the same first
element.

Graph of L /

/y1- I

(XI 0)

.

/
l b >

I
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The Inverse of a Relation
If R is a relation from A to B, then a relation R-' from B to A can be defined by
interchanging the elements of all the ordered pairs of R.

I 1 I , J

Let R be aion ro A toB.Define the inverse relation R- from B to A as
follows: If: i: : : :

R-1 ={(yx) E B x AI (xy) ER).

This definition can be written operationally as follows:

For all x E X and y E Y, (y, x) e R X•- (x, y) E R.

Example 10.1.8 The Inverse of a Finite Relation

Let A = {2, 3, 4} and B = {2, 6, 81 and let R be the "divides" relation from A to B:

For all (x, y) e A x B, x Ry X xly x divides y.

a. State explicitly which ordered pairs are in R and R- I, and draw arrow diagrams for R
and R-'.

b. Describe R-' in words.

Solution

a. R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}
R-' = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4))

To draw the arrow diagram for R- 1, you can copy the arrow diagram for R but reverse
the directions of the arrows.

R

D
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Or you can redraw the diagram so that B is on the left.

b. R is defined in words as follows:

For all (x, y) E B x A, y R- l x X y is a multiple of x.

Example 10.1.9 The Inverse of an Infinite Relation

Define a relation R from R to R as follows:

Forall(x,y)ERxR, xRy X* y=21xl.

Draw the graphs of R and R -in the Cartesian plane. Is R a function?

Solution A point (v, u) is on the graph of R-' if, and only if, (u, v) is on the graph of R.
Note that if x > 0, then the graph of y = 21x I = 2x is a straight line with slope 2. And if
x < 0, then the graph of y = 21 Ix = 2(-x) = -2x is a straight line with slope-2. Some
sample values are tabulated and the graphs are shown below.

R = {(x, y) I y = 2jx|}

x

0
1

-I
2

-2

1st coordinate

R-

y

0
2
2
4
4

2nd coordinate I st coordino

I = {(y, x) I y = 2Ixi}

Y X

0 0
2 1
2 -I
4 2
4 -2

ate 2nd coordinate

Graph of R-'

Note that R-1 is not a function because, for instance, both (2, 1) and (2, -1) are
inR-'. I

.
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Directed Graph of a Relation
In the remaining sections of this chapter, we discuss important properties of relations that
are defined from a set to itself.

!. LuI

A binar relationn aset A a b rli from A to A.

When a binary relation R is defined on a set A, the arrow diagram of the relation can be
modified so that it becomes a directed graph. Instead of representing A as two separate
sets of points, represent A only once, and draw an arrow from each point of A to each
related point. As with an ordinary arrow diagram,

For all points x and y in A,

there is an arrow from x to y * x R y X (x, y) E R.

If a point is related to itself, a loop is drawn that extends out from the point and goes back
to it.

Example 10.1.10 Directed Graph of a Relation

Let A = {3, 4, 5, 6, 7, 8} and define a binary relation R on A as follows:

Forallx,y E A, x Ry X• 21 (x-y).

Draw the directed graph of R.

Solution Note that 3 R 3 because 3 -3 = 0 and 2 1 0 since 0 = 2 0. Thus there is a loop
from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth,
since the difference of each integer with itself is 0, and 2 1 0.

Note also that 3 R 5 because 3-5 =-2 = 2 (-1). And 5 R 3 because 5-3 =
2 = 2 * 1. Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3. The other
arrows in the directed graph, as shown below, are obtained by similar reasoning.

U

N-ary Relations and Relational Databases
N-ary relations form the mathematical foundation for relational database theory. A binary
relation is a subset of the Cartesian product of two sets, similarly, an n-ary relation is a
subset of the Cartesian product of n sets.
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GiestAl, A2,-.., A,,,an n-ary relation Ron Al x A 2 x -. x A. is asubset of
A1 x A2 x .. x A". The special cases of 2-ary, 3-ary, and 4-ary relations are called
binaryternary, and quaternary relations, respectively,

Example 10.1.11 A Simple Database

The following is a radically simplified version of a database that might be used in a
hospital. Let AI be a set of positive integers, A2 a set of alphabetic character strings, A3
a set of numeric character strings, and A4 a set of alphabetic character strings. Define a
quaternary relation R on AI x A2 x A3 x A4 as follows:

(a,, a2 , a3 , a4 ) e R X a patient with patient ID number a,, named a2 , was
admitted on date a3, with primary diagnosis a4.

At a particular hospital, this relation might contain the following 4-tuples:

(011985, John Schmidt, 020795, asthma)
(574329, Tak Kurosawa, 011495, pneumonia)
(466581, Mary Lazars, 010395, appendicitis)
(008352, Joan Kaplan, 112494, gastritis)
(011985, John Schmidt, 021795, pneumonia)
(244388, Sarah Wu, 010395, broken leg)
(778400, Jamal Baskers, 122794, appendicitis)

In discussions of relational databases, the tuples are normally thought of as being
written in tables. Each row of the table corresponds to one tuple, and the header for each
column gives the descriptive attribute for the elements in the column.

Operations within a database allow the data to be manipulated in many different ways.
For example, in the database language SQL, if the above database is denoted S, the result
of the query

SELECT Patient-ID#, Name FROM S WHERE
Admission Date = 010395

would be a list of the ID numbers and names of all patients admitted on 01-03-95:

466581 Mary Lazars,
244388 Sarah Wu.

This is obtained by taking the intersection of the set Al x A2 x {010395} x A4 with the
database and then projecting onto the first two coordinates. (See exercise 20 of Section
7.1.) Similarly, SELECT can be used to obtain a list of all admission dates of a given
patient. For John Schmidt this list is

02-07-95 and
02-17-95

Individual entries in a database can be added, deleted, or updated, and most databases can
sort data entries in various ways. In addition, entire databases can be merged, and the
entries common to two databases can be moved to a new database. H
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Exercise Set 10.1 *
1. Let A = (2, 3, 41 and B = {6, 8, 101 and define a binary re-

lation R from A to B as follows:

For all (x, y) E A x B, (x, y) E R X x l y.

a. Is 4 R 6? 1s4 R 8? Is (3, 8) E R? Is (2, 10) E R?
b. Write R as a set of ordered pairs.

2. Let C = {2, 3, 4, 51 and D = {3, 41 and define a binary re-
lation S from C to D as follows:

For all (x, y) E C x D, (x, y) E S -> x > y.

a. Is 2 S 4? Is 4 S 3? Is (4,4) E S? Is (3, 2) E S?
b. Write S as a set of ordered pairs.

3. As in Example 10.1.2, the congruence modulo 2 relation
E is defined from Z to Z as follows:

For all integers m and n, m E n m -n is even.

a. Is0EO?Is5 E2?Is(6,6) e E?Is (-1,7) a E?
b. Prove that for any even integer n, n E 0.

H 4. Prove that for all integers m and n, m -n is even if, and
only if, both m and n are even or both m and n are odd.

5. The congruence modulo 3 relation, T, is defined from Z to
Z as follows:

For all integers m and n, m T n X 31 (m -n).

a.
b.
c.
d.

H e.

Is 10 T I? Is I T 10? Is (2, 2) E T? Is (8, 1) E T?
List five integers n such that n T 0.
List five integers n such that n T I.
List five integers n such that n T 2.
Make and prove a conjecture about which integers are
related by T to 0, which integers are related by T to 1,
and which integers are related by T to 2.

6. Define a binary relation S from R to R as follows:

Forall(x,y)ERxR, xSy 'X x>y.

a. Is (2, 1) E S? Is (2, 2) (E S? Is 2 S 3? Is (- 1) S (- 2)?
b. Draw the graph of S in the Cartesian plane.

7. Define a binary relation R from R to R as follows:

Forall(x,y)cRxR, xRy '• y=x2 .

a. Is (2,4) ER? Is (4,2)a R? Is (-3) R9? Is9R (-3)?
b. Draw the graph of R in the Cartesian plane.

8. Define a binary relation P on Z as follows:

For all m, n E Z,

m P n 4. m and n have a common prime factor.

a. Is 15 P 25?
c. IsO P5?

b. 22 P 27?
d. Is 8 P 8?

9. Let X = la, b, c}. Recall that -9'(X) is the power set of X.
Define a binary relation -l on _?(X) as follows:

For all A, B E (X),

A ? B X A has the same number of elements as B.

a. Is {a, b) - {b, cl?
c. Is {c} M {b)?

b. Is {a) - {a, b}?

10. Let X = (a, b, c}. Define a binary relation f on .7(X) as
follows:

Forall A, B E .a(X), A,1B # AnlB #0.

a. Is {a}) {c}? b. Is {a, b}l . {b, c}?
c. Is {a, b} f la, b, c}?

11. Let S be the set of all strings of a's and b's of length 4.
Define a relation R on S as follows:

For all s, t E S,

s R t ¢> s has the same first two characters as t.

a. Is abaa R abba?
c. Is aaaa R aaab?

b. Is aabb R bbaa?

H 12. Let A = (4, 5, 61 and B = (5, 6, 71 and define binary rela-
tions R, S, and T from A to B as follows:

For all (x, y) E A x B, (x, y) e R X x > y.

Forall(x,y) E A x B, xSy # 21(x-y).

T = {(4, 7), (6, 5), (6, 7)1.

a. Draw arrow diagrams for R, S, and T.
b. Indicate whether any of the relations R, S, and T are

functions.

13. a. Find all binary relations from {0,1 to I1.
b. Find all functions from {0,1 to { }1.
c. What fraction of the binary relations from { 0, 11 to {1

are functions?

14. Find four binary relations from [a, b) to {x, yl that are not
functions from (a, b) to {x, yl.

H 15. Suppose A is a set with m elements and B is a set with n
elements.
a. How many binary relations are there from A to B? Ex-

plain.
b. How many functions are there from A to B? Explain.
c. What fraction of the binary relations from A to B are

functions?

16. Define a binary relation P from R to R as follows:

For all real numbers x and y,

(X, Y) E p X = y 2.

Is P a function? Explain.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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17. Let A = {3, 4,51 and B = (4,5, 61 and let R be the "less
than" relation. That is,

Forall(x,y)EAxB, xRy 4> x<y.

State explicitly which ordered pairs are in R and R-'.

18. Let A = {3, 4, 51 and B = {4, 5, 6} and let S be the "di-
vides" relation. That is,

For all (x, y) E A x B, x S y 4 x I y.

State explicitly which ordered pairs are in S and S-'.

19. Let S be the set of all strings in a's and b's. Define a relation
T on S as follows:

For all s, t E S, s T t X t = as

(that is, t is the concatenation of a with s).
a. Is ab T aab? b. Is aab T ab?
c. Is ba T aba? d. Is aba T-1 ba?
e. Is abb T - bba? f. Is abba T` bba?

20. Define a relation R from R to R as follows:

Forall(x,y)eRxR, xRy '* y=Lxj.

Draw the graphs of R and R-' in the Cartesian plane.

21. a. Rewrite the definition of one-to-one function using the
notation of the definition of a function as a relation.

b. Rewrite the definition of onto function using the notation
of the definition of function as a relation.

22. a. SupposeafunctionF: X Yisone-to-onebutnotonto.
Is F (the inverse relation for F) a function? Explain
your answer.

b. Suppose a function F: X -* Y is onto but not one-to-one.
Is F` (the inverse relation for F) a function? Explain
your answer.

Draw the directed graphs of the binary relations defined in 23-27
below.

23. Define a binary relation R on A = (0, 1, 2, 31 by R =
1(0, 0), (1, 2), (2, 2)).

24. Define a binary relation S on B = {a, b, c, d) by S =
((a, b), (a, c), (b, c), (d, d)J.

25. Let A = {2, 3, 4, 5, 6, 7, 8) and define a binary relation R
on A as follows:

Forallx,yeA, xRy X' xIy.

H 26. Let A - {5, 6, 7, 8, 9, 101 and define a binary relation S on
A as follows:

Forallx,y E A, x Sy #> 21 (x-y).

27. Let A = (2, 3, 4, 5, 6, 7, 81 and define a binary relation T
on A as follows:

Forallx,yEA, xTy <> 31(x-y).

28. In Example 10.1.11 the result of the query SELECT
Patient-ID#, Name FROM S WHERE Primary-Diag-
nosis = X is the projection onto the first two coordinates
of the intersection of the set Al x A2 x A3 x (XI with the
database.
a. Find the result of the query SELECT Patient-ID#, Name

FROM S WHERE Primary-Diagnosis = pneumonia.
b. Find the result of the query SELECT Patient- ID#, Name

FROM S WHERE Primary-Diagnosis = appendicitis.

Exercises 29-33 refer to unions and intersections of relations.
Since binary relations are subsets of Cartesian products, their
unions and intersections can be calculated as for any subsets.
Given two relations R and S from A to B,

R U S = {(x, y) E A x B I (x, y) e R or (x, y) E SI

R n S = {(x, y) E A x B (x, y) E R and (x, y) e S}.

29. Let A = 12, 4} and B = 16, 8, 10} and define binary rela-
tions R and S from A to B as follows:

Forall(x,y)EAxB, xRy X xIy.

Forall(x,y)EAxB, xSy > y-4=x.

State explicitly which ordered pairs are in A x B, R, S,
R U S, and R n S.

30. Let A =-1, 1,2,41 and B = (1,21 and define binary
relations R and S from A to B as follows:

Forall(x,y)eAxB, xRy JX iIX=IYI.

Forall(x,y)eAxB, xSy ' x-yiseven.

State explicitly which ordered pairs are in A x B, R, 5,
R U S, and R n S.

31. Define R and S from R to R as follows:

R={(x,y)ERxRlx<yl and

S={(x,y)ERxR x=y}.

That is, R is the "less than" relation and S is the "equals"
relation from R to R. Graph R, S, R U S, and R n S in the
Cartesian plane.

32. Define binary relations R and S from R to R as follows:

R = {(x, y) eR x Rl X2 + y2 = 41 and

S = {(x, y) e R x R x = yI.

Graph R, S, R U S, and R n S in the Cartesian plane.

33. Define binary relations R and S from R to R as follows:

R= {(Xy)ERxRly=Ix) and

S = {(x, y) ER x RI y = lI.

Graph R, S, R U S, and R n S in the Cartesian plane.
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10.2 Reflexivity, Symmetry, and Transitivity
Mathematics is the tool specially suitedfor dealing with abstract concepts of any kind
and there is no limit to its power in this field. -P. A. M. Dirac, 1902-1984

Let A = 12, 3, 4, 6, 7, 91 and define a relation R on A as follows:

Forallx,yEA, xRy X* 31(x-y).

Then 2 R 2 because 2 - 2 =0, and 3 1 0. Similarly, 3 R 3,4 R 4,6 R 6,7 R 7, and 9 R 9.
Also 6 R 3 because 6-3 = 3, and 3 13. And 3 R 6 because 3-6 =-(6-3) =-3,
and 3 1 (-3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.

6

7

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an arrow
going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from a
second point to a third, there is an arrow going from the first point to the third. That
is, there are no "incomplete directed triangles" in the graph.

Properties (1), (2), and (3) correspond to properties of general binary relations called
reflexivity, symmetry, and transitivity.

In ! i !1

Let R be a binary relation on astA

I. Risreflexiveifgadonyfgfrlx E A :440 O X Rx.

2i R is symmetric if,tandnifo rallx, y e A,fx R ytheny Rx.

3. R is transitive if, andonly iforallx,0yz zAifx RyandyRzthenx Rz.

Because of the equivalence of the expressions x R y and (x, y) E R for all x and y in
A, the reflexive, symmetric, and transitive properties can also be written as follows:
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In informal terms, properties (1)-(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second element
is related to the first.

3. Transitive: If any one element is related to a second and that second element is related
to a third, then the first element is related to the third.

A Caution! One caution about the informal phrasing: The first, second, and
third elements referred to need not all be distinct. This is the disadvantage
of informal phrasing; it sometimes masks some nuances of the full formal
definition.

Note that the definitions of reflexivity, symmetry, and transitivity are universal state-
ments. This means that to prove a relation has one of the properties, you use either the
method of exhaustion or the method of generalizing from the generic particular.

Now consider what it means for a relation not to have one of the properties defined
above. Recall that the negation of a universal statement is existential. Hence if R is a
binary relation on a set A, then

1. R is not reflexive X* there is an element x in A such that xRXx [that is, such that
(x, x) 0 R].

2. R is not symmetric X: there are elements x and y in A such that x R y but yKx
[that is, such that (x, y) E R but (y, x) ¢ R].

3. R is not transitive X* there are elements x, y and z in A such that x R y and y R z
but xf Xz [that is, such that (x, y) E R and (y, z) E R but
(x, z) 0 R].

It follows that you can show that a binary relation does not have one of the properties by
finding a counterexample.

Example 10.2.1 Properties of Binary Relations on Finite Sets

Let A = {0, 1, 2, 3} and define relations R, S, and T on A as follows:

R ={(0, 0), (0,1), (0, 3), (1, 0), (1, 1), (2, 2), (3,0), (3, 3)1,

S = {(0, 0), (0, 2), (0, 3), (2, 3)},

T = {(0, 1), (2, 3)1.

a. Is R reflexive? symmetric? transitive?

b. Is S reflexive? symmetric? transitive?

c. Is T reflexive? symmetric? transitive?

1. R is reflexive X for all x in A, (x, x) E R.

2. R is symmetric 4* for all x and y in A, if (x, y) E R then (y, x) E R.

3. R is transitive X for all x, y and z in A, if (x, y) E R and (y, z) E R
then (x, z) E R.
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Solution

a. The directed graph of R has the appearance shown below.

R is reflexive: There is a loop at each point of the directed graph. This means that
each element of A is related to itself, so R is reflexive.

R is symmetric: In each case where there is an arrow going from one point of the
graph to a second, there is an arrow going from the second point back to the first. This
means that whenever one element of A is related by R to a second, then the second is
related to the first. Hence R is symmetric.

R is not transitive: There is an arrow going from I to 0 and an arrow going from 0 to
3, but there is no arrow going from 1 to 3. This means that there are elements of A-
O, 1, and 3-such that I R 0 and 0 R 3 but LK3. Hence R is not transitive.

b. The directed graph of S has the appearance shown below.

'2

Sisnotreflexive: Thereisnoloopat 1,forexample. Thus (1,1) 0 S, and soSis not
reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0. Hence (0, 2) E S
but (2, 0) 0 S, and so S is not symmetric.

S is transitive: There are three cases for which there is an arrow going from one point
of the graph to a second and from the second point to a third: Namely, there are arrows
going from 0 to 2 and from 2 to 3; there are arrows going from 0 to 0 and from 0 to 2;
and there are arrows going from 0 to 0 and from 0 to 3. In each case there is an arrow
going from the first point to the third. (Note again that the "first," "second," and "third"
points need not be distinct.) This means that whenever (x, y) E S and (y, z) E 5, then
(x, z) E S, for all x, y, z E {0, ,2, 3}, and so S is transitive.
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c. The directed graph of T has the appearance shown below.

0- - 1

T is not reflexive: There is no loop at 0, for example. Thus (0, 0) V T. so T is not
reflexive.

T is not symmetric: There is an arrow from 0 to I but not from I to 0. Thus (0, 1) e T
but (1, 0) , T, and so T is not symmetric.

T is transitive: The transitivity condition is vacuously true for T. That is, T is transi-
tive by default because it is not not transitive! To see this, observe that the transitivity
condition says that

Forallx,y,z E A, if(x,y) e Tand(y,z) e Tthen(x,z) E T.

The only way for this to be false would be for there to exist elements of A that make
the hypothesis true and the conclusion false. That is, there would have to be elements
x, y, and z in A such that

(x, y) e T and (y, z) e T and (x, z) V T.

In other words, there would have to be two ordered pairs in T that have the potential to
"link up" by having the second element of one pair be the first element of the other pair.
But the only elements in T are (0, 1) and (2, 3), and these do not have the potential to
link up. Hence the hypothesis is never true. It follows that it is impossible for T not
to be transitive, and thus T is transitive. U

When a binary relation R is defined on a finite set A, it is possible to write computer
algorithms to check whether R is reflexive, symmetric, and transitive. One way to do this
is to represent A as a one-dimensional array, (a[I], a [2], . .. , a[n]) and use the algorithm
of exercise 33 in Section 5.1 to check whether an ordered pair in A x A is in R. Checking
whether R is reflexive can be done with a loop that examines each element a [i] of A in
turn. If, for some i, (a[i], a[i]) V R, then R is not reflexive. Otherwise, R is reflexive.
Checking for symmetry can be done with a nested loop that examines each pair (a[i], a[j])
of A x A in turn. If, for some i and j, (a[i], a[j]) e R and (a[j], a[i]) ¢ R, then R is
not symmetric. Otherwise, R is symmetric. Checking whether R is transitive can be done
with a triply nested loop that examines each triple (a [i], a [j], a [k]) of A x A x A in turn.
If, for some triple, (a[i], a[j]) E R, (a[j], a [k]) e R, and (a[i], a[k]) V R, then R is not
transitive. Otherwise, R is transitive. In the exercises for this section, you are asked to
formalize these algorithms.

The Transitive Closure of a Relation
Generally speaking, a relation fails to be transitive because it fails to contain certain
ordered pairs. For example, if (1, 3) and (3, 4) are in a relation R, then the pair (1, 4)
must be in R if R is to be transitive. To obtain a transitive relation from one that is not
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transitive, it is necessary to add ordered pairs. Roughly speaking, the relation obtained
by adding the least number of ordered pairs to ensure transitivity is called the transitive
closure of the relation. In a sense made precise by the formal definition, the transitive
closure of a relation is the smallest transitive relation that contains the relation.

|. Ml ,

Let A be a set and R a binary relation on A. The transitive closure o Ri the bi
relation RI on A that satisfies the following threeprerties:

1. Re is transitive.

2. R C R'.

3. If S is any other transitive relation tat containsRten R' C R S.;

Example 10.2.2 Transitive Closure of a Relation

Let A = {O, 1, 2, 3} and consider the relation R defined on A as follows:

R = {(O, 1), (1, 2), (2, 3)).

Find the transitive closure of R.

Solution Every ordered pair in R is in R', so

{(O, 1), (1, 2), (2, 3)} C R'.

Thus the directed graph of R contains the arrows shown below.

3. , 2

Since there are arrows going from 0 to 1 and from 1 to 2, R' must have an arrow going
from 0 to 2. Hence (0, 2) c R'. Then (0, 2) E R' and (2, 3) E R', so since RI is transitive,
(0, 3) E R'. Also, since (1, 2) E RI and (2, 3) s R', then (1, 3) E R'. Thus R' contains
at least the following ordered pairs:

{ (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}

But this relation is transitive; hence it equals R'. Note that the directed graph of R' is as
shown below.

U

P w W ! w P !\! v \ w ! w \\ , .TE , as e 5 \ A :c D : ! At t A. . cc

.
I
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Properties of Relations on Infinite Sets
Suppose a binary relation R is defined on an infinite set A. To prove the relation is
reflexive, symmetric, or transitive, first write down what is to be proved. For instance, for
symmetry you need to prove that

Vx, y c A, if x R y then yR x.

Then use the definitions of A and R to rewrite the statement for the particular case in
question. For instance, for the "equality" relation on the set of real numbers, the rewritten
statement is

Vx, y E R, ifx = y then y = x.

Sometimes the truth of the rewritten statement will be immediately obvious (as it is here).
At other times you will need to prove it using the method of generalizing from the generic
particular. We give examples of both cases in this section. We begin with the relation of
equality, one of the simplest and yet most important binary relations.

Example 10.2.3 Properties of Equality

Define a binary relation R on R (the set of all real numbers) as follows: For all real
numbers x and y.

xR y # x=y.

a. Is R reflexive? b. Is R symmetric? c, Is R transitive?

Solution

a. R is reflexive: R is reflexive if, and only if, the following statement is true:

ForallxER, xRx.

Since x R x just means that x = x, this is the same as saying

Forallx C R, x = x.

But this statement is certainly true; every real number is equal to itself.

b. R is symmetric: R is symmetric if, and only if, the following statement is true:

Forallx,y eR, ifx R ytheny Rx.

By definition of R, x R y means that x = y and y R x means that y = x. Hence R is
symmetric if, and only if,

Forallx,yER, if x=ytheny=x.

But this statement is certainly true; if one number is equal to a second, then the second
is equal to the first.

c. R is transitive: R is transitive if, and only if, the following statement is true:

Forallx,y,zER, if xRyandyRzthenxRz.

By definition of R, x R y means that x = y, y R z means that y = z, and x R z means
that x = z. Hence R is transitive if, and only if, the following statement is true:

Forallx,y,z ER, ifx = yandy =zthenx =z.
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But this statement is certainly true: If one real number equals a second and the second
equals a third, then the first equals the third.

Example 10.2.4 Properties of "Less Than"

Define a relation R on R (the set of all real numbers) as follows: For all x, y E R.

xRy X x<y.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?

Solution

a. R is not reflexive: R is reflexive if, and only if, Vx E R, x R x. By definition of
R, this means that Vx E R, x < x. But this is false: 3x e R such that x >d x. As a
counterexample, let x = 0 and note that 0 5 0. Hence R is not reflexive.

b. R is not symmetric: R is symmetric if, and only if, Vx, y E R, if x R y then y R x.
By definition of R, this means that Vx, y e R, if x < y then y < x. But this is false:
3x, y E R such that x < y and y 5 x. As a counterexample, let x = 0 and y = 1 and
note that 0 < I but 1 5d 0. Hence R is not symmetric.

c. R is transitive: R is transitive if, and only if, for all x, y, z E R, if x R y and y R z
then x R z. By definition of R, this means that for all x, y, z C R, if x < y and y < z,
then x < z. But this statement is true by the transitive law of order for real numbers
(Appendix A, T17). Hence R is transitive. U

Sometimes a property is "universally false" in the sense that it is false for every
element of its domain. It follows immediately, of course, that the property is false for
each particular element of the domain and hence counterexamples abound. In such a case,
it may seem more natural to prove the universal falseness of the property rather than to
give a single counterexample. In the example above, for instance, you might find it natural
to answer (a) and (b) as follows:

Alternative Answer to (a): R is not reflexive because x ad x for any real number x (by
the trichotomy law-Appendix A, T16).

Alternative Answer to (b): R is not symmetric because for all x and y in A, if x < y,
then y 5 x (by the trichotomy law).

Example 10.2.5 Properties of Congruence Modulo 3

Define a relation R on Z (the set of all integers) as follows: For all integers m and n,

mRn X 31(m-n).

This relation is called congruence modulo 3.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?
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Solution

a. R is reflexive: To show that R is reflexive, it is necessary to show that

Forallm E Z, m Rm.

By definition of R, this means that

For all m e Z, 31 (m - m).

Or, since m - m = 0,

Forallm E Z, 310.

But this is true: 3 1 0 since 0 = 3 0. Hence R is reflexive. This reasoning is formalized
in the following proof.

Proof of Reflexivity: Suppose m is a particular but arbitrarily chosen integer. [We
must show thatm R m.] Now m - m = 0. But 3 I ° since 0 = 3 . 0. Hence 3 1 (m - m).
Thus, by definition of R. m R m [as was to be shown].

b. R is symmetric: To show that R is symmetric, it is necessary to show that

Forallm,n E Z, if m Rnthenn Rim.

By definition of R this means that

For all m, n E Z, if 3 1 (m-n) then 31 (n-m).

Is this true? Suppose m and n are particular but arbitrarily chosen integers such that
3 1 (m - n). Must it follow that 3 1 (n - m)? By definition of "divides," since

3 1 (m-n),

then

m -n = 3k for some integer k.

The crucial observation is that n - m = -(m - n). Hence, you can multiply both
sides of this equation by -I to obtain

-(m - n) = -3k,

which is equivalent to

n - = 3(-k).

Since -k is an integer, this equation shows that

31 (n-m).

It follows that R is symmetric.
The reasoning above is formalized in the following proof.

Proof of Symmetry: Suppose m and n are particular but arbitrarily chosen integers
that satisfy the condition m R n. [We must show that n R m.] By definition of R, since
m R n then 31 (m - n). By definition of "divides," this means that m - n = 3k, for
some integer k. Multiplying both sides by -I gives n -m = 3(-k). Since -k is an
integer, this equation shows that 3 1 (n - m). Hence, by definition of R, n R m [as was
to be shown].

c. R is transitive: To show that R is transitive, it is necessary to show that

Forallm,nEZ, ifimRnandnRpthenmRp.
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By definition of R this means that

Forallm,n EZ, if 31(m-n)and3l(n-p)then3l(m-p).

Is this true? Suppose m, n, and p are particular but arbitrarily chosen integers such that
3 (m - n) and3 (n - p). Must it follow that 3 (m - p)? By definition of "divides,"
since

31(m-n) and 31(n-p),

then

m -n = 3r for some integer r,

and

n - p = 3s for some integer s.

The crucial observation is that (m - n) + (n -p) = m - p. Add these two equations
together to obtain

(m - n) + (n - p) = 3r + 3s,

which is equivalent to

m - p = 3(r + s).

Since r and s are integers, r + s is an integer, and so this equation shows that

31 (m-p).

It follows that R is transitive.
The reasoning above is formalized in the following proof.

Proof of Transitivity: Suppose m, n, and p are particular but arbitrarily chosen in-
tegers that satisfy the condition m R n and n R p. [We must show that m R p.] By
definition of R, since m R n and n R p, then 3 I (m -n) and 3 1 (n - p). By definition
of "divides," this means that m - n = 3r and n - p = 3s, for some integers r and s.
Adding the two equations gives (m -n) + (n - p) = 3r + 3s, and simplifying gives
that m - p = 3(r + s). Since r + s is an integer, this equation shows that 3 1 (m - p).
Hence, by definition of R, m R p [as was to be shown]. A

Exercise Set 10.2
In 1-8 a number of binary relations are defined on the set
A - 10, 1, 2, 31. For each relation:
a. Draw the directed graph.
b. Determine whether the relation is reflexive.
c. Determine whether the relation is symmetric.
d. Determine whether the relation is transitive.
Give a counterexample in each case in which the relation does
not satisfy one of the properties.

1. RI = {(0, 0), (0, 1), (0,3), (1, 1), (1,0), (2, 3), (3, 3)1

2. R2 = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)1

3. R3 = {(2, 3), (3, 2)}

4. R4 ={(1,2),(2, 1),(1,3),(3,1)}

5. R5 = {(0, 0), (0, 1), (0, 2), (1, 2)}

8. R8 =I{(0, 0), (1, 1))

In 9-11, R, S, and T are binary relations defined on A =
{0, 1, 2, 31.

9. Let R = {(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0)1.
Find R', the transitive closure of R.

10. Let S = {(0, 0), (0, 3), (1, 0), (1, 2), (2, 0), (3, 2)}.
Find S', the transitive closure of S.

11. Let T = {(0, 2), (1, 0), (2, 3), (3, 1)1. Find TV, the transi-
tive closure of T.

In 12-36 determine whether the given binary relation is reflexive,
symmetric, transitive, or none of these. Justify your answers.

12. R is the "greater than or equal to" relation on the set of real
numbers: For all x, y e R, x R y # x > y.

6. R6 = f (0, 1), (0, 2)1 7. R7 = [ (0, 3), (2, 3))
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13. C is the circle relation on the set of real numbers: For all
X, y E R, x C y '#. x 2 + y

2 
= 1.

14. D is the binary relation defined on R as follows: For all
x, y E R, x D y X xy > 0.

15. E is the congruence modulo 2 relation on Z: For all
m, n e Z, m E n X 21 (m - n).

16. F is the congruence modulo 5 relation on Z: For all
m, n E Z, m F n .* 5 (m -n).

17. 0 is the binary relation defined on Z as follows: For all
m, n E Z, m On * m - n is odd.

18. D is the "divides" relation on Z: For all integers m and
n, m D n X-' m I n.

19. A is the "absolute value" relation on R: For all real numbers
x and y, x A y X Ix I = Iyi.

20. Recall that a prime number is an integer that is greater than
I and has no positive integer divisors other than I and it-
self. (In particular, I is not prime.) A binary relation P is
defined on Z as follows: For all m, n E Z, m P n X 3 a
prime number p such that p I m and p I n.

21. Let S be the set of all strings of a's and b's. A binary
relation L is defined on S as follows: For all strings
s, t E S, s L t X. I(s) < 1(t) where 1 is the length function
(that is, the number of characters in s is less than the number
of characters in t).

22. Let B be the set of all strings of O's and l's. A binary relation
G is defined on B as follows: For all s, t X B, s G t X the
number of O's in s is greater than the number of O's in t.

23. Let X = {a, b, cI and J(X) be the power set of X (the set
of all subsets of X). A binary relation # is defined on Y(X)
as follows: For all A, B e Sf?(X), A # B X* the number of
elements in A equals the number of elements in B.

24. Let X = {a, b, c} and 9X(X) be the power set of X. A bi-
nary relation R is defined on Y(X) as follows: For all
A, B E 9(X), A - B X N(A) < N(B) (thatis, thenum-
ber of elements in A is less than the number of elements
in B).

25. Let X = la, b, c) and Y(X) be the power set of X. A
binary relation Y is defined on Y(X) as follows: For
all A, B E Y(X), A vA B - N(A) 7& N(B) (that is, the
number of elements in A is not equal to the number of ele-
ments in B).

26. Let A be a nonempty set and .(A) the power set of A.
Define the "subset" relation / on _?(A) as follows: For
all X, Y E _9(A), X f Y ¢> X C Y.

27. Let A be a nonempty set and J(A) the power set of A.
Define the "not equal to" relation M on YP(A) as follows:
For all X, Y E .5(A), X J Y ^* X # Y.

28. Let A be a nonempty set and P(A) the power set of A.
Define the "relative complement" relation W on 97(A) as
follows: For all X, Y E .9(A), X W Y * Y = A - X.

29. Let A be a set with at least two elements and 9(A) the
power set of A. Define a relation -4 on ,9(A) as follows:
For all X, Y E .9(A), X R Y 4. X C Y or Y C X.

30. Let A be the set of all English statements. A binary relation
I is defined on A as follows: For all p, q E A,
p I q < p -- q is true.

31. Let A = R x R. A binary relation -4 is defined on A as
follows: For all (x,, yj) and (X2 , Y2) in A,
(X], yI) -4 (X2 , Y2) X*xX = X2.

32. Let A = R x R. A binary relation M is defined on A as
follows: For all (xi, yj) and (x2, Y2) in A,
(x1, y,) - (X2, Y2) <* Y1 = Y2.

33. Let A be the "punctured plane"; that is, A is the set of all
points in the Cartesian plane except the origin (0, 0). A bi-
nary relation R is defined on A as follows: For all pi and
P2 in A, pi R P2 - Pi and P2 lie on the same half line
emanating from the origin.

34. Let A be the set of people living in the world today. A
binary relation R is defined on A as follows: For all
p, q E A, p R q X p lives within 100 miles of q.

35. Let A be the set of all lines in the plane. A binary relation R
is defined on A as follows: For all 11 and 12 in A, 1, R 12 ¢> 1,
is parallel to 12. (Assume that a line is parallel to itself.)

36. Let A be the set of all lines in the plane. A binary relation R
is defined on A as follows: For all l1 and 12 in A, i R 12 *I 1
is perpendicular to 12.

37. Let A be a set with eight elements.
a. How many binary relations are there on A?
b. How many binary relations on A are reflexive?
c. How many binary relations on A are symmetric?
d. How many binary relations on A are both reflexive and

symmetric?

38. Write a computer algorithm to test whether a binary rela-
tion R defined on a finite set A is reflexive, where A
{a[l], a[2], .. ., a[n]).

39. Write a computer algorithm to test whether a binary re-
lation R defined on a finite set A is symmetric, where
A = {a[l], a[2], ... , a[n]}.

40. Write a computer algorithm to test whether a binary re-
lation R defined on a finite set A is transitive, where
A = {a[l], a[2], ... , a[n]}.
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* 41. Let R be a binary relation on a set A and let Rt be the
transitive closure of R. Prove that for all x and y in
A, x R' y if, and only if, there is a sequence of elements of A,
say xl, x2, X., such that x = xi, xi R X2, X2 R X3, .

Xn-I R x, andX = y.

* 42. Write a computer program to find the transitive clo-
sure of a binary relation R defined on a finite set A=
{a[l], a[2], . . , aln]).

43. Suppose R and S are binary relations on a set A.
a. If R and S are reflexive, is R n S reflexive? Why?

H b. If R and S are symmetric, is R n S symmetric? Why?
c. If R and S are transitive, is R n S transitive? Why?

44. Suppose R and S are binary relations on a set A.
a. If R and S are reflexive, is R U S reflexive? Why?
b. If R and S are symmetric, is R U S symmetric? Why?
c. If R and S are transitive, is R U S transitive? Why?

In 45-52 the following definitions are used: A binary rela-
tion on a set A is defined to be

irreflexive if, and only if, for all x X A, x XKx;

asymmetric if, and only if, for all x, y E A, if x R y then
y Kx;

intransitive if, and only if, for all x, y, z E A, if x R y and
y R z then xXz.

For each of the binary relations in the referenced exercise, deter-
mine whether the relation is irreflexive, asymmetric, intransitive,
or none of these.

45. Exercise 1

47. Exercise 3

49. Exercise 5

51. Exercise 7

46. Exercise 2

48. Exercise 4

50. Exercise 6

52. Exercise 8

10.3 Equivalence Relations
"You are sad" the Knight said in an anxious tone: "let me sing you a song to

comfort you. "
"Is it very long? " Alice asked, for she had heard a good deal of poetry that day.
"It's long, " said the Knight, "but it's very, very beautiful. Everybody that hears me

sing it-either it brings the tears into the eyes, or else-"
"Or else what?" said Alice, for the Knight had made a sudden pause.
"Or else it doesn 't, you know. The name of the song is called 'Haddocks 'Eyes."'
"Oh, that's the name of the song, is it?" Alice said, trying to feel interested.
"No, you don't understand, " the Knight said, looking a little vexed. "That's what

the name is called. The name really is 'The Aged Aged Man. ' "
"Then I ought to have said 'That's what the song is called'?" Alice corrected

herself
"No, you oughtn't: that's quite another thing! The song is called 'Ways and Means':

but that's only what it's called, you know!"
"Well, what is the song, then?" said Alice, who was by this time completely

bewildered.
"I was coming to that, " the Knight said. "The song really is 'A-sitting on a Gate':

and the tune's my own invention. "

So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
-Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent forms.
For example,

1 2 3 -1 -3 15

2' 4' 6'-2'-6' 30.

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
"look different but are really the same" is the central idea of equivalence relations.
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The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 10.3.1 illustrates a partition of a set A
by subsets Al, A2 , . .. , A6 -

Ai n Ai = 0, whenever i •j
AiUA 2 U.. UA6 =A

Figure 10.3.1 A Partition of a Set

. 'I

Given a partition ofa set A, the binary relation induced by the partition, R, is
defined on A as follows: For all x, y E A,

x R y 4X V there is a subset A of the partition
such that both x and y are in A.

Example 10.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

10,3, 4), {1}, {21.

Find the relation R induced by this partition.

Solution Since {0, 3, 4} is a subset of the partition.

O R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
0 R 4 because both 0 and 4 are in {0, 3, 41,
4 R 0 because both 4 and 0 are in {0, 3, 41,
3 R 4 because both 3 and 4 are in {0, 3, 4}, and
4 R 3 because both 4 and 3 are in 10, 3, 4).

Also,

O R 0 because both 0 and 0 are in {0, 3, 4}
[This statement may seem strange, but, after all, it is notfalse!],

3 R 3 because both 3 and 3 are in {0, 3, 41, and
4 R 4 because both 4 and 4 are in (0, 3, 41.

Since { 11 is a subset of the partition,

1 R 1 because both 1 and I are in {I},

and since 121 is a subset of the partition,

2 R 2 because both 2 and 2 are in (2}.

Hence

R = {(0,0 ), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. U
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The fact is that a relation induced by a partition of a set satisfies all three properties
studied in Section 10.2: reflexivity, symmetry, and transitivity.

*Since the statement forms p and p A p are logically equivalent, if p is true then p A p is also true.

this follows from the fact that the statement forms p A q and q A p are logically equivalent.

Theorem 10.3.1

Let A be a set with a partition and let R be the relation induced by the partition. Then
R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

Al, A2, . . ., A,.

Then AT n AJ = 0 whenever i A j, and Al U A2 U ... U A = A. The relation R
induced by the partition is defined as follows: For all x, y E A,

x R y X there is a set Ai of the partition
such that x E Ai and y C Ai.

R is reflexive: [For R to be reflexive means that each element of A is related by R
to itself. But by definition of R, for an element x to be related to itself means that
x is in the same subset of the partition as itself. Well, if x is in some subset of the
partition, then it is certainly in the same subset as itself But x is in some subset of the
partition because the union of the subsets of the partition is all of A. This reasoning
isformalized asfollows. ]

Suppose x E A. Since Al, A2 . A, is a partition of A, it follows that x E Ai
for some i. But then the statement

there is a set Ai of the partition such that x E Ai and x E Ai

is true.* Thus, by definition of R, x R x.

R is symmetric: [For R to be symmetric means that any time one element is related
to a second, then the second is related to the first. Nowfor one element x to be related
to a second element y means that x and y are in the same subset of the partition. But
if this is the case, then y is in the same subset of the partition as x, so y is related to
x by definition of R. This reasoning isformalized asfollows.]

Suppose x and y are elements of A such that x R y. Then

there is a subset Ai of the partition such that x E Ai and y E Ai

by definition of R. It follows that the statement

there is a subset Ai of the partition such that y E Ai and x E Ai

is also true.t Hence, by definition of R, y R x.

R is transitive: [For R to be transitive means that any time one element of A is
related by R to a second and that second is related to a third, then the first element
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Definition of an Equivalence Relation
A binary relation that satisfies the three properties of reflexivity, symmetry, and transitivity
is called an equivalence relation.

Carl Friedrich Gauss
(1777-1855)

Let A be a set and R a binary relation on A. R is an equivalence relation if, and
only if, R is reflexive, symmetric, and transitive.

Thus, according to Theorem 10.3.1, the relation induced by a partition is an equivalence
relation. Another example is congruence modulo 3. In Example 10.2.5 it was shown that
this relation is reflexive, symmetric, and transitive. Hence it, also, is an equivalence
relation.

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the foun-
dation for modem number theory.

I *' 3

Let m and n be integers and let d be a positive integer. The notation

m wn(mod d)

is read "m is congruent to n modulo d" and means that

d I (m -n).

Symbolically,

m-n(modd) X* di(m-n)

is related to the third. But for one element to be related to another means that there
is a subset of the partition that contains both. So suppose x, y, and z are elements
such that x is in the same subset as y and y is in the same subset as z. Must x be in
the same subset as z ? Yes, because the subsets of the partition are mutually disjoint.
Since the subset that contains x and y has an element in common with the subset that
contains y and z (namely y), the two subsets are equal. But this means that x, y,
and z are all in the same subset, and so in particular, x and z are in the same subset.
Hence x is related by R to z. This reasoning is formalized as follows.]

Suppose x, y, and z are in A and x R y and y R z. By definition of R, there are
subsets Ai and Aj of the partition such that

x and y are in Ai and y and z are in Aj.

Suppose Ai :A Aj. [We will deduce a contradiction.] Then Ai n Aj = 0 since
{AI, A2, A3 , ... , A,} is a partition of A. But y is in Ai and y is in Aj also. Hence
Ai n Aj # 0. [This contradicts thefact that Ai n Aj = 0.]ThusAi = Aj. Itfollows
that x, y, and z are all in Ai, and so in particular,

x and z are in Ai.

Thus, by definition of R, x R z.
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Exercise 15(b) at the end of this section asks you to show that m =- n (mod d) if, and
only if, m mod d = n mod d, where m, n, and d are integers and d is positive.

Example 10.3.2 Evaluating Congruences

Determine which of the following congruences are true and which are false.

a. 12 - 7 (mod 5) b. 6= -8 (mod 4) c. 3 =- 3 (mod 7)

Solution

a. True. 12-7=5=5-1. Hence5l(12 -7),andsol2=-7(mod5).

b. False. 6 -(-8) = 14, and 4 f 14 because 14 # 4 * k for any integer k. Consequently,
6 z-8 (mod 4).

c. True. 3-3 = 0 = 7 0. Hence 7 l (3-3), and so 3 - 3 (mod 7). U

Example 10.3.3 Equivalence of Digital Logic Circuits Is an Equivalence Relation

Let S be the set of all digital logic circuits with a fixed number n of inputs. Define a binary
relation & on S as follows: For all circuits Cl and C2 in S,

C1 g C2  X Cl has the same input/output table as C2.

If C1 & C2 , then circuit Cl is said to be equivalent to circuit C2. Prove that 6f is an
equivalence relation on S.

Solution

& is reflexive: Suppose C is a digital logic circuit in S. [We must show that C & C.]
Certainly C has the same input/output table as itself. Thus, by definition of A, C & C [as
was to be shown].

& is symmetric: Suppose C, and C2 are digital logic circuits in S such that C, & C2.
[We must show that C2 & Cl.] By definition of &, since C, & C2 , then C, has the same
input/output table as C2. It follows that C2 has the same input/output table as C,. Hence,
by definition of A, C2 & C1 [as was to be shown].

& is transitive: Suppose C1, C2, and C3 are digital logic circuits in S such that C, e C2
and C2 & C3. [We must show that C, & C3 .1 By definition of A, since C, & C2 and
C2 S C3, then

Cl has the same input/output table as C2

and

C2 has the same input/output table as C3.

It follows that

C, has the same input/output table as C3.

Hence, by definition of &, C, & C3 [as was to be shown].

Since S is reflexive, symmetric, and transitive, & is an equivalence relation on S.
.
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Certain implementations of computer languages do not place a limit on the allowable
length of an identifier. This permits a programmer to be as precise as necessary in naming
variables without having to worry about exceeding length limitations. However, compilers
for such languages often ignore all but some specified number of initial characters: As
far as the compiler is concerned, two identifiers are the same if they have the same initial
characters, even though they may look different to a human reader of the program. For
example, to a compiler than ignores all but the first eight characters of an identifier, the
following identifiers would be the same:

NumberOfScrews NumberOfBolts.

Obviously, in using such a language, the programmer has to be sure to avoid giving two
distinct identifiers the same first eight characters. When a compiler lumps identifiers
together in this way, it sets up an equivalence relation on the set of all possible identifiers
in the language. Such a relation is described in the next example.

Example 10.3.4 A Binary Relation on a Set of Identifiers

Let L be the set of all allowable identifiers in a certain computer language, and define a
relation R on L as follows: For all strings s and t in L,

s R t X the first eight characters of s equal the first eight characters of t.

Prove that R is an equivalence relation on L.

Solution

R is reflexive: Let s E L. [We must show that s R s.j Clearly s has the same first eight
characters as itself. Thus, by definition of R, s R s [as was to be shown].

R is symmetric: Let s and t be in L and suppose that s R t. [We must show that t R s.] By
definition of R, since s R t, the first eight characters of s equal the first eight characters
of t. But then the first eight characters of t equal the first eight characters of s. And so,
by definition of R, t R s [as was to be shown].

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s equal the
first eight characters of t, and the first eight characters of t equal the first eight characters
of u. Hence the first eight characters of s equal the first eight characters of u. Thus, by
definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L. -

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, "What is the subset of all elements that are related to a?" This
subset is called the equivalence class of a.

ae d is an equivalence relation on A. Foreach element a in A,
tea, denoted la and called the class of a f short, is the set
i;of all elemnsxin A such bthat Rx is related to a ;by R.
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Written symbolically, this definition becomes:

[a]= {x EA fx R al

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

forallxE A, xEf] :;xRa.

Example 10.3.5 Equivalence Classes of a Relation Defined on a Finite Set

Let A = {0, 1, 2, 3, 4} and define a binary relation R on A as follows:

R = {(O, 0), (0, 4), (1, 1), (1, 3), (2, 2), (4, 0), (3, 3), (3, 1), (4, 4)}.

The directed graph for R is as shown below. As can be seen by inspection, R is an
equivalence relation on A. Find the distinct equivalence classes of R.

1f4

Solution First find the equivalence class of every element of A.

[0] = {x E A I x R 0} = {O, 4}

[1] = {x E A I x R 11 = {1, 31

[2] = {x e A I x R 21 = {2}

[3] = {x E A I x R 31 = {1, 31

[4] = {x E A I x R 4) = {0, 41

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence classes of the relation are

{0, 4), {1, 31, and {21. U

When a problem asks you to find the distinct equivalence classes of an equivalence
relation, you will generally solve the problem in two steps. In the first step you either
explicitly construct (as in Example 10.3.5) or imagine constructing (as in infinite cases)
the equivalence class for every element of the domain A of the relation. Usually several
of the classes will contain exactly the same elements, so in the second step you must take a
careful look at the classes to determine which are the same. You then indicate the distinct
equivalence classes by describing them without duplication.

2

(7



10.3 Equivalence Relations 601

Example 10.3.6 Equivalence Classes of Identifiers

In Example 10.3.4 it was shown that the relation R of having the same first eight characters
is an equivalence relation on the set L of allowable identifiers in a computer language.
Describe the distinct equivalence classes of R.

Solution By definition of R, two strings in L are related by R if, and only if, they have the
same first eight characters. Given any string s in L,

[s] = {t E L I t R s)

= {t e L I the first eight characters of t equal the first eight characters of s}.

Thus the distinct equivalence classes of R are sets of strings such that (1) each class
consists entirely of strings all of which have the same first eight characters, and (2) any
two distinct classes contain strings that differ somewhere in their first eight characters.

Example 10.3.7 Equivalence Classes of the Identity Relation

Let A be any set and define a relation R on A as follows: For all x and y in A,

xRy X x=y.

Then R is an equivalence relation. [To prove this, just generalize the argument used in
Example 10.2.3.] Describe the distinct equivalence classes of R.

Solution Given any a in A, the class of a is

[a] = {x e A I x R a}.

But by definition of R, a R x if, and only if, a = x. So

[a] = {x E A I x = al

= {a} since the only element of A that equals a is a.

Hence, given any a in A,

[a] = {a},

and if x : a, then {x} I {a). Consequently, all the classes of all the elements of A
are distinct, and the distinct equivalence classes of R are all the single-element subsets
of A. E

In each of Examples 10.3.5, 10.3.6, and 10.3.7, the set of distinct equivalence classes
of the relation consists of mutually disjoint subsets whose union is the entire domain A
of the relation. This means that the set of equivalence classes of the relation forms a
partition of the domain A. In fact, it is always the case that the equivalence classes of an
equivalence relation partition the domain of the relation into a union of mutually disjoint
subsets. We establish the truth of this statement in stages, first proving two lemmas and
then proving the main theorem.

The first lemma says that if two elements of A are related by an equivalence relation
R, then their equivalence classes are the same.

Leimma 10.3i.2

Suppose A is a set, R is an, equivalence rela tionA a adae elements of
A. If a R b, thedn ([a] [.
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This lemma says that if a certain condition is satisfied, then [a] = [b]. Now [a] and
[b] are sets, and two sets are equal if, and only if, each is a subset of the other. Hence the
proof of the lemma consists of two parts: first, a proof that [a] C [b] and second, a proof
that [b] C [a]. To show each subset relation, it is necessary to show that every element in
the left-hand set is an element of the right-hand set.

Proof of Lemma 10.3.2:

Let A be a set, let R be an equivalence relation on A, and suppose

a and b are elements of A such that a R b.

[We must show that [a] = [b].]

Proof that [a] C [b]: Let x E [a]. [We must shown that x E [b].] Since

x E [a]

then

x Ra

by definition of class. But

a R b

by hypothesis. Thus, by transitivity of R,

x Rb.

Hence

x E [b]

by definition of class. [This is what was to be shown.]

Proof that [b] C [a]: Let x E [b]. [We must show that x E [a].] Since

x X [b]

then

x Rb

by definition of class. Now

a R b

by hypothesis. Thus, since R is symmetric,

b R a

also. Then, since R is transitive and x R b and b R a,

x R a.

Hence,

x E [a]

by definition of class. [This is what was to be shown.]
Since [a] C [b] and [b] C [a], it follows that [a] = [b] by definition of set

equality.
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The second lemma says that any two equivalence classes of an equivalence relation
are either mutually disjoint or identical.

Lemma 10.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a] n [b] = 0 or [a] = [b).

The statement of Lemma 10.3.3 has the form

if p then q or r,

where p is the statement "A is a set, R is an equivalence relation on A, and a and b are
elements of A," q is the statement "[a] n [b] = 0," and r is the statement "[a] = [b]." To
prove the lemma, we will prove the logically equivalent statement

if p and not q then r.

That is, we will prove the following:

If A is a set, R is an equivalence relation on A, a and b are
elements of A, and [a] n [b] 0 0, then [a] = [b].

Proof of Lemma 10.3.3:

Suppose A is a set, R is an equivalence relation on A, a and b are elements of A, and

[a n [b] 0 0.

[We must show that [a] = [b].] Since [a] n [b] 0 0, there exists an element x in A
such that x E [a] n [b]. By definition of intersection,

x E [a] and x E [b]

and so

xRa and xRb

by definition of class. Since R is symmetric [being an equivalence relation] and
x R a, then a R x. But R is also transitive [since it is an equivalence relation], and
so, since a R x and x R b,

a R b.

Now a and b satisfy the hypothesis of Lemma 10.3.2. Hence, by that lemma,

[a] = [b].

[This is what was to be shown.]

If tA1s asetf andR is anV equivalence relation on A, then the distinct equivalence
classes of Rforma partition ofA; that is, the uon of thd equivalence classes is all
of XA, and the intersection of any two distinct classes is empty.

*See exercise 14 in Section 1.2.
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The proof of Theorem 10.3.4 is divided into two parts: first, a proof that A is the
union of the equivalence classes of R and second, a proof that the intersection of any two
distinct equivalence classes is empty. The proof of the first part follows from the fact that
the relation is reflexive. The proof of the second part follows from Lemma 10.3.3.

Example 10.3.8 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence module 3 on the set Z of all integers. That is, for all
integers m and n,

mRn X 31(m-n) Q m=-n(mod3).

Describe the distinct equivalence classes of R.

Proof of Theorem 10.3.4:

Suppose A is a set and R is an equivalence relation on A. For notational simplicity,
we assume that R has only a finite number of distinct equivalence classes, which we
denote

Al, A2 , A,

where n is a positive integer. (When the number of classes is infinite, the proof is
identical except for notation.)

Proof that A = Al U A2 U ... U An: [We must show that A C AI U A2 U... U A,

and that Al U A 2 U ... U AC A.]
To show that A C Al U A2 U ... U An, suppose x is any element of A. [We must

show that x E Al U A 2 U... U A.] By reflexivity of R, x R x. But this implies that
x e [x] by definition of class. Since x is in some equivalence class, it must be in one
of the distinct equivalence classes Al, A2 , . . ., or A, Thus x E Ai for some index
i, and hence x e At U A2 U ... U A, by definition of union [as was to be shown].

To show that AI U A 2 U ... U A, C A, suppose x E AI U A 2 U ... UA. [We
must show that x c A.] Then x E Ai for some i = 1, 2, .. ., or n, by definition of
union. But each Ai is an equivalence class of R. And equivalence classes are subsets
of A. Hence Ai C A and so x E A [as was to be shown].

Since A C Al U A 2 U ... U A, and Al U A2 U ... U A, C A, then by definition
of set equality, A = Al U A 2 U ... U An.

Proof that the distinct classes of R are mutually disjoint: Suppose that Ai and Aj
are any two distinct equivalence classes of R. [We must show that Ai and Aj are
disjoint.] Since Ai and Aj are distinct, then Ai 0 Aj. And since Ai and Aj are
equivalence classes of R, there must exist elements a and b in A such that Ai = [a]
and Aj [b]. By Lemma 10.3.3,

either [a] n [b] = 0 or [a] = [b].

But [a] + [b] because Ai A Aj. Hence [a] n [b] = 0. Thus Ai n Aj = 0, and so
Ai and Aj are disjoint [as was to be shown].
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Solution For each integer a,

[a] = {x e Z I x R a}

= (x E Z 13 1(x -a))

= {x E Z x -a = 3k, for some integer k}.

Therefore,

[a] = {x E Z I x = 3k + a, for some integer k}.

In particular,

[0] = {x c Z I x = 3k + 0, for some integer k}

= {x e Z I x = 3k, for some integer k}

= {... -9, -6, -3,0,3,6,9,...},

[1]- {x E Z Ix = 3k + 1, for some integerk)

-... - 8, -5, -2, 1, 4, 7, 10, ...},

[2] {x e Z I x = 3k + 2, for some integer k}

= {.. -7, -4,-1,2,5,8, 11,...}.

Now since 3 R 0, then by Lemma 10.3.2,

[3] = [0].

More generally, by the same reasoning,

[0] = [3] = [-3]- =6] [-6] = .. . ,and so on.

Similarly,

[1] = [4] = [-2] = [7]= [-5] = ..., and so on.

And

[2] = [5] = F-11 = [8] [-4] = ...,andsoon.

Notice that every integer is in class [03, [I ], or [2]. Hence the distinct equivalence classes
are

{x e Z I x = 3k, for some integer k},

{x E Z I x = 3k + 1, for some integer ki, and

{x e Z I x = 3k + 2, for some integer k}.

In words, the three classes of congruence module 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of I when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. U

Example 10.3.8 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 10.3.8, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of -6, [-6]. But
what the class is is the set

{x E Z I x = 3k, for some integers k}.

(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)
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I. ,

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a]- = S.

In the exercises at the end of this section, you are asked to show that if x is any element
of an equivalence class S, then S = [x]. Hence any element of an equivalence class is a
representative of that class.

Example 10.3.9 Equivalence Classes of Digital Logic Circuits

In Example 10.3.3 it was shown that the relation of equivalence among circuits is an
equivalence relation. Let S be the set of all digital logic circuits with exactly two inputs
and one output. The binary relation A is defined on S as follows: For all Cl and C2 in S,

C1 &' C2  X C1 has the same input/output table as C2 .

Describe the equivalence classes of this relation. How many distinct equivalence classes
are there? Write representative circuits for two of the distinct classes.

Solution Given a circuit C, the equivalence class of C is the set of all circuits with two
input signals and one output signal that have the same input/output table as C. Now each
input/output table has exactly four rows, corresponding to the four possible combinations
of inputs: 11, 10, 01, and 00. A typical input/output table is the following:

Input

P Q

1 1

1 0

0 1

0 0

Output

R

0

1

1

There are exactly as many such tables as there are binary strings of length 4. The
reason is that distinct input/output tables can be formed by changing the pattern of the
four O's and 1's in the output column, and there are as many ways to do that as there are
strings of four O's and F's. But the number of binary strings of length 4 is 24 = 16. Hence
there are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two representative circuits for the above input/output table are
shown below.

P NOT

AN R Q ~ O

Q N-O
/ U
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Example 10.3.10 Rational Numbers Are Really Equivalence Classes

For a moment, forget what you know about fractional arithmetic and look at the numbers

1 2
- and -
3 6

as symbols. Considered as symbolic expressions, these appear quite different. In fact, if
they were written as ordered pairs

(1, 3) and (2, 6)

they would be different. The fact that we regard them as "the same" is a specific instance
of our general agreement to regard any two numbers

a c
and -

b d

as equal provided the cross products are equal: ad = bc. This can be formalized as
follows, using the language of equivalence relations.

Let A be the set of all ordered pairs of integers for which the second element of the
pair is nonzero. Symbolically,

A = Z x (Z - {0}).

Define a binary relation R on A as follows: For all (a, b), (c, d) E A,

(a, b) R (c,d) A ad = bc.

The fact is that R is an equivalence relation.

a. Prove that R is transitive. (Proofs that R is reflexive and symmetric are left to the
exercises.)

b. Describe the distinct equivalence classes of R.

Solution

a. [Wemustshowthatforall(a, b), (c, d), (e, f) C A, if(a, b) R (c, d)and (c, d) R (e, f),
then (a, b) R (e, f).] Suppose (a, b), (c, d), and (e, f) are particular but arbitrarily
chosen elements of A such that (a, b) R (c, d) and (c, d) R (e, f ). [We must show that
(a, b) R (e, f).] By definition of R,

(1) ad = bc and (2) cf = de.

Since the second elements of all ordered pairs in A are nonzero, b A 0, d :A 0, and
f A 0. Multiply (1) and (2) together to obtain

adcf = bcde,

which implies that

af (cd) = be(cd).

In case c - 0, by the cancellation law for multiplication (T7 in Appendix A), af = be.
In case c - 0, it follows by the zero product property that a = 0 and e = 0 because
b A 0, d 7 0, ad = bc, and cf = de. So af = be in this case also. Hence, in either
case,

af = be.

It follows, by definition of R, that (a, b) R (e, f ) [as was to be shown].
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b. There is one equivalence class for each distinct rational number. Each equivalence
class consists of all ordered pairs (a, b) that, if written as fractions a/b, would equal
each other. The reason for this is that the condition for two rational numbers to be
equal is the same as the condition for two ordered pairs to be related. For instance, the
class of (1, 2) is

[(l, 2)] = {(I, 2), (-1, -2), (2, 4), (-2, -4), (3, 6), (-3, -6) ....I

1 -1 2
since - = -= - =

2 -2 4

-2 3 -3
4 - 6 = -6 and so forth.

It is possible to expand the result of Example 10.3.10 to define operations of addition
and multiplication on the equivalence classes of R that satisfy all the same properties as
the addition and multiplication of rational numbers. (See exercise 39.) It follows that
the rational numbers can be defined as equivalence classes of ordered pairs of integers.
Similarly (see exercise 40), it can be shown that all integers, negative and zero included,
can be defined as equivalence classes of ordered pairs of positive integers. But in the late
nineteenth century, F. L. G. Frege and Giuseppe Peano showed that the positive integers
can be defined entirely in terms of sets. And just a little earlier, Richard Dedekind (1848-
1916) showed that all real numbers can be defined as sets of rational numbers. All together,
these results show that the real numbers can be defined using logic and set theory alone.

Exercise Set 10.3
1. Suppose that S = {a, b, c, d, e} and R is a binary relation on

S such that a R b, b R c, and d R e. List all of the following
that must be true if R is (a) reflexive (but not symmetric or
transitive), (b) symmetric (but not reflexive or transitive),
(c) transitive (but not reflexive or symmetric), and (d) an
equivalence relation.

cRb cRc aRc bRa aRd eRa eRd cRa

2. Each of the following partitions of 10, 1, 2, 3, 4) induces a
relation R on t0, 1, 2, 3, 41. In each case, find the ordered
pairs in R.
a. {0, 2}, {1), {3, 4} b. {0}, (1, 3, 4}, 12}
c. {0}, (1, 2, 3, 4}

In 2-12, the relation R is an equivalence relation on the set A.
Find the distinct equivalence classes of R.

3. A =0, 1, 2, 3, 41
R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3),

(4, 0), (4, 4))

4. A =a,b,c,dl
R = {(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)1

5. A = 11, 2, 3, 4,..., 20). R is defined on A as follows:

For all x, y E A, x R y X* 41 (x-y).

6. A = 1-4, -3, -2, -1, 0,1, 2, 3, 4, 5). R is defined on A
as follows:

Forallx,yeA, xRy X~ 31(x-y).

7. A-=(I,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. Risde-
fined on A as follows: For all (a, b), (c, d) E A,

(a, b) R (c, d) X ad = bc.

8. X = la,b,c}andA = 2(X). RisdefinedonAasfollows:

For all sets u and vin 9;2(X), uRv * N(u) =N(v).

(That is, the number of elements in u equals the number of
elements in v.)

9. X = {-1, 0, 1) and A = 2(X). R is defined on 9(X) as
follows: For all sets s and T in 2(X),

s R T .* the sum of the elements in s equals the sum
of the elements in T.

10. A is the set of all strings of length 4 in a's and b's. R is
defined on A as follows: For all strings s and t in A,

s R t .* the first two characters of s equal the
first two characters of t.

11. A is the set of all strings of length 2 in O's, l's, and 2's. R
is defined on A as follows: For all strings s and t in A,

s R t X the sum of the characters in s equals the sum
of the characters in t.

12. A = {-5, -4, -3, -2,-1, 0, 1, 2, 3, 4, 5. Risdefinedon
A as follows:

Forallm,nE Z, mRn * 31(m 2 n2).

.
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13. Determine which of the following congruence relations are
true and which are false.
a. 17 2 (mod 5) b. 4 -5 (mod 7)
c. -2 -8 (mod 3) d. -6 - 22 (mod 2)

14. a. Let R be the relation of congruence modulo 3. Which of
the following equivalence classes are equal?

[7], [-4], [-6], [171, [41, [27], [19]

b. Let R be the relation of congruence modulo 7. Which of
the following equivalence classes are equal?

[35], [3], [-7], [12], [0], [-21, [17]

15. a. Prove that for all integers m and n, m - n (mod 3) if,
and only if, m mod 3 = n mod 3.

b. Prove that for all integers m and n and any positive integer
d, m - n (mod d) if, and only if, m mod d = n mod d.

16. a. Give an example of two sets that are distinct but not dis-
joint.

b. Find sets Al and A2 and elements x, y and z such that x
and y are in Al and y and z are in A2 but x and z are not
both in either of the sets AI or A2.

In 17-28, (1) prove that the relation is an equivalence relation,
and (2) describe the distinct equivalence classes of each relation.

17. A is the set of all students at your college.
a. R is the relation defined on A as follows: For all x and

y in A,

x R y 4* x has the same major (or double
major) as y.

(Assume "undeclared" is a major.)
b. SistherelationdefinedonAasfollows: Forallx, y E A,

x S y X xisthesameageasy.

H 18. E is the relation defined on Z as follows:

Forallm,nE Z, mEn X* 21(m-n).

19. F is the relation defined on Z as follows:

For all m, n E Z, m F n v* 41 (m -n).

20. Let A be the set of all statement forms in three variables
p, q, and r. A' is the relation defined on A as follows: For
all P and Q in A,

P -4 Q X P and Q have the same truth table.

21. Let P be a set of parts shipped to a company from various
suppliers. S is the relation defined on P as follows: For all
x, y E P.

x S y X* x has the same part number and is
shipped from the same supplier as y.

22. A is the "absolute value" relation defined on R as follows:

Forallx,yeR, xAy Y * IXI=IYI.

23. I is the relation defined on R as follows:

Forallx, y e R, x I y X x -y is an integer.

24. D is the relation defined on Z as follows:

ForallmnEZ, mDn X* 31(m 2 -n 2 ).

25. Define P on the set R x R of ordered pairs of real numbers
as follows: For all (w, x), (y, z) E R x R.

(w,x) P (y,Z) X w = y.

26. Let A be the set of identifiers in a computer program. It is
common for identifiers to be used for only a short part of the
execution time of a program and not to be used again to exe-
cute other parts of the program. In such cases, arranging for
identifiers to share memory locations makes efficient use of
a computer's memory capacity. Define R on A as follows:
For all identifiers x and y,

x R y <* the values of x and y are stored in the
same memory location during
execution of the program.

H 27. Let A be the set of all straight lines in the Cartesian plane.
Define a relation I I on A as follows:

For all 1j and 12 in A, 11 1112 X* II is parallel to 12.

28. Let P be the set of all points in the Cartesian plane except
the origin. R is the relation defined on P as follows: For all
pa and P2 in P,

pi R P2 X* pi and P2 lie on the same half-line
emanating from the origin.

29. Let A be the set of points in the rectangle with x and y
coordinates between 0 and 1. That is,

A = {(x, y) E R x R I ° < x < I and 0 < y <.

Define a relation R on A as follows: For all (xl, yl) and
(X2, Y2) in A,

(xi, yi) R (X2, Y2)X
(X1 , Yi) = (X2 , Y2); or
xl = 0 and x2 = 1 and yi = Y2; or
xl = 1 and x2 = 0 and yl = y2; or
yl = 0 and Y2 = I and xi =x2; or
yl = I and Y2 = 0 and xI = x 2.

In other words, all points along the top edge of the rectangle
are related to the points along the bottom edge directly be-
neath them, and all points directly opposite each other along
the left and right edges are related to each other. The points
in the interior of the rectangle are not related to anything
other than themselves. Then R is an equivalence relation
on A. Imagine gluing together all the points that are in the
same equivalence class. Describe the resulting figure.
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30. The documentation for the computer language Java recom-
mends that when an "equals method" is defined for an ob-
ject, it be an equivalence relation. That is, if R is defined as
follows:

x R y X x.equals(y) for all objects in the class,

then R should be an equivalence relation. Suppose that in
trying to optimize some of the mathematics of a graphics
application, a programmer creates an object called a point,
consisting of two coordinates in the plane. The program-
mer defines an equals method as follows: If p and q are any
points, then

p.equals(q) #> the distance from p to q is
less than or equal to c

where c is a small positive number that depends on the reso-
lution of the computer display. Is the programmer's equals
method an equivalence relation? Justify your answer.

Let R be an equivalence relation on a set A. Prove each of
the statements in 31-36 directly from the definitions of equiva-
lence relation and equivalence class without using the results of
Lemma 10.3.2, Lemma 10.3.3, or Theorem 10.3.4.

31. For all a in A, a E [a].

32. ForallaandbinA,ifbe [a] thena Rb.

33. Foralla,bandcinA,ifbRcandcE [a]thenbe [a].

34. For all a and b in A, if [a] = [b] then a R b.

35. Foralla,b,andxinA,ifa Rbandx E [a],thenx E [b].

H 36. For all a and b in A, if a E [b] then [a] = [b].

37. Find an additional representative circuit for the input/output
table of Example 10.3.9.

38. Let R be the binary relation defined in Example 10.3.10.
a. Prove that R is reflexive.
b. Prove that R is symmetric.
c. List four distinct elements in [(1, 3)].
d. List four distinct elements in [(2, 5)].

* 39. In Example 10.3.10, define operations of addition (+) and
multiplication (.) as follows: For all (a, b), (c, d) E A,

[(a, b)] + [(c, d)] = [(ad + bc, bd)]

[(a, b)] . [(c, d)] = [(ac, bd)].

a. Prove that this addition is well defined. That is, show
that if [(a, b)] = [(a', b')] and [(c, d)] = [(c', d')], then
[(ad + bc, bd)] = [(a'd' + b'c', b'd')].

b. Prove that this multiplication is well defined. That is,
show that if [(a, b)] = [(a', b')] and [(c, d)] = [(c', d')],
then [(ac, bd)] - [(aVc', b'd')].

c. Show that [(0, 1)] is an identity element for addition.
That is, show that for any (a, b) e A,

[(a, b)] + [(0, 1)] = [(a, b)].

d. Find an identity element for multiplication.
e. For any (a, b) E A, show that [(-a, b)] is an inverse

for [(a, b)] for addition. That is, show that [(-a, b)] +
[(a, b)] = [(0, 1)].

f. Given any (a, b) E A with a : 0, find an inverse for
[(a, b)] for multiplication.

40. Let A = Z' x Z+. Define a binary relation R on A as fol-
lows: For all (a, b) and (c, d) in A,

(a,b)R(c,d) *> a+d =c+b.

a. Prove that R is reflexive.
b. Prove that R is symmetric.

H c. Prove that R is transitive.
d. List five elements in [(1, 1)].
e. List five elements in [(3, 1)].
f. List five elements in [(1, 2)].
g. Describe the distinct equivalence classes of R.

41. The following argument claims to prove that the require-
ment that an equivalence relation be reflexive is redundant.
In other words, it claims to show that if a relation is sym-
metric and transitive, then it is reflexive. Find the mistake
in the argument.

"Proof: Let R be a binary relation on a set A and suppose
R is symmetric and transitive. For any two elements x and
y in A, if x R y then y R x since R is symmetric. But then
it follows by transitivity that x R x. Hence R is reflexive."

42. Let R be a binary relation on a set A and suppose R is sym-
metric and transitive. Prove the following: If for every x in
A there is a y in A such that x R y, then R is an equivalence
relation.

43. Refer to the quote at the beginning of this section to answer
the following questions.
a. What is the name of the Knight's song called?
b. What is the name of the Knight's song?
C. What is the Knight's song called?
d. What is the Knight's song?
e. What is your (full, legal) name?
f. What are you called?
g. What are you? (Do not answer this on paper; just think

about it.)
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10.4 Modular Arithmetic with Applications
to Cryptography
The "real" mathematics of the "real" mathematicians, the mathematics of Fermat and
Euler and Gauss and Abel and Riemann, is almost wholly "useless." . . . It is not
possible to justify the life of any genuine professional mathematician on the ground of
the "utility " of his work. - G H. Hardy, A Mathematician's Apology, 1941

Cryptography is the study of methods for sending secret messages. It involves encryption,
in which a message, called plaintext, is converted into a form, called ciphertext, that
may be sent over channels possibly open to view by outside parties. The receiver of the
ciphertext uses decryption to convert the ciphertext back into plaintext.

In the past the primary use of cryptography was for government and military intel-
ligence, and this use continues to be important. In fact, the National Security Agency,
whose main business is cryptography, is the largest employer of mathematicians in the
United States. With the rise of electronic communication systems, however, especially
the Internet, an extremely important current use of cryptography is to make it possible to
send private information, such as credit card numbers, banking data, medical records, and
so forth, over electronic channels.

Many systems for sending secret messages require both the sender and the receiver
to know both the encryption and the decryption procedures. For instance, an encryption
system once used by Julius Caesar, and now called the Caesar cipher, encrypts messages
by changing each letter of the alphabet to the one three places farther along, with X
wrapping around to A, Y to B, and Z to C. In other words, say each letter of the alphabet
is coded by its position relative to the others-so that A = 01, B = 02, .. ., Z = 26. If the
numerical version of the plaintext for a letter is denoted M and the numeric version of the
ciphertext is denoted C, then

C = (M + 3)mod26.

The receiver of such a message can easily decrypt it by using the formula

M = (C -3) mod 26.

For reference, here are the letters of the alphabet, together with their numeric equivalents:

A B C D E F G H I J K L M

01 02 03 04 05 06 07 08 09 10 11 12 13

N 0 P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

Example 10.4.1 Encrypting and Decrypting with the Caesar Cipher

a. Use the Caesar cipher to encrypt the message HOW ARE YOU.

b. Use the Caesar cipher to decrypt the message L DP ILQH.
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Solution

a. First translate the letters of HOW ARE YOU into their numeric equivalents:

08 15 23 01 18 05 25 15 21.

Next encrypt the message by adding 3 to each number. The result is

11 18 26 04 21 08 02 18 24.

Finally, substitute the letters that correspond to these numbers. The encrypted message
becomes

KRZ DUH BRX.

b. First translate the letters of L DP ILQH into their numeric equivalents:

12 04 16 09 12 17 08.

Next decrypt the message by subtracting 3 from each number:

09 01 13 06 09 14 05.

Then translate back into letters to obtain the original message: I AM FINE. U

One problem with the Caesar cipher is that given a sufficient amount of ciphertext
a person with knowledge of letter frequencies in the language can easily figure out the
cipher. Partly for this reason, even Caesar himself did not make extensive use of it.
Another problem with a system like the Caesar cipher is that knowledge of how to encrypt a
message automatically gives knowledge of how to decrypt it. When a potential recipient of
messages passes the encryption information to a potential sender of messages, the channel
over which the information is passed may itself be insecure. Thus the information may
leak out, enabling an outside party to decrypt messages intended to be kept secret.

With public-key cryptography, a potential recipient of encrypted messages openly
distributes a public key containing the encryption information. However, knowledge
of the public key provides virtually no clue about how messages are decrypted. Only
the recipient has that knowledge. Regardless of how many people learn the encryption
information, only the recipient should be able to decrypt messages that are sent.

The first public-key cryptography system was developed in 1976-1977 by three young
mathematician/computer scientists working at M.I.T.: Ronald Rivest, Adi Shamir, and
Leonard Adleman. In their honor it is called the RSA cipher. In order for you to learn
how it works, you need to know some additional properties of congruence modulo n.

From left to right: Ronald
Rivest (born 1948), Adi
Shamir (born 1952), and
Leonard Adleman (born
1945)
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Properties of Congruence Modulo n
The first theorem in this section brings together a variety of equivalent ways of expressing
the same basic arithmetic fact. Sometimes one way is most convenient; sometimes another
way is best. You need to be comfortable moving from one to another, depending on the
nature of the problem you are trying to solve.

continued on page 614

Theorem 10.4.1 Modular Equivalences

Let a, b, and n be any integers and suppose n > 1. The following statements are all
equivalent:

1. n I (a-b)

2. a - b (mod n)

3. a - b + kn for some integer k

4. a and b have the same (nonnegative) remainder when divided by n

5. a modn = b mod n

Proof:

We will show that (1) =. (2) =X (3) =X (4) =X (5) X. (1). It will follow by the tran-
sitivity of if-then that all five statements are equivalent.

So let a, b, and n be any integers with n > 1.

Proof that (1) * (2): Suppose that n I (a - b). By definition of congruence modulo
n, we can immediately conclude that a - b (mod n).

Proof that (2) =. (3): Suppose that a - b (mod n). By definition of congruence
modulo n, n I (a - b). Thus, by definition of divisibility, a - b = kn, for some inte-
ger k. Adding b to both sides gives that a = b + kn.

Proof that (3) X. (4): Suppose that a = b + kn, for some integer k. Use the quo-
tient-remainder theorem to divide a by n to obtain

a = qn + r where q and r are integers and O < r < n.

Substituting b + kn for a in this equation gives that

b + kn = qn + r

and subtracting kn from both sides and factoring out n yields

b = (q - k)n + r.

But since 0 < r < n, the uniqueness property of the quotient-remainder theorem
guarantees that r is also the remainder obtained when b is divided by n. Thus a and
b have the same remainder when divided by n.

Proof that (4) * (5): Suppose that a and b have the same remainder when di-
vided by n. It follows immediately from the definition of the mod function that
a mod n = b mod n.
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Proof that (5) =. (1): Suppose that a mod n = b mod n. By definition of the mod
function, a and b have the same remainder when divided by n. Thus, by the quotient-
remainder theorem, we can write

a = qln + r and b = q2 n + r where qj, q2 , and r are integers and 0 < r < n.

It follows that

a - b = (qln + r) - (q2n + r) = (q, - q2)n.

Therefore, since q -q2 is an integer, n I (a -b).

Another consequence of the quotient-remainder theorem is this: When an integer a
is divided by an integer n, a unique quotient q and remainder r are obtained with the
property that a = nq + r and 0 < r < n. Because there are exactly n integers that satisfy
the inequality 0 < r < n (the numbers from 0 through n - 1), there are exactly n possible
remainders that can occur. These are called the least nonnegative residues modulo n or
simply the residues modulo n.

I. I

Given integers a and n with n > 1, the residue of a module n is a mod n, the non-
negative remainder obtained when a is divided by n. The numbers 0, 1, 2, . . ., n-1
are called a complete set of residues modulo n. To reduce a number module n
means to set it equal to its residue module n. If a modulus n > I is fixed throughout
a discussion and an integer a is given, the words "modulo n" are often dropped and
we simply speak of the residue of a.

The following theorem generalizes several examples from Section 10.3.

Theorem 10.4.2 Congruence Modulo n Is an Equivalence Relation

If n is any integer with n > 1, congruence modulo n is an equivalence relation on
the set of all integers. The distinct equivalence classes of the relation are the sets
[0], [1], [2], ... , [n-1], where for each a =0, 1, 2, ... , n-1,

[a] = {m E Z I m-a (mod n)},

or, equivalently,

[a] = {m E Z I m = a + kn for some integer k).

Proof:

Suppose n is any integer with n > 1. We must show that congruence modulo n is
reflexive, symmetric, and transitive.

Proof of reflexivity: Suppose a is any integer. To show that a - a (mod n), we
must show that n I (a - a). But a - a = 0, and n 0 ° because 0 = n 0. Therefore
a - a (mod n).
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Observe that there is a one-to-one correspondence between the distinct equivalence classes
for congruence modulo n and the elements of a complete set of residues modulo n.

Modular Arithmetic
A fundamental fact about congruence modulo n is that if you first perform an addition,
subtraction, or multiplication on integers and then reduce the result modulo n, you will
obtain the same answer as if you had first reduced each of the numbers modulo n, performed
the operation, and then reduced the result module n. For instance, instead of computing

(5 8) = 40 I (mod 3)

you will obtain the same answer if you compute

(5 mod 3)(8 mod 3)= 2 2 =4 1 (mod 3).

The fact that this process works is a result of the following theorem.

Term10.43MdlrAihei

Proof.

Because we will make greatest use of part 3 of this theorem, we prove it here and
leave the proofs of the remaining parts of the theorem to exercises 9-11 at the end of
the section.

continued on page 616

Proof of symmetry: Suppose a and b are any integers such that a b (mod n). We
must show that b a (mod n). But since a b (mod n), then n j (a - b). Thus, by
definition of divisibility, a - b = nk, for some integer k. Multiply both sides of this
equation by -1 to obtain

-(a - b) =-nk,

or, equivalently,

b - a =n(-k).

Thus, by definition of divisibility n I (b - a), and so, by definition of congruence
modulo n, b = a (mod n).

Proof of transitivity: This is left as exercise 5 at the end of the section.

Proof that the distinct equivalence classes are [0], [1], [2], ... , [n - 1]: This is
left as exercise 6 at the end of the section.
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Example 10.4.2 Getting Started with Modular Arithmetic

The most practical use of modular arithmetic is to reduce computations involving large
integers to computations involving smaller ones. For instance, note that 55 - 3 (mod 4)
because 55 - 3 = 52, which is divisible by 4, and 26 - 2 (mod 4) because 26 - 2 = 24,
which is also divisible by 4. Verify the following statements.

a. 55 + 26-(3 + 2) (mod 4) b. 55 -26-(3-2) (mod 4)

c. 55 26 -(3 2) (mod4) d. 552 = 32 (mod4)

Solution

a. Compute 55 + 26 = 81 and 3 + 2 = 5. By definition of congruence modulo n, to
show that 81 - 5 (mod 4), you need to show that 41 (81 - 5). But this is true because
81-5 = 76, and 4 1 76 since 76 = 4 19.

b. Compute 55 - 26 = 29 and 3 - 2 = 1. By definition of congruence modulo n, to
show that 29 1- (mod 4), you need to show that 41 (29 - 1). But this is true because
29-1 = 28, and4128 since28 = 4 7.

c. Compute 55 . 26 = 1430 and 3 * 2 = 6. By definition of congruence modulo n, to
show that 1430 - 6 (mod 4), you need to show that 41 (1430 -6). But this is true
because 1430-6 = 1424, and 41 1424 since 1424 = 4 * 356.

d. Compute 552 = 3025 and 32 = 9. By definition of congruence modulo n, to show
that 3025 9 (mod 4), you need to show that 41 (3025 - 9). But this is true because
3025-9 = 3016, and 413016 since 3016 = 4 * 754. U

In order to facilitate the computations performed in this section, it is convenient to
express part 3 of Theorem 10.4.3 in a slightly differently form.

Coro-y 1 0 .4. 4

L , e r.
0 \ 0 ~ ~ ~ a [( mod< nn)(bt mo n))00 (mo n), 0t00g 0; 00S0;0:0t0

Proof of Part 3: Suppose a, b, c, d, and n are integers with n > 1, and suppose
a = b (mod n) and c = d (mod n). By Theorem 10.4.1, there exist integers s and t
such that

a = c + sn and b = d + tn.
Then

ab = (c + sn)(d + tn) by substitution

= cd + ctn + snd + sntn

= cd + n(ct + sd + stn) by algebra.

Let k = ct + sd + stn. Then k is an integer and ab = cd + nk. Thus by Theorem
10.4.1, ab-cd (mod n).
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Example 10.4.3 Computing a Product Modulo n

As in Example 10.4.2, note that 55 -3 (mod 4) and 26 =- 2 (mod 4). Because both 3
and 2 are less than 4, each of these numbers is a least nonnegative residue modulo 4.
Therefore, 55 mod 4 = 3 and 26 mod 4 = 2. Use the notation of Corollary 10.4.4 to find
the residue of 55 * 26 modulo 4.

Solution Recall that to use a calculator to compute remainders, you can use the formula
n mod d = n - d- Ln/dj. If you are using a hand calculator with an "integer part" feature
and both n and d are positive, then Ln/dj is the integer part of the division of n by d.
When you divide a positive integer n by a positive integer d with a more basic calculator,
you can see Ln/dj on the calculator display by simply ignoring the digits that follow the
decimal point.

By Corollary 10.4.4,

(55 . 26) mod 4 = [(55 mod 4)(26 mod 4)] mod 4

(3-2)mod 4 because 55 mod 4 = 3
and 26 mod4 = 2

6 mod 4

2 because 4 l (6 - 2) and 2 < 4. A

When modular arithmetic is performed with very large numbers, as is the case for
RSA crytography, computations are facilitated by using two properties of exponents. The
first is

x2, = (Xa)2  for all real numbers x and a with x > 0. 10.4.1

Thus, for instance, if x is any positive real number, then

x4 modn = (x 2)2 modn because (x2)2 X4

= (x2 mod n)2 modn by Corollary 10.4.4.

Hence you can reduce x4 modulo n by reducing x2 module n and then reducing the square
of the result modulo n. Because all the residues are less than n, this process limits the size
of the computations to numbers that are less than n2, which makes them easier to work
with, both for humans (when the numbers are relatively small) and for computers (when
the numbers are very large).

A second useful property of exponents is

xa+b = XaXb for all real numbers x, a, and b with x > 0. 10.4.2

For instance, because 7 = 4 + 2 + 1,

x7 X4 29 =X x x1

Thus, by Corollary 10.4.4,

x7 modn = [(x 4 mod n)(x2 mod n)(xI mod n)] modn.

We first show an example that illustrates the application of formula (10.4.1) and then
an example that uses both (10.4.1) and (10.4.2).
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Example 10.4.4 Computing ak mod n When k Is a Power of 2

Find 1444 mod 713.

Solution Use property (10.4.1) to write 1444 = (1442)2. Then

1444 mod 713 = (144 2 )2 mod 713

= (1442 mod 713)2 mod 713

= (20736 mod 713) 2 mod 713

= 592 mod 713

= 3481 mod 713

= 629

because 1442 = 20736

because 20736 mod 713 = 59

because 592 = 3481

because 3481 mod 713 = 629.

Example 10.4.5 Computing ak mod n When k Is Not a Power of 2

Find 1243 mod 713.

Solution First write the exponent as a sum of powers of 2:

43 =25 +2 3+ 2+ 1 = 32 + 8 + 2 + 1.

Next compute 122 k for k = 1, 2, 3, 4, 5.

12 mod 713 = 12

122 mod713 = 144

124 mod 713 = 1442 mod713 = 59

12 8 mod 713 = 59 2 mod 713 = 629

12 16 mod713 = 6292 mod 713 = 639

1232 mod 713 = 639 2 mod 713 = 485

By property (10.4.2),

by Example 10.4.4

by Example 10.4.4

by the method of Example 10.4.4

by the method of Example 10.4.4

1243 = l232+8+2+1 = 1232. l28 122 12

Thus, by Corollary 10.4.4,

1243 mod 713

= [(1232 mod 713) . (12' mod 713) * (122 mod 713) . (12 mod 713)] mod 713.

By substitution,

1243 mod713 = (485-629*144*12) mod 713

= 527152320mod713

= 48.

It is important to understand how to do the computations in Example 10.4.5 by hand
using only a simple electronic calculator, but if you are computing a lot of residues,
especially ones involving large numbers, you may want to write a short computer or
calculator program to do the computations for you.

Extending the Euclidean Algorithm
An extended version of the Euclidean algorithm can be used to find a concrete expression
for the greatest common divisor of integers a and b.

.
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I. m, 1 1

An integer d is said to be a linear combination of integers a and b if, and only if,
there exist integers s and t such that as + bt = d.

continued on page 620

Theorem 10.4.5 Writing a Greatest Common Divisor as a Linear Combination

For all integers a and b, not both zero, if d c gcd(a, b), then there exist integers s
and t such that as + bt - d.

Proof:

Given integers a and b, not both zero, and given d = gcd(a, b), let

S = {x I x is a positive integer and x = as + bt for some integers s and t}.

Note that S is a nonempty set because (1) if a > 0 then I a + 0- b E S, (2) if
a < 0 then (-1) * a + 0. b E S, and (3) if a = 0, then by assumption b 0 0, and
hence 0 * a + I * b E S or O a + (-1) b E S. Thus, because S consists entirely of
positive integers, by the well-ordering principle there is a least element c in S. By
definition of S,

c = as + bt for some integers s and t. 10.4.3

We will show that (1) c > d and (2) c < d and will therefore be able to conclude that
c = d = gcd(a, b).

(1) Proof that c > d:
[In this part of the proof we show that d is a divisor of c and thus thatd I c.] Because
d = gcd(a, b), by definition of greatest common divisor, d I a and d I b. Hence
a = dx and b = dy for some integers x and y. Then

c = as +bt by (10.4.3)

= (dx)s + (dy)t by substitution

= d(xs + yt) by factoring out the d.

But xs + yt is an integer because it is a sum of products of integers. Thus, by
definition of divisibility, d I c. Both c and d are positive, and hence, by Example 3.3.3,
c > d.

(2) Proof that c < d:
[In this part of the proof we show that c is a divisor of both a and b and therefore
that c is less than or equal to the greatest common divisor of a and b, which is d.]
Apply the quotient-remainder theorem to the division of a by c to obtain

a = cq + r for some integers q and r with 0 < r < c. 10.4.4

Thus for some integers q and r with 0 < r < c,

r = a - cq

Now c = as + bt. Therefore, for some integers q and r with 0 < r < c,

r = a - (as + bt)q by substitution

= a(l-sq)-btq.
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The following example shows a practical method for expressing the greatest common
divisor of two integers as a linear combination of the two.

Example 10.4.6 Expressing a Greatest Common Divisor as a Linear Combination

In Example 3.8.6 we showed how to use the Euclidean algorithm to find that the greatest
common divisor of 330 and 156 is 6. Use the results of those calculations to express
gcd(330, 156) as a linear combination of 330 and 156.

Solution The first four steps of the solution restate and extend results from Example 3.8.6,
which were obtained by successive applications of the quotient-remainder theorem. The
fifth step shows how to find the coefficients of the linear combination by substituting back
through the results of the previous steps.

Step 1: 330 = 156. 2 + 18, which implies that 18 = 330 -156 . 2.

Step 2: 156- 18 * 8 + 12, which implies that 12 = 156- 18 8.

Step 3: 18 = 12. I + 6, which implies that 6 = 18 -12. 1.

Step 4: 12 = 6 -2 + 0, which implies that gcd(330, 156) = 6.

Step 5: By substituting back through steps 3 to 1:

6 = 18 -12.- fromstep3

= 18 -(156-8 * 18). I bysubstitutionfromstep2

= 9 18 + (-1) 156 byalgebra

= 9 * (330- 156 2) + (-1) * 156 by substitution from step I

= 9 .330 + (-19) . 156 by algebra.

Thus gcd(330, 156) = 9 * 330 + (-19). 156. (It is always a good idea to check the result
of a calculation like this to be sure you did not make a mistake. In this case, you find that
9 330 + (-19) 156 does indeed equal 6.) S

The Euclidean algorithm given in Section 3.8 can be adapted so as to compute the
coefficients of the linear combination of the gcd at the same time as it computes the gcd
itself. This extended Euclidean algorithm is described in the exercises at the end of the
section.

Thus r is a linear combination of a and b, and hence r E S. If r > 0, then r would
be a smaller element of S than c, which would contradict the fact that c is the least
element of S. Hence r = 0. By substitution into (10.4.4),

a = cq

and therefore c I a.
An almost identical argument establishes that c I b and is left as exercise 30 at the

end of the section.
Because c I a and c I h, c is a common divisor of a and b. Hence it is less than the

greatest common divisor of a and b. In other words, c < d.

From (1) and (2), we conclude that c = d. It follows that d, the greatest common
divisor of a and b, is equal to as + bt.
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Finding an Inverse Modulo n
Suppose you want to solve the following congruence for x:

2x - 3 (mod 5)

Note that 3 * 2 = 6 - I (mod 5). So you can think of 3 as a kind of inverse for 2 modulo
5 and multiply both sides of the congruence to be solved by 3 to obtain

6x = 3 2x - 3 .3 (mod 5) - 9 (mod 5) -4 (mod 5).

But 6 = I (mod 5), and so by Theorem 10.4.3(3), 6x - Ix (mod 5) = x (mod 5). Thus,
by the symmetric and transitive properties of modular congruence,

x - 4 (mod 5),

and hence a solution is x = 4. (You can check that 2 * 4 = 8 - 3 (mod 5).)
Unfortunately, it is not always possible to find an "inverse" modulo an integer n. For

instance, observe that

2 1 - 2 (mod 4)

2 .2 -0 (mod 4)

2 .3 -2 (mod 4).

By Theorem 10.4.3, these calculations suffice for us to conclude that the number 2 does
not have an inverse modulo 4.

Describing the circumstances in which inverses exist in modular arithmetic requires
the concept of relative primeness.

n a and b are relatively prime if, and only0 if, d(a, b) = 1. Integers
ad, a2, a3 ,. a are pairwise relatively prime if, andol :ifgcd(a1 ,4 a1i) = 1 for
a llintegers i and j with 1 < i, j < n, and i 0 j.

Given the definition of relatively prime integers, the following corollary is an imme-
diate consequence of Theorem 10.4.5.

Example 10.4.7 Expressing 1 as a Linear Combination of Relatively Prime Integers

Show that 660 and 43 are relatively prime, and find a linear combination of 660 and 43
that equals 1.

Solution

Step 1: Divide 660 by 43 to obtain 660 = 43 * 15 + 15, which implies that 15 =
660 - 43 15.

Step 2: Divide 43 by 15 to obtain 43 = 15 . 2 + 13, which implies that 13 = 43 -15 2.

Step 3: Divide 15 by 13 to obtain 15 = 13 * I + 2, which implies that 2 = 15 - 13.
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Step 4: Divide 13 by 2 to obtain 13 = 2 .6 + 1, which implies that I = 13 -2 6.

Step 5: Divide 2 by 1 to obtain 2 = I * 2 + 0, which implies that gcd(660, 43) = 1 and
so 660 and 43 are relatively prime.

Step 6: To express 1 as a linear combination of 660 and 43, substitute back through steps
4 to 1:

I = 13-2 6 from step 4

= 13 -(15 - 13) . 6 by substitution from step 3

- 7 13-6 15 by algebra

- 7 (43- 15 2)- 6 15 by substitution from step 2

7 * 43 -20 15 by algebra

- 7 -43 - 20 * (660 - 43 * 15) by substitution from step I

= 307 43 -20 . 660 by algebra.

Thus gcd(660, 43) = I = 307 . 43 - 20 660. (And a check by direct computation con-
firms that 307 * 43 -20 * 660 does indeed equal 1.) D

A consequence of Corollary 10.4.6 is that under certain circumstances, it is possible
to find an inverse for an integer modulo n.

Example 10.4.8 Finding an Inverse Modulo n

a. Find an inverse for 43 modulo 660. That is, find an integer s such that 43s
1 (mod 660).

b. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that
3s-I (mod 40).

Solution

a. By Example 10.4.7,

307 .43 - 20 . 660 = 1.

Adding 20 . 660 to both sides gives that

307 * 43 = 1 + 20 660.

Corollary 10.4.7 Existence of Inverses Modulo n

For all integers a and n, if gcd(a, n) = 1, then there exists an integer s such that
as -1 (mod n). The integer s is called the inverse of a modulo n.

Proof:

Suppose a and n are integers and gcd(a, n) = 1. By Corollary 10.4.6, there exist
integers s and t such that

as+ nt= 1.

Subtracting nt from both sides gives that

as = I-nt= + (-t)n.

Thus, by definition of congruence modulo n,

as - I (mod n).
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Thus, by definition of congruence module 660,

307 .43 -1 (mod 660),

so 307 is an inverse for 43 modulo 660.

b. Use the technique of Example 10.4.7 to find a linear combination of 3 and 40 that
equals 1.

Step 1: Divide 40 by 3 to obtain 40 = 3. 13 + 1. This implies that I = 40- 3 13.

Step 2: Divide 3 by I to obtain 3 = 3 I + 0. This implies that gcd(3, 40) = 1.

Step 3: Use the result of step I to write

3 . (-13) = I + (-1)40.

This result implies that -13 is an inverse for 3 modulo 40. In symbols, 3 * (-13)
I (mod 40). To find a positive inverse, compute 40 - 13. The result is 27, and

27 -- 13 (mod 40)

because 27 - (-13) = -40 = (-1)40. So, by Theorem 10.4.3(3),

3 27 - 3 (-13) - I (mod 40),

and thus by the transitive property of congruence modulo n, 27 is a positive integer that
is an inverse for 3 modulo 40. U

RSA Cryptography
At this point we have developed enough number theory to explain how to encrypt and
decrypt messages using the RSA cipher. The effectiveness of the system is based on the
fact that although modern computer algorithms make it quite easy to find large numbers
p and q-say on the order of several hundred digits each-that are virtually certain to be
prime, even the fastest computers are not currently able to factor their product, a number
with approximately twice that many digits. In order to encrypt a message using the RSA
cipher, a person needs to know the value of pq and of another number e, both of which
are made publicly available. But only a person who knows the individual values of p and
q can decrypt an encrypted message.

We first give an example to show how the cipher works and then discuss some of the
theory to explain why it works. The example is unrealistic in the sense that because p
and q are so small, it would be easy to figure out what they are just by knowing their
product. But working with small numbers conveys the idea of the system, while keeping
the computations in a range that can be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers, say
p = 5 and q = 11, and computes pq = 55. She then chooses a positive integer e that
is relatively prime to (p - 1)(q - I). In this case, (p - 1)(q - 1) = 4 - 10 = 40, so she
may take e = 3 because 3 is relatively prime to 40. (In practice, taking e to be small
could compromise the secrecy of the cipher, so she would take a larger number than 3.
However, the mathematics of the cipher works as well for 3 as for a larger number, and
the smaller number makes for easier calculations.)

The two numbers pq = 55 and e = 3 are the public key, which she may distribute
widely. Because the RSA cipher works only on numbers, Alice also informs people how
she will interpret the numbers in the messages they send her. Let us suppose that she
encodes letters of the alphabet the same way as was done for the Caesar cipher:

A = 1, B = 2, C = 3, . .. , Z = 26.
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Let us also assume that the messages Alice receives consist of blocks, each of which, for
simplicity, is taken to be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the message into blocks, each
consisting of a single letter, and finds the numeric equivalent for each block. The plaintext,
M, in a block is converted into ciphertext, C, according to the following formula:

C = Me mod pq. 10.4.5

Note that because both pq and e are public keys, anyone who is given the keys and knows
modular arithmetic can encrypt a message to send to Alice.

Example 10.4.9 Encrypting a Message Using RSA Cryptography

Bob wants to send Alice the message HI. What is the ciphertext for his message?

Solution Bob will send his message in two blocks, one for the H and another for the I.
Because H is the eighth letter in the alphabet, it is encoded as 08, or 8. The corresponding
ciphertext is computed using formula (10.4.5) as follows:

C = 83 mod55

= 512mod55

= 17.

Because I is the ninth letter in the alphabet, it is encoded as 09, or 9. The corresponding
ciphertext is

C = 93 mod 55
= 729 mod 55

= 14.

Accordingly, Bob sends Alice the message: 17 14. E

To decrypt the message, Alice needs to compute the decryption key, a number d that
is a positive inverse to e module (p - 1)(q - 1). She obtains the plaintext M from the
ciphertext C by the formula

M = Cd mod pq. 10.4.6

Note that because M + kpq M (mod pq), M must be taken to be less than pq, as
in the above example, in order for the decryption to be guaranteed to produce the original
message. But because p and q are normally taken to be so large, this requirement does
not cause problems. A long message can be broken into sections, if necessary, to meet the
restriction.

Example 10.4.10 Decrypting a Message Using RSA Cryptography

Imagine that Alice has hired you to help her decrypt messages and has shared with you
the values of p and q. Decrypt the following ciphertext for her: 17 14.

Solution Because p = 5 and q = 11, (p - l)(q - 1) = 40, and so you first need to find
the decryption key, which is a positive inverse for 3 modulo 40. Knowing that you would
be needing this number, we computed it in Example 10.4.4(b) and found it to be 27.
Thus you need to compute M = 1727mod 55. To do so, note that 27 = 16 + 8 + 2 + 1 =
24 + 23 + 2 + 1. Thus you will find the residues obtained when 17 is raised to successively
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higher powers of 2, up to 24 = 16.

17 mod 55 = 17mod 55

172 modS5 = 172 mod 55 = 14

174 modS5 = (172 )2 mod 55 = 14 2 mod 55 = 31

178 mod 55 = (174 ) 2 mod 55 = 312 mod 55 = 26

1716 mod 55 = (178 )2 mod 55 = 262 mod 55 = 16

Then you will use the fact that

1727 = 1716+8+2+1 = 1716 .178172 *

to write

1727 mod 55 = (1716 -178 .172 .17) mod 55

[(1716 mod 55)(178 mod 55)(172 mod 55)(17 mod 55)] (mod 55)
by Corollary 10.4.4

- (16.26 .14 17)(mod55)

99008 (mod 55)

8 (mod 55).

Hence 1727 mod 55 = 8, and thus the plaintext of the first part of Bob's message is 8, or
08. In the last step, you find the letter corresponding to 08, which is H. In exercises 14
and 15 at the end of this section, you are asked to show that when you decrypt 14, the result
is 9, which corresponds to the letter I, so you can tell Alice that Bob's message is HI. U

Euclid's Lemma
Another consequence of Theorem 10.4.5 is known as Euclid's lemma. It is the crucial fact
behind the unique factorization theorem for the integers and is also of great importance
in many other parts of number theory.

Thorm 04. Eclds Lemma

For integers band c, if gcd(a, c) = 1 and a bc, then a Ib.:

Proof:

Suppose a, b and c are integers, gcd(a, c) = 1, and a I bc. [We must show that a I b.]
By Theorem 10.4.5, there exist integers s and t so that

as + ct = 1.

Multiply both sides of this equation by b to obtain

bas + bct = b. 10.4.7

Since a j bc, by definition of divisibility there exists an integer k such that

bc = ak. 10.4.8

Substituting (10.4.8) into (10.4.7), rewriting, and factoring out an a gives that

b = bas + (ak)t = a(bs + kt).

Let r = bs + kt. Then r is an integer (because b, s, k, and t are all integers), and
b = ar. Thus a I b by definition of divisibility.
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The unique factorization theorem for the integers states that any integer greater than I
has a unique representation as a product of prime numbers, except possibly for the order
in which the numbers are written. The hint for exercise 11 of Section 4.4 outlined a proof
of the existence part of the proof, and the uniqueness of the representation follows quickly
from Euclid's lemma. In exercise 41 at the end of this section, we outline a proof for you
to complete.

Another application of Euclid's lemma is a cancellation theorem for congruence mod-
ulo n. This theorem allows us-under certain circumstances-to divide out a common
factor in a congruence relation.

An alternative proof forTheorem 10.4.9 uses Corollary 10.4.7. Because gcd(c, n) = 1,
the corollary guarantees an inverse for c modulo n. In the proof of Theorem 10.4.9, let d
denote an inverse for c. Apply Theorem 10.4.3(3) repeatedly, first to multiply both sides
of ac - bc (mod n) by d to obtain (ac)d - (bd)d (mod n), and then to use the fact that
cd - I (mod n) to simplify the congruence and conclude that a b (mod n).

Fermat's Little Theorem and the Chinese Remainder Theorem
Fermat's little theorem was given that name to distinguish it from Fermat's last theorem,
which we discussed in Section 3.1. Together with the Chinese remainder theorem, it
provides the theoretical underpinning for RSA cryptography.

Theorem 10.4.10 Fermat's Little Theorem

If p is any prime number and a is any integer such that p t a, then aP = 1 (mod p).

Proof:

Suppose p is any prime number and a is any integer such that p t a. Note that a :A 0
because otherwise p would divide a. Consider the set of integers

S = {a, 2a, 3a, ... , (p-1)a}.

Theorem 10.4.9 Cancellation Theorem for Modular Congruence

For all integers a, b, c, and n, if gcd(c, n) = 1 and ac bc (mod n), then
a-b (mod n).

Proof:

Suppose a, b, c, and n are any integers, gcd(c, n) = 1, and ac= bc (mod n). [We
must show that a - b (mod n).] By Theorem 10.4.3(3), ac - bc - 0 (mod n), or,
equivalently,

(a -b)c -_ (mod n).

Thus by definition of congruence module n,

n I (a -b)c.

Because gcd(c, n) = 1, we may apply Euclid's lemma to obtain

n I (a -b),

and so, by definition of congruence module n,

a = b (mod n).
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The Chinese remainder theorem was given its name because of the work of ancient
Chinese mathematicians, notably Sun-Tsu, who posed and solved the following problem in
the first century A.D.: Find a number with a remainder of 2 when divided by 3, a remainder
of 3 when divided by 5, and a remainder of 2 when divided by 7. The calculations in
his solution are essentially those that would come from the construction in the proof of
the theorem. It is interesting to note that a Greek mathematician, Nicomachus, posed and
solved the same problem at about the same time and in about the same way.

Theorem 10.4.11 The Chinese Remainder Theorem

If n , n2 . n. are pairwise relatively prince positive integers and at, a2,..., ak are
any tegesthen the congruences

x at (mod nj)

X 0 I 42( n2 )

x ak(monk)

have a simultaneous soltn x that is uniqu modulo n, where n = n1n2 ... nk.

Proof:

We restrict the proof to the case k = 3 because the proof in this case embodies all
the ideas of the general proof. Suppose nI, n2 , and n3 are pairwise relatively prime
positive integers and a,, a2, and a3 are any integers. Let

N1 = n2n3 , N2 = nln3, and N 3 = njn2.

continued on page 628

We claim that no two elements of S are congruent modulo p. For suppose sa =
ra (mod p) for some integers s and r with I < r < s < p - 1. Then, by definition
of congruence modulo p,

p I (sa - ra), or, equivalently, p I (s - r)a.

Now p t a by hypothesis, and because p is prime, gcd(a, p) = 1. Thus, by Euclid's
lemma, p I (s -r). But this is impossible because 0 < s - r < p.

Consider the function F from S to the set T = {1, 2, 3, . . ., (p - 1)1 that sends
each element of S to its residue module p. Then F is one-to-one because no two
elements of S are congruent modulo p. But Theorem 7.3.3 states that if a func-
tion from one finite set to another is one-to-one, then it is also onto. Hence F is
onto, and so the p - 1 residues of the p - I elements of S are exactly the numbers
1, 2, 3,..., (p - 1).

It follows by Theorem 10.4.3(3) that

a 2a 3a *.. (p-1)a [1 2 .3 *.. (p-1)] (mod p),

or equivalently,

aP-' (p- 1)! - (p- )! (mod p).

But because p is prime, p and (p - 1)! are relatively prime. Thus, by the cancellation
theorem for modular congruence (Theorem 10.4.9),

aP-1 -_ I (mod p).
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Exercise 44 at the end of the section outlines the steps of the solution to Sun-Tsu's
problem.

Why Does the RSA Cipher Work?
The crucial part of the RSA cipher is the formula

M = Cd mod pq,

Because n1, n2 , and n3 are pairwise relatively prime, so is each pair Ni and ni for
i = 1, 2, 3. Thus, by Corollary 10.4.7 there exist integers xi, x2 , and X3 such that xi
is an inverse for Ni for each i = 1, 2, 3. That is,

Nx 1 - I (mod n1), N2x2 - 1 (mod n2), and N3x3 - 1 (mod n3).

For each i = 1, 2, 3, multiply the ith congruence by ai. The result is

a, Nix, -a, (mod ni), a2 N2x2 - a2 (mod n2 ), and a3N3 x3 =a3 (mod n3 ).

Let

x = al N x, + a2 N2x 2 + a 3N 3x 3 .

Note that

N2 =nXn3 - 0(modn1 ) and N 3 =nln2 =0 (modnX)

because n1 I (nn3 -0) and n1 I (nn2 -0). Thus, by Theorem 10.4.3(3),

a2 N 2x 2 - 0(modnl) and a 2 N2x2 - 0(modnj).

It follows by Theorem 10.4.3(1) that

x = aNix, + a2N 2x 2 + a3 N3x 3 - aNxi (modn 1 ).

But Nx 1 - I (mod n1), and so by Theorem 10.4.3(3),

a1Nix l =-a, (mod ni).

Therefore, by transitivity of modular congruence,

x - a1 (mod n 1).

Similarly,

N =0 (modn2 ), N 3 =0 (modn2 ), N. 0 (modn 3 ), and N2 =0 (modn3 ),

and so, by the same reasoning,

x = a, Nix, + a 2 N2 x 2 + a 3 N3 x 3 - a2 N2 x 2  a2 (mod n 2 )

and

x = aNix, +a2 N 2 x 2 +a 3 N 3 x 3 - a3 N3 x 3 - a 3 (modn3 ).

Thus x is a solution for the set of congruences. Proving the uniqueness of the solu-
tion requires proving that if x' is any other solution, then x' = x (mod n), where
n = n In2 n3. This proof is left as exercise 47 at the end of the section.
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which claims to produce the original plaintext message. How can we be sure that it always
does so? We know that C = Me mod pq, and so, by substitution,

M = (Me mod pq)d mod pq.

And by Theorem 10.4.3(4),

(Me mod pq)d Med (mod pq).

Thus it suffices to show that

M - M (mod pq).

Recall that d was chosen to be an inverse for e modulo (p - 1) (q - 1), which exists
because gcd(e, (p - 1)(q - 1)) 1. In other words,

ed I (mod (p - 1)(q - 1)),

or, equivalently,

ed = I + k(p-l )(q-1) for some integer k.

Therefore,

Med = M1+k(p-1)(q-1) - M(MP-I)k(q-1) = M(Mq 1)k(P-1)

If p - M, then by Fermat's little theorem, MP-' - 1 (mod p), and so

Med = M(Mp-I )k(q-J) - M(t)k(q- ) (mod p) - M (mod p).

Similarly, if q t M, then by Fermat's little theorem, Mq- I (mod q), and so

Med = M(Mq- )k(P-) -M(1)k(p-l)-) M (mod q).

Thus, if M is relatively prime to pq,

Med = M (mod p) and Med M (mod q).

It follows from the Chinese remainder theorem that

Med - M (mod pq),

or, equivalently,

M -Med (mod pq),

as was to be shown.
This proof has shown that the RSA cipher gives the correct result provided M < pq

(so that the solution is unique) and M is relatively prime to pq. The restriction of relative
primeness is not significant because it is easy to add a step to an encrypting algorithm
to check that this condition is satisfied. In any case, because M < pq, it is only when
M = p or M = q that the restriction is not satisfied, and this is extremely unlikely when
p and q are very large.

Additional Remarks on Number Theory
and Cryptography

The famous British mathematician G. H. Hardy (1877-1947) was fond of comparing the
beauty of pure mathematics, especially number theory, to the beauty of art. Indeed, the
theorems in this section have many beautiful and striking consequences beyond those we
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have had the space to describe, and the subject of number theory extends far beyond these
theorems. Hardy also enjoyed describing pure mathematics as useless. Hence it is ironic
that there are now whole books devoted to applications of number theory to computer
science, RSA cryptography being just one such application. Furthermore, as the need
for public-key cryptography has developed, techniques from other areas of mathematics,
such as abstract algebra and algebraic geometry, have been used to develop additional
cryptosystems.

Exercise Set 10.4
1. a. Use the Caesar cipher to encrypt the message WHERE

SHALL WE MEET.
b. Use the Caesar cipher to decrypt the message LQ WKH

FDIHWHULD.

2. a. Use the Caesar cipher to encrypt the message AN APPLE
A DAY.

b. Use the Caesar cipher to decrypt the message NHHSV
WKH GRFWRU DZDB.

3. Leta =25,b = 19, andn =3.
a. Verify that 3 1(25 -19).
b. Explain why 25 = 19 (mod 3).
c. What value of k has the property that 25 = 19 + 3k?
d. What is the (nonnegative) remainder obtained when 25

is divided by 3? When 19 is divided by 3?
e. Explain why 25 mod 3 = 19 mod 3.

4. Leta=68,b=33,andn-7.
a. Verify that 7 1 (68 -33).
b. Explain why 68 = 33 (mod 7).
c. What value of k has the property that 68 = 33 + 7k?
d. What is the (nonnegative) remainder obtained when 68

is divided by 7? When 33 is divided by 7?
e. Explain why 68 mod 7 = 33 mod 7.

5. Prove the transitivity of modular congruence. That is,
prove that for all integers a, b, c, and n with n > 1, if
a 3 b (mod n) and b c (mod n) then a = c (mod n).

H 6. Prove that the distinct equivalence classes of the relation of
congruence module n are the sets [0], [1], [2], . [n -1],
where for each a =0, 1, 2, . .. , n-1,

[a] =m e ZIm =a(modn)l.

7. Verify the following statements.
a. 128 = 2 (mod 7) and 61 - 5 (mod 7)
b. (128+61) (2+5)(mod7)
c. (128 - 61) (2 - 5) (mod 7)
d. (128 61) = (2 5) (mod7)
e. 1282 22 (mod 7)

8. Verify the following statements.
a. 45 = 3 (mod 6) and 104 3 2 (mod 6)
b. (45 + 104) (3 + 2) (mod 6)
c. (45 -104) (3 - 2) (mod 6)
d. (45 104) -(3 2) (mod 6)
e. 452 3 22 (mod 6)

In 9-11, prove each of the given statements, assuming that
a, b, c, d, and n are integers with n > 1 and that a = c (mod n)
and b 3 d (mod n).

9. (a+b) (c+d)(modn)

10. (a -b) (c-d) (mod n)

11. a' -_ cm (mod n)

12. a. Use mathematical induction and modular arithmetic to
prove that for all integers n > 0, I0o 1 (mod 9).

b. Use part (a) to prove that a positive integer is divisible
by 9 if, and only if, the sum of its digits is divisible by 9.

13. a. Use strong mathematical induction and modular arith-
metic to prove that for all integers n > 1, 10' -

(-1)' (mod 11).
b. Use part (a) to prove that a positive integer is divisible

by 11 if, and only if, the alternating sum of its digits
is divisible by 11. (For instance, the alternating sum
of the digits of 82,379 is 8-2 + 3-7 + 9 = 11 and
82,379 = 11 .7489.)

14. Use the technique of Example 10.4.4 to find
142mod 55, 144 mod 55, 148 mod 55, and 1416 mod 55.

15. Use the result of exercise 14 and the technique of Example
10.4.5 to find 1427 mod 55.

In 16-18, use the techniques of Example 10.4.4 and Example
10.4.5 to find the given numbers.

16. 6753 0
7mod713 17. 8930

7 mod 713

18. 48307 mod 713

In 19-24, use the RSAcipher from Examples 10.4.9 and 10.4.10.
In 19-21, translate the message into its numeric equivalent and
encrypt it. In 22-24, decrypt the ciphertext and translate the
result into letters of the alphabet to discover the message.

19. HELLO 20. WELCOME 21. EXCELLENT

22. 13 20 20 09 23. 08 05 15 24. 51 14 49 15

H 25. Use Theorem 4.2.3 to prove that if a and n are positive
integers and a' - I is prime, then a = 2 and n is prime.

In 26 and 27, use the extended Euclidean algorithm to find the
greatest common divisor of the given numbers and express it as
a linear combination of the two numbers.

27. 4158 and 156826. 6664 and 765



Exercises 28 and 29 refer to the following formal version of the
extended Euclidean algorithm.

In 28 and 29, for the given values of A and B, make a table
showing the value of sa + tb before the start of the while loop
and after each iteration of the loop.

28. A = 330, B = 156 29. A = 284, B =168

30. Finish the proof of Theorem 10.4.5 by proving that if a, b, d,
and c are as in the proof, then c I b.

31. a.
b.
C.

32. a.
b.

Find an inverse for 210 modulo 13.
Find a positive inverse for 210 modulo 13.
Find a partial congruence for the congruence 210x O
8 (mod 13).

Find an inverse for 41 modulo 660.
Find the least positive solution for the following congru-
ence: 41x - 125 (mod 660).

H 33. Use Corollary 10.4.6 to prove that for all integers a, b, and
c,ifgcd(a,b) = 1 andalcandblc,thenablc.

34. Give a counterexample to show that the converse of exercise
33 is false.

35. Corollary 10.4.7 guarantees the existence of an inverse mod-
ulo n for an integer a when a and n are relatively prime. Use
Euclid's lemma to prove that the inverse is unique modulo
n. In other words, show that any two integers whose prod-
uct with a is congruent to 1 modulo n are congruent to each
other modulo n.
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In 36, 37, 39, and 40, use the RSA cipher with public key
n = 713 = 23 31 and e = 43. In 36 and 37, encode the mes-
sages into their numeric equivalents and encrypt them. In 39 and
40, decrypt the given ciphertext and find the original messages.

36. HELP 37. COME

Algorithm 10.4.1 Extended Euclidean Algorithm
[Given integers A and B with A > B > 0, this algorithm
computes gcd(A, B) and finds integers s and t such that
sA + tB = gcd(A, B).]

Input: A, B [integers with A > B > 0]

Algorithm Body:

a := A, b := B, s := 1, t := 0, u := 0, v := 1,
[pre-condition: a = sA + tB and b = uA + vB]

while (b 0 0)
[loop invariant: a = sA + tB and b = uA + vB,
gcd(a, b) = gcd(A, B)]

r a modb, q := a div b

a b, b := r

if (b 0 0) then do

newu := s-uq, newv := t - vq

S U, t := V

u := newu, v := newv

end do

end while

gcd := a
[post-condition: gcd(A, B) = a, sA + tB]

Output: gcd[a positive integer], s, t [integers]

38. Show that 307 is an inverse for 43 modulo 660.

39. 675 089 089 048

40. 028 018 675 129

H 41. a. Use mathematical induction and Euclid's lemma to prove
that for all positive integers s, if p and qj, q2. ' ' . q, are
prime numbers and p I qj q2 . qS, then p = q, for some
i with I < i < s.

b. The uniqueness part of the unique factorization theorem
for the integers says that given any integer n, if

n - PIP2 Pr = qlq2 .q

for some positive integers r and s and prime numbers
PI P 2 S .< Pr andq1 •q 2  .. < qs,thenr=s
and pi = qj for all integers i with 1 < i < r.

Use the result of part (a) to fill in the details of
the following sketch of a proof: Suppose that n is an
integer with two different prime factorizations: n =
PiP2 .P = qjq2 ... q_ All the prime factors that ap-
pear on both sides can be cancelled (as many times
as they appear on both sides) to arrive at the situ-
ation where PIP2 .. Pr = qlq 2 .. q,,pi e P2 < .

P., l < q2 < ... < q, and pi 7& qj for any integers i
and j. Then r = s and pi = qi for all i with 1 < i < r,
and so the prime factorization of n is unique except, pos-
sibly, for the order in which the prime factors are written.

42. According to Fermat's little theorem, if p is a prime number
and a and p are relatively prime, then aP-' - I (mod p).
Verify that this theorem gives correct results for
a. a = 15 and p = 7 b. a=8andp=11

43. Fermat's little theorem can be used to show that a number is
not prime by finding a number a relatively prime to p with
the property that aP1' f I (mod p). However, it cannot be
used to show that a number is prime. Find an example to
illustrate this fact. That is, find integers a and p such that
a and p are relatively prime and aP-I - I (mod p) but p is
not prime.

44. The parts of this exercise are steps in the solution of Sun-
Tsu's problem using the construction in the proof of the
Chinese remainder theorem. Sun-Tsu's problem is to find an
integer whose remainders upon division by nI = 3, n2 = 5,
and n3 = 7 are a, = 2, a2 = 3, and a3 = 2, respectively.
Let N n In2 n3 , N, = n 2 n 3, N2 = n In3 , and N3 = n2 n3 .
a. Find an inverse xi for N1 modulo n 1.
b. Find an inverse x2 for N2 modulo n2.

c. Find an inverse x3 for N3 modulo n3.
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d. Compute x = aNjxj + a2N2x 2 + a3N3x3 and verify
that x - al (mod nI), x -a2 (mod nf2), and
x = a3 (mod n3 ).

e. Find x mod N, the least nonnegative solution for the
congruence.

45. Another problem attributed to ancient China is this: Fifteen
pirates steal a sack of identical gold coins. When they try to
divide them evenly, two coins are left over. A fight results
in which one pirate is killed. The remaining pirates again
try to divide the coins evenly, but this time one coin is left
over. A second fight breaks out, and a second pirate is killed.
When the remaining pirates again divide the coins, they find
that each gets an equal number. Use the Chinese remainder

theorem to find the smallest number of gold coins that could
have been in the sack at the beginning.

H 46. The Indian mathematician Brahmagupta, born in A.D. 598,
posed the following problem: There are n eggs in a basket.
When eggs are removed 2, 3, 4, 5, or 6 at a time, the number
left over is 1, 2, 3, 4, or 5, respectively. Only when eggs
are removed 7 at a time is none left over. What is the least
number of eggs that could be in the basket? Use the Chinese
remainder theorem to answer this question.

47. Finish the proof of the Chinese remainder theorem by prov-
ing the uniqueness of the solution modulo n.

10.5 Partial Order Relations
There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world. -Nicolai Ivanovitch Lobachevsky, 1792-1856

In order to obtain a degree in computer science at a certain university, a student must take
a specified set of required courses, some of which must be completed before others can be
started. Given the prerequistite structure of the program, one might ask what is the least
number of school terms needed to fulfill the degree requirements, or what is the maximum
number of courses that can be taken in the same term, or whether there is a sequence in
which a part-time student can take the courses one per term. Later in this section, we will
show how representing the prerequisite structure of the program as a partial order relation
makes it relatively easy to answer such questions.

Antisymmetry
In Section 10.2 we defined three properties of relations: reflexivity, symmetry, and transi-
tivity. A fourth property of relations is called antisymmetry. In terms of the arrow diagram
of a relation, saying that a relation is antisymmetric is the same as saying that whenever
there is an arrow going from one element to another distinct element, there is not an arrow
going back from the second to the first.

Let R be a relation on a set A. Riisy ecif, andonly if,

foralla andb in A, ifa Rb and b R athena =b.

By taking the negation of the definition, you can see that a relation R is not antisym-
metric if, and only if,

there are elements a and b in A such that a R b and b R a but a 0 b.

Example 10.5.1 Testing for Antisymmetry of Finite Relations

Let RI and R2 be the relations on {0, 1, 21 defined as follows: Draw the directed graphs
for RI and R2 and indicate which relations are antisymmetric.

a. RI = {(0, 2), (1, 2), (2, 0)}

b. R2 = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)}
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Solution

a. RI is not antisymmetric.

I SinceORI 2and2RI ObutO•2,
RI is not antisymmetric.

b. R2 is antisymmetric.

In order for R2 not to be antisymmetric, there
would have to exist a pair of distinct elements
of A such that each is related to the other
by R2. But you can see by inspection that
no such pair exists.

2 .

Example 10.5.2 Testing for Antisymmetry of "Divides" Relations

Let RI be the "divides" relation on the set of all positive integers, and let R2 be the
"divides" relation on the set of all integers.

Foralla,bEZ+, aRIb a aIb.
Foralla,bcZ, aR 2 b a aIb.

a. Is RI antisymmetric? Prove or give a counterexample.

b. Is R2 antisymmetric? Prove or give a counterexample.

Solution

a. RI is antisymmetric.

Proof:

Suppose a and b are positive integers such that a RI b and b RI a. [We must show
that a = b.] By definition of RI, a l b and b I a. Thus, by definition of divides, there
are integers k, and k2 with b = k1a and a = k2 b. It follows that

b = ka = k1(k2 b) = (k k2 )b.

Dividing both sides by b gives

klk2 = 1.

Now since a and b are both integers k, and k2 are both positive integers also. But the
only product of two positive integers that equals 1 is 1 * 1. Thus

ki = k2 = 1

and so

a=k 2 b= I b =b.

[This is what was to be shown.]
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b. R2 is not antisymmetric.

Counterexample:

Leta = 2 and b = -2. Then a lb [since-2 = (-1) * 2] and b I a [since 2 = (-1)(-2)].
Hence a R 2 band b R2 a but a b.

Example 10.5.2 illustrates the fact that a relation may be antisymmetric on a subset of
a set but not antisymmetric on the set itself.

Partial Order Relations
A relation that is reflexive, antisymmetric, and transitive is called a partial order.

I. ''

Let R be a binary relation defined on a set A. R is a partial order relation if, and
only if, R is reflexive, antisymmetric, and transitive.

Two fundamental partial order relations are the "less than or equal to" relation on a
set of real numbers and the "subset" relation on a set of sets. These can be thought of as
models, or paradigms, for general partial order relations.

Example 10.5.3 The "Subset" Relation

Let v be any collection of sets and define the "subset" relation, C, on ,S as follows: For
all U, V E X,

U C V X for all x, if x E U then x E V.

By an argument almost identical to that of the solution for exercise 26 of Section 10.2, C
is reflexive and transitive. Finish the proof that C is a partial order relation by proving
that C is antisymmetric.

Solution For C to be antisymmetric means that for all sets U and V in 1 if U C V and
V C U then U = V. But this is true by definition of equality of sets.

Example 10.5.4 A "Divides" Relation on a Set of Positive Integers

Let I be the "divides" relation on a set A of positive integers. That is, for all a, b E A,

a I b X b -ka forsomeintegerk.

Prove that I is a partial order relation on A.

Solution

I is reflexive: [We must show thatfor all a C A, a I a.] Suppose a E A. Then a = I a,
so a I a by definition of divisibility.
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I is antisymmetric: [We must show thatfor all a, b E A, if a I b and b I a then a = b.] The
proof of this is virtually identical to that of Example 10.5.2(a).

I is transitive: To show transitivity means to show that for all a, b, c E A, if a I b and b I c
then a I c. But this was proved as Theorem 3.3.1.

Since I is reflexive, antisymmetric, and transitive, I is a partial order relation on A.
.

Example 10.5.5 The "Less Than or Equal to" Relation

Let S be a set of real numbers and define the "less than or equal to" relation, <, on S as
follows: For all real numbers x and y in S,

x < y X x < y orx = y.

Show that < is a partial order relation.

Solution

< is reflexive: For < to be reflexive means that x < x for all real numbers x in S. But
x < x means that x < x or x = x, and x = x is always true.

< is antisymmetric: For < to be antisymmetric means that for all real numbers x and y in
S, if x < y and y < x then x = y. This follows immediately from the definition of < and
the trichotomy property (see Appendix A, T16), which says that given any real numbers,
x and y, exactly one of the following holds: x < y or x = y or x > y.

< is transitive: For < to be transitive means that for all real numbers x, y, and z in S if
x < y and y < z then x < z. This follows from the definition of < and the transitivity
property of order (see Appendix A, T17), which says that given any real numbers x, y,
and z, if x < y and y < z then x < z.

Because < is reflexive, antisymmetric, and transitive, it is a partial order relation.
.

Because ofthe special paradigmatic role plaed by th <rt in th s of

parial orde eain, thesymbol •is Gofeusd to referto a gnraatiialo~rder
xithanl* oruletoxs"s

Lexicographic Order
To figure out which of two words comes first in an English dictionary, you compare their
letters one by one from left to right. If all letters have been the same to a certain point
and one word runs out of letters, that word comes first in the dictionary. For example,
play comes before playhouse. If all letters up to a certain point are the same and the next
letters differ, then the word whose next letter is located earlier in the alphabet comes first
in the dictionary. For instance, playhouse comes before playmate.

More generally, if A is any set with a partial order relation, then a dictionary or
lexicographic order can be defined on a set of strings over A as indicated in the following
theorem.
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The proof of Theorem 10.5.1 is technical but straightforward. It is left for the exercises.

I. ! au]

The partial order relation of Theorem 10.51 is called the lgrahic o r S
thatcorresponds to the partial order R on A.

Example 10.5.6 A Lexicographic Order

Let A = {x, y} and let R be the following partial order relation on A:

R = {(x, x), (x, y), (y, y)}.

Let S be the set of all strings over A, and denote by -< the lexicographic order for S that
corresponds to R.

a. Is x <xx? x <xy? xx < xxx? yxy < yxyxxx?

b. Is x y? xx < xyx? xxxy -< xy? yxyxxyy -< yxyxy?

c. Is < x? e -< xy? E < yyxy?

Solution

a. Yes in all cases, by property (1) of the definition of -<.

b. Yes in all cases, by property (2) of the definition of <.

c. Yes in all cases, by property (3) of the definition of <. U

Hasse Diagrams
Let A = { 1, 2, 3, 9, 18} and consider the "divides" relation on A: For all a, b E A,

a I b X b = ka for some integer k.

Theorem 10.5.1

Let A be a set with a partial order relation R, and let S be a set of strings over A.
Define a relation -< on S as follows:

For any positive integers m and n andaqa2 - : am and bjb 2.. .-b, in 5,

1. If m < n and ai = b, for all i = I,2.m, then

aia2 .. am bib2 *bn.

2. If for some integer k with k < m, k < n, and k >1,0A, oall i-1,
2,. k-1,andakRbkbut ak# bk, then

a1 a2 .am-<bib 2 ... Zbn.

3. If is the null string and s is any string in S, then e < s.

If no strings are related other than by these three conditions, th is aartiod
relation.
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The directed graph of this relation has the following appearance:

Note that there is a loop at every vertex, all other arrows point in the same direction
(upward), and any time there is an arrow from one point to a second and from the second
point to a third, there is an arrow from the first point to the third. Given any partial order
relation defined on a finite set, it is possible to draw the directed graph in such a way
that all of these properties are satisfied. This makes it possible to associate a somewhat
simpler graph, called a Hasse diagram (after Helmut Hasse, a twentieth-century German
number theorist), with a partial order relation defined on a finite set. To obtain a Hasse
diagram, proceed as follows:

Start with a directed graph of the relation in which all arrows point upward. Then
eliminate

1. the loops at all the vertices,

2. all arrows whose existence is implied by the transitive property,

3. the direction indicators on the arrows.

For the relation given above, the Hasse diagram is as follows:

18

'9

Example 10.5.7 Constructing a Hasse Diagram

Consider the "subset" relation, C, on the set `Q({a, b, cl). That is, for all sets U and V in
V V itah b, cn),

|U C V X* Vx, If x E U then x E V.l

Construct the Hasse diagram for this relation.



638 Chapter 10 Relations

Solution Draw the directed graph of the relation in such a way that all arrows except loops
point upward.

Then strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse
diagram.

(a, b}

{a}

l b, c}

l{c

.

To recover the directed graph of a relation from the Hasse diagram, just reverse the
instructions given above, using the knowledge that the original directed graph was sketched
so that all arrows pointed upward:

1. Reinsert the direction markers on the arrows making all arrows point upward.

2. Add loops at each vertex.

3. For each sequence of arrows from one point to a second and from that second point to
a third, add an arrow from the first point to the third.
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Example 10.5.8 Obtaining the Directed Graph of a Partial Order Relation
from the Hasse Diagram of the Relation

A partial order relation R has the following Hasse diagram. Find the directed graph of R.

a

Solution

.

Partially and Totally Ordered Sets
Given any two real numbers x and y, either x < y or y < x. In a situation like this, the
elements x and y are said to be comparable. On the other hand, given two subsets A
and B of {a, b, c}, it may be the case that neither A C B nor B C A. For instance, let
A = la, b} and B - {b, c}. Then A Z B and B t A. In such a case, A and B are said to
be noncomparable.

Suppose R is a partial order relation on a set A. Elements a and b of A are said to
be comparable if, and only if, either a R b or b R a. Otherwise, a and b are called
noncom parable.

When all the elements of a partial order relation are comparable, the relation is called
a total order.

If R is a partial order relation on a set A, and for any two elements a and b in A either
a R b or b R a, then R is a total order relation on A.
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Both the "less than or equal to" relation on sets of real numbers and the lexicographic
order of the set of words in a dictionary are total order relations. Note that the Hasse
diagram for a total order relation can be drawn as a single vertical "chain."

Many important partial order relations have elements that are not comparable and are,
therefore, not total order relations. For instance, the subset relation on S9l'({a, b, c}) is not
a total order relation because, as shown above, the subsets {a, b4 and {a, c} of {a, b, c}
are not comparable. In addition, a "divides" relation is not a total order relation unless the
elements are all powers of a single integer. (See exercise 21 at the end of this section.)

A set A is called a partially ordered set (or poset) with respect to a relation -< if,
and only if, -< is a partial order relation on A. For instance, the set of real numbers is a
partially ordered set with respect to the "less than or equal to" relation <, and a set of sets
is partially ordered with respect to the "subset" relation C. It is entirely straightforward
to show that any subset of a partially ordered set is partially ordered. (See exercise 35 at
the end of this section.) This, of course, assumes the "same definition" for the relation on
the subset as for the set as a whole. A set A is called a totally ordered set with respect to
a relation -< if, and only if, A is partially ordered with respect to -< and -< is a total order.

A set that is partially ordered but not totally ordered may have totally ordered subsets.
Such subsets are called chains.

Let A be a set that is partially ordered with respect to a relation -<. A subset B of A
is called a chain if, and only if, each pair of elements in B is comparable. In other
words, a -< b or b -< a for all a and b in A. The length of a chain is one less than
the number of elements in the chain.

Observe that if B is a chain in A, then B is a totally ordered set with respect to the
"restriction" of < to B. (See exercise 35 at the end of this section.)

Example 10.5.9 A Chain of Subsets

The set -9({a, b, c}) is partially ordered with respect to the subset relation. Find a chain
of length 3 in 6a({a, b, c)).

Solution Since 0 C {a} C {a, b, } C {a, b, c}, the set

S = {0, {a}, {a, b}, {a, b, cJJ

is a chain of length 3 in -J({a, b, c}). U

In exercise 39 at the end of this section, you are asked to show that a set that is partially
ordered with respect to a relation -< is totally ordered with respect to < if, and only if, it
is a chain.

A maximal element in a partially ordered set is an element that is greater than or equal
to every element to which it is comparable. (There may be many elements to which it is
not comparable.) A greatest element in a partially ordered set is an element that is greater
than or equal to every element in the set (so it is comparable to every element in the set).
Minimal and least elements are defined similarly.
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S. at l

Le e b atalyodrdwith respect to a relation -a<.

1.Aneleenta inAmximal ntof A if, and ol if, for all b in
A.000 A,;either b -< a or b and Va are not cmarab~le.00 0 a:;;00:0; ;; 0 000 ;; 0

2. 0:0An element ami ;Ais cale ;a greatest element of 0A if, and only i f, Vfor all b in
A, b :: a.

3. An element a in A is called a minimal element of A if, b in A,
either a -< b or b and aare not comparable.

4. An element a in Ais fA if, and only for all b in
A,at~b.,,

A greatest element is maximal, but a maximal element need not be a greatest element.
However, every finite subset of a totally ordered set has both a least element and a greatest
element. (See exercise 40 at the end of the section.) Similarly, a least element is minimal,
but a minimal element need not be a least element. Furthermore, a set that is partially
ordered with respect to a relation can have at most one greatest element and one least
element (see exercise 42 at the end of the section), but it may have more than one maximal
or minimal element. The next example illustrates some of these facts.

Example 10.5.10 Maximal, Minimal, Greatest, and Least Elements

Let A = {a, b, c, d, e, f, g, h, i} have the partial ordering < defined by the following
Hasse diagram. Find all maximal, minimal, greatest, and least elements of A.

R

h

Solution There is just one maximal element, g, which is also the greatest element. The
minimal elements are c, d, and i, and there is no least element. U

Topological Sorting
Is it possible to input the sets of 9({a, b, c}) into a computer in a way that is compatible
with the subset relation C in the sense that if set U is a subset of set V, then U is input
before V? The answer, as it turns out, is yes. For instance, the following input order
satisfies the given condition:

0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

Another input order that satisfies the condition is

0, {a}, {bl, {a, b}, {c}, {b, c}, {a, cl, {a, b, cl.
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Given partial order relations -< and -<' on a set A, -' is compatible with -< if, and
only if, for all a and b in A, if a -< b then a -<' b.

Given an arbitrary partial order relation -< on a set A, is there a total order -<' on A
that is compatible with -<? If the set on which the partial order is defined is finite, then the
answer is yes. A total order that is compatible with a given order is called a topological
sorting.

I !. I , i

Given partial order relations -< and -<' on a set A, <' is a topological sorting for <

if, and only if, -<' is a total order that is compatible with -<.

The construction of a topological sorting for a general finite partially ordered set is
based on the fact that any partially ordered set that is finite and nonempty has a minimal
element. (See exercise 41 at the end of the section.) To create a total order for a partially
ordered set, simply pick any minimal element and make it number one. Then consider
the set obtained when this element is removed. Since the new set is a subset of a partially
ordered set, it is partially ordered. If it is empty, stop the process. If not, pick a minimal
element from it and call that element number two. Then consider the set obtained when
this element also is removed. If this set is empty, stop the process. If not, pick a minimal
element and call it number three. Continue in this way until all the elements of the set
have been used up.

Here is a somewhat more formal version of the algorithm:

Constructing a Topological Sorting

Let -< be a partial order relation on a nonempty finite set A. To construct a topological
sorting,

1. Pick any minimal element x in A. [Such an element exists since A is nonempty.]

2. Set A' := A-{x).

3. Repeat steps a-c while A' * 0.
a. Pick any minimal element y in A'.
b. Define x -<'y.
c. SetA':=A'-{y andx:=y.
[Completion of steps 1-3 of this algorithm gives enough information to construct
the Hasse diagram for the total ordering <'. We have already shown how to use
the Hasse diagram to obtain a complete directed graph for a relation.]
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Example 10.5.11 A Topological Sorting

Consider the set A = {2, 3, 4, 6,18, 24} ordered by the "divides" relation 1. The Hasse
diagram of this relation is the following:

The ordinary "less than or equal to" relation < on this set is a topological sorting for it
since for positive integers a and b, if a I b then a < b. Find another topological sorting
for this set.

Solution The set has two minimal elements: 2 and 3. Either one may be chosen; say you
pick 3. The beginning of the total order is

total order: 3.

Set A' = A - (3}. You can indicate this by removing 3 from the Hasse diagram as shown
below.

Next choose minimal element from A' -{3}. Only 2 is minimal, so you must pick it. The
total order thus far is

total order: 3 -< 2.

Set A' = (A - {31) - {2} = A - {3, 21. You can indicate this by removing 2 from the
Hasse diagram, as is shown below.

24 18

4 6

Choose a minimal element from A' - (3, 21. Again you have two choices: 4 and 6. Say
you pick 6. The total order for the elements chosen thus far is

total order: 3 -< 2 -< 6.

You continue in this way until every element of A has been picked. One possible sequence
of choices gives

total order: 3 -< 2 -< 6 -< 18 -< 4 -< 24.

You can verify that this order is compatible with the "divides" partial order by checking
that for each pair of elements a and b in A such that a I b, then a -< b. Note that it is not
the case that if a -< b then a I b. U
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An Application
To return to the example that introduced this section, note that the following defines
a partial order relation on the set of courses required for a university degree: For all
required courses x and y,

x -< y Xp x = y or x is a prerequisite for y

If the Hasse diagram for the relation is drawn, then the questions raised at the beginning
of this section can be answered easily. For instance, consider the Hasse diagram for the
requirements at a particular university, which is shown in Figure 10.5.1.

CS 350

MA 140

CS 200

Figure 10.5.1

The minimum number of school terms needed to complete the requirements is the
length of the longest chain, which is 7 (150, 155, 225, 300, 340, 360, 390, for example).
The maximum number of courses that could be taken in the same term (assuming the
university allows it) is the maximum number of noncomparable courses, which is 6 (350,
360, 345, 301, 230, 200, for example). A part-time student could take the courses in a
sequence determined by constructing a topological sorting for the set. (One such sorting
is 140, 150, 141, 155, 200, 225, 230, 300, 250, 301, 340, 345, 350, 360, 390. There are
many others.)

PERT and CPM
Two important and widely used applications of partial order relations are PERT (Program
Evaluation and Review Technique) and CPM (Critical Path Method). These techniques
came into being in the 1950s as planners came to grips with the complexities of scheduling
the individual activities needed to complete very large projects, and although they are very
similar, their developments were independent. PERT was developed by the U.S. Navy to
help organize the construction of the Polaris submarine, and CPM was developed by the
E. I. Du Pont de Nemours company for scheduling chemical plant maintenance. Here is
a somewhat simplified example of the way the techniques work.

Example 10.5.12 A Job Scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken
down into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.
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3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body.

Certain of these tasks can be carried out at the same time, whereas some cannot be started
until other tasks are finished. Table 10.5.1 summarizes the order in which tasks can be
performed and the time required to perform each task.

Table 10.5.1

Let T be the set of all tasks, and consider the partial order relation -< defined on T as
follows: For all tasks x and y in T,

x -< y X~ x = y orx precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and
CPM analysis), it has the appearance shown below.

What is the minimum time required to assemble a car? You can determine this by
working from left to right across the diagram, noting for each task (say, just above the
box representing that task) the minimum time needed to complete that task starting from
the beginning of the assembly process. For instance, you can put a 7 above the box for
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task 1 because task 1 requires 7 hours. Task 2 requires completion of task 1 (7 hours)
plus 6 hours for itself, so the minimum time required to complete task 2, starting at the
beginning of the assembly process, is 7 + 6 = 13 hours. You can put a 13 above the box
for task 2. Similarly, you can put a 10 above the box for task 3 because 7 + 3 = 10. Now
consider what number you should write above the box for task 5. The minimum times to
complete tasks 2 and 3, starting from the beginning of the assembly process, are 13 and
10 hours respectively. Since both tasks must be completed before task 5 can be started,
the minimum time to complete task 5, starting from the beginning, is the time needed for
task 5 itself (3 hours) plus the maximum of the times to complete tasks 2 and 3 (13 hours),
and this equals 3 + 13 = 16 hours. Thus you should place the number 16 above the box
for task 5. The same reasoning leads you to place a 14 above the box for task 7. Similarly,
you can place a 19 above the box for task 4, a 20 above the box for task 6, a 21 above the
box for task 8, and a 26 above the box for task 9, as shown below.

19

This analysis shows that at least 26 hours are required to complete task 9 starting from the
beginning of the assembly process. When task 9 is finished, the assembly is complete, so
26 hours is the minimum time needed to accomplish the whole process.

Note that the minimum time required to complete tasks 1, 2, 4, 8, and 9 in sequence is
exactly 26 hours. This means that a delay in performing any one of these tasks causes a
delay in the total time required for assembly of the car. For this reason, the path through
tasks 1, 2, 4, 8, and 9 is called a critical path. M

Exercise Set 10.5
I. Each of the following is a relation on (0, 1, 2, 31. Draw di-

rected graphs for each relation, and indicate which relations
are antisymmetric.
a. RI = 1(0, 0), (0, 2), (1, 0), (1, 3), (2, 2), (3, 0), (3, 1)1
b. R2 = ((0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (2, 2), (3, 2)1
c. R3 = {(0, 0), (0, 3), (1, 0), (1, 3), (2, 2), (3, 3), (3, 2)1
d. R4 = {(O. 0), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (3, 2),

(3, 0)}

2. Let P be the set of all people in the world and define a
relation R on P as follows: For all x, y E P,

x R y X x is no older then y.

Is R antisymmetric? Prove or give a counterexample.

3. Let S be the set of all strings of a 's and b's. Define a relation
R on S as follows: For all t E S,

where 1(x) denotes the length of a string x. Is R antisym-
metric? Prove or give a counterexample.

4. Let R be the "less than" relation on the set R of all real
numbers: For all x, y E R,

xRy < x<y.

Is R antisymmetric? Prove or give a counterexample.

5. Let R be the set of all real numbers and define a relation R
on R x R as follows: For all (a, b) and (c, d) in R x R.

(a, b) R (c, d) X* either a < c or both a = c
andb < d.

Is R a partial order relation? Prove or give a counterex-
ample.

s R t �* 1(s) < I (t),
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6. Let P be the set of all people who have ever lived and define
a relation R on P as follows: For all r, s E P.

r R s <* r is an ancestor of s or r = s.

Is R a partial order relation? Prove or give a counterex-
ample.

7. Define a relation R on the set Z of all integers as follows:
For all m, n E Z,

m R n X every prime factor of m
is a prime factor of n.

Is R a partial order relation? Prove or give a counterex-
ample.

8. Define a relation R on the set Z of all integers as follows:
For allm,n E Z,

m R n '} m + n is even.

Is R a partial order relation? Prove or give a counterex-
ample.

9. Define a relation R on the set of all real numbers R as fol-
lows: For all x, y e R,

xRy X x2 <y2.

Is R a partial order relation? Prove or give a counterex-
ample.

10. Suppose R and S are antisymmetric relations on a set A.
Must R U S also be antisymmetric? Explain.

11. Let A = {a, bI, and suppose A has the partial order rela-
tion R where R = {(a, a), (a, b), (b, b)}. Let S be the set
of all strings in a's and b's and let -< be the corresponding
lexicographic order on S. Indicate which of the following
statements are true, and for each true statement cite as a
reason part (1), (2), or (3) of the definition of lexicographic
order given in Theorem 10.5.1.
a. aab -< aaba b. bbab -< bba
c. e -< aba d. aba -< abb
e. bbab -< bbaa f. ababa -< ababaa
g. bbaba -< bbabb

12. Prove Theorem 10.5. 1.

13. Let A = {a, b}. Describe all partial order relations on A.

14. LetA = {a,b,c}.
a. Describe all partial order relations on A for which a is a

maximal element.
b. Describe all partial order relations on A for which a is a

minimal element.

H 15. Suppose a relation R on a set A is reflexive, symmetric, tran-
sitive, and antisymmetric. What can you conclude about R?
Prove your answer.

16. Consider the "divides" relation on each of the following
sets A. Draw the Hasse diagram for each relation.
a. A = {1,2,4,5,10,15,20}
b. A = {2,3,4,6,8,9, 12, 181

17. Consider the "subset" relation on J4(S) for each of the fol-
lowing sets S. Draw the Hasse diagram for each relation.
a. S ={0,1} b. S = {0, 1, 2}

18. Let S = (0, 1 } and consider the partial order relation R de-
fined on S x S as follows: For all ordered pairs (a, b) and
(c, d) in S x S,

(a,b) R (c,d) .X eithera < cora =candb <d,

where < denotes the usual "less than" and < denotes the
usual "less than or equal to" relation for real numbers. Draw
the Hasse diagram for R.

19. Let S = {0, I } and consider the partial order relation R de-
fined on S x S as follows: For all ordered pairs (a, b) and
(c, d) in S x 5,

(a,b)R(c,d) .* a<candb<d,

where < denotes the usual "less than or equal to" relation
for real numbers. Draw the Hasse diagram for R.

20. Let S = {0, 1} and consider the partial order relation R
defined on S x S x S as follows: For all ordered triples
(a, b, c) and (d, e, f) in S x S x S,

(a,b,c) R (d,e,f) * a < d,b < e, andc f.

where < denotes the usual "less than or equal to" relation
for real numbers. Draw the Hasse diagram for R.

21. Consider the "divides" relation defined on the set A =

{ 1, 2, 22, 23..., 2' ), where n is a nonnegative integer.
a. Prove that this relation is a total order relation on A.
b. Draw the Hasse diagram for this relation for n = 4.

In 22-29, find all greatest, least, maximal, and minimal elements
for the relations in each of the referenced exercises.

22. Exercise 16(a)

24. Exercise 17(a)

26. Exercise 18

28. Exercise 20

23. Exercise 16(b)

25. Exercise 17(b)

27. Exercise 19

29. Exercise 21

30. Each of the following sets is partially ordered with respect
to the "less than or equal to" relation, <S for real numbers.
In each case, determine whether the set has a greatest or
least element.
a. R b. {xERIO<x< 1)
c. {x eRIO<x < 1) d. {x eZIO<x < 101

31. Let A = {a, b, c, d), and let R be the relation

R I {(a, a), (b, b), (c, c), (d, d), (c, a), (a, d),

(c, d), (b, c), (b, d), (b, a)}.

Is R a total order on A? Justify your answer.

32. Let A = [a, b, c, d}, and let R be the relation

R= {(a,a),(b,b),(c,c),(d,d),(c,b),(a,d),

(b, a), (b, d), (c, d), (c, a)}.

Is R a total order on A? Justify your answer.
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33. Consider the set A = (12, 24, 48, 3, 91 ordered by the "di-
vides" relation. Is A totally ordered with respect to the
relation? Justify your answer.

34. How many total orderings are there on a set with n elements?
Explain your answer.

H 35. Suppose that R is a partial order relation on a set A and that
B is a subset of A. The restriction of R to B is defined as
follows:

The restriction of R to B

= ((x, y) I x E B, y E B, and (x, y) E R}.

In other words, two elements of B are related by the restric-
tion of R to B if, and only if, they are related by R. Prove
that the restriction of R to B is a partial order relation on B.
(In less formal language, this says that a subset of a partially
ordered set is partially ordered.)

36. The set fidw, x, y, zI) is partially ordered with respect
to the "subset" relation C. Find a chain of length 4 in
YQw, x, y, zi).

37. The set A = (2, 4, 3, 6, 12, 18, 241 is partially ordered with
respect to the "divides" relation. Find a chain of length 3
in A.

38. Find a chain of length 2 for the relation defined in exer-
cise 19.

39. Prove that a partially ordered set is totally ordered if, and
only if, it is a chain.

40. Suppose that A is a totally ordered set. Use mathematical
induction to prove that for any integer n > 1, every subset
of A with n elements has both a least element and a greatest
element.

41. Prove that a nonempty finite partially ordered set has
a. at least one minimal element,
b. at least one maximal element.

42. Prove that a finite partially ordered set has
a. at most one greatest element,
b. at most one least element.

43. Draw a Hasse diagram for a partially ordered set that has
two maximal elements and two minimal elements and is
such that each element is comparable to exactly two other
elements.

44. Draw a Hasse diagram for a partially ordered set that has
three maximal elements and three minimal elements and is
such that each element is either greater than or less than
exactly two other elements.

45. Use the algorithm given in the text to find a topological sort-
ing for the relation of exercise 16(a) that is different from
the "less than or equal to" relation <.

46. Use the algorithm given in the text to find a topological sort-
ing for the relation of exercise 16(b) that is different from
the "less than or equal to" relation <.

47. Use the algorithm given in the text to find a topological
sorting for the relation of exercise 19.

48. Use the algorithm given in the text to find a topological
sorting for the relation of exercise 20.

49. Use the algorithm given in the text to find a topological
sorting for the "subset" relation on Y({a, b, c, d}).

50. Refer to the prerequisite structure shown in Figure 10.5.1.
a. Find a list of six noncomparable courses that is different

from the list given in the text.
b. Find two topological sortings that are different from the

one given in the text.

51. A set S of jobs can be ordered by writing x < y to mean that
either x = y or x must be done before y, for all x and y in
S. The following is a Hasse diagram for this relation for a
particular set S of jobs.

3

7

10

8

2

'9

a. If one person is to perform all the jobs, one after another,
find an order in which the jobs can be done.

b. Suppose enough people are available to perform any
number of jobs simultaneously.
(i) If each job requires one day to perform, what is the

least number of days needed to perform all ten jobs?
(ii) What is the maximum number of jobs that can be

performed at the same time?

52. Suppose the tasks described in Example 10.5.12 require the
following performance times:

Task

2
3
4
5
6
7
8
9

Time Needed to
Perform Task

9 hours
7 hours
4 hours
5 hours
7 hours
3 hours
2 hours
4 hours
6 hours

a. What is the minimum time required to assemble a car?
b. Find a critical path for the assembly process.
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GRAPHS AND TREES

Graphs and trees have already appeared in this book as convenient visualizations to use
in a variety of situations. For instance, a possibility tree shows all possible outcomes of a
multistep operation with a finite number of outcomes for each step, the directed graph of
a relation on a set shows which elements of the set are related to which, a Hasse diagram
illustrates the relations among elements in a partially ordered set, and a PERT diagram
shows which tasks must precede which in executing a project.

In this chapter we present some of the mathematics of graphs and trees, discussing
concepts such as the degree of a vertex, connectedness, Euler and Hamiltonian circuits,
representation of graphs by matrices, isomorphisms of graphs, the relation between the
number of vertices and the number of edges of a tree, rooted trees, and the spanning tree of
a graph. Applications include uses of graphs and trees in the study of artificial intelligence,
chemistry, scheduling problems, and transportation systems.

11.1 Graphs: An Introduction
The whole of mathematics consists in the organization of a series of aids to the
imagination in the process of reasoning. -Alfred North Whitehead, 1861-1947

Imagine an organization that has acquired six different computers in recent years. In an
effort to upgrade computer services, the organization proposes to connect the computers
to form an integrated system. It is not necessary that every computer be linked with
every other computer, however. In fact, analysis shows that the following connections are
optimal:

Connect computer A with B, C, D, and E;

connect computer B with A and C;

connect computer C with A, B, D, and E;

connect computer D with A and C;

connect computer E with A, C, and F;

connect computer F with E.

649
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This information can be conveniently displayed in the diagram shown below.

B

A

A drawing such as this is an illustration of a graph. The dots are called vertices (plural of
vertex) and the line segments joining vertices are called edges. As you can see from the
drawing, it is possible for two edges to cross at a point that is not a vertex. Note also that
the type of graph described here is quite different from the "graph of an equation" or the
.,graph of a function."

In general, a graph consists of a set of vertices and a set of edges connecting various
vertices. The edges may be straight or curved and should either connect one vertex to
another or a vertex to itself, as shown below.

Parallel edges Isolated vertex

.l5

57

le6

;1)6

Loop

In this drawing, the vertices have been labeled with v's and the edges with e's. When an
edge connects a vertex to itself (as e5 does), it is called a loop. When two edges connect
the same pair of vertices (as e2 and e3 do), they are said to be parallel. It is quite possible
for a vertex to be unconnected by an edge to any other vertex in the graph (as V5 is), and
in that case the vertex is said to be isolated. The formal definition of a graph follows.

Ok i
A graph G consists of two finite sets: a set V(G) of vertices and a set E(G) of
edges, where each edge is associated with a set consisting of either one or two
vertices called its endpoints. The correspondence from edges to endpoints is called
the edge-endpoint function. An edge with just one endpoint is called a loop, and
two distinct edges with the same set of endpoints are said to be parallel. An edge is
said to connect its endpoints; two vertices that are connected by an edge are called
adjacent; and a vertex that is an endpoint of a loop is said to be adjacent to itself.
An edge is said to be incident on each of its endpoints, and two edges incident on
the same endpoint are called adjacent. A vertex on which no edges are incident is
called isolated. A graph with no vertices is called empty, and one with at least one
vertex is called nonempty.

e5
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Graphs have pictorial representations in which the vertices are represented by dots
and the edges by line segments. A given pictorial representation uniquely determines a
graph.

Example 11.1.1 Terminology

Consider the following graph:

e7

3 V4 le 5

V5

K6

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to el, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = (vI, V2, V3, V4, V5 , V6J
edge set = {e,, e2, e3, e4, e5, e6, e71
edge-endpoint function:

Edge Endpoints

el {vI, v2 )

e2 fV1 , V31

e3  {VI, V3A

e4 I{V2, V31

e5  {V 5, V6}

e6 {V5s}

e7 { V6)

Note that the isolated vertex V4 does not appear in this table. Although each edge must
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. el, e2, and e3 are incident on vI.
v2 and V3 are adjacent to vI.
e2, e3, and e4 are adjacent to el.
e6 and e7 are loops.
e2 and e3 are parallel.
V5 and V6 are adjacent to themselves.
V4 is an isolated vertex. U
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As noted earlier, a given pictorial representation uniquely determines a graph. How-
ever, a given graph may have more than one pictorial representation. Such things as the
lengths or curvatures of the edges and the relative position of the vertices on the page may
vary from one pictorial representation to another.

Example 11.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {vI, v2, V3, V4}

edge set = {el, e2 , e3, e4}

edge-endpoint function:

Edge Endpoints

(VI, VA}

e2 V{2, V4)

e3 I V2, V4)

e4 I I{V3

Both drawings (a) and (b) shown below are pictorial representations of this graph.

'V3

V

V4

e2 e3

V2

VI

(a) (b) .

Example 11.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 11.1. 1. Label vertices and edges in such a
way that both drawings represent the same graph.

(a) (b)

Figure 11.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 11.1.1 (a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (V3),
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and so forth, returning finally to the top vertex va. Call the first edge el, the second e2,
and so forth, as shown below.

VI

V4

Now imagine picking up the piece of string, together with its labels, and repositioning it
as follows:

V5

This is the same as Figure 11.1.1(b), so both drawings are representations of the graph
with vertex set {v1, V2 , V3 , V4 , V5 }, edge set {ei, e2, e3 , e4, es}, and edge-endpoint function
as follows:

Edge

el

e2

e3

e4

Endpoints

{ 0V, V2 1

tV 2, V3}

[V 3 , V4)

0V4, V5)

{V5, VO) U

In Chapter IO we discussed the directed graph of a binary relation on a set. The general
definition of directed graph is similar to the definition of graph, except that one associates
an ordered pair of vertices with each edge instead of a set of vertices. Thus each edge of
a directed graph can be drawn as an arrow going from the first vertex to the second vertex
of the ordered pair.

Adp cnsits of two fiite s:a st V(G) of vertices
E s asso dw ithan red pair of

vetcsclldid ee soateve rtices,

then e is said t o be the (i r ct evd) edge from0 vf to0 w

Note that each directed graph has an associated ordinary (undirected) graph, which is
obtained by ignoring the directions of the edges.

V3
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Examples of Graphs
You have already seen a number of examples of directed and undirected graphs in this
book. Flowcharts, possibility trees, Hasse diagrams, and PERT diagrams can all be viewed
as graphs if additional structure is stripped away. The following examples illustrate some
other situations in which graphs are used.

Example 11.1.4 Using a Graph to Represent a Communication System

Computer networks, the Internet, and telephone, electric power, gas pipeline, and air
transport systems can all be represented by graphs. Questions that arise in the design of
such systems involve choosing connecting edges to minimize cost, optimize a certain type
of service, and so forth. A typical communication system is shown below.

Boston

U

Example 11.1.5 Using a Graph to Represent Knowledge

In many applications of artifical intelligence, a knowledge base of information is collected
and represented inside a computer. Because of the way the knowledge is represented and
because of the properties that govern the artificial intelligence program, the computer is
not limited to retrieving data in the same form as it was entered; it can also derive new
facts from the knowledge base by using certain built-in rules of inference. For example,
from the knowledge that the Los Angeles Times is a big-city daily and that a big-city daily
contains national news, an artifical intelligence program could infer that the Los Angeles
Times contains national news. The directed graph shown in Figure 11.1.2 is a pictorial
representation for a simplified knowledge base about periodical publications.

According to this knowledge base, what paper finish does the New York Times use?

+ Printed
writing

I Sports
Illustrated

Sports
news

Times

Figure 11.1.2
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Solution The arrow going from New York Times to big-city daily (labeled "instance-of")
shows that the New York Times is a big-city daily. The arrow going from big-city daily
to newspaper (labeled "is-a") shows that a big-city daily is a newspaper. The arrow
going from newspaper to matte (labeled "paper-finish") indicates that the paper finish on
a newspaper is matte. Hence it can be inferred that the paper finish on the New York Times
is matte. U

Example 11.1.6 Using a Graph to Solve a Problem: Vegetarians and Cannibals

The following is a variation of a famous puzzle often used as an example in the study of
artificial intelligence. It concerns an island on which all the people are of one of two types,
either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on the left
bank of a river. With them is a boat that can hold a maximum of two people. The aim of
the puzzle is to find a way to transport all the vegetarians and cannibals to the right bank of
the river. What makes this difficult is that at no time can the number of cannibals on either
bank outnumber the number of vegetarians. Otherwise, disaster befalls the vegetarians!

Solution A systematic way to approach this problem is to introduce a notation that can
indicate all possible arrangements of vegetarians, cannibals, and the boat on the banks of
the river. For example, you could write (vvc/Bc) to indicate that there are two vegetarians
and one cannibal on the left bank and one cannibal and the boat on the right bank. Then
(vvccB/) would indicate the initial position in which both vegetarians, both cannibals, and
the boat are on the left bank of the river. The aim of the puzzle is to figure out a sequence
of moves to reach the position (/Bvvcc) in which both vegetarians, both cannibals, and
the boat are on the right bank of the river.

Construct a graph whose vertices are the various arrangements that can be reached in
a sequence of legal moves starting from the initial position. Connect vertex x to vertex
y if it is possible to reach vertex y in one legal move from vertex x. For instance,
from the initial position there are four legal moves: one vegetarian and one cannibal
can take the boat to the right bank; two cannibals can take the boat to the right bank;
one cannibal can take the boat to the right bank; or two vegetarians can take the boat
to the right bank. You can show these by drawing edges connecting vertex (vvccB/) to
vertices (vc/Bvc), (vv/Bcc), (vvcBc), and (cc/Bvv). (It might seem natural to draw
directed edges rather than undirected edges from one vertex to another. The rationale
for drawing undirected edges is that each legal move is reversible.) From the position
(vc/Bvc), the only legal moves are to go back to (vvccB/) or to go to (vvcB/c). You
can also show these by drawing in edges. Continue this process until finally you reach
(/Bvvcc). From Figure 11.1.3 it is apparent that one successful sequence of moves is
(vvccB/) -÷ (vc/Bvc) -+ (vvcB/c) -* (c/Bvvc) -* (ccB/vv) -* (/Bvvcc).

Figure 11.1.3 .
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Special Graphs
One important class of graphs consists of those that do not have any loops or parallel
edges. Such graphs are called simple. In a simple graph, no two edges share the same set
of endpoints, so specifying two endpoints is sufficient to determine an edge.

. . I ] I F1 *! I

A simple graph is a graph that does not have any loops or parallel edges. In a simple
graph, an edge with endpoints v and w is denoted {v, w}.

Example 11.1.7 A Simple Graph

Draw all simple graphs with the four vertices {u, v, w, x} and two edges, one of which
is {u, v}.

Solution Each possible edge of a simple graph corresponds to a subset of two vertices. Given
four vertices, there are (2) = 6 such subsets in all: {u, v}, {u, w}, {u, x}, {v, wl, {v, x),
and tIw, x}. Now one edge of the graph is specified to be {u, v}, so any of the remaining
five from this list can be chosen to be the second edge. Thus the possibilities are as follows:

U V U V U V U V U - V

W *X We X W . x We X W @-.X

Another important class of graphs consists of those that are "complete" in the sense
that all pairs of vertices are connected by edges.

!. II

Let n be a positive integer. A complete graph on n vertices, denoted K", is a simple
graph with n vertices vj, v2, . . ., Vn whose set of edges contains exactly one edge for
each pair of distinct vertices.*

Example 11.1.8 Complete Graphs on n Vertices: K1, K2, K3, K4, K5

The complete graphs K1, K2 , K3, K4, and K 5 can be drawn as follows:

V3

V 2

* VI . *V2  VI) V3  V X V2 v 2 9 5 V 4

K, K2  K3  K4  K5

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected by exactly one edge to each vertex in the other
subset, but not to any vertices in its own subset. Such a graph is called complete bipartite.

*The K stands for the German word komplett, which means "complete."
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ei. mmI

LteA complete bip artitt graph on (mi, n) vertices,
~dentedmnis ga simple grawihthverticesv 1V, V2 -., v. and wI, W2,.., wn that

t0satisfies::the f llowin prpeties:0:;0 0

:Forall i, k =, 2, . . ,m and for all j, I = 1, 2, ... , n,

1. There is an edge from each vertex v, to each vertex wj.

2. There is not an edge from any vertex vU to any other vertex Vk.

3. There is not an edge from any vertex wj to any other vertex wl.

Example 11.1.9 Complete Bipartite Graphs: K3,2 and K3,3

The bipartite graphs K3,2 and K3,3 are illustrated below.

WI

W2

w3

K 3,2 K3 ,3 .

A graph His said to be a swbgraph of a graph G if, and only if, every vertex in H
i:s also a vertexin Gevery edge in H is also an edge in G, and every edge in H has

0tthe same endpints : as 0000000 in000 G.:\:f~ 0:f:0:

Example 11.1.10 Subgraphs

List all nonempty subgraphs of the graph G with vertex set {vI, v2 ) and edge set {el, e2, e3},
where the endpoints of el are v, and V2, the endpoints of e2 are v, and v2 , and e3 is a loop
at v,.

Solution G can be drawn as shown below.

VI

V 2

There are 11 nonempty subgraphs of G, which can be grouped according to those that do
not have any edges, those that have one edge, those that have two edges, and those that
have three edges. The 11 nonempty subgraphs are shown in Figure 11. 1.4.

,,,
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2 3

7 8 9

4 5

It

6

Figure 11.1.4

The Concept of Degree
The degree of a vertex is the number of edges that "stick out of" the vertex. We will show
that the sum of the degrees of all the vertices in a graph is twice the number of edges of
the graph.

'. !. I !

LetGeagrah d aed eg v, denoted degv, e l the
nubeoegshaaeini o vw an ed that is a loop counted twice.

Thetotaldeg eofisthesumofthedegree sofallthe vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

egree of this
O equals 5.

Example 11.1.11 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.

vI

V2

el e 2

V3

V2 V2 V2 V2

.

I

V2 V2 V2 V2
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Solution deg(vj) = 0 since no edge is incident on v1 (vI is isolated).

deg(v2) = 2 since both el and e2 are incident on v2.

deg(v3) = 4 since el and e2 are incident on v3 and the loop e3 is also
incident on V3 (and contributes 2 to the degree of V3 ).

total degree of G = deg(v1 ) + deg(v2) + deg(v3 ) = - + 2 + 4 = 6. U

Note that the total degree of the graph G of Example 11.1. 11, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes hands with various other people. So each person participates in a certain number
of handshakes-perhaps many, perhaps none-but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.

the total degree of G = 2(the number of edges of G).

Theorem 11.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice
the number of edges of G. Specifically, if the vertices of G are vl, v2, . v,, where
n is a nonnegative integer, then

the total degree of G = deg(vl) + deg(v2) + *- + deg(v')

= 2(the number of edges of G).

Proof:

Let G be a particular but arbitrarily chosen graph. If G does not have any vertices,
than it does not have any edges, and so its total degree, which is 0, is twice the number
of its edges, which is also 0. If G has n vertices VI, V2 ...... V,n and m edges, where
n is a positive integer and m is a nonnegative integer, we claim that each edge of G
contributes 2 to the total degree of G. For suppose e is an arbitrarily chosen edge
with endpoints vi and vj. This edge contributes I to the degree of vi and 1 to the
degree vj. As shown below, this is true even if i = j, because an edge that is a loop
is counted twice in computing the degree of the vertex on which it is incident.

, I

eCl

i~j i=j

Therefore, e contributes 2 to the total degree of G. Since e was arbitrarily chosen,
this shows that each edge of G contributes 2 to the total degree of G. Thus



660 Chapter 11 Graphs and Trees

The following corollary is an immediate consequence of Theorem 1 .1 .1.

Corollary 11.1.2

The total degree of a graph is even.

Proof:

Since the total degree of G equals 2 times the number of edges, which is an integer,
the total degree of G is even.

Example 11.1.12 Determining Whether Certain Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A graph with four vertices of degrees 1, 1, 2, and 3

b. A graph with four vertices of degrees 1, 1, 3, and 3

c. A simple graph with four vertices of degrees 1, 1, 3, and 3

Solution

a. No such graph is possible. By Corollary 11.1.2, the total degree of a graph is even.
But a graph with four vertices of degrees 1, 1, 2, and 3 would have a total degree of
I + I + 2 + 3 = 7, which is odd.

b. Let G be any of the graphs shown below.

a b a - b

Cd c

a b a b

d c

In each case, no matter how the edges are labeled, deg(a) = 1, deg(b) = I, deg(c) = 3,
and deg(d) = 3.

c. There is no simple graph with four vertices of degrees 1, 1, 3, and 3.

Proof (by contradiction):

Suppose there were a simple graph G with four vertices of degrees 1, 1, 3, and 3. Call a
and b the vertices of degree 1, and call c and d the vertices of degree 3. Since deg(c) = 3
and G does not have any loops or parallel edges (because it is simple), there must be edges
that connect c to a, b, and d.

a b

d c

By the same reasoning, there must be edges connecting d to a, b and c.

a b
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But then deg(a) > 2 and deg(b) > 2, which contradicts the supposition that these vertices
have degree 1. Hence the supposition is false, and consequenlty there is no simple graph
with four vertices of degrees 1, 1, 3, and 3. U

Example 11.1.13 Application to an Acquaintance Graph

Is it possible in a group of nine people for each to be friends with exactly five others?

Solution The answer is no. Imagine constructing an "acquaintance graph" in which each
of the nine people represented by a vertex and two vertices are joined by an edge if, and
only if, the people they represent are friends. Suppose each of the people were friends
with exactly five others. Then the degree of each of the nine vertices of the graph would
be five, and so the total degree of the graph would be 45. But this contradicts Corollary
11. 1.2, which says that the total degree of a graph is even. This contradiction shows that
the supposition is false, and hence it is impossible for each person in a group of nine
people to be friends with exactly five others. U

The following proposition is easily deduced from Corollary 11.1.2 using properties of
even and odd integers.

Proposition 11.1.3

In any graph there are an even number of vertices of odd degree.

Proof:

Suppose G is any graph, and suppose G has n vertices of odd degree and m vertices
of even degree, where n and m are nonnegative integers. [We must show that n is
even. ] If n is 0, then, since 0 is even, G has an even number of vertices of odd degree.
So suppose that n > 1. Let E be the sum of the degrees of all the vertices of even
degree, 0 the sum of the degrees of all the vertices of odd degree, and T the total
degree of G. If U , u2, . . .U, u are the vertices of even degree and vi, V2 v, v, are
the vertices of odd degree, then

E = deg(u1) + deg(u 2 ) + * + deg(um),

0 = deg(vl) + deg(v2 ) + * -+ deg(v,), and

T = deg(ul) + -* + deg(u,,,) + deg(v1 ) + * + deg(v,,) = E + 0.

Now T, the total degree of G, is an even integer by Corollary 11.1.2. Also E is
even since either E is zero, which is even, or E is a sum of the numbers deg(ui), each
of which is even. But

T E + 0,

and therefore

O T -E.

Hence 0 is a difference of two even integers, and so 0 is even.
By assumption, deg(vi) is odd for all i = 1, 2, ... , n. Thus 0, an even integer,

is a sum of the n odd integers deg(vl), deg(v2 ), ... , deg(v,). But if a sum of n odd
integers is even, then n is even. (See exercise 32 at the end of this section.) Therefore,
n is even [as was to be shown].
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Example 11.1.14 Applying the Fact That the Number of Vertices with Odd Degree Is Even

Is there a graph with ten vertices of degrees 1, 1, 2, 2, 2, 3, 4, 4, 4, and 6?

Solution No. Such a graph would have three vertices of odd degree, which is impossible
by Proposition 11.1.3.

Note that this same result could have been deduced directly from Corollary 11.1.2 by
computing the total degree (1 + 1 + 2 + 2 + 2 + 3 + 4 + 4 + 4 + 6 = 29) and noting
that it is odd. However, use of Proposition 11.1.3 gives the result without the need to
perform this addition. U

Exercise Set 11.1 *
In 1 and 2, graphs are represented by drawings. Define each
graph formally by specifying its vertex set, its edge set, and a
table giving the edge-endpoint function.

1. el

V V2

VI3 e3

2.

In 5-7, show that the two drawings represent the same graph
by labeling the vertices and edges of the right-hand drawing to
correspond to those of the left-hand drawing.

5.
V4

V3

V2

In 3 and 4, draw pictures of the specified graphs.

3. Graph G has vertex set {vl, V2 , V3, V4, V5 ) and edge set
[el, e2, e3, e4}, with edge-endpoint function as follows:

Edge Endpoints

el [VI, V21

e2 (1Ul V21

e3 IV2, V3}

e4 IV21

4. Graph H has vertex set (vI, V2 , V3, V4 , V51 and edge set
(e,, e2, e3, e4} with edge-endpoint function as follows:

Edge

el

e2

e3

e4

Endpoints

(V, I

IV2, V3}

[V2, V3}

IVI, V51

6. vil V 2

e4 1 V3

7.

For each of the graphs in 8 and 9:
(i) Find all edges that are incident on v,.
(ii) Find all vertices that are adjacent to V3.

(iii) Find all edges that are adjacent to el.
(iv) Find all loops.
(v) Find all parallel edges.
(vi) Find all isolated vertices.

(vii) Find the degree of V13.

(viii) Find the total degree of the graph.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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21. Simple graph with five vertices of degrees 1, 1, 1, 2, and 3.

22. Simple graph with six edges and all vertices of degree 3.

23. Simple graph with nine edges and all vertices of degree 3.

24. Find all nonempty subgraphs of each of the following
graphs.
a. v? b.

8.

9.

1)
I

C.

@1V4

10. Use the graph of Example 11.1.5 to determine
a. whether Sports Illustrated contains printed writing;
b. whether Poetry Magazine contains long words.

11. Find three other winning sequences of moves for the vege-
tarians and the cannibals in Example 11. 1.6.

12. Another famous puzzle used as an example in the study of
artificial intelligence seems first to have appeared in a collec-
tion of problems, Problems for the Quickening of the Mind,
which was compiled about A.D. 775. It involves a wolf, a
goat, a bag of cabbage, and a ferryman. From an initial po-
sition on the left bank of a river, the ferryman is to transport
the wolf, the goat, and the cabbage to the right bank. The
difficulty is that the ferryman's boat is only big enough for
him to transport one object at a time, other than himself.
Yet, for obvious reasons, the wolf cannot be left alone with
the goat, and the goat cannot be left alone with the cabbage.
How should the ferryman proceed?

13. Solve the vegetarians-and-cannibals puzzle for the case
where there are three vegetarians and three cannibals to be
transported from one side of a river to the other.

H 14. Two jugs A and B have capacities of 3 quarts and 5 quarts,
respectively. Can you use the jugs to measure out exactly
1 quart of water, while obeying the following restrictions:
You may fill either jug to capacity from a water tap; you
may empty the contents of either jug into a drain; and you
may pour water from either jug into the other.

In each of 15-23, either draw a graph with the specified proper-
ties or explain why no such graph exists.

15. Graph with five vertices of degrees 1, 2, 3, 3, and 5.

16. Graph with four vertices of degrees 1, 2, 3, and 3.

17. Graph with four vertices of degrees 1, 1, 1, and 4.

18. Graph with four vertices of degrees 1, 2, 3, and 4.

19. Simple graph with four vertices of degrees 1, 2, 3, and 4.

20. Simple graph with five vertices of degrees 2, 3, 3, 3, and 5.

VI V3

25. a. In a group of 15 people, is it possible for each person to
have exactly 3 friends? Explain. (Assume that friend-
ship is a symmetric relationship: If x is a friend of y,
then y is a friend of x.)

b. In a group of 4 people, is it possible for each person to
have exactly 3 friends? Why?

26. In a group of 25 people, is it possible for each to shake hands
with exactly 3 other people? Explain.

27. Is there a simple graph, each of whose vertices has even
degree? Explain.

28. Suppose a graph has vertices of degrees 0, 2, 2, 3, and 9.
How many edges does the graph have?

29. Suppose a graph has vertices of degrees 1, 1, 4, 4, and 6.
How many edges does the graph have?

30. Suppose that G is a graph with v vertices and e edges and
that the degree of each vertex is at least dmin and at most
dmx. Show that

vdmi, < e < dmax v.
2 2

31. Prove that any sum of an odd number of odd integers is odd.

H 32. Deduce from exercise 31 that for any positive integer n, if
a sum of n odd integers is even, then n is even.

33. Recall that K. denotes a complete graph on n vertices.
a. Draw K6.

H b. Show that for all integers n > 1, the number of edges of
n(n- 1)

2

34. Use the result of exercise 33 to show that the number of
edges of a simple graph with n vertices is less than or equal

n(n -1)
to

o 
V1

6

* V6

V3

1 1
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35. Is there a nonempty simple graph with twice as many edges
as vertices? Explain. (You may find it helpful to use the
result of exercise 34.)

36. Recall that Km.n denotes a complete bipartite graph on
(m, n) vertices.
a. Draw K4 ,2
b. Draw K1,3

c. Draw K3 ,4
d. How many vertices of Km,, have degree m? degree n?
e. What is the total degree of Ku,n?
f. Find a formula in terms of m and n for the number of

edges of Km,n. Explain.

37. A bipartite graph G is a simple graph whose vertex set
can be partitioned into two mutually disjoint nonempty sub-
sets VI and V2 such that vertices in V] may be connected to
vertices in V2, but no vertices in V1 are connected to other
vertices in VI and no vertices in V2 are connected to other
vertices in V2. For example, the graph G illustrated in (i)
can be redrawn as shown in (ii). From the drawing in (ii),
you can see that G is bipartite with mutually disjoint vertex
sets VI = {1V, V3, v5} and V2 = {v2 , v4 , v61.

(i) 02 (ii) , 39. Find the complement of each of the following graphs.

a.

Find which of the following graphs are bipartite. Redraw
the bipartite graphs so that their bipartite nature is evident.

a. v1 v2

04 '3

c. V2

V4 V6

v5

b. 01 02

03

d.

e. vo 02

05 V4

38. Suppose r and s are any positive integers. Does there exist
a graph G with the property that G has vertices of degrees
r and s and of no other degrees? Explain.

b. v -. V2

04 -. - .3

V4

40. a. Find the complement of the graph K4 , the complete graph
on four vertices. (See Example 11.1.8.)

b. Find the complement of the graph K3,2, the complete
bipartite graph on (3, 2) vertices. (See Example 11. 1.9.)

41. Suppose that in a group of five people A, B, C, D, and E
the following pairs of people are acquainted with each other:
A and C, A and D, B and C, C and D, C and E.
a. Draw a graph to represent this situation.
b. Draw a graph that illustrates who among these five peo-

ple are not acquainted. That is, draw an edge between
two people if, and only if, they are not acquainted.

H 42. Let G be a simple graph with n vertices. What is the relation
between the number of edges of G and the number of edges
of the complement G'?

43. Show that at a party with at least two people, there are at least
two mutual acquaintances or at least two mutual strangers.

44. a. In a simple graph, must every vertex have degree that is
less than the number of vertices in the graph? Why?

b. Can there be a simple graph that has four vertices each
of different degrees?

H * c. Can there be a simple graph that has n vertices all of
different degrees?

Definition: If G is a simple graph, the complement of G,
denoted G', is obtained as follows: The vertex set of G' is
identical to the vertex set of G. However, two distinct ver-
tices v and w of G' are connected by an edge if, and only if,
v and w are not connected by an edge in G. For example, if
G is the graph

v0

V4

then G' is

V2
02

04

V I / V2 'I,

V3 kV4

I
V5 V6 I
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H * 45. In a group of two or more people, must there always be at
least two people who are acquainted with the same number
of people within the group? Why?

H 46. In this exercise a graph is used to help solve a scheduling
problem. Eleven faculty members in a mathematics depart-
ment serve on the following committees:

Undergraduate Education: Bergen, Jones, Kashina, Cohen

Graduate Education: Gatto, Moussa, Cohen, Catoiu

Colloquium: Sahin, Goldman, Ash

Hiring: Gatto, Goldman, Moussa, Jones

Personnel: Moussa, Wang, Cortzen

The committees must all meet during the first week of
classes, but there are only three time slots available. Find
a schedule that will allow all faculty members to attend the
meetings of all committees on which they serve. To do this,
represent each committee as the vertex of a graph, and draw
an edge between two vertices if the two committees have a
common member.

Library: Cortzen, Bergen, Sahin

11.2 Paths and Circuits
One can begin to reason only when a clear picture has been formed in the imagination.
- W. W. Sawyer, Mathematician 's Delight, 1943

The subject of graph theory began in the year 1736 when the great mathematician Leonhard
Euler published a paper giving the solution to the following puzzle:

The town of Konigsberg in Prussia (now Kaliningrad in Russia) was built at a point
where two branches of the Pregel River came together. It consisted of an island and
some land along the river banks. These were connected by seven bridges as shown in
Figure 11.2.1.

The question is this: Is it possible for a person to take a walk around town, starting
and ending at the same location and crossing each of the seven bridges exactly once?*

A

Figure 11.2.1 The Seven Bridges of Konigsberg

To solve this puzzle, Euler translated it into a graph theory problem. He noticed that
all points of a given land mass can be identified with each other since a person can travel
from any one point to any other point of the same land mass without crossing a bridge.
Thus for the purpose of solving the puzzle, the map of Konigsberg can be identified with
the graph shown in Figure 11.2.2, in which the vertices A, B, C, and D represent land
masses and the seven edges represent the seven bridges.

*In his original paper, Euler did not require the walk to start and end at the same point. The analysis
of the problem is simplified, however, by adding this condition. Later in the section, we discuss
walks that start and end at different points.
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Figure 11.2.2 Graph Version of Konigsberg Map

In terms of this graph, the question becomes the following:

Is it possible to find a route through the graph that starts and ends at some
vertex, one of A. B. C. or D, and traverses each edge exactly once9

Leonhard Euler
(1707-1783) Equivalently:

Is it possible to trace this graph, starting and ending at the same point,
without ever lifting your pencil from the paper?

Take a few minutes to think about the question yourself. Can you find a route that meets
the requirements? Try it!

Looking for a route is frustrating because you continually find yourself at a vertex
that does not have an unused edge on which to leave, while elsewhere there are unused
edges that must still be traversed. If you start at vertex A, for example, each time you
pass through vertex B, C, or D, you use up two edges because you arrive on one edge
and depart on a different one. So, if it is possible to find a route that uses all the edges
of the graph and starts and ends at A, then the total number of arrivals and departures
from each vertex B, C, and D must be multiple of 2. Or, in other words, the degrees of
the vertices B, C, and D must be even. But they are not: deg(B) = 5, deg(C) = 3, and
deg(D) = 3. Hence there is no route that solves the puzzle by starting and ending at A.
Similar reasoning can be used to show that there are no routes that solve the puzzle by
starting and ending at B, C, or D. Therefore, it is impossible to travel all around the city
crossing each bridge exactly once.

Definitions
Travel in a graph is accomplished by moving from one vertex to another along a sequence
of adjacent edges. In the graph below, for instance, you can go from uI to U4 by taking
fl to u2 and then hf to U4 . This is represented by writing

U I flu 2 f7U4-

Or you could take the roundabout route

u1 f u 2 f3 u 3 f4u 2 f3 u 3 f 5u 4 f6 u 4 f7 u 2 f3 u 3 f 5u 4 .

Certain types of sequences of adjacent vertices and edges are of special importance
in graph theory: those that do not have a repeated edge, those that do not have a repeated
vertex, and those that start and end at the same vertex.
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I. ,

Let G be a graph, and let v and w be vertices in G.
A walk from v to w is a finite alternating sequence of adjacent vertices and edges

of G. Thus a walk has the form

voe vie2 ... Vn-len~n,

where the v's represent vertices, the e's represent edges, vo = v, vn = w, and for all
i = 1, 2, . . .n, vi-I and vi are the endpoints of ej. The trivial walk from v to v
consists of the single vertex v.

A path from v to w is a walk from v to w that does not contain a repeated edge.
Thus a path from v to w is a walk of the form

V = voelvie2 *.. Vn-len~ n = We

where all the ei are distinct (that is, ei A ek for any i in k).
A simple path from v to w is a path that does not contain a repeated vertex. Thus

a simple path is a walk of the form

V = voeivie2 ... vn-len~n = We

where all the ei are distinct and all the vj are also distinct (that is, vj 0 vm for any

:A m).
A closed walk is a walk that starts and ends at the same vertex.
A circuit is a closed walk that does not contain a repeated edge. Thus a circuit is

a walk of the form

VoeIvIe2 *. Vn- IenVn,

where vo = a, and all the es are distinct.
A simple circuit is a circuit that does not have any other repeated vertex except

the first and last. Thus a simple circuit is a walk of the form

voe ve 2 * * *n-lenVn,

where all the ei are distinct and all the vj are distinct except that vo = v,.

For ease of reference, these definitions are summarized in the following table:

Repeated Repeated Starts and Ends
Edge? Vertex? at Same Point?

Walk allowed allowed allowed

Path no allowed allowed

Simple path no no no

Closed walk allowed allowed yes

Circuit no allowed yes

Simple circuit no first and yes
last only

Often a walk can be specified unambiguously by giving either a sequence of edges or
a sequence of vertices. The next two examples show how this is done.

If :: : I
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Example 11.2.1 Notation for Walks

a. In the graph below, the notation el e2e4e3 refers unambiguously to the following walk:
vl el V2 e 2 V3 e4 V3 e3 V2. On the other hand, the notation el is ambiguous if used to refer
to a walk. It could mean either vl el v2 or v2ei v!.

e2

el
vim ie4

e 3

b. In the graph of part (a), the notation V2V3 is ambiguous if used to refer to a walk. It
could mean v2e2v3 or v2e3v3. On the other hand, in the graph below, the notation
vIv 2v2v3 refers unambigously to the walk vieV 2 e2 V2 e3 V3.

e2

VI e v2  e3  u3

Note that if a graph G does not have any parallel edges, then any walk in G is uniquely
determined by its sequence of vertices.

Example 11.2.2 Walks, Paths, and Circuits

In the graph below, determine which of the following walks are paths, simple paths,
circuits, and simple circuits.

a. vleIV2 e3 V3 e4 V3 e5 V4  b. ele3e5e5 e6  c. V2 V3V4V5v3V 6v 2

d. V2 V3 V4 v5 V6 v 2 e. V2 V3 V4 V5 V6 V3 V2 f. vI

Solution

a. This walk has a repeated vertex but does not have a repeated edge, so it is a path from
VI to V4 but not a simple path.

b. This is just a walk from vl to v5. It is not a path because it has a repeated edge.

c. This walk starts and ends at v2 and does not have a repeated edge, so it is a circuit.
Since the vertex V3 is repeated in the middle, it is not a simple circuit.

d. This walk starts and ends at v2, does not have a repeated edge, and does not have a
repeated vertex. Thus it is a simple circuit.

e. This is just a closed walk starting and ending at v2. It is neither a circuit nor a simple
circuit because edge e3 and vertex v 3 are repeated.

f. The first vertex of this walk is the same as its last vertex. (Try to disprove this statement
if you are inclined not to believe it!) Also, this walk has neither a repeated vertex nor
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a repeated edge. Thus it is a simple circuit. A circuit such as this is called a trivial
circuit. U

I!. Ia!

A trivial circuit is a walk consisting of a single vertex and no edge. A nontrivial
circuit is a circuit with at least one edge.

Connectedness
It is easy to understand the concept of connectedness on an intuitive level. Roughly
speaking, a graph is connected if it is possible to travel from any vertex to any other vertex
along a sequence of adjacent edges of the graph. The formal definition of connectedness
is stated in terms of walks.

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a
walk from v to w. The graph G is connected if, and only if, given any two vertices
v and w in G, there is a walk from v to w. Symbolically,

G is connected A} V vertices v, w e V(G), 3 a walk from v to w.

If you take the negation of this definition, you will see that a graph G is not connected
if, and only if, there are two vertices of G that are not connected by any walk.

Example 11.2.3 Connected and Disconnected Graphs

Which of the following graphs are connected?

V3

V4 V2 V5 V6  2 a4

V V 214 X I7

V8 1)7

(a) (b) (c)

Solution The graph represented in (a) is connected, whereas those of (b) and (c) are not. To
understand why (c) is not connected, recall that in a drawing of a graph, two edges may
cross at a point that is not a vertex. Thus the graph in (c) can be redrawn as follows:

1)4

1V3

z 2

'6

Some useful facts relating circuits and connectedness are collected in the following
lemma. Proofs of (a) and (b) are left for the exercises. The proof of (c) is in Section 11.5.
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Look back at Example 11.2.3. The graphs in (b) and (c) are both made up of three
pieces, each of which is itself a connected graph. A connected component of a graph is a
connected subgraph of largest possible size.

!. I ' I

A graph H is a connected component of a graph G if, and only if,

1. H is subgraph of G;

2. H is connected; and

3. no connected subgraph of G has H as a subgraph and contains vertices or edges
that are not in H.

The fact is that any graph is a kind of union of its connected components.

Example 11.2.4 Connected Components

Find all connected components of the following graph G.

V2

VVI

V5 V6

V4 V 7

V8 V7

Solution G has three connected components: H,, H2, and H3 with vertex sets Vl, V2, and
V3 and edge sets El, E2 , and E3 , where

VI {VI, V2, V3),

V2 = [V41,

V3 = {v 5, V6, v7, v8},

El = [el, e2l,

E2 = 0,

E3 = {e3, e4, e5 . U

Euler Circuits
Now we return to consider general problems similar to the puzzle of the Konigsberg
bridges. The following definition is made in honor of Euler.

Lemma 11.2.1

Let G be a graph.

a. If G is connected, then any two distinct vertices of G can be connected by a simple
path.

b. If vertices v and w are part of a circuit in G and one edge is removed from the
circuit, then there still exists a path from v to w in G.

c. If G is connected and G contains a nontrivial circuit, then an edge of the circuit
can be removed without disconnecting G.

.
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I i

Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and
every edge of G. That is, an Euler circuit for G is a sequence of adjacent vertices
and edges in G that starts and ends at the same vertex, uses every vertex of G at least
once, and uses every edge of G exactly once.

The analysis used earlier to solve the puzzle of the Konigsberg bridges generalizes to
prove the following theorem:

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Theorem 11.2.2 is as follows:

Contrapositive Version of Theorem 11.2.2

if some vertex of a graph has odd degree, then the graph does not have an Euler
circuit.

Theorem 11.2.2

If a graph has an Euler circuit, then every vertex of the graph has even degree.

Proof:

Suppose G is a graph that has an Euler circuit. [We must show that given any vertex
v of G, the degree of v is even.] Let v be any particular but arbitrarily chosen vertex
of G. Since the Euler circuit contains every edge of G, it contains all edges incident
on v. Now imagine taking a journey that begins in the middle of one of the edges
adjacent to the start of the Euler circuit and continues around the Euler circuit to end
in the middle of the starting edge. (See Figure 11.2.3.) Each time v is entered by
traveling along one edge, it is immediately exited by traveling along another edge
(since the journey ends in the middle of an edge).

Start here First entry/
exit pair of edges

V3 In this example, the Euler
circuit is VOV1v 2v 3 U4v2v5vO, and v is V2.
Each time V2 is entered by one edge,

v it is exited by another edge.

Second entry/
exit pair of edges

Figure 11.2.3 Example for the Proof of Theorem 11.2.2

Because the Euler circuit uses every edge of G exactly once, every edge incident on
v is traversed exactly once in this process. Hence the edges incident on v occur in
entry/exit pairs, and consequently the degree of v must be a multiple of 2. But that
means that the degree of v is even [as was to be shown].

This version of Theorem 11.2.2 is useful for showing that a given graph does not have
an Euler circuit.
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Example 11.2.5 Showing That a Graph Does Not Have an Euler Circuit

Show that the graph below does not have an Euler circuit.

V2 e,
113

Solution Vertices v1 and V3 both have degree 3, which is odd. Hence by (the contrapositive
form of) Theorem 11.2.2, this graph does not have an Euler circuit. M

Now consider the converse of Theorem 11.2.2: If every vertex of a graph has even
degree, then the graph has an Euler circuit. Is this true? The answer is no. There is a
graph G such that every vertex of G has even degree but G does not have an Euler circuit.
In fact, there are many such graphs. The illustration below shows one example.

V2  V3

3/ Every vertex has even degree,
but the graph does not have

e2 Ian Euler circuit.

Vl V4

Note that the graph in the preceding drawing is not connected. It turns out that although
the converse of Theorem 11.2.2 is false, a modified converse is true: If every vertex of a
graph has even degree and if the graph is connected, then the graph has an Euler circuit.
The proof of this fact is constructive: It contains an algorithm to find an Euler circuit for
any connected graph in which every vertex has even degree.

Theorem 11.2.3

If every vertex of a nonempty graph has even degree and if the graph is connected,
then the graph has an Euler circuit.

Proof:

Suppose that G is any nonempty connected graph and that every vertex of G has
even degree. [We must find an Euler circuit for G.] If G consists of a single vertex
v, the trivial walk from v to v is an Euler circuit. Otherwise, construct a circuit C by
the following algorithm:

Step 1: Pick any vertex v of G at which to start.
[This step can be accomplished because the vertex set of G is nonemply by
assumption.]

Step 2: Pick any sequence of adjacent vertices and edges, starting and ending at v
and never repeating an edge. Call the resulting circuit C.
[This step can be performed for the following reasons: Since the degree of
each vertex of G is even, as each vertex other than v is entered by traveling
on one edge, it can be exited by traveling on another previously unused edge.
Thus a sequence of distinct adjacent edges can be produced indefinitely as
long as v is not reached. But since the number of edges of the graph is finite
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(by definition of graph), the sequence of distinct edges cannot go on forever
Thus the sequence must eventually return to the starting vertex v.]

Step 3: Check whether C contains every edge and vertex of G. If so, C is an Euler
circuit, and we are finished. If not, perform the following steps.

Step 3a: Remove all edges of C from G and also any vertices that become iso-
lated when the edges of C are removed. Call the resulting subgraph G'.
[Note that G' may not be connected (as illustrated in Figure 11.2.4),
but every vertex of G' has even degree (since removing the edges of C
removes an even number of edges from each vertex, and the difference
of two even integers is even).]

G:

Figure 11.2.4

Step 3b: Pick any vertex w common to both C and G'.
[There must be at least one such vertex since G is connected. (See
exercise 44.) (In Figure 11.2.4 there are two such vertices: u and w.)]

Step 3c: Pick any sequence of adjacent vertices and edges of G', starting and
ending at w and never repeating an edge. Call the resulting circuit C'.
[This can be done since the degree of each vertex of G' is even and G'
is finite. See the justification for step 2.]

Step 3d: Patch C and C' together to create a new circuit C" as follows: Start at
v and follow C all the way to w. Then follow C' all the way back to w.
After that, continue along the untraveled portion of C to return to v.
[The effect of executing steps 3c and 3dfor the graph of Figure 11.2.4
is shown in Figure 11.2.5.]

C'

G:

C',

Figure 11.2.5

Step 3e: Let C = C" and go back to step 3.

Since the graph G is finite, execution of the steps outlined in this algorithm must
eventually terminate. At that point an Euler circuit for G will have been constructed.
(Note that because of the element of choice in steps 1, 2, 3b, and 3c, a variety of
different Euler circuits can be produced by using this algorithm.)
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Example 11.2.6 Finding an Euler Circuit

Use Theorem 11.2.3 to check that the graph below has an Euler circuit. Then use the
algorithm from the proof of the theorem to find an Euler circuit for the graph.

Solution Observe that

deg(a) = deg(b) = deg(c) = deg(f) = deg(g) = deg(i) = deg(j) = 2

and that deg(d) = deg(e) = deg(h) = 4. Hence all vertices have even degree. Also, the
graph is connected. Thus, by Theorem 11.2.3, the graph has an Euler circuit.

To construct an Euler circuit using the algorithm of Theorem 11.2.3, let v = a and let
C be

C: abcda.

C is represented by the labeled edges shown below.

Observe that C is not an Euler circuit for the graph but that C intersects the rest of the
graph at d. Let C' be

C': deghjid.

Patch C' into C to obtain

C": abcdeghjida.

Set C = C". Then C is represented by the labeled edges shown below.

Observe that C is not an Euler circuit for the graph but that it intersects the rest of the
graph at e. Let C' be

C': ef he.

I
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Patch C' into C to obtain

C": abcdefheghjida.

Set C = C". Then C is represented by the labeled edges shown below.

Since C includes every edge of the graph exactly once, C is an Euler circuit for the graph.
.

In exercise 45 at the end of this section you are asked to show that any graph with
an Euler circuit is connected. This result can be combined with Theorems 11.2.2 and
11.2.3 to give a complete characterization of graphs that have Euler circuits, as stated in
Theorem 11.2.4.

A corollary to Theorem 11.2.4 gives a criterion for determining when it is possible to
find a walk from one vertex of a graph to another, passing through every vertex of the
graph at least once and every edge of the graph exactly once.

I . 1 a |

Let G be a graph, and let v and w be two distinct vertices of G. An Euler path from
v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes
through every vertex of G at least once, and traverses every edge of G exactly once.

The proof of this corollary is left as an exercise.

Corollary 11.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler
path from v to w if, and only if, G is connected, v and w have odd degree, and all
other vertices of G have even degree.

11)

1
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Example 11.2.7 Finding an Euler Path

The floor plan shown below is for a house that is open for public viewing. Is it possible
to find a path that starts in room A, ends in room B, and passes through every interior
doorway of the house exactly once? If so, find such a path.

I -- G I IT

I I
B K

Solution Let the floor plan of the house be represented by the graph below.

G

D

Each vertex of this graph has even degree except for A and B, each of which has degree 1.
Hence by Corollary 11.2.5, there is an Euler path from A to B. One such path is

AGHFEIHEKJDCB. U

Hamiltonian Circuits
Theorem 11.2.4 completely answers the following question: Given a graph G, is it possible
to find a circuit for G in which all the edges of G appear exactly once? A related question
is this: Given a graph G, is it possible to find a circuit for G in which all the vertices of
G (except the first and the last) appear exactly once?

In 1859 the Irish mathematician Sir William Rowan Hamilton introduced a puzzle in
the shape of a dodecahedron (DOH-dek-a-HEE-dron). (Figure 11.2.6 contains a drawing
of a dodecahedron, which is a solid figure with 12 identical pentagonal faces.)

F. I/

Hamilton t

865)

Figure 11.2.6 Dodecahedron

Each vertex was labeled with the name of a city-London, Paris, Hong Kong, New
York, and so on. The problem Hamilton posed was to start at one city and tour the world
by visiting each other city exactly once and returning to the starting city. One way to solve

Sir Wm.
(1805-1
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the puzzle is to imagine the surface of the dodecahedron stretched out and laid flat in the
plane, as follows:

The circuit denoted with black lines is one solution. Note that although every city is
visited, many edges are omitted from the circuit. (More difficult versions of the puzzle
required that certain cities be visited in a certain order.)

The following definition is made in honor of Hamilton.

Given a graph G, a Haniltonian circuit for G is a simple circuit that includes every
vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices
and distinct edges in which every vertex of G appears exactly once, except for the
first and the last, which are the same.

Note that although an Euler circuit for a graph G must include every vertex of G, it
may visit some vertices more than once and hence may not be a Hamiltonian circuit. On
the other hand, a Hamiltonian circuit for G does not need to include all the edges of G
and hence may not be an Euler circuit.

Despite the analogous-sounding definitions of Euler and Hamiltonian circuits, the
mathematics of the two are very different. Theorem 11.2.4 gives a simple criterion for
determining whether a given graph has an Euler circuit. Unfortunately, there is no anal-
ogous criterion for determining whether a given graph has a Hamiltonian circuit, nor is
there even an efficient algorithm for finding such a circuit. There is, however, a simple
technique that can be used in many cases to show that a graph does not have a Hamiltonian
circuit. This follows from the following considerations:

Suppose a graph G with at least two vertices has a Hamiltonian circuit C given
concretely as

C: voel le2 v. ' - I en Vn

Since C is a simple circuit, all the es are distinct and all the vj are distinct except that
vo = vn. Let H be the subgraph of G that is formed using the vertices and edges of C.
An example of such an H is shown below.

H is indicated by the black lines.

Note that H has the same number of edges as it has vertices since all its n edges are
distinct and so are its n vertices v1, V2, . ..., vn. Also, by definition of Hamiltonian circuit,
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every vertex of G is a vertex of H, and H is connected since any two of its vertices lie on
a circuit. In addition, every vertex of H has degree 2. The reason for this is that there are
exactly two edges incident on any vertex. These are ej and e±i+ for any vertex vi except
Vo = Vn, and they are el and en for vo (= Vn). These observations have established the
truth of the following proposition in all cases where G has at least two vertices.

Note that if G contains only one vertex and G has a nontrivial Hamiltonian circuit, then
the circuit has the form v e v, where v is the vertex of G and e is an edge incident on v. In
this case, the subgraph H consisting of v and e satisfies conditions (l)-(4) of Proposition
11.2.6.

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Proposition 1 1.2.6 says that if a graph G does not have a subgraph
H with properties (1)-(4), then G does not have a Hamiltonian circuit, except the trivial
Hamiltonian circuit in the case where C contains only one vertex.

Example 11.2.8 Showing That a Graph Does Not Have a Hamiltonian Circuit

Prove that the graph G shown below does not have a Hamiltonian circuit.

a IC

e d

Solution If G has a Hamiltonian circuit, then by Proposition 11.2.6, G has a subgraph H
that (1) contains every vertex of G, (2) is connected, (3) has the same number of edges
as vertices, and (4) is such that every vertex has degree 2. Suppose such a subgraph H
exists. In other words, suppose there is a connected subgraph H of G such that H has
five vertices (a, b, c, d, e) and five edges and such that every vertex of H has degree 2.
Since the degree of b in G is 4 and every vertex of H has degree 2, two edges incident
on b must be removed from G to create H. Edge {a, b} cannot be removed because if it
were, vertex a would have degree less than 2 in H. Similar reasoning shows that edges
{e, bi, {b, a], and {b, d} cannot be removed either. It follows that the degree of b in H
must be 4, which contradicts the condition that every vertex in H has degree 2 in H.
Hence no such subgraph H exists, and so G does not have a Hamiltonian circuit. U

The next example illustrates a type of problem known as a traveling salesman prob-
lem. It is a variation of the problem of finding a Hamiltonian circuit for a graph.

Proposition 11.2.6

If a graph G has a nontrivial Hamiltonian circuit, then G has a subgraph H with the
following properties:

1. H contains every vertex of G.

2. H is connected.

3. H has the same number of edges as vertices.

4. Every vertex of H has degree 2.



11.2 Paths and Circuits 679

Example 11.2.9 A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities and the distances in kilometers
between them. Suppose that a salesman must travel to each city exactly once, starting and
ending in city A. Which route from city to city will minimize the total distance that must
be traveled?

C

'5

Solution This problem can be solved by writing all possible Hamiltonian circuits starting
and ending at A and calculating the total distance traveled for each.

Route Total Distance (In Kilometers)

ABCDA 30+30+25+40= 125

ABDCA 30+35+25+50= 140

ACBDA 50+30+35+40= 155

ACDBA 140 [ABDCA backwards]

ADBCA 155 [ACBDA backwards]

ADCBA 125 [ABCDA backwards]

Thus either route ABCDA or ADCBA gives a minimum total distance of 125 kilometers.
.

The general traveling salesman problem involves finding a Hamiltonian circuit to
minimize the total distance traveled for an arbitrary graph with n vertices in which each
edge is marked with a distance. One way to solve the general problem is to use the method
of Example 11.2.9: Write down all Hamiltonian circuits starting and ending at a particular
vertex, compute the total distance for each, and pick one for which this total is minimal.
However, even for medium-sized values of n this method is impractical. In the language
of Chapter 9, any algorithm to implement this method has exponential order. Observe
that for a complete graph with 30 vertices, there would be 29! - 8.84 x 1030 different
Hamiltonian circuits starting and ending at a particular vertex to check. Even if each
circuit could be found and its total distance computed in just one nanosecond, it would
require approximately 2.8 x 1014 years to finish the computation. At present, there is no
known algorithm for solving the general traveling salesman problem that is more efficient.
However, there are efficient algorithms that find "pretty good" solutions-that is, circuits
that, while not necessarily having the least possible total distances, have smaller total
distances than most other Hamiltonian circuits.

Exercise Set 11.2
1. In the graph at right, determine whether the following walks v I V3

are paths, simple paths, closed walks, circuits, simple cir-
cuits, or just walks.
a. v0e1v1e10 v5e9v2e2v1  b. V4 e 7 V2e 9v 5e 10 v1e3 V2e 9 V5

C. v2 d. v5v2v3v4v4v5

e. v2v3v4v5 V2v4v3v2 t. e5e8eloe3
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2. In the graph below, determine whether the following walks
are paths, simple paths, closed walks, circuits, simple cir-
cuits, or just walks.
a. vle 2V2 e 3V3e 4 V4 e5 V2e 2v 1 elvo b. v 2 v3 v 4 v5 v 2

c. V4 V2V3 V4 V5V2V 4  d. V2VIV 5 V2V3 v4v 2

e. VOv5s2v3V 4v2Vl f. vsv4 v2v1

VI V3

V0

e e e4

e10  e5
V5 e6 V4

3. Let G be the graph

el

e2

and consider the walk vIelv 2 e2 v1.
a. Can this walk be written unambigously as vI v22v? Why?
b. Can this walk be written unambigously as e e2 ? Why?

4. Consider the following graph.

e2

el e5

VI UV2 / 3  U4

e4

a. How many simple paths are there from v, to v4 ?
b. How many paths are there from v, to 14?

c. How many walks are there from vI to V4?

5. Consider the following graph.

el

a b

e4

a. How many simple paths are there from a to c?
b. How many paths are there from a to c?
c. How many walks are there from a to c?

6. An edge whose removal disconnects the graph of which it
is a part is called a bridge. Find all bridges for each of the
following graphs.
a. vu 2 b. vo vi V2

U5 U4 1U5

7. Given any positive integer n, (a) find a connected graph with
n edges such that removal of just one edge disconnects the
graph; (b) find a connected graph with n edges that cannot
be disconnected by the removal of any single edge.

8. Find the number of connected components for each of the
following graphs.
a. b g

e

a c f /11/ h

d

b.

c.

g

d. V2

1)3

V4

i.' '.h

9. Each of (a)-(c) describes a graph. In each case answer yes,
no, or not necessarily to this question: Does the graph have
an Euler circuit? Justify your answers.
a. G is a connected graph with five vertices of degrees 2,

2, 3, 3, and 4.
b. G is a connected graph with five vertices of degrees 2,

2, 4, 4, and 6.
c. G is a graph with five vertices of degrees 2, 2, 4, 4, and 6.

10. The solution for Example 11.2.5 shows a graph for which
every vertex has even degree but which does not have an
Euler circuit. Give another example of a graph satisfying
these properties.

11. Is it possible for a citizen of Konigsberg to make a tour of
the city and cross each bridge exactly twice? (See Figure
11.2.1.) Why?

Determine which of the graphs in 12-17 have Euler circuits. If
the graph does not have an Euler circuit, explain why not. If it
does have an Euler circuit, describe one.

12. V2

Ie 7  e

V4

C.

U9
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19. VI

IV6

V7

13.

14.

15.

16.

V3

w

U5

20. b c d

e
a uf

h w

g

21.

17. A B

C D

E F

18. Is it possible to take a walk around the city whose map is
shown below, starting and ending at the same point and
crossing each bridge exactly once? If so, how can this be
done?

22. The following is a floor plan of a house. Is it possible to
enter the house in room A, travel through every interior
doorway of the house exactly once, and exit out of room
E? If so, how can this be done?

Find Hamiltonian circuits for each of the graphs in 23 and 24.

23.

24.

Vl vs

)7 1)4

b c d

For each of the graphs in 19-21, determine whether there is an
Euler path from u to w. If there is, find such a path.

d

VO
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Show that none of the graphs in 25-27 has a Hamiltonian circuit.

H 25. b d 26.
d

i

27.

C

D

In 28-31 find Hamiltonian circuits for those graphs that have
them. Explain why the other graphs do not.

29. b

a c

g e

f

31.

C

V3

H 32. Give two examples of graphs that have Euler circuits but
not Hamiltonian circuits.

H 33. Give two examples of graphs that have Hamiltonian circuits
but not Euler circuits.

H 34. Give two examples of graphs that have circuits that are both
Euler circuits and Hamiltonian circuits.

H 35. Give two examples of graphs that have Euler circuits and
Hamiltonian circuits that are not the same.

36. A traveler in Europe wants to visit each of the cities shown
on the map in the next column exactly once, starting and
ending in Brussels. The distance (in kilometers) between
each pair of cities is given in the table. Find a Hamiltonian
circuit that minimizes the total distance traveled. (Use the
map to narrow the possible circuits down to just a few. Then
use the table to find the total distance for each of those.)

Berlin Brussels Dusseldorf Luxembourg Munich

Brussels 783
Dusseldorf 564 223
Luxembourg 764 219 224
Munich 585 771 613 517
Paris 1,057 308 497 375 832

37. a. Prove that if a walk in a graph contains a repeated edge,
then the walk contains a repeated vertex.

b. Explain how it follows from part (a) that any walk with
no repeated vertex has no repeated edge.

38. Prove Lemma 11.2.1 (a): If G is a connected graph, then any
two distinct vertices of G can be connected by a simple path.

39. Prove Lemma 11.2.1(b): If vertices v and w are part of
a circuit in a graph G and one edge is removed from the
circuit, then there still exists a path from v to w in G.

40. Draw a picture to illustrate Lemma 11.2.1 (c): If a graph G
is connected and G contains a circuit, then an edge of the
circuit can be removed without disconnecting G.

41. Prove that if there is a path in a graph G from a vertex v to
a vertex w, then there is a path from w to v.

42. If a graph contains a circuit that starts and ends at a vertex v,
does the graph contain a simple circuit that starts and ends

at v? Why?

43. Prove that if there is a circuit in a graph that starts and ends
at a vertex v and if w is another vertex in the circuit, then
there is a circuit in the graph that starts and ends at w.

44. Let G be a connected graph, and let C be a circuit in G. Let
G' be the subgraph obtained by removing all the edges of
C from G and also any vertices that become isolated when
the edges of C are removed. Prove that if G' is nonempty,
then there exists a vertex v such that v is in both C and G'.

H 28. a b

e d c

f g

30.

v O
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45. Prove that any graph with an Euler circuit is connected.

46. Prove Corollary 11.2.5.

47. For what values of n does the complete graph K, with n
vertices have (a) an Euler circuit? (b) a Hamiltonian circuit?

* 48. For what values of m and n does the complete bipartite
graph on (m, n) vertices have (a) an Euler circuit? (b) a
Hamiltonian circuit?

* 49. What is the maximum number of edges a simple discon-
nected graph with n vertices can have? Prove your answer.

* 50. Show that a graph is bipartite if, and only if, it does not have
a circuit with an odd number of edges. (See exercise 37 of
Section 11.1 for the definition of bipartite graph.)

11.3 Matrix Representations of Graphs
Order and simplification are the first steps toward the mastery of a subject.

-Thomas Mann, The Magic Mountain, 1924

How can graphs be represented inside a computer? It happens that all the information
needed to specify a graph can be conveyed by a structure called a matrix, and matrices
(matrices is the plural of matrix) are easy to represent inside computers. This section
contains some basic definitions about matrices and matrix operations, a description of the
relation between graphs and matrices, and some applications.

Matrices
Matrices are two-dimensional analogues of sequences. They are also called two-
dimensional arrays.

An m x n (read "m by n") matrix A over a set S is a rectangular array of elements
of S arranged into m rows and n columns:

all a 12 ... a]j ... aln

a2t a 2 2  ... a2j ... a2n

ail ai2 ... aij ... ain

-am I am2 . .. amj ... amn _

T

jth column of A

We write A = (aij).

- ith row of A

The ith row ofA is

and the jth column of A is

aij
a2j

-am,

A =

[ail ai2 ... aid
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The entry aij in the ith row and jth column of A is called the ijth entry of A. An
m x n matrix is said to have size m x n. If A and B are matrices, then A = B if, and only
if, A and B have the same size and the corresponding entries of A and B are all equal;
that is,

aij= bi j  foralli=1, 2,...,m andj=1, 2...,n.

A matrix for which the numbers of rows and columns are equal is called a square
matrix. If A is a square matrix of size n x n, then the main diagonal of A consists of all
the entries a,,, a22, .. - a,,,,:

all a12  ... ali ... a,,

a2 1  a2 2  .. a2i ... a2n

ail ai 2  ... ai, ... ain

a,, a,2 ... ani ... ann

main diagonal of A

Example 11.3.1 Matrix Terminology

The following is a 3 x 3 matrix over the set of integers.

I 0 -3
4 -I 5

-2 2 0

a. What is the entry in row 2, column 3?

b. What is the second column of A?

c. What are the entries in the main diagonal of A?

Solution

a. 5 b. -1 c. 1,-1, andO
2

Matrices and Directed Graphs
Consider the directed graph shown in Figure 11.3.1. This graph can be represented by the
matrix A = (aij) for which aij = the number of arrows from vi to vj, for all i = 1, 2, 3
and j = 1, 2, 3. Thus all = I because there is one arrow from v, to vi, a12 = 0 because
there is no arrow from vl to v2, a23 = 2 because there are two arrows from v2 to V3, and
so forth. A is called the adjacency matrix of the directed graph. For convenient reference,
the rows and columns of A are often labeled with the vertices of the graph G.

ei e3

2 VI V2 V3

VI I 0 0

A = 2 I 1 2
V3 I 0 0

Directed Graph G Adjacency Matrix

(a) (b)

Figure 11.3.1 A Directed Graph and Its Adjacency Matrix
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Let G be a directed graph with ordered vertices v1, v2, ... , v,. The adjacency matrix
of G is the matrix A = (aij) over the set of nonnegative integers such that

a1j --the number of arrows from vi to yj for all i, j = 1, 2, n.

Note that nonzero entries along the main diagonal of an adjacency matrix indicate the
presence of loops, and entries larger than I correspond to parallel edges. Moreover, if the
vertices of a directed graph are reordered, then the entries in the rows and columns of
the corresponding adjacency matrix are moved around.

Example 11.3.2 The Adjacency Matrix of a Graph

The two directed graphs shown below differ only in the ordering of their vertices. Find
their adjacency matrices.

e5
V t

V 3

e5

(a) (b)

Solution Since both graphs have three vertices, both adjacency matrices are 3 x 3 matrices.
For (a), all entries in the first row are 0 since there are no arrows from vl to any other
vertex. For (b), the first two entries in the first row are I and the third entry is O since from
vl there are single arrows to vl and to v2 and no arrows to V3. Continuing the analysis in
this way, you obtain the following two adjacency matrices:

VI V2 V3 U1 V2 V3

vl 0 0 0 I I

V2° l l 1 VI 0 2
U3 2 1 ° V3 ° ° °

(a) (b) U

If you are given a square matrix with nonnegative integer entries, you can construct a
directed graph with that matrix as its adjacency matrix. However, the matrix does not tell
you how to label the edges, so the directed graph is not uniquely determined.

Example 11.3.3 Obtaining a Directed Graph from a Matrix

Let

A I I 0

h A as 0 1i 1m
-2 1 0 0-

Draw a directed graph that has A as its adjacency matrix.
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Solution Let G be the graph corresponding to A, and let v1, V2, V 3 , v4 be the vertices of G.
Label A across the top and down the left side with these vertex names, as shown below.

VI V2

VI0 1

A =V2 I I

A=V3 0 0

V4- 2 1

V3

0
1
0

V4

0]

2
1
0]

Then, for instance, the 2 in the fourth row and the first column means that there are two
arrows from V4 to vl. The 0 in the first row and the fourth column means that there is no
arrow from vl to v4 . A corresponding directed graph is shown below (without edge labels
because the matrix does not determine those).

U

Matrices and (Undirected) Graphs
Once you know how to associate a matrix with a directed graph, the definition of the
matrix corresponding to an undirected graph should seem natural to you. As before, you
must order the vertices of the graph, but in this case you simply set the ijth entry of the
adjacency matrix equal to the number of edges connecting the ith and jth vertices of the
graph.

!I. I .1]

Let G be an (undirected) graph with ordered vertices ul, v2, .. v. The adjacency
matrix of G is the matrix A = (aii) over the set of nonnegative integers such that

an = the number of edges connecting v, and vj

for all i, j = 1 2, . .. , n.

Example 11.3.4 Finding the Adjacency Matrix of a Graph

Find the adjacency matrix for the graph G shown below.
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Solution

Vi V2 V3 V4

V} 0O 1 0 1

A-V2 I 1 2 1
V3 ° 2 0 0

V4 I1 I 0 1X

Note that if the matrix A = (aij) in Example 11.3.4 is flipped across its main diagonal,
it looks the same: aij = aji, for i, j = 1, 2, ... ,n. Such a matrix is said to be symmetric.

SI- i;01011I.

An n x n square matrix A = (aij) is called symmetric if, and only if, for all i, j =
1,a2, .a . n,

aij = ap.-

Example 11.3.5 Symmetric Matrices

Which of the following matrices are symmetric?

a. [I 2]
L1 2J

0 1 2
b. [ I 0

2 0 3

c.2 a o
C.0 10o

Solution Only (b) is symmetric. In (a) the entry in the first row and the second column
differs from the entry in the second row and the first column; the matrix in (c) is not even
square. N

It is easy to see that the matrix of any undirected graph is symmetric since it is always
the case that the number of edges joining vi and vj equals the number of edges joining vj
andvi foralli, j = 1,2, . .,n.

Matrices and Connected Components
Consider a graph G, as shown below, that consists of several connected components.

V4

e 7 (\eS

Vs

lx. - '6
- I



688 Chapter 11 Graphs and Trees

The adjacency matrix of G is

1 0 1 : 0 : 0 0
0 0 2:0 0:0 0
1 2 0.0 0 :0 0......... :.......:......
o 0 0:0 1:0 0
0 0 0 1 1:0 0

0 0 0:0 0:0 2
0 0 0:0 0:2 0

As you can see, A consists of square matrix blocks (of different sizes) down its diagonal
and blocks of O's everywhere else. The reason is that vertices in each connected component
share no edges with vertices in other connected components. For instance, since VI, v2 ,
and V3 share no edges with V4 , V5 , V6 , or V7 , all entries in the top three rows to the right
of the third column are 0 and all entries in the left three columns below the third row are
also 0. Sometimes matrices whose entries are all O's are themselves denoted 0. If this
convention is followed here, A is written as

I1 0 1

0 0 2
1 2 0

C:-
10

0 1
1 1

0

0

0 2
2 O_

The above reasoning can be generalized to prove the following theorem:

Matrix Multiplication
Matrix multiplication is an enormously useful operation that arises in many contexts,
including the investigation of walks in graphs. Although matrix multiplication can be
defined in quite abstract settings, the definition for matrices whose entries are real numbers
will be sufficient for our applications. The product of two matrices is built up of scalar
or dot products of their individual rows and columns.

Theorem 11.3.1

Let G be a graph with connected components GI, G2 , ... , Gk. If there are ni vertices
in each connected component Gi and these vertices are numbered consecutively, then
the adjacency matrix of G has the form

Al 0 0 ... 0 0
0 A 2  0 *--0 0°
o O A3  ... 0 0

0 0 0... 0 Ak

where each Ai is the ni x ni adjacency matrix of Gi, for all i = 1, 2, ... , k, and the
O's represent matrices whose entries are all 0.
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I. ,

Suppose that all entries in matrices A and B are real numbers. If the number of ele-
ments, n, in the ith row of A equals the number of elements in the jth column of B,
then the scalar product or dot product of the ith row of A and the jth column of
B is the real number obtained as follows:

blj
ib 2+i

Lail ai2 ... a15~] =aitbij + ai2b2j + + a~bjq.

Example 11.3.6 Multiplying a Row and a Column

[3 0 -1 2] ! j=3.(-1) +0-2+ (-1)-3+2-0

=-3+0-3+0=-6 0

More generally, if A and B are matrices whose entries are real numbers and if A and B
have compatible sizes in the sense that the number of columns of A equals the number of
rows of B, then the product AB is defined. It is the matrix whose ijth entry is the scalar
product of the ith row of A times the jth column of B, for all possible values of i and j.

I . i

Let A = (aij) be an m x k matrix and B = (bij) a k x n matrix with real entries. The
(matrix) product of A times B, denoted AB, is that matrix (cij) defined as follows:

all a 12  ... alk

a21  a2 2  ... a2k

I ail ai2 - i |

aml am2 ... amk

bl, b12  .

b21  b2 2  ...

bkI bk2 ...

bkj
b2j

bkj

... bi,

.. b2n

- . bkn-

CH1 C12 ... Cj .... Cn

C21  C22 '' C2j .. C2n

Ci ci2 ... C -E ... Cin

Cml Cm2 * Cmj . Cmn _

where
k

cij = aijbij + ai2 b2j + ... + aikbkj = E airbrj,

r-=I

foralli = 1,2,...,mandj = 12,...,n.

I
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Example 11.3.7 Computing a Matrix Product

Let A [ 1 0] and B = ] Compute AB.
[ ] [2 -1

Solution A has size 2 x 3 and B has size 3 x 2, so the number of columns of A equals the
number of rows of B and the matrix product of A and B can be computed. Then

F2 0 3i L]43] c 12

where

cII=2 4+0*2+3 (-2)=2 [-1 I 1 0 2]

C12 = 2 3 + 0 2 + 3 (-1) = 3 [ I 0 2

F2=-1.+ 2+ -)2[- 02 31 32

C22 = (-I) .3 + 0 *2 + 3 * (-I) = -1 [( 2° 2 02o

Hence

AB - 2 _3].

Matrix multiplication is both similar to and different from multiplication of real num-
bers. One difference is that although the product of any two numbers can be formed, only
matrices with compatible sizes can be multiplied. Also, multiplication of real numbers is
commutative (for all real numbers a and b, a * b = b * a), whereas matrix multiplication
is not. For instance,

-1 1- [0 1- = [ 2- but 0 I]-[ I] 1- [01
10 I 0 1 LO 1 , ut L I L0 1 = 0 1.

On the other hand, both real number and matrix multiplications are associative ((ab)c =
a(bc), for all elements a, b and c for which the products are defined). This is proved in
Example 11.3.8 for products of 2 x 2 matrices. Additional exploration of matrix multi-
plication is offered in the exercises.

Example 11.3.8 Associativity of Matrix Multiplication for 2 x 2 Matrices

Prove that if A, B, and C are 2 x 2 matrices over the set of real numbers, then (AB)C =
A(BC).

Solution Suppose A = (aij), B = (bj), and C = (ctj) are particular but arbitrarily chosen
2 x 2 matrices with real entries. Since the numbers of rows and columns are all the same,
AB, BC, (AB)C, and A(BC) are defined. Let AB = (dij) and BC = (eij). Then for all
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integers i = 1, 2 and j = 1, 2,

2

the ijth entry of (AB)C = Y' dirrj by definition of the
product of AB and C

r~l

= di, lCj + di2C2j by definition of E

aib]Cj+ aib2 ~ by definition of the
= Ea r rl) Cu \ (airr 2 j C21  productofAandB

= (a1 bII + ai2b2 i)cI j by definition of E

+ (al b12 + ai2 b2 2 )c 2

= ai bIIclj + ai2 b2 1 c1 1 + aiIbl2c 2 j + ai2 b 2 2 c 2 j.

Similarly, the ijth entry of A(BC) is

2

(A(BC))ij = Lairerj

r=l

= a I el j + ai2e2 j

=a (E bIrCri) + ai2 ( b2rCr])

= ai 1(b1 clj + b12c2 j) + ai2 (b 2 lcli + b22c2j)

= ai bujclj + aiIbl2 c2 j + ai2 b21cli + ai2 b22c2j

= ai 1b 1 clj + bi2 b 2 lcli + aiIbl2 c 2 j + ai2b 2 2 c 2 j.

Comparing the results of the two computations shows that for all i and j,

the ijth entry of (AB)C = the ijth entry of A(BC).

Since all corresponding entries are equal, (AB)C = A(BC), as was to be shown. U

As far as multiplicative identities are concerned, there are both similarities and dif-
ferences between real numbers and matrices. You know that the number I acts as a
multiplicative identity for products of real numbers. It turns out that there are certain
matrices, called identity matrices, that act as multiplicative identities for certain matrix
products. For instance, mentally perform the following matrix multiplications to check
that for any real numbers a, b, c, d, e, f, g, h and i,

[1 0][a b c] [a b cl

10 I d e f d e f

and

a b c I 0 0 a b c
d e f 0 I 0 d e f .

g h i 0 0 I g h i

These computations show that [I °] acts as an identity on the left side for multiplication

with 2 x 3 matrices and that 0 01 acts as an identity on the right side for multiplication
L0 0 I

with 3 x 3 matrices. Note that [I 0] cannot act as an identity on the right side for
multiplication with 2 x 3 matrices because the sizes are not compatible.
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I. ,

For each positive integer n, the n x n identity matrix, denoted In = (ij) or just I
(if the size of the matrix is obvious from context), is the n x n matrix in which all
the entries in the main diagonal are l's and all other entries are 0's. In other words,

ij = Io if i = j for all i, j = 1, 2, . . ., n.
loif A

The German mathematician Leopold Kronecker introduced the symbol 8ii to make ma-
Leopold
(1823-1

Kronecker trix computations more convenient. In his honor, this symbol is called the Kronecker
'891) delta.

Example 11.3.9 An Identity Matrix Acts As an Identity

Prove that if A is any m x n matrix and I is the n x n identity matrix, then Al = A. (In
exercise 14 at the end of this section you are asked to show that if I is the m x m identity
matrix, then IA = A.)

Proof:

LetA be any n x n matrix and let Aij be the ijth entry of A for all integers i = 1, 2, m
and j = 1, 2, . n. Consider the product Al, where I is the n x n identity matrix.
Observe that

all a12  ... a,] 1 0 ... F all a12  ... a,1

a21  a22 ... 
2 2n 0 1 ... - aa1  a2 2  a2.

aml am2 amnj Lo 1] -am1  am2 amnj

because
n

the ijth entry of AI = E air8rj by definition of I

r=l

= ailbij + ai2 8 2 j + by definition of E

+aij~jj + - + ai,8nj

= aij8jj since kj = O whenever k # j and Sjj I

= aij

= the ijth entry of A.

Thus Al = A, as was to be shown. K

There are also similarities and differences between real numbers and matrices with
respect to the computation of powers. Any number can be raised to a nonnegative integer
power, but a matrix can be multiplied by itself only if it has the same number of rows as
columns. As for real numbers, however, the definition of matrix powers is recursive. Just
as any number to the zero power is defined to be 1, so any n x n matrix to the zero power
is defined to be the n x n identity matrix. The nth power of an n x n matrix A is defined
to be the product of A with its (n - 1) st power.
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I. a

For any n x n matrix A, the powers of A are defined as follows:

A0 = I where I is the n x n identity matrix

An = AA -1 for all integers n > 1

Example 11.3.10 Powers of a Matrix

LetA = [2 ]. Compute AO, Al, A2 , and A3 .

Solution AO = the 2 x 2 identity matrix = [0 1]

Al =AAO =AI =A

*2 =AA' = AA = [20] [I20] = [24]

*3 = AA2 = [ 20] [524] 9 10 4

Counting Walks of Length N
A walk in a graph consists of an alternating sequence of vertices and edges. If repeated
edges are counted each time they occur, then the number of edges in the sequence is called
the length of the walk. For instance, the walk v2 e3 v3e4v2e2v2e3v3 has length 4 (counting
e3 twice). Consider the following graph G:

How many distinct walks of length 2 connect v2 and v2? Your can list the possibilities
systematically as follows: From vl, the first edge of the walk must go to some vertex of
G: VI, v2, or V3.There is one walk of length 2 from v2 to v2 that starts by going from v2

to VI:

v2etvleIV2.

There is one walk of length 2 from v2 to V2 that starts by going from v2 to v2:

V2 e2 V2e 2 v 2 -

And there are four walks of length 2 from V2 to v2 that start by going from V2 to V3:

v 2 e 3 V3 e 4 V2 ,

v 2 e4v3 e 3 V2 ,

V2e3 V3e3 V2,

v 2 e 4 V3e4 V2-

Thus the answer is six.
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The general question of finding the number of walks that have a given length and con-
nect two particular vertices of a graph can easily be answered using matrix multiplication.
Consider the adjacency matrix A of the graph G on the previous page:

VI V2 V3

il 0 1 0]

A = V2 I 1 21.
V3 

0  2 0]

Compute A2 as follows:

0 1 0 0 101 1 2
1 1 2 1 1 2 = 1 6 2.
0 2 0 0 20 2 2 4

Note that the entry in the second row and the second column is 6, which equals the number
of walks of length 2 from v2 to v2. This is no accident! To compute a2 2, you multiply the
second row of A times the second column of A to obtain a sum of three terms:

[I 1 21L11=l +I +2 2.

Observe that

number of number of number of pairs
[the first term edges from edges f rom = of edges from .

tosV2 Vto v2  v2 to Vl and vl to v2

Now consider the ith term of this sum, for each i = 1, 2, and 3. It equals the number of
edges from v2 to Vi times the number of edges from vi to v2. By the multiplication rule
this equals the number of pairs of edges from v2 to vi and from vi back to v2. But this
equals the number of walks of length 2 that start and end at v2 and pass through vi. Since
this analysis holds for each term of the sum for i = 1, 2, and 3, the sum as a whole equals
the total number of walks of length 2 that start and end at v2:

1 1 + 1.-1 + 2 - 2 1 + + 4 = 6.

More generally, if A is the adjacency matrix of a graph G, the ijth entry of A2 equals
the number of walks of length 2 connecting the ith vertex to the jth vertex of G. Even
more generally, if n is any positive integer, the ijth entry of A' equals the number of walks
of length n connecting the ith and the jth vertices of G.

Theorem 11.3.2

If G is a graph with vertices VI, v2 .  Vm and A is the adjacency matrix of G, then
for each positive integer n,

the ijth entry of Al = the number of walks of length n from vi to vj
for all integers i, j = 1, 2, m.

Proof:

Suppose G is a graph with vertices vI, V2 .. m and A is the adjacency matrix of G.
We use mathematical induction to show that the following property holds for each
positive integer n: For all integers i, j = 1, 2, . . I m,

the ijth entry of A' = the number of walks of length n from vi to vj.
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Show that the property holds for n = 1:

The ijth entry of A' = the ijth entry of A

= the number of edges
connecting vi to vj

= the number of walks of
length I from vi to yj

because Al = A

by definition of adjacency matrix

because a walk of length I
contains a single edge.

Show that for all integers k with k> 1, if the property holds for n = k, then it
holds for n = k +1: Suppose that for some integer k > 1, the ijth entry of Ak = the
number of walks of length k from vi to vj. [This is the inductive hypothesis.] We
must show that the ijth entry of Ak+l = the number of walks of length k + 1 from
Vi to Vj.

Let A = (a11) and Ak = (bij). Since Ak+l = AAk, the ijth entry of Ak+l is
obtained by multiplying the i th row of A by the jth column of Ak:

the ijth entry of Ak+I = alb1 j + ai 2b21 + *- * + aim bi.. 11.3.1

for all i, j = 1, 2, . . , m. Now consider the individual terms of this sum: ai is the
number of edges from vi to vi; and, by inductive hypothesis, bij is the number of
walks of length k from vi to vj. But any edge from vi to vl can be joined with any
walk of length k from vl to vj to create a walk of length k + 1 from vi to vj with v1

as its second vertex. Thus, by the multiplication rule,

ai1bij = [the number of walks of length k + 1 from
=vi to vj that have vl as their second vertex]

More generally, for each integer r = 1, 2.... ml

arbr the number of walks of length k + 1 from
orr vj to Vj that have vr as their second vertex

Since any walk of length k + 1 from vi to vj must have one of the vertices vl, V2,

vm as its second vertex, the total number of walks of length k + 1 from vi to vj equals
the sum in (11.3. 1), which equals the ijth entry of Ak+l . Hence

the ijth entry of Ak+l = the number of walks of length k + 1 from vi to vj.

[as was to be shown].
Since both the basis step and the inductive step have been proved, the given

equality is true for all integers n > 1.

Exercise Set 11.3
1. Find real numbers a, b, and c such that the following are

true.

a. [a+ b a c] = [_ 0]

b c2a b +c] 4 _3
b. ca 2b -a = 1 -2

2. Find the adjacency matrices for the following directed
graphs.
a. e

V I V 2

.v 3

b.

I
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3. Find directed graphs that have the following adjacency ma-
trices:

I1 0 1 2 ~0 1 0 0~
a.[0 0 1 0 b. 2 0 1 0

a.0 2 1 1 b. 1 2 1 0

0 1 1 0- 0 0 1 0-

4. Find adjacency matrices for the following (undirected)
graphs.

a.
V 2 -

Ve 4 3

c. K4, the complete graph on four vertices
d. K2,3, the complete bipartite graph on (2, 3) vertices

5. Find graphs that have the following adjacency matrices.

-1 0 1- 0 2 0~
a. 0 1 2 b. 2 1 0

1 2 0 0 0 1

6. The following are adjacency matrices for graphs. In each
case determine whether the graph is connected by analyzing
the matrix without drawing the graph.

a. 1 I 0] b. 2 0 0 ° °
a[ ! 0] 0 01 lj

7. Suppose that for all i, all the entries in the ith row and ith
column of the adjacency matrix of a graph are 0. What can
you conclude about the graph?

8. Find each of the following products.

a. [2 3 b. [4 -1 7] 2]

9. Find each of the following products.
a 3 _0 1I -1 4]
a.1 -2 0 2 1

[0 -1 ° 2 2]

c. [ 2][2 3]

l0. Let A= I -f1], B -[ [ ], and C= [3 1].

For each of the following, determine whether the indicated
product exists, and compute it if it does.
a. AB b. BA c. A2  d. BC e. CB
f. B2 g. B3 h. C2 i. AC j. CA

VI V2

VI 0 1

V2 1 0

V3 1 2
V 4 0 1

Vl3

2
0
1

V4

01
1°

1

1

Answer the following questions by examining the matrix
and its powers only, not by drawing the graph:
a. How many walks of length 2 are there from v2 to V3?
b. How many walks of length 2 are there from v3 to V4?
c. How many walks of length 3 are there from v1 to V4?
d. How many walks of length 3 are there from v2 to V3 ?

21. Let A be the adjacent matrix for K3, the complete graph on
three vertices. Use mathematical induction to prove that for
each positive integer n, all the entries along the main diag-

b. e,l-\ /- e,

11. Give an example different from that in the text to show
that matrix multiplication is not commutative. That is, find
2 x 2 matrices A and B such that AB and BA both exist but
AB 0 BA.

12. Let 0 denote the matrix [0 ']. Find 2 x 2 matrices A and
B such that A A 0 and B 74 0, but AB = 0.

13. Let 0 denote the matrix [ °]. Find 2 x 2 matrices A and

BsuchthatA 0 B,B A 0,andAB A 0, but BA= 0.

In 14-18 assume that the entries of all matrices are real numbers.

H 14. Prove that if I is the m x m identity matrix and A is any
m x n matrix, then IA = A.

15. Prove that if A is an m x m symmetric matrix, then A2 is
symmetric.

16. Prove that matrix multiplication is associative: If A, B, and
C are any m x k, k x r, and r x n matrices, respectively,
then (AB)C = A(BC).

17. Use mathematical induction to prove that if A is any m x m
matrix, then A"A = AA' for all integers n > 1. (You will
need to use the result of exercise 16.)

18. Use mathematical induction to prove that if A is an m x m
symmetric matrix, then for any integer n > 1, An is also
symmetric.

1 2
19. a. Let A = 1 B 1. Find A 2 and A

3
.

2 1 0

b. Let G be the graph with vertices v,, v2 , and V3 and with
A as its adjacency matrix. Use the answers to part (a) to
find the number of walks of length 2 from vl to V3 and
the number of walks of length 3 from vl to V3 . Do not
draw G to solve this problem.

c. Examine the calculations you performed in answering
part (a) to find five walks of length 2 from v3 to V3 . Then
draw G and find the walks by visual inspection.

20. The following is an adjacency matrix for a graph:
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onal of A' are equal to each other and that all the entries that
do not lie along the main diagonal are equal to each other.

22. a. Draw a graph that has

~0 0 0 1 2-
O 0 0 1 1

0 0 0 2 1
1 1 2 0 0

-2 1 1 0 0-

as its adjacency matrix. Is this graph bipartite? (For a
definition of bipartite, see exercise 37 in Section 11. 1.)

Definition: Given an m x n matrix A whose ijth entry is
denoted aij, the transpose of A is the matrix A' whose ijth
entry is aji, for all i = 1,2,...,m andj = 1,2,...,n.

Note that the first row of A becomes the first column
of At, the second row of A becomes the second column
of At, and so forth. For instance,

if A =[1 2 3],then A! = 022] .

H b. Show that a graph with n vertices is bipartite if, and only
if, for some labeling of its vertices, its adjacency matrix
has the form

[o A]

where A is a k x (n - k) matrix for some integer k such
that 0 < k < n, the top left 0 represents a k x k matrix
all of whose entries are 0, A' is the transpose of A, and
the bottom right 0 represents an (n - k) x (n -k) ma-
trix all of whose entries are 0.

23. a. Let G be a graph with n vertices, and let v and w be
distinct vertices of G. Prove that if there is a walk from
v to w, then there is a walk from v to w that has length
less than or equal to n - 1.

H b. If A = (aij) and B = (bj) are any m x n matrices, the
matrix A + B is the m x n matrix whose ijth entry is
aij + bij foralli = 1, 2, . . , m and j = 1, 2, . . , n. Let
G be a graph with n vertices where n > 1, and let A be
the adjacency matrix of G. Prove that G is connected
if, and only if, every entry of A + A2 + . + An-' is
positive.

11.4 Isomorphisms of Graphs
Thinking is a momentary dismissal of irrelevancies. -R. Buckminster Fuller, 1969

Recall from Section 11.1 that the two drawings shown in Figure 11.4.1 both represent the
same graph: Their vertex and edge sets are identical, and their edge-endpoint functions
are the same.

'-'

V

V4 e3 V3 V5 V2

Figure 11.4.1

Call this graph G. Now consider the graph G' represented in Figure 11.4.2.

u

V4 e5 V5

Figure 11.4.2

Observe that G' is a different graph from G (for instance, in G the endpoints of el are vl
and v2, whereas in G' the endpoints of el are v1 and V3). Yet G' is certainly very similar
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to G. In fact, if the vertices and edges of G' are relabeled by the functions shown in
Figure 11.4.3, then G' becomes the same as G.

Vertices
of G

Vertices
of G'

Edges
of G

Edges
of G'

Figure 11.4.3

Note that these relabeling functions are one-to-one and onto.
Two graphs that are the same except for the labeling of their vertices and edges are

called isomorphic. The word isomorphism comes from the Greek meaning "same form."
Isomorphic graphs are those that have essentially the same form.

.!la

Let G and G' be graphs with vertex sets V(G) and V(G') and edge sets E(G) and
E(G'), respectively. G is isomorphic to G' if, and only if, there exist one-to-one
correspondences g: V(G) -* V(G') and h: E(G) -+ E(G') that preserve the edge-
endpoint functions of G and G' in the sense that for all v E V(G) and e E E(G),

v is an endpoint of e X g(v) is an endpoint of h(e). 11.4.1

In words, G is isomorphic to G' if, and only if, the vertices and edges of G and G' can
be matched up by one-to-one, onto functions such that the edges between corresponding
vertices correspond to each othen

It is common in mathematics to identify objects that are isomorphic. For instance,
if we are given a graph G with five vertices such that each pair of vertices is connected
by an edge, then we may identify G with K5, saying that G is K5 rather than that G is
isomorphic to K5.

Example 11.4.1 Showing That Two Graphs Are Isomorphic

Show that the following two graphs are isomorphic.

e oV 3

e 12

VI - e3

VV
4 4

G

aWI W3

I f2 f5

W5 w4

G'
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Solution To solve this problem, you must find functions g: V (G) -* V (G') and h: E (G) --

E(G') such that for all v E V(G) ande e E(G), v is an endpoint of e if, and only if, g(v) is
an endpoint of h (e). Setting up such functions is partly a matter of trial and error and partly
a matter of deduction. For instance, since e2 and e3 are parallel (have the same endpoints),
h(e2) and h(e3 ) must be parallel also. So h(e2 ) = fi and h(e3 ) = f2 or h(e2 ) = f2 and
h(e3) = fi. Also, the endpoints of e2 and e3 must correspond to the endpoints of fj and
f 2 , and so g(v 3) = wI and g(V4) = W5 or g(V3) = W5 and g(v4 ) = wI.

Similarly, since v, is the endpoint of four distinct edges (el, e7, es, and e4 ), g(v1 )
must also be the endpoint of four distinct edges (because every edge incident on g(vj)
is the image under h of an edge incident on v1 and h is one-to-one and onto). But the
only vertex in G' that has four edges coming out of it is w2, and so g(v1 ) = W2. Now if
g(V3 ) = w1, then since v1 and v3 are endpoints of el in G, g(v1 ) = w2 and g(V3 ) = W

must be endpoints of h (eI) in G'. This implies that h (eI) = f 3 .
By continuing in this way, possibly making some arbitrary choices as you go, you

eventually can find functions g and h to define the isomorphism between G and G'. One
pair of functions (there are several) is the following:

V (G) V IC ) E (G) E (G()
h

U

It is not hard to show that graph isomorphism is an equivalence relation on a set of
graphs; in other words, it is reflexive, symmetric, and transitive. To prove the reflexive
property, it must be shown that any graph is isomorphic to itself. Such an isomorphism
can be defined using the identity functions on the set of vertices and on the set of edges.

To prove that graph isomorphism is symmetric, it must be shown that if a graph G is
isomorphic to a graph G', then G' is isomorphic to G. But this is true because if g and h are
vertex and edge correspondences from G to G' that preserve the edge-endpoint functions,
then g-1 and h-l are vertex and edge correspondences from G' to G that preserve the
edge-endpoint functions. Note that as a consequence of the symmetry property, you can
simply say "G and G' are isomorphic" instead of "G is isomorphic to G"' or "G' is
isomorphic to G."

Finally, to establish that graph isomorphism is transitive, it must be shown that if a
graph G is isomorphic to a graph G' and if G' is isomorphic to G", then G is isomorphic
to G". But this follows from the fact that if g, and h I are vertex and edge correspondences
from G to G' that preserve the edge-endpoint functions of G and G' and g2 and h2 are
vertex and edge correspondences from G' to G" that preserve the edge-endpoint functions
of G' and G", then g2 o g1 and h2 o h are vertex and edge correspondences from G to
G" that preserve the edge-endpoint functions of G and G".
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Example 11.4.2 Finding Representatives of Isomorphism Classes

Find all nonisomorphic graphs that have two vertices and two edges. In other words, find
a collection of representative graphs with two vertices and two edges such that every such
graph is isomorphic to one in the collection.

Solution There are four nonisomorphic graphs that have two vertices and two edges. These
can be drawn without vertex and edge labels because any two labelings give isomorphic
graphs.

(a) (b) (c) (d)

To see that these four drawings show all the nonisomorphic graphs that have two
vertices and two edges, first note whether one of the edges joins the two vertices or not. If
it does, there are two possibilities: The other edge can also join the two vertices (as in (a))
or it can be a loop incident on one of them (as in (b)-it makes no difference which vertex
is chosen to have the loop because interchanging the two vertex labels gives isomorphic
graphs). If neither edge joins the two vertices, then both edges are loops. In this case,
there are only two possibilities: Either both loops are incident on the same vertex (as
in (c)) or the two loops are incident on separate vertices (as in (d)). There are no other
possibilities for placing the edges, so the listing is complete. C

Now consider the question, "Is there a general method to figure out whether graphs G
and G' are isomorphic?" In other words, is there some algorithm that will accept graphs
G and G' as input and produce a statement as to whether they are isomorphic? In fact,
there is such an algorithm. It consists of generating all one-to-one, onto functions from
the set of vertices of G to the set of vertices of G' and from the set of edges of G to the set
of edges of G' and checking each pair to determine whether it preserves the edge-endpoint
functions of G and G'. The problem with this algorithm is that it takes an unreasonably
long time to perform, even on a high-speed computer. If G and G' each have n vertices
and m edges, the number of one-to-one correspondences from vertices to vertices is n! and
the number of one-to-one correspondences from edges to edges is mi!, so the total number
of pairs of functions to check is n! m !. For instance, if m = n = 20, there would be
20! . 20! -5.9 x 106 pairs to check. Assuming that each check takes just I nanosecond,
the total time would be approximately 1.9 x 1020 years!

Unfortunately, there is no more efficient general method known for checking whether
two graphs are isomorphic. However, there are some simple tests that can be used to show
that certain pairs of graphs are not isomorphic. For instance, if two graphs are isomorphic,
then they have the same number of vertices (because there is a one-to-one correspondence
from the vertex set of one graph to the vertex set of the other). It follows that if you
are given two graphs, one with 16 vertices and the other with 17, you can immediately
conclude that the two are not isomorphic. More generally, a property that is preserved by
graph isomorphism is called an isomorphic invariant. For instance, "having 16 vertices"
is an isomorphic invariant: If one graph has 16 vertices, then so does any graph that is
isomorphic to it.
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I. s

A property P is called an isomorphic invariant if, and only if, given any graphs G
and G', if G has property P and G' is isomorphic to G, then G' has property P.

Example 11.4.3 Showing That Two Graph Are Not Isomorphic

Show that the following pairs of graphs are not isomorphic by finding an isomorphic
invariant that they do not share.

a.

G G

b.

H Ho

Solution

a. G has nine edges; G' has only eight.

b. H has a vertex of degree 4; H' does not. U

We prove part (3) of Theorem 11 .4.1 below and leave the proofs of the other parts as
exercises.

Example 11.4.4 Proof of Theorem 11.4.1, Part (3)

Prove that if G is a graph that has a vertex of degree k and G' is isomorphic to G, then G'
has a vertex of degree k.

Theorem 11.4.1

Each of the following properties is an invariant for graph isomorphism, where n, m,
and k are all nonnegative integers:

1. has n vertices; 6. has a simple circuit of length k;

2. has m edges; 7. has m simple circuits of length k;

3. has a vertex of degree k; 8. is connected;

4. has m vertices of degree k; 9. has an Euler circuit;

5. has a circuit of length k; 10. has a Hamiltonian circuit.
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Proof:

Suppose G and G' are isomorphic graphs and G has a vertex v of degree k, where k is a
nonnegative integer. [We must show that G' has a vertex of degree k.] Since G and G'
are isomorphic, there are one-to-one, onto functions g and h from the vertices of G to the
vertices of G' and from the edges of G to the edges of G' that preserve the edge-endpoint
functions in the sense that for all edges e and all vertices u of G, u is an endpoint of e if,
and only if, g(u) is an endpoint of h(e). An example for a particular vertex v is shown
below.

Degree u=3 +2-2=7 Degreeg(v)=3+2 2=7

Let el, e2 . em be the m distinct edges that are incident on a vertex v in G, where
m is a nonnegative integer. Then h(el), h(e2 ),...,h(em) are in distinct edges that are
incident on g(v) in G'. [The reason why h(el), h(e2), .. ., h(em) are distinct is that h is
one-to-one and el, e2 , . . , em are distinct. And the reason why h(el), h(e2 ), . . , h(em)
are incident on g(v) is that g and h preserve the edge-endpointfunctions of G and G' and
el, e2, . . ., em are incident on v.]

Also, there are no edges incident on g(v) other than the ones that are images under g of
edges incident on v [because g is onto and g and h preserve the edge-endpointfunctions
of G and G']. Thus the number of edges incident on v equals the number of edges incident
on g(v).

Finally, an edge e is a loop at v if, and only if, h(e) is a loop at g(v), so the number
of loops incident on v equals the number of loops incident on g(v). [For since g and h
preserve the edge-endpointfunctions of G and G', a vertex w is an endpoint of e in G if
and only if g(w) is an endpoint of h(e) in G'. Itfollows that v is the only endpoint of e
in G if and only if g(v) is the only endpoint of h(e) in G'.]

Now the degree of v, which is k, equals the number of edges incident on v plus the
number of edges incident on v that are loops (since each loop contributes 2 to the degree
of v). But we have already shown that the number of edges incident on v equals the
number of edges incident on g(v) and that the number of loops incident on v equals the
number of loops incident on g(v). Hence g(v) also has degree k. H

Graph Isomorphism for Simple Graphs
When graphs G and G' are both simple, the definition of G being isomorphic to G' can
be written without referring to the correspondence between the edges of G and the edges
of G'.

I . .'

If G and G' are simple graphs, then G is isomorphic to G' if, and only if, there exists
a one-to-one correspondence g from the vertex set V(G) of G to the vertex set V(G')
of G' that preserves the edge-endpoint functions of G and G' in the sense that for all
vertices u and v of G,

{u,v}isanedgeinGG .f {g(u),g(v)}isanedgeinG'.

-

I1I.4.2
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Example 11.4.5 Isomorphism of Simple Graphs

Are the two graphs shown below isomorphic? If so, define an isomorphism.

b

a C

d

G

x

w Y

z

G'

Solution Yes. Define f: V(G) -- V(G') by the arrow diagram shown below.

V (G) V(G')

Then g is one-to-one and onto by inspection. The fact that g preserves the edge-endpoint
functions of G and G' is shown by the following table:

Exercise Set 11.4
For each pair of graphs G and G' in 1-5, determine whether G
and G' are isomorphic. If they are, give functions g: V (G) --

V(G') and h: E(G) -* E(G') that define the isomorphism. If
they are not, give an isomorphic invariant that they do not share.

1. VI V4

WI

3.

4.

.

G G

W3

W2

w 4 W6

WI

G'

VI

V 5  V 4

G

W2

W f 2 A W3

f3  f
ff4

W 5  W 4

f7

G'

Edges of G Edges of G'

{a, b} {y, w= {g(a), g(b))

{a, c} {y, x} = {g(a), g(c)1

{a, d} fy, zi = {g(a), g(d)i

{c, d} {x, z} = {g(c), g(d)l

G

2.

VI

e 5

G
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5.

t V3

f2\tW2

fl f3

WI f6  W3

W5 W4

G G

For each pair of simple graphs G and G' in 6-13, determine
whether G and G' are isomorphic. If they are, give a function
g: V (G) -* V (G') that defines the isomorphism. If they are not,
give an isomorphic invariant that they do not share.

6. WI w2

VI V2  V3  V4  , ,
4 * * * W 3

G G

7. VI V2

V4 1V3

G

8.

W4 W3

G'
WIN

zGx

y

G

9.

a b

fe Ed

G'

10.

G

11. b

a A C

f d

e

G G'

12.
a b

h

d c

G

13.
ab
ef

d c

G

U

G'

U

G'

14. Draw all nonisomorphic simple graphs with three vertices.

15. Draw all nonisomorphic simple graphs with four vertices.

16. Draw all nonisomorphic graphs with three vertices and no
more than two edges.

17. Draw all nonisomorphic graphs with four vertices and no
more than two edges.

H 18. Draw all nonisomorphic graphs with four vertices and three
edges.

19. Draw all nonisomorphic graphs with six vertices, all having
degree 2.

20. Draw four nonisomorphic graphs with six vertices, two of
degree 4 and four of degree 3.

Prove that each of the properties in 21-29 is an invariant for
graph isomorphism. Assume that n, m, and k are all nonnega-
tive integers.

21. Has n vertices 22. Has m edges

23. Has a circuit of length k

24. Has a simple circuit of length k

H 25. Has m vertices of degree k

26. Has m simple circuits of length k

H 27. Is connected 28. Has an Euler circuit

29. Has a Hamiltonian circuit

30. Show that the following two graphs are not isomorphic by
supposing they are isomorphic and deriving a contradiction.

el e2  e3  e5  e6

IT v2 V3 e4 V4 V5 V6

G

f 2 f 3  .J& A -

WI W2  W3  W4 f5 W5  W6

G
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11.5 Trees
A fool sees not the same tree that a wise man sees. -William Blake, 1757-1827

If a friend asks what you are studying and you answer "trees," your friend is likely to
infer you are taking a course in botany. But trees are also a subject for mathematical
investigation. In mathematics, a tree is a connected graph that does not contain any
circuits except trivial ones. (Recall that a trivial circuit is one that consists of a single
vertex.) Despite the formality of the definition, mathematical trees are similar in certain
ways to their botanical namesakes.

I . ,.

A graph is said to be circuit-free if, and only if, it has no nontrivial circuits. A graph
is called a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph
that consists of a single vertex, and an empty tree is a tree that does not have any
vertices or edges. A graph is called a forest if, and only if, it is circuit-free.

Example 11.5.1 Trees and Non-Trees

All the graphs shown in Figure 11.5.1 are trees, whereas those in Figure 11.5.2 are not.

(a) (b) (c) (d)

Figure 11.5.1 Trees. All the graphs in (a)-(d) are connected and circuit-free.

(a) (b) (c) (d)

Figure 11.5.2 Non-Trees. The graphs in (a), (b), and (c) all have circuits, and the graph in (d) is not connected. X

Examples of Trees
The following examples illustrate just a few of the many and varied situations in which
mathematical trees arise.

0 1

. . .

I

I
0

1
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Example 11.5.2 A Decision Tree

During orientation week, a college administers an exam to all entering students to de-
termine placement in the mathematics curriculum. The exam consists of two parts, and
placement recommendations are made as indicated by the tree shown in Figure 11.5.3.
Read the tree from left to right to decide what course should be recommended for a student
who scored 9 on part I and 7 on part II.

Figure 11.5.3

Solution Since the student scored 9 on part I, the score on part II is checked. Since it is
greater than 6, the student should be advised to take math 110. l

Example 11.5.3 A Parse Tree

In the last 30 years, Noam Chomsky and others have developed new ways to describe the
syntax (or grammatical structure) of natural languages such as English. As is discussed
briefly in Chapter 12, this work has proved useful in constructing compilers for high-level
computer languages. In the study of grammars, trees are often used to show the derivation
of grammatically correct sentences from certain basic rules. Such trees are called syntactic
derivation trees or parse trees. A very small subset of English grammar, for example,
specifies that

I. a sentence can be produced by writing first a noun phrase and then a verb phrase;

2. a noun phrase can be produced by writing an article and then a noun;

3. a noun phrase can also be produced by writing an article, then an adjective, and then a
noun;

4. a verb phrase can be produced by writing a verb and then a noun phrase;

5. one article is "the";

6. one adjective is "young";

7. one verb is "caught";

8. one noun is "man";

9. one (other) noun is "ball."
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The rules of a grammar are called productions. It is customary to express them using
the shorthand notation illustrated below. This notation, introduced by John Backus in
1959 and modified by Peter Naur in 1960, was used to describe the computer language
Algol and is called the Backus-Naur notation. In the notation, the symbol I represents
the word or; and angle brackets ( ) are used to enclose terms to be defined (such as a
sentence or noun phrase).

5 1. (sentence) -* (noun phrase) (verb phrase)

2, 3. (noun phrase) -+ (article) (noun) { (article) (adjective) (noun)
A /-4A-eh-nr-\ /lrh/r

Wcks--~ \V-Duj \nuun pirasejSacks
-1998) 5. (article) the

6. (adjective) young

7, 8. (noun) -* man I ball

9. (verb) -* caught

The derivation of the sentence "The young man caught the ball" from the above rules
is described by the tree shown below.

(sentence)

(noun phrase) (verb phrase)

laur I
928) (article) (adjective) (noun) (verb) (noun phrase)

the young man caught (article) (noun)

the ball

In the study of linguistics, syntax refers to the grammatical structure of sentences,
and semantics refers to the meanings of words and their interrelations. A sentence can be
syntactically correct but semantically incorrect, as in the nonsensical sentence "The young
ball caught the man," which can be derived from the rules given above. Or a sentence
can contain syntactic errors but not semantic ones, as, for instance, when a two-year-old
child says, "Me hungry!" U

Example 11.5.4 Structure of Hydrocarbon Molecules

The German physicist Gustav Kirchhoff (1824-1887) was the first to analyze the behavior
of mathematical trees in connection with the investigation of electrical circuits. Soon after
(and independently), the English mathematician Arthur Cayley used the mathematics of
trees to enumerate all isomers for certain hydrocarbons. Hydrocarbon molecules are
composed of carbon and hydrogen; each carbon atom can form up to four chemical bonds
with other atoms, and each hydrogen atom can form one bond with another atom. Thus
the structure of hydrocarbon molecules can be represented by graphs such as those shown
following, in which the vertices represent atoms of hydrogen and carbon, denoted H and
C, and the edges represent the chemical bonds between them.

John b
(1924-

Peter A
(born ]
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H H H H H H H

H C C C- C H H C C C H

H H H H H H-C-H H

I
H

Butane Isobutane

Note that each of these graphs has four carbon atoms and ten hydrogen atoms, but the
Ea two graphs show different configurations of atoms. When two molecules have the same

chemical formulae (in this case C4H10) but different chemical bonds, they are called
isomers.

Certain saturated hydrocarbon molecules contain the maximum number of hydrogen
atoms for a given number of carbon atoms. Cayley showed that if such a saturated
hydrocarbon molecule has k carbon atoms, then it has 2k + 2 hydrogen atoms. The first
step in doing so is to prove that the graph of such a saturated hydrocarbon molecule is a
tree. Prove this using proof by contradiction. (You are asked to finish the derivation of
Cayley's result in exercise 4 at the end of this section.)

Solution Suppose there is a hydrocarbon molecule that contains the maximum number of
hydrogen atoms for the number of its carbon atoms and whose graph G is not a tree. [We
must derive a contradiction.] Since G is not a tree, G is not connected or G has a nontrivial
circuit. But the graph of any molecule is connected (all the atoms in a molecule must be
connected to each other), and so G must have a nontrivial circuit. Now the edges of the
circuit can link only carbon atoms because every vertex of a circuit has degree at least 2
and a hydrogen atom vertex has degree 1. Delete one edge of the circuit and add two new
edges to join each of the newly disconnected carbon atom vertices to a hydrogen atom
vertex as shown below.

C

_C C H

Delete A dd_/

Rest of circuit ' --

The resulting molecule has two more hydrogen atoms than the given molecule, but the
number of carbon atoms is unchanged. This contradicts the supposition that the given
molecule has the maximum number of hydrogen atoms for the given number of carbon
atoms. Hence the supposition is false, and so G is a tree. U

Characterizing Trees
There is a somewhat surprising relation between the number of vertices and the number
of edges of a tree. It turns out that if n is a positive integer, then any tree with n vertices
(no matter what its shape) has n - 1 edges. Perhaps even more surprisingly, a partial
converse to this fact is also true-namely, any connected graph with n vertices and n -I
edges is a tree. It follows from these facts that if even one new edge (but no new vertex)
is added to a tree, the resulting graph must contain a nontrivial circuit. Also, from the

Arthur Cayley
(1821-1895)
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fact that removing an edge from a circuit does not disconnect a graph, it can be shown
that every connected graph has a subgraph that is a tree. It follows that if n is a positive
integer, any graph with n vertices and fewer than n - 1 edges is not connected.

A small but very important fact necessary to derive the first main theorem about trees
is that any nontrivial tree must have at least one vertex of degree 1.

Lemma 11.5.1

Any tree that has more than one vertex has at least one vertex of degree 1.

A constructive way to understand this lemma is to imagine being given a tree T with
more than one vertex. You pick a vertex v at random and then search outward along a
path from v looking for a vertex of degree 1. As you reach each new vertex, you check
whether it has degree 1. If it does, you are finished. If it does not, you exit from the
vertex along a different edge from the one you entered on. Because T is circuit-free, the
vertices included in the path never repeat. And since the number of vertices of T is finite,
the process of building a path must eventually terminate. When that happens, the final
vertex v' of the path must have degree 1. This process is illustrated below.

Start here Search outward from u to
ertex 'of degree 1.

This discussion is made precise in the following proof.

Proof:

Let T be a particular but arbitrarily chosen tree that has more than one vertex, and
consider the following algorithm:

Step 1: Pick a vertex v of T and let e be an edge incident on v.
[If there were no edge incident on v, then v would be an isolated vertex. But
this would contradict the assumption that T is connected (since it is a tree)
and has at least two vertices.]

Step 2: While deg(v) > 1, repeat steps 2a, 2b, and 2c:

Step 2a: Choose e' to be an edge incident on v such that e' 0 e. [Such an edge
exists because deg(v) > I and so there are at least two edges incident
on v.]

Step 2b: Let v' be the vertex at the other end of e' from v. [Since T is a tree, e'
cannot be a loop and therefore e' has two distinct endpoints.]

Step 2c: Let e = e' and v = v'. [This is just a renaming process in preparation
for a repetition of step 2.1

The algorithm just described must eventually terminate because the set of vertices
of the tree T is finite and T is circuit-free. When it does, a vertex v of degree I will
have been found.
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Using Lemma 11.5.1 it is not difficult to show that, in fact, any tree that has more than
one vertex has at least two vertices of degree 1. This extension of Lemma 11.5.1 is left to
the exercises at the end of this section.

Let T be a tree. If T has only one or two vertices, then each is called a terminal
vertex. If T has at least three vertices, then a vertex of degree 1 in T is called a
terminal vertex (or a leaf), and a vertex of degree greater than 1 in T is called an
internal vertex (or a branch vertex).

Example 11.5.5 Terminal and Internal Vertices

Find all terminal vertices and all internal vertices in the following tree:

use v, V2

V8 1 V4

V7 V5

Solution The terminal vertices are vo, V2, v 4 , V5, V7, and v8. The internal vertices are V6, VI,

and V3. U

The following is the first of the two main theorems about trees:

Theorem 11.5.2

For any positive integer n, any tree with n vertices has n - 1 edges.

The proof is by mathematical induction. To do the inductive step, you assume the
theorem is true for a positive integer k and then show it is true for k + 1. Thus you assume
you have a tree T with k + 1 vertices, and you must show that T has (k + 1) - I = k
edges. As you do this, you are free to use the inductive hypothesis that any tree with k
vertices has k -I edges. To make use of the inductive hypothesis, you need to reduce
the tree T with k + 1 vertices to a tree with just k vertices. But by Lemma 11.5.1, T has
a vertex v of degree 1, and since T is connected, v is attached to the rest of T by a single
edge e as sketched below.

T.. V

Rest of T
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Now if e and v are removed from T, what remains is a tree T' with (k + 1)-I = k
vertices. By inductive hypothesis, then, T' has k -I edges. But the original tree T has
one more vertex and one more edge than T'. Hence T must have (k - I) + I = k edges,
as was to be shown. A formal version of this argument is given below.

Proof (by mathematical induction):

Let the property P (n) be the sentence

Any tree with n vertices has n - I edges.

We use mathematical induction to show that this property is true for all integers n > 1.

Show that the property is true for n = 1: Let T be any tree with one vertex. Then
T has zero edges (since it contains no loops). But 0 = I- 1, so the property is true
for n = 1.

Show that for all integers k > 1, if the property is true for k then it is true for
k + 1: Suppose k is a positive integer and the property is true for k. In other
words, suppose that any tree with k vertices has k - 1 edges. [This is the induc-
tive hypothesis.] We must show that the property is true for k + 1. In other words,
we must show that any tree with k + I vertices has (k + 1) - I = k edges.

Let T be a particular but arbitrarily chosen tree with k + I vertices. [We must
show that T has k edges.] Since k is a positive integer, (k + 1) > 2, and so T has
more than one vertex. Hence by Lemma 11.5.1, T has a vertex v of degree 1. Also,
since T has more than one vertex, there is at least one other vertex in T besides v.
Thus there is an edge e connecting v to the rest of T. Define a subgraph T' of T so
that

V(T') = V(T) - {v}

E(T') - E(T) -{e.

Then

1. The number of vertices of T' is (k + 1 )-I = k.

2. T' is circuit-free (since T is circuit-free, and removing an edge and a vertex cannot
create a circuit).

3. T' is connected (see exercise 24 at the end of this section).

Hence, by the definition of tree, T' is a tree. Since T' has k vertices, by inductive
hypothesis

the number of edges of T' = (the number of vertices of T') -I

k - 1.

But then

the number of edges of T - (the number of edges of T') + I

=(k -) + I

= k.

[This is what was to be shown.]
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Example 11.5.6 Determining Whether a Graph Is a Tree

A graph G has ten vertices and twelve edges. Is it a tree?

Solution No. By Theorem 11.5.2, any tree with ten vertices has nine edges, not twelve.

.

Example 11.5.7 Finding Nonisomorphic Trees

Find all nonisomorphic trees with four vertices.

Solution By Theorem 11.5.2, any tree with four vertices has three edges. Thus the total
degree of a tree with four vertices must be 6. Also, every tree with more than one vertex has
at least two vertices of degree I (see the comment following Lemma 11.5.1 and exercise
29 at the end of this section). Thus the following combinations of degrees for the vertices
are the only ones possible:

1,1, 1,3 and 1,1,2,2.

There are nonisomorphic trees corresponding to both of these possibilities, as shown
below.

and

To prove the second major theorem about trees, we need another lemma.

Lemma 11.5.3

If G is any connected graph, C is any nontrivial circuit in G, and one of the edges of
C is removed from G, then the graph that remains is connected.

Essentially, the reason why Lemma 11.5.3 is true is that any two vertices in a circuit
are connected by two distinct paths. It is possible to draw the graph so that one of these
goes "clockwise" and the other goes "counterclockwise" around the circuit. For example,
in the circuit shown below, the clockwise path from v2 to V3 is

V2e 3 V3

and the counterclockwise path from v2 to V3 is

v 2 e2 vIel voe6 v5 e5 v 4 e4v 3 .

V2  e3  V3

2  Clockwise

V1  V 4

e Counterclockwise e5

VO e6 V
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Proof:

Suppose G is a connected graph, C is a circuit in G, and e is an edge of C. Form a
subgraph G' of G by removing e from G. Thus

V(G') = V(G)

E(G') = E(G) - (e}.

We must show that G' is connected. [To show a graph is connected, we must show
that if u and w are any vertices of the graph, then there exists a walk in G'from u to
w.] Suppose u and w are any two vertices of G'. [We mustfind a walkfrom u to w.]
Since the vertex sets of G and G' are the same, u and w are both vertices of G, and
since G is connected, there is a walk W in G from u to w.

Case I (e is not an edge of W): The only edge in G that is not in G' is e, so in this
case W is also a walk in G'. Hence u is connected to w by a walk in G'.

Case 2 (e is an edge of W): In this case the walk W from u to w includes a section
of the circuit C that contains e. Let C be denoted as follows:

C: voelvle2v2 . env,, (= vo).

Now e equals one of the edges of C, so, to be specific, let e ek. Then the walk W
contains either the sequence

Vk - l ek Vk or VkekVk-l -

If W contains Vk-l ekVk, connect vk-1 to Vk by taking the "counterclockwise" walk
W' defined as follows:

W: Vk-lek-lVk-2 .voev- 1. ek+lVk.

An example showing how to obtain W' from W is given in Figure 11.5.4.

Figure 11.5.4 An Example of a Walk from Vk-l to Vk That Does Not Include Edge ek

If W contains Vkek Vk- 1, connect Vk to Vk -1 by taking the "clockwise" walk W" defined
as follows:

W": Vkek+lvk+l ... Vnel vi e2 . ek-lVk- I

Now patch either W' or W" into W to form a new walk from u to w. For instance,
to patch W' into W, start with the section of W from u to Vk- 1, then take W' from
vk-1 to vk, and finally take the section of W from Vk to w. If this new walk still
contains an occurrence of e, just repeat the process above until all occurrences are
eliminated. [This must happen eventually since the number of occurrences of e in G
is finite.] The result is a walk from u to w that does not contain e and hence is a walk
in G'.

The arguments above show that both in case I and in case 2 there is a walk in G'
from u to w. Since the choice of u and w was arbitrary, G' is connected.

k
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The second major theorem about trees is modified converse to Theorem 11.5.2.

Theorem 11.5.4 is not a full converse of Theorem 11.5.2. Although it is true that every
connected graph with n vertices and n - 1 edges (where n is a positive integer) is a tree,
it is not true that every graph with n vertices and n - I edges is a tree.

Example 11.5.8 A Graph with n Vertices and n - 1 Edges That Is Not a Tree

Give an example of a graph with five vertices and four edges that is not a tree.

Solution By Theorem 11.5.4, such a graph cannot be connected. One example of such an
unconnected graph is shown below.

VI

V2 e3 V3

e 4

V5 .

Rooted Trees
An outdoor tree is rooted and so is the kind of family tree that shows all the descendants of
one particular person. The terminology and notation of rooted trees blends the language
of botanical trees and that of family trees. In mathematics, a rooted tree is either an empty
tree or a tree in which one vertex has been distinguished from the others and is designated
the root. Given any other vertex v in the tree, there is a unique path from the root to v.
(After all, if there were two distinct paths, a circuit could be constructed.) The number
of edges in such a path is called the level of v, and the height of the tree is the length of
the longest such path. (The height of the empty tree is defined to be 0.) It is traditional in
drawing rooted trees to place the root at the top (as is done in family trees) and show the
branches descending from it.

Theorem 11.5.4

For any positive integer n, if G is a connected graph with n vertices and n - 1 edges,
then G is a tree.

Proof:

Let n be a positive integer and suppose G is a particular but arbitrarily chosen graph
that is connected and has n vertices and n - 1 edges. [We must show that G is a tree.
Now a tree is a connected, circuit-free graph. Since we already know G is connected,
it suffices to show that G is circuit-free.] Suppose G is not circuit-free. That is,
suppose G has a nontrivial circuit C. [We must derive a contradiction.] By Lemma
11.5.3, an edge of C can be removed from G to obtain a graph G' that is connected.
If G' has a nontrivial circuit, then repeat this process: Remove an edge of the circuit
from G' to form a new connected graph. Continue repeating the process of removing
edges from circuits until eventually a graph G" is obtained that is connected and is
circuit-free. By definition, G" is a tree. Since no vertices were removed from G to
form G", G" has n vertices just as G does. Thus, by Theorem 11,5.2, G" has n - 1
edges. But the supposition that G has a nontrivial circuit implies that at least one
edge of G is removed to form G". Hence G" has no more than (n - 1) - 1 = n - 2
edges, which contradicts its having n - 1 edges. So the supposition is false. Hence
G is circuit-free, and therefore G is a tree [as was to be shown].
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I. IT-91 II

A rooted tree is a tree in which one vertex is distinguished from the others and is
called the root. The level of a vertex is the number of edges along the unique path
between it and the root. The height of a rooted tree is the maximum level to any
vertex of the tree. Given the root or any internal vertex v of a rooted tree, the children
of v are all those vertices that are adjacent to v and are one level farther away from
the root than v. If w is a child of v, then v is called the parent of w, and two vertices
that are both children of the same parent are called siblings. Given vertices v and w,
if v lies on the unique path between w and the root, then v is an ancestor of w and
w is a descendant of v.

These terms are illustrated in Figure 11.5.5.

v is a child of u.
u is the parent of v.
v and w are siblings.

Vertices in the enclosed region
are descendants of u, which
is an ancestor of each.

Figure 11.5.5 A Rooted Tree

Example 11.5.9 Rooted Trees

Consider the tree with root vo shown below.

a. What is the level of V5 ?

c. What is the height of this rooted tree?

e. What is the parent of V2?

g. What are the descendants of v3?

b. What is the level of vo?

d. What are the children of v3?

f. What are the siblings of vg?

V7 V 8 V9 V10

Solution

a. 2 b. 0 c. 3 d. v5 and v6  e. yo f v7 and v9  g v5, v6, vIO
N

-- Level O

- - Level I

Level 2

---- Level 3

- - -Level 4
I

I I
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Note that in the tree with root vo shown below, vl has level 1 and is the child of vo,
and both vo and v1 are terminal vertices.

Binary Trees
When every vertex in a rooted tree has at most two children and each child is designated
either the (unique) left child or the (unique) right child, the result is a binary tree.

I .I a*;li W . \R,

A binary tree is a rooted tree in which every parent has at most two children. Each
child in a binary tree is designated either a left child or a; right cil (but not both),
and every parent has at most one left child and one right child. A fuil binary tree is
a binary tree in which each parent has exactly two children.

Given any parent v in a binary tree T, the left subtrenaofrv is the binay tree
whose root is the left child of v, whose vertices consists o f v and all
its descendants, and whose edges consist of all those edges ofT onect the
vertices of the left subtree. The right subtree of v is defined anlog o s l

These terms are illustrated in Figure 1 1.5.6.

v is the left
child of u. \

x is the right
child of w.

\1. 1

/
Left subtree of iv

Figure 11.5.6 A Binary Tree

Right subtree of w

Example 11.5.10 Representation of Algebraic Expressions

Binary trees are used in computer science to represent algebraic expressions with arbi-
trary nesting of balanced parentheses. For instance, the following (labeled) binary tree
represents the expression a/b: The operator is at the root and acts on the left and right
children of the root in left-right order.

I
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More generally, the binary tree shown below represents the expression a/(c + d). In
such a representation, the internal vertices are arithmetic operators, the terminal vertices
are variables, and the operator at each vertex acts on its left and right subtrees in left-right
order.

Draw a binary tree to represent the expression ((a - b) c) + (d/e).

Solution

U

One interesting theorem about binary trees says that if you know the number of internal
vertices of a full binary tree, then you can calculate the total number of vertices and also
the number of terminal vertices, and conversely. More specifically, a full binary tree with
k internal vertices has a total of 2k + 1 vertices of which k + 1 are terminal vertices.

kis oietegr and T is a full binary tree with k internal vertices, then T
haotlo2k+ vertices andfhas k + 1 terminal vertices.

Proof:

Suppose k is a positive integer and T is a full binary tree with k internal vertices.
Observe that the set of all vertices of T can be partitioned into two disjoint subsets:
the set of all vertices that have a parent and the set of all vertices that do not have
a parent. Now there is just one vertex that does not have a parent, namely the root.
Also, since every internal vertex of a full binary tree has exactly two children, the
number of vertices that have a parent is twice the number of parents, or 2k, since
each parent is an internal vertex. Hence

the total number the number of the number of
of vertices of T vertices that + vertices that do

have a parent not have a parent

= 2k + 1.

continued on page 718
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Example 11.5.11 Determining Whether a Certain Full Binary Tree Exists

Is there a full binary tree that has 10 internal vertices and 13 terminal vertices?

Solution No. ByTheorem 11.5.5, afullbinary treewith lO internal vertices has 10 + I = 11
terminal vertices, not 13. U

Another interesting theorem about binary trees specifies the maximum number of
terminal vertices of a binary tree of a given height. Specifically, the maximum number of
terminal vertices of a binary tree of height h is 2/i. Another way to say this is that a binary
tree with t terminal vertices has height of at least log2 t.

Theorem 11.5.6

If T is a binary tree that has t terminal vertices and height h, then

t < 2.

Equivalently,

log 2 t < h.

Proof:

We will use the strong form of mathematical induction on h to prove the truth of the
following statement:

For all integers h > 0, if T is any binary tree of height h, then the
number of terminal vertices of T is at most 2".

Let P (h) be the property

If T is any binary tree of height h, then the number of terminal vertices
of T is at most 2h.

But it is also true that the total number of vertices of T equals the number of internal
vertices plus the number of terminal vertices. ThusEthe total number] F [the number of 1 [the number of

[of vertices of T] Linternal vertices] + [terminal vertices]

-k [the number of 1
- k + terminal vertices

Now equate the two expressions for the total number of vertices of T:

2k + I = k + [the number of 1
terminal vertices]

Solving this equation gives

the number of 1
terminal vertices] (2k + 1)-k = k + 1.

Thus the total number of vertices is 2k + 1 and the number of terminal vertices is
k + 1 [as was to be shown].
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To go by strong induction, we will first show that the property is true for h = 0.
Second, we will show that if the property is true for all nonnegative integers k < h,
then it is true for h.

The property is true for h = 0: We must show that if T is any binary tree of height
0, then the number of terminal vertices of T is at most 20. Suppose T is a tree of
height 0. Then T is the empty tree or T consists of a single vertex (the root) only.
Let t be the number of terminal vertices of T. In the case where T is the empty tree,
t = 0 and h = 0. Since 0 < 20, then t < 2h. In the case were T consists of a single
vertex, t = 1 and h = 0. Since I - 20, then in this case also t < 2h. Hence in either
case t < 2h [as was to be shown].

If h > I and the property is true for all nonnegative integers k < h, then it is true
for h: Suppose h > I is an integer and for all nonnegative integers k < h, P(k) is
true. In other words, suppose that for all integers k < h, any binary tree of height k
has at most 2 k terminal vertices.

We must show that P(h) is true. In other words, we must show that any binary
tree of height h has at most 2 h terminal vertices.

Let T be a binary tree of height h and root v. Since h > 1, v has at least one
child.

Case I (v has only one child): In this case we may assume without loss of generality
that v's child is a left child and denote it by VL. Let TL be the left subtree of v. Then
VL is the root of TL. (This situation is illustrated in Figure 11.5.7.) Because v has
only one child, v is itself a terminal vertex, so the total number of terminal vertices
in T equals the number of terminal vertices in TL plus 1. Thus if tL is the number of
terminal vertices in TL, then t = tL + 1.

Now by inductive hypothesis, tL < 2h- 1 because the height of TL is h - 1, one
less than the height of T. Also, because v has a child, h > 1 and so 2h-1 > 20 1.
Therefore,

t =tL + I < 2 h ±1 + < 2 h + 2 h = 2h

v - - - - - - - - - - - --Level O

-- , - -- -- - ------ Level I

- - - - - - - - - - - - -Level 2

,--- - -- ---- - - -- -- Level 3

Left subtree TL

Figure 11.5.7 A Binary Tree Whose Root Has One Child

Case 2 (v has two children): In this case, v has both a left child, VL, and a right child,
VR, and VL, and VR are roots of a left subtree TL and a right subtree TR. Note that
TL and TR are binary trees because T is a binary tree. (This situation is illustrated in
Figure 11.5.8.)

continued on page 720
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V
--- Levelti

- v -'---- Levell1

- - - -' - -- - - Level 2

- - ---- Level 3

l i- -\ -r- ------ Level 4

Left subtree TL Right subtree TR

Figure 11.5.8 A Binary Tree Whose Root Has Two Children

Now VL and VR are the roots of the left and right subtrees of v, denoted TL and TR,

respectively. Note that TL and TR are binary trees because T is a binary tree. Let hL

and hR be the heights of TL and TR, respectively. Then hL < h - I and hR < h -1
since T is obtained by joining TL and TR and adding a level. Let tL and tR be the

numbers of terminal vertices of TL and TR, respectively. Then, since both TL and TR
have heights less than h, by inductive hypothesis

tL < 2hL and tR < 2hR.

But the terminal vertices of T consist exactly of the terminal vertices of TL together

with the terminal vertices of TR. Therefore,

t = tL + tR < 2 hL + 2hR by inductive hypothesis
sincehL < h-I andhR < h- I

2 t <2h- + 2 h-I

Xt<' 2(2 h-)

=, t< 2h by basic algebra.

Thus the number of terminal vertices is at most 2h [as was to be shown].
Since both the basis step and the inductive step have been proved, the first version

of the theorem is proved.

The equivalent inequality log 2 t < h follows immediately from the fact that the

logarithmic function with base 2 is increasing and from the definition of logarithm,

for if

ht < 2,

then applying the logarithm with base 2 function to both sides gives

log2 t < log2(2 h).

It follows from the definition of logarithm that log2 (2 h) = h [because 1og 2 (2 h) is the

exponent to which 2 must be raised to obtain 2 h] Hence

lg 2 t < h

[as was to be shown].

Example 11.5.12 Determining Whether a Certain Binary Tree Exists

Is there a binary tree that has height 5 and 38 terminal vertices?

i / \
-~ I I

I I
\
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Solution No. By Theorem 11.5.6, any binary tree T with height 5 has at most 25 = 32
terminal vertices, so such a tree cannot have 38 terminal vertices. U

From Theorem 11.5.6 it can be deduced that any algorithm to sort a set of n data
items has worst-case order of at least n 1og 2 n. This result is obtained by analyzing a
decision tree whose terminal vertices are all the n! arrangements of the set to be sorted.
The height of this tree is the minimum number of operations needed to sort the set. By
Theorem 11.5.6 this height is at least log 2(n!). But log2(n!) > M(n 1og 2 n), where M is
a positive constant (see exercise 49 of Section 9.4). It follows that the worst-case order
for an algorithm to sort the set cannot be less than n log 2 n.

Exercise Set 11.5
1. Read the tree in Example 11.5.2 from left to right to answer

the following questions:
a. What course should a student who scored 12 on part I

and 4 on part II take?
b. What course should a student who scored 8 on part I and

9 on part II take?

2. Draw trees to show the derivations of the following sen-
tences from the rules given in Example 11.5.3.
a. The young ball caught the man.
b. The man caught the young ball.

H 3. What is the total degree of a tree with n vertices? Why?

4. Let G be the graph of a hydrocarbon molecule with the
maximum number of hydrogen atoms for the number of its
carbon atoms.
a. Draw the graph of G if G has three carbon atoms and

eight hydrogen atoms.
b. Draw the graphs of three isomers of C5H1 2.
c. Use Example 11.5.4 and exercise 3 to prove that if the

vertices of G consist of k carbon atoms and m hydrogen
atoms, then G has a total degree of 2k + 2m -2.

H d. Prove that if the vertices of G consist of k carbon atoms
and m hydrogen atoms, then G has a total degree of
4k + m.

e. Equate the results of (c) and (d) to prove Cayley's re-
sult that a saturated hydrocarbon molecule with k carbon
atoms and a maximum number of hydrogen atoms has
2k + 2 hydrogen atoms.

H 5. Extend the argument given in the proof of Lemma 11.5.1 to
show that a tree with more than one vertex has at least two
vertices of degree 1.

6. If graphs are allowed to have an infinite number of vertices
and edges, then Lemma 11.5.1 is false. Give a counterex-
ample that shows this. In other words, give an example of
an "infinite tree" (a connected, circuit-free graph with an
infinite number of vertices and edges) that has no vertex of
degree 1.

7. Find all terminal vertices and all internal vertices for the
following trees.
a. V2

V 5

V3

V 6

V7

b. 1 V2

V6  VS

In each of 8-21, either draw a graph with the given specifications
or explain why no such graph exists.

8. Tree, nine vertices, nine edges

9. Graph, connected, nine vertices, nine edges

10. Graph, circuit-free, nine vertices, six edges

11. Tree, six vertices, total degree 14

12. Tree, five vertices, total degree 8

13. Graph, connected, six vertices, five edges, has a nontrivial
circuit

14. Graph, two vertices, one edge, not a tree

15. Graph, circuit-free, seven vertices, four edges

16. Tree, twelve vertices, fifteen edges

17. Graph, six vertices, five edges, not a tree

18. Tree, five vertices, total degree 10

19. Graph, connected, ten vertices, nine edges, has a nontrivial
circuit

20. Simple graph, connected, six vertices, six edges
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21. Tree, ten vertices, total degree 24

22. A connected graph has twelve vertices and eleven edges.
Does it have a vertex of degree I? Why?

23. A connected graph has nine vertices and twelve edges. Does
it have a nontrivial circuit? Why?

24. Suppose that v is a vertex of degree I in a connected graph
G and that e is the edge incident on v. Let G' be the sub-
graph of G obtained by removing v and e from G. Must G'
be connected? Why?

25. A graph has eight vertices and six edges. Is it connected?
Why?

H 26. If a graph has n vertices and n -2 or fewer edges, can it be
connected? Why?

27. A circuit-free graph has ten vertices and nine edges. Is it
connected? Why?

H 28. Is a circuit-free graph with n vertices and at least n - 1 edges
connected? Why?

29. Prove that every nonempty, nontrivial tree has at least two
vertices of degree 1 by filling in the details and completing
the following argument: Let T be a nontrivial tree and let
S be the set of all paths from one vertex to another of T.
Among all the paths in S, choose a path P with the most
edges. (Why is it possible to find such a P?) What can you
say about the initial and final vertices of P? Why?

30. Find all nonisomorphic trees with five vertices.

31. a. Prove that the following is an invariant for graph iso-
morphism: A vertex of degree i is adjacent to a vertex of
degree j.

H b. Find all nonisomorphic trees with six vertices.

32. Consider the tree shown below with root a.
a. What is the level of n?
b. What is the level of a?
c. What is the height of this rooted tree?
d. What are the children of n?
e. What is the parent of g?
f. What are the siblings of j?
g. What are the descendants of f ?

a

i

33. Consider the tree shown below with root yo.
a. What is the level of vs?
b. What is the level of vo?
c. What is the height of this rooted tree?
d. What are the children of veo?
e. What is the parent of V5?
f. What are the siblings of v, ?
g. What are the descendants of v12?

V 18 .()bvls

34. Draw binary trees to represent the following expressions:
a. a b-(c/(d +e)) b. a/(b-c d)

In each of 35-50 either draw a graph with the given specifications
or explain why no such graph exists.

35. Full binary tree, five internal vertices

36. Full binary tree, five internal vertices, seven terminal ver-
tices

37. Full binary tree, seven vertices, of which four are internal
vertices

38. Full binary tree, twelve vertices

39. Full binary tree, nine vertices

40. Binary tree, height 3, seven terminal vertices

41. Full binary tree, height 3, six terminal vertices

42. Binary tree, height 3, nine terminal vertices

43. Full binary tree, eight internal vertices, seven terminal ver-
tices.

44. Binary tree, height 4, eight terminal vertices

45. Full binary tree, seven vertices

46. Full binary tree, nine vertices, five internal vertices

47. Full binary tree, four internal vertices

48. Binary tree, height 4, eighteen terminal vertices

49. Full binary tree, sixteen vertices

50. Full binary tree, height 3, seven terminal vertices

51. What can you deduce about the height of a binary tree if you
know that it has the following properties?
a. Twenty-five terminal vertices
b. Forty terminal vertices
c. Sixty terminal vertices
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11. 6 Spanning Trees
I contend that each science is a real science insofar as it is mathematics.

-Immanuel Kant, 1724-1804

An East Coast airline company wants to expand service to the Midwest and has received
permission from the Federal Aviation Authority to fly any of the routes shown in Figure
11.6.1.

Milwaukee
-Detroit

St. Louis

Figure 11.6.1

The company wishes to legitimately advertise service to all the cities shown but, for reasons
of economy, wants to use the least possible number of individual routes to connect them.
One possible route system is given in Figure 11.6.2.

' Detroit

St. Louis

Figure 11.6.2

Clearly this system joins all the cities. Is the number of individual routes minimal? The
answer is yes, and the reason may surprise you.

The fact is that the graph of any system of routes that satisfies the company's wishes
is a tree, because if the graph were to contain a circuit, then one of the routes in the circuit
could be removed without disconnecting the graph (by Lemma 11.5.3), and that would
give a smaller total number of routes. But any tree with eight vertices has seven edges.
Therefore, any system of routes that connects all eight vertices and yet minimizes the total
number of routes consists of seven routes.
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A spanning treeX Or a graph G is a subg of G that contains every vertex of G
and is a tree. I ::0

The preceding discussion contains the essence of the proof of the following propo-
sition:

The proof of part (2) is left as an exercise.

Example 11.6.1 Spanning Trees

Find all spanning trees for the graph G pictured below.

V 5  V4 V3

IV V I V2

Solution The graph G has one circuit v2v1 v4v2, and removal of any edge of the circuit gives
a tree. Thus, as shown below, there are three spanning trees for G.

V5 V4 V3

1o V I V2

V5 V4 V3

Vo V I V2

V5 V4 V3

VO al V 2

Proposition 11.6.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph ha the same number of edges.

Proof of (1):

Suppose G is a connected graph. If G is circuit-free, then G is its own spanning tree
and we are done. If not, then G has at least one circuit C1 . By Lemma 11.5.3, the
subgraph of G obtained by removing an edge from Cl is connected. If this subgraph
is circuit-free, then it is a spanning tree and we are done. If not, then it has at least
one circuit C2, and, as above, an edge can be removed from C2 to obtain a connected
subgraph. Continuing in this way, we can remove successive edges from circuits,
until eventually we obtain a connected, circuit-free subgraph T of G. [This must
happen at some point because the number of edges of G is finite, and at no stage
does removal of an edge disconnect the subgraph.] Also, T contains every vertex of
G because no vertices of G were removed in constructing it. Thus T is a spanning
tree for G.
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Mininum Spanning Trees
The graph of the routes allowed by the Federal Aviation Authority shown in Figure 11.6.1
can be annotated by adding the distances (in miles) between each pair of cities. This is
done in Figure 11.6.3.

355
Milwaukee

t Detroit

St. Louis

151

Figure 11.6.3

Now suppose the airline company wants to serve all the cities shown, but with a route
system that minimizes the total mileage. Note that such a system is a tree, because if the
system contained a circuit, removal of an edge from the circuit would not affect a person's
ability to reach every city in the system from every other (again, by Lemma 11.5.3), but
it would reduce the total mileage of the system.

More generally, a graph whose edges are labeled with numbers (known as weights) is
called a weighed graph. A minimum-weight spanning tree, or simply a minimum spanning
tree, is a spanning tree for which the sum of the weights of all the edges is as small as
possible.

lI; ,U

A weighted graph is a graph for which each edge has an associated real number
weight. The sum of the weights of all the edges is the total eight of the graph. A
minimum spanning tree for a weighted graph is a spanning tree that has the least
possibletotal weight compared to all other spanning trees for the graph.

if G is a weighed graph and e is an edge of G, then w(e) denotes the weight of e
and w(G) denotes the total weight of G.

The problem of finding a minimum spanning tree for a graph is certainly solvable. One
solution is to list all spanning trees for the graph, compute the total weight of each, and
choose one for which this total is a minimum. (Note that the well-ordering principle for
the integers guarantees the existence of such a minimum total.) This solution, however,
is inefficient in its use of computing time because the number of distinct spanning trees is
so large. For instance, a complete graph with n vertices has n'-2 spanning trees.

In 1956 and 1957 Joseph B. Kruskal and Robert C. Prim each described much more
efficient algorithms to construct minimum spanning trees. For graphs with n vertices and
m edges, Kruskal's and Prim's algorithms can be implemented so as to have worst-case
orders of m log 2 m and n2 , respectively.
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Kruskal's Algorithm
In Kruskal's algorithm, the edges of a weighed graph are examined one by one in order of
increasing weight. At each stage the edge being examined is added to what will become
the minimum spanning tree, provided that this addition does not create a circuit. After
n - edges have been added (where n is the number of vertices of the graph), these edges,
together with the vertices of the graph, form a minimum spanning tree for the graph.

I
Joseph Kruskal
(born 1928)

The following example shows how Kruskal's algorithm works for the graph of the
airline route system.

Example 11.6.2 Action of Kruskal's Algorithm

Describe the action of Kruskal's algorithm for the graph shown in Figure 11.6.4.

Milwaukee
P Detroit

695 C

St. Louis

151

Figure 11.6.4

Algorithm 11.6.1 Kruskal

Input: G [a weighed graph with n vertices]

Algorithm Body:
[Build a subgraph T of G to consist of all the vertices of G with edges added in order
of increasing weight. At each stage, let m be the number of edges of T.]

1. Initialize T to have all the vertices of G and no edges.

2. Let E be the set of all edges of G, and let m := 0.
[pre-condition: G is connected.]

3. while (m < n - 1)

3a. Find an edge e in E of least weight.
3b. Delete e from E.
3c. if addition of e to the edge set of T does not produce a circuit

then add e to the edge set of T and set m := m + I
end while
[post-condition: T is a minimum spanning tree for G.]

Output: T

Io

Z:
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Solution Iteration Number Edge Considered Weight Action Taken

1 Chicago-Milwaukee 74 added
2 Louisville-Cincinnati 83 added
3 Louisville-Nashville 151 added
4 Cincinnati-Detroit 230 added
5 St. Louis-Louisville 242 added
6 St. Louis-Chicago 262 added
7 Chicago-Louisville 269 not added
8 Louisville-Detroit 306 not added
9 Louisville-Milwaukee 348 not added

10 Minneapolis-Chicago 355 added

The tree produced by Kruskal's algorithm is shown in Figure 11.6.5.

Milwaukee
etroit

cinnati

St. Louis

Figure 11.6.5 .

It is not obvious from the description of Kruskal's algorithm that it does what it is
supposed to do. To be specific, what guarantees that it is possible at each stage to find an
edge of least weight whose addition does not produce a circuit? And if such edges can
be found, what guarantees that they will all eventually connect? And if they do connect,
what guarantees that the resulting tree has minimum weight? Of course, the mere fact
that Kruskal's algorithm is printed in this book may lead you to believe that everything
works out. But the questions above are real, and they deserve serious answers.

Theorem 11.6.2 Correctness of Kruskal's Algorithm

When a connected, weighted graph is input to Kruskal's algorithm, the output is a
minimum spanning tree.

Proof:

Suppose that G is a connected, weighted graph with n vertices and that T is a subgraph
of G produced when G is input to Kruskal's algorithm. Clearly T is circuit-free [since
no edge that completes a circuit is ever added to T]. Also T is connected. For as
long as T has more than one connected component, the set of edges of G that can

continued on page 728

le
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be added to T without creating a circuit is nonempty. [The reason is that since G is
connected, given any vertex vl in one connected component Cl of T and any vertex
v2 in another connected component C2 , there is a path in G from vl to V2. Since Cl
and C2 are distinct, there is an edge e of this path that is not in T. Adding e to T
does not create a circuit in T, because deletion of an edge from a circuit does not
disconnect a graph and deletion of e would.] The preceding arguments show that T
is circuit-free and connected. Since by construction T contains every vertex of G, T
is a spanning tree for G.

Now we show that T has minimum weight. Let T, be any minimum spanning
tree for G. If T = T,, then T is a minimum spanning tree for G and we are done. If
T # T,, then there is an edge e in T that is not an edge of T,. [Since T and T, both
have the same vertex set, if they differ at all, they must have different edge sets. ] Now
adding e to T, produces a graph with a unique nontrivial circuit (see exercise 14 at
the end of this section). Let e' be an edge of this circuit such that e' is not in T. [Such
an edge must exist because T is a tree and hence circuit free.] Let T2 be the graph
obtained from T, by removing e' and adding e. This situation is illustrated below.

The entire graph is G. T, has
movee from T, to form T21) black edges. e is in T but

not Tp. e' is in T, but not T.

to T, to form T,.)

Note that T2 has n - 1 edges and n vertices and that T2 is connected [since by Lemma
11.5.3 the subgraph obtained by removing an edge from a circuit in a connected
graph is connected]. Consequently, T2 is a spanning tree for G. In addition,

w(T2 ) = w(TI) - w(e') + w(e).

Now w(e) < w(e') because at the stage in Kruskal's algorithm when e was added to
T, e' was available to be added [since it was not already in T, and at that stage its
addition could not produce a circuit since e was not in T], and e' would have been
added had its weight been smaller than that of e. Thus

w(T 2) = w(T) -(w(e') - w(e))

>0

< w(TI).

But T, is a minimum spanning tree. Since T2 is a spanning tree with weight less than
or equal to the weight of T,, T2 is also a minimum spanning tree for G.

Finally, note that by construction, T2 has one more edge in common with T than
does T,. If T now equals T2, then T is a minimum spanning tree and we are done.
If not, then we can repeat the process described above to find a minimum spanning
tree T3 that has one more edge in common with T than T2. Continuing in this way
produces a sequence of minimum spanning trees T,, T2, T3 , ... each of which has
one more edge in common with T than the preceding tree. Since T has only a finite
number of edges, this sequence is finite and so there is a minimum spanning tree, Tk,

which is identical to T. It follows that T is, itself, a minimum spanning tree for G.
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Prim's Algorithm
Prim's algorithm works differently from Kruskal's. It builds a minimum spanning tree T
by expanding outward in connected links from some vertex. One edge and one vertex are
added at each stage. The edge added is the one of least weight that connects the vertices
already in T with those not in T, and the vertex is the endpoint of this edge that is not
already in T.

The following example shows how Prim's algorithm works for the graph of the airline
route system.

Example 11.6.3 Action of Prim's Algorithm

Describe the action of Prim's algorithm for the graph in Figure 11.6.6 using the Minneapo-
lis vertex as a starting point.

Minneapolis

355

P Detroit

St. Louis

Figure 11.6.6

Robert Prim
(born 1921)

Algorithm 11.6.2 Prim

Input: G [a weighted graph with n vertices]

Algorithm Body:
[Build a subgraph T of G by starting with any vertex v of G and attaching edges
(with their endpoints) one by one to an as-yet-unconnected vertex of T, each time
choosing an adjacent edge of least weight.]

1. Pick a vertex v of G and let T be the graph with one vertex, v, and no edges.

2. Let V be the set of all vertices of G except v.
[pre-condition: G is connected.]

3. fori := 1 ton -
3a. Find an edge e of G such that (1) e connects T to one of the vertices in

V, and (2) e has the least weight of all edges connecting T to a vertex
in V. Let w be the endpoint of e that is in V.

3b. Add e and w to the edge and vertex sets of T, and delete w from V.

next i
[post-condition: T is a minimum spanning tree for G.]

Output: T

5

�41

I
-5
9

_1�
I

5
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Solution

Note that the tree obtained is the same as that obtained by Kruskal's algorithm, but
the edges are added in a different order. It is not hard to see that when a connected graph
is input to Prim's algorithm, the result is a spanning tree. What is not so clear is that this
spanning tree is a minimum. The proof of the following theorem establishes that it is.

Theorem 11.6.3 o e o Pi' Algorithm

When a connis a
fmiiusaning \0 tree\f forf G.000;0000:0000fdt$0:fff~

Proof:

Let G be a connected, weighted graph, and suppose G is input to Prim's algorithm.
At each stage of execution of the algorithm, an edge must be found that connects a
vertex in a subgraph to a vertex outside the subgraph. As long as there are vertices
outside the subgraph, the connectedness of G ensures that such an edge can always
be found. [For if one vertex in the subgraph and one vertex outside it are chosen,
then by the connectedness of G there is a walk in G linking the two. As one travels
along this walk, at some point one moves along an edge from a vertex inside the
subgraph to a vertex outside the subgraph.]

Now it is clear that the output T of Prim's algorithm is a tree because the edge
and vertex added to T at each stage are connected to other edges and vertices of T
and because at no stage is a circuit created since each edge added connects vertices
in two disconnected sets. [Consequently, removal of a newly added edge produces
a disconnected graph, whereas by Lemma 11.5.3, removal of an edge from a circuit
produces a connected graph.] Also, T includes every vertex of G because T, being
a tree with n - I edges, has n vertices [and that is all G has]. Thus T is a spanning
tree for G.

Next we prove that T has minimum weight. Let T1 be any minimum spanning
tree for G. If T = T1, then we are done. If not, then there is an edge in T that is
not in T1. Of all edges in T and not T1, let e be the first that was added when T was
constructed using Prim's algorithm. Let V be the set of vertices of T just before the
addition of e. Then one endpoint, say v, of e is in T, and the other, say iv, is not.
Since T1 is a spanning tree for G, there is a path in T1 joining v to w. As one travels
along this path, one must encounter an edge e' joining a vertex in V to one that is
not in V. Now at the stage when e was added to T, e' could also have been added,

Iteration Number Vertex Added Edge Added Weight

0 Minneapolis
I Chicago Minneapolis-Chicago 355
2 Milwaukee Chicago-Milwaukee 74
3 St. Louis Chicago-St. Louis 262
4 Louisville St. Louis-Louisville 242
5 Cincinnati Louisville-Cincinnati 83
6 Nashville Louisville-Nashville 151
7 Detroit Cincinnati-Detroit 230 .
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Example 11.6.4 Finding Minimum Spanning Trees

Find all minimum spanning trees for the following graph. Use Kruskal's algorithm and
Prim's algorithm starting at vertex a. Indicate the order in which edges are added to form
each tree.

b d
3 1

a 3 5 >f
2f6

c 6 e

Solution When Kruskal's algorithm is applied, edges are added in one of the following two
orders:

1. {d, f 1, la, c}, la, b), {c, d}, Id, e}

2. {d, f }, la, c), {b, c}, {c, d}, {d, el

When Prim's algorithm is applied starting at a, edges are added in one of the following
two orders:

1. {a, c}, {a, b}, {c, d), {d, f }, {d, e}

2. {a, c}, lb, c}, {c, d}, {d, f }, {d, e}

Thus, as shown below, there are two distinct minimum spanning trees for this graph.

b d b d
311

a 5 f a 3 5 f

C e C e

and it would have been added instead of e had its weight been less than that of e.
Since e' was not added at that stage, we conclude that

w(e') > w(e).

Let T2 be the graph obtained from T1 by removing e' and adding e. [Thus T2
has one more edge in common with T than T1 does.] Note that T2 is a tree. The
reason is that since e' is part of a path in T, from v to w, and e connects v and w,
adding e to Ti creates a circuit. When e' is removed from this circuit, the resulting
subgraph remains connected. In fact, T2 is a spanning tree for G since no vertices
were removed in forming T2 from T1. The argument showing that w(T2 ) < w(Ti) is
left as an exercise. [It is virtually identical to part of the proof of Theorem 11.6.2].

It follows that T2 is a minimum spanning tree for G with one more edge in
common with T than T1 has. If T now equals T2, then we are done. If not, then,
as above, we can find another minimum spanning tree T3 having one more edge in
common with T than T2. Continuing in this way produces a sequence of minimum
spanning trees T1, T2, T3, ... each of which has one more edge in common with T
than does the preceding tree. Since T has only a finite number of edges, this sequence
is finite, so there is a tree, Tk, that is identical to T. This shows that T is itself a
minimum spanning tree.

(b) 0(a)
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Exercise Set 11.6
Find all possible spanning trees for each of the graphs in 1
and 2.

1. a b 2. V0  VI

d c V3  V 2

Find a spanning tree for each of the graphs in 3 and 4.

3. b d
a

Ce

4. r

z U

w

Use Kruskal's algorithm to find a minimum spanning tree for
each of the graphs in 5 and 6. Indicate the order in which edges
are added to form each tree.

5.

6.

V' PV2

V6  13 V7

Use Prim's algorithm starting with vertex a or yo to find a min-
imum spanning tree for each of the graphs in 7 and 8. Indicate
the order in which edges are added to form each tree.

7. The graph of exercise 5. 8. The graph of exercise 6.

For each of the graphs in 9 and 10, find all minimum spanning
trees that can be obtained using (a) Kruskal's algorithm and (b)
Prim's algorithm starting with vertex a or t. Indicate the order
in which edges are added to form each tree.

9. 2 h

10. t 7 u 2 v

A18 10

z 7 y 2 x 5 w

11. A pipeline is to be built that will link six cities. The cost
(in hundreds of millions of dollars) of constructing each po-
tential link depends on distance and terrain and is shown
in the weighted graph below. Find a system of pipelines to
connect all the cities and yet minimize the total cost.

Salt Lake City 1.5 Cheyenne

Amarillo

Phoenix

12. Prove part (2) of Proposition 11.6.1: Any two spanning trees
for a graph have the same number of edges.

13. Given any two distinct vertices of a tree, there exists a unique
path from one to the other.
a. Give an informal justification for the above statement.

* b. Write a formal proof of the above statement.

14. Prove that if G is a graph with spanning tree T and e is an
edge of G that is not in T, then the graph obtained by adding
e to T contains one and only one set of edges that forms a
nontrivial circuit.

15. Suppose G is a connected graph and T is a circuit-free sub-
graph of G. Suppose also that if any edge e of G not in T
is added to T, the resulting graph contains a circuit. Prove
that T is a spanning tree for G.

H 16. a. Suppose T1 and T2 are two different spanning trees for
a graph G. Must T. and T2 have an edge in common?
Prove or give a counterexample.

b. Suppose that the graph G in part (a) is simple. Must
Tt and T2 have an edge in common? Prove or give a
counterexample.

H 17. Prove that an edge e is contained in every spanning tree for
a connected graph G if, and only if, removal of e discon-
nects G.

18. Consider the spanning trees T. and T2 in the proof of Theo-
rem 11.6.3. Prove that w(T2 ) < w(T1 ).

19. Suppose that T is a minimum spanning tree for a connected,
weighted graph G and that G contains an edge e (not a loop)
that is not in T. Let v and w be the endpoints of e. By ex-
ercise 13 there is a unique path in T from v to w. Let e' be
any edge of this path. Prove that w(e') < w(e).

sAy-sy-

I



11.6 Spanning Trees 733

H 20. Prove that if G is a connected, weighted graph and e is an
edge of G (not a loop) that has smaller weight than any other
edge of G, then e is in every minimum spanning tree for G.

* 21. If G is a connected, weighted graph and no two edges of G
have the same weight, does there exist a unique minimum
spanning tree for G? Justify your answer.

*22. Prove that if G is a connected, weighted graph and e is an
edge of G that (1) has greater weight than any other edge
of G and (2) is in a circuit of G, then there is no minimum
spanning tree T for G such that e is in T.

23. Suppose a disconnected graph is input to Kruskal's algo-
rithm. What will be the output?

24. Suppose a disconnected graph is input to Prim's algorithm.
What will be the output?

25. Prove that if a connected, weighted graph G is input to Al-
gorithm 11.6.3 (shown at right), the output is a minimum
spanning tree for G.

Algorithm 11.6.3

Input: G [a graph]

Algorithm Body:

1. T G.

2. E the set of all edges of G, m := the number of edges
of G.
[pre-condition: G is connected.]

3. while (m > 0)

3a. Find an edge e in E that has maximal weight.
3b. Remove e from E and set m := m - 1.
3c. if the subgraph obtained when e is removed from

the edge set of T is connected then remove e from
the edge set of T

end while
[post-condition: T is a minimum spanning tree for G.]

Output: T [a graph]



CHAPTER 1 2
REGULAR EXPRESSIONS
AND FINITE-STATE AUTOMATA

The theoretical foundations of computer science were derived from several disciplines:
logic (the foundations of mathematics), electrical engineering (the design of switching
circuits), brain research (models of neurons), and linguistics (the formal specification of
languages).

As discussed briefly in Sections 5.4 and 7.5, the 1930s saw the development of mathe-
matical treatments of basic questions concerning what can be proved in mathematics and
what can be computed by means of a finite sequence of mechanized operations. Although
the first digital computers were not built until the early 1940s, ten years earlier Alan Turing
developed a simple abstract model of a machine, now called a Turing machine, by means
of which he defined what it would mean for a function to be computable.

Around the same time, somewhat similar models of computation were developed by
the American logicians Alonzo Church, Stephen C. Kleene, and Emil Post (who was born
in Poland but came to the United States as a child), but Church and others showed these all
to be equivalent. As a result, Church formulated a conjecture, now known as the Church-
Turing thesis, asserting that the Turing machine is universal in the sense that anything that
can ever be computed on a machine can be computed with a Turing machine. If this thesis
is correct-which is widely believed-then all computers that have been or will ever be
constructed are theoretically equivalent in what they can do, although they may differ
widely in speed and storage capacity. For instance, quantum computers may have the
capability to compute certain quantities enormously faster than classical computers. But
Church's thesis implies that the theory of computation is likely to remain fundamentally
the same, even though the enabling technology is subject to constant change.

In the early 1940s, Warren S. McCulloch and Walter Pitts, working at the Mas-
sachusetts Institute of Technology (M.I.T.), developed a model of how the neurons in
the brain might work and how models of neurons could be combined to make "circuits" or
"automata" capable of more complicated computations. To a certain extent, they were in-
fluenced by the results of Claude Shannon, who also worked at M.I.T. and had in the 1930s
developed the foundations of a theory that implemented Boolean functions as switching
circuits. In the 1950s, Kleene analyzed the work of McCulloch and Pitts and connected
it with versions of the machine models introduced by Turing and others.

734
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Another development of the 1950s was the introduction of high-level computer lan-
guages. During the same years, linguist Noam Chomsky's attempts to understand the
underlying principles by means of which human beings generate speech led him to de-
velop a theory of formal languages, which he defined using sets of abstract rules, called
grammars, of varying levels of complexity. It soon became apparent that Chomsky's
theory was of great utility in the analysis and construction of computer languages. For
computer science, the most useful of Chomsky's language classifications are also the two
simplest: the regular languages and the context-free languages.

Regular languages, which are defined by regular expressions, are used extensively for
matching patterns within text (as in word processing or Internet searches) and for lexical
analysis in computer language compilers. They are part of sophisticated text editors and
a number of UNIX* utilities, and they are also used in transforming XML documents.

Through use of the Backus-Naur notation (introduced in Section 11.5), context-free
languages are able to describe many of the more complex aspects of modern high-level
computer languages, and they form the basis for the main part of compilers, which translate
programs written in a high-level language into machine code suitable for execution.

A remarkable fact is that all of the subjects referred to above are related. Each context-
free grammar turns out to be equivalent to a type of automaton called a push-down automa-
ton, and each regular expression turns out to be equivalent to a type of automaton called
afinite-state automaton. In this chapter, we focus on the study of regular languages and
finite-state automata, leaving the subject of context-free grammars and their equivalent
automata to a later course in compiler construction or automata theory.

12.1 Formal Languages and Regular Expressions
The mind has finite means but it makes unbounded use of them and in very specific and
organized ways. That's the core problem of language that it became possible to face
[by the mid-twentieth century]. -Noam Chomsky, circa 1998

An English sentence can be regarded as a string of words, and an English word can be
regarded as a string of letters. Not every string of letters is a legitimate word, and not
every string of words is a grammatical sentence. We could say that a word is legitimate
if it can be found in an unabridged English dictionary and that a sentence is grammatical
if it satisfies the rules in a standard English grammar book.

Computer languages are similar to English in that certain strings of characters are
legitimate words of the language and certain strings of words can be put together according
to certain rules to form syntactically correct programs. A compiler for a computer language
analyzes the stream of characters in a program-first to recognize individual word and
sentence units (this part of the compiler is called a lexical scanner), then to analyze the
syntax, or grammar, of the sentences (this part is called a syntactic analyzer), and finally
to translate the sentences into machine code (this part is called a code generator).

in computer science it has proved useful to look at languages trom a very abstract
point of view as strings of certain fundamental units and allow any finite set of symbols
to be used as an alphabet. It is common to denote an alphabet by a capital Greek sigma:
E. (This just happens to be the same symbol as the one used for summation, but the two
concepts have no other connection.)

*UNIX is an operating system that was developed in 1969 by Kenneth Thompson at Bell Labo-
ratories. It was later rewritten in Dennis Ritchie's C language, which was also developed at Bell
Laboratories.
tXML is a standard for defining markup languages used for Internet applications.

Noam Chomsky
(born 1928)
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A string of characters of an alphabet E (or a string over E) is either (1) an ordered
n-tuple of elements of E written without parentheses or commas, or (2) the null string
e, which has no characters. As we indicated when strings were introduced earlier, the
length of a string of characters is the number of characters that make up the string, with
the null string having length 0. Aformal language over an alphabet is any set of strings
of characters of the alphabet. These definitions are summarized below.

Alphabet X: a finite set of characters

String over E: an ordered n-tuple of elements of A, written without
parentheses or commas, or (2) the null string e

Formal language over L: a set of strings over the alphabet

Note that the empty set satisfies the criteria for being a formal language. Allowing the
empty set to be a formal language turns out to be convenient in certain technical situations.

Example 12.1.1 Examples of Formal Languages

Let the alphabet E = ta, b).

a. Define a language LI over E to be the set of all strings that begin with the character a
and have length at most three characters. Find L 1.

b. A palindrome is a string that looks the same if the order of its characters is reversed.
For instance, aba and baab are palindromes. Define a language L2 over E to be the
set of all palindromes obtained using the characters of E. Write ten elements of L 2.

Solution

a. LI {a, aa, ab, aaa, aab, aba, abbj

b. L2 contains the following ten strings (among infinitely many others):

E, a, b, aa, bb, aaa, bab, abba, babaabab, abaabbbbbaaba .

I. I

Let I be an alphabet. For each nonnegative integer n, let

EnI = the set of all strings over E that have length n,

E+ = the set of all strings over E that have length at least 1, and

E* = the set of all strings over E.

Stephen C. Kleene
(1909-1994)

Note that E' is essentially the Cartesian product of n copies of E. The language E* is
called the Kleene closure of l, in honor of Stephen C. Kleene (pronounced CLAY-knee).
E+ is the set of all strings over E except for c and is called the positive closure of l.

Example 12.1.2 The Languages En', +, and E*

Let E = {a, b}.
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a. Find ° El, E2 and V.

b. Let A = S U El and B = E2 U E3. Use words to describe A, B, and A U B.

c. Describe a systematic way of writing the elements of E+. What change needs to be
made to obtain the elements of E*?

Solution

a. E= {e}, A' = {a, b), E2 = aa, ab, ba, bb}, and 3 = {aaa, aab, aba, abb, baa,
bab, bba, bbb}

b. A is the set of all strings over E of length at most 1.

B is the set of all strings over E of length 2 or 3.

A U B is the set of all strings over E of length at most 3.

c. Elements of E+ can be written systematically by writing all the strings of length 1,
then all the strings of length 2, and so forth.

E : a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

Of course the process of writing the strings in E + would continue forever, because E +
is an infinite set. The only change that needs to be made to obtain E* is to place the
null string at the beginning of the list. D

Example 12.1.3 Polish Notation: A Language Consisting of Postfix Expressions

An expression such as a + b, in which a binary operator such as + sits between the two
quantities on which it acts, is said to be written in infix notation. Alternative notations are
called prefix notation (in which the binary operator precedes the quantities on which it
acts) and postfix notation (in which the binary operator follows the quantities on which it
acts). In prefix notation, a + b is written + ab. In postfix notation, a + b is written ab +.

Prefix and postfix notations were introduced in 1920 by the Polish mathematician Jan
Lukasiewicz (pronounced Wu-cash-AY-vich). In his honor-and because some people
have difficulty pronouncing his name-they are often referred to as Polish notation and
reverse Polish notation, respectively. A great advantage of these notations is that they
eliminate the need for parentheses in writing arithmetic expressions. For instance, in
postfix (or reverse Polish) notation, the expression 8 4 + 6 / is evaluated from left to right
as follows: Add 8 and 4 to obtain 12, and then divide 12 by 6 to obtain 2.

Let E = {4, 1, +, -l, and let L = the set of all strings over E obtained by writing
either a 4 or a 1 first, then either a 4 or a 1, and finally either a + or a -. List all elements
of L between braces, and evaluate the resulting expressions.

Solution

L = {41+, 41-, 14 +, 1 41

41+ equals 4+1=5, 41- equals 4-1=3,

14 + equals 1+ 4 = 5, 14- equals 1- 4 =-3 A

The following definition describes ways in which languages can be combined to form
new languages.
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g!I

Let E be a finite alphabet. Given any strings x and y over A, the concatenation
of x and y is the string obtained by juxtaposing the characters of x and y. For any
languages L and L' over A, three new languages can be defined as follows:

The concatenation of L and L, denoted LL', is

LL' = {xy I x E L and y E L'}.

The union of L and L', denoted L U L', is

LUL'={xIx eLorx EL'}.

The Kleene closure of L, denoted L, is

L* = {x I x is a concatenation of any finite number of strings in L}.

Note that e is in L* because it is regarded as a concatenation of zero strings in L.

Example 12.1.4 New Languages from Old

Let L, be the set of all strings consisting of an even number of a's (namely, e, aa, aaaa,
aaaaaa, ... ),andletL 2 = {b,bb,bbb}. FindLL 2 ,LI UL 2 ,and (LI UL 2)*. Note that
the null string e is in L, because 0 is an even number.

Solution

LIL 2 = the set of all strings that consist of an even number of a's followed by b or
by bb or by bbb.

L, U L2 = the set that includes the strings b, bb, bbb and any strings consisting of an
even number of a's.

(LI U L2 )* = the set of all strings of a's and b's in which every occurrence of a
consists of an even number of a's. U

The Language Defined by a Regular Expression
One of the most useful ways to define a language is by means of a regular expression, a
concept first introduced by Kleene. We give a recursive definition for generating the set
of all regular expressions over an alphabet.

1. IL]!!, I

Given a finite alphabet A, the following are regular expressions over 1:

I. BASE: 0, E, and each individual symbol in E are regular expressions over E.

II. RECURSION: If r and s are regular expressions over E, then the following are
also regular expressions over E:

(i) (rs) (ii) (r I s) (iii) (r*)

To agree with the terminology for strings, rs is called the concatenation of r
and s, r' is called the Kleene closure of r, and r I s is read "r or s."

III. RESTRICTION: Nothing is a regular expression over E except for objects de-
fined in (I) and (II) above.
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As an example, one regular expression over E = (a, b) is

a I (b I c)* I (ab)*.

If the alphabet E happens to include symbols such as (, , ), or *, special provisions
have to be made to avoid ambiguity. An escape character, usually a backslash, is added
before the potentially ambiguous symbol. For instance, a left parenthesis would be written
as \( and the backslash itself would be written as \\.

To eliminate parentheses, an order of precedence for the operations used to define
regular expressions has been introduced. The highest is *, concatenation is next, and I
is the lowest. It is also customary to eliminate the outer set of parentheses in a regular
expression, because doing so does not produce ambiguity. Thus

(a((bc)*)) = a(bc)* and (a I (bc)) = a I bc.

Example 12.1.5 Order of Precedence for the Operations in a Regular Expression

a. Add parentheses to make the order of precedence clear in the following expression:
ab* b*a.

b. Use the convention about order of precedence to eliminate the parentheses in the
following expression: ((a I ((b*)c))(a*)).

Solution

a. ((a(b*)) I ((b*)a))

b. (a I b*c)a* O

Given a finite alphabet, every regular expression r over the alphabet defines a formal
language L (r). The function L is defined recursively.

W. !.*MI -ml

For any finite alphabet A, the function L that associates a language to each regular
expression over E is defined by (I) and (II) below. For each such regular expression
r, L(r) is called the language defined by r.

I. BASE: L(0) = 0, L(E) = {El, L(a) = {a} for every a E Z.

II. RECURSION: If L(r) and L(r') are the languages defined by the regular expres-
sions r and r' over A, then

(i) L(rr') = L(r)L(r') (ii) L(r I r') = L(r) U L(r') (iii) L(r*) = (L(r))*

Note that any finite language can be defined by a regular expression. For instance,
the language (cat, dog, bird} is defined by the regular expression (cat I dog I bird). An
important example is the following.

Example 12.1.6 Using Set Notation to Describe the Language Defined by a Regular Expression

Let E = la, b}, and consider the language defined by the regular expression (a I b)*. Use
set notation to find this language, and describe it in words.

I
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Solution The language defined by (a I b)* is

(L(a I b)*) = (L(a I b))*

= (L(a) U L(b))*

- ((a} U {bl)*
= {a, bl* by definition of operations on languages

= the set of all strings of a's and b's

Note that concatenating strings and taking unions of sets are both associative opera-
tions. Thus for any regular expressions r, s and t,

L((rs)t) = L(r(st)).

Moreover,

L ((r I s) I t) = (L(r I s)) U L(t) by definition of I

= (L(r) U L(s)) U L(t) by definition of I

= L(r) U (L(s) U L(t)) by the associativity of union for sets

= L(r) U (L(s It)) by definition of I

= L(r I (s I t)) by definition of 1.

Because of these relationships, it is customary to drop the parentheses in "associative"
situations and write

rst = (rs)t = r(st)

and

r I s I t = (r I s) I t = r I (s I t).

As you become accustomed to working with regular expressions, you will find that
you do not need to go through a formal derivation in order to determine the language
defined by an expression.

Example 12.1.7 The Language Defined by a Regular Expression

Let E = {0, I}. Use words to describe the languages defined by the following regular
expressions over E.

a. 0*1* I 1*0* b. 0(0 I 1)*

Solution

a. The strings in this language consist either of a string of O's followed by a string of l's
or of a string of l's followed by a string of O's. However, in either case the strings
could be empty, which means that c is also in the language.

b. The strings in this language have to start with a 0. The 0 may be followed by any finite
number (including zero) of O's and l's in any order. Thus the language is the set of all
strings of O's and l's that start with a 0. E

Example 12.1.8 Individual Strings in the Language Defined by a Regular Expression

In each of (a) and (b), let E = {a, b} and consider the language L over E defined by the
given regular expression.
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a. The regular expression is a*b(a I b)*. Write five strings that belong to L.

b. The regular expression is a* I (ab)*. Indicate which of the following strings belong
to L:

a b aaaa abba ababab

Solution

a. The strings b, ab, abbb, abaaa, and ababba are five strings from the infinitely many
in L.

b. The following strings are the only ones listed that belong to L: a, aaaa, and ababab.
The string b does not belong to L because it is neither a string of a's nor a string of
possibly repeated ab's. The string abba does not belong to L because any two b's that
might occur in a string of L are separated by one or more a's. E

Example 12.1.9 A Regular Expression That Defines a Language

Let E = {O, I}. Find regular expressions over E that define that following languages.

a. The language consisting of all strings of O's and I 's in which the O's and l's alternate.

b. The language consisting of all strings of O's and l's with an even number of I's. Such
strings are said to have even parity.

c. The language consisting of all strings of O's and I's in which every I has all its neighbors
equal to 0. Note, however, that a string beginning with a 1 only has a neighbor to its
right, and a string ending with a I only has a neighbor to its left.

Solution

a. Any string in the language starts with a I or a 0. If it starts with a I, the pattern 10 must
continue for the length of the string. If it starts with 0, the pattern 01 must continue for
the length of the string. Also, the null string satisfies the condition by default. Thus an
answer is

(10)* I (01)*.

b. Basic strings with even parity are c, 0, and 10*1. Concatenation of strings with even
parity also have even parity. Because such a string may start or end with a string of
O's, an answer is

(O I 10* 1)*.

c. If the string starts or ends with a 1, then only the character to the right or left of the I
has to be a 0, but if the string has length greater than 2, then every I between the two
ends must be surrounded by O's. Note that the null string satisfies the condition to be
in the language, and so does any string consisting entirely of O's. Thus an answer is

(E I 1)((101)* O)*(e 1). E

Note that a given language may be defined by more than one regular expression. For
example, both

(a* b*)* and (aIb)*

define the language consisting of the set of all strings of a's and b's.



742 Chapter 12 Regular Expressions and Finite-State Automata

Example 12.1.10 Deciding Whether Regular Expressions Define the Same Language

In (a) and (b), determine whether the given regular expressions define the same language.
If they do, describe the language. If they do not, give an example of a string that is in one
of the languages but not the other.

a. (a I e)* and a*

b. °* II* and (01)*

Solution

a. Note that because the null string E has no characters, when it is concatenated with any
other string x, the result is just x: for all strings x, xe = Ex = x. Now L ((a I e)*) is the
set of strings formed using a and E in any order, and so, because aE = Ea = a, this is
the same as the set of strings consisting of zero or more a's. Thus L((a I E)*) = L(a*).

b. The two languages defined by the given regular expressions are not the same: 0101 is
in the second language but not the first. U

Practical Uses of Regular Expressions
Many applications of computers involve performing operations on pieces of text. For
instance, word and text processing programs allow us to find certain words or phrases in
a document and possibly replace them with others. A compiler for a computer language
analyzes an incoming stream of characters to find groupings that represent aspects of
the computer language such as keywords, constants, identifiers, and operators. And in
bioinformatics, pattern matching and flexible searching techniques are used extensively
to analyze the long sequences of the characters A, C, G. and T that occur in DNA.

Through their connection with finite-state automata, which we discuss in the next
section, regular expressions provide an extremely useful way to describe a pattern in order
to identify a string or a collection of strings within a piece of text. Regular expressions
make it possible to replace a long, complicated set of if-then-else statements with code
that is easy both to produce and to understand. Because of their convenience, regular
expressions were introduced into a number of UNIX utilities, such as grep (short for
globally search for regular expression andprint) and egrep (extended grep), in text editors,
such as QED (short for Quick EDitor, the first text editor to use regular expressions), vi
(short for visual interface), sed (short for stream editor and originally developed for
UNIX but now used by many systems), and Emacs (short for Editor macros), and in the
lexical scanner component of a compiler. The computer language Perl has a particularly
powerful implementation for regular expressions, which has become a de facto standard.
The implementations used in Java and .NET are similar.

A number of shorthand notations have been developed to facilitate working with regular
expressions in text processing. When characters in an alphabet or in a part of an alphabet
are understood to occur in a standard order, the notation [beginning character-ending
character] is commonly used to represent the regular expression that consists of a single
character in the range from the beginning to the ending character. It is called a character
class. Thus

[A -C] stands for (A I B I C)

and

[O- 9] stands for (° I I 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9).
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Character classes are also allowed to include more than one range of characters. For
instance,

[A-Cx-z] stands for (AIB ICIx y 2z)

As an example, consider the language defined by the regular expression

[A-Z a-z]([A-Z a- z] I [-9])*.

The following are some strings in the language:

Account Number, z2 3 , jsmithl O9, Draft2rev.

In general, the language is the set of all strings that start with a letter followed by a sequence
of digits or letters. This set is the same as the set of allowable identifiers in a number of
computer languages.

Other commonly used shorthands are

[ABC] to stand for (A I B I C)

and a single dot

to stand for an arbitrary character.

Thus, for instance, if E = {A, B, C), then

A.C stands for (AAC I ABC I ACC).

When the symbol ^ is placed at the beginning of a character class, it indicates that a
character of the same type as those in the range of the class, but not any of the characters
following the ^, is to occur at that point in the string. For instance,

[^D -Z][0 -9][0 -9]*

stands for any string starting with a letter of the alphabet different from D to Z, followed
by any positive number of digits from 0 to 9. Examples are B3097, C0046, and so forth.
The symbol + following a regular expression r means that the string contains at least one
occurrence of r. In symbols,

r- = rr*.

For example,

[A -Z]+

represents any nonempty string of capital letters. If r is a regular expression, then

r? = (c I r).

That is, r? denotes either zero occurrences or exactly one occurrence of r. Finally,

r{n} means that r is concatenated n times,

and

r{m, n} means that r is concatenated between m and n times.

Thus a check to help determine whether a given string is a local telephone number in the
United States is to see whether it has the form

[O - 9][0 - 9][0 - 9] - [O - 9][0 - 9][0 - 9][0 - 9],

or, equivalently, whether it has the form

[O- 9]{3} - [O - 9]{41.
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Example 12.1.11 A Regular Expression for a Date

People often write dates in a variety of formats. For instance, in the United States the
following all represent the second of February of 1983:

2/5/83 2-5-83 02/05/83 2/05/83 02/5/83

Write a regular expression that would help check whether a given string might be a valid
date written in one of these forms.

Solution The language defined by following regular expression consists of all strings that
begin with one or two digits followed by either a hyphen or a slash, followed by either
one or two digits, followed by either a hyphen or a slash, followed by two digits.

[O- 9]{2}[ - /]([0 -9] [0 - 9]{2})[ - /1[0 - 9]{2}

All valid dates of the given format are elements of the language defined by this expression,
but the language also includes strings that are not valid dates. For instance, 09/54/83 is
in the language, but it is not a valid date because September does not have 54 days,
and 38/12/83 is not valid because there is no 38th month. It is possible to write a more
complicated regular expression that could be used to check all aspects of the validity of a
date (see exercise 40 at the end of the section), but the kind of simpler expression given
above is nonetheless useful. For instance, it provides an easy way to notify a user of an
interactive program that a certain kind of mistake was made and that information should
be reentered.

.

Exercise Set 12.1 *
In I and 2 let E = {x, yI be an alphabet.

1. a. Let LI be the language consisting of all strings over E
that are palindromes and have length <4. List the ele-
ments of LI between braces.

b. Let L2 be the language consisting of all strings over E
that begin with an x and have length <3. List the ele-
ments of L2.

2. a. Let L3 be the language consisting of all strings over E
of length < 3 in which all the x's appear to the left of all
the y's. List the elements of L3 between braces.

b. List between braces the elements of V, the set of strings
of length 4 over E.

c. Let A = E' U E2 and B = E
3

UE
4 . Describe A, B,

and A U B in words.

H 3. Let E = {I, 2,*, /1 and let L be the set of all strings over
E obtained by writing first a number (I or 2), then a second
number (I or 2), which can be the same as the first one,
and finally an operation (* or / where * indicates multipli-
cation and / indicates division). Then L is a set of postfix,
or reverse Polish, expressions. List all the elements of L
between braces, and evaluate the resulting expressions.

4. LI is the set of all strings of a's and b's that start with an a
and contain only that one a; L2 is the set of all strings of a's
and b's that contain an even number of a's.

5. LI is the set of all strings of a's, b's, and c's that contain no
c's and have the same number of a's as b's; L2 is the set of
all strings of a's, b's, and c's that contain no a's or b's.

6. LI is the set of all strings of O's and l's that start with a 0,
and L2 is the set of all strings of O's and l's that end with
a 0.

In 7-9, add parentheses to make the order of precedence clear in
the given expressions.

7. (a I b*b)(a* I ab) 8. 0*1 I 0(0* ])*

9. (X yz*)*(yx (yz)*z)

In 10-12 use the convention about order of precedence to elim-
inate the parentheses in the given regular expression.

10. ((a(b*)) I (c(b*))) ((ac) I (be))

12. (1(1))((1(0*) I (((yx) I 1))

12. (xy)(((x*)y)*) I (((yx) I y)(y*))

In 4-6, describe LIL 2 , L1 U L2 , and (LI U L2 )* for the given
languages Li and L2 -

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol * signals that an exercise is more challenging than usual.
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In 13-15 use set notation to derive the language defined by the
given regular expression. Assume E = (a, b, c}.

13. d ab 14. 01E 15. (alb)c

In 16b18 write five strings that belong to the language defined
by the given regular expression.

16. 0*1(0*1*)* 17. b*Ib*ab* 1 8. x* (yxxy I x)*

In 19-21 use words to describe the language defined by the given
regular expression.

19. b*ab*ab*a 20. 1(0 I 1)*00 21. (x l y)y(x l y)*

In 22-24 indicate whether the given strings belong to the lan-
guage defined by the given regular expression. Briefly justify
your answers.

22. Expression: (b I -)a(a I b)*a(b 1 e), strings: aaaba, baabb

23. Expression: (x*y I zy')*, strings: zyyxz, zyyzy

24. Expression: (01*2)*, strings: 120, 01202

In 25-27 find a regular expression that defines the given lan-
guage.

25. The language consisting of all strings of O's and l's with an
odd number of I's. (Such a string is said to have odd parity.)

26. The language consisting of all strings of a's and b's in which
the third character from the end is a b.

27. The language consisting of strings of x's and y's in which
the elements in every pair of x's are separated by at least
one y.

Let r, s, and t be regular expressions over E = {a, b}. In 28-30
determine whether the two regular expressions define the same
language. If they do, describe the language. If they do not, give
an example of a string that is in one of the languages but not the
other.

28. (rlIs)t and rtlIst 29. (rs)* and r's*

30. (rs)* and ((rs)*)*

In 31-39 write a regular expression to define the given set of
strings. Use the shorthand notations given in the section when-

ever convenient. In most cases, your expression will describe
other strings in addition to the given ones, but try to make your
answer fit the given strings as closely as possible within reason-
able space limitations.

31. All words that are written in lower-case letters and start with
the letters pre but do not consist of pre all by itself.

32. All words that are written in upper-case letters, and contain
the letters BIO (as a unit) or INFO (as a unit).

33. All words that are written in lower-case letters, end in ly,
and contain at least five letters.

34. All words that are written in lower-case letters and contain
at least one of the vowels a, e, i, o, or u.

35. All words that are written in lower-case letters and contain
exactly one of the vowels a, e, i, o, or u.

36. All words that are written in upper-case letters and do not
start with one of the vowels A, E, I, 0, or U but contain
exactly two of these vowels next to each other.

37. All United States social security numbers (which consist of
three digits, a hyphen, two digits, another hyphen, and fi-
nally four more digits), where the final four digits start with
a 3 and end with a 6.

38. All telephone numbers that have three digits, then a hyphen,
then three more digits, then a hyphen, and then four digits,
where the first three digits are either 800 or 888 and the last
four digits start and end with a 2.

39. All signed or unsigned numbers with or without a decimal
point. A signed number has one of the prefixes + or -,
and an unsigned number does not have a prefix. Represent
the decimal point as \. to distinguish it from the single dot
symbol for an arbitrary character.

H 40. Write a regular expression to perform a complete check to
determine whether a given string represents a valid date
from 1980 to 2079 written in one of the formats of Exam-
ple 12.1.11. (During this period, leap years occur every four
years starting in 1980.)

* 41. Write a regular expression to define the set of strings of O's
and l's with an even number of O's and even number of I's.

12.2 Finite-State Automata
The world of the future will be an ever more demanding struggle against the limitations

of our intelligence, not a comfortable hammock in which we can lie down to be waited
upon by our robot slaves. -Norbert Wiener, 1964

The kind of circuit discussed in Section 1.4 is called a combinational circuit. Such a circuit
is characterized by the fact that its output is completely determined by its input/output
table, or, in other words, by a Boolean function. Its output does not depend in any way
on the history of previous inputs to the circuit. For this reason, a combinational circuit is
said to have no memory.
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Combinational circuits are very important in computer design, but they are not the only
type of circuits used. Equally important are sequential circuits. For sequential circuits
one cannot predict the output corresponding to a particular input unless one also knows
something about the prior history of the circuit, or, more technically, unless one knows
the state the circuit was in before receiving the input. The behavior of a sequential circuit
is a function not only of the input to the circuit but also of the state the circuit is in when
the input is received. A computer memory circuit is a type of sequential circuit.

A finite-state automaton (aw-TAHM-uh-tahn) is an idealized machine that embodies
the essential idea of a sequential circuit. Each piece of input to a finite-state automaton
leads to a change in the state of the automaton, which in turn affects how subsequent
input is processed. Imagine, for example, the act of dialing a telephone number. Dialing
1-800 puts the telephone circuit in a state of readiness to receive the final seven digits of
a toll-free call, whereas dialing 328 leads to a state of expectation for the four digits of a
local call. Vending machines operate similarly. Just knowing that you put a quarter into
a vending machine is not enough for you to be able to predict what the behavior of the
machine will be. You also have to know the state the machine was in when the quarter
was inserted. If 75¢ had already been deposited, you might get a beverage or some candy,
but if the quarter was the first coin deposited, you would probably get nothing at all.

Example 12.2.1 A Simple Vending Machine

A simple vending machine dispenses bottles of juice that cost $1 each. The machine
accepts quarters and half-dollars only and does not give change. As soon as the amount
deposited equals or exceeds $1 the machine releases a bottle of juice. The next coin
deposited starts the process over again. The operation of the machine is represented by
the diagram of Figure 12.2.1.

-ollar

Figure 12.2.1 A Simple Vending Machine

Each circle represents a state of the machine: the state in which 0¢ has been deposited
25¢, 50¢, 75¢, and $1 or more. The unlabeled arrow pointing to "0¢ deposited" indicates
that this is the initial state of the machine. The double circle around "$I or more deposited"
indicates that a bottle of juice is released when the machine has reached this state. (It is
called an accepting state of the machine because when the machine is in this state, it has
accepted the input sequence of coins as payment for juice.) The arrows that link the states
indicate what happens when a particular input is made to the machine in each of its various
states. For instance, the arrow labeled "quarter" that goes from "0¢ deposited" to "25¢
deposited" indicates that when the machine is in the state "0¢ deposited" and a quarter is
inserted, the machine goes to the state "25¢ deposited." The arrow labeled "half-dollar"
that goes from "75¢ deposited" to "$I or more deposited" indicates that when the machine
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is in the state "750 deposited" and a half-dollar is inserted, the machine goes to the state
"$I or more deposited" and juice is dispensed. (In this case the purchaser would pay $1.25
for the juice because the machine does not return change.) The arrow labeled "quarter"
that goes from "$I or more deposited" to "250 deposited" indicates that when the machine
is in the state "$I or more deposited" and a quater is inserted, the machine goes back to the
state "250 deposited." (This corresponds to the fact that after the machine has dispensed
a bottle of juice, it starts operation all over again.)

Equivalently, the operation of the vending machine can be represented by a next-state
table as shown in Table 12.2.1.

Table 12.2.1 Next-State Table

00 deposited
250 deposited

State 500 deposited
75¢ deposited

o $1 or more deposited

Input

Quarter Half-Dollar

250 deposited 500 deposited
50¢ deposited 750 deposited
750 deposited $1 or more deposited

$1 or more deposited $1 or more deposited
250 deposited 500 deposited

The arrow pointing to "00 deposited" in the table indicates that the machine begins
operation in this state. The double circle next to "$I or more deposited" indicates that a
bottle of juice is released when the machine has reached this state. Entries in the body of
the table are interpreted in the obvious way. For instance, the entry in the third row of the
column labeled Half-Dollar shows that when the machine is in state "500 deposited" and
a half-dollar is deposited, it goes to state "$1 or more deposited."

Note that Table 12.2.1 conveys exactly the same information as the diagram of Figure
l 12.2.1, If the diagram is given, the table can be constructed; and if the table is given, the

diagram can be drawn. U

|E

Observe that the vending machine described in Example 12.2.1 can be thought of as
having a primitive memory: It "remembers" how much money has been deposited (within
limits) by referring to the state it is in. This capability for storing information and acting
upon it is what gives finite-state automata* their tremendous power.

The most important finite-state automata are digital computers. Each computer con-
sists of several subsystems: input devices, a processor, and output devices. A processor
typically consists of a central processing unit and a finite number of memory locations.
At any given time, the state of the processor is determined by the locations and values
of all the bits stored within its memory. A computer that has n different locations for
storing a single bit can therefore exist in 2' different states. For a modern computer, n
is many billions or even trillions, so the total number of states is enormous. But it is
finite. Therefore, despite the complexity of a computer, just as for a vending machine,
it is possible to predict the next state given knowledge of the current state and the input.
Indeed, this is essentially what programmers try to do every time they write a program.
Fortunately, modem, high-level computer languages provide a lot of help.

The basic theory of automata was developed to answer very theoretical questions
about the foundations of mathematics posed by the great German mathematician David

I = Hillbert in 1900. The ground-breaking work on automata was done in the mid-I 930s by
the English mathematician and logician Alan M. Turing. In the 1940s and 1950s, Turing's
work played an important role in the development of real-world automatic computers.

*Automata is the plural of automaton.

David Hilbert
(1862-1943)

Alan M. Turing
(1912-1954)
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Definition of a Finite-State Automaton
A general finite-state automaton is completely described by giving a set of states, together
with an indication about which is the initial state and which are the accepting states (when
something special happens), a list of all input elements, and specification for a next-state
function that defines which state is produced by each input in each state. This is formalized
in the following definition:

" I m. l

A finiteat automaton A consists of five objects:

1. A set I, called the input alphabet, of input symbols;

2. A set S of states the automaton can be in;

3. A designated state so called the initial state;

4. A designated set of states called the set of accepting states;

5. A next-state function N: S x I -+ S that associates a "next-state" to each or-
dered pair consisting of a "current state" and a "current input." For each state s
in S and input symbol m in I, N(s, m) iscl the tato whic ;Agost if mi
inputto A when A is in state sX

The operation of a finite-state automaton is commonly described by a diagram called
a (state-)transition diagram, similar to that of Figure 12.2.1. It is called a transition
diagram because it shows the transitions the machine makes from one state to another in
response to various inputs. In a transition diagram, states are represented by circles and
accepting states by double circles. There is one arrow that points to the initial state and
other arrows that are labeled with input symbols and point from each state to other states
to indicate the action of the next-state function. Specifically, an arrow from state s to state
t labeled m means that N(s, m) = t.

The next-state table for an automaton shows the values of the next-state function N
for all possible states s and input symbols i. In the annotated next-state table, the initial
state is indicated by an arrow and the accepting states are marked by double circles.

Example 12.2.2 A Finite-State Automaton Given by a Transition Diagram

Consider the finite-state automaton A defined by the transition diagram shown in Figure
12.2.2.

a. What are the states of A?

1- 11 +A- _ AA. .__ - - . 1 - M A A]AAtA-

D. wnat are tne nput symDoIs Or A !

c. What is the initial state of A?

d. What are the accepting states of A?

e. Find N(s 1 , 1). Figure 12.2.2

f. Find the annotated next-state table for A.

)

A, - - . - . -
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Solution

a. The states of A are so, sI, and S2 [since these are the labels of the circles].

b. The input symbols of A are 0 and I [since these are the labels of the arrows].

c. The initial state of A is so [since the unlabeled arrow points to so].

d. The only accepting state of A is S2 [since this is the only state marked by a double
circle].

e. N(si, 1) = S2 [since there is an arrowfrom s, to S2 labeled 1].

Input

0 1

~ S 5 SS0State s s 2

S 52 Sl So

Example 12.2.3 A Finite-State Automaton Given by an Annotated Next-State Table

Consider the finite-state automaton A defined by the following annotated next-state table:

Input

a b c
U Z Y Y

® V V V V
State Y Z V Y

o Z Z Z Z

a. What are the states of A?

b. What are the input symbols of A?

c. What is the initial state of A?

d. What are the accepting states of A?

e. Find N(U, c).

f. Draw the transition diagram for A.

Solution

a. The states of A are U, V, Y, and Z.

b. The input symbols of A are a, b, and c.

c. The initial state of A is U [since the arrow points to U].

d. The accepting states of A are V and Z [since these are marked with double circles].

e. N(U, c) = Y [since the entry in the row labeled U and the column labeled c of the
next-state table is Y].

f. The transition diagram for A is shown in Figure 12.2.3. It can be drawn more compactly
by labeling arrows with multiple-input symbols where appropriate. This is illustrated
in Figure 12.2.4.
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a, b, c

Figure 12.2.3 Figure 12.2.4 a

The Language Accepted by an Automaton
Now suppose a string of input symbols is fed into a finite-state automaton in sequence.
At the end of the process, after each successive input symbol has changed the state of the
automaton, the automaton ends up in a certain state, which may be either an accepting
state or a nonaccepting state. In this way, the action of a finite-state automaton separates
the set of all strings of input symbols into two subsets: those that send the automaton
to an accepting state and those that do not. Those strings that send the automaton to an
accepting state are said to be accepted by the automaton.

I S. ibi

Let A be a finite-state automaton with set of input symbols I. Let I* be the set of
all strings over I, and let w be a string in I*. Then w is accepted by A if, and only
if, A goes to an accepting state when the symbols of w are input to A in sequence
from left to right, starting when A is in its initial state. The language accepted by
A, denoted L (A), is the set of all strings that are accepted by A.

Example 12.2.4 Finding the Language Accepted by an Automaton

Consider the finite-state automaton A defined in Example 12.2.2 and shown again below.

a. To what states does A go if the symbols of the following strings are input to A in
sequence, starting from the initial state?

(i) 01 (ii) 0011 (iii) 0101100 (iv) 10101

b. Which of the strings in part (a) send A to an accepting state?

c. What is the language accepted by A?

d. Is there a regular expression that defines the same language?

Solution

a. (i) s2  (ii) so (iii) s1  (iv) s2

b. The strings 01 and 10101 send A to an accepting state.



12.2 Finite-State Automata 751

c. Observe that if w is any string that ends in 01, then w is accepted by A. For if w is
any string of length n > 2, then after the first n - 2 symbols of w have been input, A
is in one of its three states: so, si, or s2 . But from any of these three states, input of the
symbols 01 in sequence sends A first to s1 and then to the accepting state s2 . Hence
any string that ends in 01 is accepted by A.

Also note that the only strings accepted by A are those that end in 01. (That is, no
other strings besides those ending in 01 are accepted by A.) The reason for this is that
the only accepting state of A is S2, and the only arrow pointing to s2 comes from s1 and
is labeled 1. Thus in order for an input string w of length n to send A to an accepting
state, the last symbol of w must be a 1 and the first n - 1 symbols of w must send A
to state sl. Now three arrows point to sl, one from each of the three states of A, and
all are labeled 0. Thus the last of the first n - I symbols of w must be 0, or, in other
words, the next-to-the-last symbol of w must be 0. Hence the last two symbols of w
must be 01, and thus

L(A) = the set of all strings of O's and I's that end in 01.

d. Yes. One regular expression that defines L(A) is (0 I 1)*01. U

A finite-state automaton with multiple accepting states can have output devices at-
tached to each one so that the automaton can classify input strings into a variety of
different categories, one for each accepting state. This is how finite-state automata are
used in the lexical scanner component of a computer compiler to group the symbols from
a stream of input characters into identifiers, keywords, and so forth.

The Eventual-State Function
Now suppose a finite-state automaton is in one of its states (not necessarily the initial
state) and a string of input symbols is fed into it in sequence. To what state will the
automaton eventually go? The function that gives the answer to this question for every
possible combination of input strings and states of the automaton is called the eventual-
state function.

a!. Ll

Let A be a finite-state automaton with set of states 3, set of input symbols I, and
next-state function N: S x I -* S. Let l* be the set of all strings over I, and define
the eventual-state function N*: S x l* - S as follows:

For any state s and for any input string w,

the state to which A goes if the 1
N*(s, w) = symbols of w are input to A in sequence, .

starting when A is in state s

Example 12.2.5 Computing Values of the Eventual-State Function

Consider again the finite-state automaton of Example 12.2.2 shown below for conven-
ience. Find N*(sl, 10110).
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Solution By definition of the eventual-state function,

the state to which A goes if the
N*(sl, 10110) = symbols of 10110 are input to A in

sequence, starting when A is in state sJ

By referring to the transition diagram for A, you can see that starting from sI, when a 1 is
input, A goes to S2; then when a 0 is input, A goes back to s1; after that, when a 1 is input,
A goes to s2; from there, when a 1 is input, A goes to so; and finally, when a 0 is input, A
goes back to s1 . This sequence of state transitions can be written as follows:

I 0 1 1 0
Si S2 SI S2 SO i.

Thus, after all the symbols of 10110 have been input in sequence, the eventual state of A
is sI, so

N*(si, 10110) =s1 . U

The definitions of string and language accepted by an automaton can be restated
symbolically using the eventual-state function. Suppose A is a finite-state automaton
with set of input symbols I and next-state function N, and suppose that l* is the set of all
strings over I and that w is a string in 1*.

w is accepted by A 4 N* (so, w) is an accepting state of A

L(A) = {w E I* I N*(so, w) is an accepting state of Al

Designing a Finite-State Automaton
Now consider the problem of starting with a description of a language and designing an
automaton to accept exactly that language.

Example 12.2.6 A Finite-State Automaton That Accepts the Set of Strings of O's and 1's
for Which the Number of 1's Is Divisible by 3

a. Design a finite-state automaton A that accepts the set of all strings of O's and l's such
that the number of I's in the string is divisible by 3.

b. Is there a regular expression that defines this set?

Solution

a. Let so be the initial state of A, sI its state after one 1 has been input, and s2 its state
after two 1's have been input. Note that so is the state of A after zero 1's have been
input, and since zero is divisible by 3 (O = 0 * 3), so must be an accepting state. The
states so, si, and s2 must be different from one another because from state so three l's
are needed to reach a new total divisible by 3, whereas from state SI two additional I's
are necessary, and from state S2 just one more 1 is required.

Now the state of A after three I's have been input can also be taken to be so because
after three I's have been input, three more are needed to reach a new total divisible by 3.
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More generally, if 3kl's have been input to A, where k is any nonnegative integer, then
three more are needed for the total again to be divisible by 3 (since 3k + 3 = 3(k + 1)).
Thus the state in which 3k 1's have been input, for any nonnegative integer k, can be
taken to be the initial state so.

By similar reasoning, the states in which (3k + 1)1's and (3k + 2)1's have been
input, where k is a nonnegative integer, can be taken to be sl and s2, respectively.

Now every nonnegative integer can be written in one of the three forms 3k,3k + 1,
or 3k + 2 (see Section 3.4), so the three states so, si, and s2 are all that is needed to
create A. Thus the states of A can be drawn and labeled as shown below.

Next consider the possible inputs to A in each of its states. No matter what state
A is in, if a 0 is input the total number of l's in the input string remains unchanged.
Thus there is a loop at each state labeled 0.

Now suppose a 1 is input to A when it is in state so. Then A goes to state s, (since
the total number of l's in the input string has changed from 3k to 3k + 1). Similarly,
if a 1 is input to A when it is in state sl, then A goes to state s2 (since the total number
of I's in the input string has changed from 3k + I to 3k + 2). Finally, if a I is input
to A when it is in state s2, then it goes to state so (since the total number of 1's in the
input string becomes (3k + 2) + 1 = 3k + 3 = 3(k + 1), which is a multiple of 3.)

It follows that the transition diagram for A has the appearance shown below.

This automaton accepts the set
of strings of O's and i's for which
the number of I's is divisible by 3.

b. A regular expression that defines the given set is 0* I (0* 0* 10* I 0*)*. U

Example 12.2.7 A Finite-State Automaton That Accepts the Set of All Strings of 0's and I's
Containing Exactly One 1

a. Design a finite-state automaton A to accept the set of all strings of 0's and l's that
contain exactly one 1.

b. Is there a regular expression that defines this set?
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Solution

a. The automaton A must have at least two distinct states:

so: initial state;

sl: state to which A goes when the input string contains exactly one 1.

If A is in state so and a 0 is input, A may as well stay in state so (since it still needs
to wait for a I to move to state sj), but as soon as a I is input, A moves to state sl. Thus
a partial drawing of the transition diagram is as shown below.

0

Now consider what happens when A is in state sj. If a 0 is input, the input string
still has a single 1, so A stays in state sj. But if a I is input, then the input string
contains more than one 1, so A must leave s, (since no string with more than one I is
to be accepted by A). It cannot go back to state so because there is a way to get from so
to si, and after input of the second 1, A can never return to state s1. Hence A must go
to a third state, S2, from which there is no return to sj. Thus from s2 every input may
as well leave A in state S2* It follows that the completed transition diagram for A has
the appearance shown below.

This automaton accepts the set of
strings O's and 1's, with exactly one 1.

b. A regular expression that defines the given set is 0*10*. U

Simulating a Finite-State Automaton Using Software
Suppose items have been coded with strings of O's and 1's. A program is to be written
to govern the processing of items coded with strings that end 0 11; items coded any other
way are to be ignored. This situation can be modeled by the finite-state automaton shown
in Figure 12.2.5.

This automaton recognizes
strings that end 011.

Figure 12.2.5
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The symbols of the code for the item are fed into this automaton in sequence, and every
string of symbols in a given code sends the automaton to one of the four states so, si, S2,
or S3 . If state S3 is reached, the item is processed; if not, the item is ignored.

The action of this finite-state automaton can be simulated by a computer algorithm as
given in Algorithm 12.2.1.

Note how use of the finite-state automaton allows the creator of the algorithm to focus
on each step of the analysis of the input string independently of the other steps.

An alternative way to program this automaton is to enter the values of the next-state
function directly as a two-dimensional array. This is done in Algorithm 12.2.2.

Algorithm 12.2.1 A Finite-State Automaton

[This algorithm simulates the action of thefinite-state automaton of Figure 12.2.5 by
mimicking the functioning of the transition diagram. The states are denoted 0, 1, 2,
and 3.]

Input: string [a string of O's and 1 's plus an end marker e]

Algorithm Body:

state := 0
symbol := first symbol in the input string

while (symbol # e)

if state = 0 then if symbol = 0
then state = 1
else state 0

else if state = I then if symbol = 0
then state I

else state 2

else if state = 2 then if symbol 0
then state 1
else state := 3

else if state = 3 then if symbol 0
then state := I
else state 0

symbol:= next symbol in the input string

end while
[After execution of the while loop, the value of state is 3 if and only if the in-
put string ends in 0 1 le.]

Output: state
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Finite-State Automata and Regular Expressions
In the previous sections, each time we considered a language accepted by a finite-state
automaton, we found a regular expression that defined the same language. Stephen Kleene
showed that our ability to do this is not sheer coincidence. He proved that any language
accepted by a finite-state automaton can be defined by a regular expression and that,
conversely, any language defined by a regular expression is accepted by a finite-state
automaton. Thus for the many applications of regular expressions discussed in Section
12.1, it is theoretically possible to find a corresponding finite-state automaton, which
can then be simulated using the kinds of computer algorithms described in the previous
subsection.

In practice, it is often of interest to retain only pieces of the patterns sought. For
instance, to obtain a reference in an HTML document, one would specify a regular ex-
pression defining the full HTML tag, <a href= "the desired URL">, but one would be
interested in retrieving only the string between the quotation marks. Because of these
kinds of considerations, actual implementations of finite-state automata include additional
features.*

We break the statement of Kleene's theorem into two parts.

Proof:

Suppose A is a finite-state automaton with a set I of input symbols, a set S of n
states, and a next-state function N: S x I -+ S. Let P* denote the set of all strings

*For more information, see Mastering Regular Expressions, 2nd ed., by Jeffrey E. F. Friedl,
(Sebastopol, CA: O'Reilly & Associates, 2002).

Algorithm 12.2.2 A Finite-State Automaton

[This algorithm simulates the action of thefinite-state automaton of Figure 12.2.5 by
repeated application of the next-state function. The states are denoted 0, 1, 2, and 3.]

Input: string [a string of O's and I 's plus an end marker e]

Algorithm Body:

N(O, 0) 1, N(O, 1) =0, N(1, 0) 1, N(1, 1) =2,
N(2, 0) 1, N(2, 1) 3, N(3, 0) := 1, N(3, 1) =0
state : = 0
symbol: = first symbol in the input string

while (symbol 7t e)
state := N (state, symbol)
symbol := next symbol in the input string

end while
[After execution of the while loop, the value of state is 3 if and only if the in-
put string ends in 01le.]

Output: state
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over I. Number the states S s2, s3, . . ., s, using s, to denote the initial state, and
for each integer k = 1, 2, 3, . . ., n, let

when the symbols of x are input to A in sequence, A
Lk= x C /. goes from state se to state sj without traveling through

an intermediate state Sh for which h > k

Note that either index i or index j in L k could be greater than k; the only restriction is
that the symbols of a string in L k cannot make A both enter and exit an intermediate
state with index greater than k.

If s1 is an accepting state and if k = n and i = 1, then L" is the set of all strings
that send A to sj when the symbols of the string are input to A in sequence starting
from sj. Thus

Ln j C L(A).

Moreover, because the sequence of symbols in every string in L(A) sends A to some
accepting state sj,

L(A) is the union of all the sets L71 , where sj is an accepting state.

We use a version of mathematical induction to build up a set of regular expressions
over I.

BASE: For each pair of integers i and j with I < i, j < n, LO is the set of all strings
that send A from si to sj without sending it through any intermediate state Sh for
which h > 0. Because the subscript of every state in A is greater than zero, the
strings in L do not send A through any intermediate states at all, and so each is a
single input symbol from I. In other words, for all integers i and j with 1 < i, j < n,

Loj = {a E I I N(si, a) = sj.

Hence LO is a subset of I, and so (because I is finite) we may denote the elements
of LO as follows:

Lij = {a,, a2 , a3 , . . ., aM} C.

Now, by definition of regular expression, each single input symbol of I is a regular
expression over l; thus every element of LO is a regular expression over I. The
result is that for all integers i and j with I < i, j < n, the following regular expression
defines LO

al I a2 1 a31.. laM

RECURSION: Let i and j be any pair of integers with I < i, j < n, and suppose
that for each pair of integers p and q with I < p, q < k, there is a regular expres-
sion that defines Lk Call it rk We will construct a regular expression r k+1p~q p ,q '

that defines Lij7. Observe that any string in LiTj sends A from si to sj, either
by a route that makes A pass through Sk+1 or by a route that does not make A
pass through Sk+1 Now each string that sends A from si to sj and makes A pass
through Sk+1 one or more times can be broken into segments. The symbols in the
first segment send A from si to Sk+1 without making A pass through Sk+1; those in
each of the intermediate segments send Sk+1 to itself without making A pass through

continued on page 758
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sk+i; and those in the final segment send A from Sk+i to sj without making A pass
through Sk+1 (The intermediate segment could be the null string.) A typical path
showing two intermediate segments is illustrated below.

-k

Note that each intermediate segment of the string is in Lk+l±k+l, and by assumption
the regular expression rk+l k+j defines this set. By the same reasoning, rik+j defines
the set of all possible first segments of the string, and rkk+j defines the set of all
possible final segments of the string. In addition, r k defines the set of all strings that
send A from si to sj without making it pass through a state Sm with m > k. Thus we
may define the regular expression r k+1 as follows:

k+1 k k /k\ k
ri j+= rkij I r,,k+l (rk+lk+l) rk+l1j,

Then rk+l defines the set of all strings that send A from si to sj without making it
Ii

pass through any states sm with m > k + 1. Note that because i and j were allowed
to be any pair of integers with 1 < i, j < n, then rtk1+ is defined for all possible such
pairs, which allows the next stage of the recursion to go forward.

To complete the proof, let sj be any accepting state of A, and let rj be the regular
expression

rj= °j I rl j I rl j r, j .

Then rj defines the set of all strings that send A to sj when the symbols in the string
are input to A in sequence, starting with sl. Thus if the entire set of accepting states
of A is {sj,, Sj2, Sj3, . . . , Sjh, then the regular expression

r = rj, I rj2  I rj 3  I I rj,

defines the set of all strings that send A to an accepting state. In other words, r defines
L (A).

Kleene's Theorem, Part 2

Given any language defined by a regular expression, there is a finite-state automaton
that accepts the same language.

The most common way to prove part 2 of Kleene's theorem is to introduce a new cat-
egory of automata called nondeterministicfinite-state automata. These are similar to the
(deterministic) finite-state automata we have been discussing, except that for any given
state and input symbol, the next state is a subset of the set of states of the automaton,
possibly even the empty set. Thus the next state of the automaton is not uniquely deter-
mined by the combination of a current state and an input symbol. A string is accepted by

'SH

. .
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a nondeterministic finite-state automaton if, and only if, when the symbols in the string are
input to the automaton in sequence, starting from an initial state, there is some sequence
of next states through which the automaton could travel that would send it to an accepting
state. For instance, the transition diagram at the left is an example of a very simple
nondeterministic finite-state automaton that accepts the set of all strings beginning with
a 1. Observe that N(so, 1) = {s], S2} and N(so, 0) = 0.

Given a language defined by any regular expression, there is a straightforward recur-
sive algorithm for finding a nondeterministic finite-state automaton that defines the same
language. The proof of Kleene's theorem is completed by showing that for any such
nondeterministic finite-state automaton, there is a (deterministic) finite-state automaton
that defines the same language. We leave the details of the proof to a course in automata
theory.

Regular Languages
According to Kleene's theorem, the set of languages defined by regular expressions is
identical to the set of languages accepted by finite-state automata. Any such language is
called a regular language. The brief allusions we made earlier to context-free languages
and Chomsky's classification of languages suggest that not every language is regular. We
will prove this by giving an example of a nonregular language.

To construct the example, note that because a finite-state automaton can assume only
a finite number of states and because there are infinitely many input sequences, by the
pigeonhole principle there must be at least one state to which the automaton returns over
and over again. This is the essential feature of an automaton that makes it possible to find
a nonregular language.

Example 12.2.8 Showing That a Language is Not Regular

Let the language L consist of all strings of the form akbk, where k is a positive integer.
Symbolically, L is the language over the alphabet E = {a, bJ defined by

L = {s E' IX s = akbk, where k is a positive integer).

Use the pigeonhole principle to show that L is not regular. In other words, show that there
is no finite-state automaton that accepts L.

Solution [Use a proof by contradiction.] Suppose not. That is, suppose there is a finite-
state automaton A that accepts L. [A contradiction will be derived.] Since A has only a
finite number of states, these states can be denoted sI, S2, S3, . . ., S,, where n is a positive
integer. Consider all input strings that consist entirely of a's: a, a2

, a3 , a4 , . . .. Now there
are infinitely many such strings and only finitely many states. Thus, by the pigeonhole
principle, there must be a state sm and two input strings aP and aq with p :A q such that
when either aP or aq is input to A, A goes to state Sm. (See Figure 12.2.6.) [The pigeons
are the strings of a's, the pigeonholes are the states, and the correspondence associates
each string with the state to which A goes when the string is input.]

Now, by supposition, A accepts L. Hence A accepts the string

aPbP.

This means that after p a's have been input, at which point A is in state sm, inputting p
additional b's sends A into an accepting state, say Sa. But that implies that

aqbP
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States of A

Since F is not one-to-one, 3 strings
aP and aq with p t q such that both
aP and aq send A to the same state

There are an There are only
infinite number n states.
of these strings.

Figure 12.2.6

also sends A to the accepting state Sa, and so OFbP is accepted by A. The reason is that
after q a's have been input, A is also in state sm, and from that point, inputting p additional
b's sends A to state Sa, which is an accepting state. Pictorially, if p < q, then

p a's are input p b's are input

aa

a a.

q - p additional
a's are input

Now, by supposition, L is the language accepted by A. Thus since s is accepted by
A, s E L. But by definition of L, L consists only of strings with equal numbers of a's and
b's. So since p : q, s ¢ L. Hence s E L and s V L, which is a contradiction.

It follows that the supposition is false, and so there is no finite-state automaton that
accepts L. U

Exercise Set 12.2
1. Find the state of the vending machine in Example 12.2.1

after each of the following sequences of coins have been

input.
a. Quarter, half-dollar, quarter
b. Quarter, half-dollar, half-dollar
c. Half-dollar, quarter, quarter, quarter, half-dollar

In 2-7 a finite-state automaton is given by a transition diagram.
For each automaton:
a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Write its annotated next-state table.

Strings of a's
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2.1

O

3. a

b Eb
a a

a

b

In 8 and 9 a finite-state automaton is given by an annotated next-
state table. For each automaton:
a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Draw its transition diagram.

8. Next-State Table

State
4.

Input

0 1
- Iso SI S2

SIl S S2
@ S2 SI S2

9. Next-State Table

State

Input

0 1
-* so So Si

c Si SI S2

S2 52 53

S3 S3 So

10. A finite-state automaton A, given by the transition diagram
below, has next-state function N and eventual-state func-
tion N*.

(L $S°6.

a. Find N(sj, 1) and N(so, 1).
b. Find N(s2 , 0) and N(sj, 0).
c. Find N*(so, 10011) and N*(sl, 01001).
d. Find N*(s2 , 11010) and N*(so, 01000).

7.
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11. A finite-state automaton A, given by the transition diagram
below, has next-state function N and eventual-state func-
tion N*.

a.
b.
C.

d.

Find N(s3 , 0) and N(s2 , 1).
Find N(so, 0) and N(s4 , 1).
Find N*(so, 010011) and N*(s3, 01101).
Find N*(so, 1111) and N*(s 2 , 00111).

12. Consider again the finite-state automaton of exercise 2.
a. To what state does the automaton go when the symbols of

the following strings are input to it in sequence, starting
from the initial state?
(i) 1110001 (ii) 0001000 (iii) 11110000

b. Which of the strings in part (a) send the automaton to an
accepting state?

c. What is the language accepted by the automaton?
d. Find a regular expression that defines the language.

13. Consider again the finite-state automaton of exercise 3.
a. To what state does the automaton go when the symbols of

the following strings are input to it in sequence, starting
from the initial state?
(i) bb (ii) aabbbaba (iii) babbbbbabaa
(iv) bbaaaabaa

b. Which of the strings in part (a) send the automaton to an
accepting state?

c. What is the language accepted by the automaton?
d. Find a regular expression that defines the language.

In each of 14-19, (a) find the language accepted by the automa-
ton in the referenced exercise, and (b) find a regular expression
that defines the same language.

14. Exercise 4

17. Exercise 7

15. Exercise 5

18. Exercise 8

16. Exercise 6

19. Exercise 9

In each of 20-29, (a) design an automaton with the given in-
put alphabet that accepts the given set of strings, and (b) find
a regular expression that defines the language accepted by the
automaton.

20. Input alphabet = (0, 11; Accepts the set of all strings for
which the final three input symbols are 1.

H 21. Input alphabet = (a, b); Accepts the set of all strings of
length at least 2 for which the final two input symbols are
the same.

22. Input alphabet = (0, 1); Accepts the set of all strings that
start with 01 or 10.

23. Input alphabet = {0, 1); Accepts the set of all strings that
start with 01.

24. Input alphabet = (0, 1); Accepts the set of all strings that
start with 101.

25. Input alphabet = (0, 1); Accepts the set of all strings that
end in 10.

26. Input alphabet = la, bh; Accepts the set of all strings that
contain exactly two b's.

27. Input alphabet = {0, 11; Accepts the set of all strings that
start with 0 and contain exactly one 1.

28. Input alphabet = (0, 11; Accepts the set of all strings that
contain the pattern 010.

In 29-47, design a finite-state automaton to accept the language
defined by the regular expression in the referenced exercise from
Section 12.1.

29. Exercise 16 30. Exercise 17 31. Exercise 18

32. Exercise 19 33. Exercise 20 34. Exercise 21

35. Exercise 24 36. Exercise 25 37. Exercise 26

38. Exercise 27 39. Exercise 31 40. Exercise 32

41. Exercise 33

44. Exercise 36

42. Exercise 34

45. Exercise 37

43. Exercise 35

46. Exercise 38

47. Exercise 39

48. A simplified telephone switching system allows the follow-
ing strings as legal telephone numbers:
a. A string of seven digits that does not start with 00, 01, 10

or 11 (a local call string).
b. A 1 followed by a three-digit area code string (any digit

except 0 or I followed by a 0 or 1 followed by any digit)
followed by a seven-digit local call string.

c. A 0 alone or followed by a three-digit area code string
plus a seven-digit local call string.

Design a finite-state automaton to recognize all the legal
telephone numbers in (a), (b) and (c). Include an "error
state" for invalid telephone numbers.

49. Write a computer algorithm that simulates the action of the
finite-state automaton of exercise 2 by mimicking the action
of the transition diagram.

50. Write a computer algorithm that simulates the action of the
finite-state automaton of exercise 8 by repeated application
of the next-state function.
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H 51. Let L be the language consisting of all strings of the form

ambn, where m and n are positive integers and m > n.

Show that there is no finite-state automaton that accepts L.

52. Let L be the language consisting of all strings of the form

amb', where m and n are positive integers and m < n.

Show that there is no finite-state automaton that accepts L.

H 53. Let L be the language consisting of all strings of the form

a', where n = mi
2

, for some positive integer m.

Show that there is no finite-state automaton that accepts L.

54. a. Let A be a finite-state automaton with input alphabet A,
and suppose L (A) is the language accepted by A. The

complement of L(A) is the set of all strings over E that
are not in L (A). Show that the complement of a regular
language is regular by proving the following: If L(A)
is the language accepted by a finite-state automaton A,

then there is a finite-state automaton A' that accepts the
complement of L(A).

b. Show that the intersection of any two regular languages
is regular as follows: First prove that if L(Al) and
L(A2 ) are languages accepted by automata Al and A2,
respectively, then there is an automaton A that accepts
(L(A 1))c U (L(A2 ))c. Then use one ofDe Morgan's laws
for sets, the double complement law for sets, and the re-
sult of part (a) to prove that there is an automaton that
accepts L(A 1) n L(A9.

12.3 Simplifying Finite-State Automata
Our life is frittered away by detail.... Simplify, simplify.
-Henry David Thoreau, Walden, 1854

Any string input to a finite-state automaton either sends the automaton to an accepting
state or not, and the set of all strings accepted by an automaton is the language accepted
by the automaton. It often happens that when an automaton is created to do a certain job
(as in compiler construction, for example), the automaton that emerges "naturally" from
the development process is unnecessarily complicated; that is, there may be an automaton
with fewer states that accepts exactly the same language. It is desirable to find such
an automaton because the memory space required to store an automaton with n states is
approximately proportional to n2 . Thus approximately 10,000 memory spaces are required
to store an automaton with 100 states, whereas only about 100 memory spaces are needed
to store an automaton with 10 states. In addition, the fewer states an automaton has, the
easier it is to write a computer algorithm based on it; and to see that two automata both
accept the same language, it is easiest to simplify each to a minimal number of states and
compare the simplified automata. In this section we show how to take a given automaton
and simplify it in the sense of finding an automaton with fewer states that accepts the same
language.

Example 12.3.1 An Overview

Consider the finite-state automata A and A' in Figure 12.3.1. A moment's thought should
convince you that A' accepts all those strings, and only those strings, that contain an

AI

A
Figure 12.3.1 Two Equivalent Automata
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even number of Fs. But A, although it appears more complicated, accepts exactly those
strings also. Thus the two automata are "equivalent" in the sense that they accept the same
language, even though A' has fewer states than A.

Roughly speaking, the reason for the equivalence of these automata is that some of
the states of A can be combined without affecting the acceptance or nonacceptance of
any input string. It turns out that S2 can be combined with state so and that s3 can be
combined with state Sj. (How to figure out which states can be combined is explained
later in this section.) The automaton with the two combined states {so, s2} and {s], s3A is
called the quotient automaton of A and is denoted A. Its transition diagram is obtained
by combining the circles for so and S2 and for SI and S3 and by replacing any arrow from
a state s to a state t by an arrow from the combined state containing s to the combined
state containing t. For instance, since there is an arrow labeled 1 from sI to S2 in A, there
is an arrow labeled 1 from (sI, s3} to {so, S21 in A. The complete transition diagram for
A is shown in Figure 12.3.2. As you can see, except for labeling the names of the states,
it is identical to the diagram for A'.

Figure 12.3.2 l

In general, simplification of a finite-state automaton involves identifying "equivalent
states" that can be combined without affecting the action of the automaton on input strings.
Mathematically speaking, this means defining an equivalence relation on the set of states
of the automaton and forming a new automaton whose states are the equivalence classes
of the relation. The rest of this section is devoted to developing an algorithm to carry out
this process in a practical way.

*-Equivalence of States
Two states of a finite-state automaton are said to be *-equivalent (this is read "star equiv-
alent") if any string accepted by the automaton when it starts from one of the states is
accepted by the automaton when it starts from the other state. Recall that the value of
the eventual-state function, N*, for a state s and input string w is the state to which the
automaton goes if the characters of w are input in sequence when the automaton is in state s.

I. ! u I!I

Let A be a finite-state automaton with next-state function N and eventual-state func-
tion N*. Define a binary relation on the set of states of A as follows: Given any
states s and t of A, we say that s and t are *-equivalent and write s R* t if, and only
if, for all input strings w,

either both N*(s, w) and N*(t, w) are accepting states or both
are nonaccepting states.

In other words, states s and t are *-equivalent if, and only if, for all input strings w,

N*(s, w) is an accepting state X N*(t, w) is an accepting state.



Or, more simply, for all input strings w,LA goes to an accepting state ifl
Lw is input when A is in state sJ
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[A goes to an accepting state if
w is input when A is in state t]j

It follows immediately, by substitution into the definition, that

R. is an equivalence relation on S, the set of states of A. 12.3.1

You are asked to prove this formally in the exercises at the end of this section.

k-Equivalence of States
From a procedural point of view, it is difficult to determine the *-equivalence of two states
using the definition directly. According to the definition, you must know the action of the
automaton starting in states s and t on all input strings in order to tell whether s and t
are equivalent. But since most languages have infinitely many input strings, you cannot
check individually the effect of every string that is input to an automaton. As a practical
matter, you can tell whether or not two states s and t are *-equivalent by using an iterative
procedure based on a simpler kind of equivalence of states called k-equivalence. Two
states are k-equivalent if any string of length less than or equal to k that is accepted by
the automaton when it starts from one of the states is accepted by the automaton when it
starts from the other state.

I !tl

Let A be a finite-state automaton vith next-state function N and eventual-state func-
tion N*. Define a biay relation on the set of states of A as follows: Given any states
s and t of A and an integer k > 30, we say that s is k-equivalent to t and write s Rk t
if, and only if, for all input strings vw of length less than or equal to k, either N*(s, w)
and N*(t, w) are both accepting states or they are both nonaccepting states.

Certain useful facts follows quickly from the definition of k-equivalence:

For each integer k > 0. k-equivalence is an equivalence relation. 12.3.2

For each integer k > 0 the k-equivalence classes partition the set of all
states of the automaton into a union of mutually disjoint subsets. 12.3.3

For each integer k > 1, if two states are k-equivalent, then they are
also (k - 1) equivalent. 12.3.4

For each integer k > 1, each k-equivalence class is a subset of a
(k - 1)-equivalence class. 12.3.5

Any two states that are k-equivalent for all integers k > 0 are *-equivalent. 12.3.6

Proofs of these facts are left for the exercises.
The following theorem gives a recursive description of k-equivalence of states. It

says, first, that any two states are 0-equivalent if, and only if, either both are accepting
states or both are nonaccepting states and, second, that any two states are k-equivalent
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(for k > 1) if, and only if, they are (k - l)-equivalent and for any input symbols their
next-states are also (k - 1)-equivalent.

Theorem 12.3.1

Let A be a finite-state automaton with next-state function N. Given any states s and
t in A,

1. s is 0-equivalent to t U* either s and t are both accepting states
1or they are both nonaccepting states

2. for every integer k > 1, X

s is k-equivalent to t

[ and t are (k - I)-equivalent, and
for any input symbol m, N(s, m) and .
N(t, m) are also (k - l)-equivalent

The truth of Theorem 12.3.1 follows from the fact that inputting a string w of length
k has the same effect as inputting the first symbol of w and then the remaining k - I
symbols of w. A detailed proof is somewhat technical.

Theorem 12.3.1 implies that if you know which states are (k - 1)-equivalent (where
k is a positive integer) and if you know the action of the next-state function, then you can
figure out which states are k-equivalent. Specifically, if s and t are (k - 1)-equivalent
states whose next-states are (k - 1)-equivalent for any input symbol m, then s and t are
k-equivalent. Thus the k-equivalence classes are obtained by subdividing the (k - 1)-
equivalence classes according to the action of the next-state function on the members of
the classes. An example should make this procedure clear.

Example 12.3.2 Finding k-Equivalence Classes

Find the O-equivalence classes, the 1-equivalence classes, and the 2-equivalence classes
for the states of the automaton shown below.

Solution

1. 0-equivalence classes: By Theorem 12.3.1 two states are O-equivalent if, and only if,
both are accepting states or both are nonaccepting states. Thus there are two sets of
O-equivalent states:

ISo, s1, S4) (the nonaccepting states) and {S2 , S3} (the accepting states),

and so

the O-equivalence classes are {so, Si, 54} and {S2 , S3}-

U1
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2. 1-equivalence classes: By Theorem 12.3.1, two states are 1-equivalent if, and only
if, they are 0-equivalent and, after input of any input symbol, their next-states are 0-
equivalent. Thus sI is not 1-equivalent to so because when a 0 is input to the automaton
in state sI it goes to state S2 , whereas when a 0 is input to the automaton in state so it
goes to state so, and S2 and so are not 0-equivalent. On the other hand, sI is 1 -equivalent
to S4 because when a 0 is input to the automaton in state sI or S4 the next-states are
S2 and s3, which are 0-equivalent; and when a I is input to the automaton in state sI
or s 4 the next-states are s 4 and sI, which are 0-equivalent. By a similar argument, s2

is 1-equivalent to S3. Since 1-equivalent states must also be 0-equivalent (by property
(12.3.4)], no other pairs of states can be 1-equivalent. Hence

the 1-equivalence classes are {sol, {st, S41, and {s2 , S3}.

3. 2-equivalence classes: By Theorem 12.3.1, two states are 2-equivalent if, and only
if, they are 1-equivalent and, after input of any input symbol, their next-states are
1-equivalent. Now SI is 2-equivalent to 54 because they are 1-equivalent; and when
a 1 is input to the automaton in state sI or S4 the next-states are s4 and SI, which are
1-equivalent; and when a 0 is input to the automaton in state sI or S4 the next-states are
s2 and S3 , which are 1 -equivalent. Similarly, s2 is 2-equivalent to S3 . Since 2-equivalent
states must also be 1-equivalent [by property (12.3.4)], no other pairs of states can be
2-equivalent. Hence

the 2-equivalence classes are {so}, {si, s4l, and {S2, S3].

Note that the set of 2-equivalence classes equals the set of 1-equivalence classes. K

Finding the *-Equivalence Classes
Example 12.3.2 illustrates the relative ease with which the sets of k-equivalence classes
of states can be found. But to simplify a finite-state automaton, you need to find the set
of *-equivalence classes of states. The next theorem says that for some integer K, the
set of *-equivalence classes equals the set of K-equivalence classes.

The detailed proof of Theorem 12.3.2 is somewhat technical, but the idea of the proof
is not hard to understand. Theorem 12.3.2 follows from the fact that for each positive
integer k, the k-equivalence classes are obtained by subdividing the (k - 1)-equivalence
classes according to a certain rule that is the same for each k. Since the number of states of
the automaton is finite, this subdivision process cannot continue forever, and so for some
integer K > 0, the set of K-equivalence classes equals the set of (K + 1)-equivalence
classes. Moreover, the set of m-equivalence classes equals the set of K-equivalence
classes for every integer m > K. But this implies that the set of *-equivalence classes
equals the set of K-equivalence classes.

Theorem 12.3.2

If A is a finite-state automaton, then for some integer, K > 0, the set of K-equivalence
classes of states of A equals the set of (K + 1)-equivalence classes of states of A,
and for all such K these are both equal to the set of *-equivalence classes of states
of A.
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Example 12.3.3 Finding *-Equivalence Classes of R

Let A be the finite-state automaton defined in Example 12.3.2. Find the *-equivalence
classes of states of A.

Solution According to Example 12.3.2, the set of 1-equivalence classes for A equals the set
of 2-equivalence classes. By Theorem 12.3.2, then, the set of *-equivalence classes also
equals the set of 1-equivalence classes. Hence

the *-equivalence classes are {so}, {s,, s4} and {S2, S3 ).

In the notation of Section 10.3, the equivalence classes are denoted

[So] = (So} [SI] = {SI, S4} = [S4] [S2] = fS 2 , S3} = [SA. U

The Quotient Automaton
We next define the quotient automaton A of an automaton A. However, in order for all
parts of the definition to make sense, we must point out two facts.

No *-equivalence class of states of A can contain both accepting 12.3.7
and nonaccepting states.

The reason this is true is that the 0-equivalence classes divide the set of states of A
into accepting and nonaccepting states, and the *-equivalence classes are subsets of
0-equivalence classes.

If two states are *-equivalent, then their next-states are also 12.3.8
*-equivalent for any input symbol m.

This is true for the following reason. Suppose states s and t are *-equivalent. Then any
input string that sends A to an accepting state when A is in state s sends A to an accepting
state when A is in state t. Now suppose m is any input symbol, and consider the next-states
N(s, m) and N(t, m). Inputting a string of length k to A when A is in state N(s, m) or
N(t, m) produces the same effect as inputting a certain string of length k + 1 to A when
A is in state s or t (namely the concatenation of m with the string of length k). Hence
any string that sends A to an accepting state when A is in state N(s, m) also sends A to
an accepting state when A is in state N(t, m). It follows that N(s, m) and N(t, m) are
*-equivalent. Complete proofs of properties (12.3.7) and (12.3.8) are left to the exercises.

Now we can define the quotient automaton A of A. It is the finite-state automa-
ton whose states are the *-equivalence classes of states of A, whose initial state is the
*-equivalence class containing the initial state of A, whose accepting states are of the
form [s] where s is an accepting state of A, whose input symbols are the same as the input
symbols of A, and whose next-state function is derived from the next-state function for
A in the following way: To find the next-state of A for a state s and an input symbol m,
pick any state t in Is] and look to see what next-state A goes to if m is input when A is in
state t; the equivalence class of this state is the next-state of A.
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Let A be a finite-state automaton with set of states S, set of input symbols I, and
next-state function N. The quotient automaton A is defined as follows:

1. The set of states, S, of A is the set of *-equivalence classes of states of A.

2. The set of input symbols, 7, of A equals I.

3. The initial state of A is [so], where so is the initial state of A.

4. The accepting states of A are the states of the form [s], where s is an accepting
state of A.

5. The next-state function N: S x I -e S is defined as follows:

For all states [sJ in S and input symbols m in I, N([sJ, m) =[N(s, m)].

(That is, if m is input to A when A is in state [si, then A goes to the state that is
the *-equivalence class of N(s, m).)

Note that since the states of A are sets of states of A, A generally has fewer states than
A. (A and A have the same number of states only in the case where each *-equivalence
class of states contains just one element.) Also, by property (12.3.7), each accepting state
of A consists entirely of accepting states of A. Furthermore, property (12.3.8) guarantees
that the next-state function N is well defined.

By construction, a quotient automaton A accepts exactly the same strings as A. We
state this formally as Theorem 12.3.3. We leave the details to a more advanced course in
automata theory.

Constructing the Quotient Automaton
Let A be a finite-state automaton with set of states S, next-state function N, relation R,
of *-equivalence of states, and relation Rk of k-equivalence of states. It follows from
Theorem 12.3.2 and 12.3.3 and from the definition of quotient automaton that to find the
quotient automaton A of A, you can proceed as follows:

1. Find the set of O-equivalence classes of S.

2. For each integer k > 1, subdivide the (k - 1)-equivalence classes of S (as described
earlier) to find the k-equivalence classes of S. Stop subdividing when you observe
that for some integer K the set of (K + 1)-equivalence classes equals the set of K-
equivalence classes. At this point, conclude that the set of K-equivalence classes
equals the set of *-equivalence classes.

Theorem 12.3.3

If A is a finite-state automaton, then the quotient automaton A accepts exactly the
same languages as A. In other words, if L(A) denotes the language accepted by A
and L (A) denotes the language accepted by A, then

L(A) = L(A).

\ : :4 X g \ : S : : S V S S \ ,
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3. Construct the quotient automaton A whose states are the *-equivalence classes of states
of A and whose next-state function N is given by

N([s], m) = [N(s, m)] for any state of A and any input symbol m,

where s is any state in [s!. [That is, to see where A goes if mn is input to A when it
is in state s, look to see where A goes if m is input to A when it is in state s. The
*-equivalence class of that state is the answer]

Example 12.3.4 Constructing a Quotient Automaton

Consider the automaton A of Examples 12.3.2 and 12.3.3. This automaton is shown again
below for reference. Find the quotient automaton of A.

Solution According to Example 12.3.3 the *-equivalence classes of the states of A are

{So), (SI, S41, and tS2, S31.

Hence the states of the quotient automaton A are

[so] = {So, [SI] = IS],S4} = [s4], [s2] = (S2, 3) = [s3 ].

The accepting states of A are S2 and S3, so the accepting state of A is [s2] = [s3]. The
next-state function N of A is defined as follows: for all states [s] and input symbols m
of A,

N([s], m) = [N(s, m)] = the *-equivalence class of N(s, m).

Thus,

N([so], 0) = [N(so, 0)] = the *-equivalence class of N(so, 0).

But N(so, 0) = so, so

NV(so], 0) = the *-equivalence class of so = [so].

Similarly,

N([so], 1) = [N(so, 1)] = [SI]

N([sj],0) = [N(s1 ,0)] = [s2]

N([sj], 1) = [N(sj, 1)] = [S4] = [sI]

N([s2], 0) = [N(s2 , 0)] = [S3] = [S2]

N((s2], 1) = [N(s 2 , 1)] = [S4] = [Sl].
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The transition diagram for A is, therefore, as shown below.

0 1 0

By Theorem 12.3.3, this automaton accepts the same language as the original automaton.
.

Equivalent Automata
Output devices may be attached to the states of finite-state automata to indicate whether
they are accepting or nonaccepting states. For example, accepting states might produce
an output of 1 and nonaccepting states an output of 0. Then a finite-state automaton can
be thought of as an input/output device whose input consists of strings and whose output
consists of O's and 1's. Recall that a circuit can be thought of as a black box that transforms
combinations of input signals into output signals. Two circuits that produce identical
output signals for each combination of input signals are called equivalent. Similarly, a
finite-state automaton can be regarded as a black box that processes input strings and
produces output signals (indicating whether or not the strings are accepted). Two finite-
state automata are called equivalent if they produce identical output signals for each input
string. But this means that two finite-state automata are equivalent if, and only if, they
accept the same language.

Let A and A' be finite-state automata with the same set of input symbols 1, Let L(A)
denote the language accepted by A and L (A') the language accepted by A'. Then A
is said to be equivalent to A' if, and only if, L(A) = L(A').

Example 12.3.5 Showing That Two Automata Are Equivalent

Show that the automata A and A' that follow are equivalent.

A

A

(The label 0, 1 on an arrow of a transition diagram means that for either input 0 or 1, the
next-state of the automaton is the state to which the arrow points.)
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Solution

For the automaton A: The 0-equivalence classes are

[so, sil and {S2, S3} since so and s, are accepting states and
s2 and S3 are nonaccepting states.

The 1-equivalence classes are

{so}, {fs}, and {s2 , s31 since so and si are not 1-equivalent
(because N(so, 1) = si, whereas
N(sl, 1) = s3 and sl is not O-equivalent
to S3) but S2 and s3 are I -equivalent.

The 2-equivalence classes are

[so}, {s, }, and {s2, s3} since S2 and s3 are I -equivalent.

This discussion shows that the set of 1-equivalence classes equals the set of 2-equivalence
classes, so by Theorem 10.4.2 this is equal to the set of *-equivalence classes. Hence the
*-equivalence classes are

(so}, {s1 }, and {S2, S3}.

For the automaton A': By reasoning similar to that above, the 0-equivalence classes are

{sos',s3} and {st}.

The 1-equivalence classes are

{s', s'}, {s'}, and {s)}.

The 2-equivalence classes are the same as the 1-equivalence classes, which are therefore
equal to the *-equivalence classes. Thus the *-equivalence classes are

{so, s') {s'}, and Is', .

To calculate the next-state functions for A and A', you repeatedly use the fact that in
the quotient automaton, the next-state of Is] and m is the class of the next-state of s and
m. For instance,

N([s1 ], 1) = [N(si, 1)] = [S3] = [S2]

and

N'([s'], 0) = [N'(s, 0)] = [s'] = [Io]

where N is the next-state function for A and N' is the next-state function for A'.
The complete transition diagrams for the quotient automata A and A' are shown below.

A A

As you can see, except for the labeling of the names of the states, A and A' are identical
and hence accept the same language. But by Theorem 12.3.3, each original automaton
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accepts the same language as its quotient automaton. Thus A and A' accept the same
language, and so they are equivalent. U

In mathematics an object such as a finite-state automaton is called a structure. In
general, when two mathematical structures are the same in all respects except for the
labeling given to their elements, they are called isomorphic, which comes from the Greek
words isos, meaning "same" or "equal," and morphe, meaning "from." It can be shown
that two automata are equivalent if, and only if, their quotient automata are isomorphic,
provided that "inaccessible states" have first been removed. (Inaccessible states are those
that cannot be reached by inputting any string of symbols to the automaton when it is in
its initial state.)

Exercise Set 12.3
1. Consider the finite-state automaton A given by the following

transition diagram:

a. Find the 0-, 1-, and 2-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automa-

ton of A.

2. Consider the finite-state automaton A given by the following
transition diagram:

a. Find the 0-, I-, and 2-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automa-

ton of A.

3. Consider the finite-state automaton A discussed in Example
10.4.1:

a. Find the 0- and 1-equivalence classes of states of A.
b. Draw the transition diagram of A, the quotient automaton

of A.

4. Consider the finite-state automaton given by the following
transition diagram:

a. Find the 0-,1-, 2-, and 3-equivalence classes of states
of A.

b. Draw the transition diagram for A, the quotient automa-
ton of A.
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5. Consider the finite-state automaton given by the following
transition diagram:

a. Find the 0-, 1-, 2-, and 3-equivalence classes of states
of A.

b. Draw the transition diagram for A, the quotient automa-
ton of A.

7. Are the automata A and A' shown below equivalent?

6. Consider the finite-state automaton given by the following
transition diagram:

H a. Find the 0-, 1-, 2-, and 3-equivalence classes of states
of A.

b. Draw the transition diagram for A, the quotient automa-
ton of A.

A A

8. Are the automata A and A' shown below equivalent?

0

A A

A'A
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9. Are the automata A and A' shown below equivalent?

A A

10. Are the automata A and A' shown below equivalent?

A A'

H 11. Prove property (12.3.1).

12. How should the proof of property (12.3.1) be modified to
prove property ( 12.3.2)?

13. Prove property (12.3.3). 14. Prove property (12.3.4).

H 15. Prove property (12.3.5). 16. Prove property (12.3.6).

H 17. Prove that if two states of a finite-state automaton are
k-equivalent for some integer k, then those states are
m-equivalent for all nonnegative integers m < k.

18. Write a complete proof of property (12.3.7).

H 19. Write a complete proof of property (12.3.8).



APPENDIX A

PROPERTIES OF THE REAL
NUMBERS*

In this text we take the real numbers and their basic properties as our starting point. We
give a core set of properties, called axioms, which the real numbers are assumed to satisfy,
and we state some useful properties that can be deduced from these axioms.

We assume that there are two binary operations defined on the set of real numbers,
called addition and multiplication, such that if a and b are any two real numbers, the
sum of a and b, denoted a + b, and the product of a and b, denoted a - b or ab, are
also real numbers. These operations satisfy properties F1-F6, which are called the field
axioms.

Fl. Commutative Laws For all real numbers a and b,

a+b=b+a and ab=ba.

F2. Associative Laws For all real numbers a, b, and c,

(a+b)+c=a+(b+c) and (ab)c=:a(bc).

F3. Distributive Laws For all real numbers a, b, and c,

a(b + c) = ab + ac and (b + c)a = ba + ca.

F4. Existence of Identity Elements There exist two distinct real numbers, denoted 0 and
1, such that for every real number a,

0+a =a+0=a and I a =a * 1 =a.

F5. Existence of Additive Inverses For every real number a, there is a real number,
denoted -a and called the additive inverse of a, such that

a + (-a) = (-a) + a = 0.

F6. Existence of Reciprocals For every real number a -A 0, there is a real number,
denoted I /a or a called the reciprocal of a, such that

All the usual algebraic properties of the real numbers that do not involve order can be
derived from the field axioms. The most important are collected as theorems T1-T15 as
follows. In all these theorems the symbols a, b, c, and d represent arbitrary real numbers.

*Adapted from Tom M. Apostol, Calculus, Volume I (New York: Blaisdell, 1961), pp. 13-19.

A-1
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T1. Cancellation Law for Addition If a + b = a + c, then b = c. (In particular, this
shows that the number 0 of Axiom F4 is unique.)

T2. Possibility of Subtraction Given a and b, there is exactly one x such that a + x =

b. This x is denoted by b - a. In particular, 0- a is the additive inverse of a, -a.

T3. b-a =b+ (-a).

T4. -(-a) = a.

T5. a(b - c) = ab - ac.

T6. 0 -a = a - 0 = 0.

T7. Cancellation Lawfor Multiplication If ab = ac and a A 0, then b = c. (In par-
ticular, this shows that the number 1 of Axiom F4 is unique.)

T8. Possibility of Division Given a and b with a :A 0, there is exactly one x such that
ax = b. This x is denoted by b/a and is called the quotient of b and a. In particular,
1/a is the reciprocal of a.

T9. If a # 0, then b/a = b * a-l.

TIO. If a 0, then (a-')-' = a.

Ti1. Zero Product Property If ab = 0, then a = 0 or b = 0.

T12. Rule for Multiplication with Negative Signs

(-a)b = a(-b) = -(ab), (-a)(-b) = ab,

and

a -a a

b b -b-

T13. RuleforAddition of Fractions

a c ad+bc
b d bd s if b : Oand d O.

b d bd

T14. Rule for Multiplication of Fractions

a c ac

b d bd'ifb# andd#O,

T15. Rulefor Division of Fractions

a
b ad
c = b if b A0,cO0, anddO 0.

d

The real numbers also satisfy the following axioms, called the order axioms. It is assumed
that among all real numbers there are certain ones, called the positive real numbers, that
satisfy properties Ordl-Ord3.

Ordl. For any real numbers a and b, if a and b are positive, so are a + b and ab.

Ord2. For every real number a 0 0, either a is positive or -a is positive but not both.

Ord3. The number 0 is not positive.
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The symbols <, >, <, and >, and negative numbers are defined in terms of positive
numbers.

I. !. gl

Given real numbers a and b,

a meanss b + (-a) is positive. b > a means a < b.
a <bmeansa <bora=b. b>ameansa <fb.
If a < 0, we say that a is negative. If a > 0, we say that a is nonnegative.

From the order axioms Ordl-Ord3 and the above definition, all the usual rules for cal-
culating with inequalities can be derived. The most important are collected as theorems
T16-T25 as follows. In all these theorems the symbols a, b, c, and d represent arbitrary
real numbers.

T16. Trichotomy Law For arbitrary real numbers a and b, exactly one of the three
relations a < b, b < a, or a = b holds.

T17. Transitive Law If a < b and b < c, then a < c.

T18. If a < bthena +c < b+c.

T19. If a<bandc>0,thenac<bc.

T20. If a 5 0, then a2 > 0.

T21. I > 0.

T22. If a < b and c < 0, then ac > bc.

T23. If a < b, then -a > -b. In particular, if a < 0, then -a > 0.

T24. If ab > 0, then both a and b are positive or both are negative.

T25. If a < c and b < d, then a +b < c + d.

One final axiom distinguishes the set of real numbers from the set of rational numbers. It
is called the least upper bound axiom.

LUB. Any nonempty set S of real numbers that is bounded above has a least upper bound.
That is, if B is the set of all real numbers x such that x > s for all s in S and if B
has at least one element, then B has a smallest element. This element is called the
least upper bound of S.

The least upper bound axiom holds for the set of real numbers but not for the set of rational
numbers. For example, the set of all rational numbers that are less than X2 has upper
bounds but not a least upper bound.
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SOLUTIONS AND HINTS
TO SELECTED EXERCISES

Section 1.1
1. Common form: If p then q.

P.
Therefore, q.

(a + 2b)(a2 - b) can be written in prefix notation.
All algebraic expressions can be written in prefix notation.

3. Common form: p v q.

P.
Therefore, q.

My mind is shot. Logic is confusing.

5. a. It is a statement because it is a true sentence. 1,024
is a perfect square because 1,024 = 322, and the next
smaller perfect square is 312 = 961, which has less than
four digits.

6. a. sAi b. sA i

8. a. (hAw)A s d. ( wA S)Ah

10. a. pAqAr C. pA(-qv-r)

11. Inclusive or. For instance, a team could win the playoff by
winning games 1, 3, and 4 and losing game 2. Such a team
would satisfy both conditions.

12. "United States President" AND (14th OR fourteenth) AND
NOT amendment.

P q |p -p A q

T T F F

T F F F

F T T T

F F T F

16.
P q r q A r pA (q A r)

T T T T T

T T F F F

T F T F F

T F F F F

F T T T F

F T F F F

F F T F F

F F F F F

18. Hint: The following is a partial truth table.

19.

p q r (p v (-p v q)) A -(q A -r)

T T T T

T T F F

T F T T

T F F T

F T T

F T F

F F T

F F F

P q p Aq p v(p Aq) p

T T T T T

T F F T T

F T F F F

F F F F F

p V (p A q) and p always have
the same truth values, so they are
logically equivalent. (This proves
one of the absorption laws.)

14.

A-4
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21.

23.

25.

p v t and t always have the same
truth values, so they are logically
equivalent. (Thisprovesoneof
the universal bound laws.)

p q r pAq qAr (pAq)Ar pA(qAr)

T T T T T T T

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

(p A q) A r and p A (q A r) always
have the same truth values, so they are
logically equivalent. (This proves
the associative law for A.)

p q r pAq qvr (pA q)vr pA(qvr)

T T T T T T T

T T F T T T T

T F T F T T T

T F F F F F F

F T T F T T F

F T F F T F F

F F T F T T F

F F F F F F F

(pA q) v randp A (q v r)have

different truth values in the fifth and
seventh rows, so they are not logically
equivalent. (This proves that

parentheses are needed with A and v.)
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27.

p q r -p -q -r -pv#q pv -r (-pvq)A(pv-r) -pv-q ((-p v q) A (p v -r)) A (-p v -q) -(p v r)

T T T F F F T T T F F F

T T F F F T T T T F F F

T F T F T F F T F T F F

T F F F T T F T F T F F

F T T T F F T F F T F F

F T F T F T T T T T T T

F F T T T F T F F T F F

F F F T T T T T T T T T

t t

29. Hal is not a math major or Hal's sister is not a computer
science major.

31. The connector is not loose and the machine is not unplugged.

35. -2 >xorx > 7 37. 1 <xorx < -3

((-p v q) A (p V r)) A (-p V -q)

and -(p v r) always have the same truth
values, so they are logically equivalent.

39. This statement's logical form is (p A q) V r, so its negation
has the form -((p A q) V r) =- -(p A q) A -r =r
(-'p V -q) A --r. Thus a negation for the statement is
(num-orders < 100 or num-instock > 500) and
num-instock > 200

p q |-'p |-q pAq pA -q |pV(pA -q) (pAq)v(-pv(pA -q))

T T F F T F F T

T F F T F T T T

F T T F F F T T

F F T T F F T T

Itstruthvalues are alIT's, so
(pAq)V(-pV(pA -q))
is a tautology.

p q |p |-'q pA -q |p V q (p A -q) A (-p V q)

T T F F F T F

T F F T T F F

F T T F F T F

F F T T F T F

'V

45. a. The distributive law

b. The commutative law for V

c. The negation law for V

d. The identity law for A

47. (p A -q) V p =p V (pA -q) by the commutative
law for v

= p by the absorption law
(with -q in place of q)

Its truth values are all F's,
so (p A -q) A (-p V q)
is a contradiction.

50. - ((-p A q) V (-p A -q)) V (p A q)

= -[-p A (q V -q)] V (p A q) by the distributive law

=- (-'p A t) V (p A q) by the negation law for v

- -(-p) V (p A q) by the identity law for A

= p V (p A q)

= p

by the double negative law

by the absorption law

41.

42.



52. a. Solution 1: Construct a truth table for p 3 p using the
truth values for exclusive or.

P IPP (B
pp p

-LI~ because an exclusive or statement is
false when both components are true
and when both components are false.

Since all its truth values are false, p e p - c, a contra-
diction.

Solution 2: Replace q by p in the logical equivalence
p e q - (p V q) A -(p A q), and simplify the result.

pep - (p V p) A -(p A p) by defintion of de

- p A -p by the identity laws

- C by the negation law for A
53. There is a famous story about a philosopher who once gave

a talk in which he observed that whereas in English and
many other languages a double negative is equivalent to a
positive, there is no language in which a double positive is
equivalent to a negative. To this, a person in the back row
responded sarcastically, "Yeah, yeah."

[Strictly speaking, sarcasm functions like negation.
When spoken sarcastically, the words "Yeah, yeah" are not

a true double positive; they just mean "no. "]

Section 1.2
1. If this loop does not contain a stop or a go to, then it will

repeat exactly N times.

3. If you do not freeze, then I'll shoot.
conclusion hypothesis

------ -----

p q l-'p I--q l pVq I- pvq --*q I

T T F F T F

T F F T F T

F T T F T F

F F T T T T

7. conclusion hypothesis

p q r |--q p A -q pA -q Ar

T T T F F T

T T F F F T

I F T T T T

T F F T T F

F T T F F T

F T F F F T

F F T T F T

F F F T F T

1.2 Solutions and Hints to Selected Exercises A-7

9.

p q r -r pA-r qvr pA.-r->qvr

T T T F F T F

T T F T T T T

T F T F F T F

T F F T T F F

F T T F F T F

F T F T F T F

F F T F F T F

F F F T F F T

12. If x > 2 then x 2
>

13. a.

4, and if x < -2 then x2
> 4.

P q IP I P- q -I pvq

T T F T T

T F F F F

F T T T T

FTFIT T T

p q and p v q always
have the same truth values, so
they are logically equivalent.

14. a. Hint: p q v r is true in all cases except when p is
true and both q and r are false.

16. Let p represent "You paid full price" and q represent "You
didn't buy it at Crown Books." Thus, "If you paid full price,
you didn't buy it at Crown Books" has the form p -* q. And
"You didn't buy it at Crown Books or you paid full price"
has the form q V p.

p q p-+q qvp

T T T T

T F F T

F T T T

F F T F

These two statements are
not logically equivalent
because their forms have
different truth values in
rows 2 and 4.

(An alternative representation for the forms of the two state-
ments is p -- q and -q V p. In this case, the truth values

differ in rows I and 3.)

19. False. The negation of an if-then statement is not an if-then
statement. It is an and statement.

20. a. P is a square and P is not a rectangle.
d. n is prime and both n is not odd and n is not 2.

Or: n is prime and n is neither odd nor 2.
f. Tom is Ann's father and either Jim is not her uncle or Sue

is not her aunt.

5.
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21. a. Because p - q is false, p is true and q is false. Hence

-p is false, and so -p -- q is true.

22. a. If P is not a rectangle, then P is not a square.
d. If n is not odd and n is not 2, then n is not prime.
f. If either Jim is not Ann's uncle or Sue is not her aunt,

then Tom is not her father.

23. a. Converse: If P is a rectangle, then P is a square.
Inverse: If P is not a square, then P is not a rectangle.

d. Converse: If n is odd or n is 2, then n is prime.
Inverse: If n is not prime, then n is not odd and n is

not 2.
f. Converse: If Jim is Ann's uncle and Sue is her aunt, then

Tom is her father.
Inverse: If Tom is not Ann's father, then Jim is not her

uncle or Sue is not her aunt.

24.
P q p - E q q -Gp

T T T T

T F F T

F T T F

F F T T

26.
p q -q ~p q -+-p p -+ q

T T F F T T

T F T F F F

F T F T T T

F F T T T T

q p andp -q have
the same truth values, so they
are logically equivalent.

28. Hint: Aperson who says "I mean what I say" claims to speak
sincerely. A person who says "I say what I mean" claims to
speak with precision.

p -* q and q -* p have different
truth values in the second and third
rows, so they are not logically equivalent.

29. ( p (q v r)) (( p A -q) r)

p q r | q q Vr p A -q p (q Vr) | pA -q - r (p (q vr))- ((pA -q) -r)

T T T F T F T T T

T T F F T F T T T

T F T T T T T T T

T F F T F T F F T

F T T F T F T T T

F T F F T F T T T

F F T T T F T T T

F F F T F F T T T

1T

32. If the Cubs do not win tomorrow's game, then they will not
win the pennant.
If the Cubs win the pennant, then they will have won tomor-
row's game.

35. a. If a new hearing is not granted, payment will be made on
the fifth.

(p - (q v r)) -((p A -q) r) is a
tautology because all of its truth values are T.

38. a. pA q-*r- -(pA q)v r

b. Result of (a) -[ -- (--(p A -q)) A -r]
an acceptable answer

- [(p A -q) A -r]

by the double negative law
(another acceptable answer)
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40. a. (p -*r) ++ (q -(p r)-( vr) *- (-q V r)

- (-p V r) V (-q V r)] A [-(-q V r) V (-p V r)]

an acceptable answer

-[(pA r)V(-qVr)]A[(qA -r)V(-pVr)]

by De Morgan's law
(another acceptable answer)

b. Result of (a)-.[(p A -r) A -(-q V r)] A

-[-(q A -r) A -(-p V r)]

by De Morgan's law

-[-(p A -r) A (q A r)] A

-[-(q A r) A(pA r)]

by De Morgan's law

43. If I catch the 8:05 bus, then I am on time for work.

Section 1.3
1. V2 is not rational. 3. Logic is not easy.

6. premises conc lusion

p q p -q q - p pvq

T T T T T

T F F T T

F T T F T

PF F T T F

45. If this number is not divisible by 3, then it is not divisible
by 9.
If this number is divisible by 9, then it is divisible by 3.

47. If Jon's team wins the rest of its games, then it will win the
championship.

49. a. This statement is the converse of the given statement,
and so it is not necessarily true. For instance, if the ac-
tual boiling point of compound X were 200°C, then the
given statement would be true but this statement would
be false.

b. This statement must be true. It is the contrapositive of
the given statement.

This row shows that it is possible for an argument
IX of this form to have true premises and a false

conclusion. Thus this argument form is invalid.

premises conclusion

p q r |q p p -* q |-q Vr r

T T T F T T T T

T T F F T T F F

T F T T T F T T

T F F T T F T F

F T T F F T T T

F T F F F T F F

F F T T F T T T

F F F T F T T F

P q r -q p v q p - -q p - r r

T T T F T F T T

T T F F T F F F

T F T T T T T T

T F F T T T F F

IF T TI F T T T T

F T F F T T T F

F F T T F T T T

F F F T F T T F

*- This row describes the only situation
in which all the premises are true.
Because the conclusion is also true
here, the argument form is valid.

.- This row shows that it is possible for
an argument of this form to have true
premises and a false conclusion. Thus
this argument form is invalid.

7.

8. premises conclusion
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premises conclusion

p q p --)q q p
T T T T T

T F F F T

F T T T F

F F T F F

premise conclusion

P q p pvq

T T T T

T F T T

F T F T

F F F F

premises conclusion

P q pVq -q p

T T T F T

T F T T T

F T T F F

F F F T F

<- This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

7 These two rows show that in all situations
where the premise is true, the conclusion is
also true. Thus the argument form is valid.

- This row represents the only situation in which
both premises are true. Because the conclusion is
also true here the argument form is valid.

22. Let p represent "Tom is on team A" and q represent "Hua is
on team B." Then the argument has the form

-p q

-q p

-pV -q

premises conclusion

P q IP Iq -p P-* q q --) p p pV q

T T F F T T F

T F F T T T T

F T T F T T T

F F T T F F T

- This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

24. p -* q invalid: converse error

q

25. p V q valid: elimination

-p
. . q

26. p -* q valid: transitivity
q -*r

.,. pa-->r

27. p -+ q invalid: inverse error

-p

36. The program contains an undeclared variable.
One explanation:
1. There is not a missing semicolon and there is not a mis-

spelled variable name. (by (c) and (d) and definition

of A)

2. It is not the case that there is a missing semicolon or
a misspelled variable name. (by (I) and De Morgan's

laws)
3. There is not a syntax error in the first five lines. (by (b)

and (2) and modus tollens)
4. There is an undeclared variable. (by (a) and (3) and

elimination)

13. a.

14.

18.
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37. The treasure is buried under the flagpole.
One explanation:
1. The treasure is not in the kitchen. (by (c) and (a) and

modus ponens)
2. The tree in the front yard is not an elm. (by (b) and (1)

and modus tollens)
3. The treasure is buried under the flagpole. (by (d) and (2)

and elimination)

38. a. A is a knave and B is a knight.
One explanation:

1. Suppose A is a knight.
2. .. What A says is true. (by definition of knight)
3. B is a knight also. (That's what A said.)
4. What B says is true. (by definition of knight)
5. A is a knave. (That's what B said.)
6. .. We have a contradiction: A is a knight and a

knave. (by (I) and (S))
7. The supposition that A is a knight is false. (by the

contradiction rule)
8... A is a knave. (negation of supposition)
9... What B says is true. (B said A was a knave, which

we now know to be true.)
10. .. B is a knight. (by definition of knight)

d. Hint: W and Y are knights; the rest are knaves.

39. The chauffeur killed Lord Hazelton.
One explanation:
1. Suppose the cook was in the kitchen at the time of the

murder.
2... The butler killed Lord Hazelton with strychnine. (by

(c) and (1) and modus ponens)

3. We have a contradiction: Lord Hazelton was killed
by strychnine and a blow on the head. (by (2) and (a))

4. The supposition that the cook was in the kitchen is
false. (by the contradiction rule)

5. . The cook was not in the kitchen at the time of the
murder. (negation of supposition)

6.. . Sara was not in the dining room when the murder was
committed. (by (e) and (5) and modus ponens)

7. Lady Hazelton was in the dining room when the
murder was committed. (by (b) and (6) and
elimination)

8. . . The chauffeur killed Lord Hazelton. (by (d) and (7)
and modus ponens)

41. (1) p -- t by premise (d)
_t by premise (c)

.'. -P
(2) -p

. . -p v q
(3) p V q -r

-p V q
. . r

(4) -p
r

. . - p A r

by modus tollens

by (I)
by generalization
by premise (a)

by (2)
by modus ponens
by (1)
by (3)
by conjunction

(5) -p A r --- s
-p A r

(6) sv -q
_s

. . -q

43. (1) -w
UVW

(2) u -*-p
u

. . -p
(3) -p -+r A -S

-P

. r A -s
(4) r A -s

.( . ts

(S) t-- s
_s

.' t

by premise (e)
by (4)
by modus ponens

by premise (b)

by (S)
by elimination

by premise (d)
by premise (e)
by elimination
by premise (c)
by (I)
by modus ponens
by premise (a)
by (2)
by modus ponens

by (3)
by specialization
by premise (b)
by (4)
by modus tollens

Section 1.4
1.
5.

7.

R = I

Input

P Q

I I

I 0

0 1

0 0

3. S=l

Output

R

I

0

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

o 1 1 1

0 1 0 0

o 0 1 1

o 0 0 0

9.
13.

P V Q 11. (P A -Q) v R

P N

Q
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16. p

Q-

RO

18. a. (PAQA R)v(-UPAQAR)

b. P

Q

R

24.
20. a. (P A Q A R) V (P A -Q A R) V (-P A Q A R)

b.
P

Q

R

22. The input/output table is

Input Output

P Q R S

71 1 1 o0

I I I 01 1 0 1

1 0 1 0

1 0 0 0

o i 1 0

U 1 U tJ

o o 1 1
o o 0 0

I

One circuit (among many) having this input/output table is
shown below.

P

Q

R

Let P and Q represent the positions of the switches in the
classroom, with 0 being "down" and 1 being "up." Let R
represent the condition of the light, with 0 being "off" and
I being "on." Initially, P = Q = 0 and R = 0. If either
P or Q (but not both) is changed to 1, the light turns on.
SowhenP= landQ=0,thenR =l,andwhen P=0
and Q = 1, then R = 1. Thus when one switch is up and
the other is down the light is on, and hence moving the
switch that is down to the up position turns the light off.
So when P = I and Q = 1, then R = 0. It follows that the
input/output table has the following appearance:

Input Output

P Q R

0

1 0 X

o 1
o o 0

One circuit (among many) having this input/output table is
the following:

P

Q

R



26. The Boolean expression for (a) is (P A Q) V Q, and for
(b) it is (P V Q) A Q. We must show that if these expres-
sions are regarded as statement forms, then they are logically
equivalent. But

(P A Q) V Q

-Q V (P A Q) by the commutative law for V

- (Q V P) A (Q V Q) by the distributive law

- (Q V P) A Q by the idempotent law

- (P v Q) A Q by the commutative law for A

Alternatively, by the absorption laws, both statement forms
are logically equivalent to Q.

28. The Boolean expression for (a) is

(P A Q) V (P A -Q) V (-P A -Q)

and for (b) it is P v -Q. We must show that if these expres-
sions are regarded as statement forms, then they are logically
equivalent. But

(P A Q) v (P A -Q) v (P A Q)

((P A Q) v (P A -Q)) V (-P A -Q)
by inserting parentheses (which
is legal by the associative law)

(P A (Q v -Q)) v (-P A -Q)
by the distributive law

(P A t) V (-P A -Q) by the negation law for v

P V (-P A -Q) by the identity law for A

(P V -P) A (P V -Q) by the distibutive law

t A (P V -Q) by the negation law for v

(P V -Q) A t by the commutative law for A

P V -Q by the identity law for A

30. (P A Q) V (-P A Q) V (-P A -Q)
- (P A Q) V ((-P A Q) V (-P A -Q))

- (P A Q) V (-P A (Q V

- (P A Q) V (-P A t)

- (P A Q) v -P

-- P V (P A Q)

-- (-P V P) A (-P V Q)

-(PV --P) A (-P V Q)

-- t A (-P V Q)

(-P v Q) A t

-- P v Q

by inserting parentheses (which
is legal by the associative law)

Q))
by the distributive law

by the negation law for v

by the identity law for A

by the commutative law for v

by the distributive law

by the commutative law for v

by the negation law for v

by the commutative law for A

by the identity law for A

1.5 Solutions and Hints to Selected Exercises A-13

The following is, therefore, a circuit with at most two logic
gates that has the same input/output table as the circuit cor-
responding to the given expression.

P N

Q

34. b. (P 4 Q) 4 (P 4 Q)

'-'(P 4. Q) by part (a)

-4 (P V Q)] by definition of .

P V Q by the double negative law

d. Hint: Use the results of exercise 13 of Section 1.2 and
part (a) and (c) of this exercise.

Section 1.5
1. I9,o = 16 + 2 + I = 1001 12
4. 4581o = 256 + 128 + 64 + 8 + 2 = l1 10010102

7. 11102 ==8+4+2=14jo

10. 11001012 -64 + 32 + 4 + 1 = 101wt
13. 1 1 1

1 0 1 12
+ i 0 12

1 0 1 0 02

15. 1 1 1 1
1 0 1 1 0 12

+ 1 1 1 0 12

1 0 0 1 0 1 02

17. 1
1 10 l- I

1-' 0 02
- 11 0 12

1 1 12

19. 0 1W
1 0 1 I 0 12

- 1 00 1 12

1 1 0 1 02

21. a. S = 0, T=1
23. 231o = (16+4+2+ t)lo=000101112 11101000

11101001. So the answer is 1 101001.
25. 410 = 000001002 --* 11111011 -> 11111100. So the an-

sweris 11111100.

27. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11010011 -. 00101100 -*

001011012 *-> -(32 + 8 +4 + l)lo = -451o. So the an-
swer is -450.

29. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11110010 -* 00001101 -*

000011102 e- -(8 + 4 + 2)1o = -1410. So the answer is
-141o.
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31. 5710 = (32 + 16 + 8 + I)1o = 1110012 -00111001-

118jo = -(64 + 32 + 16 + 4 + 2)1o = -1110110 -
01110110 -* 10001001 -* 10001010. So the 8-bit rep-
resentations of 57 and -118 are 00111001 and 10001010.
Adding the 8-bit representations gives

11101010111011101

111110-10101011111

Since the leading bit of this number is a 1, the answer is
negative. Converting back to decimal form gives

11000011 -* 00111100 -O -001111012

= -(32 + 16 + 8 + 4 + 1)o = -611o.

So the answer is -61.

32. 62,o = (32 + 16 + 8 + 4 + 2)1o

= 1111102 -* 00111110

-18jo = -(16 + 2)1o

= -100102 -+ 00010010 -+ 11101101 -* 11101110

Thus the 8-bit representations of 62 and -18 are 00111110
and 11101110. Adding the 8-bit representations gives

O I O I I I III IIIl

11 10 lll l o

Truncating the I in the 28th position gives 00101100. Since
the leading bit of this number is a 0, the answer is positive.
Converting back to decimal form gives

00101100-* 1011002 = (32 + 8 + 4)IO = 4410

So the answer is 44.

33. -61o = -(4 + 2)lo

=-1102 -- 00000110 - 11111001 -* 11111010

-7310 = -(64 + 8 + I)lo =

-10010012 -+ 01001001 + 10110110 -+ 10110111

Thus the 8-bitrepresentations of -6 and -73 are 11111010
and 10110111. Adding the 8-bit representations gives

I I1 111 1olio IIlo

I Ilo III I I

110111110101011i1

Truncating the I in the 23th position gives 10110001. Since
the leading bit of this number is a 1, the answer is negative.
Converting back to decimal form gives

10110001 -> 01001110 -l 010011112

= -(64+8+4+2+ I)o = -79lo.

So the answer is -79.

38. A2BC 16 10 16 3 + 2 162 + 11 16 + 12

- 41660,o

41. 0001110000001010101 11102

44. 2E16
47. a. 6 84+ 1 83 +5 .82+0 8+2. = 25,4101o

Section 2.1
1. a. False b. True

2. a. The statement is true. The integers correspond to cer-
tain of the points on a number line, and the real numbers
correspond to all the points on the number line.

b. The statement is false; 0 is neither positive nor negative.
c. The statement is false. For instance, let r = -2. Then

-r = -(- 2) = 2, which is positive.
d. The statement is false. For instance, the number is a

real number, but it is not an integer.
3. a. P(2) is "2 > 2," which is true.

P(2) iS "2 > " This is false because = 2, and
2 2.

P(-l) is "-I > ."This is false because 1 -1,
and -1-1.
P2 is "2 > ." This is true because [L -2

22 2

and-- >-2.
P(_8) is "-8 > This is false because
and -8 -8'

b. If the domain of P(x) is the set of all real numbers, then
its truth set is the set of all real numbers x for which
eitherx > I or-I - x < 0.

c. If the domain of P(x) is the set of all positive real num-
bers, then its truth set is the set of all real numbers x for
which x > 1.

4. b. If the domain of Q(n) is the set of all integers, then its
truth set is {-5,-4, -3. -2,-, 0, 1, 2, 3, 4, 5).

5. a. Q(-2, 1) is the statement "If -2 < I then (-2)2 < 12. "
The hypothesis of this statement is -2 < 1, which is
true. The conclusion is (-2)2 < 12, which is false be-
cause (-2)2 = 4 and 12 = I and 4 *l 1. Thus Q(-2, 1)
is a conditional statement with a true hypothesis and a
false conclusion. So Q(-2, 1) is false.

c. Q(3, 8) is the statement "If 3 < 8 then 32 < 82 ,, The
hypothesis of this statement is 3 < 8, which is true. The
conclusion is 32 < 82, which is also true because 32 = 9
and 82 = 64 and 9 < 64. Thus Q(3, 8) is a conditional
statement with a true hypothesis and a true conclusion.
So Q(3, 8) is true.



7. a. The truth set is the set of all integers d such that 6/d is an
integer, so the truth set is {-6,-3,--2, -1, 1, 2, 3, 6}.

c. The truth set is the set of all real numbers x with the prop-
erty that I < x2 < 4, so the truth set is {x E R - 2 <
x < -I or 1 < x < 21. In other words, the truth set is
the set of all real numbers between -2 and -I inclusive
and between 1 and 2 inclusive.

8. a. 1-9, -8,-7, -6, -5,-4, -3, -2,-1, 0, 1, 2, 3, 4, 5,
6, 7, 8, 91

9. Counterexample: Let x = 1 : 1 4 l. (This is one coun-
terexample among many.)

11. Counterexample: Let m = 1 and n = 1. Then m n -

1 I I and m + n = I + I = 2. But I a 2, and so
m n m + n. (This is one counterexample among many.)

13. (a), (e), (f) 14. (b), (c), (e), (f)

16. a. V dinosaurs x, x is extinct.
c. V irrational numbers x, x is not an integer.
e. V integers x, x2 does not equal 2, 147, 581, 953.

17. a. 3 an exercise x such that x has an answer.

18. a. 3s E D such that E(s) and M(s). (Or: 2s E D such that
E(s) A M(s).)

b. Vs E D, if C(s) then E(s). (Or: Vs E D, C(s) E-* (s).)
e. (3s e D such that C(s) A E(s)) A (3s E D such that

C(s) A -E(s).)

19. (b), (d), (e)

21. a. Vx, if x is a Java program, then x has at least 5 lines.
c. V integers x and y if x and y are even, then x + y is even.

22. a. Vx, if x is an even integer, then x2 is even.
V even integers x, x2 is even.

23. a. 3 a hatter x such that x is mad.
3x such that x is a hatter and x is mad.

24. b. Vx(lnt(x) Ratl(x)) A 3x(Ratl(x)A -Int(x))

25. a. False. Figure b is a circle that is not gray.
b. True. All the gray figures are circles.

26. b. One answer among many: If a real number is negative,
then when its opposite is computed, the result is a posi-
tive real number.

This statement is true because for all real numbers
x, -(-lx I) = lxI (and any negative real number can be
represented as -lx I, for some real number x).

d. One answer among many: There is a real number that is
not an integer. This statement is true. For instance, 1 is
a real number that is not an integer.

28. b. One answer among many: If an integer is prime, then it
is not a perfect square.

This statement is true because a prime number is an
integer greater than I that is not a product of two smaller
positive integers. So a prime number cannot be a perfect
square because if it were, it would be a product of two
smaller positive integers.

29. Hint: Your answer should have the appearance shown in the
following made-up example:
Statement: "If a function is differentiable, then it is contin-
uous."

2.2 Solutions and Hints to Selected Exercises A-15

Formal version: V functions f, if f is differentiable, then
f is continuous.
Citation: Calculus by D. R. Mathematician, Best Publish-
ing Company, 2004, page 263.

30. a. True: Any real number that is greater than 2 is greater
than 1.

c. False: (-3 )2 > 4 but -3 4 2.

31. a. True. Whenever both a and b are positive, so is their
product.

b. False. Let a =-2 and b =-3. Then ab = 6, which is
not less than zero.

Section 2.2
1. (a) and (e) are negations.

3. a. 3 a fish x such that x does not have gills.
c. V movies m, m is less than or equal to 6 hours long. (Or,

V movies m, m is no more than 6 hours long.)

In 4-6 there are other correct answers in addition to those shown.

4. a. Some pots do not have lids.
c. No pigs can fly.

5. a. Formal negation: 3 a dinosaur x such that x is not ex-
tinct.
Informal negation: Some dinosaurs are not extinct.

c. Formal negation: 3 an irrational number x such that x
is an integer.
Informal negation: Some irrational numbers are inte-
gers.

6. a. Formal negation: V exercises x, x does not have an an-
swer.
Informal negation: No exercises have answers.

7. The statement is not existential.
Informal negation: There is at least one order from store A
for item B.
Formal version of statement: V orders x, if x is from store
A, then x is not for item B.

9. 3 a real number x such that x > 3 and x2 < 9

11. The proposed negation is not correct. Consider the given
statement: "The sum of any two irrational numbers is irra-
tional." For this to be false means that it is possible to find
at least one pair of irrational numbers whose sum is ratio-
nal. On the other hand, the negation proposed in the exercise
("The sum of any two irrational numbers is rational") means
that given any two irrational numbers, their sum is rational.
This is a much stronger statement than the actual negation:
The truth of this statement implies the truth of the negation
(assuming that there are at least two irrational numbers),
but the negation can be true without having this statement
be true.

Correct negation: There are at least two irrational numbers
whose sum is rational.

Or: The sum of some two irrational numbers is rational.



A-16 Appendix B Solutions and Hints to Selected Exercises

13. The proposed negation is not correct. There are two mis-
takes: The negation of a "for all" statement is not a "for all"
statement; and the negation of an if-then statement is not an
if-then statement.
Correct negation: There exists an integer n such that n2 is
even and n is not even.

15. a. True: All the odd numbers in D are positive.
c. False: x = 16,x = 26,x = 32,and x = 36areallcoun-

terexamples.

16. a. 3 a Java program that does not have at least 5 lines.

Or: 3 a Java program that has fewer than 5 lines.

c. 3 integers m and n such that m and n are even and m + n
is not even.

Or: 3 even integers m and n such that m + n is not even.

17. a. There exists an even integer whose square is not even.

Or: 2 an integer n such that n is even and n2 is not even.

18. 3 a real number x such that x2 
> 1 and x > 0. In other

words, 3 a real number x such that x2 > I and x < 0.

20. 3 a real number x such that x(x + 1) > 0 and both x < 0
and x > -1.

22. 3 integers a, b. and c such that a - b is even and b -c is
even and a - c is not even.

24. 3 an integer n such that n is divisible by 2 and n is not even.

26. One possible answer: Let P(x) be "2x # 1." The state-
ment "Vx E Z, 2x ; I " is true, but the statements "Vx e Q.
2x A I" and "Vx e R, 2x 0 1" are both false.

27. The claim is "Vx, if x = I and x is a character in the string
0204, then x is to the left of all the 0's in the string."

The negation is "3x such that x = I and x is a character
in the string 0204 and x is to the left of all the 0's in the
string."

The negation is false because the string does not contain
the character 1. So the claim is vacuously true (or true by
default).

29. Contrapositive: V real numbers x, if x < 0 then X2 < 1.

Converse: V real numbers x, if x2 
> I then x > 0.

Inverse: V real numbers x, if x2 < I then x < 0.

31. Contrapositive: Vx e R. if x < 0 and x > -I then
x(x + 1) <0.
Converse: Vx E R, if x > 0 orx <-I then x(x + 1) > 0.
Inverse: Vx E R, if x(x + 1) < 0, then x < 0 and x > -1.

33. Contrapositive: V integers a, b, and c, if a - c is not even,
then either a - b is not even or b - c is not even.
Converse: V integers a, b, and c, if a - c is even then both
a - b is even and b - c is even.
Inverse: V integers a, b and c, if a - b is not even or b- c
is not even, then a - c is not even.

35. Contrapositive: V integers n, if n is not even, then n is not
divisible by 2.
Converse: V integers n, if n is even, then n is divisible by 2.
Inverse: V integers n, if n is not divisible by 2, then n is not
even.

38. If a person earns a grade of C in this course, then the course
counts toward graduation.

40. If a person is not on time each day, then the person will not
keep this job.

42. It is not the case that if a number is divisible by 4, then that
number is divisible by 8. In other words, there is a number
that is divisible by 4 and is not divisible by 8.

44. It is not the case that if a person has a large income, then
that person is happy. In other words, there is a person who
has a large income and is not happy.

47. No. Interpreted formally, the statement says, "If carriers
do not offer the same lowest fare, then you may not select
among them," or, equivalently, "If you may select among
carriers, then they offer the same lowest fare."

Section 2.3
1. a. True: Tokyo is the capital of Japan.

b. False: Athens is not the capital of Egypt.

2. a. True: 22 > 3 b. False: 12 ? I

3. a. y= 2 b. y=-1

4. a. Let n = 16. Then n > x because 16 > 15.83.

5. The statement says that no matter what circle anyone might
give you, you can find a square of the same color. This is
true because the only circles are a, c, and b, and given a or
c, which are blue, square j is also blue, and given b, which
is gray, squares g and h are also gray.

7. This is true because triangle d is above every square.

9. a. There are five elements in D. For each, an element in
E must be found so that the sum of the two equals 0.
So: if x =-2, take y 2; if x =-1, take y = 1; if
x 0, take v= 0;ifx = ltakey =-I; if x =2,take
v -2.

Alternatively, note that for each integer x in D, the
integer -x is also in D, including 0 (because -0 = 0),
and for all integers x, x + (-x) = 0.

10. a. True. Every student chose at least one dessert: Uta chose
pie, Tim chose both pie and cake, and Yuen chose pie.

c. This statement says that some particular dessert was cho-
sen by every student. This is true: Every student chose
pie.

11. a. The statement has the form "3 a student S in this class
such that V residence halls R at this school, S has dated at
least one person from R." To determine whether this is
true, you could present all the students in the class with a
complete list of residence halls, asking them to check off
all residence halls containing a person they have dated.
Assuming all the students respond truthfully, if some stu-
dent checks off every residence hall, then the statement
is true. Otherwise, the statement is false.

12. a. There is a student who has seen Casablanca.
c. Every student has seen at least one movie.
d. There is a movie that has been seen by every student.

(There are many other acceptable ways to state these an-
swers.)



13. a. Negation: 3x in D such that Vy in E, x + y # 1.
The negation is true. When x =-2, the only num-

ber y with the property that x + y = 1 is y = 3, and 3 is
not in E.

In 14-19 there are other correct answers in addition to those
shown.

14. a. Statement: For every color, there is an animal of that
color.
There are animals of every color.

b. Negation: 3 a color C such that V animals A, A is not
colored C.
For some color, there is no animal of that color.

16. a. Statement: For every odd integer n, there is an integer k
such that n = 2k + 1.
Given any odd integer, there is another integer for which
the given integer equals twice the other integer plus 1.
Given any odd integer n, we can find another integer k
so that n = 2k + 1.
An odd integer is equal to twice some other integer plus 1.
Every odd integer has the form 2k + 1 for some integer k.

b. Negation: 3 an odd integer n such that V integers k,
n # 2k + 1.
There is an odd integer that is not equal to 2k + I for any
integer k.
Some odd integer does not have the form 2k + 1 for any
integer k.

18. a. Statement: For every real number x, there is a real num-
ber y such that x + y = 0.
Given any real number x, there exists a real number y
such that x + y = 0.
Given any real number, we can find another real number
(possibly the same) such that the sum of the given num-
ber plus the other number equals 0.
Every real number can be added to some other real num-
ber (possibly itself) to obtain 0.

b. Negation: 3 a real number x such that V real numbers y,
x + y #0.
There is a real number x for which there is no real num-
ber y with x + y = 0.
There is a real number x with the property that x + y # 0
for any real number y.
Some real number has the property that its sum with any
other real number is nonzero.

20. a. Statement (1) says that no matter what circle anyone
might give you, you can find a triangle of a different
color. This is true because the only circles are a, c, and
b, and given a and c, which are blue, any of triangles
d, f, and i, which are gray or black, could be taken, and
given circle b, which is gray, d, which is black, could
be taken. In each case the chosen triangle would have a
different color from the given circle.

Statement (2) says that there is a triangle that has a
different color from every circle. This is also true. Tri-
angle d is black, and all the circles are either blue or gray,
so triangle d has a different color from all the circles.

2.3 Solutions and Hints to Selected Exercises A-17

21. a. Given any real number, you can find a real number so
that the sum of the two is zero. In other words, every
real number has an additive inverse. This statement is
true.

b. There is a real number with the following property: No
mattter what real number is given, the sum of the two
will be zero. In other words, there is one particular real
number whose sum with any real number is zero. This
statement is false; no one number will work for all num-
bers. For instance, if x + 0 = 0, then x = 0, but in that
case x + I = 1 ,= 0.

23. a. -(Vx E D(Vy E E(P(x, y))))

- 3x a DQ-(Vy e E(P(x, y))))

- 3x e D(3y E E(-P(x, y)))

24. This statement says that all of the circles are above all of the
squares. This statement is true because the circles are a, b
and c, and the squares are e, g, and h, and all of a, b, and c
lie above all of e, g, and h.
Negation: There is a circle x and a square y such that x is
not above y. In other words, at least one of the circles is not
above at least one of the squares.

26. The statement says that there are a circle and a square with
the property that the circle is above the square and has a
different color from the square. This statement is true. For
example, circle a lies above square e and is differently col-
ored from e. (Several other examples could also be given.)

28. a. Version with interchanged quantifiers: 3x e R such that
Vy E R, x < y.

b. The given statement says that given any real number x,
there is a real number y that is greater than x. This is
true: For any real numberx, let y = x + 1. Then x < y.
The version with interchanged quantifiers says that there
is a real number that is less than every other real number.
This is false.

30. V people x, 3 a person y such that x is older than y.

31. 3 a person x such that V people y, x is older than y.

32. a. Formal version: V people x, 3 a person y such that x
loves y.

b. Negation: B a person x such that V people y, x does not
love y. In other words, there is someone who does not
love anyone.

33. a. Formal version: B a person x such that V people y, x
loves y.

b. Negation: V people x, 3 a person y such that x does not
love y. In other words, everyone has someone whom
they love.

36. a. Statement: V even integers n, 3 an integer k such that
n = 2k.

b. Negation: 3 an even integer n such that V integers k,
n $ 2k.
There is some even integer that is not equal to twice any
other integer.
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38. a. Statement: 3 a program P such that V questions Q posed
to P, P gives the correct answer to Q.

b. Negation: V programs P, there is a question Q that can
be posed to P such that P does not give the correct an-
swer to Q.

39. V minutes m, 3 a sucker s such that s was born in minute m.

40. a. This statement says that given any positive integer, there
is a positive integer such that the first integer is one more
than the second integer. This is false. Given the posi-
tive integer x = 1, the only integer with the property that
x = y + 1 is y = 0, and 0 is not a positive integer.

b. This statement says that given any integer, there is an
integer such that the first integer is one more than the
second integer. This is true. Given any integer x,
take y = x -1. Then y is an integer, and y + I =
(x - 1) + 1 = x.

e. This statement says that given any real number, there is
a real number such that the product of the two is equal to

1. This is false because 0 . y = 0 0 I for every number
y. So when x = 0, there is no real number y with the
property that xy = 1.

41. 3e > 0 such that V integers N, 3 an integer n such that
n > N and either L-e > a, or a, > L + e. In other
words, there is a positive number E such that for all inte-
gers N, it is possible to find an integer n that is greater than
N and has the property that a. does not lie between L -
and L + E.

43. a. This statement is true. The unique real number with the

given property is 1. Note that

l y = y for all real numbers y,

and if x is any real number such that for instance,
x 2 = 2, then dividing both sides by 2 gives x = 2 = 1.2

45. a. True. Both triangles a and c lie above all the squares.

b. Formal version: 3x(Triangle(x) A (Vy(Square(y)

Above(x, y))))

c. Formal negation: Vx(-Triangle(x) V (3y(Square(y) A

-Above(x, y))))

47. a. False. There is no square to the right of circle k.

b. Formal version: Vx(Circle(x) -+ (3y(Square(y) A

RightOf(y, x))))

c. Formal negation: 3x(Circle(x) A (Vy(-Square(y) V

-RightOf(y, x))))

49. a. False. There is no object that has a different color from

every other object.

b. Formal version: 3y(Vx(x 0 y -- SameColor(x, y)))

c. Formal negation: Vy(3x (x :A y A SameColor(x, y)))

51. a. False
b. Formal version: 3x(Circle(x) A (3y(Square(y) A

SameColor(x, y))))

c. Formal negation: Vx(-Circle(x) V (Vy(-Square(y) v

-SameColor(x, y))))

53. a. No matter what the domain D or the predicates P(x)

and Q(x) are, the given statements have the same truth
value. If the statement "Vx in D, (P (x) A Q (x))" is true,
then P (x) A Q (x) is true for every x in D, which implies
that both P(x) and Q(x) are true for every x in D. But
then P(x) is true for every x in D, and also Q(x) is true
for every x in D. So the statement "(Vx in D, P(x)) A
(Vx, in D, Q(x))" is true. Conversely, if the statement
"(Vx in D, P(x)) A (Vx in D, Q(x))" is true, then P(x)

is true for every x in D, and also Q(x) is true for every
x in D. This implies that both P(x) and Q(x) are true
for every x in D, and so P(x) A Q(x) is true for every
x in D. Hence the statement "Vx in D, (P(x) A Q(x))"
is true.

57. a. Yes b. X = wI, X = w2 c. X = b2 , X = w 2

Section 2.4
1. b. (f; + fj)2 =J2 + 2fi fj + f

c. (3u + 5v)2  (3u)2 + 2(3u)(5v) + (5v) 2

(= 9u2 + 30uv + 25v2)
d. (g(r) + g(S))2 

= (g(r))2 
+ 2g(r)g(s) + (g(S))2

2. 0 is even.

3. + 4 = 2 5+3 4 (= 22

5. Adster is not a healthy person.

7. Invalid; converse error

8. Valid by universal modus ponens (or universal instantiation)

9. Invalid; inverse error

10. Valid by universal modus tollens

16. Invalid; converse error.

19. Vx, if x is a good car, then x is not cheap.
a. Valid, universal modus ponens (or universal instantia-

tion)
b. Invalid, converse error

21. Valid. (A valid argument can have false premises and a true
conclusion!)

The major premise says the set of people is included in the set
of mice. The minor premise says the set of mice is included
in the set of mortals. Assuming both of these premises are
true, it must follow that the set of people is included in the
set of mortals. Since it is impossible for the conclusion to
be false if the premises are true, the argument is valid.



23. Valid. The major and minor premises can be diagrammed
as follows:

According to the diagram, the set of teachers and the set of
gods can have no common elements. Hence, if the premises
are true, then the conclusion must also be true, and so the
argument is valid.

25. Invalid. Let C represent the set of all college cafeteria food,
G the set of all good food, and W the set of all wasted food.
Then any one of the following diagrams could represent the
given premises.

G

C w

2

3 4

Only in drawing (1) is the conclusion true. Hence it is possi-
ble for the premises to be true while the conclusion is false,
and so the argument is invalid.

28. (3) Contrapositive form: If an object is gray, then it is a
circle.
(2) If an object is a circle, then it is to the right of all the
blue objects.
(1) If an object is to right of all the blue objects, then it is
above all the triangles.
.-. If an object is gray, then it is above all the triangles.

31. 4. If an animal is in the yard, then it is mine.
1. If an animal belongs to me, then I trust it.
5. If I trust an animal, then I admit it into my study.
3. If I admit an animal into my study, then it will beg when

told to do so.
6. If an animal begs when told to do so, then that animal is

a dog.
2. If an animal is a dog, then that animal gnaws bones.

If an animal is in the yard, then that animal gnaws bones;
that is, all the animals in the yard gnaw bones.

3.1 Solutions and Hints to Selected Exercises A-19

33. 2. If a bird is in this aviary, then it belongs to me.
4. If a bird belongs to me, then it is at least 9 feet high.
1. If a bird is at least 9 feet high, then it is an ostrich.
3. If a bird lives on mince pies, then it is not an ostrich.

Contrapositive: If a bird is an ostrich, then it does not
live on mince pies.
If a bird is in this aviary, then it does not live on mince
pies; that is, no bird in this aviary lives on mince pies.

Section 3.1
1. a. Yes: -17=2(-9)+1 b. Yes: 0=2 0

c. Yes: 2k-i = 2(k -1) + 1 and k -1 is an integer be-
cause it is a difference of integers.

2. a. Yes: 6m + 8n = 2(3m + 4n) and (3m + 4n) is an inte-
ger because 3, 4, m and n are integers, and products and
sums of integers are integers.

b. Yes: lOmn + 7 = 2(5mn + 3) + 1 and Smn + 3 is an
integer because 3, 5, m, and n are integers, and products
and sums of integers are integers.

c. Not necessarily. For instance, if m = 3 and n = 2,
then m2 -n 2 = 9 - 4 = 5, which is prime. (Note that
m2 

- n2 is composite for many values of m and n because
of the identity m2 - n2 = (m -n)(m + n).)

4. For example, let m = n = 2. Then m and n are integers
such that m > O and n > O and m + I = 1 + 1 = 1, which
is an integer.

7. For example, let n = 7. Then n is an integer such that n > 5
and 2- 1 = 127, which is prime.

9. For example, 25, 9, and 16 are all perfect squares, because
25 = 52, 9 = 32, and 16 = 42, and 25 = 9 + 16. Thus 25
is a perfect square that can be written as a sum of two other
perfect squares.

11. Counterexample: Let a = -2 and b = -1. Then a < b
because -2 < -1, but a2 

25 b2 because (-2)2 = 4 and
(-1)2 = 1 and4 5t 1.

14. This property is true for some integers and false for other
integers. For instance, if a = 0 and b = 1, the property is
true because (0 + 1)2 = 02 + 12, but if a = 1 and b= 1,
the property is false because (1 + 1)2 = 4 and 12 + 12 - 2
and 4 0 2.

17. 2=12+12, 4=22,6=22+12+12,

8 = 22 + 22, 10 =32 + 12, 12 = 22+ 22+ 22,

14 = 32+ 22 + 12, 16 = 42,

18 = 32 +32= 42 + 12 + 12,20 = 42+ 22,

22 = 32+ 32+ 22,24 = 42+ 22+ 22

19. Theorem: V integers m and n, if m is even and n is odd, then
m + n is odd.
a. any odd integer b. integer r
c. 2r + (2s + 1) d. m +n isodd

20. Start of proof: Suppose m is an integer such that m > 1.
Conclusion to be shown: 0 < 1/m < 1.

22. Start of proof: Suppose m and n are integers and mn = 1.
Conclusion to be shown: m = n = 1 or m = n = -1.
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24. Two versions of a correct proof are given below to illustrate
some of the variety that is possible.

Proof l: Suppose n is any [particular but arbitrarily chosen]
even integer. [We must show that -n is even.] By definition
of even, n = 2k for some integer k. Multiplying both sides
by-l givesthat-n = -(2k) = 2(-k). Letr = -k. Then
r is an integer because a product of two integers is an in-
teger, r = -k = (-l )k, and -l and k are integers. Hence
-n = 2r for some integer r, and so -n is even [as was to
be shown.]

Proof 2: Suppose n is any even integer. By definition
of even, n = 2k for some integer k. Then -n = -2k =
2(-k). But -k is an integer because it is a product of inte-
gers -I and k. Thus -n = 2. (some integer), and so -n is
even by definition of even.

25. Proof: Suppose a is any even integer and b is any odd inte-
ger. [We must show that a -b is odd.] By definition of even
and odd, a = 2r and b = 2s + 1 for some integers r and
s. By substitution and algebra, a - b = 2r - (2s + 1) =

2r -2s-l = 2(r-s-l ) + 1. Let t = r-s-l . Then
t is an integer because sums and differences of integers are
integers. Thus a -b = 2t + 1, where t is an integer, and
so, by definition of odd, a -b is odd [as was to be shown].

29. Proof: Suppose n is any even integer. Then n = 2k for some
integer k. Hence (-l), = (-1)2k = ((_1)2)k = I, = 1
[by the laws of exponents from algebra]. This is what was
to be shown.

31. The negation of the statement is "For all integers m > 3,
m2 - 1 is not prime."

Proof of the negation: Suppose m is any integer with
m > 3. By basic algebra, m2 - 1 = (m -l)(m + 1). Be-
cause m > 3, both m - and m + 1 are positive integers
greater than 1, and each is smaller than m2 

- 1. So m2 
- I

is a product of two smaller positive integers, each greater
than 1, and hence m2 - 1 is not prime.

34. The incorrect proof just shows the theorem to be true in the
one case where k = 2. A real proof must show that it is true
for all integers k > 0.

35. The mistake in the "proof" is that the same symbol, k, is used
to represent two different quantities. By setting m = 2k and
n = 2k + 1, the proof implies that n = m + 1, and thus it
deduces the conclusion only for this one situation. When
m = 4 and n = 17, for instance, the computations in the
proof indicate that n -m = 1, but actually n -m = 13. In
other words, the proof does not deduce the conclusion for
an arbitrarily chosen even integer m and odd integer n, and
hence it is invalid.

36. This incorrect proof begs the question. The word since in
the third sentence is completely unjustified. The second sen-
tence tells only what happens if k2 + 2k + 1 is composite.
But at that point in the proof, it has not been established that
k2 + 2k + 1 is composite. In fact, that is exactly what is to
be proved.

39. True. Proof: Suppose m and n are any odd integers. [We
must show thatmn is odd.] By definition of odd, n = 2r + I
and m = 2s + 1 for some integers r and s. Then

mn = (2r + 1)(2s + 1) by subsitution

= 4rs + 2r + 2s + 1

= 2( 2rs + r + s) + 1 by algebra.

Now 2rs + r + s is an integer because products and sums of
integers are integers and 2, r, and s are all integers. Hence
mn = 2. (some integer) + 1, and so, by definition of odd,
mn is odd.

40. True. Proof: Suppose n is any odd integer. [We must show
that -n is odd.] By definition of odd, n = 2k + 1 for some
integer k. By substitution and algebra, -n = -(2k + 1) =
-2k - I = 2(-k - 1) + 1. Let t = -k - 1. Then t is an
integer because differences of integers are integers. Thus
-n = 2t + 1, where t is an integer, and so, by definition of
odd, -n is odd [as was to be shown].

41. False. Counterexample: Both 3 and 1 are odd, but their
difference is 3 - = 2, which is even.

43. Counterexample: Let m = 1 and n = 3. Then m + n = 4
is even, but neither summand m nor summand n is even.

50. Proof: Suppose n is any integer. Then 4(n2 + n + 1)-
3n 2 =4n2 +4n+4 -3n 2 =n 2 +4n+4= (n+2)2 (by
algebra). But (n + 2)2 is a perfect square because n + 2 is
an integer (being a sum of n and 2). Hence 4(n2 + n + 1 )-
3n2 is a perfect square, as was to be shown.

52. Hint: This is true.

58. Hint: The answer is no.

60. a. Hint: Note that (x -r)(x -s) = x 2 
- (r + s) + rs. If

both r and s are odd, then r + s is even and rs is odd. So
the coefficient of x2 is 1 (odd), the coefficient of x is
even, and the constant coefficient is odd.

Section 3.2
-. 35 - 35 3 4 + 2 4 49+2 5 -46

6 6 * 9 - 5 45

4. Let x - 0.3737373737....
Then lOOx = 37.37373737 .. , and so
lOOx - x = 37.37373737... - 0.3737373737....
Thus 99x = 37, and hence x = 3799

6. Let x = 320.5492492492....
Then 10000x = 3205492.492492..., and
lOx = 3205.492492492 .. , and so
lOOOOx - lOx = 3205492 - 3205.
Thus 9990x = 3202287, and hence x = 320227

8. b. Vrealnumbersxandy,ifx # Oandy A0thenxy #0.

9.Because a and b are integers, b - a and ab2 are both inte-
gers (since differences and products of integers are integers).
Also, by the zero product property, ab2 3& 0 because neither
a nor b is zero. Hence (b -a)/ab 2 is a quotient of two
integers with nonzero denominator, and so it is rational.



11. Proof: Suppose n is any [particular but arbitrarily chosen]
integer. Then n = n 1, and so n = n/I by dividing both
sides by 1. Now n and 1 are both integers, and 1 :A 0. Hence
n can be written as a quotient of integers with a nonzero de-
nominator, and so n is rational.

12. a. any [particular but arbitrarily chosen] rational number
b. integers a and b c. (a/b)2  d. b2

e. zero product property f. r2 is rational

13. Proof: Suppose r and s are rational numbers. By definition
of rational, r = a/b and s c/d for some integers a, b, c,
and d with b # 0 and d 0 0. Then

a c
rs - -b by substitution

b d

ac by the rules of algebra for

bd multiplying fractions.

Now ac and bd are both integers (being products of inte-
gers) and bd * 0 (by the zero product property). Hence rs
is a quotient of integers with a nonzero denominator, and
so, by definition of rational, rs is rational.

14. Hint: Counterexample: Let r be any rational number and
s = 0. Then r and s are both rational, but the quotient of
r divided by s is undefined and therefore is not a rational
number.
Revised statement to be proved: For all rational numbers r
and s, if s A 0 then r/s is rational.

17. Hint: a/b + c/d = (ad + bc)/(bd) ad + bc
2 2 2bd

18. Hint: If a < b then a + a < a + b (by T18 of Appendix
A), or equivalently 2a < a + b. Thus a < "2 (by T19 Ap-

pendix A).

20. True. Proof: Suppose m is any even integer and n is any odd
integer. [We must show that m2 + 3n is odd.] By properties
I and 3 of Example 3.2.2, m2 is even (because m2 = m m)

and 3n is odd (because both 3 and n are odd). It follows
from property 5 [and the commutative law for addition] that
m2 + 3n is odd [as was to be shown].

23. Proof: Suppose r and s are any rational numbers. By The-
orem 3.2.1, both 2 and 3 are rational, and so, by Exercise
13, both 2r and 3s are rational. Hence, by Theorem 3.2.2,
2r + 3s is rational.

26. Let

12n+ 2n+1 - I

1- - 1 1 2 t

2 2 2

But 2+' -1 and 2n are both integers (since n is a non-
negative integer) and 2' * 0 by the zero product property.
Therefore, x is rational.

30. Proof: Suppose c is a real number such that

r3 C3 +r 2 c2 +rc+ro=0,

where ro, ri, r2, and r3 are rational numbers. By defini-
ton of rational, ro = ao/bo, r1 = al/b,, r2 = a2/b2, and
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r3 = a3/b3 for some integers, ao, aj, a2, a3, and nonzero in-
tegers bo, bl, b2, and b3. By substitution,

r3c3 + r2c
2 + r1c + ro

a 3 3+ a 2 2+at + ao
b3  b2  b, bo

bob b2a3 3 bob b3a2 2 bob2b3a + b b2b3ao

bobib2 b3 bobb 2b3  bobib2b3  boblb2b3

-0.

Multiplying both sides by bob,b2b3 gives

bob b2a3 . c3 + bobjb3a2 . c2 + bob2b3a, . c + b1b2b3ao = 0.

Let n3 = bobjb3a3, n2 = bobib3 a2 , ni = bOb2b3aj, and
no = bIb2b3ao. Then no, nI, n2 , and n3 are all integers (be-
ing products of integers). Hence c satisfies the equation

n3C3 + n2 C
2 + n 1c + no = 0,

where no, nI, n2, and n3 are all integers. This is what was
to be shown.

33. This "proof" begs the question by assuming what is to be
proved.

34. By setting both r and s equal to a/b, this incorrect proof
violates the requirement that r and s be arbitrarily chosen
rational numbers. If both r and s equal a/b, then r = s.

Section 3.3
1.
4.

6.

7.

Yes,52= 13 4

Yes, (3k + 1)(3k + 2)(3k + 3) -
3[(3k + 1)(3k + 2)(k + 1)], and
(3k + 1)(3k + 2)(k + 1) is an integerbecause k is an integer
and sums and products of integers are integers.

No, 29/3 - 9.67, which is not an integer.

Yes, 66 = (-3)(-22).

8. Yes, 6a(a + b) - 3a[2(a + b)], and 2(a + b) is an integer
because a and b are integers and sums and products of inte-
gers are integers.

10. No, 34/7 - 4.86, which is not an integer.

12. Yes, n2 - I = (4k + 1) 2 -I = (16k 2 + 8k + 1)- =
16k2 + 8k = 8(2k2 + k), and 2k2 + k is an integer be-
cause k is an integer and sums and products of integers are
integers.

14. a. a lb b. a k c. integer
d. -(a k) e. a I (-b)

15. Proof: Suppose a, b, and c are any integers such that a I b
and a I c. [We must show that a I (b + c).] By definition of
divides, b = ar and c = as for some integers r and s. Then
b + c = ar + as =a(r + s) (by algebra).

Let t = r + s. Then t is an integer (being a sum of
integers), and thus b + c = at where t is an integer. By
definition of divides, then, a I (b + c) [as was to be shown.]

17. Proof: Suppose n, n + 1, and n + 2 are any three con-
secutive integers. Thenn + (n + 1) + (n + 2) = 3n + 3 =
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3(n + 1). This is divisible by 3 because n + 1 is an integer
(since n is an integer, and a sum of integers is an integer).

19. The given statement can be rewritten formally as "Y
integers n, if n is divisible by 6, then n is divisible by 2."
This statement is true.

Proof 1: Suppose n is any integer that is divisible by 6. By
definition of divisibility, n = 6k for some integer k. But
6k = 2 (3k), and 3k is an integer because k is. Hence
n = 2 (some integer), and so n is divisible by 2.

Proof 2: Suppose n is any integer that is divisible by 6. We
know that 6 is divisible by 2 because 6 = 2 . 3. So 2 1 6 and
6 I n. Hence by transitivity of divisibility (Theorem 3.3.1),
2 I n, or, in other words, n is divisible by 2.

21. The statement is true. Proof: Suppose a, b, and c are any
integers such that a I b and a i c. [We must show that
a I (2b - 3c).] By definition of divisibility, we know that
b = am and c = an for some integers m and n. It fol-
lows that 2b -3c = 2(am) -3(an) (by substitution) =
a(2m -3n) (by basic algebra). Let t = 2m - 3n. Then
t is an integer because it is a difference of products of in-
tegers. Hence 2b -3c = at, where t is an integer, and
so a I (2b - 3c) by definition of divisibility [as was to be
shown].

22. Hint: The statement is true.

23. The statement is false. Counterexample: Let a = 2, b = 3,
and c = 8. Then a I c because 2 divides 8, but ab c because
ab = 6 and 6 does not divide 8.

24. Hint: The statement is false.

29. No. Each of these numbers is divisible by 3, and so their
sum is also divisible by 3. But 100 is not divisible by 3.
Thus the sum cannot equal $100.

33. a. The sum of the digits is 54, which is divisible by 9. There-
fore, 637,425,403,705,125 is divisible by 9 and hence
also divisible by 3 (by transitivity of divisibility). Be-
cause the rightmost digit is 5, then 637,425,403,705,125
is also divisible by 5. And because the two right-
most digits are 25, which is not divisible by 4, then
637,425,403,705,125 is not divisible by 4.

34. 1176 = 2'3 72

35 2e 2e2 2ek

b. n = 42, 25 3 52 73 n = 5.8802
37. a. Because 12a = 25b, the unique factorization theorem

guarantees that the standard factored forms of 12a and
25b must be the same. Thus 25b contains the factors
22 . 3 (= 12). But since neither 2 nor 3 divide 25, the
factors 22 . 3 must all occur in b, and hence 12 1 b. Simi-
larly, 12a contains the factors 52 = 25, and since 5 is not
a factor of 12, the factors 52 must occur in a. So 25 1 a.

39. a. 6!6 65 4 3 2 1=2 3 5 2 2 3 2
-24 32 .

41. Proof: Suppose n is a nonnegative integer whose decimal
representation ends in 0. Then n = 10m + 0 = 10m for
some integerm. Factoring outa5yieldsn = lOim = 5(2m),
and 2m is an integer since m is an integer. Hence 10m is
divisible by 5, which is what was to be shown.

44. Hint: You may take it as a fact that for any positive integer k,
10k = 99 .. .9 + 1; that is,

k of these

1ok = 9 l0 ok-1 + 9  ok 2±± + . . + 9 * 101 + 9 100 + 1.

Section 3.4
1. q = 7, r = 7 3. q = 0, r = 36

5.

11.
q = -5,r = 10 7. a. 4 b. 7

a. When today is Saturday, 15 days from today is two
weeks (which is Saturday) plus one day (which is Sun-
day). Hence DayN should be 0. According to the for-
mula, when today is Saturday, DayT = 6, and so when
N = 15,

DayN = (DayT + N) mod 7

= (6 + 15) mod 7

= 21 mod 7 = 0, which agrees.

13. Solution 1: 30 = 4 . 7 + 2. Hence the answer is two days
after Monday, or Wednesday.

Solution 2: By the formula, the answer is (I + 30) mod 7 =

31 mod 7 = 3, which is Wednesday.

14. Hint: There are two ways to solve this problem. One is
to find that 1,000 = 7 142 + 6 and note that if today is
Tuesday, then 1,000 days from today is 142 weeks plus
6 days from today. The other way is to use the formula
DayN = (DayT + N) mod T, with DayT = 2 (Tuesday)
and N = 1000.

16. Hint: By the quotient-remainder theorem, 0 < r < d.
Thus r-d < 0. But n%d = r-d, so it is false that
0 < n%d <d.

17. Because the remainder obtained when a is divided by 7 is
4, we know that a = 7q + 4 for some integer q. Multiply-
ing this equation through by 5 gives that Sa = 35q + 20 =
35q + 14 + 6 = 7(5q + 2) + 6. Because q is an integer,
Sq + 2 is also an integer, and so 5a = 7 * (an integer) + 6.
Thus, because 0 < 6 < 7, the remainder obtained when 5a
is divided by 7 is 6.

20. Because d I n, n = dq + 0 for some integer q. Thus the re-
mainder is 0.

21. Hint: You need to show that (1) for all nonnegative inte-
gers n and positive integers d, if n is divisible by d then
n mod d = 0; and (2) for all nonnegative integers n and
positive integers d, if n mod d = 0 then n is divisible by d.

22. 7609 + 5 = 7614

25. Proof: Suppose n is any odd integer. By definition of odd,
n = 2q + 1 for some integer q. Then n2 

= (2q + 1)2 =

4q 2+4q+I=4(q2 +q)+I =4q(q+1)+1. By the
result of exercise 24, the product q (q + 1) is even, so
q (q + 1) = 2m for some integer m. Then, by substitution,
n2 = 4 . 2m + I = 8m + 1.

27. Proof: Suppose n is any integer. By the quotient-remainder
theorem with d = 3, there exist integers q and r such
that n = 3q + r and 0 < r < 3. But the only nonnegative



integers r that are less than 3 are 0, 1, and 2. Therefore,
n = 3q + 0 = 3q, or n = 3q + 1, or n = 3 q + 2 for some
integer q.

28. a. Proof: Suppose n, n + 1, and n + 2 are any three con-
secutive integers. [We must show that n (n + l)(n + 2)

is divisible by 3.] By the result of exercise 27, n can be
written in one of the three forms, 3q, 3q + 1, or 3q + 2
for some integer q. We divide into cases accordingly.
Case I (n = 3q for some integer q): In this case,

n(n + 1)(n + 2)

= 3q(3 q + 1)(3q + 2) by substitution

= 3 [q(3q + 1)(3q + 2)] by factoring out a 3.

Let m = q(3q + 1)(3q + 2). Then m is an integer be-
cause q is an integer, and sums and products of integers
are integers. By substitution,

n(n + l)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n (n + l) (n + 2) is di-
visible by 3.
Case 2 (n = 3q + lfor some integer q): In this case,

n(n + l)(n + 2)

= (3q + 1)((3q + 1) + 1)((3q + 1) + 2)
by substitution

= (3q + 1)(3q + 2)(3q + 3)

= (3q + 1)(3q + 2)3(q + 1)

= 3. [(3q + 1)( 3 q + 2 )(q + 1)] by algebra

Let m = (3q + 1)(3q + 2 )(q + 1). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + l)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n (n + l) (n + 2) is di-
visible by 3.
Case 3 (n = 3q + 2 for some integer q): In this case,

n(n + I)(n + 2)

= (3q + 2)((3q + 2) + 1)((3q + 2) + 2)
by substitution

= (3q + 2)(3q + 3)(3q + 4)

= (3q + 2 )3(q + 1)(3q + 4)

= 3 [(3q + 2)(q + 1)(3q + 4)] by algebra

Let m = (3q + 2 )(q + 1)( 3 q + 4). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n (n + 1) (n + 2) is di-
visible by 3.

In each of the three cases, n (n + I) (n + 2) was seen to be
divisible by 3. But by the quotient-remainder theorem,
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one of these cases must occur. Therefore, the product of
any three consecutive integers is divisible by 3.

b. For all integers n, n(n + 1)(n + 2) mod 3 = 0.

29. Hint: Given any integer n, begin by using the quotient-
remainder theorem to say that n can be written in one of
the three forms: n = 3q, or n = 3q + 1, or n = 3q + 2
for some integer q. Then divide into three cases accord-
ing to these three possibilities. Show that in each case either
n-2= 3k for some integer k, or n2 = 3k + 1 for some integer
k. For instance, when n = 3q + 2, then n2 

= (3q + 2)2 =

9q2+ 6q +4 =3(3q2 + 2q + 1) + 1,and3q2 + 2q + is
an integer because it is a sum of products of integers.

31. b. If m2 - n2 = 56, then 56 = (m + n)(m-n). Now
56 = 2 3 7, and by the unique factorization theorem,
this factorization is unique. Hence the only represen-
tations of 56 as a product of two positive integers are
56 = 7 .8 = 14 4 = 28 2 = 56 1. By part (a), m
and n must both be odd or both be even. Thus the
only solutions are either m + n = 14 and m -n = 4 or
m + n 28 and m-n = 2. This gives either m = 9
and n - 5 or m = 15 and n = 13 as the only solutions.

32. Under the given conditions, 2a - (b + c) is even. Proof:
Suppose a, b, and c are integers and a-b is even and b- c
is even. [We must show that 2a -(b + c) is even.] By prop-
erties 6 and 7 in Example 3.2.3, it is impossible for one of
a and b to be even and the other odd, and so either both are
even or both are odd. In the case where both are even, c
must also be even because otherwise b -c would be odd
(by property 7). Hence in this case 2a -(b + c) is even
(by property 1). In the case where both a and b are odd,
c must also be odd because otherwise b - c would be odd
(by property 7). Hence in this case 2a -(b + c) is even (by
properties 4, 2, and 1).

34. Hint: Express n using the quotient-remainder theorem with
d = 3.

36. Hint: Use the quotient-remainder theorem (as in Exam-
ple 3.4.5) to say that n = 4 q, n = 4 q + 1, n = 4q + 2, or
n = 4q + 3 and divide into cases accordingly.

38. Hint: Given any integer n, consider the two cases where n
is even and where n is odd.

39. Hint: Given any integer n, analyze the sum n + (n + 1) +
(n + 2) + (n + 3).

42. Hint: Use the quotient-remainder theorem to say that n must
have one of the forms 6q, 6q + 1, 6 q + 2, 6q + 3, 6q + 4,
or 6q + 5 for some integer q.

44. Answer tofirst question: No. Counterexample: Let m = 1,
n = 3, and d = 2. Then m mod d 1 and n mod d I
but m :A n.
Answer to second question: Yes. Proof: Suppose m, n,
and d are integers such that m mod d = n mod d. Let
r = m mod d = n mod d. By definition of mod, m =
dp + r and n = dq + r for some integers p and q. Then
m-n = (dp+r) -(dq+r) =d(p -q). But p-q is
an integer (being a difference of integers), and so m -n is
divisible by d by definition of divisible.



A-24 Appendix B Solutions and Hints to Selected Exercises

49. Proof: Suppose x is any real number. [We must show that

I-xI = Ix| ]
Case 1 (x > 0): In this case -x < 0, and so, by definition
of absolute value, I - xI = -(-x) = x. In addition, be-
cause x > 0, by definition of absolute value Ix I = x. Thus

I-xI = IxI.
Case 2 (x = 0): In this case -x also equals 0, and so, by
definition of absolute value, both I-xl and IxI equal 0. Thus

I-xI = lxi.
Case 3 (x < 0): In this case -x > 0 and so, by definition
of absolute value, I -xl =-x. In addition, because x < 0,
by definition of aboslute value x I = -x. Thus -xl = Ix l.
Hence, in all three cases I - x I = Ix I [as was to be shown].

51. Proof: Let x be any real number. We consider two cases.

Case I x > 0: Then by definition IxI = x. Since IxI > 0,
we have -Ix I < 0. Hence-Ix I < x < Ix .

Case 2 x < 0: Then by definition IxI = -x, which gives

-lxI = x. So -lxI = x < 0 < Ixi. Hence -IxI < x < Ixi.

Thus, in either case,-Ix I < x < Ix I

Section 3.5
1. L37.999] = 37, [37.9991 = 38

3. L-14.00001] = -15, F-14.00001= -14

8. Ln/7J. The floor notation is more appropriate. If the ceiling
notation is used, two different formulas are needed, depend-
ing on whether n/7 is an integer or not. (What are they?)

10. a. (i) (2050+ [ 2049 L2049 I + L[2049 ]) mod 7

- (2050 + 512 -20 + 5) mod 7 = 2547 mod 7
= 6, which corresponds to a Saturday

b. Hint: One day is added every four years, except that
each century the day is not added unless the century is a

multiple of 400.

12. Proof: Suppose n is any even integer. By definition of even,
n = 2k for some integer k. Then

because k is an integer
and k < k < k + 1.

But
n
2

because n = 2k.

Thus, on the one hand, [fl = k, and on the other hand,

k = E. It follows that [L] -| [as was to be shown].

14. False. Counterexample: Let x = 2 and y = 1.9. Then

Lx -YI = L2- 1.9i = L[ 1 J = 0, whereas LxI - LYi I

L2i - Ll 9i = 2 = I = 1.

15. True. Proof: Suppose x is any real number. Let m = Lxi.

By definition of floor, m < x < m + 1. Subtracting 1 from
all parts of the inequality gives that m -I < x - 1 < m,

and so, by definition of floor, Lx -I = m -1. It follows

by substitution that Lx 1 I = Lx I-1.

17. Prooffor the case where n mod 3 = 2:
In the case where n mod 3 = 2, then n = 3q + 2 for some
integer q by definition of mod. By substitution,

Lni L 3Pq 2

= q + 2J = q because q is an integer and
L 3 q < q + 2/3 < q +1.

But

n -2
q =3

by solving n = 3q + 2 for q.

Thus, on the one hand, L'3¾ = q, and on the other hand,

q = n-2. It follows that L = -2
18. Hint: This is false. 19. Hint: This is true.

23. Proof: Suppose x is a real number that is not an integer.
Let Lxi = n. Then, by definition of floor and because n is
not an integer, n < x < n + 1. Multiplying both sides by
-l gives-n > -x > -n -1, or equivalently, -n -I <
-x < -n. Since -n -I is an integer, it follows by defi-
nition of floor that L-x] =-n -1. Hence Lx] + L-x] -

n + (-n -) n-n- =1- ,as was to be shown.

25. Hint: Let n - [x] and consider the two cases: n is even

and n is odd.

26. Proof: Suppose x is any real number such that x - Lxi < 2.

Multiplying both sides by 2 gives 2x- 2Lxj < 1, or 2x <
2Lxj + 1. Now, by defintion of floor, [xI < x. Hence,
2Lxj < 2x. Putting the two inequalities involving 2x to-
gether gives 2 Lxi < 2x < 2 Lxi + 1. Thus, by definition of
floor (and because 2Lxj is an integer), L2Xj = 2Lx[. This
is what was to be shown.

30. This incorrect proof begs the question. The equality L 2 i
-2 is what is to be shown. By substituting 2k + 1 for n

into both sides of the equality and working from the result
as though it were known to be true, the proof assumes the
truth of the conclusion to be proved.

Section 3.6
1. a. x < y b. a contradiction

c. 2 is a positive real number
d. multiplying both sides of the inequality 2 < 1 by x,

which is positive, gives x < x
e. x is a positive real number that is less than the least pos-

itive real number

3. Proof: Suppose not. That is, suppose there is an integer
n such that 3n + 2 is divisible by 3. [We must derive a
contradiction.] By definition of divisibility, 3n + 2 = 3k

for some integer k. Subtracting 3n from both sides gives
that 2 = 3k -3n = 3(k -n). So, by definition of divisi-
bility, 3 1 2. But by Example 3.3.3 this implies that 3 < 2,
which contradicts the fact that 3 > 2. [Thus for all integers

n, 3n + 2 is not divisible by 3.]

[n] = [2k]
- = Lk] = k

2 2



5. Negation of statement: There is a greatest even integer.

Proof of statement: Suppose not. That is, suppose there is
a greatest even integer; call it N. Then N is an even inte-
ger, and N > n for every even integer n. [We must deduce

a contradiction.] Let M = N + 2. Then M is an even in-
teger since it is a sum of even integers, and M > N since
M = N + 2. This contradicts the supposition that N > n
for every even integer n. [Hence the supposition is false and
the statement is true. ]

8. a. The mistake in this proof occurs in the second sentence
where the negation written by the student is incorrect: In-
stead of being existential, it is universal. The problem is
that if the student proceeds in a logically correct manner,
all that is needed to reach a contradiction is one exam-
ple of a rational and an irrational number whose sum is
irrational. To prove the given statement, however, it is
necessary to show that there is no rational number and
no irrational number whose sum is rational.

b. Proof (by contradiction): Suppose not. That is, suppose
3 a rational number x and an irrational number y such
that x - y is rational. [We must derive a contradiction.]
By definition of rational, x = a/b and x -y = c/d for
some integers a, b, c, and d with b 0 0 and d :A 0. By
substitution,

c a

d = xy- = b
y.

Solving for y gives

a c ad -bc

b d bd

But ad -bc and bd are integers (because a, b, c, and
d are integers, and products and differences of integers
are integers), and bd 7# 0 (by the zero product property).
Thus, by definition of rational, y is rational. This con-
tradicts the supposition that y is irrational. [Hence the
supposition is false and the given statement is true.]

10. Proof: Suppose not. That is, suppose 3 a nonzero rational
number x and an irrational number y such that xy is ratio-
nal. [We must derive a contradiction.] By definition of ra-
tional, x = a/b and xy = c/d for some integers a, b, c and
d with b 0 0 and d # 0. Also a # 0 because x is nonzero.
By substitution, xy = (a/b)y = c/d. Solving for y gives
y = bc/ad. Now bc and ad are integers (being products of
integers) and ad 0 0 (by the zero product property). Thus,
by definition of rational, y is rational, which contradicts the
supposition that y is irrational. [Hence the supposition is
false and the statement is true.]

12. Hint: Suppose n2 - 2 is divisible by 4, and consider the two
cases where n is even and n is odd.

13. Hint: a2 
= c2 -b 2 

= (c -b)(c + b)

14. Hint: (1) For any integer c, if 2 divides c, then 4 divides c2 .
(2) The result of exercise 12 may be helpful.

3.6 Solutions and Hints to Selected Exercises A-25

15. Hint: Suppose a, b, and c are odd integers, z is a solution
to ax2 + bx + c = 0, and z is rational. Then z = p/q for
some integers p and q with q 3 0. We may assume p and
q have no common factor. (Why? If p and q do have a
common factor, we can divide out their greatest common
factor to obtain two integers p' and q' that (1) have no com-
mon factor and (2) satisfy the equation z = p'/q'. Then we
can redefine q = q' and p = p'.) Note that because p and
q have no common factor, they are not both even. Substi-
tute p/q into ax2 + bx + c = 0, and multiply through by
q

2
. Show that (1) the assumption that p is even leads to a

contradiction, (2) the assumption that q is even leads to a
contradiction, and (3) the assumption that both p and q are
odd leads to a contradiction. The only remaining possibility
is that both p and q are even, which has been ruled out.

16. a. 5in b. 5in 2  c. 5k d. (5k)2  e. SIn2

17. Proof (by contraposition): [To go by contraposition, we
must prove that V positive real numbers, r and s, if r < 10
and s < 10, then rs < 100.] Suppose r and s are positive
real numbers and r < 10 and s < 10. By the algebra of in-
equalities, rs < 100. [To derive thisfact, multiply both sides
of r < 10bys to obtain rs < 10s.Andmultiplybothsidesof
s < 10 by 10 to obtain lOs < 10. 10 = 100. By transitivity
of <, then, rs < 100.] But this is what was to be shown.

19. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is odd and n is even.
Show that this supposition leads logically to a contradic-
tion.

b. Proof by contraposition: Suppose n is any integer such
that n is odd. Show that n2 is odd.

21. a. The contrapositive is the statement "V real numbers x,
if -x is not irrational, then x is not irrational." Equiva-
lently (because -(-x) = x), "V real numbers x, if x is
rational then -x is rational."

Proof by contraposition: Suppose x is any rational num-
ber. [We must show that -x is also rational.] By def-
inition of rational, x = a/b for some integers a and b
with b 0 0. Then x = -(a/b) = (-a)/b. Since both
-a and b are integers and b 7 0, -x is rational [as was
to be shown.]

b. Proof: Suppose not. [We take the negation and suppose it
to be true]. That is, suppose 3 an irrational number x such
that -x is rational. [We must derive a contradiction.]
By definition of rational, -x = a/b for some integers a
and b with b # 0. Multiplying both sides by 1 gives
x = -(a/b) = -a/b. But -a and b are integers (since
a and b are) and b 0 O. Thus x is a ratio of the two
integers -a and b with b 3& 0. Hence x is rational (by
definition of rational), which is a contradiction. [This
contradiction shows that the supposition is false, and so
the given statement is true.]

23. Hints: See the answer to exercise 19 and look carefully at
the two proofs for Proposition 3.6.4.
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24. a. Proof by contraposition: Suppose a, b, and c are any

[particular but arbitrarily chosen] integers such that
a I b. [ We must show that a I bc. ] By definition of divides,
b = ak for some integer k. Then bc = (ak)c = a(kc).

But kc is an integer (because it is a product of the inte-
gers k and c). Hence a I bc by definition of divisibility
[as was to be shown.]

b. Proof by contradiction: Suppose not. [We take the
negation and suppose it to be true.] Suppose 3 integers
a, b, and c such that a ) bc and a I b. Since a I b, there
exists an integer k such that 6 = ak by definition of di-
vides. Then bc = (ak)c = a(kc) [by the associative law
qf algebra]. But kc is an integer (being a product of inte-
gers), and so a I be by definition of divides. Thus a , bc
and a I be, which is a contradiction. [This contradiction
shows that the supposition is false, and hence the given
statement is true.]

25. a. Hint: The contrapositive is "For all integers m and n, if
m and n are not both even and m and n are not both odd,
then m + n is not even." Equivalently: "For all integers
m and n, if one of m and n is even and the other is odd,
then m + n is odd."

b. Hint: The negation of the given statement is the follow-
ing: B integers m and n such that m + n is even, and
either m is even and n is odd, or m is odd and n is even.

27. The negation of "Every integer is rational" is "There is at
least one integer that is irrational" not "Every integer is irra-
tional." Deriving a contradiction from an incorrect negation
of a statement does not prove the statement is true.

28. a. Proof: Suppose r, s, and n are integers and r > n and
s > VH. Note that r and s are both positive because
aH cannot be negative. By multiplying both sides of the

first inequality by s and both sides of the second inequal-
ity by n (Appendix A, T19), we have that rs > Ins
and Inrs = // = n. Thus, by the transitive law for
inequality (Appendix A, T17), rs > n.

b. Hint: The contrapositive is as follows: For all integers
n > 1, if n is not prime, then n is divisible by any pos-
itive integer that is greater than 1 and less than or equal
to in.

29. a. 667 - 25.8, and so the possible prime factors are 2, 3,
4, 7, 11, 13, 17, 19, and 23. Testing each in turn shows
that 667 is not prime because 667 = 23 . 29.

b. 557 - 23.6, and so the possible prime factors are 2, 3,
4, 7, 11, 13, 17, 19, and 23. Testing each in turn shows
that none divides 557. Therefore, 557 is prime.

31. a. /269 - 96.3, and so the possible prime factors are
all among those you found for exercise 30. Testing
each in turn shows that 9,269 is not prime because
9,269 = 13 .713.

b. /103 - 95.4, and so the possible prime factors are all
among those you found for exercise 30. Testing each in
turn shows that none divides 9,103. Therefore, 9,103 is
prime.

32. Hint: Is it possible for all three of n -4, n -6, and n- 8
to be prime?

Section 3.7
1. The value of X2 given by a calculator is an approximation.

Calculators can give exact values only for numbers that can
be represented using at most the number of decimal digits in
the calculator display. In particular, every number in a cal-
culator display is rational, but even many rational numbers
cannot be represented exactly. For instance, consider the
number formed by writing a decimal point and following it
with the first I million digits of A's. By the discussion in
Section 3.2, this number is rational, but you could not infer
this from the calculator display.

3. Proof by contradiction: Suppose not. That is, suppose
6 -7/2 is rational. [We must prove a contradiction.] By

definition of rational, there exist integers a and b 7# 0 with

a
6 -7,2 2-

b

Then 2- = 7 (

and so X =a 6b
-7b

5.

7.

by subtracting 6 from both
6) sides and dividing both sides

by -7

by the rules of algebra.

But a -6b and -7b are both integers (since a and b are in-
tegers and products and differences of integers are integers),
and -7b 7& 0 by the zero product property. Hence X2 is a
ratio of the two integers a -6b and -7b with -7b A 0, so
x/' is a rational number (by definition of rational). This con-
tradicts the fact that 2/> is irrational, and so the supposition
is false and 6- 7v is irrational.

This is false. a/4i = 2 = 2/1, which is rational.

Counterexample: Let x = X and let y =-/ 2. Then
x and y are irrational, but x + y = 0 = 0/1, which is
rational.

9. True.
Formal version of the statement: V real numbers r, if r is
irrational, then r is irrational.
Proof by contraposition: Suppose r is any real number such
that +/E is rational. [We must show that r is rational.] By
definition of rational, A= {- for some integers a and b
with b # 0. Then r = (,f)2 

- ()2 = . But both 02

and b2 are integers because they are products of integers,
and b2 # 0 by the zero product property. Thus r is rational
[as was to be shown].
(The statement may also be proved by contradiction.)

13. Hint: Can you think of any "nice" integers x and y that are
greater than 1 and have the property that X2 = y3?

16. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n = 3q, + ri = 3q2 + r2,

where qi, q2, ri, and r2 are integers, 0 < ri < 3, 0 <
r2 < 3, and r, 7& r2. By interchanging the labels for ri
and r2 if necessary, we may assume that r2 > rl. Then
3(qi -q2 ) = r2 - ri > 0. andbecause both r1 andr, are
less than 3, either r- ri = I or r2- r = 2. So either



3(q -q2) = 1 or 3 (q -q2) = 2. The first case implies
that 3 11, and hence, by Example 3.3.3, that 3 < 1, and
the second case implies that 3 1 2, and hence, by Exam-
ple 3.3.3, that 3 < 2. These results contradict the fact
that 3 is greater than both I and 2. Thus in either case
we have reached a contradiction, which shows that the
supposition is false and the given statement is true.

b. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is divisible by 3 and n is
not divisible by 3. [We must deduce a contradiction.] By
definition of divisible, n2 = 3q for some integerq, and by
the quotient-remainder theorem and part (a), n = 3k + I
or n = 3k + 2 for some integer k.

Case I (n = 3k + 1) for some integer k: In this
case n2 

= (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) +
1. Let s = 3k2 + 2k. Then n2 = 3s + 1, and s is an
integer because it is a sum of products of integers. It
follows that n2 

= 
3q = 3s + 1 for some integers q and

s, which contradicts the result of part (a).

Case 2 (n = 3k + 2) for some integer k: In this
case n2 = (3k + 2) 2 = 9k2 + 12k + 4 = 3(3k 2 + 6k +
1)+1. Lett=3k2 +6k+1. Thenn 2=3t+1, and

t is an integer because it is a sum of products of integers.
It follows that n2 

= 
3q = 3t + I for some integers q and

t, which contradicts the result of part (a).

Thus, in either case, a contradiction is reached, which
shows that the supposition is false and the given state-
ment is true.

c. Proof by contradiction: Suppose not. That is, suppose
a3 is rational. By definition of rational, X/ = E for

some integers a and b with b 0 0. Without loss of gen-
erality, assume that a and b have no common factor. (If
not, divide both a and b by their greatest common fac-
tor to obtain integers a' and b' with the property that a'
and b' have no common factor and X = a' . Then rede-
fine a = a' and b = b'.) Squaring both sides of 1 3

gives 3 = 2,and multiplying both sides by b2 gives
3b2 = a2 (*). Thus a2 is divisible by 3, and so, by part (b),
a is also divisible by 3. By definition of divisibility, then,
a = 3k for some integer k, and so a2 = 9k2 (**). Substi-
tuting equation (**) into equation (*) gives 3b2 = 9k2,
and dividing both sides by 3 yields b2 = 3k2. Hence b2

is divisible by 3, and so, by part (b), b is also divisible by
3. Consequently, both a and b are divisible by 3, which
contradicts the assumption that a and b have no com-
mon factor. Thus the supposition is false, and so X3 is
irrational.

18. Hint: The proof is a generalization of the one given in the
solution for exercise 16(a).

19. Hints: (1) The parts of the proof are similar to those in
exercise 16(b) and 16(c). (2) Use the result of exercise 18.

20. Hint: This statement is true. If a2 - 3 = 9b, then a2 =
9b + 3 = 3(3b + 1), and so a2 is divisible by 3. Hence,
by exercise 16(a), a is divisible by 3. Thus, a2 = (3c)2 for
some integer c.

3.7 Solutions and Hints to Selected Exercises A-27

23. Hint: By the result of exercise 22, 6 is irrational.
25. Hint: 2 3 5.7+1 = 3 5 7 + 2 and 2 357+1 7+

26. Hint: You can deduce that p = 3.

27. a. Hint: For example, N4 = 2 3 * 5 *7+1 = 211.

29. Hint: Every odd integer can be written as 4k + I or as
4k + 3 for some integer k. (Why?) If P1 P2 .. p + I =
4k + 1, then 4 PI P2 . . p Is this possible?

30. Hint: By Theorem 3.3.2 (divisibility by a prime) there is a
prime number p such that p I (n! - 1). Show that the sup-
position that p < n leads to a contradiction. It will then
follow that n < p < n!.

31. a. Hint: Prove the contrapositive: If for some integer
n > 2 that is not a power of 2, x, + y- = zn has a
positive integer solution, then for some prime num-
ber p > 2, xP + yP = zP has a positive integer solution.
Note that if n = kp, then x" = xkp = (xk)p.

32. Existence proof: When n = 2, then n2 - I = 3, which is
prime. Hence there exists a prime number of the form
n2 

_ 1, where n is an integer and n > 2.

Uniqueness proof (by contradiction): Suppose to the con-
trary that m is another integer satisfying the given condi-
tions. That is, m > 2 and m2 

- 1 is prime. [We must derive
a contradiction.] Factor m2  1 to obtain m2 

_1 = (m -

1)(m + 1). But m > 2, and so m-1 > I and m + I > 1.
Hence m2 

_1 is not prime, which is a contradiction. [This
contradiction shows that the supposition is false, and so
there is no other integer m > 2 such that n2 

- 1 is prime.]

Uniqueness proof (direct): Suppose m is any integer such
that m > 2 and m2 

- 1 is prime. [We must show that
m 2.] By factoring, m2 

- 1 = (m 1)(m + 1). Since
m2 - is prime, either m-1 = I or m + I = 1. But
m + I > 2 + I = 3. Hence, by elimination, m-I = 1,
and so m = 2.

34. Proof (by contradiction): Suppose not. That is, suppose
there are two distinct real numbers a, and a2 such that for
all real numbers r,

(1) a, +r =r and (2) a 2 +r =r

Then

al + a 2  a2  by (1) with r = a2

and

a 2 +a 1 a, by(2)withr=a,.

It follows that

a2 = a, + a2 = a2 + a, = a,

which implies that a2 = a,. But this contradicts the sup-
position that a, and a2 are distinct. [Thus the supposition
is false and there is at most one real number a such that
a + r - r for all real numbers r.]
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Proof (direct): Suppose a, and a2 are real numbers such
that for all real numbers r,

(1) a,+r=r and (2) a 2 +r=r

Then

aI + a2 = a2 by (1) with r = a2

and

a2+a, =a, by(2)withr =a.

It follows that

a 2 = a +a 2 =a 2 +a =at.

Hence a 2 = aI. [Thus there is at most one real number a
such that a + r = r for all real numbers r.]

Section 3.8
1. z = 0
6.

3. a. z = 18
Iteration Number

0 1 2

a 26

q 0 1 2 3

r 26 19 12 5

a. A 69 19 9

q 2

d I

nI

p 4

4. a = '12

3

9. gcd(27, 72) = 9 10. gcd(5, 9) = I

13. Divide the larger number, 1,188, by the smaller, 385,
to obtain a quotient of 3 and a remainder of 33. Next
divide 385 by 33 to obtain a quotient of 11 and a re-
mainder of 22. Then divide 33 by 22 to obtain a quo-
tient of 1 and a remainder of 11. Finally, divide 22
by 11 to obtain a quotient of 2 and a remainder of 0.
Thus, by Lemma 3.8.1, gcd(1188, 385) = gcd(385, 33) =
gcd(33, 22) = gcd(22, 11) = gcd(11, 0), and by Lemma
3.8.2, gcd(11, 0) = 11. So gcd(1188, 385) = 11.

14. Divide the larger number, 1,177, by the smaller, 509, to
obtain a quotient of 2 and a remainder of 159. Next divide
509 by 159 to obtain a quotient of 3 and a remainder of
32. Next divide 159 by 32 to obtain a quotient of 4 and a
remainder of 31. Then divide 32 by 31 to obtain a quotient
of 1 and a remainder of 1. Finally, divide 31 by I to obtain
a quotient of 31 and a remainder of 0. Thus, by Lemma 3.8.1,

gcd(1177, 509) = gcd(509, 159) = gcd(159, 32) =

gcd(32, 3 1) = gcd(3 1, 1) = gcd(l, 0), and by Lemma 3.8.2,
gcd(l,0) = 1. Sogcd(1177,509) = 1.

17.

A 1,001

B 871

r 130 91 39 13 0

b 871 130 91 39 13 0

a 1,001 871 130 91 39 13

gcd 13

19. Hint: Divide the proof into two parts. In part 1 suppose a
and b are any positive integers such that a I b, and derive the
conclusion that gcd(a, b) = a. To do this, note that because
it is also the case that a I a, a is a common divisor of a and
b. Thus, by definition of greatest common divisor, a is less
than or equal to the greatest common divisor of a and b.
In symbols, a < gcd(a, b). Then show that a > gcd(a, b)
by using the fact (from Example 3.3.3) that any integer that
divides the positive integer a is less than or equal to a. In
part 2 of the proof, suppose a and b are any positive integers
such that gcd(a, b) = a, and deduce that a I b.

22. a. Hint 1: If a = dq -r, then -a =-dq + r =-dq-
d+d -r =d(-q-l)+(d -r).

Hint 2: If O < r < d, then 0 > -r > -d. Add d to all
parts of this inequality and see what results.

23. Proof: Suppose a, d, q, and r are integers such that a =
dq + r andO < r < d. [Wemustshowthatq = [Mj andr =
a - Ld d.] Solving a = dq + r for r gives r a a-dq,
and substituting into 0 < r < d gives 0 < a- dq < d. Add
dq to both sides to obtain dq < a < d + dq = d(q + 1).
Then divide through by d to obtain q < d < q + 1. There-
fore, by definition of floor, [d4 = q. Finally, substitution
into a = dq + r gives a = d L [j + r, and subtracting d Laj

from both sides yields r = a- d [ d [as was to be shown].

24. b. Iteration Number
0 1 2 3 4

a 630 294 294 252 210

b 336 336 42 42 42

gcd I I I

Iteration Number
5 6 7 8 9

a 168 126 84 42 0

b 42 42 42 42 42

ged 42

8.
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25. a. lcm(12, 18) = 36

26. Partial proof: Let a and b be positive integers, and sup-
pose d = gcd(a, b) = 1cm (a, b). By definition of great-
est common divisor and least common multiple, d > 0,
d j a, d l b, a I d, and b I d. Thus, in particular, a = dm
and d = an for some integers m and n. By substitution,
a = dm = (an)m = anm. Dividing both sides by a gives
I = nm. But the only divisors of I are I and -I (Example
3.3.4), and so m = n = ± 1. Since both a and d are positive,
m n = 1, and hence a = d. Similar reasoning shows that
b d also, and so a = b.

28. Hint: Divide the proof into two parts. In part 1, suppose a
and b are any positive integers, and deduce that

gcd(a, b) . lcm(a, b) < ab.

Derive this result by showing that lcm(a, b) < hb . Toged(a b)

do this, show that ah is a multiple of both a and b.gcd(.,b)

For instance, to see that o" is a multiple of b, notegcd (0 mlipeofb nt
that because gcd(a, b) I a, a = gcd(a, b) . k for some inte-
ger k, and thus ab = gcd(a, b) . kb. Divide both sides by
gcd(a, b) to obtain "" = kb. But since k is an integer,gcd(a 6)-

this equation implies that 'b is a multiple of b. The

argument that nb is a multiple of a is almost identical.gcd (a. b)
In part 2 of the proof, use the definition of least common
multiple to show that a b I a and ab I b and thus that

1cm(,,b) Icm(.,b)

a ( I ,)Igcd(a, b). Conclude that ab < gcd(a, b) and
hence that ab < gcd(a, b) Icm(a, b).

Section 4.1
i 2 i 44
il i T2 ,T3 , 4

gi = log2 1 =

92 = 0log2 2j =
g4 - Llog2 4 -
96 = log2 6] -
98 = [log2 8j =

g - [log2 101 =
912 = log2 12j -
914 = Llog2 14j =

3. 1,- , 1,- 1 5. 0,0,2,2-'9' 27

0
1, g3 = Llog2 3j = 1
2, g5 -= Log2 5j = 2
2, g7= L1og2 7j = 2
3, gs = [og2 9J = 3
=3, gil = [log2 11 J= 3
-3, gi3 = Lg02 13j = 3
= 3, g95 = log2 15j = 3

When n is an integral power of 2, g, is the exponent of that
power. For instance, 8 = 23 and g8 = 3. More generally,
if n = 2k, where k is an integer, then gn = k. All terms of
the sequence from g, up to g., where m = 2 k-- is the next
integral power of 2, have the same value as g_, namely k.
For instance, all terms of the sequence from g8 through g95
have the value 3.

Exercises 10-16 have more than one correct answer.

10. an = (- I)', where n is an integer and n > 1.

11. a, = (n ) 1)', where n is an integer and n > 1.
n

12. an = (n + 1)2'where n is an integer and n > 1

n
14. a, - , where n is an integer and n > 1

18. a. 2+3+(-2)+1+0+(-I)+(-2) = I
b. ao = 2
C. a 2 +a 4 +a 6 =-2+0+ (-2) -4
d. 2 .3 (-2) 1 0. (-1) . (-2) =0

19. 2+3+4+5+6 =20 20.22 32 42 576

23. 1(1 + 1) = 2

27. (- )+ (W-4+ (X-,+ (X-

+ O A+ 1-}+(;O- +(

+ (; - 10) + (10 - 111) = I - III 11
29. (-2)' + (-2)' + (-2)' + - .+ (-2)'

= - +22 - 23 + . . . + (_(1)"2n

Exercises 32-41 have more than one correct answer.

7

32. L(-1)k+ k2 or
k=l

6 (-l)Jj

(j + 1)(j + 2)

36. (-I)iri
i~o

"71
40. (n -i)

i=O

6
- lIk(k + 1)2

kor

7 (-1)'+'(k -
o 3 k(k+l)
k=3

38. Y k
ki1

42. 4
r2*i

45n(n-)(n 2) 3 21
* -1)n 2)3 .

46. (n-I)(n 2) 3 2 1 1
(n + I)n(n -)(n - 2) 2. 1 n(n + 1)

48. [(n + 1)n(nnl)(n 2) g = + 1)2
(n(n -l)(n -2)..3 .2. 1)2

49.
n(n-1)(n -2) ... (n-k+l)(n-')(n 1 1) 2I1

(,', 4)(n ?. 1) .2.1

=n(n-l)(n -2) ...(n -k+ 1)

51. a. Proof: Let n be an integer such that n > 2. By definition
of factorial,

2 I if n = 2
n!= 3 2 1 if n = 3

n (n-I) .. 2 I ifn > 3.

In each case, n! has a factor of 2, and so n! = 2k for some
integer k. Then

n! + 2 = 2k + 2 by substitution

= 2(k + 1) by factoring out the 2.

Since k + I is an integer, n! + 2 is divisible by 2 [as was
to be shown].

c. Hint: Consider the sequence m! + 2, m! + 3, m! + 4,
. .. I m ! + m .

1.
8.
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52. When k = 0, then i = 1. When k = 5, then i = 6. Since
i =k+ 1,thenk = i -1. Thus,

k(ka-1) = (io-)((i-1)-1) = (i-)(i-2),

and so
5

L k(k
k= (

6

I) = L(i - )(i - 2)
i=1

54. When i = 1, then J = 0. When i = n + 1, then j = n.
Since j = i-, then i = j + 1. Thus

j2

i n (j+l) n jn+n

(Note that n is constant as far as the sum is concerned.)
n+ ) (i - I ) En j

SoZK =l i in j= jn +n

55. When i = 3, then j = 2. When i = n then j = n-1.
Since = i -, then i = j + 1. Thus,

n

E i + n
_E .j +I

I i=2 ( + 1) +n-

j + I

E-

58. [3(2k- 3) + (4 -5k)]
k=i

= [(6k -9) + (4 -5k)]
k=l

n

-(k -5)
k=i

a. m -,sum+a[i + I]
0 remainder = r[6] = 1

2

2
2

remainder = r[5J = 0
remainder = r[4] = I
remainder = r[3] = I
remainder = r[2] = 0
remainder = r[1] = I
remainder = r[O] = 0

Hence 90 0 = 10110102.

a 23

i 0 1 2 3 4 5

g 23 11 5 2 1 0

r[0I 1

r[1] I

r[3] - -- 0
r [41 __ _ _ _

0
16

16 17
16 287

remainder I = r[2] = 116
remainder I = r[1] = 116

remainder 15 = r[0] = F16

Hence 28710 = ll Fi6.

(i _ 1)2 ((j + 1) - I )I

62.

63.

2
2

66.

70.

Section 4.2
1. Proof: Let P(n) be the property "n cents can be obtained

by using 3-cent and 8-cent coins."

Show that the property is true for n = 15:

Fifteen cents can be obtained by using five 3-cent coins.

Show thatfor all integers k > 15, if the property is truefor
n = k, then it is true for n = k + 1:
Suppose k cents (where k > 15) can be obtained using 3-
cent and 8-cent coins. [Inductive hypothesis] We must show
that k + I cents can be obtained using 3-cent and 8-cent
coins. If the k cents includes an 8-cent coin, replace it by
three 3-cent coins to obtain a total of k + I cents. If the k
cents consists of 3-cent coins exclusively, then there must
be least five 3-cent coins (since the total amount is at least
15 cents). In this case, replace five of the 3-cent coins by
two 8-cent coins to obtain a total of k + I cents. Thus, in
either case, k + I cents can be obtained using 3-cent and
8-cent coins. [This is what we needed to show.]

[Since we have proved the basis step and the inductive step,
we conclude that the given statement is true for all integers
n > 15.]

3. a. P(l) is"1 2 = I (I+1)6(2 1+1). P(l)istruebecausel 2=1
and 1(1+1 )(2+1) 23 1= I also.

b. P(k) is 12 + 22 + + k2 
= k(k+)(2k+i)

c. P(k+l)is"12 +2 2 + ++(k+ 1)2
= (k+l)((k+1)+1)(2 (k+1)+1) A

d. Must show: If for some integer k > 1,
12+ 22 + .. . + k2 

= k(k+-l)2k+1), then

12 + 22 + * * + (k + 1)2 = (k+i)[(k+i)+1][(2(k+1)+1)]6

5.a. 12 b.k2

c. I +3+5+ +[2(k+ 1)-1]
d. (k+ 1)2

e. the odd integer just before 2k + I is 2k -

f. inductive hypothesis

6. Proof: For the given statement, the property is the equation

2+4+6+ +2n =n2 +n. theproperty

Show that the property is true for n = 1:

To prove the property for n = 1, we must show that when I
is substituted into the equation in place of n, the left-hand
side equals the right-hand side. But when I is substituted
for n, the left-hand side is the sum of all the even integers
from 2 to 2. 1, which is just 2, and the right-hand side is
12 + 1, which also equals 2. Thus the property is true for

n = 1.

Show that for all integers k > 1, if the property is true for
n = k then it is true for n = k + 1:

Let k be any integer with k > 1, and suppose the property
is true for n = k. That is, suppose

2 + 4 + 6 + ... + 2k = k2 + k. inductive hypothesis

We must show that the property is true for n = k + 1. That
is, we must show that

2+4+6+... +2(k+1)=(k+1)
2

+(k+1).

1



Because (k + 1)2 + (k + 1) = k2 + 2k + I + k + I =
k2 + 3k + 2, this is equivalent to showing that

2+4+6+ ... +2(k+1)=k2 +3k+2. (*)

But the left-hand side of equation (*) is

2+4+6+... +2(k+ 1)

= 2+4+6+ +2k+2(k+1)
by making the next-to-last
term explicit

= (k2 + k) + 2(k + 1) by substitution from the
inductive hypothesis

= k 2 + 3k + 2, by algebra

and this is the right-hand side of equation (*). Hence the
property is true for n = k + 1.

[Since both the basis step and the inductive step have been

proved, the property is true/for all integers n > 0.]

8. Proof For the given statement, the property is the equation

I + 2 + 22 + + 2 n= 2`± - 1. the property

Show that the property is true for n = 0:
When n = 0, the left-hand side of the equation is 1, and
the right-hand side is 20+-I = 2 -I = I also. Thus the
property is true for n = 0.

Show that for all integers k > 0, if the property is true for
n = k then it is true for n = k + 1:

Let k be any integer with k > 0, and suppose the property
is true for n = k. That is, suppose

I + 2 + 22 + . . + 2k = 2k+ _1. inductive hypothesis

We must show that the property is true for n k + 1. That
is, we must show that

I + 2 + 22 + i+ 2k+= 2 (k+l)+l 1-

or, equivalently,

I + 2 + 22 + . + 2k+I = 2k+2 1.

But the left-hand side of equation (*) is

4.2 Solutions and Hints to Selected Exercises A-31

10. Proof: For the given statement, the property is the equation

2 + 22 + 32 + -+ n2 
= n(n + 1)(2n + 1) theproperty

6

Show that the property is true for n = 1:

When n = 1, the left-hand side of the equation is 12 = 1,
and the right-hand side is l(1+1)(2 l - 13 also. Thus6 6 ls.Tu

the property is true for n = 1.

Show that for all integers k > 1, if the property is true for
n = k then it is truefor n = k + 1:
Let k be any integer with k > 1, and suppose the property
is true for n = k. That is, suppose

12+ 2+3 + +k = k(k+ 1)(2k+ 1)
-6

inductive hypothesis

We must show that the property is true for n = k + I. That
is, we must show that

+ 22 + 32 + .+ (k + 1)2

(k + l)((k + 1) + 1)(2(k + 1) + 1)

6

or, equivalently,

(k + I)(k + 2)(2k + 3) M

6

But the left-hand side of equation (*) is

1 2 + 2 2 + 32 + . . . + (k+ I ))2

= + 2 2+3 2+ + 2+ (k +1)2
b

k(k + 1)(2k + 1) b)2 b
+ (k + 1)

6t

y making the next-to-
ist term explicit

y substitution from the
iductive hypothesis

k(k + 1)(2k + 1) 6(k + 1)2 6

6 6 because 6(*)

k(k + 1)(2k + 1) + 6(k + 1)2

6
by adding fractions

by making the next-to-last
term explicit

= (2k+l -1) + 2 k+1 by substitution from the
inductive hypothesis

= 2 2 k+ _I by combining like terms

= 2k+2 - I, by the laws of exponents

and this is the right-hand side of equation (*). Hence the

property is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, the property is true for all integers n > 0.]

(k + I)[k(2k + 1) + 6(k + 1)] byfactoringout(k+l)

6

(k + I)(2k 2 + 7k + 6)

6

(k+ I)(k+2)(2k+3)

6

by multiplying out and
combining like terms

because (k + 2)(2k + 3) = 2k 2 + 7k + 6

and this is the right-hand side of equation (*). Hence the
property is true for n = k + I.

[Since both the basis step and the inductive step have been
proved, the property is true for all integers n > 1.]

1X1



A-32 Appendix B Solutions and Hints to Selected Exercises

13. Proof: For the given statement, the property is the equation

-n ]n(n -)(n + 1)
Ti(i + ) = . the property

Show that the property is true for n = 2:

When n = 2, the left-hand side of the equation is
>1= i(i + 1) 1 I (I + 1) = 2, and the right-hand side is

2(231)2+D - 63 = 2also. Thusthepropertyistrueforn = 2.

Show thatfor all integers k > 2, if the property is true for
n = k then it is truefor n = k + 1:

Let k be any integer with k > 2, and suppose the property
is true for n = k. That is, suppose

klI

Ei(i + 1)
1=I

k(k -)(k + I)

3
inductive hypothesis

We must show that the property is true for n = k + 1. That
is, we must show that

(k, -I (k + 1)((k + 1)-1)((k + I) + 1)
T i(i+t) 3

that Ei+ (i!) = (k + 2)! -1. Note that [(k + I)!-1]I +
(k + 1)[(k + I)!] = (k + 1)![1 + (k + 1)]-1.

18. Hints: sin X + Cos 
2 x = 1, cos(2x) = cos2 X- sin X =

I-2 sin x, sin(a + b) = sin a cos b + cos a sin b,
sin(2x) = 2 sin x cos x.

19. 4+8+ 12+ 16+ ... +200=4(1 +2+3+ .. +50)
=4(52-51) =5100

21. 3+4+5+6+. + 1000= (1 +2+3+4+ +
1000) - (I + 2) = (1002'100') - 3 = 500,497

23. (k )((k-1)+1) = k(k 1)
2 . 2 2

226 - I
24. a. 226 I = 67,108,863

b. 2+22+23+...+226

=2(l+2+22+...+225)

= 2 (67,108,863) by part (a)

= 134,217,726

27 (I ) 2I I
27. 2-2+

-1
2

( 1- 1) (-2)

2

or, equivalently,

k (k±+)k(k+2)
Y' (i +1) = 3

i=l

But the left-hand side of equation (*) is

k

Li (i + )
il

k-I

= Zi(i + l)+k(k+ 1)
i=1

- k(k-)(k + ) + k(k + I)
3

k(k-I)(k + 1) 3k(k + 1)
= ,, + .

3 j

k(k- 1)(k + I) + 3k(k + 1)

3

k(k + 1)[(k -) + 3]

3

k(k + 1)(k + 2)

3

by writing the last
term separately

by substitution from
inductive hypothesis

because 3 = I

by adding the fraction

by factoring out k(k -

2 1
+ 2-2--

- 2~±l 2

29. Hint: a+ (a +d) +(a+ 2d) +... +(a+ nd) =(n + 1)

a +d ' n(n )

32. In the inductive step, both the inductive hypothesis and what
is to be shown are wrong. The inductive hypothesis should
be

Suppose that for some integer k > 1,

12+22+. +k2 6k(k+ 1)(2k+ 1

And what is to be shown should be

the 2+22+ + (k+1)2

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

ns

+ 1)

by algebra

and this is the right-hand side of equation (*). Hence the
property is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, the property is true for all integers n > 0.]

15. Hint: To prove the basis step, show that L ii!) -

(I + 1)! -1. To prove the inductive step, suppose that
YZk=1 i(i!) = (k + 1)! -I for some integerk > I and show

6

34. Hint: Form the sum n2 + (n + 1)
2 

+(n + 2) 2 + +

(n + (p - 1))2, and show that it equals

pn 2+2n(1+2+3+.. +(p -1))

+ (I + 4 + 9 + 16 + + (p - 1)2).

Section 4.3
1. Generalformula: fln=2 (1- ) - 'for all integers n > 2.

Proof (by mathematical induction): The property is the
equation

- n1
n1 I

i =2(



4.3 Solutions and Hints to Selected Exercises A-33

Show that the property is true for n = 2:

The property holds because for n = 2, the left-hand side
of the equation is H.2 (1 1) = 1-2 which equals
the right-hand side.

Show that for all integers k > 2, if the property is true for
n = k, then it is true for n=k + 1:

Suppose Hl 2(I - )= for some integer k > 2.
[Inductive hypothesis] We must show that 2 (1 ) =
T+1 (*) But by the laws of algebra and substitution from the
inductive hypothesis, the left-hand side of equation (*) is

k

i=2 ( t ) ( k + I)
(~)(1i1(1) .((k ) - I)

k I A kI t ~+ I)I

- k Cwhich is the right-hand side of equation (*)

[as was to be shown].

3. Generalformula: (13 + -5 +' + n - for
all integers n > 1.

Proof (by mathematical induction): The property is the
equation

I 1 1 n
-+ +..+=

I 3 3 5 (2n -1)(2n + 1) 2n + I

Show that the property is true for n = 1:

When n = 1, the left-hand side of the equation equals 11 3

and the right-hand side equals 2 '+I . But both of these equal
1 so the property holds for n = I.

Show that for any integer k > 1, if the property holds for
n = k then it holdsfor n = k + 1:
Suppose that for some integer k > I,

I I I k

I 3 5 (2k -1)(2k+ 1) 2k+ I
inductive hypothesis

We must show that

-+-+ +..I
13 3 5 (2(k + 1) - 1)(2(k + 1) + 1)

k+ I
2(k + I) + I

or, equivalently,

I I I k+ I± - +.(+ )
1 3 3 5 (2k + 1)(2k + 3) 2k + 3

But the left-hand side of equation (*) is

1 1 1
-_ + -+..+

1.3 3.5 (2k+ 1)(2k +3)

1 1
= + + +.±

I 3 3 5 (2k -1)(2k+ 1)

± (2k + 1)(2k + 3)

k
-2k + 1 (2k 1)( + + 3) by inductive hypothesis

k(2k+3) + I
(2k + 1)(2k + 3) (2k + 1)(2k + 3)

2k
2 

+ 3k + 1

(2k + 1)(2k + 3)

(2k + 1)(k + 1)

(2k + 1)(2k + 3)

k + I

- 2k + 3, by algebra

and this is the right-hand side of equation (*) [as was to be
shown].

4. Hint 1: The general formula is

I- 4+9 -16+ ... +(_ -)-n 2

=(-I)n-I (I+2+3±+ +n) inexpandedform

in summation
notation.

Hint 2: In the proof, use the fact that

I + 2 + 3 + + nn(n + = )

6. a. P(O) is "5 - I is divisible by 4." P(O) is true because
51 - I = 0, which is divisible by 4.

b. P(k) is "5k - I is divisible by 4."
c. P(k + 1) is "5+k- - I is divisible by 4."
d. Must show: If for some integer k > 0, 5k - I is divisible

by 4, then 5kk+1 - I is divisible by 4.

8. Proof (by mathematical induction): For the given statement,
the property is the sentence "5' - I is divisible by 4."

Show that the property is true for n = 0:
When n - 0, the property is the sentence "5 -I is divisi-
ble by 4." But 50 - I = I 1- = 0, and 0 is divisible by 4
because 0 = 4 0. Thus the property is true for n = 0.

Show that for all integers n > 0, if the property is true for
n = k then it is true for n = k + 1:

Let k be an integer with k > 0 and suppose the property
is true for n = k. That is, suppose 5k - I is divisible by 4.

I

I

T r1i2 (_I)n-Ij-1 = E
i=1 (�'l i)
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[This is the inductive hypothesis.] We must show that the
property is true for n = k + 1. That is, we must show that
5k+1 - I is divisible by 4. Now

5k+ - I 5'. 5 - 1
5k (4 + 1) - I 5k 4 + (5 k- 1). ()

By the inductive hypothesis 5k I is divisible by 4, and so

5k - I = 4r for some integer r. By substitution into equa-
tion (*),

5k+1 - I = 5k . 4 + 4r = 4(5k + r).

But 5k + r is an integer because k and r are integers. Hence,
by definition of divisibility, 5k+1 - I is divisible by 4 [as was

to be shown].

An alternative proof of the inductive step goes as follows:
Suppose that for some integer k > o, 5k - I is divisible
by 4. Then 5 k - I = 4r for some integer r, and hence
5k-= 4r + 1.
It follows that 5 k+1 = 5k 5 = (4r + 1) 5 = 20r + 5.
Substracting I from both sides gives that 5k+1 I =

20r + 4 = 4(5r + 1). But Sr + I is an integer, and so,
by definition of divisibility, 5k+1 - 1 is divisible by 4.

11. Proof (bymathematical induction): Forthegiven statement,
the property is the sentence "32, - I is divisible by 8."

Show that the property is true for n = 0:

When n = 0, the property is the sentence "32 0 - I is divis-
ible by 8." But 32 1 - I = I-I = 0, and 0 is divisible by
8 because 0 = 8 0. Thus the property is true for n = 0.

Show that for all integers n > 0, if the property is true for
n = k then it is true for n = k + 1:

Let k be an integer with k > 0, and suppose the property is
true for n = k. That is, suppose 32k - I is divisible by 8.
[This is the inductive hypothesis.] We must show that the
property is true for n = k + 1. That is, we must show that
32(k+1) _ I is divisible by 8, or equivalently, 32k+2 - I is

divisible by 8. Now

3 2k+2 - I = 32k . 3 2 - I =

= 3 2k .(8 + 1)

3 2k 9 - I

- I = 3 2k 8 + (3 2k - 1) . (*)

By the inductive hypothesis 32k I is divisible by 8, and
so 32k I = 8r for some integer r. By substitution into
equation (*),

3 2k+2 - I = 3 2k . 8 + 8r = 8 (3 2k + r).

But 32k + r is an integer because k and r are integers.
Hence, by definition of divisibility, 32k+2 I is divisible by
8 [as was to be shown].

13. Hint: xk+1 - yk+l = xk+l -x . yk + x .yk yk+
1

= -x (xk - yk) + yk .(x y)

14. Hintl: (k + 1)3- (k + 1) = k3 + 3k2 + 3k + -k -I

= (k3 -k) + 3k2 + 3k

= (k3 -k) + 3k(k + 1)

Hint 2: k(k + 1) is a product of two consecutive integers.
By Theorem 3.4.3, one of these must be even.

16. Proof (by mathematical induction): For the given statement,
the property is the inequality 2' < (n + 1)!.

Show that the property is true for n = 2:

When n = 2, the property says that 22 < (2 + 1)!. The
left-hand side is 22 = 4 and the right-hand side is 3! = 6.
So because 4 < 6 the property is true for n = 2.

Show thatfor all integers n > 2, if the property is truefor
n = k then it is true for n = k + 1:

Let k be an integer with k > 2, and suppose the property
is true for n = k. That is, suppose 2k < (k + 1)!. [This
is the inductive hypothesis.] We must show that the prop-
erty is true for n = k + 1. That is, we must show that
2k+1 < ((k + 1) + 1), or, equivalently, 2 k+1 < (k + 2)!.
By the laws of exponents and the inductive hypothesis,

2 k+' = 2 2 < 2(k + 1)!.

Sincek > 2,then2 < k +2, and so

2(k+ 1)! < (k+2)(k+ 1)! = (k+2)!.

(*)

(**)

Combining inequalities (*) and (**) gives

2'+ < (k +2)!

[as was to be shown].

19. Proof (by mathematical induction): For the given statement,
the property is the inequality n2 < 2'.

Show that the property is true for n = 5:

When n = 5, the property says that 52 < 25. But 52 = 25
and 25 = 32, and 25 < 32. Hence the property is true for
n = 5.

Show that for any integer k > 5, if the property is true for
n = k then it is true for n = k + 1:
Let k be an integer with k > 5, and suppose the property
is true for k. That is, suppose k2 

< 2 k. [This is the induc-

tive hypothesis.] We must show that the property is true for
n = k + 1. Thatis,wemustshowthat(k + 1)2 < 2k±+. But

(k + 1)2 = k2 +2k+ I < 2 k +2k + I by inductive
hypothesis

Also, by Proposition 4.3.2,

2k + 1 < 2 k Prop. 4.3.2 applies since k > 5 > 3.

Putting these inequalities together gives

(k + 1)2 < 2k + 2k + 1 < 2k + 2k = 2k+

[as was to be shown].

24. Proof (by mathematical induction): Forthe given statement,
the property is the equation a, = 3 -7-.

Show that the property is true for n = 1:
When n = 1, the left-hand side of the equation is aI, which
equals 3 by definition of the sequence. The right-hand side
is 3 .71 1 = 3 also. Thus the property is true for n = 1.



Show that for all integers k ' 1, if the property is true for
n = k then it is true for n = k + 1:

Let k be any integer with k > 1, and suppose the property
is true for n = k. That is, suppose ak = 3 . 7k-1, [This
is the inductive hypothesis.] We must show that the prop-
erty is true for n = k + 1. That is, we must show that
ak+1 = 3 . 7(k+1)-1, or, equivalently, ak+1 = 3 . 7k (*) But
the left-hand side of equation (*) is

ak+I = 
7
ak by definition of the sequ

= 7(37 7k 1) by inductive hypothesis

=3 7 k bv the laws of exnonents

uence a,, a2, a3, ...

and this is the right-hand side of equation (*) [as was to be
shown].

30. The inductive step fails for going from n = I to n = 2,
because when k = 1,

A = la1 , a 2 l and B = {aj },

and no set C can be defined to have the properties claimed
for the C in the proof. The reason is that if C = {a, }, then B
and C share a common element; but one element of A, a2,
is not in either B or C. On the other hand, if C = {a2}, then
B and C have no common element.

Since the inductive step fails for going from n = I to
n = 2, the truth of the following statement is never proved:
"All the numbers in a set of two numbers are equal to each
other." This breaks the sequence of inductive steps, and so
none of the statements for n > 2 is proved true either.

Here is an explanation for what happens in terms of
the domino analogy. The first domino is tipped backward
(the basis step is proved). Also, if any domino from the
second onward tips backward, then it tips the one behind it
backward (the inductive step works for n > 2). However,
when the first domino is tipped backward, it does not tip the
second one backward. So only the first domino falls down;
the rest remain standing.

31. The basis step is not proved, and in fact it is false because
for n = 1, 3n - 2 = 31-2 = 1, which is odd.

34. Hint: Use proof by contradiction. If the statement is
false, then there exists some ordering of the integers from
I to 30, say xI, x 2 , . . ., x 3 0 , such that x1 + X2 + X3 <

45, X2 + X3 + X4 < 45, . . ., and X30 + xI + x 2 < 45. Eval-
uate the sum of all these inequalities using the fact that

3-i = i= i and Theorem 4.2.2.

Section 4.4
1. The property "an is odd" holds for all integers n > 1.

Proof (by strong mathematical induction):

Show that the property is true for n = 1 and n = 2:

Observe that a, = 1 and a2 = 3 and both I and 3 are odd.
Thus the property is true for n = I and n = 2.

4.4 Solutions and Hints to Selected Exercises A-35

Show that for any integer k > 2, if the property is true for
all integers i with 1 < i < k, then it is true for k:
Let k > 2 be an integer, and suppose a, is odd for all inte-
gersi with 1 < i < k. [This is the inductive hypothesis.] We
must show that ak is odd. We know that ak = ak-2 + 

2
ak- 1

by definition of a,, a2 , a3, .... Moreover, k -2 is less than
k and is greater than or equal to I (because k > 2). Thus, by
inductive hypothesis, ak 2 is odd. Also, every term of the
sequence is an integer (being a sum of products of integers),
and so 2akI is even by definition of even. Hence ak is the
sum of an odd integer and an even integer and hence is odd
(by exercise 19, in Section 3.1). [This is what was to be
shown.]

4. Proof (by strong mathematical induction): Let the property
P(n) be the inequality d. ' 1.

Show that the property is true for n = 1 and n = 2:

Observe that di = 9 and d2 = 1° and both 9 < 1 and
10 < 1. Thus the property is true for n = I and n = 2.

Show that for any integer k > 2, if the property is true for
all integers i with 1 < i < k, then it is true for k:
Let k > 2 be an integer, and suppose di < I for all integers i
with 1 < i < k. [This is the inductive hypothesis.] We must
show thatdk < 1. But, by definition of d 1 ,d 2 , d 3 ,...,dk =

dk- dk-2. Now dk-I < I and dk-2 < I by inductive hy-
pothesis [since I < k-I < k and I < k-2 < k because
k > 2]. Consequently, dk = dk I dk 2 < I because if two
positive numbers are each less than or equal to 1, then
their product is less than or equal to 1. [If 0 < a < I and
O < b < 1, then multiplying a < 1 by b gives ab < b, and
since b < 1, then by transitivity of order; ab < 1.] This is
what was to be shown. [Since we have proved both the basis
step and the inductive step, we conclude that d, < I for all
integers n < 1.]

7. Proof (by strong mathematical induction): Let the property
P(n) be the equation g, = 5 3" + 7 2".

Show that the property is true for n = 0 and n = 1:
Wemustshow thatgo = 5 * 30 + 7 20 andg, = 5 .31 + 7
2'. The left-hand side of the first equation is 12 (by definition

of go, g1, g2, . . .), and its right-hand side is 5 I + 7 - =
12 also. The left-hand side of the second equation is 29
(by definition of go, g1, g, ... .), and its right-hand side is

5 . 3 + 7 . 2 = 29 also. Thus the property is true for n = 0
andn = 1.

Show that for any integer k > 2, if the property is true for
all integers i with 0 < i < k, then it is true for k:

Let k > 2 be an integer, and suppose g, = 5 3' + 7 . 2' for
all integers i with 0 < i < k. [Inductive hypothesis] We
must show that 5 3 k + 7, 2k.
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But

gk = Sgk - 6
gk-2 by definition of go, gl, 92..

= 5(5 * 3k- + 7 2k-) - 6 (5 . 3k 2±+ 7 2k-22)

by inductive hypothesis

= 25 3  I+ 35 2 k - 3 0 3 k 2 - 4 2 2 k-2

= 25 .3 k-1 + 3 5 . 2k 1 - 1 0 3 3 - 2 1 2 2

= 25 . 3k-1 + 3 5 2 k - 10 3 - 2 1 2k-

= (25 - 10 ). 3 + (35 - 2 1 ) 2k

= 15 * 3k + 14 2 k-I

=5 3 "3  + 7 2 2 k 1

= * 3 k + 7 . 2k by algebra.

[This is what was to be shown.]

10. Proof (by strong mathematical induction): Let the property
P(n) be the sentence

"A jigsaw puzzle consisting of n pieces
takes n -I steps to put together."

Show that the property is true for n = 1:

A jigsaw puzzle consisting of just one piece does not take
any steps to put together. Hence it is correct to say that it
takes zero steps to put together.

Show that for any integer k > 1, if the property is
true for all integers i with 1 < i < k then it is true
for k:
Let k > I be an integer and suppose that for all integers i
with I < i < k, a jigsaw puzzle consisting of i pieces takes
i- I steps to put together. [This is the inductive hypoth-
esis.] We must show that a jigsaw puzzle consisting of k
pieces takes k- I steps to put together. Consider assem-
bling a jigsaw puzzle consisting of k pieces. The last step
involves fitting together two blocks. Suppose one of the
blocks consists of r pieces and the other consists of s pieces.
Then r +s = k, and I < r < k and I < s < k. Thus by
inductive hypothesis, the numbers of steps required to as-
semble the blocks are r -I and s -1, respectively. Then
the total number of steps required to assemble the puzzle is
(r- 1) + (s -l) +l = (r +s) -I = k-I [aswastobe
shown].

11. Sketch ofproof: Given any integer k > 1, either k is prime or
k is a product of two smaller positive integers, each greater
than 1. In the former case, the property is true. In the latter
case, the inductive hypothesis ensures that both factors of k
are products of primes and hence that k is also a product of
primes.

12. Proof (by strong mathematical induction): Let the property
P (n) be the sentence "Any product of n odd integers is odd."

Show that the property is true for n = 2:

We must show that any product of two odd integers is odd.
But this was established in Chapter 3 (exercise 39 of Sec-
tion 3. 1).

Show that for any integer k > 2, if the property is
true for all integers i with 2 < i < k then it is true
for k:
Let k be any integer with k > 2, and suppose that for all
integers i with 2 < i < k, any product of i odd integers is
odd. [Inductive hypothesis] Consider any product P of k
odd integers. Some multiplication is the final one that is
used to obtain P. Thus there are integers A and B such that
P = AB, and each of A and B is a product of between 1
and k - I odd integers. (For instance, if P = ((aIa 2)a3)a4 ,
then A = (ala2 )al and B = a4.) By inductive hypothesis,
each of A and B is odd, and, as in the basis step, we know
that any product of two odd integers is odd. Hence P = A B
is odd.

14. Hint: Let the property P (n) be the sentence "If n is even,
then any sum of n odd integers is even, and if n is odd, then
any sum of n odd integers is odd." For the inductive step,
consider any sum S of k odd integers. Some addition is the
final one that is used to obtain S. Thus there are integers
A and B such that S = A + B, and A is a sum of r odd
integers and B is a sum of k -r odd integers. Consider the
two cases where k is even and k is odd, and for each case
consider the two subcases where r is even and where r is
odd.

15. 4' = 4, 42 = 16, 43 = 64, 44 = 256, 45 = 1024,

46 = 4096, 47 = 16384, and 48 = 65536.

Conjecture: The units digit of 4' equals 4 if n is odd and
equals 6 if n is even.

Proof by strong mathematical induction: Let the property
P(n) be the sentence "The units digit of 4' equals 4 if n is
odd and equals 6 if n is even."

Show that the property is true for n = 1 and n = 2:

When n = 1, 4n = 41 = 4, and the units digit is 4. When
n = 2, then 4' = 42 = 16, and the units digits is 6. Thus
the property is true for n = I and n = 2.

Show that for any integer k > 2, if the property is
true for all integers i with 1 < i < k then it is true
fork:

Let k by any integer with k > 2, and suppose that for all
integers i with 0 < i < k, the units digit of 4' equals 4 if i
is odd and equals 6 if i is even. [Inductive hypothesis] We
must show that the units digit of 4 k equals 4 if k is odd and
equals 6 if k is even.

Case I (k is odd): In this case, k -I is even, and so, by
inductive hypothesis, the units digits of 4 k-1 is 6. Thus
4- l Oq + 6 for some nonnegative integer q. It follows
that 4 = 4 k 4 = (lOq + 6) 4 = 40q + 24 = 10(4q +
2) + 4. Thus the units digit of 4k is 4 [as was to be shown].

Case 2 (k is even): In this case, k- I is odd, and so,
by inductive hypothesis, the units digit of 4 k-1 is 4. Thus

4 k- i = 1 Oq + 4 for some nonnegative integer q. It follows
that 4k4k 1 4 = (lOq + 4 ) 4 = 40q + 16 = 10(4q +
1) + 6. Thus the units digit of 4k is 6 [as was to be shown].



18. Proof: Let n be any integer greater than 1. Consider the set S
of all positive integers other than 1 that divide n. Since n I n
and n > 1, there is at least one element in S. Hence, by the
well-ordering principle, S has a smallest element; call it p.
We claim that p is prime. For suppose p is not prime. Then
there are integers a and b with 1 < a < p, I < b < p, and
p = ab. By definition of divides, a I p. Also p I n because
p is in S and every element in S divides n. Therefore, a I p

and p I n, and so, by transitivity of divisibility, a I n. Conse-
quently, a E S. But this contradicts the fact that a < p, and
p is the smallest element of S. [This contradiction shows
that the supposition that p is not prime is false.] Hence p is
prime, and we have shown the existence of a prime number
that divides n.

20. Proof: Suppose r is any rational number. [We need to show
that there is an integer n such that r < n.]

Case I (r < 0): In this case, take n = 1. Then r < n.

Case 2 (r > 0): In this case, r = b for some positive in-
tegers a and b (by definition of rational and because r is
positive). Note that r - a < n if, and only if, a < nb. Let
n = 2a. Multiply both sides of the inequality I < 2 by a
to obtain a < 2a, and multiply both sides of the inequality
1 < b by 2a to obtain 2a < 2ab = nb. Thus a < 2a < nb,
and so, by transitivity of order, a < nb. Dividing both sides
by b gives that E < n, or, equivalently, that r < n.
Hence, in both cases, r < n [as was to be shown].

21. Hint: Given any rational number r, divide into three cases:
r > O, r = 0, and r < O. For the case where r > 0, repre-
sent r as a quotient of integers, use the result of exercise
20, and use the well-ordering principle. For the case where
r < 0, modify the result for the case where r > 0.

22. Proof: Let S be the set of all integers r such that n = 2' - r
for some integer i. Then n a S because n = 20 n, and so
S A 0. Also, since n > 1, each r in S is positive, and so, by
the well-ordering principle, S has a least element m. This
means that n = 2' -m (*) for some nonnegative integer k
and m < r for every r in S. We claim that m is odd. The
reason is that if m were even, then m = 2p for some integer
p. Substituting into equation (*) gives

n = 2 * _m = 2 . 2p = (2k 2)p = 2k+l p.

It follows that p e S and p < m, which contradicts the fact
that m is the least element of S. Hence m is odd, and so n
m 2k for some odd integer m and nonnegative integer k.

27. Hint: In the inductive step, divide into cases depending
upon whether k can be written as k = 3x or k = 3x + 1 or
k = 3x + 2 for some integer x.

28. Hint: In the inductive step, let an integer k > 0 be given
and suppose that there exist integers q' and r' such that
k = dq' + r' and 0 < r' < d. You must show that there
exist integers q and r such that

k+l=dq+r and 0<r<d.

To do this, consider the two cases r' < d - and r' =

d - 1.
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29. Hint: Given a predicate P(n) that satisfies conditions (1)
and (2) of the principle of mathematical induction, let S be
the set of all integers greater than or equal to a for which
P (n) is false. Suppose that S has one or more elements, and
use the well-ordering principle to derive a contradiction.

Section 4.5
1. Proof: Suppose the predicate m + n = 100 is true before

entry to the loop. Then

mold + nold = 100.

After execution of the loop,

Mnew = mold + I and nnew = nold I,

so

Mnew + nnew = (mold + 1) + (nold 1)

= mold + nold = 100.

3. Proof: Suppose the predicate m3 
> n' is true before entry

to the loop. Then

3 2
mold > nold

After execution of the loop,

Mnew = 3 mold and nnew = 5 nold,

so

mew - (3 M mold) = 27 mold > 27 . nOld'

But since nnew = 5 nOld, then nold nnew Hence

new oId 27 5new) = 27 i ne
-27 2 2

25 *nnew > nnew

6. Proof: [The wording of this proof is almost the same as that

of Example 4.5.2.]

I. Basis Property: [I (0) is true before the first iteration

of the loop.]

1(0) is "exp = x0 and i = 0." According to the pre-
condition, before the first iteration of the loop exp = I

and i = 0. Since xO = 1, I (0) is evidently true.

II. Inductive Property: [If G A I (k) is true before a loop

iteration (where k > 0), then I (k + 1) is true after the

loop iteration.]

Suppose k is a nonnegative integer such that G A I (k)
is true before an iteration of the loop. Then as execu-
tion reaches the top of the loop, i 0 m, exp = xk, and
i = k. Since i 0 m, the guard is passed and statement
1 is executed. Now before execution of statement 1,

expold = X,

so execution of statement 1 has the following effect:

exPnew = exPold . X = X X = X

Similarly, before statement 2 is executed,

iold = k,
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so after execution of statement 2,

inew = ild + I = k + 1.

Hence after the loop iteration, the two statements
exp = xk+l and i = k + I are true, and so I (k + 1)
is true.

III. Eventual Falsity of Guard: [After afinite number of
iterations of the loop, G becomes false.]

The guard G is the condition i 7& m, and m is a non-
negative integer. By I and II, it is known that

for all integers n > 0, if the loop is iterated n
times, then exp = x' and i = n.

So after m iterations of the loop, i = m. Thus G be-
comes false after m iterations of the loop.

IV. Correctness of the Post-Condition: [If N is the least
number of iterations after which G is false and I (N) is
true, then the value of the algorithm variables will be
as specified in the post-condition of the loop.]

According to the post-condition, the value of exp af-
ter execution of the loop should be x". But when G
is false, i = m. And when I (N) is true, i = N and
exp = xN. Since both conditions (G false and 1 (N)
true) are satisfied, m = i = N and exp = x", as re-
quired.

8. Proof:

1. BasisProperty: 1(0) is "i = I and sum = A[l]." Ac-
cording to the pre-condition, this statement is true.

11. Inductive Property: Suppose k is a nonnegative inte-
ger such that G A I (k) is true before an iteration of the
loop. Then as execution reaches the top of the loop,
i /m,i=k+1, and sum=A[l]+A[2]+ .- +
A[k + 1]. Since i : m, the guard is passed and state-
ment 1 is executed. Now before execution of state-
ment, 1, iold = k + 1. So after execution of statement
1, inw = iold + I = (k + 1) + I = k + 2. Also before
statement 2 is executed, sUMoid = A[l] + A[2] +
... + A[k + 1]. Execution of statement 2 adds
A[k + 2] to this sum, and so after statement 2 is
executed, SUMnew = A[l] + A[2] + ... + A[k + 1] +
A[k + 2]. Thus after the loop iteration, I (k + I) is
true.

111. Eventual Falsity of Guard: The guard G is the condi-
tion i # m. By I and II, it is known that for all integers
n > 1, after n iterations of the loop, I (n) is true. Hence,
after m- I iterations of the loop, I (m) is true, which
implies that i = m and G is false.

IV. Correctness of the Post-Condition: Suppose that
N is the least number of iterations after which G
is false and I (N) is true. Then (since G is false)
i = m and (since I (N) is true) i = N + I and sum =

A[l] + A[2] + . + A[N + 1]. Putting these to-
gethergivesm = N + 1, and sosum = A[1] + A[2] +
... + A[m], which is the post-condition.

10. Hint: Assume G A I (k) is true for a nonnegative integer k.
Then aold A 0 and bold 36 0 and
(1) aold and bold are nonnegative integers with

gcd(a.1d, bold) = gcd(A, B).
(2) At most one of aold and bold equals 0.
(3) 0 < a.id + bold <A + B - k.

It must be shown that I (k + 1) is true after the loop iteration.
That means it is necessary to show that
(1) anew and bnew are nonnegative integers with

gcd(anew, bnew) = gcd(A, B).
(2) At most one of anew and bnew equals 0.
(3) O < anew + bnew A + B -(k + 1).

To show (3), observe that

anew+ b aold - bold + bold if aoid > bold
anew | bold -aold + aold if aold < bold

[The reason for this is that when aold > bold, then anew =

aold -bold and bnew = bold, and when aold < bold, then
bnew = bold -aold and anew = aold ]

Thus

anew + bnew - ald if aoid > bold
bold if aold < bold

But since aold # 0 and bold A 0 and aold and bold are nonneg-
ative integers, then acid > I and bold > 1. Hence aold - I >

0 and bold-I > 0 and aOld < aild + bold-I and bold <
bold + aoldI - 1. It follows that anew + bnew < aold + bold -
1 < (A + B -k) - I by the truth of (3) going into the kth

iteration. Hence anew + bnew < A + B -(k + 1) by alge-
braic simplification.

Section 5. 1
1. A = C and B = D

4. a. {1,-1}
c. 0 (the set has no elements)
d. Z (every integer is in the set)

5. a. The number 0 is not in 0 because 0 has no elements.
b. No. The left-hand set is the empty set; it does not have

any elements. The right-hand set is a set with one ele-
ment, namely 0.

6. a. The set of all x in U such that x is in A and x is in B.
The shorthand notation is A n B.

7. a. No. j E B and j V A.
d. Yes. Both elements of C are in A, but A contains ele-

ments (namely c and f) that are not in C.

8. a. Yes b. No f. No i. Yes

9. a. {1,3,5,6,7,9) b. 13,91
c. 11,2,3,4,5,6,7,8,91 d. 0 e. {1,5,7}

10. a. AUB={xeRIO<x<4}
b. An\ B =- x E RI <x <21

c. Ac = {x E Rlx < Oorx > 2}
d. AUC={xeRIO<x<2or3<x<9}



e. A n c = 0
f. BC= {X E RIx < lorx >41}
g. ACnBC={xERlx<Oorx>41
h. ACUBC={x ER Ix <I orx >21
i. (AnB)C=f{x ERIx <I orx > 2}
j. (AU B) x = {x ER I x <Oorx >41

12. b. False. Many negative real numbers are not rational. For
example, -X2 E R but V2 0 Q.

d. False. O E ZbutO Z- UZ+.

13. a. Negation: 3 a set A such that A C R and A Z Z. This
statement is true. As an example, take A = R.

14. a. No, R Z T. 2 E R but 2 0 T.
b. Yes, T C R. Every integer that is divisible by 6 is also

divisible by 2.

16. a. C C D because every element of C is in D. For if n is
any element of C, then n = 6r - 5 for some integer r.
Let s = 2r -2. Then s is an integer (because products
and differences of integers are integers), and 3s + I =
3(2r-2) + 1 = 6r-6 + 1 = 6r-5, which equals n.
Thus n satisfies the condition for being in D. Hence,
every element in C is in D.

b. D Z C because there are elements of D that are not in
C. For example, 4 is in D because 4 = 3 1 + 1. But 4
is not in C because if it were, then 4 = 6r - S for some
integer r, which would imply that 9 = 6r, or, equiva-
lently, that r = , and this contradicts the fact that r is2'
an integer.

17. a. A 7 B because, for example, 4 E A and 4 0 B.
b. A = C. To see this, note that for any integer i, Si - =

5(i - 1) + 4. Hence any integer that can be written in
the form Si - 1, for some integer i, can also be writ-
ten in the form Sr + 4, where r = i - 1. Thus A C C.
Conversely, observe that for any integer r, 5r + 4 =
5(r + 1) - 1, and so any integer that can be written in
the form Sr + 4, for some integer r, can also be written in
the form 5i - 1, where i = r + 1. Thus C C A. Since
A C C and C C A, we conclude that A = C.

18. a.
U

19.

5.2 Solutions and Hints to Selected Exercises A-39

20. a. AU (B n C) = fa, b, c}, (AU B) n C = lb, c}, and
(A U B) n (A U C) = (a, b, c, d) n (a, b, c, el =
la, b, c}.
Hence A U (B n C) = (A U B) n (A U C).

21. a.
U

22. a. No. The element d is in two of the sets.
d. No. None of the sets contains 6.

23. Yes. Every integer is either even or odd, and no integer is
both even and odd.

26. a. A n B = (2), so J9(A n B) = (0, (21}.
b. A = {1, 21, so 9'(A) = {0, (111, {2}, (1, 2}}.
c. A U B = [I, 2, 31, so Y9(A U B) = (0, (1}, {2}, (3},

(1, 2}, (1, 3}, {2, 3}, (1, 2, 3}}1.
d. A x B = ((1, 2), (1, 3), (2, 2), (2, 3)}, so

9(A x B) = {0, ((1, 2)}, {(I, 3)}, ((2, 2)}, ((2, 3)l,
[(1, 2), (1, 3)}, [(1, 2), (2, 2)},
{(1, 2), (2, 3)}, ((1, 3), (2, 2)}, ((1, 3), (2, 3)},
((2, 2), (2, 3)}, {(1, 2), (1, 3), (2, 2)},
{((I, 2), (1, 3), (2, 3)},
{(I, 2), (2, 2), (2, 3)1, [(1, 3), (2, 2), (2, 3)},
[(1, 2), (1, 3), (2, 2), (2, 3)11.

27. a. Y(A x B) = {0, {(1, u)}, [(1, v)}, {(1, u), (1, v)}}

28. b. Y(Y(0)) = 9({01) = (0, (011

29. a. A x B = {(x, a), (y, a), (z, a), (w, a), (x, b), (y, b),
(z, b), (w, b)1

30. a. A x (B x C) = {(1, (u, m)), (2, (u, m)), (3, (u, m)),
(1, (v, n)), (2, (v, n)), (3, (u, n)), (1, (v, m)),
(2, (v, mz)), (3, (v, m)), (1, (v, n)), (2, (v, n)),
(3, (v, n)))

31.

i I1 - I 2 - I I 3 - 1 4

j = -3 - 2 1 1 4 1 2

found no yes no yes no yes

answer A C B I I -

Section 5.2
1. a. (1) A (2) B UC

b. (1) AnB (2) C

2. a. (1) A-B (2) A (3) A (4) B
b. (I) x E A (2) A (3) B (4) A

3. a. A b.C c.B d.C e.BCC

U
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5. Proof: Suppose A and B are sets.

B-A C B n AC: Suppose x c B -A. By definition of
set difference, x E B and x ¢ A. But then by definition
of complement, x E B and x E A', and so by definition of
intersection, x E B n A'. [Thus B - A C B n A' by defi-
nition of subset.]

B n Ac C B-A: Suppose x E B n A'. By definition
of intersection, x E B and x E A'. But then by definition
of complement, x E B and x ¢ A, and so by definition of
set difference, x E B -A. [Thus B n A' C B -A by def-
inition of subset.]

[Since both set containments have been proved, B -A

B n A' by definition of set equality.]

6. (1) a. (AnB)U(AnC) b. A c. BUC
d. x E C e. A n B f. by definition of intersection,
x E A n C, and so by definition of union,
x E (AnB)U(AnlC).

(2) a. xEAn(BUC) b. AnB c. AnC

d. xeA e. xcB f. An(BUC) g. bydefi-
nition of intersection, x E A and x E C. Since x E C,
by definition of union, x E B U C. Hence x E A and
x E B U C, and so, by definition of intersection,
x e A n (B U C).

(3) An(BUC)=(AnB)U(AnC)

7. Hint: This is somewhat similar to the proof in Example
5.2.3.

8. Proof: Suppose A, B, and C are any sets. To show that
(A -B) U (C -B) = (A U C)- B, we must show that
(A - B)U(C - B) C (A U C) - B and that (A U C) -
B C (A-B) U (C -B).

(A-B) U (C-B) C (A U C)-B: Suppose that x is

any element in (A - B) U (C - B). [We must show that
x E (A U C) -B.] By definition of union, x E A -B or
x E C- B.

Case I (x E A - B): Then, by definition of set difference,
x E A and x 0 B. But because x E A, we have that x E
A U C by definition of union. Hence x E A U C and x 0 B,
and so, by definition of set difference, x E (A U C) - B.

Case 2 (x - C - B): Then, by definition of set difference,

X E C and x 0 B. But because x E C, we have that x E
A U C by definition of union. Hence x E A U C and x 0 B,
and so, by definition of set difference, x E (A U C) - B.

Thus, in both cases, x E (A U C) -B [as was to be shown].
So(A - B) U (C - B) C (A U C) - B.

(A U C)-B C (A-B) U (C-B): Suppose that x is

any element in (A U C)- B. [We must show that x E (A-
B) U (C -B).] By definition of set difference, x E A U C
and x 0 B. By definition of union, x E A or x E C, and in
both cases x 0 B.

Case I (x E A and x 0 B): Then, by definition of set
difference x E A - B, and so, by definition of union, x E
(A -B) U (C -B).

Case 2 (x E C and x 0 B): Then, by definition of set
difference x E C- B, and so, by definition of union, x E
(A-B) U (C -B).

Thus, in both cases, x E (A -B) U (C - B) [as was to be
shown]. So(AUC)-B C (A-B)U(C -B).

Because both subset relations have been proved, we con-
clude that (A -B) U (C -B) = (A U C)-B.

10. Partial proof: Suppose A and B are any sets. We will
show that A U (A n B) C A. Suppose x is any element in
A U (A n B). [We must show that x E A.] By definition
of union, x E A or x E A n B. In the case where x E A,
clearly x E A. In the case where x E A n B, x E A and
x E B (by definition of intersection). Thus, in particular,
x E A. Hence, in both cases x E A [as was to be shown].

11. Proof: Let A be a set. [We must show that A U 0 = A.]

A U 0 C A: Suppose x E A U 0. Then x E A or x E 0
by definition of union. But x ¢ 0 since 0 has no elements.
Hence x E A.

A C A U 0: Suppose x c A. Then the statement "x E A
or x E 0" is true. Hence x E A U 0 by definition of union.
[Alternatively, A C A U 0 by the inclusion in union prop-
erty.]

SinceAU0C AandA C AU0,thenAU0= Abydefi-
nition of set equality.

12. Proof: Suppose A, B, and C are sets and A C B. Let
x E A n C. By definition of intersection, x E A and x E C.
But since A C B and x E A, then x E B. Hence x E B
and x e C, and so, by definition of intersection, x E B n C.
[Thus A n C C B n C by definition of subset.]

15. Hint: The proof has the following outline:
Suppose A, B, and C are any sets such that A C B and
A C C.

Therefore, A C B n C.
16. Proof Suppose A, B, and C are arbitrarily chosen sets.

A x (B U C) C (A x B) U (A x C): Suppose (x, y) E

A x (B U C). [We must show that (x, y) E (A x B) U
(A x C).] Then x E A and y E B U C. By definition of
union, this means that y E B or y e C.

Case 1 (y E B): Then, since E A, (x, y) E A x Bbydef-
inition of Cartesian product. Hence (x, y) E (A x B) U
(A x C) by the inclusion in union property.

Case 2(y E C): Then, since E A, (x, y) E A x Cbydef-
inition of Cartesian product. Hence (x, y) E (A x B) U
(A x C) by the inclusion in union property.

Hence, in either case, (x, y) E (A x B) U (A x C) [as was
to be shown].

Thus A x (B U C) C (A x B) U (A x C) by definition of
subset.

(A x B) U (A x C) C A x (B U C): Suppose (x, y) E

(A x B) U (A x C). Then (x, y) E A x B or

(x,y) E A x C.

Case I ((x, y) e A x B): In this case, x E A and y c B.

By definition of union, since y E B, then y E B U C. Hence

x E A and y E B U C, and so, by definition of Cartesian

product, (x, y) E A x (B U C).



Case 2 ((x, y) E A x C): In this case, x e A and y E C.
By definition of union, since y E C, then y E B U C. Hence
x e A and y E B U C, and so, by definition of Cartesian
product, (x, y) c A x (B U C).

Thus, in eithercase, (x, y) E A x (B U C). [Hence, by def-
inition of subset, (A x B) U (A x C) C A x (B U C).]

[Since both subset relations have been proved, we can con-
clude that A x (B U C) = (A x B) U (A x C) by defini-
tion of set equality.]

There is more than one error in this "proof." The most seri-
ous is the misuse of the definition of subset. To say that A is
a subset of B means that for all x, if x e A then x e B. It
does not mean that there exists an element of A that is also
an element of B. The second error in the proof occurs in the
last sentence. Just because there is an element in A that is
in B and an element in B that is in C, it does not follow that
there is an element in A that is in C. For instance, suppose
A = {1,2),B = (2,3},andC = (3,4}. Thenthereisanel-
ement in A that is in B (namely 2) and there is an element
in B that is in C (namely 3), but there is no element in A
that is in C.

Hint: The statement "since x 0 A or x ¢ B, x y A U B" is
fallacious. Try to think of an example of sets A and B and
an element x such that the statement "x , A or x ¢ B" is
true and the statement "x 0 A U B" is false.

18.

19.

21.
-- U

Entire shaded region is A U (B n c).

U

Darkly shaded region is (A U B) n (A U C).

22. a. (A -B) n (B - A) b. intersection c. B -A
d. B e. A f. A g. (A-B)n(B-A)=0

23. Proof: Suppose (A - B) n (A n B) # 0. That is, sup-
pose there were an element x in (A - B) n (A n B). Then,
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by definition of intersection, x E A - B and x E A n B. By
definition of set difference, then, x E A and x 0 B, and by
definition of intersection, x E A and x E B. But then x E B
and x 0 B, which is a contradiction. [Hence the supposition
is false, and so (A -B) n (A n B) = 0.]

25. Proof: Let A be a subset of a universal set U. Suppose
A n A' ) 0, that is, suppose there is an element x such
that x e A n A'. Then by definition of intersection, x E A
and x e A', and so by definition of complement, x E A and
x 0 A. This is a contradiction. [Hence the supposition is
false, and we conclude that A n A' = 0.]

27. Proof: Let A be a set. Suppose A x 0 # 0. Then there
would be an element (x, y) in A x 0. By definition of Carte-
sian product, x e A and y e 0. But there are no elements
y such that y e 0. Hence there are no elements (x, y) such
that E A and y E 0. Consequently, (x, y) 0 A x 0. [Thus
the supposition is false, and so A x 0 = 0.]

28. Proof: Let A and B be sets such that A C B. [We must show
that A n B' = 0.] Suppose A n B' A 0; that is, suppose
there were an element x such that x e A n B'. Then x E A
and x E B' by definition of intersection. So x E A and
x 0 B by definition of complement. But A C B by hypoth-
esis. So since x E A, x E B by definition of subset. Thus
x 0 B and also x e B, which is a contradiction. Hence the
supposition that A n B' # 0 is false, and so A n B' = 0.

32. Proof: Let A, B, and C be any sets such that C C B -A.
Suppose A n C # 0. Then there is an element x such that
X E A n C. By definition of intersection, x E A and x E C.
Since C C B -A, then x e B and x g A. So x c A and
x ¢ A, which is a contradiction. Hence the supposition is
false, and thus A n c = 0.

35. Proof (by mathematical induction):

The formula holds for n = 1:

For n = 1 the formula is A l n B = A I n B, which is clearly
true.

If theformula holdsfor n = k, then it holdsfor n = k + 1:
Let k be an integer with k > 1, and suppose the formula
holds for n = k. We must show that the formula holds for
n - k + 1; that is, for any sets Al, A2, . .. Ak+I, and B,

(Al n B) U (A2 n B) U U (Ak+± n B)

(AlU A2 U .. U Ak+1) n B.

But

(Al n B) U (A2 n B) U U (Ak+, n B)

= [(A, n B) U (A2 n B) U ... (Ak n B)] U (A+l n B)

by assumption

= [(Al U A2 U .. U Ak) n B] U (Ak+1 n B)
by the inductive
hypothesis

= [(Al U A2 U * U Ak) U Ak+1] n B by Example 5.2.5

= (A I U A 2 U .* U Ak U Ak+l) n B. by assumption

a.

I
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Section 5.3
1. Counterexample: Any sets A, B, and C where C con-

tains elements that are not in A will serve as a counterex-
ample. For instance, let A = (1, 31, B = {2, 31, and C =
{4}. Then (A n B) U C = {3} U {41 -= 3,4}, whereas A n
(B U C) = (1, 3} n f2, 3, 41 = (3}. Since (3, 4} A {3},
(A n B) U C A A n(B U C).

3. Counterexample: Any sets, A, B, and C where A C C
and B contains at least one element that is not in either
A or C will serve as a counterexample. For instance,
let A = {1}, B = 1{2, and C = {1, 3}. Then A Z B and
B X C but A C C.

5. False. Counterexample: Any sets A, B, and C where
A and C have elements in common that are not in
B will serve as a counterexample. For instance, let
A = {1, 2, 31, B = {2, 3}, and C = {3}. Then B -C =
{21, and so A -(B-C) {1, 2,3} -21 = 11, 31. On
the other hand A-B =I(1, 2, 3}-(2, 31 = (1}, and
so (A - B)- C = {I}-{3} = {1}. Since {1, 3} {1,
A - (B - C) 0 (A - B) - C.

6. True. Proof: Let A and B be any sets.

A n(AUB)CA: SupposexeAfn(AUB). Bydefi-
nition of intersection, x E A and x E A U B. In particular
x E A. Thus, by definition of subset, A n (A U B) g A.

A c A n (A U B): Suppose x E A. Then by definition
of union, x E AUB. Hence x E A and x E AUB, and
so, by definition of intersection x E A n (A U B). Thus, by
definition of subset, A C A n (A U B).

Because both An(AUB)CA and ACAn(AUB)
have been proved, we conclude that A n (A U B) = A.

9. True. Proof: Suppose A, B, and C are sets and A C C and
B C C. Let x e A U B. By definition of union, X E A or
x E B. But if x e A then x E C (because A C C), and if
x E B then x c C (because B C C). Hence, in either case,
x E C. [So, by definition of subset, A U B C C.]

11. Hint: The statement is true. To prove it, suppose A, B, and
C are any sets with A C C and B n C = 0. Then use proof
by contradiction to show that A n C = 0.

13. True. Proof: Suppose A and B are any sets with A C B. [We
must show that fi(A) C 9(B).] So suppose X E _9(A).
Then X C A by definition of power set. But because A C B,
we also have that X C B by the transitive property for sub-
sets, and thus, by definition of power set, X E 9i(B). This
proves that for all X, if X E 9(A) then X E 9'(B), and so

C(A) C Y(B) [as was to be shown].

14. False. Counterexample: For any sets A and B, Y(A) U
9(B) contains only sets that are subsets of either A or B,
whereas the sets in J(A U B) can contain elements of both
A and B. Thus, if at least one of A or B contains elements
that are not in the other set, Y(A) U J(B) and Y(A U B)
will not be equal. For instance, let A = {1} and B = {2}.
Then (1, 2) E 97(A U B) but {1, 2} 0 7(A) U ?(B).

15. Hint: The statement is true. To prove it, suppose A and B
are any sets, and suppose X E 9(A) U 4(B). Show that
X C A U B, and deduce the conclusion from this result.

18. a. Statement: V sets S, 3 a set T such that S n T = 0.
Negation: 3 a set S such that V sets T, S n T # 0.
The statement is true. Given any set S, take T = SI.
Then S n T = S n SI = 0 by the complement law for n.
Alternatively, T could be taken to be 0.

21. a. SI =-(0, {t}, Ju}, tv), It, u}, It, v}, (u, vu, {t, u, v}}
b. S2 =- {w), It, w}, {u, wI, {v, wI, It, u, wI, It, v, WI,

(u, v, WI, it, u, v, wI)
c. Yes

22. Hint: Use mathematical induction. In the inductive step,
you will consider the set of all nonempty subsets
of (2, . . , k) and the set of all nonempty subsets of
(2, . . ., k + 1). Any subset of (2, .. ., k + 11 either con-
tains k + I or does not contain k + 1. Thus

the sum of all products
of elements of nonempty
subsets of (2, . .. , k + 11]

the sum of all products the sum of all products
of elements of nonempty of elements of nonempty
subsets of (2, . . ., k + 1} subsets of {2, .. ., k + 1}
that do not contain k + I that contain k + I

But any subset of (2, . . ., k + I that does not contain k + I
is a subset of 12, . . ., k}. And any subset of 12, . . ., k + I1
that contains k + I is the union of a subset of (2, . . ., k} and
(k + I}.

23. a. commutative law for n
b. distributive law
c. commutative law for n

24. Partial answer:
a. set difference law
b. set difference law
c. commutative law for n
d. De Morgan's law

25. Proof: Let sets A, B, and C be given. Then

(A n B) U C
= C U (A n B) by the commutative law for U

= (C U A) n (C U B) by the distributive law

= (A U C) n (B U C) by the commutative law for U.

26. Proof: Suppose A and B are sets. Then

AU(B -A)

= A U (Bn Ac) by the set difference law

= (A U B) n (A U A') by the distributive law

=(AU B) nU

= A U B

by the complement law for U

by the identity law for n.
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29. Proof: Let A, B, and C be any sets. Then

((AC U BC) - A)C

= ((AC U BC) n AC)C

= (AC U BC)C U (AC)C

41. Proof: Let A be any set. Then

AA0

by the set difference law

by De Morgan's law

= (A-0)U(0-A)

= (An0C)U(0nAC)

by definition of A

by the set difference law

= ((Ac)c n (Bc)') U (Ac)c by De Morgan's law

= (An B) U A by the double
complement law

=AU (An B) by the commutative law for U

= A by the absorption law

32. Partial proof: Let A and B be any sets. Then

(A-B)U(B -A)

= (A n BC) U (B n AC) by the set difference law

= [(AnBC)UBIn[(AnBC)UAC)l
by the distributive law

= [(B U (AnBC)]n [AC U (An BC)l
by the commutative law for U

= [(B U A) n (B U BC)] n [(Ac U A) n (AC u BC)]
by the distributive law

= [(A U B) n (B U BC)] n [(A U AC) n (AC U BC)]
by the commutative law for U

34. Hint: The answer is 0.

37. a. Proof: Suppose not. That is, suppose there exist sets A
and B such that A - B and B are not disjoint. [We must
derive a contradiction.] Then (A -B) n B A 0, and
so there is an element x in (A -B) n B. By definition
of intersection, x E A - B and x E B, and by definition
of difference, x E A and x ¢ B. Hence x E B and also
x ¢ B, which is a contradiction. Thus the supposition is
false, and we conclude that A -B and B are disjoint.

b. Let A and B be any sets. Then

(A - B) n B

= (A n BC) n B by the set difference law

= A n (Bc n B) by the associative law for n

= A n (B n BC) by the commutative law for n

= An0

= 0

by the complement law for n

by the universal bound law for n.

39. a. AAB = (A -B) U (B-A) = (1, 2} U {5,61 =
{1,2,5,6}

40. Proof: Let A and B be any sets. By definition of A,
showing that AAB = BAA is equivalent to showing that
(A-B) U (B -A) = (B-A) U (A-B). But this fol-
lows immediately from the commutative law for U.

= (A n U) U (A n 0) by the complement of U law and
the commutative law for n

= A U 0 by the identity law for n and the
universal bound law for n

= A. by the identity law for U

44. Hint: First show that for any sets A and B and for any
element x,

x E AAB 4•' (x E A and x ¢ B) or (x E B and x 0 A),

and

x A ALB '* (x f A and x 0 B) or (x E B and x E A).

45. Same hint as for exercise 44.

48. a. because 1 is an identity for
b. by the complement law for +
c. by the distributive law for + over-
d. by the complement law for
e. because 0 is an identity for +

51. Proof: For all elements a in B,

a '0 = a '(a -a) by the complement law for'

= (a 'a) ai by the associative law for

= a a

= 0.

by exercise 48

by the complement law for'

53. Proof: 0 1 = 0 because 1 is an identity for ', and 0 + 1 =
1 + 0 = 1 because + is commutative and 0 is an identity for
+. Thus, by the uniqueness of the complement law, 0 = 1.

55. Proof: Suppose B is a Boolean algebra and a and b are any
elements of B. We first prove that (a .b) + (a + b) = 1.

a -b + (a +b)

= (a+h)+(a'b)

by the commutative law for +

= (-+ b)+ a) -((a + b) + b)
by the distributive law of + over

=(b+ a)+ a) (,- + (b + b))
by the commutative and
associative laws for +

= (b+(a+a)) (a+(b+b))
by the associative and
commutative laws for +

= (b+(a+a)) (a+1)
by the commutative and
complement laws for +

= (b + 1) 1 by the complement and
universal bound laws for +

= 1.1

= 1

by the universal bound law for +

by the identity law for .
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Next we prove that (a . b) . (a + b)=0.

(a .b) . (a +b)

-((a b) a ((a b

by the distributive law of.- over +

-((b-a) -a) +((a -(b b))
by the commutative and associative laws for

(b (a -a))±+(a .O)
by the associative and complement laws for.

-(b O)-l-O
by the complement and universal bound laws for.

-0 +0 by the universal bound law for.-

=-0 by the identity law for +.

Because both (a . b) + (a + b) = I and (a . b) . (a + b) =
0, it follows, by the uniqueness of the complement law, that
a b = a + b.

57. Hint: One way to prove the statement is to use the result of
exercise 50. Some stages in the proof are the following:

y = (y + X) . y = (X . y) + (Z . y) = z (X ± y) = Z.

58. a. (i) Because S has only two distinct elements, 0 and 1,
we only need to check that 0 + 1 = 1 + 0. But this is
true because both sums equal 1.
(v) Partial answer:

0 + (0. 0) = 0 + 0 - 0 and (0 + 0).- (0 + 0) = 0.- 0 = 0 also

0 + (0. 1) - 0 + 0-=0 and (0 + 0).- (0 + 1) = 0. -I=0 also

0 + (I .0) - 0 + 0-~0 and (0 + 1) .(0 + 0) = 1 *0 - 0 also

0 + (I 1) - 0 + 1 - 1 and (0 + 1) .(0 + 1) = 1 I 1= 1 also

b. Hint: Verify that 0 +x =-x and that 1 * x =-x for all
X G S.

59. Hints. (1) Because the proofs of theabsorption laws do not
use the associative laws, the absorption laws may be used
at any stage of the derivation.
(2) Show that for all x, y, and z in B, x(x + (y ± Z))-
x and x((x + y) + z)) = x.
(3) Show that for all a, b, and c in B, both a + (b + c) and
(a + b) + c equal ((a + b) + c)(a ± (b ± c)).
(4) Usc De Morgan's laws and the double complement law
to deduce the associative law for.

Section 5.4
1. The sentence is not a statement because it is neither true nor

false. If the sentence were true, then because it declares it-
self to be false, the sentence would be false. Therefore, the
sentence is not true. On the other hand, if the sentence were
false, then it would be false that "This sentence is false," and
so the sentence would be true. Consequently, the sentence
is not false.

2. This sentence is a statement because it is true. Recall that
the only way for an if-then statement to be false is for the
hypothesis to be true and the conclusion false. In this case
the hypothesis is not true. So regardless of what the con-

elusion states, the sentence is true. (This is an example of a
statement that is vacuously true, or true by default.)

5. This sentence is not a statement because it is neither true
nor false. If the sentence were true, then either the sentence
is false or 1 + 1 = 3. But 1 + I 0 3, and so the sentence
is false. Therefore, the sentence is not true. On the other
hand, if the sentence were false, then it would be true that
"This sentence is false or 1 ± 1 = 3," and so the sentence
would be true. Consequently, the sentence is not false.

8. Hint: Suppose that apart from statement (ii), all of Nixon's
other assertions about Watergate are evenly split between
true and false.

9. No. Suppose there were a computer program P that had as
output a list of all computer programs that do not list them-
selves in their output. If P lists itself as output, then it would
be on the output list of P, which consists of all computer
programs that do not list themselves in their output. Hence
P would not list itself as output. But if P does not list itself
as output, then P would be a member of the list of all com-
puter programs that do not list themselves in their output,
and this list is exactly the output of P. Hence P would list
itself as output. This analysis shows that the assumption of
the existence of such a program P is contradictory, and so
no such program exists.

13. Hint: Show that any algorithm that solves the printing prob-
lem can be adapted to produce an algorithm that solves the
halting problem.

Section 6.1
2. 3/4, 1/2,1/2

3. {l *, 2*+, 3+, 4*+, 5*+, 6*, 7 *, 8*+, 9+, 10*, 19,
2 9, 3 9, 4 9, 5 9, 6 9, 79V, 8 9, 9 9, 01091, probabil-
ity = 20/52 2: 38.5%

5. {10.4, JA, QJ%, K.&, A4, 10*, J+, Q+, K+, A*,
l109,J9V,Q9,K1P,A9P, 10*,JQ*,K*,K*,A*I
probability = 20/52 = 5/13 2: 38.5%.

7. 126, 35, 44, 53, 621, probability = 5/36 2-'13.9%

9. {11, 12, 13, 14, 15,21,22,23,24,31,32,33,41,42,511
probability = 15/36 = 4 12%

11. a. {HHH, HHT, H1TH, HTT, THH, THT, TTH,
TTT}

b. (i) {HTT, THT, TTH), probability = 3/8 -_37.5%

12. a. (BBB, BBG, BGB, BGG, GBB, GBG, GGB,
GGG}

b. (i) {GBB, BGB, BBG} probability - 3/8 = 37.5%

13. a. {CCC, CCW, CWC, CWW, WCC, WCW, WWC,
WWW1

b. (i) {CWW, WCW, WWCI, probability = 3/8-
37.5%

14. a. probability = 3/8 = 37.5%

16. a. {RRR, RRB, RRY, RBR, RBB, RBY, RYR, RYB,
RYY, BRR, BRB, BRY, BBR, BBB31, BBY, BYR,
BYB, BYY, YRR, YRB, YRY, YBR, YBB, YBY,
YYR, YYB, YYYI
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b. IRBY, RYB, YBR, BRY, BYR, YRB}, probability -

6/27 = 2/9 - 22.2%
c.{RRB, RBR, BRR, RRY, RYR, YRR, BBR, BRB,

RBB, BBY, BYB, YBB, YYR, YRY, RYY, YYB,
YBY, BYY} probability = 18/27 = 2/3 = 66 2%

18. a. (BIB,, B1B2, BlW, B2BI, B2B2, B2W, WBI, WB2,
WW}

b. {BI B1, BIB2, B2B1, B2B2 ) probability 4 44.4%
c. {BI W, B2W, WB 1, WB2 1 probability 4 44.4%

21. a. 10 11 12 13 14 15 16 17 18 ... 96 97 98 99

3.4 3.5 3 6 3 32 3.33

The above diagram shows that there are as many posi-
tive two-digit integers that are multiples of 3 as there are
integers from 4 to 33 inclusive. By Theorem 6.1.1, there
are 33 -4 + 1, or 30, such integers.

b. There are 99 -10 + 1 = 90 positive two-digit integers
in all, and by part (a), 30 of these are multiples of 3. So
the probability that a randomly chosen positive two-digit
integer is a multiple of 3 is 30/90 = 1/3 = 33 %.

23. c. Probability = m-3+1 -2
d. Because [ -9 = 19, the probability is 39-19+1 = 21

32. a. M Tu W Th F Sa Su M Tu W Th F Sa Su
1 2 3 4 5 6 7 8 9 10 11 12 13 14

7 1 7 2

24. a. (i) If n is even, there are L-21 = ' elements in the sub-2
array.

(ii) If n is odd, there are L -j elements in the sub-
array.

b. There are n elements in the array, so
(i) The probability that an element is in the given sub-

array when n is even is 2 =
n 2

(ii) The probability that an element is in the given sub-

array when n is odds = _ .

26. Let k be the 27th element in the array. By Theorem 6.1.1,
k -42+1 27,andsok=42+27 -=68. Thusthe
27th element in the array is A[68].

28. Let m be the smallest of the integers. By Theorem 6.1.1,
279-m + I = 56, and so m = 279 -56 + 1 = 224. Thus
the smallest of the integers is 224.

31. 1 2 3 4 5 6 7 8 9 ... 999 1000 1001

3 -1 3 *2 3 3 3 .333

Thus there are 333 multiples of 3 between I and 1001.

F Sa Su M
362 363 364 365

7 . 52

Sundays occur on the 7th day of the year, the 14th day of the year, and in fact on all
days that are multiples of 7. There are 52 multiples of 7 between I and 365, and so
there are 52 Sundays in the year.

6. a. Step 1:
Choose urn.

Game 4 Game 5 Game 6 Game 7

A (A wins)

Step 2: Step 3:
Choose ball 1. Choose ball 2.

B2B1
w

(A wins)

(B wins)

There are five ways to complete the series:
A, B-A, B-B-A, B-B-B-A, and B-B-B-B.

3. Four ways: A-A-A-A, B-A-A-A-A, B-B-A-A-A-A, and
B-B-B-A-A-A-A.

4. Two ways: A-B-A-B-A-B-A and B-A-B-A-B-A-B

Start

b. There are 12 equally likely outcomes of the experiment.
c. 2/12 = 1/6 = 16 2% d. 8/12 = 2/3 = 662 %

Section 6.2
1.

Start:
A has
won 3
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8. By the multiplication rule, the answer is 3 . 2 . 2 = 12.

9. a. In going from city A to city B, one may take any of the
3 roads. In going from city B to city C, one may take
any of the 5 roads. So, by the multiplication rule, there
are 3 . 5 = 15 ways to travel from city A to city C via
city B.

b. A round-trip journey can be thought of as a four-step
operation:

Step 1: Go from A to B.

Step 3: Go from B to C.

Step 2: Go from C to B.

Step 4: Go from B to A.

Since there are 3 ways to perform step 1, 5 ways to
perform step 2, 5 ways to perform step 3, and 3 ways
to perform step 4, by the multiplication rule, there are
3 . 5 . 5 . 3 = 225 round-trip routes.

c. In this case the steps for making a round-trip journey are
the same as in part (b), but since no route segment may
be repeated, there are only 4 ways to perform step 3 and
only 2 ways to perform step 4. So, by the multiplica-
tion rule, there are 3 . 5 . 4 . 2 = 120 round-trip routes in
which no road is traversed twice.

11. a. Imagine constructing a bit string of length 8 as an eight-
step process:

Step 1: Choose either a 0 or a 1 for the left-most position,

Step 2: Choose either a 0 or a 1 for the next position to
the right.

Step 3: Choose either a 0 or a 1 for the next position to
the right.

Since there are 2 ways to perform each step, the to-
tal number of ways to accomplish the entire operation,
which is the number of different bit strings of length 8,
is 2 . 2. 2 . 2 - 2. 2 . 2 2 =28 =256.

b. Imagine placing a 1 in the left-most position of an 8-bit
string, and then imagine filling in the remaining seven
positions as an operation with seven steps, where step i
is to fill in the (i + I)st position. Since there are 2 ways
to perform each of seven steps, there are 27 ways to per-
form the entire operation. So there are 27, or 128, 8-bit
strings that begin with a 1.

12. a. There are 9 hexadecimal digits from 3 through B and 11
hexadecimal digits from 5 through F. Thus the answer is
8. 16. 16. 16. 11 = 405,504.

13. a. In each of the four tosses there are two possible re-
sults: Either a head (H) or a tail (T) is obtained. Thus,
by the multiplication rule, the number of outcomes is
2 - 2 . 2 . 2 = 24 = 16.

b. There are six outcomes with two heads:
HHTT, HTHT, HTTH, THHT, THTH, TTHH.
Thus the probability of obtaining exactly two heads is
6/16 = 3/8.

14. a. Let each of steps 1-3 be to choose a letter of the alphabet
to put in positions 1-3, and let each of steps 4-6 be to
choose a digit to put in positions 4-6. Since there are 26

letters and 10 digits (0-9), the number of license plates is

26 .26 .26. 10. 10 10 = 17,576,000.

b. In this case there is only one way to perform step 1
(because the first letter must be an A) and only one
way to perform step 6 (because the last digit must
be a 0). Therefore, the number of license plates is
26 . 26. 10. 10 = 67,600.

d. In this case there are 26 ways to perform step 1, 25 ways
to perform step 2, 24 ways to perform step 3, 10 ways
to perform step 4, 9 ways to perform step 5, and 8 ways
to perform step 6, so the number of license plates is
26 25 .24- 10 9 8 = 11,232,000.

16. a. Let step 1 be to choose either the number 2 or one of the
letters corresponding to the number 2 on the keypad, let
step 2 be to choose either the number I or one of the let-
ters corresponding to the number 1 on the keypad, and let
steps 3 and 4 be to choose either the number 3 or one of
the letters corresponding to the number 3 on the keypad.
There are 4 ways to perform step 1, 3 ways to perform
step 2, and 4 ways to perform each of steps 3 and 4. So by
the multiplication rule, there are 4 * 3 . 4 . 4 = 192 ways
to perform the entire operation. Thus there are 192 dif-
ferent PINs that are keyed the same as 2133. Note that
on a computer keyboard, these PINs would not be keyed
the same way.

17.
Step 1:

Choose the
secretary.

Step 2:
Choose the
treasurer.

Step 3:
Choose the
president.

There are 14 different paths from "root" to "leaf" of this
possibility tree, and so there are 14 ways the officers can be
chosen. Because 14 = 2 -7, reordering the steps will not
make it possible to use the multiplication rule alone to solve
this problem.

18. a. The number of ways to perform step 4 is not constant; it
depends on how the previous steps were performed. For
instance, if 3 digits had been chosen in steps 1-3, then
there would be 10 -3 = 7 ways to perform step 4, but if



3 letters had been chosen in steps 1-3, then there would
be 10 ways to perform step 4.

19. a. Two solutions:
(i) number of integers

number of Fnumber of
- ways to pickjI ways to pick = 9 10 =90

first digit Lsecond digit

(ii) Using Theorem 6.1. 1, number of integers -

99 - 10 + I = 90.
b. Odd integers end in 1, 3, 5, 7, or 9.

number of odd integers

number of Fnumber of
= ways to pick ways to pick = 9 5 = 45

first digit ]Lsecond digit

Alternative solution: Use the listing method shown in the
solution for Example 6.1.4.
[number of integers]
with distinct digits

number of IFnumber of
= ways to pick ways to pick

firstdigit ][second digit

-9 9- 81

d [number of odd integers]
* With distinct digits

[number of number of1
= ways to pick ways to pick

~second digit] first digit I
= 5 8 = 40 because the first digit

can't equal 0, nor can it
equal the second digit

e. 81/90 = 9/10, 40/90 = 4/9

21. The outer loop is iterated 30 times, and during each iter-
ation of the outer loop there are 15 iterations of the inner
loop. Hence, by the multiplication rule, the total number of
iterations of the inner loop is 30 15 = 450.

24. The outer loop is iterated 50 - 5 + I - 46 times, and during

each iteration of the outer loop there are 20 -10 + I = 11
iterations of the inner loop. Hence, by the multiplication
rule, the total number of iterations of the inner loop is
46. 11 = 506.

26. Hints: One solution is to add leading zeros as needed to
make each number five digits long. For instance, write 1
as 00001. Let some of the steps be to choose positions for
the given digits. The answer is 720. Another solution is
to consider separately the cases of four-digit and five-digit
numbers.

28. a. There are a + I divisors: 1, p, p
2

, pa.

b. A divisor is a product of any one of the a + I numbers
listed in part (a) times any one of the b + I numbers
1, q, q2 . , q. So, by the multiplication rule, there are
(a + l)(b + 1) divisors in all.

6.3 Solutions and Hints to Selected Exercises A-47

29. a. Since the nine letters of the word ALGORITHM are
all distinct, there are as many arrangements of these let-
ters in a row as there are permutations of a set with nine
elements: 9! = 362, 880.

b. In this case there are effectively eight symbols to be per-
muted (because AL may be regarded as a single sym-
bol). So the number of arrangements is 8! = 40,320.

31. The same reasoning as in Example 6.2.9 gives an answer of
4! = 24.

32. WX, WY, WZ, XW, XY, XZ, YW, YX, YZ, ZW, ZX,
ZY

6! 6.5 -4.-32-4 _

34. a. P(6, 4) 6 = = = 360

5 4 3 2'!
35. a. P(5, 3) = ,_ _ = 60

36. a. P(9, 3) = 504

c. P(8, 5) 6 6,720

38. Proof: Let n be an integer and n > 2. Then

P(n + 1, 2) - P(n, 2)

(n + 1)! n! (n + 1)! n!

[(n + 1) -2]! (n-2)! (n-1)! (n-2)!

(n + l)n 4 n (n- a- 2 )

=n
2 

+ n -(n 2  n) = 2n = 2 (n-i)!

-2 I) = 2P(n, 1).
(n - 1)!

This is what was to be proved.

42. Hint: In the inductive step, suppose there exist k! permu-
tations of a set with k elements. Let X be a set with k + 1
elements. The process of forming a permutation of the el-
ements of X can be considered a two-step operation where
step I is to choose the element to write first. Step 2 is to
write the remaining elements of X in some order.

Section 6.3
1. a. Set of Bit Strings Consisting of from I through 4 Bits

bit strings
consisting
of I bit

bit strings
consisting
of 2 bits

4.

l I
There are There are
2 of these. 22 of these.

bit strings
consisting
of 3 bits

-t

There are
23 of these.

bit strings
consisting
of 4 bits

There are
24 of these.

Applying the addition rule to the figure above shows that
there are 2 + 22 + 23 + 24 = 30 bit strings consisting of
from one through four bits.
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b. By reasoning similar to that of part (a), there are 25 +
26 + 27 + 2s = 480 bit strings of from five through eight
bits.

3 a. [number of integers from 1 through 99
3a. With no repeated digits j

[number of integers number of integers
- from 1 through 9 + from 10 through 99

with no repeated digits with no repeated digits

number of integers from]
+ 100 through 999 with

no repeated digits
= 9+9 9+9 9 -8=738

b [number of integers from I through 999
* [with at least one repeated digit j

total number of number of integers
= integers from - from I through 999

L through 999 with no repeated digits
= 999 - 738 = 261

The probability that an integer chosen at random has at
least one repeated digit is 261/999 - 26.1%.

Set of Arrangements (without repetition)
or No More Than 3 Letters of NETWORK

arrangements arrangements arrangements
of no more of no more of no more
than 1 letter than 2 letters than 3 letters

\ :fy S;d,::: i::~: S; f- ./

8. a. Each column of the table below corresponds to a pair of
values of i and j for which the inner loop will be iterated.

I lI I I 1 2 211 l 2 1 3 l 1 2 1 3 1 41

1 2 3 4

Since there are 1 + 2 + 3 + 4 = 10 columns, the inner
loop will be iterated ten times.

9. a. The answer is the number of permutations of the five
letters in QUICK, which equals 5! = 120.

b. Because QU (in order) is to be considered as a single
unit, the answer is the number of permutations of the
four symbols F7 I, C, K. This is 4! = 24.

c. By part (b), there are 4! arrangements of [s], 1, C, K.

Similarly, there are 4! arrangements of I, I, C, K.
Therefore, by the addition rule, there are 4! + 4! = 48
arrangements in all.

11 a number of ways to place eight people
[ a. [in a row keeping A and B together j

number of ways to arrange

[FAB CDEFGH

[number of ways to arrange]

IFBA CDEFGH

- 7! + 7! = 5,040 + 5,040 = 10,080
b. [number of ways to arrange the eight I

[people in a row keeping A and B apart

There are
7 of these.

There are
7.6 of these.

There are
7 6 5 of these.

Applying the addition rule to the figure above shows that
there are 7 + 7 . 6 + 7 . 6. 5 = 259 arrangements of three
letters of the word NETWORK if repetition of letters is not
permitted.

6. a. There are 1 + 26 + 262 + 263 arrangements of from 0
through 3 letters of the alphabet. Any of these may be
paired with all but one arrangement of from 0 through 4
digits, and there are I + 10 + 102 + 103 + 104 arrange-
ments of from 0 through 4 digits. So, by the multiplica-
tion rule and the difference rule, the number of license
plates is

(1 + 26 + 262 + 263)
(1 + 10 + 102 + 103 + 104) 1 = 203,097,968

the blank plate

b. (1 + 26 + 262+ 263-85)
(1 + 10 + 102 + 103 + 104) - 1 = 202,153,533

total number of ways
= to place the eight

people in a row

= 8! -10,080 = 40,320 -

= 30, 240

12. number of variable names

number of ways
to place the eight

- people in a row
keeping A and B
together

10,080

[ number of numeric] + number of string
variable names j Lvariable names ]

= (26 + 26 36) + (26 + 26 36) = 1,924

13. Hint: In exercise 12 note that

26 + 26 .36 = 26 E 36.
k=O

Generalize this idea here. Use Theorem 4.2.3 to evaluate
the expression you obtain.

14. a. 10 9 8.7 - 6 5 4 = 604,800
b. [number of phone numbers with]

[at least one repeated digit I[ [total number of]
phone numbers]

number of phone numbers]
With no repeated digits ]

= 107 - 604, 800 = 9,395,200
c. 9,395,200/107 - 93.95%

4.

Ji J 1 12+ - 13 1 I I 4 1 1 1 ) I



16. a. Proof: Let A and B be mutually disjoint events in a
sample space S. By the addition rule, N(A U B) =
N(A) + N(B). Therefore, by the equally likely prob-
ability formula,

P(AUB) N(AUB) _ N(A)+N(B)
N(S) N(S)

N(A) N(B)
=- + = P(A) +P (B).
N(S) N (S)

17.

18.
Hint: Justify the following answer: 39 . 38 . 38.

a. Identify the integers from 1 to 100,000 that contain the
digit 6 exactly once with strings of five digits. Thus, for
example, 306 would be identified with 00306. It is not
necessary to use strings of six digits, because 100,000
does not contain the digit 6. Imagine the process of con-
structing a five-digit string that contains the digit 6 ex-
actly once as a five-step operation that consists of filling
in the five digit positions - - - - --

1 2 3 4 5
Step 1: Choose one of the five positions for the 6.

Step 2: Choose a digit for the left-most remaining posi-
tion.

Step 3: Choose a digit for the next remaining position to
the right.

Step 4: Choose a digit for the next remaining position to
the right.

Step 5: Choose a digit for the right-most position.

Since there are 5 choices for step 1 (any one of the five
positions) and 9 choices for each of steps 2-5 (any digit
except 6), by the multiplication rule, the number of ways
to perform this operation is 5 9 9 9 9 -= 32,805.
Hence there are 32,805 integers from 1 to 100,000 that
contain the digit 6 exactly once.

19. Hint: The answer is 2/3.

21. a. Let A = the set of integers that are multiples of 4 and
B = the set of integers that are multiples of 7. Then
A n B = the set of integers that are multiples of 28.

But n(A) -250 since 1 2345678. .. 999 1000,

4. 1 4-2... 4-250

or, equivalently, since 1,000 = 4 -250.

Also n(B) 142 since 12 3 4 5 6 7... 14 ... 994 995 ... 1000

7 1 7.2... 7 142

or, equivalently, since 1,000 = 7 142 + 6.

and n(A n B) = 35 since 1 2 3 ... 28 .. .56 ... 980 . 1000,

28- 1 28-2... 28-35

or, equivalently, since 1,000 = 28 * 35 + 20.

6.3 Solutions and Hints to Selected Exercises A-49

23. a. 110010102 = 2 + 23 + 26 + 27 = 202,
001110002 = 23 + 24 + 25 = 56,
011010112 = I + 2 + 23 + 25 + 26 = 107,
111011102 = 2 + 22 + 23 + 25 + 26 + 27 = 238

So the answer is 202.56.107.238.
b. The network ID for a Class A network consists of 8 bits

and begins with 0. If all possible combinations of eight
0's and I 's that start with a 0 were allowed, there would be
2 choices (0 or 1) for each of the 7 positions from the sec-
ond through the eighth. This would give 27 = 128 pos-
sible ID's. But because neither 00000000 nor 01111111
is allowed, the total is reduced by 2, so there are 126
possible Class A networks.

c. Let w.x.y.z be the dotted decimal form of the IP ad-
dress for a computer in a Class A network. Because the
network IDs for a Class A network go from 00000001
(= 1) through 01111110 (= 126), w can be any integer
from 1 through 126. In addition, each of x, y, and z
can be any integer from 0 (= 00000000) through 255
(= 11111111), except that x, y, and z cannot all be 0
simultaneously and cannot all be 255 simultaneously.

d. Twenty-four positions are allocated for the host ID in a
Class A network. If each could be either 0 or 1, there
would be 224 = 16,777,216 possible host IDs. But nei-
ther all 0's nor all l's is allowed, which reduces the total
by 2. Thus there are 16,777,214 possible host IDs in a
Class A network.

i. Observe that 140 = 128 + 8 + 4 = 100011002, which
begins with 10. Thus the IP address comes from a Class
B network. An alternative solution uses the result of Ex-
ample 6.3.5: Network IDs for Class B networks range
from 128 through 191. Thus, since 128 < 140 < 191,
the given IP address is from a Class B network.

24. a. There are 12 possible birth months for A, 12 for B, 12
for C, and 12 for D, so the total is 124 = 20,736.

b. If no two people share the same birth month, there are
12 possible birth months for A, 11 for B, 10 for C, and
9 for D. Thus the total is 12. 11 * 10 9 = 11,880.

c. If at least two people share the same birth month, the
total number of ways birth months could be associated
with A, B, C, and D is 20,736 -11,880 = 8,856.

d. The probability that at least two of the four people share
the same birth month is 856 -42.7%.

e. When there are five people, the probability that at
least two share the same birth month is 12' 12 1 1099 3

125

61.8%, and when there are more than five people, the
probability is even greater. Thus, since the probability
for four people is less than 50%, the group must contain
five or more people for the propability to be at least 50%
that two or more share the same birth month.

25. Hint: Analyze the solution to exercise 24.

So n(A U B) = 250 + 142 -35 = 357.
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26. a. The number of students who checked at least one of
the magazines is N(T U N U U) = N(T) + N(N) +
N(U) -N(T nN)-N(TfnU) -N(NnU)+
N(TnNfU)=28+26+14-8- 4 -3+2=55.

b. By the difference rule, the number of students who
checked none of the magazines is the total number of
students minus the number who checked at least one
magazine. This is 100 -55 = 45.

d. The number of students who read Time and Newsweek
but not U.S. News is

N((TnN) -N(T nNnU)) =8-2=6.

28. Let

M = the set of married people in the sample,

Y = the set of people between 20 and 30 in the sample, and

F = the set of females in the sample.

Then the number of people in the set M U Y U F is less than
or equal to the size of the sample. And so

1,200 > N(M U Y U F)

= N(M) + N(Y) + N(F) -N(M n Y)

-N(MnF) -N(YnF)+N(MnYnF)

= 675 + 682 + 684 - 195 - 467 - 318 + 165

= 1,226.

This is impossible since 1,200 < 1,226, so the polltaker's
figures are inconsistent. They could not have occurred as a
result of an actual sample survey.

30. Let A be the set of all positive integers less than 1,000 that are
not multiples of 2, and let B be the set of all positive integers
less than 1,000 that are not multiples of 5. Since the only
prime factors of 1,000 are 2 and 5, the number of positive in-
tegers that have no common factors with 1,000 is N(A n B).
Let the universe U be the set of all positive integers less than
1,000. Then AC is the set of positive integers less than 1,000
that are multiples of 2, BC is the set of positive integers
less than 1,000 that are multiples of 5, and AC n BC is the
set of positive integers less than 1,000 that are multiples of
10. By one of the procedures discussed in Section 6.1 or
6.2, it is easily found that N (AC) = 499, N (BC) = 199, and
N(AC n BC) = 99. Thus, by the inclusion/exclusion rule,

N(A' U BC) = N(AC) + N(Bs) - N(AC n BC)

= 499 + 199 - 99 = 599.

But by De Morgan's law, N(AC U BC) = N((A n B)'), and

so

N((A n B)C) = 599. (*)

Now since (A n B)C = U -(A n B), by the difference rule
we have

N((A n B)C) = N(U) -N(A n B). (**)

Equating the right-hand sides of (*) and (**) gives N(U) -

N(A n B) = 599. And because N(U) = 999, we conclude

that999 -N(A n B) = 599, or, equivalently, N(A n B) =
999 - 599 = 400. So there are 400 positive integers less
than 1,000 that have no common factor with 1,000.

36. Hint: Use the generalized distributive law for sets from
exercise 35, Section 5.2.

Section 6.4
1. a. 2-combinations: {xI, x2), {xI, X3}, {X2, X3).

Hence, (2) = 3.

b. Unordered selections: {a, b, c, d}, {a, b, c, e},
{a, b, d, e}, {a, c, d, el, {b, c, d, e}.

Hence, (5) = 5.
(4)

3. P(7, 2) (2) 2!

(5)\ 5!1

5 5! 5 4
b. ) = =5

1 1!(5-1)! 1 I
6. a. number of committees of 6

15)= 15!
- 6 J (15-6)!6!

7 5
=A -13 -4 11 }6 ffi

= 9 6,,4f ,X =/ 5,005-1

number of committees
b. that don't contain A

and B together

number of
committees with A
and five others-
none of them B

(13) + (13) + (13

I Number of
committees with B

+ jand five others-
Lnone of them A]

+ [number of committees
With neither A nor B I

= 1,287 + 1,287 + 1,716 = 4,290

Alternative solution:

number of committees
that don't contain A
and B together

r total number 1 -number of committees
of committees - Lthat contain both A and Bj

=(15) 7 (13)

=5,005 - 715 = 4,290



[number of l[number of 1
c. committees with +| committees with

Lboth Aandl ] JLneither Aand B]

:= (13) + (163) = 715 + 1,716 = 2,431

number of subsets
d. (i) of three men

chosen from eight

number of subsets
. of three women

]Lchosen from seven

= ) () = 56 35 = 1,960

ii) (number of committees 1
[with at least one woman]

total number ofi _ Fnumber of all-male[ committees J Lcommittees

(=5) - ( =) 5,005 - 28

= 4,977

mber of number of
e. to choose ways to choose two

o freshmen sophomores

number of ways 1 [number of ways 1
[to choose two juniors] [to choose two seniorsJ

(2) (2) (2) (2)
=540

8. Hint: The answers are: a. 66 b. (i) 35 (ii) 66 (iii) 10
c. 21 d.46

9. b. (24)(16) + (2
4)(16) + (24)(1) + (24)(10) = 3,223,220

11. a. (1) 4 (because there are as many royal flushes as there are
suits)

(2) - 2,599 00000015

c.(1) 13 (418) = 624 (because one can first choose the de-
nomination of the four-of-a-kind and then choose one
additional card from the 48 remaining)

(2) 624 = 624 = 0.00024
(65) 2,598,960

f. (1) Imagine constructing a straight (including a straight
flush and a royal flush) as a six-step process: step I
is to choose the lowest denomination of any card of
the five (which can be any one of A, 2, ... , 10), step
2 is to choose a card of that denomination, step 3 is
to choose a card of the next higher denomination, and
so forth until all five cards have been selected. By the
multiplication rule, the number of ways to perform
this process is

10. () (4) (4) (4) (4) = 10 .45 = 10,240.

By parts (a) and (b), 40 of these numbers represent
royal or straight flushes, so there are 10,240 - 40 =
10,200 straights in all.

(2) 10.200 =10,200 0d0039
(352) 2,598,960

6.4 Solutions and Hints to Selected Exercises A-5 1

210 = 1,024
number of outcomes 1

[with at least one head]

[total number number of outcomes
of outcomesJ [with no heads

= 1,024- 1 = 1,023

50 b. 50
To get an even sum, both numbers must be even or both
must be odd. Hence

number of subsets of two integers from]
1l to 100 inclusive whose sum is even J

number of subsets number of subsets
of two even + of two odd
integers chosen from integers chosen from
the 50 possible the 50 possible

= (520) + (52) = 2,450.

d. To obtain an odd sum, one of the numbers must be even
and the other odd. Hence the answer is (50) (5,0) =

2,500. Alternatively, note that the answer equals the
total number of subsets of two integers chosen from I
through 100 minus the number of such subsets for which
the sum of the elements is even. Thus the answer is
(110)- 2,450 = 2,500.

17. a. Two points determine a line. Hence

number of straight] [numberof subsets]
lines determined I = of two points
by the ten points J Lchosen from ten

= (2) =45.

10!19. a. = 151,200
2! 1! 1! 3!2! 1!

since there are 2 A's, I B,
I H, 3 L's, 2 0's, and I U

b. =!5,040 c. 9 =15,120
2!1!1!2!2! 1!2!1!3!2!

21. a. There are two choices for each of four positions in the
string, so the answer is 2 . 2 . 2 . 2 = 24 = 16.

umber of strings number of ways to pick
subset of three positions

b. with three a 's=otffurio
Land one b ] out of four into

Which to place the a's

= ( =4

24. Rook must move seven squares to the right and seven
squares up, so

[ the number of 1
paths the rook I

Lcan take J

L the number 1
- of orderings l
- of seven R'sl

and seven U'sJ

14!
= ! = 3,432.

where R stands
for "right' and U
stands for "up"

13. a.

d.

15. a.
C.
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25. b. Solution 1: One factor can be 1, and the other factor
can be the product of all the primes. (This gives 1 fac-
torization.) One factor can be one of the primes, and
the other factor can be the product of the other three.
(This gives (4,) = 4 factorizations.) One factor can be a
product of two of the primes, and the other factor can be
a product of the two other primes. The number (4) = 6
counts all possible sets of two primes chosen from the
four primes, and each set of two primes corresponds to
a factorization. Note, however, that the set {P,, P21 cor-
responds to the same factorization as the set {p3, p4},
namely, PI P2P3P4 (just written in a different order). In
general, each choice of two primes corresponds to the
same factorization as one other choice of two primes.
Thus the number of factorizations in which each factor
is a product of two primes is •2) = 3. (This gives 3
factorizations.) The foregoing cases account for all the
possibilities, so the answer is 4 + 3 + 1 = 8.

Solution 2: Let S = {pi P2, P3, P41. Let PI P2P3P4 =
P. and let fi f2 be any factorization of P. The product
of the numbers in any subset A C S can be used for fl,
with the product of the numbers in Al being f2. There
are as many ways to write f, f2 as there are subsets
of S, namely 24 = 16 (by Theorem 5.3.1). But given
any factors fi and f2, fi f2 = f2 fi. Thus counting the
number of ways to write fi f2 counts each factorization
twice, so the answer is 16 = 8.

26. Hint: Use the difference rule and the generalization of the
inclusion/exclusion rule for 4 sets. (See exercise 36 in Sec-
tion 6.3.)

Section 6.5
1.a (5+3-1) = (7) = 7.6 = 21.

b. The three elements of the set are 1, 2 and 3. The
5-combinations are [1, 1, 1, 1, 1], [1, 1, 1, 1, 2],
[1,1,1, 1, 3],[1, 1, 1,2, 2],[1, 1, 1,2, 3],[1,1, 1,3, 3],
[1, 1,2,2,2], [1, 1,2,2,3], [1, 1,2,3,3], [1, 1,3,3,3],
[1,2,2,2,2],[1,2,2,2,3],1,2,2,3,3],[1,2,3,3,3],
[1, 3,3,3,31, [2,2,2,2,2], [2,2,2,2,3], [2,2,2,3,3],
[2, 2, 3, 3, 3], [2, 3, 3, 3, 3], and [3, 3, 3, 3, 3].

2. a. (4+ I) () = 6 = 15

3. a. (20-6) = (25) - 53,130
b. If at least three are eclairs, then 17 additional pastries

are selected from six kinds. The number of selections is
(17+6-1) = (22) = 26 334.

Note: In parts (a) and (b), it is assumed that the selections
being counted are unordered.

c. By parts (a) and (b), the probability that at least three
eclairs are among the pastries selected is 26334/53130
0.496 = 49.6%.

d. If exactly three of the pastries are eclairs, then 17 addi-
tional pastries are selected from five kinds. The number
of selections is

(17 + - 1) (21) =5,985.

Hence the probability that a random selection includes
exactly three eclairs is 5985/53130 - 0.113 = 11.3%.

5. The answer equals the number of 4-combinations with rep-
etition allowed that can be formed from a set of n elements.
It is

( )4 ) ( 43)

(n +3)(n +2) n+ I)(n1--r)T

= 4!

n(n + 1)(n + 2)(n + 3)
24

8. As in Example 6.5.4, the answer is the same as the num-
ber of quadruples of integers (i, j, k, m) for which I < i <

i < k < m < n. By exercise 5, this number is (n+3) =

24

10. Think of the number 20 as divided into 20 individual units
and the variables xl, x2, andX3 as three categories into which
these units are placed. The number of units in category
x, indicates the value of xi in a solution of the equation.
By Theorem 6.5.1, the number of ways to select 20 ob-
jects from the three categories is (20+3- ) = (20) = '=

231, so there are 231 nonnegative integer solutions to the
equation.

11. The analysis for this exercise is the same as for exercise
10 except that since each xi > 1, we can imagine taking 3
of the 20 units, placing one in each category xI, x2, and
X3, and then distributing the remaining 17 units among
the three categories. The number of ways to do this is
(17+3-1) = (197) = 19248 = 171, so there are 171 positive in-
teger solutions to the equation.

18. a. Because only ten eclairs are available, any selection
of 20 pastries contains k eclairs, where 0 < k < 10.
Since such a selection includes 20 - k of the other
five kinds of pastry, the number of such selections is
((20k1) = (1 k) (by Theorem 6.5.1.) Therefore,
by the addition rule, the total number of selections is

k0 (_-). The numerical value of this expression is
51,128, which can be obtained using a calculator that
automatically computes values of (C) or using a symbolic
manipulation computer program such as Derive, Maple,
or Mathematica.

b. For each combination of k eclairs and m napoleon slices,
choose 20 - (k + m) pastries from the remaining four



types. By Theorem 6.5.1, the number of ways to make
such a selection is

(20-(k + m)) + 4- - (23 -(k + mn)'

V 20 -(k + m) ) k20 -(k + m) J

Since 0 < k < 10 and 0 < m < 8, by the addition
rule the total number of selections of 20 pastries is
Y\8_5 r-IO (23-(k+m)\ Te

k koX20-(k+))' The numerical value of this
expression is 46,761.

Section 6.6
1. (g)= 0 !l = i = I

(n) n! n (n -1) (a- .

3.2 J(n -2)! 2! 2!

n(n - 1)

2
5. Proof: Suppose n and r are nonnegative integers and r < n.

Then

(n . n!

r) r!(n - r)!

n!

(n - (n -r))!(n -r)!

n!

(n -r)!(n - (n -r))!

- (n )
O- r

by Theorem 6.4.1

since n -(n -r)

n -n+r r

by interchanging the
factors in the denominator

by Theorem 6.4.1.

6. Apply formula (6.6.2) with n + k in place of n. This is legal
since n + k > 1. The result is ( n+k 1) = n + k.

9. () = (5) + (I) =10+5 = 15

(6) =(5) + (5) =5+1 =6

14. Proof by mathematical induction: Let the property P(n) be
the formula

n(i) ( ( 2)
i=2

Show that the property is true for n = 1:
To prove the property for n = 1, we must show that

E (i) ( ( 2)
i2

But

o (2) =2 (2) = (2) = 1 = (1) = (1 + 2),

so the property is true for n = 1.

Show that for anl integers k > 1, if the property is true for
n = k, then it is truefor n = k + 1:

6.6 Solutions and Hints to Selected Exercises A-53

Suppose the property

L£ () = ( )
n+2)

is true when an integer k > 1 is substituted for n. That is,
suppose

k+() =(3)

Y-2 3)
for some integer k > 1.
Inductive hypothesis

[We must show that the property =2 (2) = (nM3+) is true

when k + 1 is substitutedfor n.]

We must show that

E.= (i) =((k +2)

or, equivalently,

2 (i) = (Ik + 3)
E2 3

(*)

But the left-hand side of equation (*) is

k-i2 k+1i (k 2z (2) = z- (2) + 2)
i=2 () i=1

= ( + ) + (k + 2)

(3 2((k + 2))

= (k + 3),

by writing the last
term separately

by inductive hypothesis

by Pascal's formula

which is the right-hand side of equation (*) [as was to be
shown].

[Since we have proved the basis step and the inductive step,
we conclude that the property is true for all n > 1].

15. Hint: Use the results of exercises 3 and 14.

17. a. Cl =2 (2) = -2= 1,

C2 = 3 (4) = ' 6 = 2,

C3 = 1 (6) = . 20 = 5
4 (3) 4

19. Hint: This follows by letting m = n = r in exercise 18 and
using the result of Example 6.6.2.

Section 6.7
1. 1 + 7x + (72)x2 + (3)X + (4)x+ + (5x+6 +x7 =

1 + 7x + 21X2 + 35x3 + 35x4 + 21x5 + 7X6 + x7

3. 1 + 6(-x) + (2)(_x)2 + (3)(-x)3 + (6)(_X)4 +

(56 (-X) + (-x)6 = 1 - 6x + 15x2 -20x3 + 15x4 -

6x5 + x6
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5. (p-2q)4 = () p4-k( -2q)k

(4) p4(-2q)0 +(4) p3(-2q)'

+ (4) p
2
(-2q)

2 + (4) p (-2q)3

+ (4) p°(-2q)4

= p4 - 8p3 q + 24p 2q2 - 32pq3 + 16q4

7- ( + - ) (k) x5 k (-1)'

(51) -1( I ) o -

+ (2) x3 ()2 + (,) X2 ()I

+ (')x (-)I + G)x (-)

X5 3 10 5 1
= 5+x +IOX + - + S +x x3 5xx5

11. The term is OX -6y3= 84x6 y3 , so the coefficient is 84.

13. The term is (12)a5 (-2b)7 = 792a5(-128)b 7 =
-101,376a 5b7, so the coefficient is -101,376.

15. The term is (")(3p2)8(-2q)7 = (15)38( 2)7pI6q7 so the

coefficient is (8)3'(-2)7 =-5, 404,164,480.

17. Proof: Let a = 1, let b =-1, and let n be a positive integer.
Substitute into the binomial theorem to obtain

(I + (-1))= (k) In ik, (-O)k

since ln-k = 1.

But (I + (- ))"= O = 0, so

k=o

(0) _(1) +(2) _(3) +. _, (n)

18. Hint: 3 = 1 + 2

19. Proof: Let m be any integer with m > 0, and apply the
binomial theorem with a = 2 and b = 1. The result is

= 1 = (2 + (- 1))M = (i)2 (-1)'

= (-I)i (m 2m-.

22. Hint: Apply the binomial theorem with a =- and b = 1,
and analyze the resulting equation when n is even and when
n is odd.

24. E ()sk = T k5 =( (+5)" = 6
k=O k=O

26. ) = n ()| x = (1 +x)n

2n 2 2,, 2

28. L( l)j Xj E (1)12n-j(_XY = (1 _X) 2 n
j=0 j (J

)i 2)

=(1)=

2)" = 3"34. Y"(- 1) i ()5 2' = E )5 i(-2)' = (5

36.b.n(l+ X)n- = ((n)kXk I

k=1
[The tern corresponding to k = 0 is zero because
d (X°) = 0.]

c. (i) Substitute x 1 in part (b) above to obtain

n( +l) 1 (k) ik (n)k)
kl k

(1) .I+(2) 2+(3) 3+. (n)n

Dividing both sides by n and simplifying gives

n- [(1 ) + 2 (2) + 3 (n) + + n (n)].

Section 6.8
1. By probability axiom 2, P(0) = 0.

2. a. By probability axiom 3, P(A U B) = P(A) + P(B)
0.3 + 0.5 = 0.8.

b. Because AUBUC=S,C=S -(AUB). Thus, by
the formula for the probability of the complement
of an event, P(C) = P((A U B)') = 1 - P(A U B) =
1 - 0.8 = 0.2.

4. By the formula for the probability of a general union
of two events, P(A U B) = P(A) + P(B) - P(A n B) =
0.8 + 0.7 - 0.6 = 0.9.

7. a. P(A U B) = 0.4+0.3 =0.7
b. P(C) = P((A U B)') = 1-P(A U B) =

1 - 0.7 = 0.3
c. P(AUC)=0.4+0.3=0.7
d. P(A') = 1 - P(A) = 1 -0.4 = 0.6
e. P(Ac n Bc) = P((A U B)') = I- P(A U B) =

I - 0.7 = 0.3
f P(A' U BC) = P((A n B)c) = P(0') = P(S) = 1

9. a. P(A U B) = P(A) + P(B)-P(A n B) =
0.4 + 0.5 - 0.2 = 0.7

d. P(Ac n B') = P((A U B)l) I -P(A U B) =
1 - 0.7 = 0.3

= ' (n) (Y k _l),
k=O



11. Hint: V = (U U (V - U))

12. Hint: Use the fact that for all sets U and V, U U (V -U) =

U U V.

13. Hint: (Al U A 2 U ... U Ak) n Ak+ = 0 and

Al U A2 U U Ak U Ak1I =
(Al U A2 U U Ak) U Ak+l.

14. Solution 1: The net gain of the grand prize winner is
$2,000,000 -$2 = $1,999,998. Each of the 10,000 sec-
ond prize winners has a net gain of $20 -$2 = $18, and
each of the 50,000 third prize winners has a net gain of $4 -

$2 = $2. The number of people who do not win anything is
1,500,000- 1 - 10,000 -50,000 = 1,439,999, and each

of these people has a net loss of $2. Because all of the
1,500,000 tickets have an equal chance of winning a prize,
the expected gain or loss of a ticket is

1500000 ($1,999,998 1 + $18. 10000

+ $2 50000 + (-$2). 1,439,999) = -$0.40.

Solution 2: The total income to the lottery organizer is
$2 (per ticket) .1,500,000 (tickets) = $3,000,000. The
payout the lottery organizer must make is $2,000,000 +

($20)(10,000) + ($4)(50,000) = $2,400,000, so the net
gain to the lottery organizer is $600,000, which amounts
to "%'?0,00 = $0.40 per ticket. Thus the expected net loss to
a purchaser of a ticket is $0.40.

16. Let 21 and 22 denote the two balls with the number 2, and let
5 and 6 denote the other two balls. There are (2) = 4 subsets
of 2 balls that can be chosen from the urn. The following
table shows the sums of the numbers on the balls in each set
and the corresponding probabilities:

Subset Sum s Probability that the sum = s

{2l,221 4 6

{2,, 5}, {22, 51 7 2

{21, 61{22, 61 8 2

{5, 6} 11

So the expected value is 4 6 + 7 2 + 8. 2 + 11 I 6

7.5.

19. The following table displays the sum of the numbers show-
ing face up on the dice:

1

2

3

4

5

6

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

6.9 Solutions and Hints to Selected Exercises A-55

Each cell in the table represents an outcome whose proba-
bility is 31 Thus the expected value of the sum is

2 ( I ) + 3 (2 ) + 4 ( 33)+5(6+6(6)+73)
36 36 3

+ 8 (356) + 9 (346) + I0I (3) + 1 1 (36 ) +12 (36) = 36 = 7.

20. Hint: The answer is about 7.7 cents.

22. Hint: The answer is 1.875.

Section 6.9
P(A n B) 1/6 1

P(A I B) 1/2 3

3. a. Proof: Suppose S is any sample space and A and B are
any events in S such that P(B) 0 0. Note that
(1) A U Ac = S by the complement law for U.
(2) B n S = B by the identity law for n.
(3) B n (AUA')=(A n B)U(AC n B) by the dis-

tributive law and commutative laws for sets.
(4) (A n B) U (AC n B) = 0 by the complement law for

n and the commutative and associative laws for sets.
Thus B = (A n B) U (AC n B), and, by probability ax-
iom 3, P(B) = P(A n B) + P(Ac n B). Therefore,

P (AC n B) = P (B)-P (A n B). By definition of con-
ditional probability, it follows that

P(AC I B) = P(Ac n B) = P(B)-P(A n B)
P (B) P (B)

- ( B) 1 = 1-P(AIB).
P (B)

4. Hints: (1) A = (A n B) U (A n BC).

(2) The answer is P(A I BC) - 1() ( I )P(B )

5. Let R1 be the event that the first ball is red,
R2 be the event that the second ball is red,

B. be the event that the first ball is blue,
B2 be the event that the second ball is blue.
Then P(R,) = 20 =' P(B,) =4-= P(R2 I R-)
24 =_ P(R2 1IB)=23 P(B 2 IRj)-' 5 P(B 2 IB 1)= 14

39 13 9 39 39
a. The probability that both balls are red is P(RI n R2) =

P(R2 I R1)P(R,) = - 5 = -5 38.5%.13 8 131
b. The probability that the second ball is red but the

first ball is not is P(R2 n B,) = P(R2 I B1 )P(B1 ) -

2539 24.0%.

c. The probability that the second ball is red is
P(R2 ) = P((R2 n R1) U (R2 n B1))

= P(R2 I RI)P(RI) + P(R2 I B,)P(BI)

8 5I 5=3 9.8 2359 . 8=S= 62.5%.
d. The probability that at least one of the balls is red is

P(RI U R 2) = P(RI) U P(R2) - P(R1 n R2)

= 5 + S- 3--86.5%.
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7. a. Let WI be the event that a woman is chosen on the first
draw,
W2 be the event that a woman is chosen on the second
draw,
Ml be the event that a man is chosen on the first draw,
M2 be the event that a man is chosen on the second draw.
Then P(WI) = 3 and P(W2 I WI) = 9, and thus

P(W1 n W2) = P(W2 I W1)P(W 1) = = 113

623%.3.
C. Hint: The answer is 27 = 462 %15 3

8. Hint: Use the facts that P(Bk I A) = P(BkfnA) and that
(Arn BI) U (Afn B2) = A. P(A)

9. Hint: For the inductive step, note that given sets
B1, B2 , . . . Bk, Bk+1 that partition the sample space S, and
given a set A with P(A) i6 0, you can let B' = Bk U Bk+1.
Then B1, B2 .... Bk- , B' will also be a partition of S, and
you can apply the inductive hypothesis to these sets and A.

10. Let U1 be the event that the first urn is chosen, U2 the event
that the second urn is chosen, and B the event that the chosen
ball is blue. Then

P(BIU1 ) = 12 and P(BIU2 ) = 2

P(B n U,) = P(BIU1)P(U1) = 12 - = 12

Also

P(A n U2) = P(BIU2 )P(U2 ) = 8 -

Now B is the disjoint union of B n U, and B n U2. So

P(B) = P(BAn u) +P(Bn U2) = 12 + 8 - 46.4%.38+54

Thus the probability that the chosen ball is blue is approxi-
mately 46.4%.

12. Hint: The answers to parts (a) and (b) are approximately
52.9% and 54.0%, respectively.

13. Let A be the event that a randomly chosen person tests pos-
itive for drugs, let B1 be the event that a randomly cho-
sen person uses drugs, and let B2 be the event that a ran-
domly chosen person does not use drugs. Then A' is the
event that a randomly chosen person does not test positive
for drugs, and P(BI) = 0.04, P(B2 ) = 0.96, P(A I B2) =
0.03, and P(A' I B1) = 0.02. Hence P(AIB1) = 0.97 and
P(A'1B 2 ) = 0.98.

a. P(BI IA) P(AIB 1)P(B1)
a. PB1 J) -P(AIBI)P(BI) + P(AIB2)P(B2)

(0.97)(0.04) 57.4%

(0.97)(0.04) + (0.03)(0.96)

b. P(B21AC)= P(A'JB2)P(B2 )
P(AcIBi)P(Bl) + P(AcIB2 )P(B 2 )

(0.98)(0.96) 99.9%
(0.02)(0.04) + (0.98)(0.96)

15. Hint: The answers to parts (a) and (b) are 11.25% and 21 %,
respectively.

16. Proof: Suppose A and B are events in a sample space S,
and P(AIB) = P(A) 0 O. Then

P(BIA) P(B A) P(AIB)P(B)
P (A) P (A)

P(A) () = P(B)P
P(A)

18. As in Example 6.9.1, the sample space is the set of all 36
outcomes obtained from rolling the two dice and noting the
numbers showing face up on each. Let A be the event that
the number on the blue die is 2 and B the event that the
number on the gray die is 4 or 5. Then

A = {21, 22, 23, 24, 25, 26},

B = {14, 24, 34, 44, 54, 64, 15, 25, 35, 45, 55, 651, and

A n B = {24,251.

Since the dice are fair (so all outcomes are equally likely),
P(A) = ' , P(B) = - and P(A n B) 2 3. By definition
of conditional probability,

P(A B) = (B) 36 andP(I) P(B) 12 6
36

P(BIA) = P(-LB 6 =-P (AB) 6 36
36 3

But P(A) = 66 = and P(B)= 12 = - Hence
36 936 -

P(AIB) = P(A) and P(B I A) P(B).

21. Proof: Suppose A and B are independent events in a sam-
ple space S. By definition of independence, P (A n B) =
P(A)P(B). We must show that A' and B are also inde-
pendent. By definiiton of independence, this means that
we must show that P(Al n B) = P(A')P(B). As in the
solution to exercise 3,
(I) A U A' = S by the complement law for U.
(2) B n S = B by the identity law for n.
(3) B n (A U A') = (A n B) U (AC n B) by the distribu-

tive and commutative laws for sets.
(4) (A n B) n (Al n B) = 0 by the complement law for n

and the commutative and associative laws for sets.
Thus B = (A n B) U (A' n B), and, by probability ax-
iom 3, P(B) = P(A n B) + P(AC n B). Therefore,
P(A' n B) = P(B) -P(A n B) = P(B) -P(A)P(B)
because A and B are independent. Factoring out P(B)
gives P(A, n B) = (1 - P(A))P(B) = P(A')P(B), as
was to be shown.

Note: An alternative proof could make direct use of the
result of exercise 3.

23. Let A be the event that the student answers the first ques-
tion correctly, and let B be the event that the student an-
swers the second answer correctly. Because two choices
can be eliminated on the first question, P(A) = , and be-
cause no choices can be eliminated on the second question,
P(B) = 5. Thus P(A') = 2 and P(B')=4.



a. The probability that the student answers both questions
correctly is

P(A n B) = P(A)P(B) = 5 = 6-%.

b. The probability that the student answers exactly one
question correctly is

P((A n BC) U (AC n B))

= P(A nBC) + P(AC nB)

= P(A)P(BC) + P(AC)P(B)

1 . 4 + . 5
1 6 = = 0

- 5 3 5 =4%

c. One solution is to say that the probability that the student
answers both questions incorrectly is P(AC n BC), and

P (AC n BC) = P (AC) P (BC) by the result of exercise 22.
Thus the answer is

P(AC)P(BC) =- 2. 4 =8 531%

Another solution uses the fact that the event that the stu-
dent answers both questions incorrectly is the complement
of the event that the student answers at least one question
correctly. Thus, by the results of parts (a) and (b), the answer
is I - (l 1 + 5) = 8 = 53l%

25. Let Hi be the event that the result of toss i is heads, and
let Tj be the event that the result of toss i is tails. Then
P(Hi) =0.7andP(T7) =0.3fori = 1,2.
b. The probability of obtaining exactly one head is

P((HI n T2) U (T1 n H2))

= P(H, n T2) + P(T, n H2 )

= P(H,)P(T2 ) + P(T,)P(H2 )

= (0.7)(0.3) + (0.3)(0.7) = 42%.

27. Hint: The answer is 2

28. a. P(seven heads)

the number of different
= ways seven heads can (0.7)7 (0. 3)3

be obtained in ten tosses

= 120(0.7)7(0.3)3 - 0.267 = 26.7%.

29. a. P(none is defective)

the number of different
= ways of having 0 defective (0.03)0(0.97)10

items in the sample of 10

-1 (0.3.)°(0.97)'° - 0.737 = 73.7%

30. b. The probability that a woman will have at least one false
positive result over a period of ten years is
I - (0.96)10 -. 33.5%.

31. a. P(none is male) 1.3%
b. P(at least one is male) = 1 -P(none is male)

I - 0.013 = 98.7%

Section 7. 1
1. a. domain of f = {1, 3, 51, co-domain of f = {s, t, u, v}

7.1 Solutions and Hints to Selected Exercises A-57

b. f(l) = v, f(3) = s, f(5) = v
c. range of f = Is, v)
d. yes, no
e. inverse image of s = {3}, inverse image of u = 0, inverse

image of v = {1, 5}
f. {(I, v), (3, s), (5. v))

3. a. This arrow-diagram does not define a function because
there are two arrows coming out of the 2.

b. This diagram does not define a function because the ele-
ment 5 in the domain is not related to any element in the
co-domain. (There is no arrow coming out of the 5.)

4. a. True. The definition of function says that for any input
there is one and only one output, so if two inputs are
equal, their outputs must also be equal.

c. True. The definition of function does not prohibit this
occurrence.

5. a. There are four functions from X to Y as shown below.

X y X y

x Y X Y

6. a. The answer is 4 . 4 . 4 = 43 = 64. Imagine creating a
function from a 3-element set to a 4-element set as a
three-step process: Step 1 is to send the first element of
the 3-element set to an element of the 4-element set (there
are four ways to perform this step); step 2 is to send the
second element of the 3-element set to an element of the
4-element set (there are also four ways to perform this
step); and step 3 is to send the third element of the 3-
element set to an element of the 4-element set (there are
four ways to perform this step). Thus the entire process
can be performed in 4 4 4 different ways.

7. For allx eR,

2x 3 + 2x 2x(x 2 + 1)

g(x) = x2 + 1 x 2 +

=2x f (x) since x2 + I - 0 for
any real number x.

Hence f = g.

9. F. G and G * F are equal because for all real numbers x,

(F . G)(x) = F(x) . G(x) by definition of F. G

= G(x) . F(x) by the commutative law of
multiplication of real numbers

= (G . F)(x) by definition of C F.
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11. a. e b. bik

12. a. The sequence is given by the function f: Z.onneg -* R
defined by the rule

( 1)"
f (n) = 2 1 for all nonnegative integers n.

2n ± 1

13. a.
C.

14.

C. 1 2 3 1 2 3

2 3 1 3 1 2
28. a. Domain off Co-domain off

I [because there is an odd number ofelements in { 1, 3, 4)]
0 [because there is an even number of elements in {2, 3)1

f (aba) = 0 [because there are no b's to the left
of the left-most a in aba]

f (bbab) = 2 [because there are two b's to the left
of the left-most a in bbab]

f (b) = 0 [because the string b contains no a's]

range of f - zrwmneg

15. a. 23 = 8 c. 4' = 4

16. a. log3 81 -4 because 34 = 81
C. 1og3 (21) = -3 because 3-3 = I 7

17. Let b be any positive real number with b 0 1. Since b = b,
by definition of logarithm, log, b = 1.

19. Proof: Suppose b and u are any positive real numbers. [We
must show that log, (,) - -logb(u).] Let v = log, (-).
By definition of logarithm, bV - I Multiplying both sides
by u and dividing by bV gives u -b, and thus, by defini-
tion of logarithm, -v = log,(u). Now multiply both sides
of this equation by -I to obtain v -log, (u). There-
fore, log, ( ) =-log,,b(u) because both expressions equal
v. [This is what was to be shown.]

20. Hint: Use a proof by contradiction. Suppose log3 7 is ratio-
nal. Then log3 7 = - for some integers a and b with b A 0.
Apply the definition of logarithm to rewrite log3 7 =a in
exponential form.

21. Suppose b and y are positive real numbers with logb Y = 3.
By definition of logarithm, this implies that b3 

= y. Then

y - b3 (i 3 b
b3 ( b

Thus, by definition of logarithm (with base 1/b),

lg91b(Y) = 3.

23. a. pi(2 ,y)= 2 , pi(5,x)=5,rangeofp-={2,3,5)

24. a. mod(67, 1O) = 7 and div(67, 10) = 6 since 67 =

10. 6 + 7.

25. a. E(0110) = 000111111000 and
D(111111000111) - 1101

26. a. H(10101, 00011) 3

27. a. 1 2 3 1 2 3 1 2 3

1 2 3 2 1 3 3 2 1

1 2 3 1 2 3 1 2 3

1 3 2 2 3 1 3 1 2

30. a.f(l,,l)=(4.1+3.1+2. 1)mod2=9mod2=1
f(0,0, 1)=(4.0+3.0+2. I)mod2=2mod2=0

31. g is not well-defined. Suppose g were well-defined. Then
g(1/2) = g(2/4) since 1/2 = 2/4, but also g(l/2) 7

g(2/4) because g(l/2) = 1 -2 =- I and g(2/4) =

2 -4 =-2. This contradiction shows that the supposition
that g is well-defined is false. Hence g is not well-defined.

35. a. 4'(15) = 8 [because 1, 2, 4, 7, 8, 11, 13, and 14
have no commonfactors with 15 other
than i1]

b. (2) = I [because the only positive integer less
than or equal to 2 having no common
factors with 2 other than +I is 1]

c. 0(5) = 4 [because 1, 2, 3, and4havenocommon
factors with 5 other than +I]

36. Proof: Let p be any prime number and n any integer with
n > 1. There are pn-i positive integers less than or equal
to pn that have a common factor other than +1 with pn,
namely p, 2 p, 3p, ... , (p'-')p. Hence, by the difference
rule, there are pn - pe'- positive integers less than or equal
to pn that have no common factor with pn except i 1.

37. Hint: Use the result of exercise 36 with p = 2.

38. Hint: Let A and B be the sets of all positive integers less
than or equal to n that are divisible by p and q, respectively.
Then 0(n) = n -(N(A U B)).

40. The statement is true. Proof: Let f be a function from X to
Y,andsupposeA C X, B C XandA C B. Lety E f(A).

[We must show that y E f(B)]. Then, by definition of image
of a set, y = f(x) for some x E A. Since A C B, x E B,
and so y = f (x) for some x E B. Hence y E f (B) [as was
to be shown].

42. The statement is false. Counterexample: Let X - {1, 2, 3),
letY = {a,b),anddefineafunctionf: X -) Ybythearrow
diagram shown below.

Let A = {1, 2) and B = {1, 3). Then f(A) = {a, bl =

f(B), and so f(A)nff(B)={ab). But f(A nB)=
f({I}) = {a} # {a,b). Andsof(A) n f(B) 0 f(A n B).
(This is just one of many possible counterexamples.)



44. The statement is true. Proof: Let f be a function from a set
X to a set Y, and suppose C C Y, D C Y. and C C D. [We
must show that f -l (C) C f `(D)]. Suppose x e f -' (C).
Then f (x) E C. Since C C D, f (x) e D also. Hence by
definition of inverse image, x E f -'(D). [So f -'(C) C
f l (D)].

45. Hint: x e f -'(C U D) f (x) e C U D f (x) e C or
f(x) e D

Section 7.2
1. The second statement is the contrapositive of the first.

2. a. most b. least

3. Consider the function defined by the arrow diagram shown
below:

Observe that a is sent to exactly one element of Y, namely,
u, and b is also sent to exactly one element of Y, namely,
u also. So it is true that every element of X is sent to ex-
actly one element of Y. But f is not one-to-one because
f (a) = f (b) but a A b. Note that to say, "Every element
of X is sent to exactly one element of Y" is just another way
of saying that in the arrow diagram for the function there is
only one arrow coming out of each element of X. But this
statement is part of the definition of any function, not just
of a one-to-one function.

4. Hint: The statement is true.

5. Hint: One of the incorrect ways is (b).

6. a. f is not one-to-one because f (1) = 4 = f (9) and 1 5 9.
f is not onto because f (x) A 3 for any x in X.

b. g is one-to-one because g(1) A g(5), g(1) 0 g(9), and
g(5) A g(9). g is onto because each element of Y is the
image of some element of X: 3 = g(5), 4 = g(9), and
7 = g(l).

7. a. F is not one-to-one because F(c) = x = F(d) and
c 0 d. F is onto because each element of Y is the image
of some element of X: x = F(c) = F(d), y = F(a),
and z = F(b).

9. a. One example of many is the following:

X Y

10. a. There are four choices for where to send the first element
of the domain (any element of the co-domain may be cho-
sen), three choices for where to send the second (since the
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function is one-to-one, the second element of the domain
must go to a different element of the co-domain from the
one to which the first element went), and two choices for
where to send the third element (again since the function
is one-to-one). Thus the answer is 4. 3 * 2 = 24.

b. none
e. Hint: The answer is

n(n-1) ... (n -m + 1).

11. a. Let the elements of the domain be called a, b, and c and
the elements of the co-domain be called u and v. In or-
der for a function from {a, b, c) to (u, v} to be onto, two
elements of the domain must be sent to u and one to v, or
two elements must be sent to v and one to u. There are as
many ways to send two elements of the domain to u and
one to v as there are ways to choose which elements of
{a, b, c} to send to u, namely, (3) = 3. Similarly, there
are (3) = 3 ways to send two elements of the domain
to v and one to u. Therefore, there are 3 + 3 = 6 onto
functions from a set with three elements to a set with two
elements.

c. Hint: The answer is 6.
d. Consider functions from a set with four elements to

a set with two elements. Denote the set of four ele-
ments by X = {a, b, c, d} and the set of two elements
by Y = {u, v). Divide the set of all onto functions from
X to Y into two categories. The first category consists
of all those that send the three elements in {a, b, c} onto
{u, v} and that send d to either u or v. The functions in
this category can be defined by the following two-step
process:
Step 1: Construct an onto function from la, b, c} to

{u, v}.

Step 2: Choose whether to send d to u or to v.

By part (a), there are six ways to perform step 1, and, be-
cause there are two choices for where to send d, there are
two ways to perform step 2. Thus, by the multiplication
rule, there are 6. 2 = 12 ways to define the functions in
the first category.

The second category consists of all those onto functions
from X to Y that send all three elements in {a, b, c} to
either u or v and that send d to whichever of u or v is
not the image of the others. Because there are only two
choices for where to send the elements in {a, b, c}, and
because d is simply sent to wherever the others do not
go, there are just two functions in the second category.

Every onto function from X to Y either sends d to a sin-
gle element of Y or it does not. If it sends d to a single
element of Y, then it is in the second category. If it does
not, then the image of la, b, c} is Iu, v} and so the "re-
striction" of the function to {a, b, c) is onto. Therefore,
the function is one of those included in the first category.
Thus all onto functions from X to Y are in one of the two
categories and no function is in both categories, and so
the total number of onto functions is 12 + 2 = 14.
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f. Hint: Let X be a set with m elements and Y be a set with
n elements, where m > n > 1, and let x E X. Then

[ [the number of onto I
[functions from X to YJ

the number of onto 1
- functions for which

f -'(f (x)) has more
than one element

the number of onto
+ functions for which [Why?]

f '(f(x)) has one I
element

12. a. (i) f is one-to-one: Suppose f(nI) = f(n 2 ) for some
integersn, andn 2 . [We mustshow thatn - n2]. By
definition of f, 2nI = 2n2 , and dividing both sides by
2 gives nI = n2, as was to be shown.

(ii) f is not onto: Consider 1 E Z. We claim that
I A f(n), for any integer n, because if there were
an integer n such that 1 = f (n), then, by definition
of f, 1 = 2n. Dividing both sides by 2 would give
n = 1/2. But 1/2 is not an integer. Hence 1 A f (n)
for any integer n, and so f is not onto.

b. h is onto: Suppose m E 2Z. [We must show that
there exists an integer n such that h(n) = m]. Since
m E 2Z, m = 2k for some integer k. Let n = k. Then
h(n) = 2n = 2k = m. Hence there exists an integer
(namely, n) such that h(n) = m. This is what was to
be shown.

14. a. (i) H is not one-to-one: H(l) =1 = H(-1) but
l A -1.

(ii) H is not onto: H(x) -1 for any real number x
(since no real numbers have negative squares).

15. The "proof" claims that f is one-to-one because for each
integer n there is only one possible value for f (n). But to
say that for each integer n there is only one possible value
for f (n) is just another way of saying that f satisfies one
of the conditions necessary for it to be a function. To show
that f is one-to-one, one must show that any integer n has a
different function value from that of the integer m whenever
n :Am.

16. f is one-to-one. Proof: Suppose f(xO) = f(x 2 ) where
xi and x2 are nonzero real numbers. [We must show that

xI = x2]. By definition off,

xl + I X2 + I

Xi X2

cross-multiplying gives

X1X2 + X2 = X1X2 + X],

and so

xI = x2  by subtracting XlX2
from both sides

[This is what was to be shown.]

17. f is not one-to-one. Note that

X2 + 2 + X xx2 + xl = X2XI2 + X2

X xx 2 2
2 

X2 Xj = X2 -xI

=>XIX2 (X 2 -X) = X2-X

xI = x 2 or xIx2 =1.

Thus for a counterexample take any xi and x2 with xi A x2
but xIx2 = 1. For instance, take x, = 2 and x2 = 1/2.
Then f(xi) = f(2) = 2/5and f(x2 ) = f(1/2) = 2/5, but
2 0 1/2.

20. a. Note that because 4173"2072 59614581.7 and
417302072 - 7 .59614581 = 5,
h (417-30-2072) = 5. But position 5 is already occupied,
so the next position is checked. It is free, and thus the
record is placed in position 6.

21. Recall that Lx] = that unique integer n such that n < x <
n + 1.
a. Floor is not one-to-one:

Floor(O) = 0 = Floor (1/2) but 0 A 1/2.
b. Floor is onto: Suppose m E Z. [We must show that

there exists a real number y such that Floor(y) = m.]
Let y = m. Then Floor(y) = Floor(m) = m since m is
an integer. (Actually, Floor takes the value m for all real
numbers in the interval m < x < m + 1.) Hence there
exists a real number y such that Floor(y) = m. This is
what was to be shown.

22. a. I is not one-to-one: 1(0) = 1(1) = I but 1 #4 0.
b. I is onto: Suppose n is a nonnegative integer. [We must

show that there exists a string s in S such that I(s) = n.]
Let

-= e (the null string) ifn = 0
tO 0...0 ifn > 0

n O's

Then I (s) = the length of s = n. This is what was to be
shown.

24. a. F is not one-to-one: Let A = {a} and B = (b{. Then
F(A) = F(B) = 1 but A A B.

25. b. N is not onto: The number 1 is in Z but N(s) # -1
for any string s in S because no string has a negative
number of a's.

28. a. Let x = log8 27 and y = log2 3. [The question is: Is
x = y ?] By definition of logarithm, both of these equa-
tions can be written in exponential form as

8x = 27 and 2Y = 3.

Now 8 = 23. So

8X = (23)X = 23X

Also 27 = 33 and 3 = 2Y. So

27 = 33 = (2y)' = 2
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Hence, since 8' = 27,

23~ = 2 3y.

By (7.2.5), then,

3x = 3y,

and so

x = y.

But x = log8 27 and y = log2 3, and so log8 27 = y =
log2 3 and the answer to the question is yes.

29. Proof: Suppose that b, x, and y are positive real numbers
and b : 1. Let u = log,(x) and v = log,(y). By defini-
tion of logarithm, bu = x and bV = y. By substitution, X =

bu = bU by (7.2.3) and the fact that b-' = Tv ] Translat-
ing X = b- into logarithmic form gives logb( ) = u -v,

and so, by substitution, logb(l) = logb(x) -logb(y) [as
was to be shown].

31. Proof: Suppose a, b, and x are [particular but arbitrarily
chosen] real numbers such that b and x are positive and
b A 1. [We must show that logb(x") = a logbX.] Let

r = logb(x") and s = log1 x

By definition of logarithm, these equations may be written
in exponential form as

(*) br= xa and (**) bs x

Then

br = Xa = (bs)a by substituting (**) into (*)

= b sa by (7.2.2.)

It follows from property (7.2.5) that r - sa, which equals
as. Substituting the values of r and s into this equation
yields logb (x) = a log, x [as was to be shown.]

32. No. Counterexample: Define f: R -- R and g: R -* R
as follows: f (x) = x and g(x) =-x for all real numbers
x. Then f and g are both one-to-one [because for all real
number xl and X2, if f(XI) = f(x 2 ) then xi = X2, and if
g(Xi) = g(X2) then -xI = -X 2 and so xi = X2 also], but
f + g is not one-to-one [because f + g satisfies the equa-
tion (f + g)(x) - x + (-x) = 0 for all real numbers x,
and so, for instance, (f + g) (l) = (f + g) (2) but 1 # 2].

34. Yes. Proof: Let b be a one-to-one function from R to R,
and let c be any nonzero real number. Suppose (cf)(xi) =

(cf)(x2 ). [We mustshow thatxl =x25.] It follows by defini-
tionofcf thatcf(x1 ) = cf(x2 ). Sincec 7& O,wemaydivide
both sides of the equation by c to obtain f(x1) = f(x 2). But
since f is one-to-one, this implies that xi = X2 [as was to
be shown.]

36.

38. The function is not onto. Hence it is not a one-to-one cor-
respondence.

39. The answer to exercise 12(b) shows that h is onto. To show
that h is one-to-one, suppose h(n I) - h(n 2). By definition
of h, this implies that 2n, = 2n2. Dividing both sides by 2
gives nI = n2. Hence h is one-to-one.

Given any even integer m, if m = h (n), then by definition
of h, m = 2n, and so n -m/2. Thus

h-1 (m) = for allm e 2Z.
2

40. The function g is not a one-to-one correspondence because
it is not onto. For instance, if m = 2, it is impossible to
find an integer n such that g(n) = m. (This is because if
g(n) = m, then 4n-5 = 2, and so n = 4. Thus the only
number n with the property that g (n) = m is 7. But 2 is not
an integer.)

43. The function is not one-to-one. Hence it is not a one-to-one
correspondence.

44. The function is not one-to-one. Hence it is not a one-to-one
correspondence.

48. The answer to exercise 16 shows that f is one-to-one, and
if the co-domain is taken to be the set of all real numbers
not equal to 1, then f is also onto. [The reason is that given
any real number y 0 1, if we take x = v then

t~) (1 > l + (Y - 1)

y -1

f I (Y) for each real number y # 1.
Y I

49.

53.

Hint: Is there a real number x such that f (x) = 1?

Hint: Let a function F be given and suppose the do-
main of F is represented as a one-dimensional array
a[l], a[2], .. ., a[n]. Introduce a variable answer whose
initial value is "one-to-one." The main part of the body of
the algorithm could be written as follows:

while (i < n - I and answer = "one-to-one")

j := i + 1
while (j c n and answer = "one-to-one")

if (F(a[i]) = F(a[j]) and a[i] a[j])
then answer := "not one-to-one"
j := j + 1

end while
i := i +1

end while

What can you say if execution reaches this point?
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54. Hint: Let a function F be given and suppose the domain
and co-domain of F are represented by the one-dimensional
arrays a[l],a[2],...,a[n] and b[l],b[2],...,b[m], re-
spectively. Introduce a variable answer whose initial
value is "onto." For each b[i] from i = I to m, make a
searchthrougha[l], a[2], . . , a[n] tocheckwhetherb[i] =
F (a [j]) for some a [j]. Introduce a Boolean variable to indi-
cate whether a search has been successful. (Set the variable
equal to 0 before the start of each search, and let it have the
value I if the search is successful.) At the end of each search,
check the value of the Boolean variable. If it is 0, then F is
not onto. If all searches are successful, then F is onto.

Section 7.3
1. a. No. For instance, the aces of the four different suits could

be selected.
b. Yes. Let xl, x2 , x3 , x4 , x5 be the five cards. Consider the

function S that sends each card to its suit.

5 cards (pigeons)

S

S(x,) = the suit
of xi

4 suits (pigeonholes)

* diamond

* heart

C pd

7.

9.

By the pigeonhole principle, S is not one-to-one:
S(xi) = S(xj) for some two cards xi and Xj. Hence at
least two cards have the same suit.

3. Yes. Denote the residents by xl, x2, . ., X500. Consider the
function B from residents to birthdays that sends each resi-
dent to his or her birthday:

500 residents (pigeons) 366 birthdays (pigeonholes)

B

B(xi) = the birthday LJn 1
of xi * Jan 2

* Jan 3

Dec 31

2. Thus, by the pigeonhole principle, if four integers are
each divided by 3, then at least two of them must have
the same remainder.

More formally, call the integers nI, n2, n3 , and n4, and
consider the function R that sends each integer to the
remainder obtained when that integer is divided by 3:

4 integers (pigeons)

n2  R

n3.

n4

R

'(ni) = the remain
obtained
is divided

3 remainders (pigeonholes)

.0

inder 1
when ni
lby 3 @2

By the pigeonhole principle, R is not one-to-one,
R(n,) = R(nj) for some two integers ni and nj. Hence
at least two integers must have the same remainder.

b. No. For instance, {0, 1, 2) is a set of three integers no two
of which have the same remainder when divided by 3.

Hint: Look at Example 7.3.3.

a. Yes.

Solution 1: Only six of the numbers from I to 12 are even
(namely, 2, 4, 6, 8, 10, 12), so at most six even numbers
can be chosen from between I and 12 inclusive. Hence
if seven numbers are chosen, at least one must be odd.

Solution 2: Partition the set of all integers from 1 through
12 into six subsets (the pigeonholes), each consisting
of an odd and an even number: {1, 2}, {3, 41, 15, 6},
(7, 81, (9, 10}, {11, 12}. If seven integers (the pigeons)
are chosen from among 1 through 12, then, by the pi-
geonhole principle, at least two must be from the same
subset. But each subset contains one odd and one even
number. Hence at least one of the seven numbers is odd.

Solution 3: Let S = {xI, x 2, x 3, x 4, x 5, x 6, x 7} be a set
of seven numbers chosen from the set T =
{1,2,3,4,5,6,7,8,9, 10, 11, 121, and let P be the
following partition of T: (1, 21, (3, 41, (5, 6}, {7, 81,
{9, 10}, and {11, 121. Since each element of S lies in
exactly one subset of the partition, we can define a func-
tion F from S to P by letting F(xi) be the subset that
contains xi.

S (pigeons)

F

F(xi) = the subset
that
contains xi

By the pigeonhole principle, B is not one-to-one: B (xi) =
B(xj) for some two residents xi and xj. Hence at least two
residents have the same birthday.

5. a. Yes. There are only three possible remainders that can
be obtained when an integer is divided by 3: 0, 1, and

P (pigeonholes)

* {3, 4)

0(5,6)
*{7,81

* {9, 10)



Since S has 7 elements and P has 6 elements, by the
pigeonhole principle, F is not one-to-one. Thus two dis-
tinct numbers of the seven are sent to the same subset,
which implies that these two numbers are the two distinct
elements of the subset. Therefore, since each pair con-
sists of one odd and one even integer, one of the seven
numbers is odd.

b. No. For instance, none of the 10 numbers 1, 3, 5, 7, 9,
11, 13, 15, 17, 19 is even.

10. Yes. There are n even integers in the set {1, 2, 3, ... , 2n},
namely 2(= 2. 1), 4(= 2 . 2), 6(= 2 . 3), ... , 2n(= 2 . n).
So the maximum number of even integers that can be cho-
sen is n. Thus if n + 1 integers are chosen, at least one of
them must be odd.

12. The answer is 27. There are only 26 black cards in a stan-
dard 52-card deck, so at most 26 black cards can be chosen.
Hence if 27 are taken, at least one must be red.

14. There are 61 integers from 0 to 60 inclusive. Of these, 31 are
even (0=2 0,2=2 1,4=2 2,...,60=2 .30) and
so 30 are odd. Hence if 32 integers are chosen, at least
one must be odd, and if 31 integers are chosen, at least one
must be even.

17. The answer is 8. (There are only seven possible remainders
for division by 7: 0, 1, 2, 3, 4, 5, 6.)

20. The answer is 20,483 [namely, 0, 1, 2,..., 20482].

22. This number is irrational; the decimal expansion neither ter-
minates nor repeats.

24. Let A be the set of the thirteen chosen numbers, and let B
be the set of all prime numbers between I and 40. Note that
B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}. For each x

in A, let F(x) be the smallest prime number that divides
x. Since A has 13 elements and B has 12 elements,
by the pigeonhole principle F is not one-to-one. Thus
F(xl) = F(x2 ) for some x1 A x2 in A. By definition of
F, this means that the smallest prime number that divides
x, equals the smallest prime number that divides x2. There-
fore, two numbers in A, namely x, and x2, have a common
divisor greater than 1.

25. Yes. This follows from the generalized pigeonhole principle
with 30 pigeons, 12 pigeonholes, and k = 2, using the fact
that 30 > 2. 12.

26. No. For instance, the birthdays of the 30 people could be
distributed as follows: three birthdays in each of the six
months January through June and two birthdays in each of
the six months July through December.

29. The answer is x = 3. There are 18 years from 17 through
34. Now 40 > 18 . 2, so by the generalized pigeonhole prin-
ciple, you can be sure that there are at least x = 3 students
of the same age. However, since 18 -3 > 40, you cannot
be sure of having more than three students with the same
age. (For instance, three students could be each of the ages
17 through 20, and two could be each of the ages from 21
through 34.) So x cannot be taken to be greater than 3.

31. Hint: Use the same type of reasoning as in Example 7.3.6.

7.4 Solutions and Hints to Selected Exercises A-63

32. Hints: (1) The number of subsets of the six integers is
26 = 64. (2) Since each integer is less than 13, the largest
possible sum is 57. (Why? What gives this sum?)

34. Hint: Let X be the set consisting of the given 52
positive integers, and let Y be the set containing the fol-
lowing elements: (00), {50), {01, 99}, {02, 98}, {03, 971,
.{. . {48, 52), (49, 51). Define a function F from X to Y
by the rule F(x) = the set containing the last two digits
of x. Use the pigeonhole principle to argue that F is not
one-to-one, and show how the desired conclusion follows.

35. Hint: Representeach of the 101 integersxi asai2 ki where ai
is odd and ki > 0. Now I < xi < 200, and so I < ai < 199
for all i. There are only 100 odd integers from 1 to 199
inclusive.

36. b. Hint: For each k = 1, 2, . n, let ak = xI + x2 +
.*. + xk. If some ak is divisible by n, then the problem
is solved: the consecutive subsequence is xi, x2, X . , Xk.
If no ak is divisible by n, then a,, a2, a3, . . ., an satisfies
the hypothesis of part (a). Hence a -ai is divisible by
n for some integers i and j with j > i. Write aj - a, in
terms of the xi's to derive the given conclusion.

37. Hint: Let a,, a2 , . . , an2+1 be any sequence of n2 + 1 dis-
tinct real numbers, and suppose that this sequence contains
neither a strictly increasing subsequence of length n + 1
nor a strictly decreasing subsequence of length n + 1. Let
S be the set of all ordered pairs of integers (i, d), where
I < i < n and 1 < d < n. For each term ak in the sequence,
let F(ak) = (ik, dk), where ik is the length of the longest in-
creasing sequence starting at ak, and dk is the length of the
longest decreasing sequence starting at ak. Suppose that F
is one-to-one and derive a contradiction.

Section 7.4
1. g o f is defined as follows:

(g o f)(1) = g(f(1)) = g(5) = 1,

(g o f)(3) = g(f(3)) = g(3) = 5,

(g o f)(5) g(f (5)) =g(l) =3.

f o g is defined as follows:

(f o g)(1) = f(g(l)) =
(f og)(3) = f(g(3)) =

(f og)(5) = f(g(5)) =

f(3) = 3,

f(S) = 1,

f(1) = 5.

Then g o f 7 f o g because, for example, (g o f)(l) #
(f o g)(1).

3. (G o F)(x) = G(F(x)) = G(x3 ) = x
3 

-I for all real
numbers x.
(F o G)(x) = F(G(x)) = F(x - 1) = (x -1)3 forall real
numbers x.
G o F oF G because, for instance, (G o F)(2) =
23-1 = 7, whereas (F o G)(2) = (2- 1)3 = 1.

5. G o F is defined by (G o F)(n) = n, for all integers
n, because for any integer n, (G o F)(n) = G(F(n)) =
G(2n) = L2 n = n. F o G is defined by
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(F o G)(n) = 2 [nJ, for all integers n, because for any in-
tegern, (F o G)(n) = F(G(n)) = F(LfJ) = 2 L[J. Then
G o F A F o G because, for instance, (G o F)(3) = 3,
whereas (F o G)(3) = 2 1= 2 1 = 2.

7. (T o L)(abaa) = T(L(abaa)) = T(4) = 4mod 3 = 1
(T o L)(baaab) = T(L(baaab)) = T(5) = 5 mod 3 = 2
(T o L)(aaa) = T(L(aaa)) = T(3) = 3 mod 3 = 0

9. (F-' o F)(x) = F-1 (F(x)) = F-1 (3x + 2)

(3x + 2) - 2 3x

3 3

for all x in R. Hence F 1 o F = iR by definition of equality
of functions.

(F o F-')(y) = F(F-'(y)) = F y-2)

= 3(y )+2=(y -2)+2

= y = iR(Y)

for all y in R. Hence F o F- 1 = iR by definition of equality
of functions.

12. a. By definition of logarithm with base b, for each real
number x, log, (bx) is the exponent to which b must be
raised to obtain bV. But this exponent is just x. So
logb (bx) = x.

13. Hint: Suppose f is any function from a set X to a set Y,
and show that for all x in X, (iy o f)(x) = f (x).

15.

16.
a. Sk = S-

No. Counterexample: Define f and g by the arrow dia-
grams below.

f y g

Then g o f is one-to-one but g is not one-to-one. (So it
is false that both f and g are one-to-one by De Morgan's
law!) (This is one counterexample among many. Can you
construct a different one?)

18. Hint: Suppose f: X -+ Y and g: Y -* Z are functions and
g o f is one-to-one. Given x, andx 2 in X, if f (xI) = f(X 2 )

then (g a f)(xl) = (g a f)(x2). (Why?) Then use the fact
that g o f is one-to-one.

19. Hint: Suppose f: X -* Y and g: Y -* Z are functions and
g o f is onto. Given z E Z, there is an element x in X
such that (g o f )(x) = z. (Why?) Let y = f (x). Then

g(Y) = z.

21. True. Proof: Suppose X is any set and f, g, and h are func-
tions from X to X such that h is one-to-one and h o f =
h o g. [We must show that for all x in X, f (x) = g(x).]
Suppose x is any element in X. Because h o f = h o g, we
have that (h o f)(x) = (h o g)(x) by definition of equality

of functions. Then, by definition of composition of func-
tions, h(f (x) = h(g(x)). But since h is one-to-one, this
implies that f (x) = g(x) [as was to be shown.]

23.
X . f z (g f)-I

U.11 s

Z f- og-
1  

X

The functions (g o f) and f o g are equal.

26. Hints: (1) Theorems 7.4.3 and 7.4.4 taken together ensure
that g o f is one-to-one and onto. (2) Use the inverse func-
tion property: F -'(b) = a * F (a) = b, for all a in the do-
main of F and b in the domain ofF 1.

27. Counterexample: Let X = {1, 21, Y = {3), and A = {1},
and define f: X -* Y by specifying that f (l) = f(2) =
3. Then F(A) = {3},andf -'(f(A)) = f -'({31) = {1,2}.
Thus f -'(f (A)) # A. (This is one counterexample among
many. Can you construct a different one?)

29. Proof: Let f: X -* Y be any function, and let C be any
subset of Y. Suppose y E f (f -' (C)). [We must show that
y E C.] Then, by definition of image of a set, y = f (x) for
some x e f -' (C), and so, by definition of inverse image of
a set, f (x) E C. Hence y e C [as was to be shown.]

Section 7.5
1. The student should have replied that for A to have the same

cardinality as B means that there is a function from A to B
that is one-to-one and onto. A set cannot have the property
of being one-to-one or onto another set; only a function can
have these properties.

2. Define a function f: Z+ -* S as follows: For all positive
integers k, f (k) = k2.

f is one-to-one: [We must show that for all k1, k2 E Z+, if
f (ki) = f (k 2)thenki = k2.] Supposek, andk2 arepositive
integers and f (kl) =f (k2). By definition of f, (kl) 2 = (k2)

2,
so k, = 1k 2. But k, and k2 are positive. Hence k1 = k2.

f is onto: [We must show that for all n E S, there exists
k e Z+ such that n = f (k)]. Suppose n E S. By defini-



tion of S, n = k2 for some positive integer k. But then by
definition of f, n = f (k).
Since there is a one-to-one, onto function (namely, f) from
Z+ to S, the two sets have the same cardinality.

3. Define f: Z -* 3Z by the rule f (n) = 3n for all integers n.
The function f is one-to-one because for any integers n 1 and
n2, if f (ni) = f (n2) then 3n, = 3n2 and so n1 = n2. Also
f is onto because if m is any element in 3Z, then m = 3k for
some integer k. But then f (k) = 3k = m by definition of f .
Thus, since there is a function f: Z -* 3Z that is one-to-one
and onto, Z has the same cardinality as 3Z.

6. Hint: If m e 2Z, show that J(m) = J(m + 1) = m.

7. b. For each positive integern, F(n) = (-1)' L2J.
8. It was shown in Example 7.5.2 that Z is countably infinite,

which means that Z+ has the same cardinality as Z. By ex-
ercise 3, Z has the same cardinality as 3Z. It follows by the
transitive property of cardinality (Theorem 7.5.1 (c)) that
Z+ has the same cardinality as 3Z. Thus 3Z is countably
infinite [by definition of countably infinite], and hence 3Z is
countable [by definition of countable].

10. Proof: Define f: S -÷ U by the rule f (x) = 2x for all real
numbers x in S. Then f is one-to-one by the same argument
as in exercise 12a of Section 7.2 with R in place of Z. Fur-
thermore, f is onto because if y is any element in U, then
0 < y < 2andso0 < y/2 < 1. Consequently, y/2 E Sand
f (y/2) = 2(y/2) = y. Hence f is a one-to-one correspon-
dence, and so S and U have the same cardinality.

11. Hint: Define h: S -+ V as follows: h(x) = 3x + 2, for all
X E S.

13.

I
x

It is clear from the graph that f is one-to-one (since it is
increasing) and that the image of f is all of R (since the
lines x = 0 and x = 1 are vertical asymptotes). Thus S and
R have the same cardinality.

16. In Example 7.5.4 it was shown that there is a one-to-one
correspondence from Z' to Q+. This implies that the posi-
tive rational numbers can be written as an infinite sequence:
ri, r2, r3, r4, .... Now the set Q of all rational numbers con-
sists of the numbers in this sequence together with 0 and
the negative rational numbers: -ri, -r 2, -r 3 , -r4 , .... Let
ro = 0. Then the elements of the set of all rational numbers

18.

19.
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can be "counted" as follows:

ro, r1 , -ri, r2 , -r 2 , r3 , -r 3 , r 4 , -r 4 ,.

In other words, we can define a one-to-one correspondence

G(n) = |r,/2  if n is even for all integers n > 1.
-r(,-1)12 if n is odd

Therefore, Q is countably infinite and hence countable.
Hint: No.

Hint: Suppose r and s are real numbers with s > r > 0. Let

n be an integer such that n > X- . Then s r>
s-nr n

Let mn= L i + 1. Then m > > m -1. Use the

/2-m
fact that s = r + (s -r) to show that r < - < s.

n
22. Hint: Use the unique factorization theorem (Theorem 3.3.3)

and Theorem 7.5.3.

23. a. Define a function G: Zn onneg X Zno,,eg as fol-
lows: Let G(0) = (0, 0), and then follow the arrows in
the diagram, letting each successive ordered pair of in-
tegers be the value of G for the next successive inte-
ger. Thus, for instance, G(1) = (1, 0), G(2) = (0, 1),
G(3) = (2, 0), G(3) = (1, 1), G(4) = (0, 2),
G(5) = (3, 0), G(6) =(2, 1), G(7) = (1, 2), and so
forth.

b. Hint: Observe that if the top ordered pair of any given
diagonal is (k, 0), the entire diagonal (moving from top
to bottom) consists of (k, 0), (k - 1, 1), (k - 2, 2), . . .
(2, k - 2), (1, k - 1), (0, k). Thus for all the ordered
pairs (m, n) within any given diagonal, the value of
m + n is constant, and as you move down the ordered
pairs in the diagonal, starting at the top, the value of the
second element of the pair keeps increasing by 1.

25. Hint: There are at least two different approaches to this
problem. One is to use the method discussed in Section
3.2. Another is to suppose that 1.999999 ... < 2 and derive
a contradiction. (Show that the difference between 2 and
1.999999 ... can be made smaller than any given positive
number.)

26. Let A be an infinite set. Construct a countably infinite sub-
set a,, a2, a3, . . . of A, by letting al be any element of A,
letting a2 be any element of A other than a1, letting a3 be
any element of A other than a, or a2, and so forth. This
process never stops (and hence a1, a2 , a3, . .. is an infinite
sequence) because A is an infinite set. More formally,

1. Let a] be any element of A.
2. For each integer n > 2, let a, be any element of A -

fal, a2 , a3, - . ., a.- ,. Such an element exists, for other-
wise A - {a, a2, a3, ... , a.-, I would be empty and A
would be finite.

27. Proof: Suppose A is any countably infinite set, B is any
set, and g: A -+ B is onto. Since A is countably infinite,
there is a one-to-one correspondence f: Z+ -* A. Then, in
particular, f is onto, and so by Theorem 7.4.4, g o f is an
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onto function from Z+ to B. Define a function h: B -Z+

as follows: Suppose x is any element of B. Since g o f is
onto, {m E Z+ I (g o f)(m) = x} 0 0. Thus, by the well-
ordering principle for the integers, this set has a least ele-
ment. In other words, there is a least positive integer n with
(g o f)(n) = x. Let h(x) be this integer.

We claim that h is a one-to-one. For suppose h(xi)-
h(x2) = n. By definition of h, n is the least positive in-
teger with (g o f)(n) = x,. But also by definition of h, n
is the least positive integer with (g o f)(n) = x2. Hence
xi = (g o f)(n) = X2-

Thus h is a one-to-one correspondence between B and a
subset S of positive integers (the range of h). Since any
subset of a countable set is countable (Theorem 7.5.3), S
is countable, and so there is a one-to-one correspondence
between B and a countable set. Hence, by the transitive
property of cardinality, B is countable.

28. Hint: Suppose that A and B are countably infinite. Then
there are one-to-one correspondences fA: Z± -+ A and

fB: Z+ -* B. Define a function g: Z+ A U B as fol-
lows:

n fA(-) if n is even

n fB (= ) if n is odd

Show that g is onto, and finish by using the result of exer-
cise 27.

29. Hint: Use proof by contradiction and the fact that the set of
all real numbers is uncountable.

32. Hint: Use the one-to-one correspondence F: Z+ -+ Z of
Example 7.5.2 to define a function G: Z+ x Z+- Z x Z
by the formula G(m, n) = (F(m), F(n)). Show that G is
a one-to-one correspondence, and use the result of exercise
22 and the transitive property of cardinality.

34. Hint for Solution 1: Define a function f: Y(S) T as
follows: For each subset A of S, let f (A) = XA, the char-
acteristicfunction of A, where XA: S -* {O, 1) is defined by
the rule

fI if x e A
X if x s A for all x E S

Show that f is one-to-one (for all Al, A2 C S, if XAI = XA2
then Al = A2) and that f is onto (given any function
g: S -* {O. 1}, there is a subset A of S such that g = XA).

Hint for Solution 2: Define H: T -+ 9(S) by letting
H(f) = {x E S I f(x) = 1). Show that H is a one-to-one
correspondence?

35. Partial proof (by contradiction): Suppose not. Suppose
there is a one-to-one, onto function f: S --> £i(S). Let

A = {x E SIx 0 f(x)}.

Then A E J1(S) and since f is onto, there is a z E S such
that A = f (z). [Now derive a contradiction!]

37. Hint: Since A and B are countable, their elements can be
listed as

A: a,, a 2 , a3 , .. . and B: bi, b2, b 3, . . .

Represent the elements of A x B in a grid:

(a,, b1)
(a2, b1)
(a3, b1)

(a,, b2)

(a2 , b2 )
(a3, b2 )

(a,, b3) . . .
(a2, b3) . .
(a3 , b3 )

Now use a counting method similar to that of Example 7.5.4.

Section 8.1
1. a -= l,a 2 =2a,+2=2 I+2=4,

a3 = 2a 2 + 3 = 2 4 + 3 = 11,

a 4 = 2a 3 + 4 = 2 11 + 4 =26

3. co = 1, cjl = . (Co)
2 = () 2 =,

c2 = 2(ci)2 = 2. (1)2 = 2,

C3 = 3(C2 )
2 

= 3 .(2)2 = 12

5. so = l,sI = 1,s 2 =SI +2s5o I +2 1 =3,

S3 = s2 + 2s, = 3 + 2 1 = 5

7. u1 = 1, U2 = 1, U3 = 3u 2 -u 1 = 3 1 -1 = 2,

U=4u 3 - U2 = 4 . 2 - 1 7

9. By definition of ao, a1, a2 , . for each integer k > 1,

(*)
(**)

ak = 3k + I and

ak-I = 3(k - 1) + 1.

Then ak I + 3

=3(k - 1) + 1 +3

= 3k-3 + 1 + 3

= 3k + I

= ak

11. Call the nth term of the sequence c,. Then, by definition,
c, = 2' - 1, for each integer n > 0. Substitute k and k -

in place of n to get

(*)
(**)

Ck = 2k- I and

ck- = 2 k - I

for all integers k > 1. Then

2Ck-I + 1 = 2 (2 k - 1) + 1 by substitution from (**)

= 2k - 2+ 1

= 2 k -

= Ck

by basic algebra

by substitution from (*)



13. Call the nth term of the sequence tn. Then, by definition,
tn = 2 + n, for each integer n > 0. Substitute k, k - 1, and
k - 2 in place of n to get

(*) tk=
2

+k,

(**) tk-1 = 2 + (k-1), and
t
k-2 = 2 + (k-2)

for each integer k > 2. Then

2
tk- - tk-2

=2(2+(k-1)-(2+(k -2))

=2(k+ 1) -k

= 2+k

= tk

by substitution from
(**) and (***)

by basic algebra

by substitution
from (*).

15. Let k be an integer and k > 2.

Case I (k is even): Then

ak = (-2)kI2 and ak-2 = (-2)(k-2)/2

So

-2ak-2 = -2 . (- 2 )(k-2)/2

= (-2)1+(k-2)/2

k -2 2 k -2
(-2)k/2 since I + - - + -

2 2 2

2+k 2
2

k
2

= ak

Case 2 (k is odd): Then

ak = (-2)(k-1)/2

and

ak-2 (- 2)k 3)/2 since (k2)- k3
2 2

So

-
2

ak-2 = -2 .(- 2 )(k-3)/2

= (-2) 1+(k-3)/2

(-2 )/2 k 3 2 k - 3
-() since 1 + - + -

2 2 2

2 + k 3
2

k - I
2

= ak

Hence in either case, ak = - 2ak-2, as was to be shown.
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18. a. a, =2

a2 = 2 (moves to move the top disk from pole A to
pole C)

+ I (move to move the bottom disk from
pole A to pole B)

+ 2 (moves to move the top disk from
pole C to pole A)

+ I (move to move the bottom disk
from pole B to pole C)

+ 2 (moves to move top disk
from pole A to pole C)

=8

a 3 =8+1+8+1+8=26

c. For all integers k > 2.

ak = ak-I (moves to move the top k
pole A to pole C)

1 disks from

+ 1 (move to move the bottom disk from
pole A to pole B)

+ ak1 (moves to move the top disk
from pole C to pole A)

+ 1 (move to move the bottom
disks from pole B to
pole C)

+ ak-I (moves to move
the top disks from
pole A to pole C)

= 3ak- + 2.

19. b. b4 = 40
e. Hint: One solution is to use mathematical induction and

apply the formula from part (c). Another solution is to
prove by mathematical induction that when a most effi-
cient transfer of n disks from one end pole to the other
end pole is performed, at some point all the disks are on
the middle pole.

20. a. sI = 1, s2  I + I + I = 3,
s3 =sS + (+ + 1) +s 1 = 5

b. s4 =s 2 + (1 + 1 + l)+S2 =9

21. b. t3 = 14

22. b. ro = 1, r, = 1, r2 = 1 +4 1I = 5, r3 = 5 +4 * 1 = 9,

r 4 =9+4 5=29, r5=29+4 9=65,

r 6 =65+4 29= 181

23. c. There are 904 rabbit pairs, or 1,808 rabbits, after 12
months.

25. a. Each term of the Fibonacci sequence beyond the sec-
ond equals the sum of the previous two. For any integer
k > 1, the two terms previous to Fk+± are Fk and Fk_,.

Hence, for all integers k > 1, Fk+I = Fk + Fk_1*
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26. By repeated use of definition of the Fibonacci sequence, for
all integers k > 4,

Fk = Fk, + Fk-2 = (Fk 2 + Fk-3) + (Fk-3 + Fk-4)

= ((Fk-3 + Fk-4) + Fk-3) + (Fk-3 + Fk-4)

= 3Fk-3 + 
2
Fk-4-

27. For all integers k > 1,

Fk2 - Fk2 1

= (Fk -Fk-l)(Fk + Fk-)

= (Fk - Fk- )Fk+l

by basic algebra (difference
of two squares)

by definition of the
Fibonacci sequence

= FkFk+l - Fk- IFk+l1

31. Let L = lim F,. Since each F,+] > F, > 0, L > 0.
n ioo F i

Then, by definition of the Fibonacci sequence,

L = lim (Fj- + Fn/c F,,,F,

= lim I+I

o F,, I

lm F,, + /n
nio ( F ) Fn +

= iu- (,.-I
1

-- +1
L

Hence L = L + 1. Multiply both sides by L to obtain L2

I + L, or, equivalently, L2 - L 1 -= 0. By the quadratic
formula, then, L = I +V1 But one of these numbers, 1-2522

is less than zero, and L > 0. Hence L = _+__2

32. Hint: Use the result of exercise 30 to prove that the infinite
sequence FO, F2,4 ... is strictly decreasing and that the

infinite sequence F,' ,, ... is strictly increasing. The
first sequence is bounded below by 0, and the second se-
quence is bounded above by 1. Deduce that the limits of
both sequences exist, and show that they are equal.

34. a. Because the 4% annual interest is compounded quar-
terly, the quarterly interest rate is (4%)/4 = 1%. Then
Rk = Rk-I + 0.OlRk-I = 1.OlRk-

b. Because one year equals four quarters, the amount on de-
posit at the end of one year is R4 = $5203.02 (rounded
to the nearest cent).

c. The annual percentage rate (APR) for the account is
$5203.02$53000.00=400%

$5000.00 4.0604%.

36. a. Length 0: e
Length 1: 0, 1
Length 2: 00,01,10, 11
Length 3: 000, 001, 010, 011, 100, 101, 110
Length 4: 0000, 0001, 0010, 0011, 0100, 0101, 0110,

1000, 1001, 1010, 1011, 1100, 1101
b. By part (a), do = 1, d, = 2, d2 = 4, d3 = 7,

andd 4 = 13.
c. Let k be an integer with k > 3. Any string of length

k that does not contain the bit pattern 111 starts either
with a 0 or with a 1. If it starts with a 0, this can

be followed by any string of k -1 bits that does not con-
tain the pattern 111. There are dk-1 of these. If the string
starts with a 1, then the first two bits are 10 or 11. If
the first two bits are 10, then these can be followed by
any string of k - 2 bits that does not contain the pattern
111. There are dk-2 of these. If the string starts with a
11, then the third bit must be 0 (because the string does
not contain Ill), and these three bits can be followed by
any string of k - 3 bits that does not contain the pattern
111. There are dk-3 of these. Therefore, for all integers
k > 3, dk = dkl + dk-2 + dk-3.

d. Byparts(b)and(c),d5=d 4 +d 3 +d 2 =13+7+4=
24. This is the number of bit strings of length five that
do not contain the pattern 111.

37. c. Hint: Sk = 2s4-1 + 2s4-2

39. When one is climbing a staircase consisting of n stairs, the
last step taken is either a single stair or two stairs together.
The number of ways to climb the staircase and have the final
step be a single stair is cn-1; the number of ways to climb
the staircase and have the final step be two stairs is C, 2.

Therefore, by the addition rule, c, = cn-I + c-2. Note also
that cl = 1 and c2 = 2 [because either the two stairs can be
climbed one by one or they can be climbed as a unit].

41. a. a3 = 3 (The three permutations that do not move more
than one place from their "natural" positions are 213,
132, and 123.)

43. Call the set X, and suppose that X = {x, x2, X,}. For
each integer i = 0, 1, 2, . . -, n-1, we can consider the set
of all partitions of X (let's call them partitions of type i)
where one of the subsets of the partition is an (i + 1)-
element set that contains x, and i elements chosen from
{xi, . . ., xi-i). The remaining subsets of the partition will
be a partition of the remaining (n- 1) - i elements of
(xi, .. ., x.-I). For instance, if X = {xI, X2, X3}, there are
five partitions of the various types, namely,

Type 0: two partitions where one set is a 1-element set con-
taining X3 : [{X3), {X }, {X2)], [{X3}, {Xl, X2}]

Type 1: two partitions where one set is a 2-element set con-
tainingx3 : [{xi,x 3}. {x2}], [{x2,x3}, {xIl]

Type 2: one partition where one set is a 3-element set con-
taining X3: fXi, X2, X31

In general, we can imagine constructing a partition of type
i as a two-step process:

Step 1: Select out the i elements of {x, X.., l to put
together with x.,

Step 2: Choose any partition of the remaining (n - 1) -i
elements of (x x, . . . i, X } to put with the set
formed in step 1.

There are ( I) ways to perform step 1 and P(,-,)-i ways
to perform step 2. Therefore, by the multiplication rule,
there are Pnl i) Pn, ) partitions of type i. Because any
partition of X is of type i for some i = 0, 1, 2, . -1,
it follows from the addition rule that the total number of



partitions is

(n-1 Pn 1 + (n Pn-2

+ (n ( Pn-3 +, + (n p

45. S5,2 =S 4 ,1+2S 4 2 =1+-2 7=15
48. Proof (by mathematical induction): Let the property P(n)

be the formula S.,2 = 2n- I1.

Show that the property is true for n = 2:
We must show that S2,2 = 22 1 - 1. By Example 8.1.11,
S2,2 = 1, and 2 2 - -1 = 2-1 = 1 also. So the property
is true for n = 2.

Show that for all integers k > 2, if the property is true for
n = k, then it is true for n = k + 1:

Suppose that for some integer k > 2, Sk,2 = 2 k - 1.
[Inductive hypothesis.] We must show that Sk+1,2 =
2(k+I)-'-1 _= 2k - 1. But according to Example 8.1.11,

Sk+1,2 = Ski + 2 5
k,2 and Skj = 1. So by substitution and

the inductive hypothesis,

Sk+l,2 I + 2Sk,2 = I + 2 (2  - 1)

= + 2 k - 2 = 2 -1

[as was to be shown].

50. Hint: Observe that the number of onto functions from
X = {XI, X2 , X3, X41 to Y = IYI, Y2, y3} is S4,3 3! because
the construction of an onto function can be thought of as a
two-step process where step 1 is to choose a partition of X
into three subsets and step 2 is to choose, for each subset of
the partition, an element of Y for the elements of the subset
to be sent to.

52. Hint: Use mathematical induction. In the inductive step, use
Lemma 3.8.2 and the fact that Fk+2 = Fk+1 + Fk to deduce
that

gcd(Fk+2 , Fk+±) = gcd(Fk+l, Fk).

53. c. Hint: If k > 6, any sequence of k games must begin
with W, L W, or LL W, where L stands for "lose" and W
stands for "win."

54. c. Hint: Divide the set of all derangements into two sub-
sets: one subset consists of all derangements in which
the number 1 changes places with another number, and
the other subset consists of all derangements in which the
number I goes to position i A 1 but i does not go to po-
sition 1. The answer is dk = (k- 1)dk-l + (k - 1)dk-2
Can you justify it?

Section 8.2
1. a. 1+2+3+ -+(k-1)

(k-l)((k-1) + 1) (k -)k

2 2

8.2 Solutions and Hints to Selected Exercises A-69

b. 3+2+4+6+8+ - +2n

=3+2(1+2+3±+ ++n)

n(n + 1)
3 + 2 2 =3+ n(n + 1)

=n2 +n+3

2- I2.a. 1+2+22+..+2-' =2-

c. 2" +2 .2.3+ 2n-3 3 + .. + 22 3 + 2 3 + 3

=2n + 3(2n-2 + 2- 3 + + 22 + 2 + 1)

= 2 + 3(l + 2 + 22 + + 2-3 + 2)-

= n+3(2(n-2)+l
2+ 2 1)

= 2" + 3(2n-1 - 1)

= 2 2n 1 + 3 * 2 - 3
= 522 '+2 133
=5.2" -3

3. ao = 1

a, = 1 ao = l 1 = 1

a2 =2a, =2. 1

a3 = 3a2 = 3 2. 1
a4 = 4a3 = 4 . 3 . 2. 1

Guess:

an = n(n - 1) .. 3.2- 1 =n!

5. cl = 1

C2 =3ci + 1 =3- 1 + 1 =3+1

C=3c 2 ++1 =3. (3+1)+ 1 =32+3+ 1

c4= 3c 3 +1 =3 . (32 + 3 + 1) + 1
= 33 + 32 + 3 + 1

Guess:

c= 3"- + 3f-2 + ... + 33 + 32 + 3 + 1

3" _ I
- by Theorem 4.2.3 with r = 3

3" - 1

2
6. Hint:

dn =2 +2-23+2-3 .3+... +22 3+2 3+3

= 5 2--3 for all integers n > 1

9. Hint: For any positive real numbers a and b,

a a

b b b a
+2 a + b -a + 2b'- b 2 = 2

b b
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10. ho I 1

h, l -21  h0 2' - I

h 2 -2
2 - h 2

2 - (21 -1)=22- 2'+

h 3  2 3
-h22

3 -(22-21+1)

=23-22 + 2' -I

h 4  24 - h 3 =2 4  (23-22+22 1)

24- 23± 22- 2' + I

Guess:

h, 2n -2n-1 + .,.+ (_I)n I

(-I)n[l - 2±22 + (_1)n * 2n]

= (-l)'[1 + (-2)

+ (-2)2 _-. + (-2)'] by basic algebra

[) (-2)-I byTheorem4.2.3

(-~~ (-2)n~ -I ]

(-1) (-3)

2n+ (-1yn1  by basic algebra

3

12. so = 3

s = so + 2 1 = 3 + 2. 1

S2= s, + 2.2= [3 + 2. 1] + 2.2

=3 + 2. (I + 2)

S3= s2 + 2 3= [3 + 2. (1 + 2)] + 2. 3

=3 + 2. (1 + 2 + 3)

s4S3 + 2 4= [3 + 2. (1 + 2 + 3)]+2 ± 4

=3 +2. (1+ 2+3 +4)

Guess:

Sn =3+2 (1+2+3+.. +(n -1) +n)

n(n + 1)
= 3 + 2. 2 by Theorem 4.2.2

= 3 + n(n + 1) by basic algebra

14. x, = 1

X2 = 3x, + 2 = 3 + 2

x3= 3X2 + 3= 3(3 + 2) + 3 = 32+ 3 - 2 + 3

X4 = 3X3 + 4 = 3(32+ 3 - 2 + 3) + 4

3 3+ 322 + 3 3 + 4

X5 3x 4 + 5 = 3(33 + 32 - 2 + 3 3 + 4) + 5

=34 +33 2+32 3+3 4+5

X6= 3x + 6

=3(34+ 33' 2 + 32. 3 + 4. 3 + 5) + 6

3' + 342 + 33 .3 + 32 4 + 3 5 + 6

Guess:

Xn =3 + 3 2 2 + 33 . 3 + .*+ 3(n - I) + n
=3n- + 3 n2+ 3 n2+ 3n-3 + 3n-3 + Y -3 +

2 times 3 times

+3+3+ +3+1+1+ +1

(n- 1) times n times

=(3'1 + 3n + **+ 3 2+ 3 + 1)

+ (3n-2 + 3n-3 + . .. + 3 + 3 + 1) +...

+ (32 + 3 + 1) + (3 + I) + 1

3' - 1 3-1 -1 3' - I
2- + 22 22

32 - 1 3 -

+ 2 2
- [(3n + 3 n-1 + + 32 + 3)-n]

= [3(3n-1 + 3n -2+ ... + 3 + 1) -n]

'(3' 1 3-2n)

18. Proof: Let d be any fixed constant, and let ao, a,, a2, ...
be the sequence defined recursively by ak = ak-1 + d for
all integers k > 1. The property, P(n), is the equation
an = aO + nd. We show by mathematical induction that
this property is true for all integers n > 0.

Show that the property is true for n = 0:
When n = 0, the left-hand side of the equation is ao, and
the right-hand side is aO + 0 * d = ao, which equals the left-

hand side. Thus the property is true for n = 0.

Show that for all integers k > 0, if the property is true for
n = k, then it is truefor n = k + 1:

Suppose

ak = aO + kd, for some integer k > 0.

[This is the inductive hypothesis.]

We must show that ak+1 = aO + (k + 1)d. But

ak+± = ak + d by definition of ao, a1, a2, .

= [aO + kd] + d by substitution from the
inductive hypothesis

= aO + (k + I)d by basic algebra

19. Let Un = the number of units produced on day n. Then

Uk = Uk-1 + 2 for all integers k > 1,

U0 = 170.

Hence U0 , U1, U2 , . .. is an arithmetic sequence with con-
stant adder 2. It follows that when n = 30,

Un = Uo+n *2= 170+2n = 170+2 30

= 230 units.

Thus the worker must produce 230 units on day 30.



20 521 - 1

24. - 1.192 x 1014
4

k=0
119,200,000,000,000 - 119 trillion people (This is about
20,000 times the current population of the earth!)

26. b. Hint: Before simplification,
A, = 1000(1.0025)n + 200[(1.0025)"-' +
(1.0025)'-I + * .. + (1.0025)2 + 1.0025 + 1].

d. A 24 $67,481.15, A4.. - $185,215.22
e. Hint: Use logarithms to solve the equation A, = 10, 000,

where An is the expression found (after simplification)
in part (b).

27. a. APR -19.6%
c. approximately two years

28. Proof: Let ao, a1, a2, ... be the sequence defined recur-
sively by ao = 1 and ak = kak-I for all integers k > 1. The
property, P(n), is the equation a, = n!. We show by math-
ematical induction that this property is true for all integers
n > 0.

Show that the property is true for n = 0:

When n = 0, the right-hand side of the equation is 0! = 1,
and by definition of ao, a1, a2, . . ., the left-hand side of the
equation, ao, is also 1. Thus the property is true for n = 0.

Show that for anl integers k > 0, if the property is true for
n = k, then it is true for n = k + 1:

Suppose

ak = k! for some integer k > 0.

[This is the inductive hypothesis.]

Wemustshowthatak+l = (k+ 1)!. But

ak+I = (k + 1) ak by definition of ao, a I, a2,.

= (k + 1) * k! by substitution from the
inductive hypotheses

= (k + 1)! by definition of factorial.

[Hence if the property is true for n = k, then it is true for

n = k + 1.]

30. Proof: Let cl, C2, C3, ... be the sequence defined recur-
sively by cl = I and Ck = 3ck- + 1 for all integers k > 2.

The property, P(n), is the equation Cn = 32 - We show
by mathematical induction that this property is true for all
integers n > 1.

Show that the property is true for n = 1:

When n = 1, the right-hand side of the equation is -31- =

2= 1, and by definition of cl, C2, C3, . the left-hand
side of the equation, cl, is also 1. Thus the property is true
forn = 1.

Show that for all integers k > 1, if the property is true for

n = k, then it is truefor n = k + 1:

Suppose that

3 k -

Ck = for some integer k > 1.
2

[This is the inductive hypothesis.]

8.2 Solutions and Hints to Selected Exercises A-71

3 k+I - I

We must show that Ck+1 = 2 . But

Ck+1 = 3ck + 1

= (3  1 ) + 1

3k+1 - 3 2

2 2
3k+1 - 1

2

by definition of c , c 2 , C3, ...

by substitution from the
inductive hypothesis

by basic algebra.

35. Hint: 2 k+i 2k - (-I )k+

3
3 2k+' 2k+1 - (])k+

3 3

2 2k+' + (-i)k+± 2k+2 - (-i)k+2

3 3

37. Hint: [3 + k(k + 1)] + 2(k + 1)

=3 + k2 + k + 2k + 2 = 3 + [k2 + 3k + 2]

=3 + (k + 1)(k + 2)

=3 + (k + 1)[(k + 1) + 1]

39. Proof: Let xI, X 2 , X 3 , .. . be the sequence defined recur-
sively by xi = I and Xk = 3

Xk-I + k for all integers k > 2.

The property, P(n), is the equation Xn = 4

We show by mathematical induction that this property is
true for all integers n > 1.

Show that the property is true for n = 1:

When n = 1, the right-hand side of the equation is
3 1'- 2- I2 - 3 32- 2 -3
3 2 1 3 = 3 2 3 = 1, and by definition of

4 4
XI, x 2 , X3, . the left-hand side of the equation, x1, is also
1. Thus the property is true for n = 1.

Show that for all integers k > 1, if the property is true for
n=k, thenitistrueforn=k+1:

3k+ 1 - 2k - 3
Suppose that for some integer k > 0, Xk = 4

[Inductive hypothesis] We must show that
3(k+1)+1 - 2(k + 1) - 3

Xk+1 = , or, equivalently,
3k+2 - 2k - 5

Xk+ = - 4 . But

Xk+m = 3Xk + k

33(3±1 42k 3) 4(k+1)

by definition
ofx], X2, X3,

by inductive
hypothesis

-3 3k+1 -3-2k -3-3 +4(k +1)

4 4

3k+2 - 6k - 9+4k+4

4

3k+2 - 2k - 5

4

[This is what was to be shown.]

by algebra.
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43. a. ao 2

ao 2 2
a, - = =--

2aO -1 2 * 2-1 3
2 2

2a, -1 2.2 3 3
2-3 3 3

a2  2 2
a3===-

2a2 -1 2 .2 -1 3
2 2

a4  a3  3
2a3 - 1 2 . _ _ =

3 3 3I2 if n is even
Guess: an =

3- if n is odd

b. Proof: Let ao, a,, a2, .... be the sequence defined re-

cursively by xo = 2 and ak = 2 for all integers
2k1 - 1

k > 1. The property, P (n), is the formula

a 2 if n is even

3 if n is oddI.3
We show by mathematical induction that this property is
true for all integers n > 1.

Show that the property is true for n = 0 and n = 1:
When n = 0 and n = 1, the results of part (a) show that
the property is true.

Show that for all integers k > 0, if the property is true
for all integers i with 0 < i < k, then the property is
true for k:

Let k be an integer with k > 0, and suppose that for all
integers i with 0 < i < k,

2if iis even
a, = 2 if .. s od [Inductive hypothesis.]

3i 2If I IS odd

We must show that

12 if k is even
ak- 2 if k is odd

Bu3

But
ak-I

ak = 
2

aI
2ak-1- 1I2 if k -I is even

2
2_ if k -I is odd
231

2 if k-I is even
= 23

-3if k-I is odd
3

I 2if kisodd

2 if k is even

[This is what was to be shown.]

by definition of
ao, al, a22...

by inductive hypothesis

because k is odd when
k -is even

and k is even when
k - I is odd.

45. v, = 1

02 = V[2/2J + VL3/2J + 2 = vi + v1 + 2

= I + 1 + 2

V3 V 0[3/2 + VL4/21 + 2 = v1 + v2 + 2

=1 +(1 + 1 +2)+2=3+ 2.2

V4 =V4/21 + V5[/2 1 + 2 = v2 + V2 + 2
(1 + 1 + 2) + (I + I + 2) + 2

=4+3 2

V5 VL512J + VL6/2J + 2 = V2 + V3 + 2

=(3+2.2)(1 + 1 +2)+2

= +4 ± 2

V6 VL6/2J + vL7/2j + 2 = V3 + V3 + 2

=(3+2.2)+(3+2.2)+2

-6+5 2

Guess:

Vn = n + 2(n -1) = 3n-2 for all integers n > I

b. Proof: Let v1, V2, V3, . . . be the sequence defined recur-
sively by v0 = I and Vk = VLk/21 + VL(k+1)/2J + 2 for all
integers k > 1. The property, P(n), is the equation

v =3n -2.

We show by mathematical induction that this property is
true for all integers n > ].

Show that the property is true for n = 1:

When n = I, the right-hand side of the equation is 3 I-
2 = 1, which equals v1 by definition of v,, V2, V3 ....

Show that for all integers k > 1, if the property is true
for all integers i with 0 < i < k, then the property is
true for k:

Let k be an integer with k > 1, and suppose that for all
integers i with 1 < i < k, vi = 3i - 2.
[This is the inductive hypothesis.] We must show that
Vk = 3k -2. But

Vk = VLk121 + V[(k+1)12] + 2 by definition of
V1, V2, V3, *.*

= (3 Lk/2 -2) + (3 L(k + 1)/2 -2) + 2

by substitution from the
inductive hypotheses

= 3(Lk/2j + L(k + 1)/2) -2

| 3 (2 + 2) - 2 if k is even

[3 ("2 + k+21 ) -2 if kis oddI 3k -2 if k is even
= 3 (2k-2+2k+2 -2 if k is odd

= 3k -2 by the laws of algebra.

[This is what was to be shown.]



46. Hint: Show that for all integers n > 0, S2n = 2" and S2n+1 =

2n+1. Then combine these formulas using the ceiling func-
tion to obtain s= 2f-/2 .

( ) if n is odd
48. a. Hint: w = 2 )

2(2 + 1) if n is even

49. a. Hint: Express the answer using the Fibonacci sequence.

50. The sequence does not satisfy the formula. According to
the formula, a4 = (4 - 1)2 = 9. But by definition of the
sequence, a, = 0, a2 = 2 0+ (2 + 1) = 1, a3 = 2 I +
(3-1) = 4, and so a 4 = 2 4 + (4 -1) = 11. Hence the
sequence does not satisfy the formula for n = 4.

52. a. Hint: The maximum number of regions is obtained when
each additional line crosses all the previous lines, but not
at any point that is already the intersection of two lines.
When a new line is added, it divides each region through
which it passes into two pieces. The number of regions
a newly added line passes through is one more than the
number of lines it crosses.

53. Hint: The answer involves the Fibonacci numbers!

Section 8.3
1. (a), (d), and (f)

3. a. ao = C 20±+ D =C + D =1
a, = C 21 + D = 2C + D =3J

D= 1-{C C=2
2C +(I1-C) =3 D I= -I

a2 2 22+(_1)=7

4. a. bo=C-30+D (-2)0=C+D=O0

b, C.3'+D.(-2)' =3C-2D=5 J
ID = -C 5 1 = C = I

3 3C-2(-C) =S D D=-1

b 2 =3 2 +(-l)(-2)2=9-4=5

5. Proof: Given that a, = C 2" + D, then for any choice of
C and D and integer k > 2,

ak = C 2 + D,

ak-I = C 2 +k1 ± D,

ak-2 = C 2 k-2 + D.

Hence

3
ak-I -2ak 2 = 3(C 2 k + D) - 2(C 2 k2 + D)

= 3C .2k + 3D - 2C .2k2 -2D

= 3C .2k - C 2 + D

= 2C 2- + D

= C . 2 + D = ak-

8.3 Solutions and Hints to Selected Exercises A-73

8. a. If for all k > 2, t' = 2tk-1 + 3tk-2 and t A 0 then t2 
=

2t + 3 [by dividing by tk-
2], and so t2 - 2t-3 = O. But

t
2 

-2t -3= (t - 3)(t + 1);hencet = 3ort = -1.
b. It follows from (a) and the distinct roots theorem that

for some constants C and D, ao, a,, a 2, . . . satisfies the
equation

a, = C 3f + D* (-I)' for all integers n > 0.

Since ao = 1 and al I 2, then

ao =C 30 + D (-1)0 = C + D = 1
a, =C 31 +D (-)' =3C -D=2J

ID= 1- C

X 3C- (I -C)= 2

~ 4C1-=2

I IC= 3/4

D = 1/4

Thus

an= (3n ) + 4(-1)" for all integers n > 0.

11. Characteristic equation: t2 
- 4 = 0. Since t

2 
- 4

(t -2)(t + 2), t = 2 and t = -2 are the roots. By the dis-
tinct roots theorem, for some constants C and D

dn = C (2n) + D (-2)" for all integers n > 0.

Since do = I and d = -1, then

d-C .20 +D (-2)°=C+D=1 |

d, =C 2'+D (-2)' =2C -2D=-

C-2C-2(1 C) =-1

D = 1- C
1 4C -2 I1

Thus

dn =(2n) + 4(-2)" for all integers n > 0.

13. Characteristic equation: t
2 

- 2t + 1 = 0. By the quadratic

formula,

2 ± /4 _4.-1 2
t = = - =1.

2 2

By the single root theorem, for some constants C and D

r- = C . (la) + Dn . (la)

= C + n D for all integers n > 0.

Since ro = I and r1 = 4, then

ro = C + 0 D = C = I IC-lI

r- =C+I D =C + D =4j Il+D=4J

C 0 I
4> D =3

Thus r, = I + 3n for all integers n > O.



A-74 Appendix B Solutions and Hints to Selected Exercises

16. Hint: For all integers n > 0,

Sn3- ( +2 )n + X (3 2 X3)n.

19. Proof: Supposer, s, ao anda, arenumberswithr 0 s. Con-
sider the system of equations

C + D = ao

Cr + Ds = a,.

By solving for D and substituting, we find that

D = ao -C

Cr + (aO - C)s = a,.

Hence

C(r -s) a0- a0s.

Since r 5 s, both sides may be divided by r -s. Thus the
given system of equations has the unique solution

C a- aos
r -s

and
al -aos

D =ao - C =ao-
r -s

aor-aos-a, + aos aor -a

r -s r-s

Alternative solution: Since the determinant of the system is
I s-r - = s-r and since r 3: s, the given system has
a nonzero determinant and therefore has a unique solution.

21. Hint: Use strong mathematical induction. First note that the
formula holds for n = 0 and n = 1. To prove the inductive
step, suppose that for some k > 2, the formula holds for all
i with 0 < i < k. Then show that the formula holds for k.
Use the proof of Theorem 8.3.3 (the distinct roots theorem)
as a model.

22. The characteristic equation is t
2 - 2t + 2 = 0. By the

quadratic formula, its roots are

2 4-8 2±2i [1 +i
2 1 1 - i

By the distinct roots theorem, for some constants C and D

an = C(1 + i)n + D(l -i)

for all integers n > 0.

Since ao 0 I and a, = 2, then

ao = C(I + i)0 + D(1 -i)O = C + D = l

a = C(1 + i)' + D(l -i)'
= C(l +i) + D(I -i) = 2

{ ID= 1-C
C(I + i) + (I

, D = I -C
XC( + i - I +i) + I

,¢~ D= I-C I
C(2i) =I+ iJ

D = I- C
.o_ C= I+i = I +i .

2i 2i

I D= I -

D= 1-i

C = 2

C)(l -i) =21

i = 21

i i-I

i -2

-i 2-l+i
2 2

l-÷1
211

12i

Thus for all integers n > 0,

a = ( I i ) (1 i)n + ( i ) (

5;300 5 20

25. Hint: P2 0 = 5300 -5

26. a. Hint: The answer is Sk 
2
Sk- I + 3

4k-2 for k > 4.

Section 8.4
1. a. (I) p, q, r, and s are Boolean expressions by 1.

(2) -s is a Boolean expression by (1) and 11(c).
(3) (r V -s) is a Boolean expression by (1), (2), and

11(b).
(4) (q A (r v -s)) is a Boolean expression by (1), (3),

and 11(a).
(5) -p is a Boolean expression by (1) and 11(c).
(6) (-p V (q A (r V s))) is a Boolean expression by

(4), (5), and 11(b).

2. a. (1) e e S by I.
(2) a = Ea E S by (1) and 11(a).
(3) aa E S by (2) and 11(a).
(4) aab E S by (3) and 11(b).

3. a. (1) MI is in the MIU system by I.
(2) MII is in the MIU system by (1) and 11(b).
(3) MlIII is in the MI U system by (3) and 11(b).
(4) MIIJIIl is in the MIU system by (3) and 11(b).
(5) MIUIiII is in the MIU system by (4) and 11(c).
(6) MIUUI is in the MIU system by (5) and 11(c).
(7) MIUI is in the MIU system by (6) and 11(d).

4. Hint: Can the number of I's in a string in the MI U system
be a multiple of 3? How do rules 11(a)-(d) affect the number
of I's in a string?

5. a. (1) ()isinPbyl.
(2) (()) is in P by (1) and 11(a).
(3) ( )(()) is in P by (1), (2), and 11(b).



6. a. This structure is not in P. Define a function f: P -* Z
as follows: For each parenthesis structure S in P, let

( the number of left] [the number of right
f(s) L[parentheses in S I [parentheses in S

Observe that for all S in P, f (S) = 0. To see why, use
the reasoning of structural induction:

1. The base element of P is sent by f to 0: f 0
[because there is one left and one right parenthesis
in ()].

2. For all S E P, if f [S] = 0 then f [(S)] = 0 [because
if k-m =Othen(k+ l) -(m+ l) =0].

3. For all S and T in P, if f [S] = 0 and f [T] = 0, then
f[ST] =0 [because if k -m =0 and n -p=O,
then(k+n) -(m+ p) =0].

Items (1), (2), and (3) show that all parenthesis struc-
tures obtainable from the base structure () by repeated
application of 11(a) and 11(b) are sent to 0 by f. But by
III (the restriction condition), there are no other elements
of P besides those obtainable from the base element by
applying 11(a) and 11(b). Hence f (S) = 0 for all S e P.

Now if ()(() were in P, then it would be sent to 0 by f.
But f[()(()] =3 - 2= I 0 0. Thus ()(() ¢ P.

7. a. (1) 2, 0.3, 4.2, and 7 are arithmetic expressions by 1.
(2) (0.3 -4.2) is an arithmetic expression by (1) and

11(d).
(3) (2. (0.3 -4.2)) is an arithemetic expression by (1),

(2), and II(e).
(4) (-7) is an arithmetic expression by (1) and 11(b).
(5) ((2. (0.3 -4.2)) + (-7)) is an arithmetic expres-

sion by (3), (4), and II(c).

8. Proof: Let the property be the following sentence: The
string ends in a 1.

Show that each object in the BASE for S satisfies the prop-
erty:
The only object in the base is 1, and the string I ends in a 1.

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:
The recursion for S consists of two rules denoted II(a) and
11(b). Suppose s is a string in S that ends in a l. In the case
where rule 11(a) is applied to s, the result is the string Os,
which also ends in a 1. In the case where rule 11(b) is applied
to s, the result is the string s t, which also ends in a 1. Thus
when each rule in the RECURSION is applied to a string in
S that ends in a 1, the result is also a string that ends in a 1.

10. Proof: Let the property be the following sentence: The
string contains an even number of a's.

Show that each object in the BASEfor S satisfies the prop-
erty:
The only object in the base is e, which contains 0 a's. Be-
cause 0 is an even number, e contains an even number of a's.

8.4 Solutions and Hints to Selected Exercises A-75

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:
The recursion for S consists of four rules denoted 11(a), 11(b),
11(c), and 11(d). Suppose s is a string in S that contains an
even number of a's. In the case where either rule 11(a) or rule
11(b) is applied to s, the result is the string bs or the string
sb, each of which contain the same number of a's as s and
hence an even number of a's. In the case where either rule
11(c) or rule 11(d) is applied to s, the result is the string aas
or the string saa, each of which contain two more a's than
the number of a's in s. Because two more than any even
integer is an even integer, both aas and saa contain an even
number of a's. Thus when each rule in 'the RECURSION
is applied to a string in S that contains an even number of
a's, the result is also a string that contains even number of
a's.

12. Hint: Let the property be the following sentence: The string
represents an odd integer. In the decimal notation, a string
represents an odd integer if, and only if, it ends in 1, 3, 5, 7
or9.

13. Hint: By divisibility results from Chapter 3 (exercises 15
and 16 of Section 3.3), if both s and t are divisible by 5, then
soared +t ands -t.

15. Let S be the set of all strings of 0's and l's with the same
number of 0's and l's. The following is a recursive defini-
tion of S.

I. BASE: The null string e E S.
II. RECURSION: If s E S, then

a. 01s E S b. s0 1 S c. l s E S
d. slO E S e. Osl E S f. IsO E S

III. RESTRICTION: There are no elements of S other that
those obtained from I and II.

17. Let T be the set of all strings of a's and b's that contain an
odd number of a's. The following is a recursive definition
of T.

I. BASE: Thea E T.
II. RECURSION: If t E T, then

a. bt e T b. tb E T c. aat E T
d. ata e T e. taa e T

III. RESTRICTION: There are no elements of T other
than those obtained from I and II.

19. Proof (by mathematical induction): Let the property, P(n),
be the equation , cai = c ai.

Show that the property is true for n = 1:

Let a, and c be any real numbers. By the recursive defi-
nition of sum, (ca,) = caI and = ai = a,. There-
fore, E (cai) c a,, and so the property is true for
n= I.

Show that for all integers k > 1, if the property is true for
n = k, then it is true for n = k + 1:
Let k be an integer with k > 1. Suppose that for any real
numbers a,, a2, a3, . ak and c, , (ca,) = ck= ai.
[This is the inductive hypothesis] [We must show that for
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any real numbers a,, a2 , a 3 , . . . ak+1 and c, Ek+,(cai) =
c +, ai.] Let al, a2, a3 , . . , ak+l and c be any real num-
bers. Then

k+1 k

,Z cai = E ca, + cak+I
i=, i=,

k

= c E ai + cak+1

i=1

kl

-C c a,

by the recursive
definition of E

by inductive
hypothesis

by the distributive law
for the real numbers

by the recursive
definition of E.

26. a. M(86) = M(M(97))

= M(M(M(108)))

= M(M(98))

= M(M(M(109)))

= M(M(99))

= M(91)

28. a. A(1, 1) =A(0, A(1, 0))

since 86 < 100

since 97 < 100

since 108 > 100

since 98 < 100

since 109 > 100

by Example 8.4.8

by (8.4.3) with m = I
and n = I

= A(1, 0) + 1 by (8.4.1) with n = Ai

= A(O, 1) + 1 by (8.4.2) with in =I

= (I + 1) + I by (8.4.1) with n = I

=3

: 1,0)

22. Hint: Let the property be the inequality

n '~ n

Lai < Jaia .

To prove the inductive step, note that because | ai |

| .1 a, + ak+1 |, you can use the triangle inequality for
absolute value (exercise 53 in Section 3.4) to deduce

I E=, a, + ak+|< ,=lai I + ak+1

23. Proof (by mathematical induction): Let the property, P(n),
be the following sentence:

For all setsA and Bi,B2 ,...B_,U(AfnBi) =AnUB,.
i=1 i=1

Show that the property is true for n = 1:
Let B. and A be any sets. By the recursive definition of
union, Uil= Bi = B. and Ui'=, (A n Bi) = A n B.. There-
fore, A A (Ui=, B i) = A l B, = Ui=, (A n Bi), and so the
property is true for n = 1.

Show that for all integers k > 1, if the property is true for
n = k then it is true for n = k + 1:

Suppose that for any sets B1 , B2, B3 . . Bk and
A, A n (Uk,= Bi) = U1kJ (A n Bi). [This is the in-
ductive hypothesis.] [We must show that for any sets
B., B2, B3 ,..., Bks, and A, A n (U 1 Bi)=
UiV (A n Bi).] Let B1, B2, B3,..., Bk+1, and A be any
sets. Then

A n( Bi)

A[(=A Bi) UBk+1

= (An (U Bi)) U (AlBk+1)

k
= U(AnBi)) U(AnBk+i)

k+1
= U(AnBi)

i=1

by the recursive
definition of union

by one of the
distributive laws
for sets (Theorem
5.2.2(3)).

by inductive
hypothesis

by the recursive
definition of union.

Alternative solution:

A(1, 1) = A(0, A(1, 0))

= A(0, A(0, 1))

= A(O, 2)

= 3

by (8.4.3) with in
and n = I
by (8.4.2) with m

by (8.4.1) with n =

by (8.4.1) with n =

29. a. Proof (by mathematical induction): Let the property,
P(n), be the equation A(1, n) = n + 2.

Show that the property is true for n = 0:
When n = 0,

A(l, n) = A(l, 0) by substitution

= A(0, 1) by (8.4.2)

= 1 + I by (8.4.1)

=2.

On the other hand, n + 2 = 0 + 2 also. Thus A(1, n) =
n+2 for n =0.

Show that for all integers k > 0, if the property is true
for n = k, then it is truefor n = k + 1:
Let k be an integer with k > 1 and suppose the property is
true for n = k. In other words, suppose A (1, k) = k + 2.
[This is the inductive hypothesis.] We must show that the
formula holds for n = k + 1. In other words, we must
show that A(l, k + 1) = (k + 1) + 2=k + 3. But

A(1, k + 1) = A(0, A(l, k)) by (8.1.3)

= A(l, k) + 1 by (8.4.1)

= (k + 2) + 1 by inductive hypothesis

= k + 3.

[This is what was to be shown.]
[Since both the basis and the inductive steps have been
proved, we conclude that the formula holds for all non-
negative integers n.]

31. Suppose F is a function. Then F(l) = 1, F(2) = F(1) =
1, F(3) = + F(5.3 -9) = 1 + F(6) = 1 + F(3).
Subtracting F(3) from both sides gives 1 = 0, which is
false. Hence F is not a function.

2

n n
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Section 9.1
1. a. f(O) is positive.

b. f (x) = 0 when x = -2 and x = 3 (approximately)
c. increase
d. decrease

2.

4.

0.5 1 1.5 2 X

When O cx < 1, x 1
/
3

< X1/4. When x > 1, X9/3 > X
1
/4.
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14. Proof: Suppose x, and x2 are particular but arbitrarily cho-
sen real numbers such that xi < x2. [We must show that
f(xI) < f(x2).] Since

9.
n

0

2

3

-1

-2

-3

f (n) = gel

0

2

3

2

3

=X-X 2 < -X

h=> XX2 - X2 < XX 2 -XI
- Graph of h

by multiplying by-I

by adding XI X2

to both sides
a S

1 2 3 4 5 6 7 8

X* X2 (x1 - 1) < Xt(x2 - I) by factoring both sides

xI - 1 X2 - I by dividing both sides by

XI X2 the positive number xIx29

13. f is increasing on the intervals
{x E R I -3 < x <-2) and
{x e R 10 < x < 2.5}, and f is decreasing on
{x c R I -2 < x < 0} and{x E R 12.5 < x < 4} (approx-
imately).

by definition of k.

[This is what was to be shown.]

18. Proof: Suppose f: R -* R is increasing. [We must show

that f is one-to-one. In other words, we must show that for
all realnumbers xi and x 2 , ifXt A X2 then fJ(xl) # f(X2).]

Suppose x, and x2 are real numbers and xI * x2. By the
trichotomy law [Appendix A, T16] xl < x2, or xt > X2. In

xl < X2

2xX < 2x2

2x -3 < 2x 2 -3

then

and

by basic properties of inequalities. But then, by definition
of f,

f(xI) < f(x2)

[as was to be shown]. Hence f is increasing on the set of
all real numbers.

16. a. Proof: Suppose xi and x2 are real numbers with x, <
X2 < 0. [We must show that h(x1 ) > h(x2 ).] Multi-
ply both sides of xi < x 2 by xi to obtain (X1)2 

> xIx 2

[by T22 of Appendix A since xl < 0], and multiply both

sides of xi < x2 by x2 to obtain XIX2 > (X2)
2 [by T22 of

Appendix A since x2 < 0]. By transitivity of order [Ap-
pendix A, T171 (x2)2 < (xI)2, and so, by definition of
h, h(x 2 ) < h(x 1 ).

17. a. Preliminaries: If both x, and x2 are positive, then by the
rules for working with inequalities (see Appendix A),

x <l1 X 2  X2(XI < XI (X2

by multiplying both sides
by x1x2 (which is positive)

=> XjX 2 - X2 < XX 2 -Xi

by multiplying out

X-X 2 <-xI

by subtracting XIX2 from
both sides

X x 2 > xI by multiplying by -1.

Are these steps reversible? Yes!

Proof: Suppose that x, and x2 are positive real numbers
and xi < x 2. [We must show that k(xs) < k(X 2 ).] Then

xI < X2

* 3-

* 2-

* I -

-3

- Graph of f
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case xi < x2, then since f is increasing, f(xI) < f(X2 )

and so f(x1 ) A f(x 2 ). Similarly in case xI > x2, then
f (x 1) > f (x2) and so f (x 1 ) A f (X2 ). Thus in either case,
f(xl) A f(x 2) [as was to be shown].

20. a. Proof: Suppose ul and v are nonnegative real numbers
with u < v. [We must show that f (u) < f (v).] Note that

v = u + h for some positive real number h. By substi-
tution and the binomial theorem,

v' (u + h)'

U. + [(v) u- h + (2) um- 2h 2 +

+ (m 1 ) uhm t + h

The bracketed sum is positive because u > 0 and h > 0,
and a sum of nonnegative terms that includes at least one
positive term is positive. Hence

v' = u' + a positive number,

and so f (u) = um < v' = f (v) [as was to be shown].

2

1 2 3 4 5 6

23. Proof: Suppose that f is a real-valued function of a real vari-
able, f is decreasing on a set S, and M is any positive real
number. [We must show that Mf is decreasing on S. In other
words, we must show that for all xi and X2 in 5, if xl < X2

then (Mf)(xl) > (Mf)(x2).] Suppose xl and x2 are in S
and x] < x2. Since f is decreasing on S. f (xi) > f(X2),

and since M is positive, Mf (xi) > Mf (X2) [because when
both sides of an inequality are multiplied by a positive num-
ber the direction of the inequality is unchanged]. It follows
by definition of Mf that (Mf )(x ) > (Mf )(x2 ) [as was to
be shown].

26. To find the answer algebraically, solve the equation 2x2 
2

X2 + lOx + II for x. Subtracting X
2 from both sides gives

x2- lOx - 11 = 0, and either factoring x 2 
- lOx - 11 =

(x -ll)(x + l)orusingthequadraticformulagivesx = 11
(since x > 0). To find an approximate answer with a
graphing calculator, plot both f (x) = x2 

+ lOx + 11 and
2g(x) = 2x2 for x > 0, as shown in the figure, and find that
2g(x) > f (x) when x > 11 (approximately). You can ob-
tain only an approximate answer from a graphing calculator

9.2 Solutions and Hints to Selected Exercises A-79

because the calculator computes values only to an accuracy
of a finite number of decimal places.

700 -
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400 -

300 -

200 -

100 -

2g(x) = 2x2

.ftx)=X
2

+ lox+ 11

A., I, I,
2 4 6 8 10 12 14 16 18 20 x

Section 9.2
1. a. V positive real numbers a and A, 3x > a such that

Ajg(x)I > If (x)I.

b. No matter what positive real numbers a and A might be
chosen, it is possible to find a number x greater than a
with the property that AIg(x)I > If(x)I.

4. 5x8 - 9x7 + 2x 5 + 3x-1 is O(x 8 )

(X
2 

- 1)(12x + 25) is .(x)
3X2 + 4 IS()X

6. (x 2 -7)2(IOXII2+ 3) isQ(X 7 /
2)

X + I

10. Proof: Suppose f and g are real-valued functions of a real
variable that are defined on the same set of nonnegative real
numbers, and suppose g(x) is O(f (x)). By definition of
0-notation, there exist positive real numbers b and B such
that Ig(x)l < BIf(x)l for all real numbers x > b. Divide
both sides of the inequality by B to obtain 1 Ig(x) I' If (x) .
LetAA andleta = b. ThenAIg(x)I < If(x)Iforallreal
numbers x > a, and so, by definition of Q-notation, f (x) is
Q (g(x)).

12. Proof: Suppose f, g, h, and k are real-valued functions of
a real variable that are defined on the same set D of non-
negative real numbers, and suppose f (x) is O(h(x)) and
g(x) is O(k(x)). By definition of 0-notation, there exist
positive real numbers bi, B1, b2, and B2 such that |f(x)I <
BiIh(x)I forallrealnumbersx > bl, and Ig(x)I < B2 1k(x)l
for all real numbers x > b2. For each x in D, define
G(x) = max(lh(x)l, Ik(x)I), and let b = max(bl, b2) and
B = B, + B2. Note that the triangle inequality for absolute
value (exercise 53, Section 3.4) implies that

If(x) + g(x)l ' If(x)I + Ig(x)j

for all real numbers x in D. Suppose that x > b. Then

Y IK
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because b is greater than both b, and b2,

If(x)I < Btlh(x)l and Ig(x)l < B21h(x)l,

and so, by adding the inequalities (Appendix A, T25), we
get

If(x)l + Ig(x)I ' Bilh(x)l + B 2 Ik(x)l.

Thus, by the transitive law for inequalities (Appendix A,
T17),

If (x) + g(x) I < B. jh(x) I + B2 lk(x) 1.

Now, because each value of G(x) = IG(x)I is greater than
or equal to lh (x) I and lk(x) 1,

B Ih(x)I + B 2 Ik(x)I < B1 IG(x)I

+B2 1G(x)l < (B1 + B2)IG(x)l.

Hence, again by transitivity and because B = B1 + B2,

If(x) + g(x) I < B I G(x) I for all real numbers x > b.

Therefore, by definition of O-notation, f(x) + g(x) is
O (G (x)).

14. Start of proof: Suppose f, g, h, and k are real-valued func-
tions of a real variable that are defined on the same set D
of nonnegative real numbers, and suppose f(x) is 0(h(x))
and g(x) is O(k(x)). By definition of O-notation, there
exist positive real numbers b,, B1, b2, and B2 such that
If(x)l ' B Ih(x)lforallrealnumbersx > bi,andIg(x)l <

B2Ik(x)Iforallrealnumbersx > b2. LetB = BIB 2 andlet
b = max(b1, b2 ).

15. b. Hint: By the laws of exponents, x m =- Thus if

xn-m > l, then > 1.
xm

16. a. For all real numbers x > 1, x2 + 15x + 4 > 0 because
all terms are nonnegative. Adding x2 to both sides gives
2x2 + 15x + 4 > x2. By the nonnegativity of all terms
when x > l, absolute value signs may be added to both
sides of the inequality. Thus 1x21 < 12x2 + l5x + 41 for
all real numbers x > 1.

b. For all real numbers x > l,

12x 2 + 15x + 41 = 2x 2 + 15x + 4
because 2x2 + 15x + 4
is positive (since x > I)

= 12X
2 

+ 15x + 41 <2x
2 

+ 15x
2 

+ 4x
2

because since x > 1,
then x < x2 and 1 < x 2

12x2 + l5x + 41 < 2lx 2  because 2 + 15 + 4 = 21

=> 12x 2 + 15x + 41 < 211x21 because x2 is positive.

c. Let A = l and a = 1. Then by part (a), Ajx 2 1 < 12x2 +
15x + 41 for all real numbers x > a, and so, by definition
of Q-notation, 2x2 + 15x + 4 is Q (x2).
Let B = 21 and b = 1. Then, by part (b), 12x2 + 15x +
41 < B Ix2 1 for all real numbers x > b, and so, by defini-
tion of O-notation, 2x2 + 15x + 4 is 0(x2 ).

d. Let k = 1, A = 1, and B = 21. By parts (a) and (b), for
all real numbers x > k,

AIx 2 l < 12x2 + 15x + 41 < BIx 2l

and thus, by definition of (-notation, 2x2 + 15x + 4 is
e)(x

2 ). In other words, 2x2 + 15x + 4 has order x2.
(Alternatively, Theorem 9.2.1(1) could be used to derive
this result.)

18. First observe that for all real numbers x > 1, 4x3 + 65x +
30 > 0 because all terms are nonnegative. Adding x3 to
both sides gives 5x3 + 65x + 30 > x3. By the nonnega-
tivity of the terms when x > 1, absolute value signs may
be added to both sides of the inequality to obtain 1x31 <
15X3 + 65x + 301 for all real numbers x > 1. Let a = 1
and A = 1. Then Alx 3

1 < 15x3 + 65x + 301 (*) for all real
numbers x > a.

Second, note that when x > 1,

15x 3 + 65x + 301 < 5x 3 + 65x + 30
because all the terms are
positive since x > 1.

15x 3 + 65x + 301 < 5x3 + 65x 3 + 30x3

because since x > 1, then
65x < 65x3 and 30 < 30x3

15X3 + 65x + 301 < IO0x
3

X 15X3 + 65x + 301 <

because 5 + 65 + 30 = 100

101X3 1

because x 3 is positive since x > 1.

Let b = I and B = 100. Then 15x 3 + 65x + 301 < Bx3

(**) for all real numbers x > b.

Let k = max(a, b). Putting inequalities (*) and (**) to-
gether gives that for all real numbers x > k,

AIx 3 1 ' 15X 3 + 65x + 301 < BIx 3I.

Hence, by definition of (0-notation, 5x3 + 65x + 30 is
(9 (x3); in other words, 5x3 + 65x + 30 has order x3.

20. a. By definition of ceiling, for any real number x, Fx2 l is
that integer n such that n -I < x2 < n, and thus, by
substitution, x2 

< [xF. Since x > l, both sides of the
inequality are positive, and so 1x21 < [ rx 2]1.

b. As in part (a), [x2 1 is that integer n such that n -1 <

2 < n. Adding I to all parts of this inequality gives
n <x 2 +l <n+l,so x 2 1 <x2 +1.Thusifxisany
real number with x > 1, then

Ir lU211 < X2+]
X. [X2 l < X2 +±I

= I FX21 I X +2X

z> I rX21 < 2 lX21

because Fx2l is positive

by the argument above

because 1 < x 2 since x > I

because x2 is positive.

c. Let A = 1 anda - 1. Then, by part (a), x21 < AlFx 2 l1
for all real numbers x > a, and thus, by definition of
Q-notation, [x2 1 is Q (x2 ).

=z�



Let B = 2 and b = 1. Then, by part (b), Ix2 | B| Fx21 I

for all real numbers x > b, and thus, by definition of 0-
notation, Fx21 is O(x2).

d. We conclude that Fx21 is 0(x 2) by part (c) and Theorem
9.2.1(1). Alternatively, we can use the results of parts (a)
and (b), letting k = max(a, b), to obtain the result that
for all real numbers x > k,

AIx
2

1 S I x
2

12] Bjx2|

and conclude directly from the definition of (-notation
that [x21 is 0)(x2).

22. a. For all real numbers x > 1,

17X4 - 95x3 + 31 S 17x 4 1 + 195x 31 + 131
by the triangle inequality

17X4 - 95x 3 + 31 < 7x 4 + 95x 3 + 3
because all terms are positive
since x > 1

X 17X4 -95x 3 + 31 < 7x 4 + 95x4 + 3x4

> 17X4 -95x 3 +31 S

because x > I implies that
x3 <X4 andl <x 4

105 x
4

1

because 7 + 95 + 3 = 105

and x4 > 0.

b. 7x4 - 95x3 + 3 is O(x
4 )

25. Hint: Use an argument by contradiction similar to the one
in Example 9.2.8.

26. Proof: Suppose ao, a,, a2 , .. .,a. are real numbers and
an # 0. By the generalized triangle inequality,

lanx' + a,-lx' I + * * * + alx + ao I

S laaxx+ + la -x'al + + lalxl + laol,

and because the absolute value of a product is the product
of the absolute values (exercise 50, Section 3.4),

lax'| + Ian-X 1' + *--- + laixl + laoI

S lanllx'l + la,-illx'- l + * * * + lal xl + laol.

In addition, when x > 1, property (9.2.1) implies that

xn < xn xn-' < xn' x2 <xn, x < x, 1< xn,

and also x' = jxnI because x > 1. Thus

ja.xn + a,- Xn 
1  

+ * * * + alx + a(I

< Ian I IX" I + lan-1I X" Ix + + la, I |Xn I + laol|lxn|

< (IanI + Ian-, + . + lal + laoI) x'n.

Let b = l and B = laI + lan-, I + + lal + laol. Then
for all real numbers x > b,

Ia,,x' +a,,- x'-l + . +ax +aoI < Blx

and so, by definition of O-notation,

ax + a, lx' + * * + aix + ao is O(x').

9.2 Solutions and Hints to Selected Exercises A-81

28. Let a (959' 3) 2 = 28, and let A = 2. If x > a, then7 2

x D(953) 2

Xx > 975 2 + 27 7

x > 95 2 + 2

because - < I since x > 28

7x4 > 95x 3 ±3 3

by multiplying both sides by 72

X(7-2)x4> 95x3-3
because 95x3 + 3 > 95x 3 -3
and 7_ 7 7

22

7x 4 -x 4 > 95x3 -3

by multiplying out

=X 7x 4 -95x3 +3 > 7x4

by adding x 4 -95x3 + 3
to both sides

x 7x4-95x3 + 3 > Ax4

because A = -

X 17X4 -95x 3 + 31 > AIx41
because both sides are nonnegative.

Hence, by definiton of Q-notation, 7x 4- 95x3 + 3 is
Q (x4).

31. By exercise 22, 7x 4-95x3 + 3 is 0(x4 ), and by exercise
28, 7x4 - 95x3 + 3 is Q (x4). Thus, by Theorem 9.2.1 (1),
7x 4 -95x 3 + 3 is (3(x4).

34 (x+ M-2) = x2-2 = 4x2- I 4X- is (3(x2)
4 4 = 4  - 4  2'

by the theorem on polynomial orders.
37 n(n+1)(2n+1) - 2n

3
+3n

2
+n = 3 + 2 +

6 6 =3 2 6
which is 0(n 3) by the theorem on polynomial orders.

40. By exercise 10 of Section 4.2, 12 + 22+ 32 +... + n2 
-

6 ) and, by exercise 37 above, "(6+s(2 i<f
Hence 12 + 22 + 32 + - + n2 is 0(n 3 ).

42. By Theorem 4.2.2, 2+4+6+- +2n =2 (n(t2))=

n2 + n, and by the theorem on polynomial orders, n2 + n is
0(n 2). Thus 2 + 4 + 6 + -. + 2n is 0 (n2).

44. By direct calculation or by Theorem 4.1. 1, En 1(4i - 9) =

4y n - 9 = (n(n 1)) - 9n. The last equality
holds because of Theorem 4.2.2 and the fact that

E 9 = 9 + 9 + ... + 9 (n summands) =9n.

Then 4 ((n21) -9n = 2n2 + 2n-9n =2n2 - 7n, and

hence En~ (4i -9) = 2n2 - 7n. But 2n2 - 7n is E)(n 2 )
by the theorem on polynomial orders. Thus yn 1(4i - 9)
is 0(n

2
).

46. Hint: Use the result of exercise 13 from Section 4.2.

48. Hints:
axn + a, lx'-1 + + alx + ao

anXn

a,1- I a_2 I a1  1 ao 1
=1+ -x+ a x2 + a+ x-+_ x

an X a. X2 a. Xn1 a, Xn
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b. limn,, f (x) = L means that given any real number
E > 0, there is a real number M > 0 such that L - e <
f (x) < L + E for all real numbers x > M. Apply the
definition of limit to the result of part (a), using e = 2

49. a. Let f, g, and h be functions from R to R, and sup-
pose f(x) is 0(h(x)) and g(x) is 0(h(x)). Then
there exist real numbers b,, b2, B1, and B2 such that
If(x)L < BIh(x)I forallx > b, and Ig(x)l S B21h(x)l
for all x > b2. Let B = B. + B2, and let b be the greater
of b1 and b2. Then, for all x > b,

If(x) + g(x) I < If(x)I + Ig(x)l
by the triangle inequality

If (x) + g(x) I < Be jh(x) I + B2 Ih(x) I
by hypothesis

X If(x) + g(x)l < (B. + B2)lh(x)l
by algebra

because B = B, + B2.

Hence, by definition of O-notation, f (x) + g(x) is
0 (h (x)).

b. By exercise 15, for all x > 1, x2 
< x4. Hence Ix21 <

1 Ix41 for all x > 1. Thus, by definition of O-notation,
x2 is 0 (x4). Clearly also, Ix4 <1 . Ix4

1 for all x, and so
x4 is O(x 4). It follows by part (a) that x2 + x4 is 0 (x4).

50. d. Hint: If p, q, and s are positive integers, r is a nonnega-
tive integer, and P > r then ps > qr and so ps -qr >

Xpq q

0. Also - = x(plq/s r) = x(pq-rS)Iqs. Apply part (c)

to x
1/S, and use the fact that ps -qr is an integer and

ps -qr > 0 to make use of the result of exercise 15.
51. By part (d) of exercise 50, for all x > 1, x < x4/3 and

l = x0 < x 4
/ . Hence, by definition of O-notation (since

all expressions are positive), x is 0(x4/3) and 1 is 0(X4
/3).

By part (c) of exercise 49, then,- 15x = (- 15)x is 0 (x4/3 )
and7 = 7 1 is O(x 4

13). It follows, by part (a) of exercise 49
(applied twice), that 4x 4 /- 15x + 7 = 4x4 /3 + (-15x) +
7 is 0(X4

/3).

53. Hint: The proof is similar to the solution in Example 9.2.8.
(Choose a real number x so that x > B l/r- and x > b.)

Jx(3x + 5) 3x 3
/
2 + 5x /2

54. f (x)- . The numerator of
2x+lI 2x+ I

f (x) is a sum of rational power functions with highest power
3/2, and the denominator is a sum of rational power func-
tions with highest power 1. Because 3/2 - 1 = 1/2, Theo-
rem 9.2.4 implies that f (x) is ((x' 2).

57. a. Proof (by mathematical induction): Let the property
P(n) be the inequality

v'I + v/2 + v13 + + In- < n32

Show that the property is true for n = 1:
When n = 1, the left-hand side of the inequality is 1,
and the right-hand side is 13/2, which is also 1. Thus the
property is true for n = 1.

Show thatfor all integers k > 1, if the property is true
for n = k, then it is true for n = k + 1:
Let k be any integer with k > 1, and suppose

[Inductive hypothesis]

We must show that

i+/2;+ 3+ +V k+I (k + 1)3 /
2
.

But

VI±V+ +V3+ + k+I

-Ji+v¶+V/3+...+V+ k+I
by making the next-to-
last term explicit

X ± /'3 + - + 1k -+Il< k 3
±/2 k+

by inductive hypothesis

=> 4 +X+X-V +..+ -+IkV k+ k-+l
because k3

12 = klik

X + /2- +3-+ -.. +k+I
<k k~lkM+ 1k
because ak < k+

X T 4+X/-+X/+ + Ik-l<(k +1),Ik/+
by factoring out k +1

=> v 2+ 3V+ + k+I<(k+ 1)3 /
2

.

b. Hint: When k > 1, k2 > k2 
_ 1. Use the fact that

k2 - 1 = (k- 1)(k + 1) and divide both sides by
k(k - 1) to obtain k > k+1 But >k-1 k u k ' l, and any
number greater than or equal to 1 is greater than or equal

to its square root. Thus kA > k5 > k+i - JtT.

Hence kl > (k -1) +1 = (k + -2) + =
(k + l) k-+ 2/k , and so kvk + 2 +I >
(k+ l) k+.

c. VT+V f+ ..- +V nise(x3 
1

2 ).

59. Proof: Suppose f (x) is o(g(x)). By definition of o-
notation, lim,c f(x) = 0. By definition of limit, this

g(x)
implies that given any real number a > 0, there exists a

real number xO such that -f(x) - 0 < e for all x > xO.

Let b = max(xo, 1). Then If(x)I < lg(x)I for all x > b.
Choose a = I, and set B = 1. Then there exists a real num-
ber b such that If(x)I < B Ig(x)I for all x > b. Hence, by
definition of 0-notation, f (x) is 0(g(x)).

Section 9.3
1. a. log2(200) = %i00- 7.6 nanoseconds =

0.0000000076 second
d. 2002 = 40,000 nanoseconds = 0.00004 second
e. 2008 = 2.56 x 10'3 nanoseconds -

2.606024(36525) years -81,121.5 years

[because there are 109 nanoseconds in a second, 60 sec-
onds in a minute, 60 minutes in an hour 24 hours in a day
and approximately 365.25 days in a year on average].

==> If (x) + g(x)l < Blh(x)l



2. a. When the input size is increased from m to 2m, the num-
ber of operations increases from cm2 to c(2m )2 = 4CM

2
.

b. By part (a), the number of operations increases by a fac-
tor of (4cm2

)/Cm
2 = 4.

c. When the input size is increased by a factor of 10 (from m
to lOi), the number of operations increases by a factor
of (c(lOm)

2
)/(cm

2
) = (lOOcm

2
)/cm

2 
= 100.

4. a. Algorithm A has order n2 and algorithm B has order n3 /2 .
b. Algorithm A is more efficient than algorithm B when

2n2 < 80n31/2. This occurs exactly when

n2 < 40n 3/2 X* 3 < 40 X* n 112 < 40 4> n < 402.
n2/2

Thus, algorithm A is more efficient than algorithm B
whenn < 1,600.

c. Algorithm B is at least 100 times more efficient than
algorithm A for values of n with 100(80n3 /2) < 2n2.
This occurs exactly when 8,000n31 2 < 2n2 

X 4, 000 <

3 4,000 < r X 16,000,000 < n. Thus, algo-

rithm B is at least 100 times more efficient than algorithm
A when n > 16,000,000.

6. a. There are two multiplications, one addition, and one sub-
traction for each iteration of the loop, so there are four
times as many operations as there are iterations of the
loop. Theloopisiterated(n - 1) - 3 + 1 = n- 3 times
(since the number of iterations equals the top minus the
bottom index plus 1). Thus the total number of opera-
tions is 4(n - 3) = 4n -12.

b. By the theorem on polynomial orders, 4n -12 is 0(n),
so the algorithm segment has order n.

8. a. There is one subtraction for each iteration of the loop,
and there are tn/21 iterations of the loop.

b. [n/2j=I n/2 if n is even
(n-1)/2 if n is odd

is 0(n) by theorem on polynomial orders, so the algo-
rithm segment has order n.

9. a. For each iteration of the inner loop, there are two mul-
tiplications and one addition. There are 2n iterations of
the inner loop for each iteration of the outer loop, and
there are n iterations of the outer loop. Therefore, the
number of iterations of the inner loop is 2n . n = 2n2. It
follows that the total number of elementary operations
that must be performed when the algorithm is executed
is 3 . 2n2 = 6n 2 .

b. Since 6n2 is 0)(n2
) (by the theorem on polynomial or-

ders), the algorithm segment has order n2.

11. a. There is one addition for each iteration of the inner loop.
The number of iterations in the inner loop can be deduced
from the following table, which shows the values of k
and j for which the inner loop is executed.
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Hence the total number of iterations of the inner loop is

2 +3 + + n= (I +2 +3+ + n)- I

n(n+l) 1 I2 + 1

2 2 2

(by Theorem 4.2.2). Because one operation is performed
for each iteration of the inner loop, the total number of
operations is In' + in-

b. By the theorem on polynomial orders, in' + in - 1 is
0 (n2), and so the algorithm segment has order n2.

14. a. There is one addition for each iteration of the inner loop,
and there is one additional addition and one multiplica-
tion for each iteration of the outer loop. The number
of iterations in the inner loop can be deduced from the
following table, which shows the values of i and j for
which the inner loop is executed.

[i 1121 131 .. {no

I I I .
1 2 3 n

Hence the total number of iterations of the inner loop is

1+2+3+ - +n=(l+2+3+ + +n)

n(n +) 1 2 1

= 2 2 2

(by Theorem 4.2.2). Because one addition is performed
for each iteration of the inner loop, the number of op-
erations performed when the inner loop is executed is

2 n2 + 2. Now an additional two operations are per-
formed each time the outer loop is executed, and because
the outer loop is executed n times, this gives an additional
2n operations. Therefore, the total number of operations
is

1 2 1 1 2 5
n2 + ± n + 2n = -n + -n.

2 2 2 2

b. By the theorem on polynomial orders, In2 + 'n is2 2

0 (n2), and so the algorithm segment has order n2.

17. a. There are two subtractions and one multipliction for each
iteration of the inner loop.

If n is odd, the number of iterations of the inner loop
can be deduced from the following table, which shows
the values of i and j for which the inner loop is executed.

2 3 4

k 1212 312 4... In 23.I.ni I 1 21 2 1 t3 1 1 1 2 31 4.................. In- | 2 | 3 .. .......

n
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i 1 2 3 4 5 6 ... n 1 ... n ..

j+1 1 1 1 21 31 3 ... 2 .. . 2 ...

rj LI I I 1 112 1 2 2 l 3 . I 1 2 ... 1 XT2- 1 2
I 1 2 2 3 3

Thus the number of iterations of the inner loop is

n 1 I n 1 n+1
=2I(12 + 2 + 3 + + I

2 2 2

= . 12 + 2

by Theorem 4.2.2

2 1

n -2n+1 n- n+1

2 + I n+

4 2 2

12 1 1
= n + -n +
4 2 4

By similar reasoning, if n is even, then the number of
iterations of the inner loop is

n n
2 2

= 2

n2  n
4 2

by Theorem 4.2.2

Because three operations are performed for each itera-
tion of the inner loop, the answer is 3 n2 + when n

is even and 3 (In 2 
+ 'n + ') when n is odd.

b. Since 3 ('4 + 2) is e(n2 ) and 3(n 2 
+ ( n + I) is

also (9(n2) (by the theorem on polynomial orders), this
algorithm segment has order n2.

19. Hint: See Section 6.5 for a discussion of how to count the
number of iterations of the innermost loop.

20.

2 2

all] a[2] a[3] a[4] a[5]

Initial orderly 6 2 1 8 4

Result of step I 2 6 1 8 4

Result of step 2 1 2 6 8 4

Result of step 3 1 2 6 8 4

Final order 1 2 4 6 8

22. n 5 1 1

a[l] 6 2 1 1

a[2] 2 6 1 2

a[3] 1 6 - 4

a[4] 8 4 6

a[51 4 8

k 2 3 45 6

x 2 1 8 4

j 102 1 0343 2

24. Solution 1: The answer is 7, the same as the number of
distinct nonzero values of j.

Solution 2: The answer is 7: 1 comparison from step 1, 1
from step 2, 3 from step 3, and 2 from step 4.

27. Hint: The answer to part (a) is En = 3 +4+ 4 + (n + 1),
which equals (I + 2 + 3 + + (n + 1))- ( + 2).

28. The top row of the table below shows the initial values of
the array, and the bottom row shows the final values. The
result of each interchange is shown in a separate row.

a[l] a[2] a[3] a[4] a[5]

5 3 4 6 2

3 5 4 6 2

2 5 4 6 3

2 4 5 6 3

2 3 5 6 4

2 3 4 6 5

2 3 4 5 6
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30.

32. There is one comparison for each combination of values of
k and i: namely, 4 + 3 + 2 + I = 10.

35. b. n-3 + I = n -2 d. Hint: The answer is n2.

n 3 I I I

a[0l 2

a[°] I I

a[2] -1 I

ax3] 3 - - - -

x 2

polyval 2 4 0 24

i 1 2 3

term 1 2 -1 -2 -4 3 6 12 24

I 1 2 2 12 3 -

n 5 - - - - - - - - - -n 5

a[li 5 3 2 - - - - -

a[21 3 5 4 3 -

a[3] 4 5 4

a[4] 6 5

a[5] 2 3 4 5 6

k 1 2 3 4

i 2 3 4 5 3 4 5 4 5 5

tep -5 -- 3 5 -4 -5 6

3t t i 3)

Y= 3y

2-

I

3.38. Number of multiplications

- number of iterations of the inner loop

1+ 2 +3 + + n

n(n + 1) by Theorem 4.2.2
2

number of additions

- number of iterations of the outer loop

=n

Hence the total number of multiplications and additions is

n(n + 1) 1 2 3

2 +n 2 2n.

40. n 3

a[01 2 I

a[I] 1

a[2] -1

a[3] 3

x 2

polyval 3 5 11 24

i 1 2 3

x h(x) = log, x

I 0

10 1

100 2

1/10 - 1

1/100 -2

V , h(x) = logo x

I I-
-1 5 10 15 20 x

42. Hint: The answer is t,, = 2n.

Section 9.4
1. X f(x)=3x

0 30°1

1 3I = 31
2 32=9

-1 3-' = 1/3

-2 3 2=1/9

1/2 3 12 - 1.7

-(1/2) 3 1/2)-0.06

36.

x
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5.

4-

3-

2-

I1-

-72

-2-

7.

y

24

16

8

X Ll0g 2 XI

1 <x <2 0

2 < x <4 1

4 < x < 8 2

8 < x < 16 3

1/2 < x < I -I

1/4 < x < 1/2 -2

F(x)= L-log 2 xJ

- 2

-c

4 6 8 10

x x 1og 2 x

1 I .0=0

2 2 1=2

4 4 2=8

8 8 3=24

1/8 (1/8) .(-3) = -3/8

1/4 (1/4). (-2) = -1/2

3/8 (3/8) . (log2 (3/8)) - -0.53

11. b. y

3-

(-3, 1)
.

I .,.

I -

I I I 1_. I,
-5 -3 *-.1-,

-4 '25*

-,.
, .

/, (-2,-4)
/ 5.-

/

12 14 16 X
13.
15.

16.

18.
21.

9. The distance above the axis is (264 units) (I nih)

24inches 4 12528 Miles4inhe =4.12-5280 miles 72,785,448,520,000 miles.
The ratio of the height of the point to the aver-
age distance of the earth to the sun is approximately
72785448520000/93000000 782,639. (If you perform
the computation using metric units and the approximation
0.635cm -1/4 inch, the ratio comes out to be approxi-
mately 780,912.)

10. b. By definition of logarithm, log, x is the exponent to
which b must be raised to obtain x. Thus when b is
actually raised to this exponent, x is obtained. That is,
blogb x = X.

(3, 5) ,
0* , y-x

*.(1, 4)

* , (5,3)

z

b (4, 1)

I 5 I3 5 X

- '- (1, -3)

Each pair of points
(u, v) and (v, u) are
'mirror image reflections"
across the line y = x.

Hints: (1) Llogioxj = m, (2) See Example 9.4.1.

No. Counterexample: Let n = 2. Then

Flog2(n - 1)1 = Plog2 11 = FOl = 0,
whereas flog 2 nl = 0log2 21 = 11 = 1.

Hint: The statement is true.

flog2 148206] + I = 18

a. a, = I

a2 = aL2/2j + 2 =a + 2 =1 + 2

a3 = aL3/2J + 2 = a, + 2 = I + 2

a4 = aL4/2J + 2 2 + 2= (1 + 2) + 2

=I +2 2

a 5 =a[5/2j + 2 =a 2 + 2 =(1 + 2) + 2

=I +2 2

a6= aL6/21+ 2 =a 3 + 2 =(1 + 2) + 2

= 1+2 2

a7 -aL7/2 + 2 =a3 + 2= (1 + 2) + 2
=I +2 2

a8= aL8/2j + 2 = a4 + 2

= (1 + 2-2) + 2 = 1 + 3 2

a9 = ai9/21 + 2 = a4 + 2

=(1 + 2.2) + 2 = 1 + 3.2

a15 = aLI5/2 + 2 = a7 + 2

= (1+ 2.2) + 2 = 1 + 3 2

a16 =a[16/21 + 2 = a8 + 2

= (1+3 2)+2= 1+4 2

Guess:

a, = I + 2log2 nj

, K

,o'
I

i

I(-'



b. Proof: Suppose the sequence a,, a2, a 3 , . . . is defined
recursively as follows: a, = 1 and ak = aLk/2J + 2 for
all integers k > 2. We will show by strong mathemat-
ical induction that the following property is true for all
integers n > 1: a, = I + 2 L10g 2 nj.

Show that the property is true for n = 1:

When n = 1, I + 2 Llog2 nj = 1 + 2 [log2 1 = 1 +
2 0 = 1, which is the value of a.

Show that for any integer k > 1, if the property is true
for all integers i with 1 < i < k, then it is true for
n =k:

Let k be an integer with k > 1 and suppose a, = 1 +
2 [log2 iJ for all integers i with 1 < i < k. [This is
the inductive hypothesis.] We must show that ak=
1 + 2 [log2 kg.

Case 1 (k is even):

ak = a[kl2j + 2

by the recursive definition of a,, a2 , a3,

= ak12 + 2

because k is even

- 1 + 2 [log2(k/2)j + 2
by inductive hypothesis

= 3 + 2 [log2 k - log 2 2]
because logb(x/y) = lgb x -log, y
(exercise 29, Section 7.2)

= 3 + 2 [log2 k- 1]
because log2 2 = I

= 3 + 2([log 2 kj -1)
because for all real numbers x Lx - =j
(by exercise 15, Section 3.5)

= 1 + 2Llog 2 kj
by algebra

Case 2 (k is odd):

ak = aLk/2J + 2

by the recursive definition of a1 , 02, a3, ....

= aL(k-1)122 + 2 because k is odd

= I + 2 [log2 ((k - )/2)j + 2

by inductive hypothesis

= 3 + 2 [log2 (k -1)- 1og 2 2

because logb(x/y) = 1gb x -logb y

= 3 + 2 [log2 (k - 1) - 1

because lg 2 2 = I

= 3 + 2([10g2 (k - l)] - 1)
because for all real numbers x, Lx -j =
(by exercise 15, Section 3.5)

= 1 + 2 [log2 (k- 1)j by algebra

= I + 2log2 kj

by property (9.4.3)

Thus in either case, ak = 1 + 2 Lo0g2 k] [as wa.
shown].

9.4 Solutions and Hints to Selected Exercises A-87

k223. Hint: When k >2, then k 2 >2k, and so k - 2'. Hence

k2 k2  k 22
2 + k < 2 + - = k2 . Also when k > 2, thenk> 1,
2 2 2_

I k2 k2  1 k2  k 2
and so <-2 . Consequently, - + - < - + - = k

2 2 2 2 2 2
24. Hint: Here is the argument for the inductive step in the case

where k is even.

Ck = 2cLk2j + k
by the recursive definition of cl, C2, C3, ...

Ck = 2ck2 + k
because k is even

=> ck - 2 [2 10g2 ( 2 )] +k

by inductive hypothesis

= Ck < k(log2 k -log 2 2) + k
by algebra and the fact that logb(x/y) =
lgb X - logb Y

= ck < k(log 2 k -l) + k
because log2 2 =

= ck < k log2 k
by algebra

25. Solution 1: One way to solve this problem is to compare val-
ues for log2 x and x 10 for conveniently chosen, large values
of x. For instance, if powers of 10 are used, the follow-
ing results are obtained: log2(10 10) = 10 1og 2 10 - 33.2
and (1010)1/io = 1010 (1/10) = 101 = 10. Thus the value
x = 1010 does not work.

However, since log2 (102 0 ) = 201og2 10 - 66.4 and

Lx] 1 (1o20)1/IO = 0o20 (I/10) = 102 = 100, and since 66.4 <
100, the value x = 1020 works.

Solution 2: Another approach is to use a graphing calculator
or computer to sketch graphs of y = log2 x and y = x I/'°,
taking seriously the hint to "think big" in choosing the inter-
val size for the x's. A few tries and use of the zoom and trace
features make it appear that the graph of y = xl l1 crosses
abovethegraphofy = log2 x atabout4.9155 x 1017. Thus,
for values of x larger than this, x1 

10 > log2 x.

27. As with exercise 25, you can solve this problem either by
numerical exploration or by exploring with a graphing cal-
culator or computer. For instance, if you raise 1.0001 to
successive large powers of 10, you can find the solution
X = 106 = 1,000,000. That is,
(1.0001)°°°°00 > 2.67 x 104' > 1,000,000.

(This is the first power of 10 that works.)

Alternatively, you can use a graphing calculator or computer
to sketch graphs of y1 = (1.0001)X and Y2 = x and look to

LxJ - I see where the graph of yi = (1.0001)' rises above the graph
of Y2 = x. You will need to zoom in carefully to obtain an
accurate answer. If you use this method, you will find that
if x > 116703, then (1.0001)X > x.

29. 7x2 + 3x log2 x is O(x 2).

30. [To show that 2x + log2 x is )(x), we mustfindpositive real

s to be numbers A, B,andksuchthatAIxl - 12x +10g 2xI < BjxI
for all x > k.] Observe that if x > 1, log2x > 0 and, by
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property (9.4.9),1og2 x < x. Adding 2x to both sides gives
2x + log2 x < 3x, or, because all terms are positive,

12x +log2 xI < 3IxI.

Also, by similar reasoning, when x > 1, then x < x +
(x + log2 x) = 2x + log2 x. Thus when x > 1,

lxI < 12x+log2 xI

Therefore, let k = 1, A = 1, and B = 3. Then for all real
numbers x > k,

AixI < 12x + 10g2 xI < B xI

and hence, by definition of 0-notation, 2x + 1og 2 x is 0) (x) .
32. For all integers n, 2" < n2 + 2". Also, by property (9.4.10),

there is a real number k such that n2 < 2" for all n > k.
Adding 2" to both sides gives n2 + 2n < 2" + 2" = 2 2".
Because all quantities are nonnegative, we can write

12 1 < In2 + 2n I < 2 12' I for all integers n > k.

Let A = and B =2. Then

A12"I < in2 +2n < B12"I forallintegersn > k,

and hence, by definition of 0-notation, n2 + 2" is 0(2").

33. Hint: 2n+1 = 2 . 2"

34. Hint: Use a proof by contradiction. Start by supposing
that there are positive real numbers B and b such that
4n < B . 2" for all real numbers n > b, and use the fact that

= (2)" - 2" to obtain a contradiction.

35. By Theorem 4.2.3, for all integers n > 0,

1 +2 +22 + ..- +2n = 2n+ - = 2n+1
2 -1

Also

2 +' - I < 2n+1 = 2.- 2n.

Thus, by transitivity of order,

1 + 2 + 2 2+ .. + 2n < 2 . 2n.

Moreover, if n > 0, then

2n< 1 + 2 + 22 + .. . + 2n.

1.

(*)

(**)

Combining (*) and (**) gives

and so, because all parts are positive,

1. 12 | < |1 + 2+22 + . . . + 2" 1 < 2 12n .

Let A = 1, B = 2, and k = 1. Then for all integers n > k,

A. 12"I < 11+2 + 22 + ... + 2" < B . 12n .

Thus, by definition of 0-notation, 1 + 2 + 22 +.. + 2" is
(0(2"n).

36. Hint: This is similar to the solution for exercise 35.
Use the fact that 4 + 42 + 43 + .+4 =
4(1 + 4 + 42+ 43 + . . . +4n- )

39. Factor out the n to obtain

n n n
n +-+ +...± -

1 11
=n t+ 2 + 4 + + 2n

= n I ( I ) I )

I - 2`+1
=n _(I_-2)_

(2n+1-. )

( 2n )

by Theorem 4.2.3

by multiplying numerator
and denominator by 2 n+1

by algebra.

1
Now I < 2- < 2whenn > 1. Thus

l n<n 2--n <2-n,
2"~

and so, by substitution,

n fl n
1. n < n + - + - .+ - 2-n.

2 4 2"

Let A = 1, B = 2, and k = 1. Then, because all quantities
are positive, for all integers n > k,

n n n
A InI < n + 2 + + + + - < B In 1.

1 2 4 2"

Hence, by definition of 0-notation, n + 2 + n + * + _j_

is (9(n).

43. If n is any integer with n > 3, then

n n n I

n+2 +3 + -n =nl+2+3 + n.

By Example 9.4.7,

1 1 1
ln(n) < I + - + -+ -+ - < 2 In(n).

2 3 n

If n > 1, then we may multiply through by n and use the
fact that all quantities are positive to obtain

n n n
In ln(n)l < n + - + - n - < 2 In 1n(n)I.

Let A = 1, B = 2, and k = 1. Then for all integers n > k,

n n nI
A In In(n)I < n + 2 +-+ * + < B In ln(n)I

2 3 n

and so, by definition of (-notation, n + 2 + n + * + n is

0 (n In(n)).



46. Proof (by mathematical induction): Let the property P (n)
be the inequality n < lO.

Show that the property is true for n = 1:
When n = 1, the inequality is 1 < 10, which is true.

Show thatfor al integers k > 1, if the property is truefor
n = k, then it is truefor n = k + 1:

Let k be any integer with k > 1, and suppose k < lOk
[This is the inductive hypothesis.] We must show that
k + 1 < IOk I . By inductive hypothesis, k < 0 k. Adding
I to both sides gives k + I < 1Ok + 1. But when k >

1, 10 + I < ok + 9. ok = 10 0lk = Ok+. Thus, by
transitivity of order, k + 1 < 1Ok+i [as was to be shown].

47. Hint: To prove the inductive step, use the fact that if k > 1,
then k + I < 2k. Apply the logarithmic function with base
2 to both sides of this inequality, and use properties of log-
arithms.

48. Hint: 2 2 -2.2 < 2 (2 3 4 ... n) = 2 n!

n factors

49. a. Proof: Suppose n is a variable that takes positive integer
values. Then

n! = n (n-) (n -2).... 2 1

n factors

< n -n -n -n*. n = n

n factors

because (n-I) < n, (n-2) < n, . and 1 < n. Let
B = I and b = 1. It follows from the displayed in-
equality and the fact that n! and n" are positive that
In!j S B. Innl for all integers n > b. Hence, by defi-
nition of 0-notation, n! is 0 (n).

c. Hint: (n!) 2 =n! n! = (I 2 3 ... n)(n (n- 1) 3

2 1) = (r) (L(n -r + 1)) r(n -r +1).

Show that for all integers r = 1, 2, . n, n2  nr +
r > n.

50. a. Let n be a positive integer. For any real number x > 1,
properties of exponents and logarithms (see Sec-
tion 7.2) imply that 0 < log2 (x) = log2 ((x ln)n) =

n log 2(xl' ) < nxl/n (where the last inequality holds by
substituting xl/n in place of u in log2 u < u) .

b. Let B = n and b = 1. Then if x > xO, I log 2xl =
log2 x < B * Ix 'l/, and so log2 x is O(x ln).

52. Let n be a positive integer, and suppose that x > (2n)2" . By
properties of logarithms,

1og 2 x = (2n) (2) (log2 x)

= (2n) 1g 2 (X) < 2nxT2n (*)

(where the last inequality holds by substituting x 'Nk in place
of u in log2 u < u). But raising both sides of x > (2n)2n to
the 1/2powergivesx1/2 > ((2n)2

n)
1

/
2 = (2n)". Whenboth

sides are multiplied by x1/2, the result is x = X112X112 >

9.5 Solutions and Hints to Selected Exercises A-89

x1/2(2n)n = x1/2(2n)', or, more compactly,

x 1/2 (2n)n c x.~

Then, since the power function defined by x -* x'l" is in-
creasing for all x > 0 (see exercise 20 of Section 9.1), we
can take the nth root of both sides of the inequality and use
the laws of exponents to obtain

(X /2(2n)-)1/n < xI/n

or, equivalently,

2nxrT < x"/,. (**)

Now use transitivity of < (Appendix A, T17) to combine
(*) and (**) and conclude that log2 X < X""n [as was to be
shown].

54. Proof (by mathematical induction): Let b be a real number
with b > 1, and let the property P (n) be the equation

lim (-) =0.
X-CO \bx

Show that the property is truefor n = 1:

By L'H6pital's rule, limx,( (x n) = b)

0. Thus the property is true when n = 1.

Show thatfor all integers k > 1, if theproperty is truefor

n = k, then it is truefor n = k + 1:

Let k be any integer with k > 1, and suppose

lim, (i) = 0. [This is the inductive hypothesis.] We

must show that limx, (X ) = 0. But by

L Hospital's rule, bl (Inb)bV -

(k+1) limx, x = (kb) 0 [by inductive hypothesis] = 0

[This is what was to be shown.]

b. By the result of part (a) and the definition of limit, given
any real number e > 0, there exists an integer N such
that I "' -O0 < I for all x > N. In this case take E = 1.
It follows that for all x > N, Il = I I < 1. Multiply
both sides by IbX I to obtain lx"I < Ibj 1. Let B = I and
x0 = N. Then Ix" I < B -b'j for all x > xo. Hence, by
definition of 0-notation, x" is 0(bx).

Section 9.5
1- log2 1000 = log2 (103

) = 3 log2 10 3(3.32) 9.96

10g 2 (1,000,000) = log2(106) = 61og 2 10 6(3.32)

19.92

log2 (1,000,000,000,000) = lg (1012) = 1210g2 10

- 12(3.32) = 39.84

2. a. If m = 2k, where k is a positive integer, then the algo-
rithm requires c[log2 (2")J = cLkj = ck operations. If
the input size is increased to m2  (2 k)2 = 22k, then
the number of operations required is ctlog2(22k)] =

cL2k] = 2(ck). Hence the number of operations dou-
bles.
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b. As in part (a), for an input of size mn = 2k, where k is a
positive integer, the algorithm requires ck operations. If
the input size is increased to ml( = (2 k)10 = 2 1k, then
the number of operations required is c~log 2(2"'k)] =
cLlOkj = 10(ck). Thus the number of operations in-
creases by a factor of 10.

c. When the input size is increased from 27 to 228, the
factor by which the number of operations increases is
c L10g 2 (2

25 )J 28c 4
c log2 (2

7 )- 7c
3. A little numerical exploration can help find an initial

window to use to draw the graphs of y = x and y =
L5Olog2xJ. Note that when x = 28 = 256, L50log2 x =

L50log2(28)J = L50 8j = L4001 = 400 > 256 = x.
But when x = 29 = 512, L50log 2 XI = [50log2 (29) =
L50 9j = L450J = 450 < 512 = x. So a good choice of
initial window would be the interval from 256 to 512. Draw-
ing the graphs, zooming if necessary, and using the trace
feature reveal that when n < 438, n < L50 log2 nJ.

5. a. index 0 1

bot I

top 10 4 1

mid 5 2 1

10. The recurrence relation and initial condition ofaI, a2, a3, . . .

derived in exercise 9 are the same as those for the sequence
wI, W2, W3, ... discussed in the worst-case analysis of the
binary search algorithm. Thus the general formulas for the
two sequences are the same. That is, a, = I + L1og2 nj, for
all integers n > 1.

11. In the analysis of the binary search algorithm, it was shown
that I + Llog2 nj is t9(log2 n). Thus the algorithm segment
has order log2 n.

14. Hint: The formula is b, = I + [log3 nj.

20.

22.

b. index 0 | |

bot |I 6 7

top 10 7 6

mid 5 8 6 7

7. a. top -bot+ I
b. Proof: Suppose top and bot are particular but arbitrar-

ily chosen positive integers such that top -bot + 1 is
an odd number. Then, by definition of odd, there is an
integer k such that

top - bot + I = 2k + I

Adding 2 . bot - I to both sides gives

bot + top = 2 . bot - I + 2k + 1

= 2(bot + k).

But bot + k is an integer. Hence, by definition of even,
bot + top is even.

8 . n 1 27 1 13 1 61 3 1 1 0 0_

9. For each positive integer n, n div 2 = [n/2j. Thus when
the algorithm segment is run for a particular n and the while
loop has iterated one time, the input to the next iteration is
Ln/2j. It follows that the number of iterations of the loop
for n is one more than the number of iterations for Ln/2j.
That is, a, = 1I + a /2j. Also a, = 1.

Final array: [ B C F G G H R

24. b. Refer to Figure 9.5.3 and observe that when k is odd,
the subarray alibot], a[bot + 1], . . ., amid] has length
(k + 1)/2 = [k/21 and that when k is even, it also has
length k/2 = [k/21.
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25. Hint: In part (a), applying the inductive hypothesis in the
case where k is even gives

k (k k (k)
mk > log 2 - + -log 2, +k+1

X 2 ' 2/2\2

=* Ink > k1 kg) + k+ 1

In part (b), applying the inductive hypothesis in the case
where k is odd gives

mk <2( 2 )10 2( 2 )

+ 2 (k+) 1g2 (k 2) + k-1

I nk < (k- 1)(log 2 k -1) + (k + 1) log2 k + k- 1

mk < 2k log, k.

Section 10.1
1. a. No. Yes. No. Yes

b. R = f(2, 6), (2, 8), (2, 10), (3, 6), (4, 8)1

3. a. 0E0because0-0=0=2 0,so2 (0-0).
5,Z2 because 5 -2 3 and 3 -# 2k for any integer k
so 2 , (5 - 2).
(6,6) E Ebecause6-6=0=2 0,so2(6 -6).
(-1, 7) E E because -1-7 =-8 = 2 (-4), so
21(- - 7).

4. Hint: To show a statement of the form p -(q v r),
you need to show p -(q v r) and (q v r) -- p. To
show a statement of the form p -- (q V r), you can show
(p A -q) -+ r (since these two statement forms are log-
ically equivalent). To show a statement of the form
(q v r) -* p, you can show (q -* p) A (r -* p) (since
these two statement forms are logically equivalent). In this
case, suppose m and n are any integers, and let p be "m- n
is even," let q be "m and n are both even," and let r be
"m-n is even," let q be "m and n are both even," and let
r be "m and n are both odd."

5.a. lOTIbecauselO -=9=3 3,so3(10- 1).
1 T 10 because 1- 10 -9 3 (-3), so 3 1 (I-10).
2T2because2 -2=0=3 0,so3(2-2).
82Z 1 because 8-1 = 7 # 3k, for any integer k. So

3 1 (8 - 1).
b. One possible answer: 3, 6, 9, -3, -6
e. Hint: All integers of the form 3k + 1, for some integer

k, are related by T to 1.

6. b.

7. a. Yes, because 4 =2 2.
No, because 2 # 42
Yes, because 9 = (-3)2.
No, because -3 0 92

8. a. Yes, because 15 and 25 are both divisible by 5, which is
prime.

b. No, because 22 and 27 have no common prime factor.

9. a. Yes, because both {a, b} and {b, c) have two elements.

10. a. No, because {a) n {c) = 0.

11. a. Yes, because both abaa and abba have the same first two
characters ab.

12. Hint:

a.

b. R is not a function. It satisfies neither property (1) nor
property (2). It fails property (1) because (4, y) ¢ R for
any y in B. It fails property (2) because (6, 5) E R and
(6, 6) E R and S A 6.

13. a. 0, {(0, 1)3, ((I, 1)}, {(O. l), (1, 1)}
b. {(O. 1), (1, 1)}
c. 1/4

15. Hint:
a. The answer is 2'". b. The answer is nm.

16. No, because, for example, (4, 2) E P and (4, -2) e P but
2 -2.

17. R = {(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6))

R = {(4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)}
19. a. Yes, because aab is the concatenation of a with ab.

b. No, because ab is not the concatenation of a with aab.
d. Yes, because aba T-1 ba < ba T aba ¢> aba is the

concatenation of a with ba, which is true.

21. a. A function F: X -- Y is one-to-one if, and only if, for all
x 1, x2 e X, if (xI, y) c F and (x2 , y) E F, then xi = x2.

22. a. No. If F: X -- Y is not onto, then F- ' is not defined on
all of Y. In other words, there is an element y in Y such
that(y,x) 0 F- 1foranyx e X.Consequently,F- does
not satisfy property (1) of the definition of function.

mk >

mk >

mk >

k(log2 k- 1og 2 2) + k + I
k(log2 k- 1) + k + 1

klog2 k+ 1 > klog2 k.

]
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23. X
y25.

3

26. Hint: See Example 10.1. 10.
28. a. 574329 Tak Kurosawa

011985 John Schmidt
29. A x B = -(2, 6), (2, 8), (2,10), (4, 6), (4, 8), (4, 10))

R = {(2, 6), (2, 8), (2, 10), (4, 8)}
S = {(2, 6), (4, 8)}
RU S = R, Rn S = S

31. y
S.t

I'

Al f The shaded region
.- is R. The dashed

line is not included.
S.

haded region
J S. The line
is included.
x

that the union of the
than" relation, <, and
equals" relation, =, is
ess than or equal to"
an, <.

The graph of the intersection of R and S is obtained by
finding the set of all points common to both graphs. But
there are no points for which both x < y and x = y. Hence
R n s = 0 and the graph consists of no points at all.

Section 10.2
1. Ri:

a.

S.
S.

S.
S.

S.
S.

S.
S.

S.
S.

S.
S.

S.

b. RI is not reflexive: 2XRI 2.
c. RI is not symmetric: 2 R1 3 but 3X1fj 2.
d. RI is not transitive: 1 RI 0 and 0 RI 3 but 1,L 3.

*1

S consists of the
points on this line.

b. R3 is not reflexive: (0, 0) ¢ R3
c. R3 is symmetric. (If R3 were not symmetric, there

would be elements x and y in A = {0, 1, 2, 3} such that
(Xy) e R 3 but(y,x) ¢ R3. Itisclearbyinspectionthat
no such elements exist.)

d. R3 is not transitive: (2, 3) E R3 and (3, 2) E R3 but
(2, 2) g R3

y

3. R3:
a. 0.

An



6. R6 :

a. (

2. 4.3

b. R6 is not reflexive: (0, 0) T R6
c. R6 is not symmetric: (0, 1) E R6 but (1, 0) ¢ R6.
d. R6 is transitive. (If R6 were not transitive, there would be

elements x, y, and z in {0, 1, 2, 3} such that (x, y) E R6
and (y, z) E R6 but (x, z) V R6 . It is clear by inspection
that no such elements exist.)

9. R' =RU (0, 0), (0,3), (1, 0), (3, 1), (3, 2), (3, 3),

(0, 2), (1, 2))

={(0, 0), (0, 1), (0, 2), (0, 3), (1,0), (1, 1), (1, 2),

(1, 3), (2, 2), (3, 0), (3, 1), (3, 2)(3, 3)}
12. R is reflexive: R is reflexive X* for all real numbers x, x R x.

By definition of R, this means that for all real numbers
x, x > x. In other words, for all real numbers x, x > x
or x = x. But this is true.
R is not symmetric: R is symmetric X* for all real numbers
x and y, if x R y then y R x. By definition of R, this means
that for all real numbers x and y, if x > y then y > x. But
this is false. As a counterexample, take x I 1 and y = 0.
Then x > y but y x because 1 > 0 but 0 1.
R is transitive: R is transitive .> for all real numbers x, y,
and z, if x R y and y R z then x R z. By definition of R,
this means that for all real numbers x, y and z, if x > y and
y > z then x > z. But this is true by definition of > and
the transitive property of order for the real numbers. (See
Appendix A, T17.)

14. D is reflexive: For D to be reflexive means that for all real
numbers x, x D x. But by definition of D, this means that
for all real numbers x, xx = x2 > 0 which is true.
D is symmetric: For D to be symmetric means that for all
real numbers x and y, if x D y then y D x. But by defini-
tion of D, this means that for all real numbers x and y, if
xy > 0 then yx > 0, which is true by the commutative law
of multiplication.
D is not transitive: For D to be transitive means that for all
real numbers x, y, and z, if x D y and y D z then x D z.
By definition of D, this means that for all real numbers x, y,
and z, if xy > 0 and yz > 0 then xz > 0. But this is false:
there exist real numbers x, y, and z such that xy > 0 and
yz > 0 but xz a 0. As a counterexample, let x = 1, y = 0,
and z =-1. Then x D y and y D z because -0 > 0 and
0. (-1) > 0. Butxffz because 1 (-1) a 0.

15. E is reflexive: [We must show that for all integers m,
m E m.] Suppose m is any integer. Since m -m = and
2 1 0, we have that 21 (m -m). Consequently, m E m by
definition of E.
E is symmetric: [We must show thatfor all integers m and n,
ifm E n then n E mi.] Suppose m and n are any integers such
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that m E n. By definition of E, this means that 2 1 (m -n),
and so, by definition of divisibility, m -n = 2k for some
integer k. Now n - m - -(m- n). Hence, by substitu-
tion, n -m =-(2k) = 2(-k). It follows that 2 1 (n -m)

by definition of divisibility (since -k is an integer), and
thus n E m by definition of E.

E is transitive: [We must show that for all integers m, n
and p if m E n and n E p then m E p.] Suppose m, n, and
p are any integers such that m E n and n E p. By defi-
nition of E this means that 2 1 (m - n) and 2 1 (n -p), and
so, by definition of divisibility, m -n = 2k for some inte-
ger k and n-p = 21 for some integer l. Now m-p =
(m -n) + (n - p). Hence, by substitution, m -p = 2k +
21 = 2(k + 1). It follows that 2 I m -p by definition of di-
visibility (since k + 1 is an integer), and thus mEp by defi-
nition of E.

18. D is reflexive: [We must show that for all positive inte-
gers m, m D m.] Suppose m is any positive integer. Since
m = m. 1, by definition of divisibility m I m. Hence m D m
by definition of D.
D is not symmetric: For D to be symmetric would mean
that for all positive integers m and n, if m D n then n D m.
By definition of divisibility, this would mean that for all
positive integers in and n, if m I n then n I m. But this is
false. As a counterexample, take m = 2 and n = 4. Then
m I n because 2 1 4 but n fim because 4 ,'2.
D is transitive: To prove transitivity of D, we must show
that for all positive integers m, n, and p, if m D n and n D p
then m D p. By definition of D, this means that for all pos-
itive integers m, n, and p, if m I n and n I p then m I p. But
this is true by Theorem 3.3.1 (the transitivity of divisbility).

21. L is not reflexive: L is reflexive A> for all strings s E
5, s L s. By definition of L, this means that for all strings
s in S, f(s) < E(s), which means that the length of s is less
than the length of s. But this is false for every string in S.
For instance, let s = E. Then E(s) = 0 and 0 li 0.
L is not symmetric: For L to be symmetric would mean that
for all strings s and t in 5, if s L t then t L s. By definition
of L, this would mean that for all strings s and t in S, if
e(s) < f(t) then f(t) < f(s). But this is false for all strings
s and t in S. For instance, take s = 01 and t = 010. Then
E(s) = 2 and E(t) = 3, and so f(s) < f(t) but E(t) -t f(s).
L is transitive: To prove transitivity of L, we must show
that for all strings s, t, and u in S, if s L t and t L u then

s L u. By definition of L, this means that for all strings s, t,
and u in S, if f(s) < e(t) and E(t) < f(u) then f(s) < E(u).

But this is true by the transivity property of order (Appendix
A, T17).

23. # is reflexive: # is reflexive X. for all subsets A of X, A # A.
By definition of #, this means that for all subsets A of X, A
has the same number of elements as A. But this is true.
# is symmetric: # is symmetric X* for all subsets A and B
of X, if A # B then B # A. By definition of #, this means
that if A has the same number of elements as B, then B has
the same number of elements as A. But this is true.
# is transitive: # is transitive X for all subsets A, B, and C
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of X, if A # B and B # C, then A # C. By definition of#,
this means that for all subsets, A, B, and C of X, if A has
the same number of elements as B and B has the number of
elements as C, then A has the same number of elements as
C. But this is true.

26. / is reflexive: Of is reflexive *> for all subsets X of
A, XJX. By definition of /, this means that for all sub-
sets X of A, X C X. But this is true because every set is a
subset of itself.
fG is not symmetric: Jf is symmetric Xt for all subsets
X and Y of A, if XJY then Y yX. By definition of /,
this means that for all subsets X and Y of A, if X C Y then
Y C X. But this is false because A # 0 and so there is
an element a in A. As a counterexample, take X = 0, and
Y = {a). Then X C Y but Y t X.
,/ is transitive: Jf is transitive .> for all subsets X, Y, and
Z of A, if X,/Y and YJOZ, then X J Z. By definition
of f, this means that for all subsets X, Y, and Z of A,
if X C Y and Y C Z then X C Z. But this is true by the
transitive property of subsets (Theorem 5.2.1 (3)).

30. I is reflexive: [Wemustshowthatforallstatements p, plp.]
Suppose p is a statement. The only way a conditional state-
ment can be false is for its hypothesis to be true and its
conclusion false. Consider the statement p -+ p. Both the
hypothesis and the conclusion have the same truth value.
Thus it is impossible for p -* p to be false, and so p -* p
must be true.
I is not symmetric: I is symmetric X* for all statements p
and q, if p I q then q I p. By definition of I, this means
that for all statements p and q, if p -* q then q - p. But
this false. As a counterexample, let p be the statement "10
is divisible by 4" and let q be "10 is divisible by 2." Then
p -+ q is the statement "If 10 is divisible by 4, then 10 is
divisible by 2." This is true because its hypothesis, p, is
false. On the other hand, q -+ p is the statement "If 10
is divisible by 2, then 10 is divisible by 4." This is false
because its hypothesis, q, is true and its conclusion, p, is
false.
I is transitive: [We must show that for all statements p, q,
and r, if p I q and q I r then p I r.] Suppose p, q, and r are
statements such that p I q and q I r. By definition of 1, this
means that P -÷ q and q -+ r are both true. By transitivity
of if-then (Example 1.3.7 and exercise 20 of Section 1.3),
we can conclude that p -. r is true. Hence, by definition
of I, p, I r.

31. M is reflexive: M is reflexive X:. for all elements (x, y) in
R x R, (x, y) - (x, y). By definition of A1, this means that
for all elements (x, y) in R x R, x = x. But this is true.
-4 is symmetric: [We must show that for all elements

(xi, yi) and (X 2, Y2) in R x R, if (XI, yl)-4(x2, Y2) then
(x2 , y2)-4(xI, yI).] Suppose (xi, yi) and (x2 , Y2) are ele-
ments of R x R such that (xi, yi), V(x2 , Y2). By definition
of A, this means that x, = x2 . By symmetry of equality,
x2 = xl. Thus, by definition of,., (x2 , y2 )V(xI, YI).
M is transitive: [We must show that for all elements

(xI, yI), (x2 , Y2) and (X 3 , y 3 ) in R x R. if(xl, yl)X(X2 , Y2 )

and (X2 , y 2)a4(x3 , y3) then (XI, y 1 )M(X3, y3).I Suppose
(xI, yi), (x2 , Y2)A and (X3, y3) are elements of R x R such
that (xI, yM)S(x2, Y2) and (X2, y2 )M(X3, y3). By defini-
tion of .X, this means that xi = x2 and X2 = X3. By
transitivity of equality, xI = X3. Hence, by definition of
a4, (XI, YlOM(X3, Y3).

34. R is reflexive: R is reflexive X* for all people p in A, p R p.
By definition of R, this means that for all people p living in
the world today, p lives within 100 miles of p. But this is
true.
R is symmetric: [We must show that for all people p and q
in A, if p R q then q R p.] Suppose p and q are people in A
such that p R q. By definition of R, this means that p lives
within 100 miles of q. But this implies that q lives within
100 miles of p. So, by definition of R, q R p.
R is not transitive: R is transitive * for all people p, q and
r, if p R q and q R r then p R r. But this is false. As a coun-
terexample, take p to be an inhabitant of Chicago, Illinois,
q an inhabitant of Kankakee, Illinois, and r an inhabitant of
Champaign, Illinois. Then p R q because Chicago is less
then 100 miles from Kankakee, and q R r because Kankakee
is less than 100 miles from Champaign, but pifr because
Chicago is not less than 100 miles from Champaign.

37. a. A binary relation is any subset of A x A, and A x A has
82 = 64 elements. So there are 264 binary relations on A.

c. Form a symmetric relation by a two-step process: (I)
pick a set of elements of the form (a, a) (there are eight
such elements, so 28 sets); (2) pick a set of pairs of ele-
ments of the form (a, b) and (b, a) where a 0 b (there
are (64 -8)/2 = 28 such pairs, so 228 such sets). The
answer is therefore 28 . 228 = 236.

38. Algorithm-Test for Reflexivity
[The input for this algorithm consists of a binary relation

R variable answer is initially set equal to "yes, " and then
each element a[i] of A is examined in turn to see whether

it is related by R defined on a set A that is represented

as the one-dimensional array a[l], a[2], . . , a[n]. To test

whether R is reflexive, the to itself If any element is not
related to itself by R, then answer is set equal to "no, " the
while loop is not repeated, and processing terminates.]

Input: n [a positive integer], a[l ], a[2], .. ., a[n] [a one-
dimensional array representing a set A], R [ a subset
of A x A]

Algorithm Body:
i := 1, answer:= "yes"
while (answer = "yes" and i < n)

if (a[i], a[i]) it R then answer := "no"
i := i +

end while

Output: answer [a string]

43. a. R n S is reflexive: Suppose R and S are reflexive.
[To show that R n S is reflexive, we must show that
YX e A, (x, x) c R n S.] So suppose x e A. Since R is

reflexive, (x, x) e R, and since S is reflexive, (x, x) E S.



Thus, by definition of intersection, (x, x) E R n s [as
was to be shown].

b. Hint: The answer is yes.

44. b. Yes. To prove this we must show that for all x and y
in A, if (x,y) e RUS then (y,x) E RUS. So sup-
pose (x, y) is a particular but arbitrarily chosen ele-
ment in R U S. [We must show that (y, x) E R U S.]
By definition of union, (x, y) e R or (x, y) E S. If
(x, y) e R, then (y, x) e R because R is symmetric.
Hence (y, x) E R U S by definition of union. But also,
if (x, y) E S then (y, x) E S because S is symmetric.
Hence (y, x) c R U S by definition of union. Thus, in
either case, (y, x) e R U S [as was to be shown].

45. RI is not irreflexive because (0, 0) E RI. RI is not asym-
metricbecause (0, 1) E RI and (1, 0) e RI. RI isnotintran-
sitive because (0, 1) e RI and (1, 0) E RI and (0,0 ) e RI.

47. R3 is irreflexive. R3 is not asymmetric because (2, 3) E R3
and (3, 2) E RI. R3 is intransitive.

50. R6 is irreflexive. R6 is asymmetric. R6 is intransitive (by
default).

Section 10.3
1. a. cRc b. bRa, cRb, eRd c. aRc

d. cRc, bRa, cRb, eRd, aRc, cRa

2. a. R = {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2), (3, 3), (3, 4),
(4, 3), (4, 4)}

3. {0, 41,, 3), {2}

5. {1, 5,9,13, 171, {2, 6, 10, 14,18), (3, 7, 11, 15, 19),
{4, 8, 12, 16, 20)

7. {(1, 3), (3, 9)), ((2, 4), (-4, -8), (3, 6)), ((I, 5))

8. {0), (la), lb), (c)), [la, b), la, c), (b, c)), {{a, b, c))

10. {aaaa, aaab, aaba, aabbl, {abaa, abab, abba, abbbl,
{baaa, baab, baba, babb), {bbaa, bbab, bbba, bbbb)

13. a. True. 17 - 2 = 15 and 5 1 15.

14. a. [7] = [4] = [19], [-4] = [17], [-6] = [27]

15. a. Proof: Suppose that m and n are integers such that m-
n (mod 3). [We must show that m mod 3 = n mod 3.]
By definition of congruence, 3 l (m -n), and so by def-
inition of divisibility, m -n = 3k for some integer k.
Let m mod 3 = r. Then m = 31 + r for some integer 1.
Since m -n = 3k, then by substitution, (31 + r) -n =
3k, or, equivalently, n = 3(1 -k) + r. Since 1 -k is an
integer and 0 < r < 3, it follows, by definition of mod,
that n mod 3= r also. So m mod 3 = n mod 3.

Suppose that m and n are integers such that m mod 3
n mod 3. [We must show that m n (mod 3).] Let
r = m mod 3 = n mod 3. Then, by definition of mod,
m 3p + r and n = 3q + r for some integers p and
q. By substitution, m - n = (3p + r) -( 3 q + r) =
3(p -q). Since p -q is an integer, it follows that
31 (m - n), and so, by definition of congruence, m- n
(mod 3).
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16. a. For example, let A = {1, 2) and B = (2, 3). Then A 0
B, so A and B are distinct. But A and B are not disjoint
since 2 E A n B.

17. a. (1) ProofJ R is reflexive because it is true that for each
student x at a college, x has the same major (or double
major) as x.
R is symmetric because it is true that for all students x
and y at a college, if x has the same major (or double
major) as y, then y has the same major (or double major)
as x.
R is transitive because it is true that for all students x, y,
and z at a college, if x has the same major (or double
major) as y and y has the same major (or double major)
as z, then x has the same major (or double major) as z.
R is an equivalence relation because it is reflexive, sym-
metric, and transitive.

(2) There is one equivalence class for each major and
double major at the college. Each class consists of all
students with that major.

18. (1) Hint: The proof is similar to the one in Example 10.2.5.
(2) Two distinct classes: (x E Z I x = 2k, for some integerki
and (x E Z I x - 2k + I, for some integer k}.

22. (1) Proof: A is reflexive because each real number has the
same absolute value as itself.
A is symmetric because for all real numbers x and y, if
lxi = yIj then IyI = JxI.
A is transitive because for all real numbers x, y, and z, if
IxI = lyl and JIy = IzI then Jxi = zl.
A is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) The distinct classes are all sets of the form {x, -x), where
x is a real number.

23. (1) Proof: I is reflexive because the difference between each
real number and itself is 0, which is an integer.
I is symmetric because for all real numbers x and y, if x- y
is in integer, then v -x (-1 )(x - y), which is also an in-
teger.
I is transitive because for all real numbers x, y, and z, if
x -y is an integer and y- z is an integer, then x -z =
(x -y) + (y -z) is the sum of two integers and thus an
integer.
I is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one class for each real numberx with O < x < 1.
The distinct classes are all sets of the form ly E R I=
n + x, for some integer n), where x is a real number such
that 0 <x < 1.

25. (1) Proof: P is reflexive because each ordered pair of real
numbers has the same first element as itself.
P is symmetric for the following reason: Suppose (w, x)
and (y, z) are ordered pairs of real numbers such that
(w, x)P(y, z). Then, by definition of P, w = y. But by
the symmetric property of equality, this implies that y = w,
and so, by definition of P, (y, z) P (w, x).
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P is transitive for the following reason: Suppose
(u, v), (w, x), and (y, z) are ordered pairs of real numbers
such that (u, v) P(w, x) and (w, x)P(y, z). Then, by defini-
tion of P, u = w and w = y. But by the transitive property
of equality, this implies that u = w, and so, by definition of
P, (u, v)P(w, x).
P is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one equivalence class for each real number.
The distinct equivalence classes are all sets of ordered pairs
{(x, y) E R x R I x = a}, for each real number a. Equiva-
lently, the equivalence classes consist of all vertical lines in
the Cartesian plane.

27. Partial Solution: There is one equivalence class for each
real number t such that 0 < t < 7r. One line in each class
goes through the origin, and that line makes an angle of t
with the positive horizontal axis.

line L

Alternatively, there is one equivalence class for every pos-
sible slope: all real numbers plus "undefined."

30. No. If points p, q, and r all lie on a straight line with q in
the middle, and if p is c units from q and q is c units from
r, than p is more then c units from r.

31. Proof: Suppose R is an equivalence relation on a set A and
a E A. Because R is an equivalence relation, R is reflexive,
and because R is reflexive, each element of A is related to
itself by R. In particular, a R a. Hence by definition of
equivalence class, a E [a].

33. Proof: Suppose R is an equivalence relation on a set A and
a, b, and c are elements of A with b R c and c E [a]. Since
c E [a], then c R a by definition of equivalence class. But R
is transitive since R is an equivalence relation. Thus since
b R c and c R a, then b R a. It follows that b E [a] by
definition of class.

35. Proof: Suppose a, b and x are in A, a R b, and x E [a]. By
definition of equivalence class, x R a. So x R a and a R b,
and thus, by transitivity, x R b. Hence x E [b].

36. Hint: To show that [a] = [b], show that [a] C [b] and
[b] C [a]. To show that [a] C [b], show that for all x in
A, if x e [a] then x E [b].

38. c. For example (2, 6), (-2, -6), (3, 9), (-3, -9).

39. a. Suppose that (a, b), (a', b'), (c, d) and (c', d') are any el-
ements of A such that [(a, b)] = [(a', b')] and [(c, d)] =
[(c', d')]. By definition of the relation, ab' = ba' (*) and
cd' = dc' (**). We must show that [(a, b)] + [(c, d)] =
[(a', b')] + [(c', d')]. By defintion of the addition, this

equation is true if, and only if,

[(ad + bc, bd)] = [(a'd' + b'c', b'd')].

And, by definition of the relation, this equation is true if,
and only if,

(ad + bc)b'd' = bd(a'd' + b'c'),

which is equivalent to

adb'd' + bcb'd' = bda'd' + bdb'c', by multiplying out.

But this equation is equivalent to

(ab')(dd') + (cd')(bb')

= (ba')(dd') + (dc')(bb') by regrouping

and, by substitution from (*) and (**), this last equation
is true.

c. Suppose that (a, b) is any element of A. We must show
that [(a, b)] + [(0, 1)] = [(a, b)]. By definition of the
addition, this equation is true if, and only if,

[(a I +b 0,b 1)] = [(a,b)].

But this last equation is true because a . 1 + b . 0 = a
and b 1 = b.

e. Suppose that (a, b) is any element of A. We must show
that [(a, b)] + [(-a, b)] = [(0, 1)]. By definition of the
addition, this equation is true if, and only if,

[(ab + b(-a), bb)] = [(0, 1)],

or, equivalently,

[(0, bb)] = [(0, 1)]

By definition of the relation, this last equation is true if,
and only if, 0 I = bb . 0, which is true.

40. a. Let (a, b) be any element of Z' x Z'. We must show
that (a, b)R(a, b). By definition of R, this relationship
holds if, and only if, a + b = b + a. But this equation is
true by the commutative law of addition for real numbers.
Hence R is reflexive.

c. Hint: You will need to show that for any positive inte-
gersa,b,c,andd,ifa+d =c+bandc+ f =d +e,
then a+ =b+e.

d. One possible answer: (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)
g. Observe that for any positive integers a and b, the equiv-

alence class of (a, b) consists of all ordered pairs in
Z+ x Z+ for which the difference between the first and
second coordinates equals a - b. Thus there is one
equivalence class for each integer: positive, negative,
and zero. Each positive integer n corresponds to the class
of (n + 1, 1); each negative integer -n corresponds to
the class of (1, n + 1); and zero corresponds to the class
(1, 1).

43. c. "Ways and Means"



Section 10.4
1. a. ZKUHUH VKDOO ZH PHHW

b. IN THE CAFETERIA

3. a. The relation 3 1(25 -19) is true because 25 -19 = 6
and 3 1 6 (since 6 = 3. 2).

b. By definition of congruence modulo n, to show that
25 19 (mod 3), one must show that 3 1 (25 -19). This
was verified in part (a).

c. To show that 25 = 19 + 3k for some integer k, one solves
the equation for k and checks that the result is an integer.
In this case, k = (25 -19)/3 = 2, which is an integer.
Thus 25 = 19 + 2 .3.

d. When 25 is divided by 3, the remainder is I because
25 = 3 . 8 + 1. When 19 is divided by 3, the remainder
is also 1 because 19 = 3 .6 + 1. Thus 25 and 19 have
the same remainder when divided by 3.

e. By definition, 25 mod 3 is the remainder obtained when
25 is divided by 3, and 19 mod 3 is the remainder ob-
tained when 19 is divided by 3. In part (d) these two
numbers were shown to be equal.

6. Hints: (1) Use the quotient-remainder theorem and The-
orem 10.4.1 to show that given any integer a, a is in one
of the classes [0], [1], [2], ... .[n -1]. (2) Use the result of
Example 3.3.3 to prove that if 0 < a < n, 0 < b < n, and
a - b (mod n), then a = b.

7. a. 128 - 2 (mod 7) because 128 -2 = 126 = 7 18, and
61 - S (mod 7) because 61 -5 = 56 = 7 .8

b. 128 + 61 - (2 + 5) (mod 7) because 128 + 61 = 189,
2 + 5 =7, and 189-7 = 182=7 -26

c. 128 -61 (2 -5) (mod 7) because 128 -61 = 67,
2-5=-3,and67 -(-3) =70=7 10

d. 128. 61 - (2 5) (mod 7) because 128 .61 = 7808,
2 5= 10, and 7808 -(10) = 7798 = 7 1114

e. 1282 -2 2 (mod 7) because 1282 = 16384, 22 = 4, and
16384 - 4 = 16380 = 7 -2340.

9. Proof: Suppose a, b, c, d, and n are integers with n >
1, a c (mod n), and b - d (mod n). By Theorem 10.4.1,
a -c = nr and b - d = ns for some integers r and s. Then

(a+b) -(c+d)=(a-c)+(b -d)=nr+ns

= n(r + s).

But r + s is an integer, and so, by Theorem 10.4.1, a + b
(c + d)(mod n).

12. a. Proof (by mathematical induction): Let the property
P(n) be the congruence 10 - 1 (mod 9)

Show that the property is true for n = 0:

When n = 0, the left-hand side of the congruence is
10° = I and the right-hand side is also 1. Thus the prop-
erty is true for n = 0.

Show that for all integers k > 0, if the property is true
for n = k, then it is true for n = k + 1:
Let k be any integer with k > 0, and suppose the prop-
erty is true for n = k. That is, suppose 0ok = 1 (mod 9).
(*) [This is the inductive hypothesis. We must show
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that 1 0k+1 - 1 (mod 9).] By Theorem 10.4.1, 10 =
1 (mod 9)(**) because 10-I = 9 9 1 . And by The-
orem 10.4.3, we can multiply the left- and right-hand
sides of (*) and (**) to obtain 1 ok . 10 1I I (mod 9),
or, equivalently, 10'+' I (mod 9). [This is what was
to be shown.]

14. 14' mod55 = 14
142mod55 = 195modSS = 31
14'mod55 = (142mod 55)2 mod55 = 312 mod 55 = 26
148 mod 55 = (144 mod 55)2 mod 55 = 262 mod 55 = 16
1416mod 55 = (148mod 55)2 mod 55 = 162mod 55 = 36

15. 427 mod 55 = 1416+8+2+1 mod 55
= [(1416 mod 55)(148 mod 55)(142 mod 55)

(141 mod 55)] mod 55
= (36 16 31 .14) mod 55 = 249984mod55 = 9

16. Notethat307 = 256+32-+ 16+2+1.

675' mod 713 = 675
6752 mod 713 = 18
675 4mod713 = 182 mod713 = 324
6758 mod 713 = 3242 mod 713 = 165
67516 mod 713 = 1652mod 713 = 131
67532 mod713 = 1312 mod713 = 49
6756 mod 713 = 492 mod 713 = 262
675128 mod 713 = 2622 mod 713 = 196
675256 mod 713 = 1962 mod 713 = 627

Thus

675307 mod 713 = 675256+32+16+2+1 mod 713
= (675256 67532 67516 6752 675')mod 713
= (627 49*131 18 675)mod713 = 3.

19. The letters in HELLO translate numercially into 08, 05, 12,
12, and 15. By Example 10.4.9, the H is encrypted as 17.
To encrypt E, we compute 53 mod 55 = 15. To encrypt L,
we compute 123 mod 55 = 23. And to encrypt 0, we com-
pute 153 mod 55 = 20. Thus the ciphertext is 17 15 23
23 20. (In practice, individual letters of the alphabet are
grouped together in blocks during encryption so that de-
ciphering cannot be accomplished through knowledge of
frequency patterns of letters or words.)

22. By Example 10.4.10, the decryption key is 27. Thus the
residues modulo 55 for 1327, 2027, and 927 must be found
and then translated into letters of the alphabet. Because
27 = 16 + 8 + 2 + 1, we first perform the following com-
putations:

131 13 (mod 55) 201 20 (mod 55)
132 4 (mod 55) 202- 15 (mod 55)
134 - 42 - 16 (mod 55) 204 15' 5 (mod 55)
138 -162 36 (mod 55) 208 - 252-5 (mod 55)
1316 362 31 (mod 55) 2016 -252-20 (mod 55)

91 9 (mod 55)
92 - 26 (mod 55)
94 262 16 (mod 55)
98 - 162 36 (mod 55)

916 362 31 (mod 55)
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Then we compute

1327 mod 55 = (31 36 4 13) mod 55 = 7,
2027 mod 55 = (20 25 15. 20) mod 55 = 15,
927 mod 55 = (31 36 26. 9) mod 55 = 4.

Finally, because 7, 15, and 4 translate into letters as G, 0,
and D, we see that the message is GOOD.

25. Hint: By Theorem 4.2.3, using a in place of r and n - I
in place of n, we have I + a + a2 + **+an = a'

Multiplying both sides by a -I gives a 1 - I = (a- 1)
(l+a+a

2
+ ± +a" ').

26. Step 1: 6664 = 765 . 8 + 544, and so 544 = 6664 -765 . 8
Step 2: 765 = 544. I + 221, and so 221 = 765 -544
Step 3: 544 = 221 2 + 102, and so 102 = 544 -221 2
Step 4: 221 = 102 2 + 17, and so 17 = 221 - 102 .2
Step 5: 102 = 17 6 + 0

Thus gcd(6664, 765) = 17 (which is the remainder obtained
just before the final division). Substitute back through steps
4-1 to express 17 as a linear combination of 6664 and 765:

17 = 221 - 102 2

= 221 - (544 - 221 2) = 221 5 - 544 2

= (765 - 544) 5 - 544 2 = 765 5 - 544 7

= 765 5 - (6664 - 765 8) 7 = (-7) 6664 + 61 765.

(When you have finished this final step, it is wise to verify
that you have not made a mistake by checking that the final
expression really does equal the greatest common divisor.)

28. a 330 156 18 12 6

b 156 1 8 12 6 0

r 18 1 2 6 0

q 2 8 1 2

s 1 0 I -8

t 0 1 -2 17

u 0 1 8 9

v 1 -2 17 -19

newu 1 8 9

newv -2 17 -19

sa + tb 330 18 -6 6

31. a. Step 1: 210 = 13 16 + 2, and so 2 = 210-16 - 13
Step 2: 13 = 2 6 + 1, and so l = 13-2 6
Step 3: 6 = I *6 + 0, and so gcd(210, 13) = I

Substitute back through steps 2-1:

-= 13-2.6

= 13 - (210 - 16 13) 6 = (-6) 210 + 97 13

Thus 210. (-6) - I (mod 13), and so-6 is an inverse
for 210 modulo 13.

b. Compute 13 -6 = 7, and note that 7 -- 6 (mod 13)
because 7 -(-6) = 13 = 13. 1. Thus, by Theo-
rem 10.4.3(3), 210 7 -210. (-6) (mod 13). It fol-

lows, by the transitive property of congruence, that
210 . 7 - I (mod 13), and so 7 is a positive inverse for
210 modulo 13.

c. This problem can be solved using either the result of part
(a) or that of part (b). By part (b) 210 .7 - I (mod 13).
Multiply both sides by 8 and apply Theorem 10.4.3(3)
to obtain 210. 56 = 8 (mod 13). Thus a positive so-
lution for 210x - 8 (mod 13) is x = 56. Note that the
least positive residue corresponding to this solution is
also a solution. By Theorem 10.4.1, 56 -4 (mod 13)
because 56 = 13 . 4 + 4, and so, by Theorem 10.4.3(3),
210 .56 -210 4 -9 (mod 13). This shows that 4 is
also a solution for the congruence, and because 0 < 4 <
13, 4 is the least positive solution for the congruence.

33. Hint: If as + bt = I and c = au = by, then c = asc +
btc = as(bv) + bt(au).

35. Proof: Suppose a, n, s and s' are integers such that
as - as' = I (mod n). Consider the quantity as's,
and note that as's = (as') . s = (as) s'. By Theorem
10.4.3(3), (as') s I s = s (mod n) and (as') s' I
s- = s' (mod n). Thus by transitivity of congruence modulo
n, s - s' (mod n). This shows that any two inverses for a
are congruent modulo n.

36. The numeric equivalents of H, E, L, and P are 08, 05, 12 and
16. To encrypt these letters, the following quantities must
be computed: 843 mod 713, 543 mod 713, 1243 mod 713, and
164 3mod713. Weusethefactthat43 = 32+8+2+ 1.

H: 8 8 (mod 713)
82 64 (mod 713)
84 642 531 (mod 713)
88 5312 326 (mod 713)
816 - 3262 - 39 (mod 713)
832 392 - 95 (mod 713)
Thus the ciphertext is
843 mod 713

= (95 326 64. 8)imod713 -233.

E: 5 (mod 713)
52- 25 (mod 713)
54 625 (mod 713)
58 6252 614 (mod 713)
516 6142 532 (mod 713)
532 - 5322 - 676 (mod 713)
Thus the ciphertext is
543 mod 713

= (676 614 25. 5)mod713 = 129.

L: 12 - 12 (mod 713)
122 - 144 (mod 713)
124-1442 - 59 (mod 713)
123 - 592 - 629 (mod 713)
1216 6292 639 (mod 713)
1232 - 6392 485 (mod 713)
Thus the ciphertext is
1243 mod 713

=(485 629. 144 12) mod713 =48.



P: 16-16 (mod 713)
162 256 (mod 713)
164 2562 653 (mod 713)
168-6532 35 (mod 713)
1616 352 512 (mod 713)
16"2 5122 473 (mod 713)
Thus the ciphertext is
1643 mod 713

= (473 .35 256- 16) mod 713 = 128.

Therefore, the encrypted message is 233 129 048 128.
(Again, note that in practice, individual letters of the al-
phabet are grouped together in blocks during encryption
so that deciphering cannot be accomplished through knowl-
edge of frequency patterns of letters or words. We kept them
separate so that the numbers in the computations would be
smaller and easier to work with.)

39. By exercise 38, the decryption key, d, is 307. Hence, to
decrypt the message, the following quantities must be com-
puted: 675307 mod 713, 89307 mod 713, and 48307 mod 713.
We use the fact that 307 = 256 + 32 + 16 + 2 + 1.

675 = 675 (mod 713)
6752 =18 (mod 713)
675 4 =18' = 324 (mod 713)
675- 3242 =165 (mod 713)
67516 1652 =131 (mod 713)
67532- 1312 49 (mod 713)
675' - 492 - 262 (mod 713)
675128= 262 2 =196 (mod 713)
675256= 1962= 627 (mod 713)

89 = 89 (mod 713)
892 78 (mod 713)
894 -782 -380 (mod 713)
89' - 3802 =374 (mod 713)
8916 3742 - 128 (mod 713)
8932 = 1282 698 (mod 713)
8964 6982 -225 (mod 713)
89128 2252 2 (mod 713)
89256 22 4 (mod 713)

48 - 48 (mod 713)
482 =165 (mod 713)
484 131 (mod 713)
488 49 (mod 713)
4816 - 262 (mod 713)
4832 - 196 (mod 713)
4864 -627 (mod 713)
48128 6272 266 (mod 713)
48256 2662 169 (mod 713)

Thus the decryption for 675 is
675307 mod 713 = (675256+32+16+2+1) mod 713

= (627 .49 .131 .18 675) mod 713 = 3, which
corresponds to the letter C.
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The decryption for 89 is
89307 mod 713 = (89256+32+16+2+1) mod 713

= (4 698 128 .78 89) mod 713 = 15, which cor-
responds to the letter 0.

The decryption for 48 is

48301 mod 713 = (48256+32+16+2+i) mod 713

= (169 196 .262. 165. 48) mod 713 = 12, which
corresponds to the letter L.

Thus the decrypted message is COOL.

41. a. Hint: Fortheinductive step, assume pI q q2.. .q,+± and
let a = q .q2 . .. q,. Then p I aqua , and either p = q-+I
or Euclid's lemma and the inductive hypothesis can be
applied.

42. a. When a = 15 and p = 7, aP- = 15 6 = 11390625-
1 (mod 7) because 11390625-I = 7 . 1627232.

44. For this problem, nI = 3, n2 = 5, and n3  7, so N = 3
5 -7= 105, N =5 -7 = 35, N2 = 3 .7 21, and N3 =

3 .55 15.
a. To find x,, an inverse for 35 modulo 3 must be found;

that is, the congruence 35x - I (mod 3) must be solved.

35 = 3. 11 + 2, which implies that 2 = 35-3 11.

3 = 21 + 1, which implies that I = 3-2.

Back substitution gives I = 3 -2 = 3 -(35 -3 11)
= 35 * (-1) + 3 . 12, which implies that 35(-1) -

I (mod 3). Thus xl =-I is an inverse for 35 module 3.
b. To find x2, an inverse for 21 modulo 5 must be found;

that is, the congruence 2 Ix2  I (mod 5) must be solved.
But 21 = 5 4 + 1, which implies that 1 = 21-5 4 =
21 1 + 5 (-4). Hence 21 I-I (mod 5), and thus
x2 = I is an inverse for 21 module 5.

c. To find X3, an inverse for 15 modulo 7 must be found;
that is, the congruence 1 5X3 - I (mod 7) must be solved.
But 15 = 2 .7 + 1, which implies that I = 15 -2 7 =
15 1 + 7 (-2). Hence 15. I 1 (mod 7), and thus
X3= I is an inverse for 15 modulo 7.

d. For this problem, a, = 2, a2 = 3, and a3 = 2.

Let x =a, Nix + a2N2x2 + a3N3x3
=2 35 (-I) + 3 21 (1) + 2 15 (1) = 23.

Check:
23-2 (mod 3) because 23 -2 21 and 21 = 3 7.
23 3 (mod 5) because 23-3 = 20 and 20 = 5 4.
23 - 2 (mod 7) because 23 -2 = 21 and 21 = 7 3.

e. Because 23 < N - 105, the least nonnegative solution
for the congruence is 23.

46. Hint: Reduce the problem by showing that (1) if x
2 (mod 3) and x I (mod 2), then x -6 (mod 5), and (2)
if x - 3 (mod 4), then x I (mod 2). Thus you will need
only to consider the congruences modulo 3, 4, 5, and 7,
which are pairwise relatively prime.
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R2 is antisymmetric: There are
no cases where a R b and
bRa and a * b.

2. R is not antisymmetric. Let x and y be any two distinct
people of the same age. Then x R y and y R x but x 5& y.

5. R is a partial order relation.

Proof:
R is reflexive: Suppose (a, b) E R x R. Then
(a, b) R (a, b) because a = a and b < b.
R is antisymmetric: Suppose (a, b) and (c, d) are or-
dered pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (a, b). Then

either a < c or both a = c and b < d

either c < a or both c = a and d < b.

Section 10.5
1. a.

b<d and d<b.

and so

b = d.

Hence (a, b) = (c, d).
R is transitive: Suppose (a, b), (c, d), and (e, f) are or-
dered pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (e, f). Then

either a < c or both a = c and b < d

and

either c < e or both c = e and d < f.

R, is not antisymmetric: 1 Rj 3
and 3 R, I and 1 •3.

It follows that one of the following cases must occur.
Case I (a < c and c < e): Then by transitivity of <, a < e,
and so (a, b) R (e, f) by definition of R.

Case 2 (a < c and c = e): Then by substitution, a < e, and
so (a, b) R (e, f) by definition of R.

Case 3 (a = cand c < e): Then by substitution, a < e, and
so (a, b) R (e, f ) by definition of R.

Case 4 (a = c and c = e): Then by definition of R, b < d
and d < I, and so by transitivity of <, b < f. Hence a = e
and b <f, and so (a, b) R (e, f) by definition of R.
In each case, (a, b) R (e, f). Therefore, R is transitive.
Since R is reflexive, antisymmetric, and transitive, R is a
partial order relation.

8. R is not a partial order relation because R is not antisym-
metric.

Counterexample: I R 3 (because 1 + 3 is even) and 3 R 1
(because 3 + I is even) but I :A 3.

10. No. Counterexample: Define relations R and S on the
set {l, 2) as follows: R = {(1, 2)} and S = {(2, 1)}. Then
both R and S are antisymmetric, but R U S = {(I, 2), (2, 1)}
is not antisymmetric because (1, 2) E R U S and (2, 1) e
RUSbutl #2.

11. a. This follows from (1).
b. False. By (1), bba -< bbab.

13. R = {(a, a), (b, b)1, R2 = {(a, a), (b, b), (a, b)1,
R3 = {(a, a), (b, b), (b, a)}

14. a. R. ={(a, a), (b, b), (c, c)},

R2 {(a, a), (b, b), (c, c), (b, a)},

R3  {(a, a), (b, b), (c, c), (c, a)1,

R4= {(a, a), (b, b), (c, c), (b, a), (c, a)},

R5 {(a, a), (b, b), (c, c), (c, b), (c, a)),

R6 (a, a), (b, b), (c, c), (b, c), (b, a)},

R7 = {(a, a), (b, b), (c, c), (c, b), (b, a), (c, a))

R- = I(a, a), (b, b), (c, c), (b, c), (b, a), (c, a)),

R9 = {(a, a), (b, b), (c, c), (b, c)1,

Ro= {(a, a), (b, b), (c, c), (c, b)}

15. Hint: R is the identity relation on A: x R x for all x c A
and xKy if x 7# y.

16. a. A 2 0

b.

0

3

and

Thus

a < c and c <a

and so

a = c.

Consequently,

4 *15

'5



17. a. 10,11 18.

101

(1, 1)

i(l, 0)

(0,1)

, (0, 0)
0

21. a. Proof: [We must show that for all a and b in A, a I b or
b I a.] Let a and b be particular but arbitrarily chosen
elements of A. By definition of A, there are nonnegative
integers r and s such that a = 2r and b = 2s. Now either
r < s ors < r. If r < s,then

b = 2= 2' . 2' -=a a2-,

where s -r > 0. It follows, by definition of divisibility,
that a l b. By a similar argument, if s < r, then b I a.
Hence either a I b or b I a [as was to be shown].

b.
1 2 22 23 24

22. Greatest element: none; least element: 1;
Maximal elements: 15, 20; minimal element: 1

24. Greatest element: {0, I}; least element: 0;
Maximal elements: {0, l }; minimal elements: 0

26. Greatest element: (1, 1); least element: (0, 0);
Maximal elements: (1, 1); minimal elements: (0, 0)

30. a. No greatest element, no least element
b. Least element is 0, greatest element is 1

31. R is a total order relation because it is reflexive, antisym-
metric, and transitive (so it is a partial order) and because
{b, a, c, dl is a chain that contains every element of A:
bRc, cRa, and aRd.

35. Hint: Let R' be the restriction of R to B and show that R' is
reflexive, antisymmetric, and transitive. In each case, this
follows almost immediately from the fact that R is reflexive,
antisymmetric, and transitive.

36. 0 C {w} C 1w, x) C 1w, x, y) C 1w, x, y, z)

39. Proof: Suppose A is a partially ordered set with respect to a
relation -<. By definition of total order, A is totally ordered
if, and only if, any two elements of A are comparable. By
definition of chain, this is true if, and only if, A is a chain.

40. Proof (by mathematical induction): Let A be a set that is to-
tally ordered with respect to a relation A`, and let the property
P(n) be the sentence "Every subset of A with n elements
has both a least element and a greatest element."

Show that the property is true for n = 1:

If A = 0, then the property is true by default. So assume that
A has at least one element, and suppose S = {a, I is a subset
of A with one element. Because z is reflexive, a, 1 a,.
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So, by definition of least element and greatest element, a,
is both a least element and a greatest element of S, and thus
the property is true for n = 1.

Show that for all integers k > 1, if the property is true for
n = k, then it is truefor n = k + 1:

Let k be any integer with k > 1, and suppose that any subset
of A with k elements has both a least element and a greatest
element. We must show that any subset of A with k + I
elements has both a least element and a greatest element. If
A has fewer than k + 1 elements, then the statement is true
by default. So assume that A has at least k + I elements
and that S = (a,, a2, . . ., ak+J) is a subset of A with k + I
elements. By inductive hypothesis, S -ak+J } has both a
least element s and a greatest element b. Now because A
is totally ordered, ak+l and s are comparable. If ak+l '< s,
then, by transitivity of A, ak+ l is the least element of S; oth-
erwise, s remains the least element of S. And if b < ak+I,

then, by transitivity of A'<, ak+l is the greatest element of S;
otherwise, b remains the greatest element of S. Thus S has
both a greatest element and a least element.

41. a. Proof by contradiction: Suppose not. Suppose A is a fi-
nite set that is partially ordered with respect to a relation
-< and A has no minimal element. Construct a sequence
of elements xI, X2 , X3, . .. of A as follows:
1. Pick any element of A and call it x].
2. For each i = 2, 3, 4, . .. , pick xi to be an element of A

for which xi -< xi-I and xi A xi . [Such an element
must exist because otherwise xi-I would be minimal,
and we are supposing that no element of A is minimal.]
Now xi A xj for any i A j. [If xi = xj where i < j,
then on the one hand, xj < xj1 I . .. -< xi+, -< xi
and so xi -< xi+,, and on the other hand, sincexi = Xj
then xj = xi > xi+,, and so xj >a xi+,. Hence by an-
tisymmetry, xj = xi+,, andsoxi = xi+,. Butthiscon-
tradicts the definition of the sequence x], X2, X3, . ... ]

Thus xI, X2, X3, . . . is an infinite sequence of distinct
elements, and consequently {x,, X2, X3, . . .} is an in-
finite subset of the finite set A. This is impossible.
Hence the supposition is false and we conclude that
any partially ordered subset of a finite set has a mini-
mal element.

43. c d

a b

45.

47.

51.

52.

One such total order is 1, 5, 2, 15, 10, 4, 20.

One such total order is (0, 0), (1, 0), (0, 1), (1, 1).

a. One possible answer: 1, 6, 10, 9, 5, 7, 2, 4, 8, 3

b. Critical path: 1, 2, 5, 8, 9.
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Section 11.1
1. V(G) = {vl, V2, V3 , V4 1, E(G) = (el, e2, e31

Edge-endpoint function:

3.

V
1

DeV

V3

V4 V5

5. Imagine that the edges are strings and the vertices are knots.
You can pick up the left-hand figure and lay it down again
to form the right-hand figure as shown below.

V4

8. (i) el, e2, and e3 are incident on v1 .
(ii) v,, v2, and V3 are adjacent to V3.
(iii) e2, e8, e9, and e3 are adjacent to el.
(iv) Loops are e6 and e7.
(v) e8 and e9 are parallel; e4 and e5 are parallel.

(vi) v6 is an isolated vertex.
(vii) degree of V3 = 5

(viii) total degree = 20

10. a. Yes. According to the graph, Sports Illustrated is an
instance of a sports magazine, a sports magazine is a
periodical, and a periodical contains printed writing.

12. To solve this puzzle using a graph, introduce a notation in
which, for example, wc/mg means that the wolf and the
cabbage are on the left bank of the river and the man and the
goat are on the right bank. Then draw those arrangements of
wolf, cabbage, goat, and ferryman that can be reached from
the initial arrangement (wgcf/) and that are not arrange-
ments to be avoided (such as (wg/f c)). At each stage ask
yourself, "Where can I go from here?" and draw lines or
arrows pointing to those arrangements. This method gives
the graph shown at the top of the next column.

End

Examination of the diagram shows the solutions

(wgcf/) - (wc/gf) - (wcf/g) - (w/gcf)

(wgf/c) - (g/wcf) - (gf/wc) - (/wgcf)

and

(wgcf/) - (wc/gf) - (wcf/g) - (c/wgf)

(gcf/w) - (giwuf) - (gf/wc) - (/wgcf)

14. Hint: The answer is yes. Represent possible amounts of
water in jugs A and B by ordered pairs. For instance, the
ordered pair (1, 3) would indicate that there is one quart of
water in jug A and three quarts in jug B. Starting with (0, 0),
draw arrows from one ordered pair to another if it is possible
to go from the situation represented by one pair to that rep-
resented by the other by either filling a jug, emptying a jug,
or transferring water from one jug to another. You need only
draw arrows from states that have arrows pointing to them;
the other states cannot be reached. Then find a directed path
(sequence of directed edges) from the initial state (0, 0) to
a final state (1, 0) or (0, 1).

15. One such graph is

16. If there were a graph with four vertices of degrees 1, 2, 3,
and 3, then its total degree would be 9, which is odd. But by
Corollary 11. 1.2, the total degree of the graph must be even.
[This is a contradiction.] Hence there is no such graph.

Start



(Alternatively, if there were such a graph, it would have
an odd number of vertices of odd degree. But by Proposi-
tion 11.1.3 this is impossible.)

19. Suppose there were a simple graph with four vertices of de-
grees 1, 2, 3, and 4. Then the vertex of degree 4 would have
to be connected by edges to four distinct vertices other than
itself because of the assumption that the graph is simple (and
hence has no loops or parallel edges.) This contradicts the
assumption that the graph has four vertices in total. Hence
there is no simple graph with four vertices of degrees 1, 2,
3, and 4.

22. vi

V4

V2

V3

24. a. The nonempty subgraphs are as follows:

V2  V2

v v
1VI Vj

2 3

4 5 6

25. a. Suppose that, in a group of 15 people, each person had
exactly three friends. Then you could draw a graph rep-
resenting each person by a vertex and connecting two
vertices by an edge if the corresponding people were
friends, But such a graph would have 15 vertices, each
of degree 3, for a total degree of 45. This would contra-
dict the fact that the total degree of any graph is even.
Hence the supposition must be false, and in a group of
15 people it is not possible for each to have exactly three
friends.

28. The total degree of the graph is 0 + 2 + 2 + 3 + 9 = 16, so
by Theorem 11. 1. 1, the number of edges is 16/2 = 8.

31. We give two proofs for the following statement, one less
formal and the other more formal.

For all integers n > 0, if a,, a2, a 3 , . . ., a 2 n+ 1 are
odd integers, then .2=+1 ai is odd.
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Proof I (by mathematical induction): It is certainly true
that the "sum" of one odd integer is odd. Suppose that for
a certain positive odd integer r, the sum of r odd integers
is odd. We must show that the sum of r + 2 odd integers is
odd (because r + 2 is the next odd integer after r). But any
sum of r + 2 odd integers equals a sum of r odd integers
(which is odd by inductive hypothesis) plus a sum of two
more odd integers (which is even). Thus the total sum is an
odd integer plus an even integer, which is odd. [This is what
was to be shown.]

Proof 2 (by mathematical induction): Let the property P (n)
be the following sentence: "If a,, a2 , a3 , . a2n+l are odd
integers, then Y2 ,

1 ai is odd.

Show that the property is true for n = 0:

Suppose a, is an odd integer. Then E2,0s-1 ai = a, =

al, which is odd.

Show that for all integers k > 0, if the property is true for
n = k, then it is true for n = k + 1:

Let k be an integer with k > 0, and suppose that

2k+1
if a2, a3 , . . ., a2k+l are odd integers, then E ai is odd.

i=1

[This is the inductive hypothesis.]

Supposeal, a2, a3, . a2(k+1)+l are odd integers. [We must
show that i= +)+1 ai is odd, or, equivalently, that ,.2-1+ a,

is odd.] But

2k+3 2k+1

ai = a, + (a2k+2 + a2k+3)

Since the sum of any two odd integers is even, a2k+2 + a2k+3
is even, and, by inductive hypothesis, y

2 6
+
1 ai is odd.

Therefore, ~,2-+ 3 ai is the sum of an odd integer and an
even integer, which is odd. [This is what was to be shown.]

32. Hint: Use proof by contradiction.

33. a. K6:

VI

V6

V5

b. A proof of this fact was given in Section 8.2 using recur-
sion. Try to find a different proof.

Hint for Proof 1: There are as many edges in K. as there
are subsets of two vertices (the endpoints) that can be
chosen from a set of n vertices.

Hint for Proof 2: Use mathematical induction. A com-
plete graph on k + I vertices can be obtained from a
complete graph on k vertices by adding one vertex and
connecting this vertex by k edges to each of the other
vertices.

I
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Hint for Proof 3: Use the fact that the number of edges
of a graph is half the total degree. What is the degree of
each vertex of Kn?

35. Suppose G is a nonempty simple graph with n vertices and
2n edges. By exercise 34, its number of edges cannot ex-
ceed n(n l)- Thus 2n < n I) or 4n < 2 n. Equiv-2 - 2-n.Euv
alently, n2 - 5n > 0, or n(n - 5) > 0. This implies that
n > 5 since G is nonempty. Hence a nonempty simple
graph with twice as many edges as vertices must have at
least five vertices. But a complete graph with five vertices
has 5(5= 1) = 10edges and 10 = 2 -5. Consequently, the an-
swer to the question is yes because K5 is a graph with twice
as many edges as vertices.

36. a. K4,2 :

37. a. This graph is bipartite.

v I /

II

I

I/

b. Suppose this graph is bipartite. Then the vertex set can
be partitioned into two mutually disjoint subsets such
that vertices in each subset are connected by edges only
to vertices in the other subset and not to vertices in the
same subset. Now vI is in one subset of the partition,
say V1. Since v0 is connected by edges to V2 and V3, both
v2 and V3 must be in the other subset, V2. But V2 and V3

are connected by an edge to each other. This contradicts
the fact that no vertices in V2 are connected by edges to
other vertices in V2. Hence the supposition is false, and
so the graph is not bipartite.

39. a. V2

V4

41. b.

B

D

42. Hint: Consider the graph obtained by taking the vertices
and edges of G plus all the edges of G'. Use exercise 33(b).

44. c. Hint: Suppose there were a simple graph with n ver-
tices (where n > 2) each of which had a different de-
gree. Then no vertex could have degree more than
n -1 (why?), so the degrees of the n vertices must be
0, 1, 2, .. ., n-1 (why?). This is impossible (why?).

45. Hint: Use the result of exercise 44(c).

46. Hint: One solution is to begin by choosing a vertex of max-
imal degree and assigning the first time slot to it and to all
other vertices that do not share an edge with it or with each
other. Then choose a vertex of maximal degree from those
remaining, and assign the second time slot to it and to all
those still unassigned that do not share an edge with it or
with each other. Continue in this way until all vertices have
been assigned.

Section 11.2
1. a. path (no repeated edge), not a simple path (repeated

vertex-v,), not a circuit
b. walk, not a path (has repeated edge-e 9 ), not a circuit
c. simple circuit (no repeated edge, no repeated vertex,

starts and ends at same vertex)
d. circuit (no repeated edge, starts and ends at same vertex),

not a simple circuit (vertex V4 is repeated)
e. closed walk (starts and ends at the same vertex but has

repeated edges {V2, V31 and {V3, V41)

f. simple path

3. a. No. The notation V0V2V1 could equally well refer to
voeIV 2e2VI or to voe2 V2 e1vo, which are different walks.

4. a. Three (There are three ways to choose the middle edge.)
b. 3! + 3 = 9 (In addition to the three simple paths, there

are 3! with vertices V0, V2, V3, V2, V3, V4. The reason is
that from V2 there are three choices of an edge to go to
V3, then two choices of different edges to go back to V2,
and then one choice of different edge to return to V3. This
makes 3! paths from V2 to V3.)

c. Infinitely many (Since a walk may have repeated edges,
a walk from vI to V4 may contain an arbitrarily large
number of repetitions of edges joining a pair of vertices
along the way.)

6. a. {V, V3 }, {V2, V31, {V4, V3 }, and {v5 , V3 } are all bridges.
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34. Partial answer:

g

Se f hh

2 3
d

9. a. No. This graph has two vertices of odd degree, whereas
all vertices of a graph with an Euler circuit have even
degree.

12. One Euler circuit is e4e5e6e3e2e7e8e,.

14. One Euler circuit is iabihbchgcdgf def i.

19. There is an Euler path since deg(u) and deg(w) are odd, all
other vertices have even degree, and the graph is connected.
One Euler path is uV] v0v7uv2v3v4v2v6v4wv5v 6w.

23. v0 V7 V I V2 V3 V4 V5 V6 Vo

25. Hint: See the solution to Example 11.2.8.

26. Here is one sequence of reasoning you could use: Call the
given graph G, and suppose G has a Hamiltonian circuit.
Then G has a subgraph H that satisfies conditions (1)-(4) of
Proposition 11.2.6. Since the degree of b in G is 4 and ev-
ery vertex in H has degree 2, two edges incident on b must
be removed from G to create H. Edge (a, b} cannot be
removed because doing so would result in vertex d having
degree less than 2 in H. Similar reasoning shows that edge
lb, c} cannot be removed either. So edges {b, i} and {b, e}
must be removed from G to create H. Because vertex e must
have degree 2 in H and because edge {b, e} is not in H, both
edges {e, d} and {e, f } must be in H. Similarly, since both
vertices c and g must have degree 2 in H, edges (c, d} and
{g, d} must also be in H. But then three edges incident on
d, namely {e, d), {c, dj), and {g, d), must be all in H, which
contradicts the fact that vertex d must have degree 2 in H.

28. Hint: This graph does not have a Hamiltonian circuit.

32. Partial answer:

Vo ' V v2

V4  V 3

This graph has an Euler circuit v0 vIv 2v3vIv 4v0 but no
Hamiltonian circuit.

33. Partial answer:

This graph has a Hamiltonian circuit V0vI v2vo but no Euler
circuit.

VI

The walk v0vI v22v 0 is both an Euler circuit and a Hamiltonian
circuit for this graph.

35. Partial answer:

VI

This graph has the Euler circuit e le2e3e4e5 e6 and the Hamil-
tonian circuit v0vI v2 v3v0 . These are not the same.

37. a. Proof: Suppose G is a graph and W is a walk in G that
contains a repeated edge e. Let v and w be the endpoints
of e. In case v = w, then v is a repeated vertex of W. In
case v 7& w, then one of the following must occur: (1)
W contains two copies of vew or of wev (for instance,
W might contain a section of the form vewe'vew, as
illustrated below); (2) W contains separate sections of
the form vew and wev (for instance, W might contain
a section of the form vewe'wev, as illustrated below);
or (3) W contains a section of the form vewev or of the
form wevew (as illustrated below). In cases (1) and (2),
both vertices v and w are repeated, and in case (3), one
of v or w is repeated. In all cases, there is at least one
vertex in W that is repeated.

e

e

e
V

ev -w

3

38. Proof: Suppose G is a connected graph. [We must show that
any two vertices of G can be connected by a simple path.]
Let v and w be any particular but arbitrarily chosen vertices
of G. Since G is connected, there is a walk from v to w. If
the walk contains a repeated vertex, then delete the portion of
the walk from the first occurrence of the vertex to its next oc-
currence. (For example, in the walk ye, v2e5v7e6v2e3w, the
vertex V2 occurs twice. Deleting the portion of the walk from
one occurrence to the next gives veI v2e3 w) . If the resulting
walk still contains a repeated vertex, do the above deletion
process another time. Then check again for a repeated ver-
tex. Continue in this way until all repeated vertices have
been deleted. (This must occur eventually, since the total

8. a. Three connected components.

b

a

V2
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number of vertices is finite.) The resulting walk connects v
to w but has no repeated vertex. By exercise 37(b), it has no
repeated edge either. Hence it is a simple path from v to w.

.40. The graph below contains a circuit, any edge of which can
be removed without disconnecting the graph. For instance,
if edge e is removed, then the following walk can be used
to go from v, to V2: vIv5 V3v 2.

V2

0o V4

V5

42. Yes. Suppose a graph contains a circuit that starts and ends
at a vertex v. Successively delete sections of this circuit
as follows: For each repeated vertex w in the circuit (ex-
cluding the first vertex if its only repetition is at the end of
the circuit but including the first vertex if it is repeated in
the middle of the circuit), there is a section of the circuit of
the following form: wevIe 2v2 ... e,_iv,_ 1enw. Replace
this section of the circuit by the single vertex w. Because
the circuit has finite length, only a finite number of such
deletions can be made, after which a simple circuit starting
and ending at v will remain.

44. Proof: Let G be a connected graph and let C be a circuit in
G. Let G' be the nonempty subgraph obtained by removing
all the edges of C from G and also any vertices that become
isolated when the edges of C are removed. [We must show
that there exists a vertex v such that v is in both C and G'.]
Pick any vertex v of C and any vertex w of G'. Since G is
connected, there is a simple path from v to w (by Lemma
11.2. 1 (a)):

V = voe ve 2 v2 ... vi- 1eiviei+ Ivi.+ .. v,-,env, = W.

1 f1 T t
inC in C not in C in G'

Let i be the largest subscript such that vi is in C. If i = n,
thenv, = wisinCandalsoinG',andwearedone. If i < n,
then vi is in C and vi,+ is not in C. This implies that ei+1 is
not in C (for if it were, both endpoints would be in C by def-
inition of circuit). Hence when G' is formed by removing
the edges and resulting isolated vertices from G, then ei+I
is not removed. That means that vi does not become an iso-
lated vertex, so vi is not removed either. Hence vi is in G'.
Consequently, vi is in both C and G' [as was to be shown].

45. Proof: Suppose G is a graph with an Euler circuit. If v and w
are any two vertices of G, then v and w each appear at least
once in the Euler circuit (since an Euler circuit contains ev-
ery vertex of the graph). The section of the circuit between
the first occurrence of one of v or w and the first occurrence
of the other is a walk from one of the two vertices to the other.

Section 11.3
1. a. By equating corresponding entries, we find that

a + b 1,

a -c = 0,

c -1,

b - a = 3.

Thus a-c = a-(-1) = 0, and so a =-1. Conse-
quently,a+b=(- l)+b=1,andhenceb=2. The
last equation should be checked to make sure the answer
is consistent: b -a = 2 -(-1) = 3, which agrees.

Vi V2 V3

v1  0 1 1
2. a. V2  I 0 0

V3 0 0 0

3. a.

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge
labels.

V0

4. a. 02
V3

V4

VI V2 V3 V4

001 1

0 0 2 0
1 2 0 0
1 0 0 1

V1

C. V2
V3

V4

v,

1

1

V2

1

0
1

V4

1]
I
1I
0]

5. a.

6.
8.

9.

10.

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge labels.

V3

a. The graph is connected.
a. 2 - 1 + (-) .3 = -l

3 -3 12]
a.1 -5 2

a. no product (A has three columns, and B has two rows.)

[ 1 -5 21] 1 9
i. AC = [-2 -2]

12. One among many possible examples is A = B = [° O].

V3

I

I

0

1



14. Hint: If the entries of the m x m identity matrix are de-

noted by aik, then Sik = ( The ijth entry of LA

is E SikAkj.
k=l

15. Proof: Suppose A is an m x m symmetric matrix. Then for
all integers i and j with 1 < i, j <in,

(A2)j =EAikAkj and (A2 )j, = A 1kAki.

k=1 k=1

But since A is symmetric, Aik = Aki and Akj = Agk for
all i, j, and k, and thus AikAkj = AjkAki [by the com-
mutative law for multiplication of real numbers]. Hence
(A2)_j = (A2)j, for all integers i and j with I < i, j < m.

17. Proof (by mathematical induction):
Let the property P(n) be the equation A'A = AA'.

Show that the property is true for n = 1:
We must show that A1A = AA'. But this is true because
Al =AandAA=AA.

Show that for all integers k > 1, if the property is true for
n = k, then it is true for n = k + 1:
Suppose that for some integer k > 1, AkA = AAk. We must
show that Ak+A = AAk+t. But

Ak+±A = (AAk)A by definition of matrix power

= A(AkA) by exercise 16

= A(AAk) by inductive hypothesis

= AAk+l by definition of matrix power.

19. a. I[ 1 2 1 2 6] 3 3
A2 I 0 1 1 0 1 = 3 2 2

2 1 0- 2 1 0 3 2 5

- 1 2 3 3 15 9 151
A3 0 1 3 2 2 9 5 8

1 0 3 2 5 15 8 8

20. a. 2 since (A2 )2 3 = 2
b. 3 since (A2 )3 4 = 3
c. 6 since (A3)14 = 6
d. 17 since (A3 )23 = 17

22. b. Hint: If G is bipartite, then its vertices can be partitioned
into two sets VI and V2 so that no vertices in VI are con-
nected to each other by an edge and no vertices in V2
are connected to each other by an edge. Label the ver-
tices in VI as vj, V2, . . ., Vk and label the vertices in V2 as
Vk+l, Vk+2, ... , v,. Now look at the matrix of G formed
according to the given vertex labeling.

23. b. Hint: Consider the ijth entry of

A+A2 +A3 + . . . +An.

If G is connected, then given the vertices vi and vj, there
is a walk connecting vi and vu. If this walk has length

11.4 Solutions and Hints to Selected Exercises A-107

k, then by Theorem 11.3.2, the ijth entry of Ak is not
equal to 0. Use the facts that all entries of each power
of A are nonnegative and a sum of nonnegative numbers
is positive provided that at least one of the numbers is
positive.

Section 11.4
1. The graphs are isomorphic. One way to define the isomor-

phism is as follows:

2. The graphs are not isomorphic. G has five vertices and G'
has six.

6. The graphs are isomorphic. One isomorphism is the follow-
ing:

8. The graphs are not isomorphic. G has a simple circuit of
length 3; G' does not.

10. The graphs are isomorphic. One way to define the isomor-
phism is as follows:
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12. These graphs are isomorphic. One isomorphism is the fol
lowing:

g

19.

ElQ0
2 3

]0F X';X
4 5 6

14.

S 5 0

t 2

3 4

16.
S S

S S S C

1 2 3

5

5 64

8 9

18. Hint: There are 19.

7 8 9

10 11

21. Proof: Suppose G and G' are isomorphic graphs and G has
n vertices, where n is a nonnegative integer. [We must show
that G' has n vertices.] By definition of graph isomorphism,
there is a one-to-one correspondence g: V(G) -÷ V(G')
sending vertices of G to vertices of G'. Since V(G) is a
finite set and g is a one-to-one correspondence, the number
of vertices in V (G') equals the number of vertices in V (G).
Hence G' has n vertices [as was to be shown].

23. Proof: Suppose G and G' are isomorphic graphs and sup-
pose G has a circuit C of length k, where k is a nonnegative
integer. Let C be voel v Ie2 ... ekVk(= vo). By definition of
graph isomorphism, there are one-to-one correspondences
g: V(G) -+ V(G')andh: E(G) -* E(G')thatpreservethe
edge-endpoint functions in the sense that for all v in V(G)
and e in E(G), v is an endpoint of e X~ g(v) is an endpoint
of h(e). Let C' be g(vo)h(el)g(v1)h(e2 ) .... h(ek)g(vk)(=

g(vo)). Then C' is a circuit of length k in G'. The rea-
son is that (1) because g and h preserve the edge-endpoint
functions, forall i = 0, 1, . . -, k-I both g(v,) andg(vi+,)
are incident on h(ei+±) so that C' is a walk from g(vo)
to g(vo), and (2) since C is a circuit, then et, e2 , . . , ek

are distinct, and since h is a one-to-one correspondence,
h(el), h(e2), . . ., h(ek) are also distinct, which implies that
C' has k distinct edges. Therefore, G' has a circuit C of
length k.

0



25. Hint: Suppose G and G' are isomorphic and G has m
vertices of degree k; call them vI, V. v,,- . Since G
and G' are isomorphic, there are one-to-one correspon-
dences g: V(G) -+ V(G') and h: E(G) -+ E(G'). Show
that g(v1), g(v2), . . , g(v,) are m distinct vertices of G'
each of which has degree k.

27. Hint: Suppose G and G' are isomorphic and G is connected.
To show that G' is connected, suppose w and x are any two
vertices of G'. Show that there is a walk connecting w with
x by finding a walk connecting the corresponding vertices
in G.

Section 11.5
1. a. Math 110

2. a.
(sentence)

(noun phrase) (verb phrase)

(article) (adjective) (noun) (verb) (noun phrase

I I I I /
the young ball caught (article) (nc

11.5 SolutionsandHintstoSelectedExercises A-109

9. One such graph is

b c d
a

e

h g f

10. One such graph is

b c d e

a

h g f

11. There is no tree with six vertices and a total degree of 14.
Any tree with six vertices has five edges and hence (by The-
orem 11.1.1) a total degree of 10, not 14.

12. One such tree is shown.

a
b

e '-c

d

13. No such graph exists. By Theorem 11.5.4, a connected graph
with six vertices and five edges is a tree. Hence such a graph
cannot have a nontrivial circuit.

)oun)

e m
the man

3. Hint: The answer is 2n - 2. To obtain this result, use the
relationship between the total degree of a graph and the
number of edges of the graph.

4. a. H H H

H- C C C H

H H H

d. Hint: Each carbon atom in G is bonded to four other
atoms in G, because otherwise an additional hydrogen
atom could be bonded to it, and this would contradict
the assumption that G has the maximum number of hy-
drogen atoms for its number of carbon atoms. Also each
hydrogen atom is bonded to exactly one carbon atom in
G, because otherwise G would not be connected.

5. Hint: Revise the algorithm given in the proof of Lemma
11.5.1 to keep track of which vertex and edge were chosen
in step I (by, say, labeling them vo and eo). Then after one
vertex of degree I is found, return to vo and search for an-
other vertex of degree I by moving along a path outward
from v0 starting with eo.

7. a. Internal vertices: V2, V3 , V4 , V6

Terminal vertices: VI, V5, 07

8. Any tree with nine vertices has eight edges, not nine. Thus
there is no tree with nine vertices and nine edges.

14.

v1 y2

22. Yes. Since it is connected and has 12 vertices and 11 edges,
by Theorem 11.5.4 it is a tree. It follows from Lemma 11.5.1
that it has vertex of degree 1.

25. Suppose there were a connected graph with eight vertices
and six edges. Either the graph itself would be a tree or
edges could be eliminated from its circuits to obtain a tree.
In either case, there would be a tree with eight vertices and
six or fewer edges. But by Theorem 11.5.2, a tree with eight
vertices has seven edges, not six or fewer. This contradiction
shows that the supposition is false, so there is no connected
graph with eight vertices and six edges.

26. Hint: See the answer to exercise 25.

27. Yes. Suppose G is a circuit-free graph with ten vertices
and nine edges. Let G,, G2, .. ., Gk be the connected com-
ponents of G [To show that G is connected, we will show
that k = 1.] Each G. is a tree since each Gi is connected
and circuit-free. For each i = 1, 2, . . , k, let G, have n,
vertices. Note that since G has ten vertices in all,

nI + n2 + * * + nk = 1O.
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By Theorem 11.5.2,

GI has n -1 edges,

G2 has n 2 - I edges,

Gk has nk - 1 edges.

So the number of edges of G equals

(n 1 -l)+(n2-l)+.. +(nk-l)

= (nI+ n2 + + nk) -(1+ + +1

k l's

= 10-k.

But we are given that G has nine edges. Hence 10 - k = 9,
and so k = 1. Thus G has just one connected component,
GI, and so G is connected.

28. Hint: See the answer to exercise 27.

31. b. Hint: There are six.

32. a. 3 b. 0 c. 5 d. u,v
e. d f. k,1 g. m,s,t,x,y

34. a.

Exercise 35 and 39-41 have other answers in addition to the ones
shown.

35. a

h i j k

42. There is no binary tree that has height 3 and nine termi-
nal vertices because any binary tree of height 3 has at most
23= 8 terminal vertices.

51. a. Height of tree > log2 25 - 4.6. Since the height of any
tree is an integer, the height must be at least 5.

Section 11.6
1.

a b

d c

h i j k

36. There is no full binary tree with the given properties be-
cause any full binary tree with five internal vertices has six
terminal vertices, not seven.

37. Any full binary tree with four internal vertices has five ter-
minal vertices for a total of nine, not seven, vertices in all.
Thus there is no full binary tree with the given properties.

38. There is no full binary tree with 12 vertices because any full
binary tree has 2k + I vertices, where k is the number of
internal vertices. But 2k + I is always odd, and 12 is even.

a b

d c

3. One of many spanning trees is as follows:

b

a d

e

g f

39.

40.

41.

a

b

d f

h i j k I M n



5. Minimum spanning tree:

a,

Order of adding the edges:
{a, b}, {e, f}, le, d}, {d, c}, fg, f }, lb, c}

7. Minimum spanning tree: same as in exercise 5
Order of adding the edges:
{a, b), {b, c}, {c, d}, {d, e}, {e, f}, If, g)

9. There are four minimum spanning trees:

a 3 b
c

4 10

d
g 1f

4 10

d
g If

a 3 b

g I f

a 3 b
*c

710
4

d
g 1

When Prim's algorithm is used, edges are added in any of
the orders obtained by following one of the eight paths from
left to right across the diagram below.

(a, el (a, b} la, g} le, cl

When Kruskal's algorithm is used, edges are added in any
of the orders obtained by following one of the eight paths
from left to right across the diagram below.

la, bl (a, e) (a, g) {b, c)

{c, d)

(a, e) la, b) (e,f le, c}

13. b. Proof: Suppose not. Suppose that for some tree T, u and
v are distinct vertices of T, and P1 and P2 are two distinct
paths joining u and v. [We must deduce a contradiction.

11.6 Solutions and Hints to Selected Exercises A-111

In fact, we will show that T contains a circuit.] Let PI
be denoted u = vo, vt, v2, .v . , v. = v, and let P2 be de-
noted u = w0, wI, w2 . . . . . , . = v. Because PI and P2

are distinct, and T has no parallel edges, the sequence of
vertices in PI must diverge from the sequence of vertices
in P2 at some point. Let i be the least integer such that
vi A wi. Then vi - = wi, . Let j and k be the least
integers greater than i so that vi = Wk. (There must be
such integers because vm = wn). Then

Vi- I Vi Vi+1 ... Vj (= Wk)Wk-I ... Wi Wi-l (= Vi-I )

is a circuit in T. The existence of such a circuit contra-
dicts the fact that T is a tree. Hence the supposition must
be false. That is, given any tree with vertices u and v,
there is a unique path joining u and w.

15. Proof: Suppose G is a connected graph, T is a circuit free
subgraph of G, and if any edge e of G not in T is added to
T, the resulting graph contains a circuit. Suppose that T is
not a spanning tree for G. [We must derive a contradiction.]

Case I (T is not connected): In this case, there are vertices
u and v in T such that there is no walk in T from u to v. Now,
since G is connected, there is a walk in G from u to v, and
hence, by Lemma 11.2.1, there is a simple path in G from u
to v. Let es, e 2 , . . ., ek be the edges of this path that are not
in T. When these edges are added to T, the result is a graph
T' in which u and v are connected by a path. In addition,
by hypothesis, each of the edges ei creates a circuit when
added to T. Now remove these edges one by one from T'.
By the same argument used in the proof of Lemma 11.5.3,
each such removal leaves u and v connected since each e,
is an edge of a circuit when added to T. Hence, after all the
ei have been removed, u and v remain connected. But this
contradicts the fact that there is no walk in T from u to v.

Case 2 (T is connected): In this case, since T is not a span-
ning tree and T is circuit-free, there is a vertex v in G such
that v is not in T. [For if T were connected, circuit-free, and
contained every vertex in G, then T would be a spanning
tree for G.] Since G is connected, v is not isolated. Thus
there is an edge e in G with v as an endpoint. Let T' be the
graph obtained from T by adding e and v. [Note that e is not
already in T because if it were, its endpoint v would also be
in T and it is not.] Then T' contains a circuit because, by
hypothesis, addition of any edge to T creates a circuit. Also
T' is connected because T is and because when e is added to
T, e becomes part of a circuit in T'. Now deletion of an edge
from a circuit does not disconnect a graph, so if e is deleted
from T' the result is a connected graph. But the resulting
graph contains v, which means that there is an edge in T
connecting v to another vertex of T. This implies that v is
in T [because both endpoints of any edge in a graph must
be part of the vertex set of the graph, ] which contradicts the
fact that v is not in T.

Thus, in either case, the supposition that T is not a spanning
tree leads to a contradiction. Hence the supposition is false,
and T is a spanning tree for G.



A-1 12 Appendix B Solutions and Hints to Selected Exercises

16. a. No. Counterexample: Let G be the following graph.

el

e2

Then G has the spanning trees shown below.

el

vl V2 v1  V2

e2

These trees have no edge in common.

17. Hint: Suppose e is contained in every spanning tree of G
and the graph obtained by removing e from G is connected.
Let G' be the subgraph of G obtained by removing e, and
let T' be a spanning tree for G'. How is T' related to G?

19. Proof: Suppose that w(e') > w(e). Form a new graph
T' by adding e to T and deleting e'. By exercise 15,
addition of an edge to a spanning tree creates a cir-
cuit, and by Lemma 11.5.3, deletion of an edge from a
circuit does not disconnect a graph. Consequently, T'
is also a spanning tree for G. Furthermore, w(T') <
w(T) because w(T') = w(T) - w(e') + w(e) = w(T)-
(w(e') -w(e)) < w(T) [since w(e') > w(e), which im-

plies that w(e') -w(e) > 0.1 But this contradicts the fact
that T is a minimum spanning tree for G. Hence the suppo-
sition is false, and so w(e') < w(e).

20. Hint: Suppose e is an edge that has smaller weight than any
other edge of G, and suppose T is a minimum spanning tree
for G that does not contain e. Create a new spanning tree
T' by adding e to T and removing another edge of T (which
one?). Then w(T') < w(T).

21. Yes. Proofby contradiction: Suppose G is a weighted graph
in which all the weights of all the edges are distinct, and sup-
pose G has two distinct minimum spanning trees T. and T2.
Let e be the edge of least weight that is in one of the trees but
not the other. Without loss of generality, we may say that e
is in T.. Add e to T2 to obtain a graph G'. By exercise 14,
G' contains a nontrivial circuit. At least one other edge f of
this circuit is not in T1 because otherwise T1 would contain
the complete circuit, which would contradict the fact that
TI is a tree. Now f has weight greater than e because all
edges have distinct weights, f is in T2 and not in TF, and
e is the edge of least weight that is in one of the trees and
not the other. Remove f from G' to obtain a tree T3. Then
w(T3) < w(T2 ) because TF is the same as T2 except that it
contains e rather than f and w(e) < w(f). Consequently,
T3 is a spanning tree for G of smaller weight than T2. This
contradicts the supposition that T2 is a minimum spanning
tree for G. Thus G cannot have more than one minimum
spanning tree.

23. The output will be a "spanning forest" for the graph. It will
contain one spanning tree for each connected component of
the input graph.

Section 12.1
1. a. Li = {e, x, y, xx, yy, xxx, xyx, yxy, yyy, xxxx,

xyyx, yxxy, yyyy1

b. L2 = lx, xx, xy, xxx, xxy, xyx, xyy}

3. 11*-= I=i, 12*=1 2=2, 21/=2/l=2

4. L, L2 is the set of all strings of a's and b's that start with an
a and contain an odd number of a's.

L I U L2 is the set of all strings of a's and b's that contain an
even number of a's or that start with an a and contain only
that one a. (Note that because 0 is an even number, both e
and b are in L I U L2.)
(LI U L2)* is the set of all strings of a's and b's. The reason
is that a and b are both in LI U L2, and thus every string in
a and bis in (LI U L2 )*.

7. (a I ((b*)b))((a*) I (ab))

10. (ab* I cb*)(ac I bc)

13. L(c lab) = L(c) U L(ab) = {e} U L(a)L(b)

= (e} U {xy I x e L(a) and y E L(b)}
={e U {xy I x c {a} and y c {b}}
{e}U {ab} = {c, ab}

16. Here are five strings out of infinitely many: 0101, 1, 01,
10000, and 011100.

19. The language consists of all strings of a's and b's that contain
exactly three a's.

22. aaaba is in the language but baabb is not because if a string
in the language contains a b to the right of the left-most a,
then it must contain another a to the right of the all b's.

25. One solution is 0*I0*(0*l0*10*)*.

28. L((r I s)t) = L(r I s)L(t) = (L(r) U L(s))L(t)
= {xy I x E (L(r) U L(s)) and y E L(t)}
= {xy I (x E L(r) or x E L(s)) and y a L(t)}
= {xy I (x E L(r) and y E L(t)) or

(x E L(s) and y C L(t))}
= {xy XV E L(rt) orxy C L(st)}
= L(rt) U L(st)
= L(rt I st)

31.

34.

37.

39.

40.

pre[a- z]

[a- z*(alelilolu)[a -z*

[0 -9]{3} - [0 -9]{2} - [0 -9]{4}

([+ -] 0 e[- 9]*(\. 1 e)[O- 9]*
Hint: Leap years from 1980 to 2079 are 1980, 1984, 1988,
1992, 1996, 2000, 2004, etc. Note that the fourth digit is
0, 4, or 8 for the ones whose third digit is even and that the
fourth digit is 2 or 6 for those whose third digit is odd.

Section 12.2
1. a. $1 or more deposited



2. a. so, s1, s2  b. 0, 1 c. so d. s2
e. Annotated next-state table:

State

Input
0 1

-o so SI SO

sI S S2

@K 2 S2 S2

5. a. AB, C,D, EF b. xy c. A d. DE
e. Annotated next-state table:.

State

-*> A
B
C

o D
o E

F

Input
x y
C B
F D
E F
F D
E F
F F

7. a. sOsS,s 2,s 3  b. 0,1 c. so d. S0,s 2
e. Annotated next-state table:

State

8. a. sOsIs 2

Input
I0 1

c- So So SI
SI SI 52

® S2 S2 S3

S3 S3 so

b. 0,1 c. so d. s2
e.

10. a.
C.

11. a.
C.

N(si, 1) = s2 , N(so, 1) = S3

N*(so, 10011) = s2, N*(sl, 01001) = S2

N(s3 , 0) = s4 , N(s2 , 1) = S4
N*(so, 010011) = s3 , N*(s3 , 01101) = S4

Note that multiple correct answers exist for part (d) of exercises
12 and 13, part (b) of exercises 14-19, and for exercises 20-48.

12. a. (i) s2  (ii) s2  (iii) sI
b. those in (i) and (ii) but not (iii)
c. The language accepted by this automaton is the set of all

strings of O's and l's that contain at least one 0 followed
(not necessarily immediately) by at least one 1.

d. 1*00*1(01 l)*

14. a. The language accepted by this automaton is the set of all
strings of O's and l's that end 00.

b. (° l1)*00

18. a.

b.

20. a.

12.2 Solutions and Hints to Selected Exercises A-1 13

15. a. The language accepted by this automaton is the set of all
strings of x's and y's of length at least two that consist
either entirely of x's or entirely of y's.

b. xxx* l yyy*

17. a. The language accepted by this automaton is the set of
all strings of O's and l's with the following property: If
n is the number of l's in the string, then n mod 4 = 0
or n mod 4 = 2. This is equivalent to saying that n is
even.

b. 0* I (0*10*10*)*
The language accepted by this automaton is the set of all
strings of O's and l's that end in 1.
(01 l)*l

Call the automaton being constructed A. Acceptance of
a string by A depends on the values of three consecutive
inputs. Thus A requires at least four states:

so: initial state

SI: state indicating that the last input character was a 1

s2 : state indicating that the last two input characters were
l's

S3: state indicating that the last three input characters
were 1's, the acceptance state

If a 0 is input to A when it is in state so, no progress is
made toward achieving a string of three consecutive I's.
Hence A should remain in state so. If a I is input to A
when it is in state so, it goes to state sI, which indicates
that the last input character of the string is a 1. From state
s1, A goes to state s2 if a 1 is input. This indicates that
the last two characters of the string are l's. But if a 0 is
input, A should return to so because the wait for a string
of three consecutive l's must start all over again. When
A is in state S2 and a I is input, then a string of three
consecutive l's is achieved, so A should go to state s3.
If a 0 is input when A is in state s2, then progress toward
accumulating a sequence of three consecutive I's is lost,
so A should return to so. When A is in a state s3 and a 1
is input, then the final three symbols of the input string
are l's, and so A should stay in state s3. If a 0 is input
when A is in state s3 , then A should return to state so to
await the input of more l's. Thus the transition diagram
is as follows:

b. (0I 1)0111

21. Hint: Use five states: so (the initial state), si (the state
indicating that the previous input symbol was an a), S2 (the
state indicating that the previous input symbol was a b), s3
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(the state indicating that the previous two input symbols
were a's), and S4 (the state indicating that the previous two
input symbols were b's).

23. a. 0

. (

b. 01 (OI )'

36. 0
0 1

39. Let P denote a list of all letters of a lower-case alphabet
except p, R denote a list of all the letters of a lower-case
alphabet except r, and E denote a list of all the letters of a
lower-case alphabet except e.

25. a.

b. (01 1)10

26. a. a a a b

A s Sj ia S-

b. asbasba*

42. Let W denote a list of all the consonants in a lower-case
alphabet.

a,5eiu

45.

28. a.

b. (0 I 1)*010(0 l 1)*

29.

0 0,1

31.

51. Hint: This proof is virtually identical to that of Example
12.2.8. Just take p and q in that proof so that p > q. From
the fact that A accepts aPbP, you can deduce that A accepts
aqbP. Since p > q, this string is not in L.

53. Hint: Suppose the automaton A has N states. Choose an
integer m such that (m + 1)2 -m 2 

> N. Consider strings
of a's of lengths between m2 and (m + 1)2.
Since there are more strings than states, at least two strings
must send A to the same state si:

(m + 1)2

,aa ... aaa ... aaa ... a

I2
after both of these
inputs, A is in state si

It follows (by removing the a's shown in color) that the
automaton must accept a string of the form ak, where
m2 < k < (m + 1)2.

33.
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Section 12.3
1. a. O-equivalence classes: (So, SI, S 3 , S4), {S2 , S5 )

1-equivalence classes: IsO, S3}, {SI, S4), {S 2, S5 1

2-equivalence classes: (so, S3} 1, S, S4), {S 2, S5)

b. I

Transition diagram for A':

4. a. O-equivalence classes: {so, sI, S2), {S3 , S4, S5 )
1-equivalence classes: {So, SI, S2), IS3 , S5), (S4)

2-equivalence classes: (so, s2}, {sI}, {S3 , S5 ){S4 )
3-equivalence classes: {sO, s2}, {s] }, (S3, S5), {S4 1

b.

6. a. Hint: The 3-equivalence classes are [so), {s 1 , {s2 , (£3),

{S4 1, {S5}, and Is6).
7. Yes. For A:

O-equivalence classes: Iso, S21, {SI, Ss)

1-equivalence classes:

2-equivalence classes:
{So], (£2), (Si, S3)

{So}, (£2), (SI, S3)

Transition diagram for A:

For A':

O-equivalence classes: {s', s,, s'), (s')

1-equivalence classes: {s,, s,), Is,), Is3)

2-equivalence classes: {st, s'}, {s',), {s')

Except for the labeling of the states, the transition diagrams
for A and A' are identical. Hence A and A' accept the same
language, and so, by Theorem 12.3.3, A and A' also accept
the same language. Thus A and A' are equivalent automata.

9. For A:

O-equivalence classes: [SI, S2, S4, S5), {So, S3}

1-equivalence classes: {SI, S2), (S4, S5), (So, S3)

2-equivalence classes: [sI), (S21, (S4, S5), {So, S£3

3-equivalence classes: {s]), {S2}, {S4, S5O, [So, S3)

Therefore, the states of A are the 3-equivalence classes
of A.

For A':

O-equivalence classes: (si, s', s4, s'), {s', s, s

1-equivalence classes: [S2, S3, s4, S5), [so, so I

Therefore, the states of A' are the 1-equivalence classes
of A'.

According to the text, two automata are equivalent if, and
only if, their quotient automata are isomorphic, provided
inaccessible states have first been removed. Now A and A'
have no inaccessible states, and A has four states whereas A'
has only two states. Therefore, A and A' are not equivalent.

This result can also be obtained by noting, for example, that
the string 11 is accepted by A' but not by A.

11. Partial answer: Suppose A is a finite-state automaton with
set of states S and relation R. of *-equivalence of states.
[To show that R* is an equivalence relation, we must show
that R is reflexive, symmetric, and transitive.]

Proof that R* is symmetric:
[We must show that for all states s and t, if s R* t then
t R. s.] Suppose that s and t are states of A such that sR*t.
[We must show that t R* s] Since s R* t, then for all input
strings w,

[N* (s, w) is an 1 N*(t, w) is an1
[accepting state] [accepting state]

I
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where MN is the eventual-state function on A. But then, by
symmetry of the s> relation, it is true that for all input strings
w,

[N*(t, w) is an 1 FN*(s, w) is an1
[accepting state [accepting states

Hence t R* s [as was to be shown], so R* is symmetric.

12. The proof is identical to the proof of property (12.3.1) given
in the solution to exercise 11 provided each occurrence of
"for all input strings w" is replaced by "for all input strings
w of length less than or equal to k."

13. Proof: By property (12.3.2), for each integer k > 0, k-
equivalence is an equivalence relation. But by Theorem
10.3.4, the distinct equivalence classes of an equivalence
relation form a partition of the set on which the relation is
defined. In this case, the relation is defined on the states of
the automaton. So the k-equivalence classes form a partition
of the set of all states of the automaton.

15. Hint 1: Suppose Ck is a particular but arbitrarily chosen
k-equivalence class. You must show that there is a (k -1)-
equivalence class Ck I such that Ck C Ck 5

Hint 2: If s is any element in Ck, then s is a state of the
automaton. Now the (k- I)-equivalence classes partition
the set of all states of the automaton into a union of mutually
disjoint subsets, so s E Ck-5 for some (k- I)-equivalence
class Ck 5

Hint 3: To show that Ck C Ck-5 , you must show that for
any state t, if t E Ck, then t E Ck1.

17. Hint: If m < k, then every input string of length less than
or equal to m has length less than or equal to k.

19. Hint: Suppose two states s and t are equivalent. You must
show that for any input symbol m, the next-states N(s, m)
and N(t, m) are equivalent. To do this, use the definition of
equivalence and the fact that for any string w', input symbol
m, and state s, N*(N(s, m), w') = N*(s, mw').



INDEX

Abduction, 121
Absolute value, defined, 164
Absolute value function, 515
Absorption law, 14, 272, 289
Accepting state of machine (automaton),

746-747,748,750-751
Ackermann, Wilhelm, 506
Ackermann function, 506
Acquaintance graph (example), 661
Aczel, Amir D., 138n
Adams, Douglas, 75
Addition

in binary notation, 60
computer, circuits for, 61-63
computer, with negative integers, 66-70

Addition rule, 321-322
See also Inclusion/exclusion rule

Additive identity, 185
Adleman, Leonard, 612
Adjacency matrix

of directed graph, 684-685
of undirected graph, 686-687

Adjacent edges, 650
sequences of, 667

Adjacent to itself (vertex), 650
Adjacent vertices, 650

sequences of, 667
Affirming the consequent, fallacy of, 37
Airline route scheduling, 723, 725, 726-727,

729-730
Aldous, David, 300
Algebraic expressions

divisibility of, 149
representation of, 716-718

Algebraic proof, 360
of binomial theorem, 364-366
of set identities, 286-287

Algebra of combinations, 356-362
Algol (computer language), 707
Algorithmic language

See also Computer languages
description of, 186-189
for-next loop, 187, 189
if-then-else statements, 186-187
if-then statements, 186-187
while loop, 187-188, 189

translating from, 80-81
translating to, 81
used in this book, 186

Algorithms
binary search, 557-564
to check whether one set is subset of

another, 266-267
to convert from base 10 to base 2 using

repeated division by 2, 211 -213
correctness of, 244-254
defined, 186
division, 190-191
efficiency of, 531-543, 557-570
Euclidean, 192-196, 251-253
execution time, 533
insertion sort, 536-540
for isomorphic graphs, 700
Kruskal's, 726-728
loop invariants, 246-251
merge sort, 564-568
notation for, 190
origin of word, 190
polynomial-time, 568
pre- and post-conditions, 245-246
Prim's, 729-731
sequential search, 536
to simulate finite-state automaton,

755-756
space efficiency of, 569
time efficiency of, 532-535
tractable and intractable, 568
variables and expressions in, 186

Algorithm segments, computing orders of,
533-534

Alice in Wonderland (Carroll), 126
al-Kashi, Ghiyath al-Din Jamshid, 449

Abu Ja'far Mohammed ibn Musa
al-Khowdrizmi, 190

Alphabet, 735-736, 738
Caesar cipher and, 611 -612
input, 748
sets of strings over, 500-501

Alternating sequence, 200-201
Ambiguous language, 102
Ambiguous premises, using, 36

American Standard Code for Information
Interchange (ASCII), 453

Analytical Engine (Babbage's), 531
Ancestor, 715
and

relation to but, 3-4
symbol for, 3
when to use, 12

Anderson, John R., 32n
AND-gate, 45-46

Multiple-input, 51
and statement

See also or statement
negation of, 10- 11, 91
switching circuit for, 44
truth values for, 5

Annotated next-state table, 748, 749-750
Annual percentage rate (APR), 467
Antecedent. See Hypothesis
Antisymmetry, 632-634
"A" or "an" as indicators of implicit

quantification, 83
Archimedean principle, 108n
Archimedean property for rational numbers,

243
Archimedes of Syracuse, 108n
Arguing from examples, 135-136
Argument(s)

defined, 1, 29
element, 260, 269, 271
indirect, 171-183
indirect, with contradiction and

contraposition, 171-179, 427
with quantified statements, 111-121
true and false, 37
using"no," 118-119

Argument form, 1, 14, 29
See also Arguments, valid and invalid
creating additional, 119-121
invalid, 30-31
valid, 31, 40, 115

Arguments, valid and invalid, 29-43
contradictions and valid, 39-40
defined, 29-30, 115
fallacies, 36-38
invalid with true conclusion, 38

1-1



1-2 index

Arguments, valid and invalid (cont.),
modus ponens and modus tollens, 31-33,

40
proof by division into cases, 35
rules of inference, 33-36
valid with false conclusion, 38

Aristotle, 1, 180
Arithmetic, modular. See Modular arithmetic
Arithmetic sequence, 577-578

See also Geometric sequence
Array(s)

See also One-dimensional arrays;
Two-dimensional arrays

action of insertion sort on, 537
search algorithms for, 557-564

Arrow diagrams
examples with, 390-392
for functions, 390-392, 415
of relations, 574-575

Artificial intelligence, 107, 121, 276, 654, 655
Art of Computer Programming, The (Knuth),

364n, 531
ASCII (American Standard Code for

Information Interchange), 453
Assignment statement, 186
Associative laws, 14, 272, 288

generalized, 287
matrix multiplication and, 690-691

Assumptions, 29
At least, definition of, 340
At most, definition of, 340
Augusta, Ada, Countess of Lovelace, 186
Automata/automaton

See also Finite-state automata
equivalent, 771-773
quotient, 764, 768-771

Average-case order for insertion sort, 539-540
Axiom(s)

of extension, 255
power set, 264
probability, 370-373

Babbage, Charles, 186, 531, 532
Bachmann, Paul, 518
Backus, John, 707
Backus-Naur notation, 707, 735
Backward chaining, 276
Barber puzzle, 293-294
Barwise, Jon, 85
Base, of recursion, 458
Base 2 notation. See Binary notation
Base 16 notation, 70-73
Basis step in proof by mathematical induction,

218
initial conditions for recurrence relation

and, 458
Bayer, Dave, 300
Bayes, Thomas, 379
Bayes' theorem, 378-380
Beal, Andrew, 184
Beal's conjecture, 184
Begging the question, 37, 136
Berry, G. G., 296
Best big-oh approximation. See 0-notation
Best case order(s)

See also Worst-case order(s)
of g(n), 533
for sequential search, 536

Biconditional
confused with conditional, 26-27
only if and, 23-25

Big-oh notation. See 0-notation
"Big-Omega" notation. See Omega-notation
"Big-Theta" notation. See Theta-notation
Bijection. See One-to-one correspondences
Binary arithmetic, 57-60
Binary digits, 45
Binary notation

bits needed to represent an integer in,
57-58,547-548

conversions to and from, 58-59, 72,
211-213

Binary operations, defined, 503
Binary relations, 572, 581

equivalence relation, 594-610
induced by partition, 595-597
properties of general, on finite sets,

584-594
on set A, 580
on set of identifiers, 599
as a subset, 572-573

Binary representation
of integers, 238-240
number of bits in a, 548
of numbers, 57-59

Binary search, 557-564
efficiency of, 560-564
as logarithmic, 563-564

Binary trees, 716-721
existence of, determining, 720-721

Binomial, 362
Binomial coefficient, 367
Binomial probabilities, 385
Binomial theorem, 362-370

algebraic proof of, 364-366
combinatorial proof of, 367
deriving another combinatorial identity

from, 368
to simplify sum, 368-369
substituting into, 367

Bioinformatics, 742
Bipartite graph, 664

complete, 657
Birthday problem, 332
Birthdays (example), 420-421
Bit length, two's complement of positive

integer relative to fixed, 63
Bits, 45, 57

in binary representation, number of, 548
Bit string, 57-59,310-311

with certain property, number of,
467-469

with fixed number of l's, calculating
number of, 344

Black boxes, 45-46
See also Function machines

Blake, William, 705
Bolton, Ginger, 291
Boole, George, 1, 48
Boolean algebra, 287-290
Boolean expressions, 6

circuits and, 48-51
for input/output table, 51-52
recursive definition of, 500
simplifying combinational circuit by

finding corresponding, 53
Boolean functions, 397-398

Boolean variable, 48, 186
Bottom of recursion, 458
Braces for set notation, 255-256
Brahmagupta, 632
Branch vertex, 710-711
Bridge, 680
Bridges of Konigsberg (puzzle), 665-666
Bruner, Jerome S., 420
Burger, William F, 43 1 n
but, 3-4
Byte, 72

Caesar, Julius, 611
Caesar cipher, 611-612
Cancellation theorem for congruence modulo

n, 626
Cannibals and vegetarians (example), 655
Cantor, Georg, 255, 294, 448, 575
Cantor diagonalization process, 448-451
Cardinality, 443-456

basic properties of, 444
computability and, 452-454
countable sets and, 445-447, 451
of set of all real numbers, 452
sets with same, 443-445
uncountable sets and, 446, 450-451, 452

Cardinal number, 443
Cards

poker hand problems, 343-344
probabilities for deck of, 299-300

Carroll, Lewis, 29, 123, 126, 334, 594
Carry, 61
Cartesian plane, 510
Cartesian products, 264-265

binary relation as subset of, 572-573
functions defined on, 397
and n-ary relations, 572, 580-581
number of elements in, 309

Catalan, Eugene, 184, 362
Catalan numbers, 362, 472
Cayley, Arthur, 707, 708
Ceiling, 164-171
Ceiling functions, 389, 512
Chain, 640
Chaining, backward and forward, 276
Character class, 742-743
Characteristic equation of recurrence relation,

489-490
Characteristic function of subset, 401
Characters of string, 310
Children, 715

in binary tree, 716
Chinese remainder theorem, 627-628
Chomsky, Noam, 706, 735
Church, Alonzo, 734
Church-Turing thesis, 734
Chu Shih-chieh, 362
Ciphertext, 611
Circle relation, 574
Circuit-free graph, 705
Circuits

Boolean expressions and, 48-51
combinational, 46, 52-53, 745-746
for computer addition, 61-63
connectedness and, 669-670
digital logic, 43-57
digital logic, equivalence classes of, 606
digital logic, equivalence of, 598
Euler, 670-676
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graphs and, 665-683
Hamiltonian, 676-679
nontrivial, 669
sequential, 46, 746
simple, 667
simplifying combinational, 52-53
trivial, 669
with two input signals, input/output tables

for, 310-311
Cities visited in order

Hamiltonian circuit and, 676-679
minimum spanning trees for, 726-727,

729-730
spanning trees for, 723, 725

Class(es)
Character, 742-743
equivalence, 599-610
isomorphism, finding representatives of,

700-701
Class NP, 568
Class P. 568
Clay Mathematics Institute, 139, 568
Closed form, 368
Closed walk, 667
Code generator, 735
Coding theory, 258

encoding and decoding, 396
Co-domain, 390, 402
Collatz, Lothar, 507
Collatz 3n + I conjecture, 507
Collision, 406-407
Collision resolution methods, 406-407
Colmerauer, A., 107
Columns, multiplying, 689
Combinational circuit, 46, 745-746

simplifying, 52-53
Combinations, 334-362

algebra of, 356-362
r-, 334, 349-356
relation between permutations and,

335-337
of sets, 334-349

Combinatorial, defined, 357
Combinatorial proof

of binomial theorem, 367
of Pascal's formula, 360-361

Common logarithms, 413
Communication system (example), graph to

represent, 654
Commutative laws, 14, 272, 288

and matrix multiplication, 690
Comparable elements, 639
Compatible partial order relations, 640-641
Compiler, computer, 735, 742

and identifiers, 599
Complement(s)

in Boolean algebra, 288, 289
computer representation of negative

integers and two's, 63-66
of event, probability of, 324, 370-371
of graph, 664
of sets, 260, 261
of universal set and null set, 272
of 0 and 1, 289

Complement laws, 272, 288
uniqueness of, 288, 289

Complete graphs, 656-657
Complete set of residues modulo n, 614

Composing, 431
Composite integers, 128
Composition of functions, 431-443

defined by formulas, 432
defined on finite sets, 433
onto functions, 438-441
with identity function, 433-435
with inverse functions, 435-436
one-to-one functions, 436-438

Compound expression, order of operations in, 6
Compound interest, calculating, 466-467
Compound statements, 3-8
Computability, cardinality and, 452-454
Computer, limitations of, 506
Computer addition

circuits for, 61-63
with negative integers and two's

complements, 66-70
Computer algorithm. See Algorithms
Computer compiler, 735, 742

and identifiers, 599
Computer languages

Backus-Naur notation for, 707
length of identifiers, 599
variables in, 186

Computer memory circuit, 746
Computer program

correctness of, 244-254
countability of, 453
sequences in, 210-211

Computer representation of negative integers
and two's complements, 63-66

Computer science, theoretical foundations of,
734

Concatenation, 419
of languages, 738
of regular expressions over alphabet, 738
of strings over alphabet, 738

Conclusion(s), 17, 18, 29
defined, I
drawn using universal modus ponens, 113
drawn using universal modus tollens, 114
jumping to, 37, 136

Conditional probability, 375-378
Conditional statements, 17-29

See also Universal conditional statements
ambiguous interpretation, 26-27
in computer algorithms, 186-187
contrapositive of, 21-22
converse and inverse of, 22-23
defined, 17-18
logical equivalences and, 19
necessary and sufficient conditions,

25-26
negation of, 20-21
only ifand the biconditional, 23-25
proof for, 280
representation of if-then as or, 20-21
true or false, 18

Congruence modulo 2 relation, 573
Congruence module 3 relation

equivalence classes of, 604-606
as equivalence relation, 597
properties of, 590-592

Congruence modulo n
cancellation theorem for, 626
properties of, 613-615

Congruences, evaluating, 598

Conjunction, 3, 40
defined, 5
negation of, 10
truth tables for, 5

Connected components, 670
matrices and, 687-688

Connected graphs, 669-670
Connected subgraph, 670
Connected vertices, 650
Connectives, logical

gates and, 46
notation for, 17
switching devices and, 44

Consecutive integers, 141, 155
with opposite parity, 159-161

Consequent. See Conclusion(s)
Constant function, 392, 393
Constructive proofs of existence, 128
Context-free languages, 735
Contradiction rule, 39, 40
Contradiction, 12-13

argument by, 171-179
argument by, pigeonhole principle and,

427
defined, 13
logical equivalence and, 13
method of proof by, 17 1-172
negation of, 14
valid arguments and, 39-40

Contraposition
argument by, 175-178
method of proof, 175-178

Contrapositive
of conditional statements, 21-22
of generalized pigeonhole principle,

426-427
of universal conditional statement, 93-94

Converse
of conditional statements, 22-23
of universal conditional statement, 93-94

Converse error, 37
quantified form, 118, 121

Conway, Richard, 97
Corollaries, defined, 146
Countable sets, 445-447, 451
Counterexamples, 282-284

disproof by, 129-130
divisibility and, 152-153
pessimistic approach to problems, 284
for set identity, 283-284
to universal statement, 78

Counting, 297-388
advice about, 345-346
algebra of combinations, 356-362
Bayes' formula and, 378-380
binomial theorem and, 362-370
conditional probability and, 375-378
double, 346
elements of a list, 302-304
elements of disjoint sets, 321-333
expected value and, 373-374
independent events and, 381-385
permutations, 313-317
possibility trees and multiplication rule,

306-320
probability and, 298-306
probability axioms and, 370-373
r-combinations, 334, 349-356
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Counting (cont.), 297-388
subsets of a set, 334-349
walks of length n, 693-695

Courses required for degree, 644
CPM (Critical Path Method), 644-646
Critical path, 646
Critical Path Method (CPM), 644-646
Critical row, 31, 37
Cryptography

defined, 611
number theory and, 629-630
public-key, 612, 630
RSA, 617, 623-630

Databases, n-ary relations and, 581
Data type, 186
Date, regular expression for, 744
Davis, Philip J., 164, 282
Day of the week, computing, 158-159
Decimal digits, 155
Decimal expansion of fractions, pigeonhole

principle applied to, 423-425
Decimal notation, 57

conversions to and from, 58-59, 71-72,
211-213

Decimal representation, 155
Decision tree, 706
Decoding functions, 396
Decreasing function, 515-517
Decrypting, 611

with Caesar cipher, 611-612
using RSA cryptography, 624-625

Dedekind, Richard, 608
Deductive reasoning, 1, 227

universal instantiation and, 111
Degree of a vertex, 658-662
De Morgan, Augustus, 1, 10, 217
De Morgan's laws of logic, 14, 91

application of, 11
described, 10-11
inequalities and, 11-12

De Morgan's laws for sets, 272, 289
generalized, 505
proof of, 276-278

Denying the antecedent, fallacy of, 37-38
Derangement of set, 475
Descartes, Rend, 97, 510, 543
Descendant, 715
Diaconis, Persi, 300
Diagrams

arrow, 390-392, 415, 574-575
Hasse, 636-639
to show invalidity, 117-118
to test for validity, 115-119
transition, 748-749

Dice, probability in rolling pair of, 300-301
Dictionary order, 635-636
Difference between sets, 260, 261
Difference rule, 322-326
Digital logic circuits, 43-57

background of, 43-45
black boxes and gates, 45-46
Boolean expressions and, 48-51
equivalence classes of, 606
equivalence of, 53, 598
input/output table for, 47-48, 51-52
simplifying combinational circuits, 52-53

Digraph, 653
Dijkstra, Edsger W., 244

Dirac, P.A.M., 584
Direct argument, pigeonhole principle and, 427
Directed edge, 653
Directed graphs, 234, 653

matrices and, 684-686
of partial order relation, 637, 638-639
of relation, 580
of relation, recovered from Hasse

diagram, 638-639
Direct proof

counterexample I and, 126-141
counterexample II and (rational

numbers), 141-147
counterexample III and (divisibility),

148-156
counterexample IV and (division into

cases and quotient-remainder
theorem), 156-164

method of, 131
of a theorem, 132-134

Dirichlet, Lejeune, 390, 420
Dirichlet box principle. See Pigeonhole

principle
Disconnected graphs, 669-670
Discourse on Method (Descartes), 510
Discovery, 126
Discrete mathematics, origin of name, 77
Disjoint events, mutually, 382
Disjoint sets, 262-263

counting elements of, 321-333
Disjunction, 3

defined, 5-6
negation of, 10- 11

Disjunctive normal form, 52
Disproof

of alleged property of floor, 166-167
of alleged set property, 282-284
by counterexample, 129-130
of existential statement, 137-138

Disquisitiones Arithmeticae (Gauss), 597
Distinct equivalence class, 601-604
Distinct-roots case, 488-494
Distinct-roots theorem, 491-494
Distributive law, 14, 272, 288, 289, 481

proof of, 273-276
div, 157-159, 170

as function, 389
Divide-and-conquer approach, 557

binary search, 557-564
merge sort, 564-568

Divides, defined, 148
"Divides" relation

antisymmetry of, 633-634
Hasse diagram for, 636-637
on set of positive integers, 634-635

Divisibility
of algebraic expressions, 149
checking nondivisibility, 149-150
counterexamples and, 152-153
mathematical induction to prove,

228-230
by prime numbers, 150, 151-152, 236
proving properties of, 148-156
transitivity of, 150-152
unique factorization theorem, 153-154

Division algorithm, 190-191
Division into cases, proof by, 35, 40
Division-into-cases method of analysis, 19
Division rule, 349

Divisor(s), 148
greatest common, 192-196
positive, 148-149
of zero and one, 148, 149

Dodecahedron, puzzle in shape of, 676-679
Domain, 390

of Boolean function, 397
co-, 390, 402
of predicate variable, 76

Dot product, 689
Double complement law, 272, 288

proof of, 289-290
Double counting, 346
Double negative law, 14
Double negative property, 9
Double of rational number, 146
Doubly indexed sequence, 469-470
Drawing graphs, 652-653
Dual identity, 289
Duality principal for Boolean algebra, 289
Dummy variable, 208

in loop, 211

EBCDIC (Extended Binary-Coded Decimal
Interchange Code), 453

Edge-endpoint function, 650
Edges

adjacent, 650
defined, 482, 650
directed, 653
incident on its endpoints, 650
parallel, 650

Edinburgh Prolog, 107n
Edison, Thomas Alva, 487
8-bit representation, 63-70
Einstein, Albert, 321
Element argument, 260, 269, 271
Elementary operations, 532-533
Elements

class of, 599
comparable, 639
counting, 302-304

Elements of Geometry (Euclid), 180, 182
Elements of set

comparable and noncomparable, 639
disjoint set, 321-333
greatest, 640, 641
least, 240-241, 641
maximal, 640, 641
methods of selection, 334-335
minimal, 641
permutations with repeated, 344-345

Elimination, 34, 40
Elkies, Noam, 139
Ellipsis, 76, 199
Empty graph, 650
Empty set, 262, 278-280

deriving set identity using properties of,
286-287

uniqueness of, 279
Empty tree, 705
Encoding and decoding functions, 396
Encrypting, 611

with Caesar cipher, 611-612
using RSA cryptography, 624

End of world, calculating, 460-464, 480-481
Endpoints, 650, 653
End while, 188, 189
Enumeration, complete, 335



Index 1-5

Equality
of functions, 393-394
of ordered n -tuple sets, 264
properties of, 589
of sets, 258-260

Equally likely probability formula, 299
Equivalence classes, 599-610

of congruence modulo 3, 604-606
defined on finite sets, 600
of digital logic circuits, 606
of identifiers, 601
of identity relation, 601-604
names of, 605
rational numbers as, 607-608
representative of, 606

Equivalence of states of finite-state automata,
764-767

Equivalence relations, 594-610
congruence modulo n as, 615-616
defined, 597-599
equivalence classes of, 599-610
graph isomorphism as, 699
modular, 613-614
on sets of states of automaton, 764-773

Equivalent automata, 771-773
Equivalent digital logic circuits, 53, 598
Eratosthenes, 179
Escape character, 739
Etchemendy, John, 85
Euclid, 153, 180, 182, 183, 192
Euclidean algorithm, 192-196

correctness of, 251-253
extended version of, 618-620, 631

Euclid's lemma, 625-626
Euler, Leonhard, 139, 665-666
Euler circuits, 670-676

See also Hamiltonian circuits
Euler path, 675-676
Euler phi function, 401
Euler's conjecture, 139
Even integers

countability of set of all, 447
defined, 127
deriving additional result about, 145-146
Goldbach's conjecture about, 139
square of, 175-176
sum of, 132-134

Even parity, strings with, 741
Event(s), 299

independent, 381-385
probability of complement of, 324,

370-371
probability of general union of two,

371-373
Eventual-state function, 751-752
Examples, arguing from, 135-136
Exclusive or, 5-6
Exhaustion, method of, 79, 130
Existence of graphs, 660-661
Existential quantifier, 79-80

implicit, 83
Existential statements

defined, 80
disproving, 137-138
equivalent forms for, 83
negation of, 89
proving, 128-129
true or false, 80

Expanded form, sum given in, 202, 203-204

Expected value, 373-374
to find average-case order for insertion

sort, 539-540
of tossing loaded coin twice, 383-384

Expert systems, 121
Explicit formula

checking correctness of, 483-485
for Fibonacci sequence, 493-494
finding, 476-477
for geometric sequence, 222-225,

578-580
for sequence, 200
simplifying, 480-483

Exponential functions
with base 6,411-412
graphs of, 544
one-to-oneness of, 412

Exponential orders, 549-554
Exponents

laws of, 411
modular arithmetic computations using,

617-618
Expressions. See Algebraic expressions;

Boolean expressions; Regular
expression(s)

Extended Binary Coded Decimal Interchange
Code (EBCDIC), 453

Extended Euclidean algorithm, 618-620, 631
Extension, axiom of, 255

Factor, 148
Factorial notation, 206-207
Factorization theorem for integers, unique, 625,

626
Fallacies, 36-38
False positives and false negatives, 379-380
False solution, 346
Fantasy rule for mathematical proof, 271
Fermat, Pierre de, 138, 148, 184, 217, 302

last theorem, 138, 138n, 184, 185,
little theorem, 626-627

Fermat primes, 184
Fibonacci (Leonardo of Pisa), 464
Fibonacci numbers, 464-465
Fibonacci sequence, formula for, 493-494
Final term, 200

adding on, 204
separating off, 204

Finite relations
antisymmetry of, 632-633
inverse of, 578-579

Finite sets
composition of functions defined on, 433
defined, 428, 443
equivalence class of relation defined on,

600
onto function defined on, 408
functions and relations on, 576
one-to-one and onto for, 429
one-to-one function defined on, 403-404
properties of binary relations on, 585-587

Finite-state automata, 735, 745-775
definition of, 748-750
designing, 752-754
equivalence relations and, 764-773
eventual-state function, 751-752
language accepted by, 750-751
nondeterministic, 758-759
pigeonhole principle and, 759-760

regular expressions and, 756-759
simplifying, 763-775
software to simulate, 754-756

First-order logic, language of, 107
Floor, 164-171
Floor function, 389, 512-513, 535

graph of, 512-513
Floyd, Robert W., 244
For all statement, 78-79

negation of, 90, 91
Forest, 705
Formal languages, 735-738

See also Computer languages
over alphabet, 736
translating from, 80-81
translating to, 81, 100-102

Formal logical notation, 105-107
Forms of argument. See Argument form
Formulas

See also Explicit formula
composition of functions defined by, 432
functions defined by, 392-393
Pascal's, 358-361
for sequence, 200
substitutions in, 358
summation of first n integers, 218-222,

482-483
For-next loop, 187, 189, 211
Forster, E. M., 43
Forward chaining, 276
Fractions, pigeonhole principle applied to

decimal expansion of, 423-425
Frege, F L. Gottlob, 78, 608
Friedl, Jeffrey E. F., 756n
Frye, Roger, 139
Full-adder, 61-63
Full binary tree, 716

existence of, determining, 718-720
Fuller, R. Buckminster, 697
Function machines, 392-394
Functions, 389-456

arrow diagrams for, 390-392, 415
Boolean, 397-398
cardinality with applications to

computability, 443-456
ceiling, 389, 512
composed of rational power functions,

orders of, 528
composition of, 431-443
constant, 392, 393
decreasing, 515-517
defined, 390
defined on a power set, 395
defined on a set of strings, 395
defined on general sets, 389-402
defined recursively, 505
efficiency of algorithms, 531-543,

557-570
encoding and decoding, 396
equality of, 393-394
eventual-state, 751-752
examples of, 394-396
exponential, 411-412
finite-state automata, 735, 745-775
floor, 389, 512-513, 535
f(x), 390
f(x) is o(g(x)), 531
graphing, 513-515
Hamming distance, 396
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Functions (cont.),
hash, 406-407
identity, on a set, 394
increasing, 515-517
inverse, 415-417
logarithmic, 395, 411-412, 413
multiple of, 514-515, 516-517
noncomputable, 454
one-to-one, 402-407
O-notation, 518-531
onto, 407-411
pigeonhole principle and, 420-431
power, 511-512, 522, 527-528
propositional. 76
real-valued, of real variable, 510-518
recursive, 505-507
relations and, 575-577
sequences as, 389, 394
squaring, 392, 393
successor, 392, 393
well-defined, 398

Fundamental property of ordered pairs, 575
Fundamental theorem of arithmetic, 153-154

Galileo Galilei, 443
Gambler's ruin (example), 497
Gardner, Martin, 39n
Gates

Boolean expression and, 50-51
digital logic circuits and, 45-46

Gauss, Carl Friedrich, 153, 221, 597
General formula for sequence, 200
Generalization, 33, 40
Generalized associative law, 287
Generalized pigeonhole principle, 425-427
Generalizing from the generic particular,

method of, 130-131, 138, 143
General partial order relation, notation for, 635
General polynomial functions, order of, 526
General recursive definitions, 499-509
Geometric sequence

See also Arithmetic sequence
defined, 479
explicit formula for, 578-580
formula for sum of, 222-225

"Geometry" (Descartes), 510
Gilbert, William S., 362
Glaser, 57
Gleick, James, 139
Godel, Escher Bach (Hofstadter), 271, 501
Godel, Kurt, 294
Goldbach, Chnstian, 139
Goldbach conjecture, 138-139
Golden ratio, 494, 499
Grammars, 735
Graph(s), 649-704

See also Directed graphs
bipartite, 664
circuit-free, 705
complement of, 664
complete, 656-657
complete bipartite, 657
connected and disconnected, 669-670
defined, 511, 650
degree of a vertex, 658-662
drawing, 652-653
empty, 650
empty tree, 705
of equation, 650

examples of, 654-655
existence of, determining, 660-662
of exponential functions, 544
of f, 511
of floor function, 512-513
forest, 705
of function, 511, 650
isomorphic, 697-704
of logarithmic functions, 544-547
matrix representations of, 683-697
of multiple of function, 514-515
nonempty, 650
nonexistent, 660-662
paths and circuits in, 665-683
pictorial representation of, 652-653
of power function, 511-512
real-valued functions of real variable and,

510-518
simple, 656
subgraph, 657-658
terminology, 650-651
total degree of, 658-660
total weight of, 725
tree, 705
weighted, 725

Graph theory, origin of, 665
Greatest common divisor (gcd), 192-196

computing, by subtraction, 197
as linear combination, 619-620

Greatest element, 640, 641
Gries, David, 97, 244
Griggs, Jerrold, 258
Growth factor, 466
Guard, 187, 246

eventual falsity of, 247

Hairs on heads, example involving, 420-421
Half-adder, 61, 62
Halting problem, 294-296
Hamilton, Sir William Rowan, 676
Hamiltonian circuits, 676-679

See also Euler circuits
Hamming, Richard W., 396
Hamming distance function, 396
Handshake theorem, 659
Hanoi, Tower of, 460-464, 480-481
Hardy, G. H., 171, 199, 611, 629-630
Harmonic sums, 553-555
Hash functions, 406-407
Hasse, Helmut, 637
Hasse diagrams, 636-639

sideways, 645
Hausdorff, Felix, 575
Height of rooted tree, 714, 715
Hersh, Reuben, 164, 282
Hexadecimal notation, 70-73
Hilbert, David, 747
Hoare, C.A.R., 247
Hofstadter, Douglas, 179, 269, 271, 499, 501
Horizontal axes, 510
Honmer's rule, 543
Hydrocarbon molecules, structure of, 707-708
Hypothesis, 17, 18, 29

See also Inductive hypothesis
inductive, 218, 235

Idempotent law, 14, 272, 288
proof of, 290

Identifiers
binary relation on set of, 599
counting the number of Python, 324-325
equivalence and, 599
equivalence classes of, 601

Identities, set. See Set identities
Identity, defined, 272
Identity function

composition with, 433435
on a set (example), 394

Identity laws, 14, 272, 288, 289
Identity matrices, 691, 692-693
Identity relation, equivalence classes of,

601-604
If, misuse of, 136-137
If-and-only-if statement, 23-25

necessary and sufficient conditions for, 25
If-then-else statements, 160, 186-187

execution in computer algorithms, 187
If-then statements, 186-187

chains of, 34
converse and inverse of, 27
converting only-if to, 23-25
execution in computer algorithms, 187
logical equivalences and, 19-20
necessary conditions in, 25, 26
negations of, 21, 91
or statements and, 19-20
sufficient conditions in, 25
true or false, 17-18, 82
truth tables for, 18

ijth entry of a matnx, 684
of a power of an adjacency matrix,

694-695
Illegal expressions (Boolean), 500
Image, 402

inverse, 390, 402
Images of X under f, 390
Implication arrow, 523
Implicit universal quantification, 83-85
Inaccessible states of finite-state automata, 773
Incident on (edge), 650
Inclusion/exclusion rule, 326-330
Inclusion in union, 269

proof of, 270
Inclusion of intersection, 269

proof of, 270-271
Increasing function, 515-517
Independent events, 381-385
Index,200
Index of summation, 202, 208
Index variable, 558
Indirect argument

contradiction and contraposition and,
171-179

examples of, 179- 183
when to use, 183

Induction, 227-228
See also Mathematical induction

Inductive hypothesis, 218, 235
Inductive property, 247
Inductive step, 218
Inequality(ies)

De Morgan's law and, 11-12
logarithmic, 551-552
mathematical induction to prove,

230-232
notation for, 4
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polynomial, 523
triangle, 164

Inference, rules of, 33-36, 40
See also Modus ponens; Modus tollens
application of, 35-36

Inferred truth, 30
Infinite relations, inverse of, 579
Infinite sequence, 200
Infinite set(s)

cardinality of, 445, 446
countability of, 445-447
defined, 428, 443
onto functions defined on, 409-411
one-to-one functions defined on, 404-406
relations on, 589-592

Infinities, search for larger, 447-452
Infinitude of the set of prime numbers, 182-183
Infix notation, 737
Informal language

translating from, 81, 100-102
translating to, 80-81

Informal negations of universal statements, 90
In general, mathematical definition of, 92-93
Initial conditions, 458, 459
Initial state, 748
Initial term, 200

explicit formula to fit given, 201-202
Injective function. See One-to-one function
Input alphabet, 748
Input/output devices

finite-state automata as, 771
functions as, 392, 393

Inputloutput tables
for circuit with two input signals,

310-311
designing circuit for, 51-52
for digital logic circuits, 45,47-48, 51-52
as function, 389, 397

Inputs, 390
Insertion sort algorithm, 536-540
Integer(s)

See also Rational numbers; Real numbers
binary notation for, 58
binary representation of, 57-59, 238-240
consecutive, 141, 155
consecutive, with opposite parity,

159-161
countability of sets of, 446-447
counting the number of, divisible by five,

322
defined as equivalence classes of ordered

pairs of positive integers, 608
divisibility by prime numbers, 236
even, 127
expressing I as linear combination of

relatively prime, 621-622
formula for sum of first n, 218-222,

482-483, 527-528
graphing functions defined on sets of,

513-514
greatest, 172
linear combination of, 619-620
negative, computer addition with, 66-70
negative, two's complements and

computer representation of, 63-66
number of bits to represent in binary

notation, 58, 547-548
odd, 127

order for sum of first n, 527-528
parity of, 159-161
pigeonhole principle and, 422-423
prime and composite, 127-128
quotients of, 141-147
representations of, 159-163
set of all (Z), 76
square of an odd, 161-163
study of properties of, 148-156
sum of rational and irrational, 173-175
unique factorization theorem for,

153-154, 625, 626
well-ordering principle for, 240-242

Integer powers of real numbers, nonnegative,
364

Integer variables, order for functions of,
527-528

Integral solutions of equation, counting number
of, 353-354

Internal vertex, 710-711
Internet, searching on (example), 4
Internet addresses, 325-326
Intersection(s)

counting number of elements in, 329-330
empty set and, 262
of equivalence classes, 603-604
inclusion of, 269, 270
of independent events, probability of,

382-383
recursive definition of, 504-505
of sets, 260, 261
and union with subset, 278

Intervals and set operations, 261
Intractable algorithms, 568
Invalid argument form, 30-31
Inverse

of conditional statements, 22-23
of relation, 578-579
of universal conditional statement, 93-94

Inverse error, 37-38
quantified form, 118, 121

Inverse functions, 415-417
composing a function with, 435-436

Inverse image, 390, 402
Inverter, 45-46
Irrational numbers

defined, 141
determining rational number versus,

142-143
irrationality of square root of two,

180-182
summed with rational, 173-175

Isolated vertex, 650
Isomers, 707, 708
Isomorphic graphs, 697-704
Isomorphic invariants, 700-701
Isomorphic structures, 773
Iterations

counting the number of, in a loop, 353
counting the number of, in a nested loop,

311
solving recurrence relations by, 475-487

Iterative statements, 187-189
ith row of matrix, 683

Job scheduling problem, 644-646
jth row of matrix, 683
Jumping to a conclusion, 37, 136

Kant, Immanuel, 1, 723
k-equivalence class, finding, 766-767
k-equivalent states of finite-state automata,

765-767
Killian, Charles, 258
Kirchoff, Gustav, 707
Kleene, Stephen C., 734, 736, 738, 756
Kleene closure of I, 736

Kleene closure of L, 738
Kleene closure of r, 738
Kleene's Theorem, 756-759
Knights and knaves example, 39-40
Knowledge base of information, example of,

654-655
Knuth, Donald E., 133, 364n, 518, 531
Kolmogorov, Andrei Nikolaevich, 299, 370,

371
Kbnigsberg, Bridges of (puzzle), 665-666
Kripke, Saul, 296
Kronecker, Leopold, 692
Kronecker delta, 692
Kruskal, Joseph B., 725, 726
Kruskal's algorithm, 726-728
Kuratowski, Kazimierez, 575

Lagrange, Joseph Louis, 202
Lame, Gabriel, 194
Language of First-Order Logic, The (Barwise

and Etchemendy), 85
Languages

See also Computer languages; Formal
languages

accepted by automaton, 750-751
accepted by quotient automata, 769, 771
defined by regular expression, 738-742
of first-order logic, 107
natural, 80-81
nonregular, 759-760
not accepted by any finite-state

automaton, 759-760
regular, 735, 759-760

Laplace, Pierre-Simon, 302, 370, 375
Last theorem, Fermat's, 184, 185
Laws of exponents, 411
Leaf, 710-711
Least common multiple (Icm), 198
Least element, 641

finding, 240-241
Least nonnegative residues modulo n, 614
Left child, 716
Left subtree, 716
Legal expressions (Boolean), 500
Leibniz, Gottfried Wilhelm, 1, 116
Lemma, 193

Euclid's, 625-626
handshake, 659

Length
of chain, 640
of string, 310, 736
of walk, 693-695

Leonardo of Pisa, 464
Less than, properties of, 590
"Less than or equal to" relation, 635
Level of vertex, 715
Lexical scanner, 735
Lexicographic order, 635-636
Limit, definition of, 101-102
Linear, 487
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Linear combination of integers, 619
greatest common divisor as, 619-620

Linear combinations to satisfy initial
conditions, 490-493

Linguistics, 707
List, counting elements of, 302-304
Little theorem, Fermat's, 626-627
Lobachevsky, Nicolai Ivanovitch, 632
Lob's paradox, 296
Logarithmic functions

with base b, 395, 411-412, 413, 545
with bases greater than one, 552-553
graphs of, 544-547

Logarithmic inequalities, deriving order from,
551 -552

Logarithmic orders, 549-554
Logarithms

common, 413
natural, 413
properties, 412, 419
to solve recurrence relations, 548-549

Logic
defined, I
limits of, 8, 12

Logical connectives
gates and, 46
notation for, 17
switching devices and, 44

Logical equivalence
conditional statements and, 19
defined, 8-9
double negative property, 9
expressed as tautologies, 12-13
involving if-then statements, 19-20
involving tautologies and contradictions,

13
for quantified statements, 88
showing nonequivalence, 9-10
summary of, 13- 15
types of, 14

Logical expression, 3
Logical form of argument, 1-2
Logical inference, 17
Logical operators, order of operations for, 24
Loop

See also Nested loop
counting the number of iterations in a,

353
defined, 650

Loop invariants, 246-251
defined, 247
procedure, 245
theorem, 247

Lottery, expected value of, 373-374
Lovelace, Countess of, 186
Lower limit of summation, 202
Lucas, tdouard, 460, 461
Lukasiewicz, Jan, 737
Lynch, John, 138n

McCarthy, John, 506
McCarthy's 91 function, 506
McCulloch, Warren S., 734
Mach, Ernst, 571
Main diagonal of matrix, 684
Manin, I., 227
Mathematical induction, 199, 215-244

See also Strong mathematical induction;
Well-ordering principle

to check explicit formulas, 483-485
defined, 216-217
defining sequences and, 458
geometric sequence, formula for,

222-225
method of proof by, 218
principle of, 217
proving divisibility property, 228-230
proving inequality, 230-232
proving property of sequence, 232-233,

236-237
for recursively defined sets, 502
strong, 235-240
summation of first n integers, formula for,

218-222
Mathematical proofs. See Proof(s)
Mathematical structure, 773
Matrix (matrices)

adjacency, 684-685, 686-687
connected components, 687-688
defined, 683
directed graphs and, 684-686
identity, 691, 692-693
multiplication, 689-693
powers of, 692-693
products of, 689-690
representations of graphs, 683-697
square, 684
symmetric, 687
undirected graphs and, 686-687

Maurolico, Francesco, 217
Maximal element, 640, 641
Memory circuit, computer, 746
Memory dump, reading, 72-73
Menge, 255
Merge sort, 564-568
Mersenne, Marin, 183
Mersenne primes, 183-184
Messages, coding, 396
Method

of complete enumeration, 335
of direct proof, 131
of division into cases, 35, 40
of exhaustion, 79, 130
of generalizing from generic particular,

130-131, 138, 143
of iteration, 475-480
of proof by contradiction, 171-175
of proof by contraposition, 175-178

Middle elements of array, 557, 558-559
Mill, John Stuart, 111
Minimal element, 641
Minimal spanning trees, 725-731

See also Kruskal's algorithm; Prim's
algorithm

MIU-system, 501
mod/modulo, 157-159, 161, 170

See also Modular arithmetic
congruence modulo 2 relation, 573
congruence modulo 3 relation, 590-592,

597, 604-606
congruence modulo n, 613-615, 626
as function, 389
inverse modulo n, 621-623
notation for congruence relations, 597

Modular arithmetic, 615-618
applications to cryptography, 623-630
inverse modulo n in, 621-623
practical use of, 616

Modular equivalence relations, 613-614
Modus ponens, 31-32, 33,40

universal, 112-114, 115
validity of, 112, 113, 115

Modus tollens, 32-33, 40
universal, 114, 119

Monty Hall problem, 301
Multiple

of a function, 514-517
of integer, 148
least common (1cm), 198

Multiple-input AND-gate, 51
Multiple-input OR-gate, 51
Multiplication rule, 307-320

as difficult or impossible to apply,
311-313

Multiplications
matrix, 689-693
needed to multiply n distinct numbers,

number of, 238
Multiplicative identity, 185

of matrix, 691-692
Multiply-quantified statements

interpreting, 99-100
negation of, 102-104
translating from informal to formal

language, 100-102
truth value of, 100, 104
writing, 97

Multiset of size r, 349-356
Mutually disjoint subsets, union of, 263
Mutually disjoint events, independence and,

382
Mutually disjoint sets, 262-263
Mutually independent events, 384

NAND-gate, 54
Napier, John, 544, 545
n-ary relations, 572, 580-581
National Security Agency, 611
Natural language

translating from, 81
translating to, 80-81

Natural logarithms, 413
Natural numbers, set of (N), 77
Naur, Peter, 707
Necessary conditions, 25-26

for universal conditional statements,
94-95

Negation(s)
in Boolean algebra, 288
of multiply-quantified statements,

102-104
of quantified statements, 88-90

Negation law, 10-11,14
Negation of statement, 3

truth value for, 4-5
Negative integers

computer addition with, 66-70
two's complements and computer

representation of, 63-66
Neither-nor, 3-4
Nested loop

number of iterations of, 311
order of an algorithm with, 534-535

Newton, Isaac, 116
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Next-state function, 748
Next-states of star(*)-equivalent states, 768
Next-state table, 747, 748

annotated, 748, 749-750
Nicomachus, 627
n! (n factorial), 206
Nonaccepting states of automaton, 750
Noncomparable elements, 639
Nonconstructive proof of existence, 129
Nondeterministic finite-state automata,

758-759
Nondeterministic polynomial-time algorithm

(NP), 568n
Nondivisibility, checking, 149-150
Nonempty graph, 650
Nonequivalence, showing, 9-10
Nonexistent graph, 660-662
Nonfunction, 392
Nonisomorphic graphs, 701-702
Nonisomorphic trees, 712-714
Nonnegative integer powers of real numbers,

364
Nonnegative integers, set of, 256
Nonoverlapping sets, 262-263
Nonregular language, 759-760
Non-trees, 705
Nontrivial circuit, 669
Nontrivial Hamiltonian circuit, 678
NOR-gate, 54
Not, symbol for, 3
Notation

for algorithms, 190
Backus-Naur, 707, 735
binary, 57-59
for congruence relations, 597
decimal, 57, 58-59
for equivalence class, 600
to facilitate working with regular

expressions, 742-743
factorial, 206-207
for formal language, 736
formal logical, 105-107
for functions, 390, 393
for general partial order relations, 635
hexadecimal, 70-73
for implicit quantification, 84-85
infix, 737
for language, 707
octal, 74
postfix, 737
prefix, 737
product, 205
for relations, 572
for sets, 255-256
for sets, to describe language defined by

regular expression, 739-740
for star(*)-equivalence classes, 768
summation, 202-205
for walks, 668

NOT-gate, 45-46
Not well defined function, 398

recursive "function" as, 507
NP-complete, 568
n-tuples, 397

ordered, 264-265, 310
Null set, 262, 278-280

deriving set identity using properties of,
286-287

Null string, 310, 736, 742
Number of elements in set, 428
Numbers. See Integer(s); Rational numbers;

Real numbers
Number theory

See also Modular arithmetic
algorithms and, 186-198
cryptography and, 629-630
defined, 148
divisibility, 148-156
Euclid's lemma and, 625-626
floor and ceiling, 164-171
open questions in, 183-184
properties of integers, 148-156
properties of rational numbers, 144-145
quotient-remainder theorem, 156- 157

Octal notation, 74
Odd integers

defined, 127
deriving additional result about, 145-146
squares of, 161-163

Of order at least g, 519
Of order at most g, 518, 519
Of order g, 518-519
Of order g(n), 533
Omega-notation (Q-notation), 518-531, 551

approximation for polynomial with some
negative coefficients, 525-526

definitions to show order of polynomial
function with positive coefficients,
523-524

properties of, 521
translating to, 520

One-dimensional arrays, 210-211
counting elements of, 303-304

1-equivalence classes, finding, 767, 772
One's complement, 64
One-to-one correspondences, 402,413-414

inverse function for, 415-417
One-to-one function, 402-407

See also Pigeonhole principle
composition of, 436-438
exponential and logarithmic functions as,

412
for finite sets, 429
not possible, 420

One-to-one property, 402
Only if

biconditional and, 23-25
universal conditional statements and, 94,

95
O-notation, 518-531

description of, 518-521
exponential and logarithmic orders,

550-552
for polynomial with negative coefficients,

524
polynomial orders, 523-527
translating to, 520

Onto functions, 407-411
composition of, 438-441
for finite sets, 429

Onto property, 402
Open sentences, 76
Operations, order of, 3, 18, 24
Operations on sets, 260-261
Optimistic approach to problem solving, 284

or
exclusive, 5-6
symbol for, 3
when to use, 12

Order, algonthm, 532-535
Ordered 4-tuples, 308
Ordered n-tuple, 264-265, 310
Ordered pairs, 264

fundamental property of, 575
vertices of, 653

Ordered selection of elements, 334-335
Ordered triple, 264
Ordinal number, 443
OR-gate, 45-46

multiple-input, 51
Ongin, 77, 510
or statement

See also and statement; If-then statements
negation of, 10-11, 91
switching circuit for, 44

Outputs, 390

Pairwise disjoint sets, 262-263
Pairwise independent events, 383-384
Palindrome, 736
Parallel, switches in, 43-44
Parallel adder, 63
Parallel edges, 650
Parallel processing of data, 569
Parent, 715
Parenthesis structure, 501-502

property of set of, 502-503
Parity of integers, 159-161
Parity property, 159-161
Parse trees, 706-707
Partially ordered set, 640
Partial order relations, 632-648

compatible, 640-641
defined, 634
fundamental, 634-635
Hasse diagrams, 636-639
lexicographic order, 635-636
partially and totally ordered sets, 639-641
PERT and CPM, 644-646
topological sorting, 641-644

Partitions of sets, 262-264
relations induced by, 595-597

Pascal, Blaise, 141, 217, 302, 358
Pascal's formula, 358-361
Pascal's triangle, 358-359
Passwords, counting, 321
Paths in graphs, 665-683
Peano, Giuseppe, 260, 608
Peirce, Charles Sanders, 54, 78, 572
Peirce arrow, 54
Perfect square, 87, 139
Periodical publications, knowledge base about,

654-655
Permutations, 313-317

defined, 313
of letters in word, 314
of objects around circle, 314
relation between combinations and,

335-337
r-permutation, 315-317
of selected letters of word, 317
of a set with repeated elements, 344-345
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Personal identification numbers (PINs),
counting the number of, 308, 309,
323-324

PERT (Program Evaluation and Review
Technique), 644-646

Pessimistic approach to problem solving, 284
Pi, 205
Piaget, Jean, 17
Pictorial representations of graphs, 652-653
Pigeonhole principle, 420-431

application of, 420-423
application to decimal expansions of

fractions, 423-425
application to finite-state automata,

759-760
generalized, 425-427
proof of, 428-429

Pitts, Walter, 734
Plaintext, 611
Poker hand problems, example, 343-344
Polish notation, 737
Polynomial, root of, 147
Polynomial evaluation, term-by-term, 543
Polynomial functions

See also Power functions
limitations on orders of, 526-527
with negative coefficients,

approximations for, 524-525
orders of, 523-527

Polynomial inequality, 523
Polynomial-time algorithms, 568
Poset, 640
Positive closure of S, 736
Possibility trees, 306-320

double counting on, avoiding, 346
multiplication rule and, 307-320

Post, Emil, 734
Post-conditions

algorithm, 245-246
for loop, 246, 247

Postfix notation, 737
Power functions, 511 -512

defined, 511
graphs of, 511-512
orders of, 522, 527-528
rational, orders of functions composed of,

528
Powers

of matrix, 692-693
of ten, 480

Power sets, 264
function defined on, 395

Pre-conditions, algorithm. 245-246
for the loop, 246, 247

Predicate calculus, 75
Predicates

defined, 76
and quantified statements 1, 75-88
and quantified statements II, 88-97
truth values of, finding, 76-77

Predicate symbols, 76
Predicate variables, 76
Prefix notation, 737
Preimage, 390
Premises, 29

ambiguous, using, 36
defined, I
majorandminor, 112, 114, 115, 117

Prim, Robert C., 725, 729

Prime integers, defined, 127-128
Primeness, relative, 621-622
Prime numbers, 83

divisibility by, 150, 151-152,236
Fermat primes, 184
infinitude of set of, 182-183
Mersenne primes, 183-184
twin primes conjecture, 184

Prim's algorithm, 729-731
Principle of mathematical induction, 217
Printing problem, 296
Probability(ies)

binomial, 385
of complement of event, 324, 370-371
conditional, 375-378
counting and, 298-306
for deck of cards, 299-300
equally likely probability formula, 299
of general union of two events, 371-373
of intersections of independent events,

382-383
Probability axioms, 370-373
Problem-solving strategies, 284
Problem-solving tool, proof as a, 177-178
Procedural versions of set definitions, 270
Product(s)

Cartesian, 264-265, 309, 397, 572-573,
580-581

correctness of loop to compute, 249-251
dot, 689
of matrices, 689-699
notation, 205
properties of, 207-208
recursive definition of, 503-504
scalar, 689

Productions, 707
Product modulo n, computing, 617
Product rule. See Multiplication rule
Program Evaluation and Review Technique

(PERT), 644-646
Projection onto number line, 452
Prolog (programming language), 107-108
Proof(s)

See also Algorithms; Mathematical
induction

algebraic, for set properties, 360
beginnings of, 137
combinatorial, 357, 360-361, 367
common mistakes in, 135-137
by contradiction, method of, 171-175
by contraposition, method of, 175-178
defined, 125
direct, and counterexample I, 126-141
direct, and counterexample II (rational

numbers), 141-147
direct, and counterexample III

(divisibility), 148-156
direct, and counterexample IV (division

into cases and quotient-remainder
theorem), 156-164

direct, and counterexample V (floor and
ceiling), 164-171

direct, of a theorem, 132-134
and discovery, 126
disproof by counterexample, 129-130
disproof of existential statement, 137-138
by division into cases, 35, 40
of existential statements, 128-129
of famous theorems, 179-183

floor and ceiling, 164-171
indirect, 171-179
indirect, when to use, 183
method of generalizing from the generic

particular, 143
as a problem-solving tool, 177-178
of properties of divisibility, 150-152
of properties of rational numbers,

144-145
universal modus ponens in, 1 13-114
of universal statements, 130-135
variations among, 135
writing, for universal statements,

134-135
Proper subset, 257
Properties

of functions, 402-419
of sets, 269-282

Proposition, 2, 176
Propositional calculus, 75
Propositional forms. See Statement forms
Propositional functions, 76
Pseudocode, 186
Public key, 623
Public-key cryptography, 612, 630
Push-down automaton, 735
P vs. NP problem, 568
Pythagoras, 180
Pythagorean theorem, 180
Python identifiers, counting, 324-325

Q.E.D. (quod erat demonstrandum), 134
Quantified statements, 75-124

arguments with, 111- 121
implicit quantification, 83-85
logical equivalence for, 88
multiply-, 97-100
negation of, 88-90
predicates and statements I, 75-88
predicates and statements II, 88-97
validity of arguments with, 115-119

Quantifiers
defined, 78
existential, 79-80
order of, 97, 104-105
universal, 78-79

Quaternary relations, 581
Quine, Willard VanOrman, 18
Quod erat demonstrandum (Q.E.D.), 134
Quotient(s), 156

of integers, 141-147
Quotient automaton, 764, 768-771
Quotient-remainder theorem, 156-157

existence part, 241-242

Rabbits, calculating reproductive rates of,
464-465

Ralston, Anthony, 215
Random process, 298-299
Range, 390, 391,402
Rational numbers

Archimedean property for, 243
defined, 141
direct proof and, 141-147
double of, 146
as equivalence classes, 607-608
set of all positive, countability of,

448-452
set of all (Q), 76
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summed with irrational, 173-175
sum of rationals is rational, 144-145

Rational power functions, orders of functions
composed of, 528

r-combinations, 334
with repetition allowed, 349-356

Real numbers
See also Integer(s)
between 0 and 1, 450-451, 452
cardinality of set of all, 452
functions and relations on sets of,

576-577
nonnegative integer powers of, 364
reciprocal of, 100
relation to decimals, 449-450
relation to number line, 77
set of all (R), 76
trichotomy property of, 35

Real-valued functions of real variable, 510-518
Reciprocal, 100, 179
Recognizer, 49
Recurrence relations, 457-458, 459-460,

470-472, 561-562
logarithms used to solve, 548-549
second-order linear homogeneous,

487-499
Recursion, 457-509

in merge sort algorithm, 565
recursive definition of sums and products,

503-504
recursive functions, 505-507

Recursion,
recursively defined sequences, 457-475
recursively defined sets, 500-503
second-order linear homogeneous

recurrence relation, 487-499
solving by iteration, 475-487

Recursive definition
for factorial, 206
for product notation, 205
of summation, 204

Recursive leap of faith, 460
Recursive paradigm, 460
Reduce a number modulo n, 614
Reductio ad absurdum, 171
Reduction ad impossible, 171

Reflexive property of cardinality, 444
Reflexivity, 584-594

See also Equivalence relations; Partial
order relations

Regular expressionss, 735, 738-744
over alphabet, 738-739
finite-state automaton and, 756-759
language defined by, 738-742
order of precedence for operations in, 739
practical uses of, 742-744

Regular languages, 735, 759-760
Relational database theory, 580-581
Relation of equality, 589-590
Relations, 571-648

antisymmetry property, 632-634
arrow diagrams of, 574-575
binary. See Binary relations
defined,572
directed graph of, 580
equivalence, 594-610
equivalence, finite-state automata and,

764-773
functions and, 575-577

identity, equivalence classes of, 601-604
inverse, 578-579
n-ary, 572, 580-581
notation for, 572
partial order, 632-648
properties of general binary, 5 84-594
quarternary, 581
recurrence, 459-460, 470-472, 548-549,

561-562
reflexivity, symmetry, and transitivity

and,584-594
second-order linear homogeneous

recurrence, 487-499
on sets, 571-583
ternary, 581
total order, 639-640

Relative complement of set, 260
Relative primeness, 621

expressing 1 as linear combination of
relatively prime integers, 621-622

Remainder, 156-157
Repeating decimal, 423
Representative of equivalence class, 606
Residue of a, 614
Residues modulo n, 614
Restriction, 500

of partial order relation, 648
Reverse Polish notation, 737
Ribet, Kenneth, 138
Right child, 716
Right subtree, 716
Rivest, Ronald, 612
Rooted trees, 714-716
Root of polynomial, 147
Roussel, P., 107
Rows, multiplying, 689
r-permutation, 315-317
RSA cryptography, 617, 623-630

Chinese remainder theorem and, 627-628
cipher, why it works, 628-629
decrypting message using, 624-625
encrypting message using, 624
Fermat's little theorem and, 626-627

Rules
addition, 321-322
difference, 322-326
division, 349
inclusion/exclusion, 326-330
multiplication, 307-320
of universal instantiation, 111 -112

Russell, Bertrand, 235, 293, 294, 296, 475, 518
Russell's paradox, 293-294, 296

Sample space, 299
Savage, Carla, 258
Sawyer, W. W., 665
Scalar product, 689
Schroeder-Bernstein theorem, 456
Schultz, James E., 431 n
Search algorithm

binary, 557-564
sequential, 536

Second order, defined, 487
Second-order linear homogeneous recurrence

relation with constant coefficients,
487-499

Selection sort algorithm, 542
Semantics, 707

Sequences, 199-215
See also Recursion
alternating, 200-201
arithmetic, 577-578
change of variable, 208-2 10
in computer programming, 210-211
defined, 200
doubly indexed, 469-470
factorial notation and, 206-207
finding terms given by explicit formulas,

200-202
as functions, 389, 394
geometric, 222-225, 479, 578-580
linear combinations of, to satisfy initial

conditions, 490-493
product notation and, 205
properties of summations and products,

207-208
proving property of, 232-233, 236-237
singly indexed, 469
summation notation and, 202-205

Sequential circuits, 46, 746
Sequential search algorithm, 536
Series, switches in, 43-44
Set(s)

See also Subsets
of accepting states, 748
Boolean algebra and, 287-290
Cartesian products, 264-265
countable, 445-447, 451
countably infinite, 445-446
counting subsets of a, 334-349, 368
defining, 76
derangement of, 475
disjoint, 262-263
empty, 262, 278-280
formal languages, 735-738
given by defining property, 256
with no elements, 262, 278-280
number of elements in, 428
number of partitions of, into subsets,

469-472
number of subsets of, 284-285
operations on, 260-261
partially and totally ordered, 639-641
partitions of, 262-264
power, 264
properties of, 269-282
properties of, disproofs of, 282-284
recursively defined, 500-503
relations and, 258, 571-583
with same cardinality, 443-445
of strings, function defined on, 395
of strings over alphabet, 500-501
symmetric difference of, 292
uncountable, 446, 450-451, 452
with uncountable subsets, 451
universal, 260

Set difference law, 272
Set difference property, deriving, 286
Set equality, 258-260
Set identities, 272-278

"algebraic" proofs of, 286-287
counterexample for, 283-284
proving, 273-278

Set notation, 255-256
to describe language defined by regular

expression, 739-740
Set theory, 255-296
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Shamir, Adi, 612
Shannon, Claude, 43, 734
Sheffer, H. M., 54
Sheffer stroke, 54-55
Siblings, 715
Sieve of Eratosthenes, 179
Sigma, 202
Signal bit, 45
Simple circuit, 667
Simple conditional, 26
Simple graphs, 656

isomorphic, 702-703
nonexistent, 660-662

Simple path, 667
Singh, Simon, 138n
Single-root case, 494-497
Single-root theorem, 495-496
Singly indexed sequence, 469
Size of matrix, 684
Smullyan, Raymond, 39
Socks, example of matching, 422
Software to simulate finite-state automaton,

754-756
Solution to recurrence relation, 475
Sorting, methods for

insertion sort, 536-540
merge sort, 564-568
selection sort, 542
topological sorting, 641-644

Space efficiency of algorithms, 569
Spanning trees, 723-733

minimal, 725-731
Specialization, 33-34, 40
Square matrix, 684
Square of an odd integer, 161-163
Square root of two, irrationality of, 180-182
Squaring function, 392, 393
Standard factored form of integer, 154
*-equivalence (star equivalence) classes,

finding, 767-768
*-equivalent (star equivalent) states of

finite-state automata, 765
Statement calculus, 75
Statement forms

defined, 6
logically equivalent, 8-9
simplifying, 14

Statements
compound, 3-8
conditional, 17-29
containing multiple quantifiers, 97-100
contradictory, 12
defined, 2-3
logically equivalent, 8
predicates and, 75-97
quantified, 75-124
true or false, 4

States of automaton, 748
(State)-transition diagram. See Transition

diagram
Stevin, Simon, 449
Stirling, James, 469
Stirling numbers of the second kind, 469-470
String of characters of alphabet, 736
String-reversing function, 414
Strings, 310-311

See also Bit string
accepted by automaton, 752-754
with even parity, 741

function defined on set of, 395
individual, in language defined by regular

expression, 740-741
one-to-one correspondences involving,

413-414
recursively defined sets of, 500-501
relation on set of, 574

Strong mathematical induction, 235-240
See also Well-ordering principle

Structural induction, 502
Structures, mathematical, 773
Subgraphs, 657-658

See also Spanning trees
connected, 670

Sublist, counting elements of, 302-303
Subscript, 200
Subset relation, 256, 634

Hasse diagram for, 637-638
Subsets

algorithm for checking for, 266-267
chain of, 640
characteristic function of, 401
of countable sets, 451
counting, of a set, 334-349, 368
defined, 256-257
intersection and union with, 269
number of partitions of set into, 469-472
of partially ordered sets, 640
proof of subset relation, 270-271
proper, 257
of set, number of, 284-285
totally ordered, 640

Substitutions
into binomial theorem, 367
in formulas, 358

Subtraction
in binary notation, 60
computing gcd's by, 197

Subtrees, 716
Successor function, 392, 393
Sufficient conditions, 25-26

for universal conditional statements and,
94-95

Sum, 61
Summands, 140
Summations

binomial theorem to simplify sum,
368-369

computing, 202-203
defined, 202
expanded form of, 202, 203-204
of first n integers, 218-222, 482-483,

527-528
of geometric sequence, 222-225
harmonic, 553-555
notation, 202-205
properties of, 207-208
recursive definition of, 204, 503-504
of sums (example), 503-504

Sum-of-products form, 52
Sun-Tsu, 627, 631
Surjective function. See Onto functions
Swift, Jonathan, 457
Switches

in parallel, 43-44
in series, 43-44

Syllogism, 31
Symbolic Logic (Carroll), 123
Symbols, order of in expressions, 3

Symmetric difference of sets, 292
Symmetric matrices, 687
Symmetric property of cardinality, 444
Symmetry, 584-594

See also Equivalence relations
Syntactic analyzer, 735
Syntactic derivation tree, 706-707
Syntax, 706, 707

Taniyama-Shimura conjecture, 138
Tarski, Alfred, 85
Tarski's World (computer program), 85

evaluating argument for, 120-121
formalizing statements in, 105-107
negating statements in, 103-104
quantifier order in, 104-105
truth of multiply-quantified statements in,

98-99
Tautologies, 12-13

defined, 13
logical equivalence and, 13
negation of, 14

Teams, calculating number of, 337-342
Telescoping sum, 205
Term-by-term polynomial evaluation, 543
Terminal vertices, 710-711

maximum number of, 718-720
Terminating decimal, 423
Term of sequence, 200
Ternary relation, 581
Theorem

definition of, 133
direct proof of a, 132-134

There exists, symbol for, 79
"There exists a unique" notation, 110
There exists statement, negation of, 91
Therefore, symbol for, 29
Theta-notation (8-notation), 518-531

definitions to show order of polynomial
function with positive coefficients,
523-524

for functions of integer variables,
527-528

harmonic sums, order of, 553-555
logarithmic inequalities, deriving order

from, 551-552
logarithmic orders, 552-553
properties of, 521

Thinking Machines Corp., 139
Thoreau, Henry David, 763
3x + I problem, 507
Time efficiency of algorithm, 532-535
Topological sorting, 641-644
Total degree of graph, 658-660
Totally ordered set, 640
Total order relation, 639-640
Tournament play possibilities, 306-307
Tower of Hanoi (example), 460-464

explicit formula for, 480-481
Trace table, 188-189, 191

for insertion sort, 538
Tractable algorithms, 568
Tranpose of matrix, 697
Transforming summations, 209
Transition diagram, 748-749
Transitive closure of a relation, 587-588
Transitive property of cardinality, 444
Transitivity, 34, 40, 119
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See also Equivalence relations; Partial
order relations

of divisibility, 150-152
relations and, 584-594
of subsets, 269
universal, 120-121

Traveling salesman problem, 568, 678-679
Trees, 705-733

binary, 716-721
characterizing, 708-714
examples of, 705-708
full binary, 716, 718-719
multiplication rule and possibility,

306-320
nonisomorphic, 712-714
non-trees and, 705
rooted, 714-716
spanning, 723-733
syntactic derivation or parse, 706-707
theorems about, 710-711, 714
trivial, 705

Trefethen, Lloyd, 300
Trefethen, Nick, 300
Triangle inequality, 164
Trichotomy property of real numbers, 35
Trivial circuit, 669
Trivial tree, 705
Trivial walk, 667
True by default, 18, 92-93
Truth set of predicates, 77-78
Truth tables

for compound statement, 6-8
for conjunction, 5
for disjunction, 6
for exclusive or, 6-7
as functions, 389
for if-then statements, 18

Truth values, 4-6
for compound statement, 6-8
for negation, 4-5
order of, 5
of predicate, finding, 76-77
for statement, 4-5
for statement form, 6

Tucker, Alan, 349
Tukey, John, 45
Turing, Alan M., 294, 295, 734, 747
Turing machine, 734
Twin primes conjecture, 184
2-equivalence class, finding, 767, 772
Two-dimensional arrays

See also Matrix (matrices)
to program automaton, 755-756

Two-dimensional Cartesian coordinate system,
510

Two's complements
computer addition with negative integers

and, 66-70
computer representation of negative

integers and, 63-66

Uncountable set, 446, 450-451, 452
Undirected graphs, matrices and, 686-687
Union

counting elements of general, 327-329
of equivalence classes, 603-604
inclusion of, 269, 270
and intersection with subset, 278
of languages, 738
of mutually disjointed subsets, 263
recursive definitions of, 504-505
of sets, 260, 261
of two events, probability of general,

371-373
Unique factorization theorem, 153-154, 625,

626
Universal bound laws, 14, 272, 288
Universal conditional statements

contrapositives, converses, and inverses
of, 93-94

necessary and sufficient conditions for,
94-95

negation of, 90-91
variants of, 93-94
writing, 81-82

Universal instantiation
rule of, 111 112
validity of, 111, 115

Universal modus ponens, 112-114, 115
Universal modus tollens, 114, 119
Universal quantifiers, 78-79

implicit, 83
Universal set, 260
Universal statements

defined, 78
disproving, by counterexample, 129-130
equivalent forms for, 83
negation of, 88, 90
proving, 130-135
true or false, 78-79
vacuous truth of, 92-93
writing proofs for, 134-135

Universal transitivity, 120-121
Universe of discourse, 260
UNIX utilities, 735, 742
Unless statement, 28
Unordered selection of elements, 335
Upper limit of summation, 202

Vacuously true statement, 92-93
conditional, 18

Vacuous truth of universal statements, 92-93
Valid argument form, 31, 40, 115
Valid arguments, defined, 29-30, 115

See also Arguments, valid and invalid
Validity of arguments with quantified

statements, 115-119

Value
expected, 373-374
of a function, 390

Vandermonde, Alexander, 362
Vandermonde convolution, 362
Variables

Boolean, 48, 186
change of in sums, 208-210
in computer languages, 186
dummy, 208, 211
predicate, 76

Vegetarians and cannibals example, 655
Vending machine example, 746-747
Venn, John, 257
Venn diagrams for operations on sets, 257-258,

271
Vertex (vertices)

adjacent, 650, 667
branch, 710-711
connected, 650
defined, 482, 650
degree of, 658-662
internal, 710-711
isolated, 650
level of, 715
with odd degree, 662
ordered pairs of, 653
terminal, 710-711

Vertical axes, 510
Volterra, Vito, 389

Walks, 667
closed, 667
counting, of length n, 693-695
notation for, 668
trivial, 667

Way, 57
Weighted graph, 725
Well-defined function, 398
Well-ordering principle, 180n, 240-242
Wheeler, Anna Pell, 156, 306, 402
While loop, 187-188, 189

maximum number of iterations in binary
search, 560

Whitehead, Alfred North, 126, 356, 431, 649
Wiener, Norbert, 575, 745
Wiles, Andrew, 138
Worst-case order(s)

of g(n), 533
for insertion sort, 538-539
for sequential search, 536

XML, 735

0-equivalence class, finding, 766, 772
0-equivalent states of finite-state automata,

765-766
Zero factorial (0!), 206
Zero product property, 143
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List of Symbols

Subject Symbol Meaning Page

Formal Languages an alphabet of a language 736
and Finite-State E the null string 310
Automata En the set of all strings over E of length n 736

the set of all strings over E 736

the set of all strings over E with 736
length at least I

LL' the concatenation of languages L and L' 738

L* the Kleene closure of L 738

(rs), (r I s), (r*) regular expressions 738

[XI - Xn], [ ̂ X xn] character classes 742, 743
x+, x?, x{n}, x{m. n} shorthand notations for regular expressions 743

N(s, m) the value of the next-state function for a state s 748
and input symbol m

-i initial state 748

accepting state 748

L(A) language accepted by A 750

N*(s, w) the value of the eventual-state function for 751
a state s and input string w

s R* t s and t are *-equivalent 764
s Rk t s and t are k-equivalent 765

A the quotient automaton of A 768

Matrices A matrix 683

I identity matrix 692

A + B sum of matrices A and B 697

AB product of matrices A and B 689

An matrix A to the power n 693

Graphs and V (G) the set of vertices of a graph G 650
Trees E(G) the set of edges of a graph G 650

{v, w} the edge joining v and w in a simple graph 656

K, complete graph on n vertices 656

K,,, complete bipartite graph on (m, n) vertices 657
deg(v) degree of vertex v 658

voeev e2 .e, v. awalk from vo to v, 667

w(e) the weight of edge e 725

w(G) the total weight of graph G 725
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Topic Name Formula Page

Logic De Morgan's law -'(p A q) -p V -q 10

De Morgan's law -(p V q) -p A -q 10

Negation of- (p - q) =p A q 20

Equivalence of a conditional p - q - -q -* p 21
and its contrapositive

Nonequivalence of a conditional p - q q - p 23
and its converse

Nonequivalence of a conditional p - q p - -q 23
and its inverse

Negation of a universal -(Vx in D, Q(x)) 3x in D such that -Q(x) 88
statement

Negation of an existential -(3x in D such that Q(x)) - Vx in D, -Q(x) 89
statement

Sums Sum of the first n integers I + 2 + + - n = ( ) 218
2

n~+l I
Sum of powers of r l + r2 + .+ r = 1 222

Counting and Probability in the P(E) = N(E) 299
Probability equally likely case N(S)

Number of r-permutations P(n, r) = - 315
of a set with n elements (n -r)!

Number of elements in a union N(A U B) - N(A) + N(B) -N(A n B) 327

Number of subsets of (nf n! 337
size r of a set with "'r1  r!(n -r)!
n elements

Pascal's formula (n ) ) (r )+ (r) 358



Topic Name Formula Page

Binomial theorem (a + Z ( , ) a bh
k-

Probability of the complement P(A') = I -P(A)
of an event

Probability of a union P(A U B) F P(A) + P(B) - P(A n B)

Conditional probability P(A B) P(A B)
P (B)

Bayes' formula

IA) P(A B")P(B1 )
P(A B1)P(B,) + P(A I B2)P(B2) + - ± P(A I B,) P(B11)

Li0  I

'L"L =// 1bl

Vb .Y1! = b`+V

bu= bU

(bu)'s - bUI!t

(bc)' = bI C O

b" = b' V u = u

364

324

371

376

379

411

411

411

411

411

411

412

Properties of logX y b = x 412
Logarithms log(xy) logbx) log5(y) 419

log,(x) = a logb(x) 419

log, () = log,(x) -log 5 (y) 419

log(x) j l og() 419
logb(c)

Iog,,(u) log 5(v)=-u = V 412

Counting and
Probability

Laws of
Exponents
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