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Differential equations are among the linchpins of modern mathematics which, along with matrices, are
essential for analyzing and solving complex problems in engineering, the natural sciences, econom-
ics, and even business. The emergence of low-cost, high-speed computers has spawned new tech-
niques for solving differential equations, which allows problem solvers to model and solve complex
problems based on systems of differential equations.

As with the two previous editions, this book outlines both the classical theory of differential equa-
tions and a myriad of solution techniques, including matrices, series methods, Laplace transforms and
several numerical methods. We have added a chapter on modeling and touch upon some qualitative
methods that can be used when analytical solutions are difficult to obtain. A chapter on classical dif-
ferential equations (e.g., the equations of Hermite, Legendre, etc.) has been added to give the reader
exposure to this rich, historical area of mathematics.

This edition also features a chapter on difference equations and parallels this with differential
equations. Furthermore, we give the reader an introduction to partial differential equations and the
solution techniques of basic integration and separation of variables. Finally, we include an appendix
dealing with technology touching upon the TI-89 hand-held calculator and the MATHEMATICA
software packages.

With regard to both solved and supplementary problems, we have added such topics as integral
equations of convolution type, Fibonacci numbers, harmonic functions, the heat equation and the wave
equation. We have also alluded to both orthogonality and weight functions with respect to classical
differential equations and their polynomial solutions. We have retained the emphasis on both initial
value problems and differential equations without subsidiary conditions. It is our aim to touch upon
virtually every type of problem the student might encounter in a one-semester course on differential
equations.

Each chapter of the book is divided into three parts. The first outlines salient points of the theory
and concisely summarizes solution procedures, drawing attention to potential difficulties and sub-
tleties that too easily can be overlooked. The second part consists of worked-out problems to clarify and,
on occasion, to augment the material presented in the first part. Finally, there is a section of problems
with answers that readers can use to test their understanding of the material.

The authors would like to thank the following individuals for their support and invaluable assis-
tance regarding this book. We could not have moved as expeditiously as we did without their support
and encouragement. We are particularly indebted to Dean John Snyder and Dr. Alfredo Tan of
Fairleigh Dickinson University. The continued support of the Most Reverend John J Myers, J.C.D.,
D.D., Archbishop of Newark, N.J., is also acknowledged. From Seton Hall University we are grateful
to the Reverend Monsignor James M. Cafone and to the members of the Priest Community; we also
thank Dr. Fredrick Travis, Dr. James Van Oosting, Dr. Molly Smith, and Dr. Bert Wachsmuth and the
members of the Department of Mathematics and Computer Science. We also thank Colonel Gary
W. Krahn of the United States Military Academy.

Ms. Barbara Gilson and Ms. Adrinda Kelly of McGraw-Hill were always ready to provide any
needed guidance and Dr. Carol Cooper, our contact in the United Kingdom, was equally helpful.
Thank you, one and all.
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Basic Concepts

DIFFERENTIAL EQUATIONS

A differential equation is an equation involving an unknown function and its derivatives.

Example 1.1. The following are differential equations involving the unknown function y.

D _s5x43 (1.1)
dx
dy (dyY
PERR A ] oy (1.2)
dx? (dxj
dy . . d’y
4—=—+(sinx)—+5xy=0 1.3
P ( )dx2 y {1.3)
&y dyY  (dyY
— | 43y = | +y’| £ | =5 (1.4
[dxzj y(dx Y dx * )
o’y 9%y
242 =0 1.5
or? ox’ (Z.5)

A differential equation is an ordinary differential equation (ODE) if the unknown function depends on only
one independent variable. If the unknown function depends on two or more independent variables, the differ-
ential equation is a partial differential equation (PDE). With the exceptions of Chapters 31 and 34, the primary
focus of this book will be ordinary differential equations.

Example 1.2. Equations (/.7) through (/.4) are examples, of ordinary differential equations, since the unknown function y
depends solely on the variable x. Equation (/.5) is a partial differential equation, since y depends on both the independent
variables  and x.

The order of a differential equation is the order of the highest derivative appearing in the equation.

Example 1.3. Equation (/.1) is a first-order differential equation; (/.2), (1.4), and (1.5) are second-order differential
equations. [Note in (/.4) that the order of the highest derivative appearing in the equation is two.] Equation (/.3) is a third-
order differential equation.
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NOTATION

The expressions y, y”, v, y¥, ..., y™ are often used to represent, respectively, the first, second, third, fourth,
..., nth derivatives of y with respect to the independent variable under consideration. Thus, y” represents d”y/dx>
if the independent variable is x, but represents d”y/dp? if the independent variable is p. Observe that parentheses
are used in y™ to distinguish it from the nth power, y™. If the independent variable is time, usually denoted by ¢,
primes are often replaced by dots. Thus, y, ¥, and ¥ represent dy/dt, d*y/dt*, and d>y/dt, respectively.

SOLUTIONS

A solution of a differential equation in the unknown function y and the independent variable x on the interval
9, is a function y(x) that satisfies the differential equation identically for all x in .

Example 1.4. Is y(x) = ¢, sin 2x + ¢, cos 2x, where ¢, and ¢, are arbitrary constants, a solution of y” + 4y = 0?

Differentiating y, we find
Y =2c¢; cos 2x —2¢, sin 2x  and  y” =—4¢, sin 2x — 4c, cos 2x
Hence, Y’ + 4y =(—4c, sin 2x — 4¢, cos 2x) + 4(c; sin 2x + ¢, cos 2x)
= (—4c) +4c)) sin 2x + (— 4¢, + 4¢y) cos 2x
=0

Thus, y = ¢, sin 2x + ¢, cos 2x satisfies the differential equation for all values of x and is a solution on the interval (— o¢, %).

Example 1.5. Determine whether y = x> — 1 is a solution of (y')* + y?=—1.

Note that the left side of the differential equation must be nonnegative for every real function y(x) and any x, since it
is the sum of terms raised to the second and fourth powers, while the right side of the equation is negative. Since no function
y(x) will satisty this equation, the given differential equation has no solution.

We see that some differential equations have infinitely many solutions (Example 1.4), whereas other dif-
ferential equations have no solutions (Example 1.5). It is also possible that a differential equation has exactly
one solution. Consider (y")* + y> =0, which for reasons identical to those given in Example 1.5 has only one
solution y =0.

A particular solution of a differential equation is any one solution. The general solution of a differential
equation is the set of all solutions.

Example 1.6. The general solution to the differential equation in Example 1.4 can be shown to be (see Chapters 8 and 9)
y = ¢y sin 2x + ¢, cos 2x. That is, every particular solution of the differential equation has this general form. A few particular
solutions are: (a) y =15 sin 2x — 3 cos 2x (choose ¢; =5 and ¢, = —3), (b) y = sin 2x (choose ¢; =1 and ¢, =0), and (¢) y=0
(choose ¢y =c¢, =0).

The general solution of a differential equation cannot always be expressed by a single formula. As an example
consider the differential equation y’ + y* = 0, which has two particular solutions y = 1/x and y = 0.

INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

A differential equation along with subsidiary conditions on the unknown function and its derivatives, all
given at the same value of the independent variable, constitutes an initial-value problem. The subsidiary condi-
tions are initial conditions. If the subsidiary conditions are given at more than one value of the independent
variable, the problem is a boundary-value problem and the conditions are boundary conditions.
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Example 1.7. The problem y” + 2y’ = ¢*; y(7) = 1, y(7) = 2 is an initial-value problem, because the two subsidiary con-
ditions are both given at x = 7. The problem y” + 2y" = ¢*; y(0) = 1, y(1) = 1 is a boundary-value problem, because the two
subsidiary conditions are given at the different values x =0 and x = 1.

A solution to an initial-value or boundary-value problem is a function y(x) that both solves the differential

equation and satisfies all given subsidiary conditions.

1.1.

1.2.

1.3.

Solved Problems

Determine the order, unknown function, and the independent variable in each of the following differential
equations:

(@ y"-5x=¢+1 (b) tj}+t2y—(sint)\/;=t2—t+1
2 &b  (abY'

(©) sz%+st?:s (d) 5[;1 +7[%] +b' =b"=p
S S

(a) Third-order, because the highest-order derivative is the third. The unknown function is y; the independent
variable is x.

(b) Second-order, because the highest-order derivative is the second. The unknown function is y; the independent
variable is 7.

(c) Second-order, because the highest-order derivative is the second. The unknown function is #; the independent
variable is s.

(d) Fourth-order, because the highest-order derivative is the fourth. Raising derivatives to various powers does not
alter the number of derivatives involved. The unknown function is b; the independent variable is p.

Determine the order, unknown function, and the independent variable in each of the following
differential equations:

2 2
@ y4E_ g R = R
ay* dy
(© 2% +3x-5x=0 (d) 17y%—1%® - 4.2y’ =3 cos t

(a) Second-order. The unknown function is x; the independent variable is y.

(b) First-order, because the highest-order derivative is the first even though it is raised to the second power. The
unknown function is x; the independent variable is y.

(¢) Third-order. The unknown function is x; the independent variable is 7.

(d) Fourth-order. The unknown function is y; the independent variable is ¢. Note the difference in notation between
the fourth derivative y®, with parentheses, and the fifth power y°, without parentheses.

Determine whether y(x) = 2¢™* + xe™ is a solution of y” + 2y + y=0.

Differentiating y(x), it follows that
V() = =2 +e —xe =—eF—xe™
V(X)) = et —eF+xeF=xe™
Substituting these values into the differential equation, we obtain

Y42y +y=xe*+2(—eF—xe)+ Qe +xe)=0

Thus, y(x) is a solution.
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1.6.
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1.8.
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Is y(x) = 1 a solution of y” + 2y’ +y =x?

From y(x) = 1 it follows that y’(x) =0 and y”(x) = 0. Substituting these values into the differential equation,
we obtain

Y42y +y=04+20)+1=1#x

Thus, y(x) = 1 is not a solution.

Show that y =1n x is a solution of xy” +y" =0 on $ = (0, ) but is not a solution on $ = (- o0, ),
On (0, ©) we have y'=1/x and y”=— 1/x>. Substituting these values into the differential equation,
we obtain
’” 7 1 1
xy +y =x[—2]+:0
X X
Thus, y =1In x is a solution on (0, o).

Note that y = In x could not be a solution on (— %, ), since the logarithm is undefined for negative numbers
and zero.

Show that y=1/(x>— 1) is a solution of ¥’ +2xy>=0 on $ = (=1, 1) but not on any larger interval
containing $.

On (-1, 1), y=1/(x*— 1) and its derivative y’ = — 2x/(x*> — 1)? are well-defined functions. Substituting these
values into the differential equation, we have

2
2x 1
"+ 2y’ =— +2x =0
Y Y (x*=1)? [xz—l}
Thus, y = 1/(x*> — 1) is a solution on $ = (-1, 1).
Note, however, that 1/(x> — 1) is not defined at x = +1 and therefore could not be a solution on any interval
containing either of these two points.

Determine whether any of the functions (a) y; = sin 2x, (b) y,(x) = x, or (¢) y,(x) =3sin2x is a solution
to the initial-value problem y” + 4y = 0; y(0) =0, y'(0) = 1.

(a) y;(x) is a solution to the differential equation and satisfies the first initial condition y(0) = 0. However, y;(x)
does not satisfy the second initial condition (y{(x)=2cos2x;y;(0) =2c0s0 =2 # 1); hence it is not a solution to the
initial-value problem. (b) y,(x) satisfies both initial conditions but does not satisfy the differential equation; hence
¥»(x) is not a solution. (c) y3(x) satisfies the differential equation and both initial conditions; therefore, it is a solu-
tion to the initial-value problem.

Find the solution to the initial-value problem y’ + y = 0; y(3) = 2, if the general solution to the differential
equation is known to be (see Chapter 8) y(x) = c;e™, where ¢, is an arbitrary constant.

Since y(x) is a solution of the differential equation for every value of ¢y, we seek that value of ¢; which will
also satisfy the initial condition. Note that y(3) = c;¢3. To satisfy the initial condition y(3) =2, it is sufficient
to choose ¢, so that ¢;e™> =2, that is, to choose ¢, = 2¢>. Substituting this value for ¢, into y(x), we obtain
y(x) = 2’ = 23 as the solution of the initial-value problem.

Find a solution to the initial-value problem y” + 4y = 0; y(0) = 0, y’(0) = 1, if the general solution to the
differential equation is known to be (see Chapter 9) y(x) = ¢, sin 2x + ¢, cos 2x.
Since y(x) is a solution of the differential equation for all values of ¢; and ¢, (see Example 1.4), we seek those

values of ¢; and ¢, that will also satisfy the initial conditions. Note that y(0) = ¢; sin 0 + ¢, cos 0 = ¢,. To satisfy
the first initial condition, y(0)=0, we choose ¢, =0. Furthermore, y'(x)=2c¢; cos 2x—2¢, sin 2x; thus,
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1.10.

1.11.

1.12.

¥(0)=2¢, cos 0—2¢, sin 0=2c¢,. To satisfy the second initial condition, y'(0)=1, we choose 2¢, =1, or
¢, = 1. Substituting these values of ¢; and ¢, into y(x), we obtain ¥(x) =1sin2x as the solution of the initial-value
problem.

Find a solution to the boundary-value problem y” + 4y = 0; y(1/8) = 0, y(1/6) = 1, if the general solution
to the differential equation is y(x) = ¢; sin 2x + ¢, cos 2x.

y(’;):clsin[jjﬂzco{z):q(; ﬁ}[; ﬁ]

To satisfy the condition y(7r/8) = 0, we require
1 1
c (2\/2]+ CZ(Z\/2J=O ("

Furthermore, y z =¢,sin z + ¢, cos z = l\/g +c, 1
6 3 3 2 2

To satisfy the second condition, y(1/6) = 1, we require

Note that

1 1
E\/§cl toe=l 2)
Solving (/) and (2) simultaneously, we find
2
aTTeT R

Substituting these values into y(x), we obtain

y(x)= %(Sil’l 2x —cos2x)

NE)

as the solution of the boundary-value problem.

Find a solution to the boundary-value problem y” + 4y = 0; y(0) = 1, y(7/2) = 2, if the general solution
to the differential equation is known to be y(x) = ¢; sin 2x + ¢, cos 2x.

Since y(0) =¢; sin 0+ ¢, cos 0 =c,, we must choose ¢, =1 to satisfy the condition y(0) = 1. Since y(7/2)
=, sin T+ ¢, cos T=— ¢,, we must choose ¢, = —2 to satisfy the second condition, y(7r/2) = 2. Thus, to satisfy both
boundary conditions simultaneously, we must require ¢, to equal both 1 and — 2, which is impossible. Therefore,
there does not exist a solution to this problem.

Determine ¢; and ¢, so that y(x) = ¢; sin 2x + ¢, cos 2x + 1 will satisfy the conditions y(7/8) =0 and

V(/8) =2.
Note that
y r =¢,sin T + ¢, cos T +1=¢, 1\/5 +c, l\/i +1
8 4 4 2 2
To satisfy the condition y(7/8) = 0, we require c, (%\/E) +c, (%\/E) +1=0, or equivalently,

c|+62=—\/§ )
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Since y’(x) = 2¢; cos 2x — 2¢, sin 2x,

(7 V4 . (7
y [SJ: 2¢, cos(4)— 2c, sm(4]

1 1
_oe, (zﬁ)_ 2, [zﬁ]: NN
To satisfy the condition y'(7r /8) = V2. we require \/Ecl - \/Ecz =2, or equivalently,
ci—c=1 (2)

Solving (/) and (2) simultaneously, we obtain ¢, =— %(\/5 —-1)and ¢, =— g(\/i +1).

Determine ¢, and ¢, so that y(x) = c;e™ + c,e¢* + 2 sin x will satisfy the conditions y(0) = 0 and y'(0) = 1.
Because sin 0 =0, y(0) = ¢y + ¢,. To satisty the condition y(0) = 0, we require
ci+c;=0 @)
From Y (x) = 2¢1€% + " + 2 cos x
we have y” (0) = 2c¢; + ¢, + 2. To satisfy the condition y” (0) = 1, we require 2¢, + ¢, +2 =1, or
2c;+ ¢y =—1 2)

Solving (/) and (2) simultaneously, we obtain ¢; =—and ¢, = 1.

Supplementary Problems

In Problems 1.14 through 1.23, determine (a) the order, (b) the unknown function, and (c¢) the independent
variable for each of the given differential equations.

1.14.

1.16.

1.18.

1.20.

1.22.

1.24.

1.25.

0" =3yy +xy=0 115, xHY® +xy” =¢*
25 —t5=1—sint 1.17. y®P 4+ xy” +x%" —xy +siny=0
d"x d’r ’ d’r dr

n:y2+1 1.19. — | +=—5+y—=0
dy dy dy” " dy

3/2

d’y _ d’b
[dxz] +y_x 1.21 y=3p

db Y
[dp) =3p 1.23. y© 42yt 4 5y8 = ¢

Which of the following functions are solutions of the differential equation y” — 5y = 0?
@ y=5, (b) y=5x (o) y=x, d y=e", () y=2¢%  (f) y=5e"

Which of the following functions are solutions of the differential equation y" — 3y = 6?
(@ y=-2, (D) y=0, (© y=€"=2, (d) y=e"=3, (¢) y=4e"-2
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1.26. Which of the following functions are solutions of the differential equation y — 2ty = #?
@ y=2. ) y=-f (© y=¢. @ y=¢ -L (9 y=-7¢ 4

1.27. Which of the following functions are solutions of the differential equation dy/dt = y/t?
(@ y=0, b y=2, () y=2, (d y=-3t (e y=¢

1.28. Which of the following functions are solutions of the differential equation

dy 2y +x*

dx xy?

(@) y=x, () y=x"—x%, (0 y=yx*-x', (d) y=@—xhH"

1.29. Which of the following functions are solutions of the differential equation y” —y = 0?

(@ y=¢, (b) y=sinx, (c) y=4e*, (d y=0, (e y=1x"+1

1.30. Which of the following functions are solutions of the differential equation y” — xy” + y = 0?
@ y=x, () y=x, © y=1-x, (d y=22"-2, (¢) y=0

1.31. Which of the following functions are solutions of the differential equation ¥ —4x + 4x =¢'

(@) x=¢, by x=é%, () x=é"+e, (d x=te®+e, (¢) x=e¥+te
In Problems 1.32 through 1.35, find ¢ so that x(f) = ce* satisfies the given initial condition.
1.32. x(0)=0 1.33. x(0)=1 1.34. x(1)=1 1.35. x(2)=-3
In Problems 1.36 through 1.39, find ¢ so that y(x) = ¢(1 — x?) satisfies the given initial condition.
1.36. y(0)=1 1.37. y1)=0 1.38. y2)=1 1.39. y(1)=2

In Problems 1.40 through 1.49, find ¢; and ¢, so that y(x) = ¢; sin x + ¢, cos x will satisfy the given conditions.
Determine whether the given conditions are initial conditions or boundary conditions.

1.40. y(0)=1, y(0)=2 141, y(0)=2, y(©0)=1
1.42. y(’;JzL y'(ZJzZ 143, y0)=1, y(’;}zl
1.44. y(0)=1, y'(’;)zl 145. y0)=1, y(m=1
1.46. y0)=1, y(m=2 1.47. y0)=0, y(0)=0

148. y|Zl=0. %=1 1.49. o v[® )
e o5 s {5
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In Problems 1.50 through 1.54, find values of ¢; and ¢, so that the given functions will satisfy the prescribed
initial conditions.

1.50. y(x)=cie*+cre*+4sinx;  y0)=1, y'(0)=-1

1.51. y(x)=c]x+02+x2— 1; yh=1, yd)=2

1.52.  y(x) =cie" + cpe™ + 3¢’ y0)=0, y(0)=0

153. y(x)=c¢;sinx+cycosx+1; y(m=0, y(@m@m=0

1.54.  y(x) = ;e + coxe’ + x%e"; yh=1, yd)=-1



An Introduction
to Modeling
and Qualitative
Methods

MATHEMATICAL MODELS

Mathematical models can be thought of as equations. In this chapter, and in other parts of the book (see
Chapter 7, Chapter 14 and Chapter 31, for example), we will consider equations which model certain real-world
situations.

For example, when considering a simple direct current (DC) electrical circuit, the equation V = RI models
the voltage drop (measured in volts) across a resistor (measured in ohms), where / is the current (measured in
amperes). This equation is called Ohm’s Law, named in honor of G. S. Ohm (1787-1854), a German physicist.

Once constructed, some models can be used to predict many physical situations. For example, weather
forecasting, the growth of a tumor, or the outcome of a roulette wheel, can all be connected with some form of
mathematical modeling.

In this chapter, we consider variables that are continuous and how differential equations can be used in
modeling. Chapter 34 introduces the idea of difference equations. These are equations in which we consider
discrete variables; that is, variables which can take on only certain values, such as whole numbers. With few
modifications, everything presented about modeling with differential equations also holds true with regard to
modeling with difference equations.

THE “MODELING CYCLE”

Suppose we have a real-life situation (we want to find the amount of radio-active material in some element).
Research may be able to model this situation (in the form of a “very difficult” differential equation). Technology
may be used to help us solve the equation (computer programs give us an answer). The technological answers
are then interpreted or communicated in light of the real-life situation (the amount of radio-active material).
Figure 2-1 illustrates this cycle.
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Math
Interpretation/ Solution
Communication
Fig. 2-1
QUALITATIVE METHODS

To build a model can be a long and arduous process; it may take many years of research. Once they

are formulated, models may be virtually impossible to solve analytically. Then the researcher has two
options:

Simplify, or “tweak”, the model so that it can be dealt with in a more manageable way. This is a valid
approach, provided the simplification does not overly compromise the “real-world” connection, and
therefore, its usefulness.

Retain the model as is and use other techniques, such as numerical or graphical methods (see
Chapter 18, Chapter 19, and Chapter 20). This represents a qualitative approach. While we do not
possess an exact, analytical solution, we do obtain some information which can shed some light on the
model and its application. Technological tools can be extremely helpful with this approach (see
Appendix B).

Solved Problems

Problems 2.1 through 2.11 deal with various models, many of which represent real-world situations. Assume
the models are valid, even in the cases where some of the variables are discrete.

2.1.

2.2,

2.3.

Discuss the model: T =32+ 1.8 T,.

This model converts temperatures from degrees on the Celsius scale to degrees on the Fahrenheit scale.

Discuss the model: PV = nRT.

This models ideal gases and is known as the Perfect Gas Law. Here, P is the pressure (in atmospheres), V is the
volume (liters), 7 is the number of moles, R is the universal gas constant (R = 8.3145 J/mol K), and 7 is the temperature
(degrees Kelvin).

What does Boyle’s law tell us?

Boyle’s law states that, for an ideal gas at a constant temperature, PV =k, where P (atmospheres), V (liters)
and £ is a constant (atmosphere-liters).
Another way of stating this, is that the pressure and volume are inversely proportional.
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24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Discuss the model: I = ﬂ

dt
This formula is used in electricity; I represents the current (amperes), g represents the charge (coulombs), 7 is
the time (seconds). Problems involving this model will be presented in both Chapter 7 and Chapter 14.

d? d
Discuss the model: m—Z + a—y
dt dt

This is a classic model: a forced, mass-spring system. Here, y is a displacement (m), ¢ is time (sec), m is the mass
(kg), a is a friction or damping constant (kg/sec), k is a spring constant (kg/sec?) and F(z) is a forcing function (N).

Variations of this model can be used in problems ranging from shock absorbers on an automobile to answering
questions about the human spinal column.

The differential equation uses a number of classical concepts, including Newton’s second law and Hooke’s law.
We will revisit this equation in Chapter 14.

+ky = F(0).

Assume M(r) represents the mass of an element in kgs. Suppose research has shown that the instanta-
neous rate of decay of this element (kg/yr) is proportional to the amount present: M’(f) o< M(f). Set up a
model for this relationship.

The proportionality relationship M’(f) << M(f) can be converted into an equation by introducing a
proportionality constant, & (1/yr). So our model becomes M'(¢) = kM(r). We note that k <0, because M(r) is decreasing
in size.

This equation will be classified as a “separable equation” (see Chapter 3). The solution to this differential
equation, which is qualitatively described as “exponential decay”, will be explored in Chapter 4.

Consider the previous problem. Assume research revealed that the rate of decay is proportional to the
square root of the amount present. Model this situation.

M'(t) o< \/M(t) implies M'(t) = k/JM(t). We note here that the units of k are
of differential equation will be explored in Chapter 4. yr

1/2

. The solution of this type

Model a population P(z), if its rate of growth is proportional to the amount present at time .

This is the sister problem to Problem 2.6; that is, we have an “exponential growth” model, P’(f) = kP(f),
where k£ > 0.

Assume the population described in Problem 2.8 has an initial composition of 1000. That is,
P(0) = 1000. You are also told that the solution of the differential equation P{7) = kP(¢) is given by
P(f) = 1000e"’, where 1 is in years. Discuss this model.

Since k>0, we know that P(7) will increase exponentially as r — . We are forced to conclude that this is
(most probably) not a reasonable model, due to the fact that our growth is unlimited.

We do add, however, that this model might be helpful over a short period of time. “How helpful?” and “How
short a period?” are questions which must be looked at qualitatively, and depend on the constraints and requirements
of the particular posed problem.

Consider the assumptions in the two previous problems. Further, suppose the rate of growth of P(f)
is proportional to the product of the amount present and some “maximum population” term, 100,000 —
P(f), where the 100,000 represents the carrying capacity. That is, P(f) — 100,000, as ¢ — . Introduction
of a proportionality constant &, leads to the differential equation, P’(¢) = kP(£)(100,000 — P(¢)). Discuss
this model.

If P(r) is much less than 100,000, the differential equation can be approximated as P’(r) = kP(¢)
(100,000) = KP(t), where K = k(100,000). This would closely approximate exponential growth. So, for “small” P(),
there would be little difference between this model and the previous model discussed in Problems 2.8 and 2.9.
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2.11.

2.12.

2.13.

2.14.
2.15.

2.16.

2.17.

2.18.
2.19.

AN INTRODUCTION TO MODELING AND QUALITATIVE METHODS [CHAP. 2

If P(¢) is close to 100,000 (meaning that 100,000 — P(¢) = 0), then the differential equation can be approxi-
mated as P’(r) = kP(r)(0) = 0. An approximate solution to this is P(r) = 100,000, since only a constant has a deriva-
tive equal to 0. So “in the large”, P(¢) “levels off” to 100,000, the carrying capacity of the population.

In this problem, we used a qualitative approach: we were able to decipher some information and express it in
a descriptive way, even though we did not possess the solution to the differential equation. This type of equation is
an example of a logistic population model and is used extensively in sociological studies. Also see Problem 7.7.

Sometimes differential equations are “coupled” (see Chapter 17 and Chapter 25); consider the following
system:

”;—RzzR—aRF

t

JF (7
 —_4F +5RF

di

Here, let R represent the number of rabbits in a population, while F represents the number of foxes, and
tis time (months). Assume this model reflects the relationship between the rabbits and foxes. What does
this model tell us?

This system of equations (/) mirrors a “predator-prey” relationship. The RF terms in both equations can be
interpreted as an “interaction term”. That is, both factors are needed to have an effect on the equations.

We see that the coefficient of R in the first equation is +2; if there was no RF term in this equation, R would
increase without bound. The —3 coefficient of RF has a negative impact on the rabbit population.

Turning our attention to the second equation, we see that F' is multiplied by a — 4, indicating that the fox
population would decrease if they did not interact with rabbits. The positive coefficient for RF indicates a positive
impact on the fox population.

Predator-prey models are used extensively in many fields ranging from wildlife populations to military strategic
planning. In many of these models qualitative methods are employed.

Supplementary Problems

Using Problem 2.1. find a model which converts temperatures from degrees on the Fahrenheit scale to degrees on
the Celsius scale.

Vv . .
Charles’ law states that, for an ideal gas at a constant pressure, — = k, where V (liters), T (degrees Kelvin) and & is
a constant (lit/°K). What does this model tell us? r

2
Discuss Newton’s second law of motion: F =ma = m% = mi f .

t t

Suppose a room is being cooled according to the model 7'(f) = /576 —¢, where ¢ (hours) and T (degrees Celsius).
If we begin the cooling process at # = 0, when will this model no longer hold? Why?

Suppose the room in Problem 2.15. was being cooled in such a way that T'(f) = #* — 207 + /576, where the variables
and conditions are as above. How long would it take for the room to cool down to its minimum temperature? Why?

Consider the model discussed in Problem 2.5. If we assume that the system is both “undamped” and “unforced”,
2

that is F(z) = 0 and a = 0, the equation reduces to m%
t

d*y

dr*

+ ky =0.1If we let m = 1 and k = 4 for further simplicity, we

have + 4y =0. Suppose we know that y(7) = sin 21, satisfies the model. Describe the motion of displacement, y(7).

Consider the previous problem. Find (@) the velocity function; (b) the acceleration function.

Consider the differential equation % =(y—1(y —2). Describe (a) the behavior of y at y=1 and y =2; (b) what
by
happens to y if y < 1; (¢) what happens to y if 1 <y <2; (d) what happens to y if y > 2.
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2.20.

2.21.

2.22.

Assume a chemical compound, X, is such that its rate of decay is proportional to the cube of its difference from a
given amount, M, where both X and M are given in grams and time is measured in hours. Model this relationship
with a differential equation.

Suppose A and B are two vats interconnected with a number of pipes and drains. If A(#) and B(7) represent the number
of gallons of liquid sugar in the respective vats at time 7 (hours), what do A’(¢) and B’(z) represent?

Consider Problem 2.21. Suppose the following system of differential equations models the mixing of the vats:

2—A=aA+bB+c

t

d—B=dA+eB+f
dt

()

where a, b, ¢, d, e, and f are constants. What is happening to the liquid sugar and what are the units of the six constants?



Classifications
of First-Order
Differential Equations

STANDARD FORM AND DIFFERENTIAL FORM
Standard form for a first-order differential equation in the unknown function y(x) is
Y =1y) (3.1)

where the derivative y” appears only on the left side of (3.1). Many, but not all, first-order differential equations
can be written in standard form by algebraically solving for y” and then setting f(x, y) equal to the right side of
the resulting equation.

The right side of (3.7) can always be written as a quotient of two other functions M(x, y) and —N(x, y). Then
(3.1) becomes dy/dx = M(x, y)/-N(x, y), which is equivalent to the differential form

M(x, y)dx + N(x, y)dy =0 3.2)

LINEAR EQUATIONS

Consider a differential equation in standard form (3.7). If f(x, y) can be written as f(x, y) = —p(x)y + g(x)
(that is, as a function of x times y, plus another function of x), the differential equation is /inear. First-order
linear differential equations can always be expressed as

Y +p(0)y=qx) (3.3)

Linear equations are solved in Chapter 6.

BERNOULLI EQUATIONS

A Bernoulli differential equation is an equation of the form

Y +px)y=qx)y" (3.4)

where n denotes a real number. When n = 1 or n = 0, a Bernoulli equation reduces to a linear equation. Bernoulli
equations are solved in Chapter 6.

14
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HOMOGENEOUS EQUATIONS

A differential equation in standard form (3.7) is homogeneous if
Jex, y) = f(x, y) (3.5

for every real number 7. Homogeneous equations are solved in Chapter 4.

Note: In the general framework of differential equations, the word “homogeneous” has an entirely different
meaning (see Chapter 8). Only in the context of first-order differential equations does “homogeneous” have the
meaning defined above.

SEPARABLE EQUATIONS

Consider a differential equation in differential form (3.2). If M(x, y) = A(x) (a function only of x) and
N(x, y) = B(y) (a function only of y), the differential equation is separable, or has its variables separated.
Separable equations are solved in Chapter 4.

EXACT EQUATIONS

A differential equation in differential form (3.2) is exact if

OM(x,y) _ ON(x,y) (3.6)
ay Bx

Exact equations are solved in Chapter 5 (where a more precise definition of exactness is given).

Solved Problems

3.1.  Write the differential equation xy’ — y*> =0 in standard form.

Solving for y’, we obtain y’ = y*/x which has form (3.1) with f(x, y) = y*x.

3.2.  Write the differential equation e*y’ + ¢*y = sin x in standard form.

Solving for y’, we obtain
e*y = —e™y +sin x
or Yy =—€y+e ¥ sinx

which has form (3.7) with f(x, y) =—e*y + ¢ sin x.

3.3.  Write the differential equation (y + y)> = sin (y’/x) in standard form.

This equation cannot be solved algebraically for y’, and cannot be written in standard form.

3.4.  Write the differential equation y(yy” — 1) = x in differential form.
Solving for y’, we have
Y -y=x
Yy =x+y
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, X+y
or y=7 @)

which is in standard form with f(x, y) = (x + y)/y%. There are infinitely many different differential forms associated
with (7). Four such forms are:

(a) Take M(x,y)=x+y, N(x,y)=—y> Then

M(x,y)  x+y x+y
-N(x.y) —(=y) ¥

and (/) is equivalent to the differential form
(x+y)dx + (=y*)dy =0

2

Y
x+y

(b) Take M(x,y)=-1, N(x,y)= . Then

M(x,y) -1 Xty
~N(xy) =y x+y) ¥

and (/) is equivalent to the differential form

(~Ddx + ( Y ]dy =0

x+y

+ 2
(¢) Take M(x,y) :x—zy, N(x,y) :Ty' Then

M(x,y) :(x+y)/2:x+y
-N(x,y) —(=y*12) ¥

and (/) is equivalent to the differential form

2
[X+y]dx+( Y )dyzo
2 2

2

—X-y y
——, N(x,y)==;. Then

X X

(d) Take M(x,y)=

M(x,y) _(—x—y)/x* _x+y
-N(x,y) =y /& Y’

and (/) is equivalent to the differential form
—x—y v
[ xz jdx +(xz]dy=0

3.5.  Write the differential equation dy/dx = y/x in differential form

This equation has infinitely many differential forms. One is

dyzldx
X

which can be written in form (3.2) as

Lax + =Dy =0 )
X
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3.6.

3.7.

3.8.

3.9.

Multiplying (/) through by x, we obtain

ydx+ (—x)dy=0 2)
as a second differential form. Multiplying (/) through by 1/y, we obtain
ldx + _—ldy =0 3)
x y

as a third differential form. Still other differential forms are derived from (/) by multiplying that equation through
by any other function of x and y.

Write the differential equation (xy + 3)dx + (2x — y* + 1)dy = 0 in standard form.

This equation is in differential form. We rewrite it as
2x = y*+ Ddy =—(xy + 3)dx

which has the standard form

dy _ —(y+3)
dx 2x-y*+1
, +3
or y:72xy
y —2x-1

Determine if the following differential equations are linear:

(a) Yy =(sinx)y+e* (b) Yy =xsiny+e* (¢) y=5 d y=y"+x
() ¥y+x°=0 (f) ' +y=4y @ Y+xy=ey () y+ =0
y

(a) The equation is linear; here p(x) = —sin x and g(x) = ¢*.

(b) The equation is not linear because of the term sin y.

(¢) The equation is linear; here p(x) =0 and g(x) = 5.

(d) The equation is not linear because of the term y?.

(e) The equation is not linear because of the y> term.

(/) The equation is not linear because of the y'/? term.

(¢) The equation is linear. Rewrite it as ¥y + (x — e*)y = 0 with p(x) =x — ¢* and g(x) = 0.

(h) The equation is not linear because of the 1/y term.

Determine whether any of the differential equations in Problem 3.7 are Bernoulli equations.

All of the linear equations are Bernoulli equations with n=0. In addition, three of the nonlinear
equations, (e), ( f) and ( /), are as well. Rewrite (¢) as y’ = —xy”; it has form (3.4) with p(x) = 0, g(x) = —x, and n = 5.
Rewrite (f) as

L1
YH+—y=—y"
X X

It has form (3.4) with p(x) = g(x) = 1/x and n = 1/2. Rewrite (h) as y’ = —xy~! with p(x) =0, g(x) = —x, and n = —1.

Determine if the following differential equations are homogeneous:

x/y 2

b) y==— (o y’:% (d) y':x +y

3
X

y+x

@ y= .
x% + y’sin =
y
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3.10.

3.11.

3.12.
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(a) The equation is homogeneous, since

ty+tx ty+x) y+x

Sox, ty) = Sxy)
29 29
(b) The equation is not homogeneous, since
( )2 t2 2 2
flor =2 =20 =2 )
tx tx X
(¢) The equation is homogeneous, since
2(tx)(ty)e™'™ B *2xye™"”

f(tx’ ty) =
()" + (ty)zsin[i 23 +12y’sin ©
ty

2xye*’”
= xyix = f(x,y)
x* +y’sin =
y
(d) The equation is not homogeneous, since

() +ty x4ty tx+y
(tx)* x° x°

fx, ty) = # f(x,y)

Determine if the following differential equations are separable:

(a) sinxdx+y’dy=0 (b) xy*dx—x*’dy=0 (¢) (1+xy)dx+ydy=0

(a) The differential equation is separable; here M(x, y) = A(x) = sin x and N(x, y) = B(y) = y°.

(b) The equation is not separable in its present form, since M(x, y) = xy? is not a function of x alone. But if we
divide both sides of the equation by x?y?, we obtain the equation (1/x)dx + (=1)dy =0, which is separable.
Here, A(x) = 1/x and B(y) =—1.

(¢) The equation is not separable, since M(x, y) = 1 + xy, which is not a function of x alone.

Determine whether the following differential equations are exact:
(@) 3x%ydx+@+xD)dy=0 ) xydx+ydy=0

(@) The equation is exact; here M(x, y) = 3x%y, N(x, y) = y + x°, and dM/dy = ON/ox = 3x°.
(b) The equation is not exact. Here M(x, y) = xy and N(x, y) = y; hence OM/dy = x, IN/dx = 0, and dIM/dy # ON/ox.

Determine whether the differential equation y” = y/x is exact.

Exactness is only defined for equations in differential form, not standard form. The given differential equation
has many differential forms. One such form is given in Problem 3.5, Eq. (), as

Y dx + (~1dy =0
X
Here M(x, y) = y/x, N(x, y) = -1,

aﬂ:lio
dy x

_ON
ox

and the equation is not exact. A second differential form for the same differential equation is given in Eq. (3) of
Problem 3.5 as

1 -1
—dx+—dy=0
X y



CHAP. 3] CLASSIFICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS 19

3.13.

3.14.

Here M(x, y) = 1/x, N(x, y) =—1/y,

N

oM _ . _oN
T o

=0
dy

and the equation is exact. Thus, a given differential equation has many differential forms, some of which may be
exact.

Prove that a separable equation is always exact.

For a separable differential equation, M(x, y) = A(x) and N(x, y) = B(y). Thus,

oM(x,y) _ 0A(x) -0 and ON(x,y) _ dB(y) _

0
dy dy ox ox

Since dM/dy = dN/dx, the differential equation is exact.

A theorem of first-order differential equations states that if f(x, y) and df(x, y)/dy are continuous in a

rectangle R: lx — xl < a, ly — yol £ b, then there exists an interval about x, in which the initial-value
problem y’ = f(x, y); y(xo) = y has a unique solution. The initial-value problem y’ =24/l y I;y(0) =0 has
the two solutions y = x |xl and y = 0. Does this result violate the theorem?

No. Here, f(x,y) =24/l y| and, therefore, df/dy does not exist at the origin.

Supplementary Problems

In Problems 3.15 through 3.25, write the given differential equations in standard form.

3.15.

3.17.

3.19.

3.21.

3.23.

3.25.

xy +32=0 3.16. Yy —-x=y

() +y*+y=sinx 318. xy’ +cos(y +y)=1

V) = 320. ()P -5y +6=@x+y0 -2)
(x = y)dx+y*dy=0 3.22. %dx —-dy=0

dx + %dy =0 3.24. (¥ —y)dx+e'dy=0
dy+dx=0

In Problems 3.26 through 3.35, differential equations are given in both standard and differential form. Determine whether
the equations in standard form are homogeneous and/or linear, and, if not linear, whether they are Bernoulli; determine
whether the equations in differential form, as given, are separable and/or exact.

3.26.

3.27.

3.28.

3.29.

Y =xy; xydx—dy=0

Y =xy; xdx—ldyzo
y

Y=xy+1; (xy+1)dx—dy=0

2

X
Zdx—dy=0
y

2
/_-x .
==

y

y
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3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

CLASSIFICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS

2
y = x—z; —x%dx +y*dy =0

y

, 2
V=== 2uydx+2dy=0
X

2
, X
Y == wPdx— (P +))dy=0
y+y

’

y=———1 xy’dx+(y+y)dy=0
X’y +y

1
y=xy+xy; (" +y)dx——dy=0
Xy

Y =2xy+x; (2xye’”Z +xe ™ dx—e ™ dy=0

[CHAP. 3



Separable First-Order
Differential Equations

GENERAL SOLUTION

The solution to the first-order separable differential equation (see Chapter 3)

A(x) dx + B(y) dy =0 .0
is jA(x)dx+jB(y) dy=c 4.2)

where c represents an arbitrary constant.

The integrals obtained in Eq. (4.2) may be, for all practical purposes, impossible to evaluate. In such cases,
numerical techniques (see Chapters 18, 19, 20) are used to obtain an approximate solution. Even if the indicated
integrations in (4.2) can be performed, it may not be algebraically possible to solve for y explicitly in terms of
x. In that case, the solution is left in implicit form.

SOLUTIONS TO THE INITIAL-VALUE PROBLEM

The solution to the initial-value problem
A() dx + B(y) dy =0;  y(xo) = yo 4.3)
can be obtained, as usual, by first using Eq. (4.2) to solve the differential equation and then applying the initial

condition directly to evaluate c.
Alternatively, the solution to Eq. (4.3) can be obtained from

j A(x)dx + j} B(y)dy=0 (4.4)

Equation (4.4), however, may not determine the solution of (4.3) uniquely; that is, (4.4) may have many solutions,
of which only one will satisfy the initial-value problem.

21



22 SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 4

REDUCTION OF HOMOGENEOUS EQUATIONS

The homogeneous differential equation
dy
— = f(x, 4.5
F(x,y) 4.5

having the property that f(zx, ty) = f(x, y) (see Chapter 3) can be transformed into a separable equation by making
the substitution

y=av (4.6)

along with its corresponding derivative

Do “4.7)

The resulting equation in the variables v and x is solved as a separable differential equation; the required solution
to Eq. (4.5) is obtained by back substitution.
Alternatively, the solution to (4.5) can be obtained by rewriting the differential equation as

d_ 1 4.9)
dy f(xy)
and then substituting
x=yu (4.9)
and the corresponding derivative
% —u+ y% (4.10)

into Eq. (4.8). After simplifying, the resulting differential equation will be one with variables (this time, # and y)
separable.

Ordinarily, it is immaterial which method of solution is used (see Problems 4.12 and 4.13).
Occasionally, however, one of the substitutions (4.6) or (4.9) is definitely superior to the other one. In such
cases, the better substitution is usually apparent from the form of the differential equation itself. (See
Problem 4.17.)

Solved Problems

4.1. Solve x dx—y*dy=0.

For this differential equation, A(x) = x and B(y) = —y”. Substituting these values into Eq. (4.2), we have
2
dex+J(—y )Ydy=c

which, after the indicated integrations are performed, becomes x%/2 — y3/3 = ¢. Solving for y explicitly, we obtain

the solution as
3 1/3
y=(2x2+k) ; k=-3c
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4.2.

4.3.

44.

4.5.

Solve y’ = y%x°.
We first rewrite this equation in the differential form (see Chapter 3) x> dx — (1/y%) dy = 0. Then A(x) = x> and
B(y) = —1/y%. Substituting these values into Eq. (4.2), we have

fx3 dx + I(—l/yz) dy=c
or, by performing the indicated integrations, x*/4 + 1/y = ¢. Solving explicitly for y, we obtain the solution as

—4

= , k=-4c
Y x4k

2
Solve ﬂ= X +2
dx y

This equation may be rewritten in the differential form

(2+2)dx—ydy=0

which is separable with A(x) = x?> + 2 and B(y) = —y. Its solution is
I(xz +2) dx—J.ydyzc

or lx3+2x—lyz=c
3 2

Solving for y, we obtain the solution in implicit form as

y2=§x3+4x+k

with k = —2¢. Solving for y implicitly, we obtain the two solutions

2 2
y:1}§x3+4x+k and y=- /§x3+4x+k

Solve y" = 5y.

First rewrite this equation in the differential form 5 dx — (1/y) dy =0, which is separable. Its solution is

[sax+ [~y dy=c

or, by evaluating, 5x — In Iyl = c.

To solve for y explicitly, we first rewrite the solution as In |yl = 5x — ¢ and then take the exponential of both
sides. Thus, ™' = ¢~ ¢, Noting that ™' = Iyl, we obtain |yl = e¥¢™, or y =+ ¢ “¢**. The solution is given explicitly
by y=ke>, k=% ¢

Note that the presence of the term (—1/y) in the differential form of the differential equation requires the
restriction y # 0 in our derivation of the solution. This restriction is equivalent to the restriction k # 0, since y = ke™".
However, by inspection, y =0 is a solution of the differential equation as originally given. Thus, y = ke>" is the solution
for all k.

The differential equation as originally given is also linear. See Problem 6.9 for an alternate method of solution.

x+1
4

y +1

Solve y' =
This equation, in differential form, is (x + 1) dx + (—y* — 1) dy = 0, which is separable. Its solution is

j(x+1)dx+j(—y“ ~Ddy=c
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4.6.

4.7.

SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS

or, by evaluating,

2 5
—HtX———-y=c
2 5 y

Since it is impossible algebraically to solve this equation explicitly for y, the solution must be left in its present

implicit form.

Solve dy = 21(y>+9) dt.

This equation may be rewritten as

D ordr=0
y +9

which is separable in variables y and . Its solution is

jyzdi 5" Jatdr=c

1
Zarctan| 2 |= £ =¢
3 3

arctan (;j j =3 +¢)

or, upon evaluating the given integrals,
Solving for y, we obtain

g = tan (31> + 3¢)
or y=3tan 32 +K)

with k= 3c.

Solve @ =x*—2x+2.
dt

This equation may be rewritten in differential form

dx

——————dr=0
X =2x+2

which is separable in the variables x and . Its solution is

dx
i Jar=e

Evaluating the first integral by first completing the square, we obtain

[—&——far=c
(x=1D"+1
or arctan (x— 1) —t=c¢

Solving for x as a function of 7, we obtain

arctan (x — 1) =t+c¢
x—1=tan (t+c¢)
or x=1+tan (t+c)
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4.8. Solve ¢*dx—ydy=0;y0)=1.
The solution to the differential equation is given by Eq. (4.2) as
J.ex dx + J(—y) dy=c

or, by evaluating, as y*>=2¢*+ k, k=—2c. Applying the initial condition, we obtain (1)>=2e"+k, 1 =2+k, or
k =—1. Thus, the solution to the initial-value problem is

y'=2e"—1 or y=42¢" -1

[Note that we cannot choose the negative square root, since then y(0)=-1, which violates the initial
condition.]

To ensure that y remains real, we must restrict x so that 2¢*— 1 >0. To guarantee that y” exists [note that
¥ (x) = dyldx = e*ly], we must restrict x so that 2¢* — 1 # 0. Together these conditions imply that 2¢*— 1 >0, or
x>Ins.

4.9. Use Eq. (4.4) to solve Problem 4.8.
For this problem, xy=0, yy= 1, A(x) = ¢*, and B(y) = —y. Substituting these values into Eq. (4.4), we obtain

X y _
[lerax+[ nay=0
Evaluating these integrals, we have

* _2\Y 2
A2 20 or e+ 2 -1 )0
0 2 ), 2 2

Thus, y*=2¢* — 1, and, as in Problem 4.8, y =+2¢" =1, x>In{,

4.10. Solve x cos x dx + (1 — 6y°) dy =0; y(m) = 0.
Here, xo= 7, yo= 0, A(x) = x cos x, and B(y) = 1 — 6y°. Substituting these values into Eq. (4.4), we obtain

rx cos x dx + J.:(l -6y")dy=0
Evaluating these integrals (the first one by integration by parts), we find
. X x INES
xsmx|” + cosx|ﬂ +(y—y )|0 =0
or xsinx+cosx+1=y"—y

Since we cannot solve this last equation for y explicitly, we must be content with the solution in its present
implicit form.

411. Solve y=2F%

X

This differential equation is not separable, but it is homogeneous as shown in Problem 3.9(a). Substituting
Egs. (4.6) and (4.7) into the equation, we obtain

which can be algebraically simplified to

xﬂzl or ldx—dv=0
dx X
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This last equation is separable; its solution is
1
—dx—|dv=c
JLae-]

which, when evaluated, yields v=1In Ixl — ¢, or
v =In lkxl| @)

where we have set ¢ = —In |kl and have noted that In Ixl + In |kl = In lkx|. Finally, substituting v = y/x back into (7),
we obtain the solution to the given differential equation as y = x In lkxl.

, 2yt 4t
412, Solvey ==2 "%
Xy’
This differential equation is not separable. Instead it has the form y" = f(x, y), with
2yt + x*
flry) ===
Xy
20 + () Ry +xh 2yt +x?
where fx, ty) = (&) (3) = (4y 3 ): Y — =y
(tx)(ty) t(xy) Xy

so it is homogeneous. Substituting Eqs. (4.6) and (4.7) into the differential equation as originally given, we obtain

dv 20v)* + x*

v+ x—
dx x(xv)’?

which can be algebraically simplified to

av v+l 1 }

&r- —dx———dv=0

dx V7 X vi+1
This last equation is separable; its solution is

Jldx - I v dv=c
X virl
Integrating, we obtain in In x| — iln (v4 +1)=c,or
vl = (kxo)? )

where we have set ¢ = —In |kl and then used the identities

Inlxkl+Inlkd=Inlkxl and 4 In lkxl = In (kx)*

Finally, substituting v = y/x back into (/), we obtain

V= —xt (e=kY 2

4.13. Solve the differential equation of Problem 4.12 by using Eqs. (4.9) and (4.10).
We first rewrite the differential equation as
__
dy 2y*+x*
Then substituting (4.9) and (4.10) into this new differential equation, we obtain

du 1)y’
dy 2y +(yu)
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4.14.

which can be algebraically simplified to

du u+u’

ydi)f 2+ut

1 2+u'
or —dy + S
y u+u

du=0 1)

Equation (7) is separable; its solution is

1 2+u’
I; dy + J sdu=c
The first integral is in In lyl. To evaluate the second integral, we use partial fractions on the integrand to
obtain

2+u4_ 2 +ut 2 u’

u+u wl+u') uw 1+4

Therefore,

2 +ut 2 uw 1
du=|=du- du=2Inlul—=In (1 +u*
'[u+u5 '[u '[1+u4 4 ( )

The solution to (/) is in In Iyl+21Inlul - 1In (1 + u*) = ¢, which can be rewritten as
ub=1+u 2)

where ¢ =—=+Inlkl. Substituting u = x/y back into (2), we once again have (2) of Problem 4.12.

, 2x
Solve y" = 2_}’2
X =y
This differential equation is not separable. Instead it has the form y’ = f(x, y), with
2
fley ==
X =y
2
where fx, ty) = 2(2“)([)1) > = Zl (22xy)2 = 22xy > =/(xy)
()" =@y)” (" —y) x -y

so it is homogenous. Substituting Eqs. (4.6) and (4.7) into the differential equation as originally given, we obtain

dv 2x(xv)
VHx—=—
dx  x* —(xw)?

which can be algebraically simplified to

ﬂ _ v +1)
dx V-1
2 p—
or ldx+v271dv=0 ()
X v(v: +1)
Using partial fractions, we can expand (/) to
1 1 2
dx+(—+ = ]dv:O @
X v o vi+1

The solution to this separable equation is found by integrating both sides of (2). Doing so, we obtain In |x| —
In vl + In (v*+ 1) = ¢, which can be simplified to

x(V+ 1) =kv (c=1nlkl) 3)

Substituting v = y/x into (3), we find the solution of the given differential equation is x>+ y> = ky.
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4.15.

4.16.

4.17.

4.18.

SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 4

x4y
Xy ’
This differential equation is homogeneous. Substituting Egs. (4.6) and (4.7) into it, we obtain

Solve y' =

dv _ X2+ (w)?

dx x(xv)

vV+Xx

which can be algebraically simplified to
x%=% or édx—vdv=0
The solution to this separable equation is In Ixl —v%/2 = ¢, or equivalently
V=Inx>+k  (k=-2¢) )
Substituting v = y/x into (/), we find that the solution to the given differential equation is

V=2 In x>+ kx?
2 2
Solve y =21 y1y=-2.
xy

The solution to the differential equation is given in Problem 3.15 as y*>=x2 In x>+ kx®. Applying the initial
condition, we obtain (—2)>= (1)* In (1)>+ k(1)%, or k=4. (Recall that In 1 =0.) Thus, the solution to the initial-value

problem is
Y =x"Inx* +4x* or y=—+x’Inx’+4x’

The negative square root is taken, to be consistent with the initial condition.

2xye(“”z

- 2
y2 + yze(”” +2x

Solve y' =

2e<x/y>Z ’

This differential equation is not separable, but it is homogeneous. Noting the (x/y)-term in the exponential, we
try the substitution « = x/y, which is an equivalent form of (4.9). Rewriting the differential equation as

2 2
dx _ y2 + yze(“") + 2x2e%”

dy 2 Xy el ¥)?
we have upon using substitutions (4.9) and (4.10) and simplifying,

du 1+e° 1 2ue”
= or —dy-—

— - du=0
dy  2ue" y l1+e

2
u

This equation is separable; its solution is
Inlyl-In(1+¢")=c
which can be rewritten as
y=k(l+e“) (c=Inlkl) ()
Substituting « = x/y into (/), we obtain the solution of the given differential equation as

y=k[1+e"]

Prove that every solution of Eq. (4.2) satisfies Eq. (4.1).
Rewrite (4.7) as A(x) + B(y)y’ = 0. If y(x) is a solution, it must satisfy this equation identically in x; hence,

A@) + Bly®)]y'(x) =0
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Integrating both sides of this last equation with respect to x, we obtain
JA) dx + [Bly@ly(x) de=c

In the second integral, make the change of variables y = y(x), hence dy = y'(x) dx. The result of this substitution is (4.2).

4.19. Prove that every solution of system (4.3) is a solution of (4.4).

Following the same reasoning as in Problem 4.18, except now integrating from x = x, to x = x, we obtain
[ Awdx+ [ Byl (xdxe=0

The substitution y = y(x) again gives the desired result. Note that as x varies from x;, to x, y will vary from y(x,) = y,
to y(x) = y.

4.20. Prove that if y" = f(x, y) is homogeneous, then the differential equation can be rewritten as y" = g(y/x),
where g(y/x) depends only on the quotient y/x.

We have that f(x, y) = f(tx, ty). Since this equation is valid for all 7, it must be true, in particular, for = 1/x.
Thus, f(x, y) =f(1, y/x). If we now define g(y/x) =f(1, y/x), we then have y’ =f(x, y)=f(1, y/x) = g(y/x) as
required.

Note that this form suggests the substitution v = y/x which is equivalent to (4.6). If, in the above, we had set
t=1/y, then f(x, y) = f(x/y, 1) = h(x/y), which suggests the alternate substitution (4.9).

4.21. A function g(x, y) is homogeneous of degree n if g(tx, ty) = t"g(x, y) for all . Determine whether the
following functions are homogeneous, and, if so, find their degree:

(@) xy+y% (b)) x+ysin (¥/x)?, (c) X*+xy%e™”, and (d) x+ xy.
(@) (x)(1y) + (ty)> = P(xy + y*); homogeneous of degree two.

2 2

(b) tx + tysin (zj = tl:x + ysin (l) 1; homogeneous of degree one.
x X

(©) ()3 + (1x)(1y)%e™™ = (x* + xy*e™); homogeneous of degree three.

(d) tx + (tx)(ty) = tx + t>xy; not homogeneous.

4.22. An alternate definition of a homogeneous differential equation is as follows: A differential equation
M(x, y) dx + N(x, y) dy =0 is homogenous if both M(x, y) and N(x, y) are homogeneous of the same
degree (see Problem 4.21). Show that this definition implies the definition given in Chapter 3.

If M(x, y) and N(x, y) are homogeneous of degree n, then

M, ty) _ "M(x,y) _ M(x, y)
_N(tx’ ty) _tnN(x$ )’) —N(X, Y)

fx, ty) = =f(xy)

Supplementary Problems

In Problems 4.23 through 4.45, solve the given differential equations or initial-value problems.
4.23. xdx+ydy=0 424. xdx-y dy=0

4

4.25. dx+ idy =0 4.26. (t+1)dr— izdy =0
y y
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4.27.

4.29.

4.31.

4.33.

4.35.

4.37.

4.39.

4.41.

4.43.

4.45.

SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS

ldx—ldyzo
x y

xdx+ldy=0
y

4 _
da- 23 a0
t y

&
|
i

& _x
dr t

sinxdx+ydy=0; y0)=-2

xe' dx+(y' —1)dy=0; y(0)=0

dx
—=8-3x; x(0)=4
= 0)

4.28.

4.30.

4.32.

4.34.

4.36.

4.38.

4.40.

4.42.

4.44.

ldx+dy:0
X

P+ 1) dt+(2+y)dy=0

1
1+y

dx —

dy=0

2

dx y
@ = ¢
dt
dy

—=3+5
dt Y

(x> +dx + idy =0; y(-1)=1

2

’ X -

y=2 @) =-1
y+1

[CHAP. 4

In Problems 4.46 through 4.54, determine whether the given differential equations are homogenous and, if so, solve them.

4.46.

4.48.

4.50.

4.52.

4.54.

4.47.

4.49.

4.51.

4.53.

, 2y+x
y=7y
X

, 2)c+y2
yzi



Exact First-Order
Differential Equations

DEFINING PROPERTIES

A differential equation
M(x,y) dx+ N(x,y) dy=0 (WD)

is exact if there exists a function g(x, y) such that

dg(x,y)=M(x, y) dx+ N(x,y) dy 5.2)

Test for exactness: 1f M(x, y) and N(x, y) are continuous functions and have continuous first partial deriva-
tives on some rectangle of the xy-plane, then (5.7) is exact if and only if

IdM(x,y) _ IN(x,y)

5.3)
dy dx
METHOD OF SOLUTION
To solve Eq. (5.1), assuming that it is exact, first solve the equations
dg(x,
98(x.y) _ M(x,y) (54)
dx
dg(x,
M:N(x,y) (5.5)
dy
for g(x, y). The solution to (5.7) is then given implicitly by
gx,y)=c (5.6)

where c represents an arbitrary constant.

Equation (5.6) is immediate from Eqs. (5.7) and (5.2). If (5.2) is substituted into (5./), we obtain
dg(x, y(x)) = 0. Integrating this equation (note that we can write 0 as 0 dx), we have I dg(x, y(x)) = Jo dx, which,
in turn, implies (5.6).

31
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INTEGRATING FACTORS

In general, Eq. (5.7) is not exact. Occasionally, it is possible to transform (5.7) into an exact differential
equation by a judicious multiplication. A function I(x, y) is an integrating factor for (5.1) if the equation

I(x, [M(x, y)dx + N(x, y)dy] =0 5.7)

is exact. A solution to (5.7) is obtained by solving the exact differential equation defined by (5.7). Some of the
more common integrating factors are displayed in Table 5-1 and the conditions that follow:

If i(&_M - 8_N)E g(x), a function of x alone, then

N| dy Jx
I(x, y) = ejg(x)dx (5.8
If 1 8_M - 8_N = h(y), a function of y alone, then
M| dy Jx
I(x, y) = e T (5.9)
Table 5-1
Group of terms Integrating factor I(x, y) Exact differential dg (x, y)
ydx—x dy b Mzd(z)
x X x
1 dx —xd
ydx—xdy = Y- 2x yzd(x]
y y y
1 -
ydv—x dy _1 xdyydx:d[lny]
xy Xy X
ydx—xdy -— ! 5 Wzd(arctany)
X4y x4y X
1
ydx+xdy — 7ydx+xdy:d(lnxy)
Xy
ydx+ x dy %, n>1 ydx+icdy=d|: = nl:|
(xy) (xy) (n = D(xy)
1 ydy + xdx 1
dy + x dx T _ ] Z1nlx? + 42
yay 2+ yz P |:2 n(x” +y ):|
1 ydy + xdx -1
dy + x dx - 1 =d
yay (x2+y2)n’ n> (x2+y2)n |:2(n—1)(x2+y2)"_1:|
dx+bxd e b a
(Zybtonsjanfs) xetyt Xy N ay dx + bx dy) = d(x“y")
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If M =yf(xy) and N = xg(xy), then

I(x,y):; (5.10)
xM — yN

In general, integrating factors are difficult to uncover. If a differential equation does not have one of the

forms given above, then a search for an integrating factor likely will not be successful, and other methods of
solution are recommended.

5.1.

5.2.

5.3.

Solved Problems

Determine whether the differential equation 2xy dx + (1 +x?)dy =0 is exact.

This equation has the form of Eq. (5.1) with M(x, y) = 2xy and N(x, y) = 1 + 2. Since dM/dy = IN/Jx = 2x, the
differential equation is exact.

Solve the differential equation given in Problem 5.1.

This equation was shown to be exact. We now determine a function g(x, y) that satisfies Eqs. (5.4) and (5.5).
Substituting M(x, y) = 2xy into (5.4), we obtain dg/dx = 2xy. Integrating both sides of this equation with respect to
x, we find

g
—dx=12
J xdx _[xydx
or g, y)= Xzy + h(y) ()

Note that when integrating with respect to x, the constant (with respect to x) of integration can depend on y.
We now determine /(y). Differentiating (/) with respect to y, we obtain dg/dy = x>+ h’(y). Substituting this
equation along with N(x, y) = 1 + x? into (5.5), we have

X+ =1+x or Wiy)=1

Integrating this last equation with respect to y, we obtain /4(y) =y + ¢; (¢; = constant). Substituting this expression
into (/) yields

gLy =xy+y+e
The solution to the differential equation, which is given implicitly by (5.6) as g(x, y) = ¢, is
Fy+y=c (ea=c—cyp)

Solving for y explicitly, we obtain the solution as y = ¢,/(x*>+ 1).

Determine whether the differential equation y dx — x dy =0 is exact.
This equation has the form of Eq. (5.7) with M(x, y) =y and N(x, y) = —x. Here

oM _

dy

1 and —
ox

-1

which are not equal, so the differential equation as given is not exact.
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54.

5.5.

5.6.

EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 5

Determine whether the differential equation
(x+siny)dx+(xcosy—2y)dy=0
is exact.

Here M(x, y) = x + sin y and N(x, y) = x cos y — 2y. Thus, dM/dy = dN/dx = cos y, and the differential equation
is exact.

Solve the differential equation given in Problem 5.4.

This equation was shown to be exact. We now seek a function g(x, y) that satisfies (5.4) and (5.5). Substituting
M(x, y) into (5.4), we obtain dg/dx = x + sin y. Integrating both sides of this equation with respect to x, we find

J.%alx = f(x + siny)dx
or g(x,y):%x2 + xsiny + A(y) N

To find A(y), we differentiate (/) with respect to y, yielding dg/dy = x cos y + h’(y), and then substitute this
result along with N(x, y) = x cos y — 2y into (5.5). Thus we find

xcosy+h'(y)=xcosy—2y or W (y)=-2y

from which it follows that i(y) = —y*+ ¢,. Substituting this 4(y) into (1), we obtain
g(x,y)= %xz +xsiny —y* +¢,
The solution of the differential equation is given implicitly by (5.6) as
1, . . _
Ex +xsiny—y " =c¢, (c,=c—c)
2+ ye®

2y — xe®
Rewriting this equation in differential form, we obtain

Solve y’ =

Q2+ ye?)dx+ (xe¥ —2y) dy=0

Here, M(x, y) =2 + ye and N(x, y) =xe® — 2y and, since dM/dy = dN/dx = ¢® + xye™, the differential equation is
exact. Substituting M(x, y) into (5.4), we find dg/dx =2 + ye"; then integrating with respect to x, we obtain

J.g—gdx = J[Z + ye”]dx
x
or glx, y)=2x+ e+ h(y) 1)

To find A(y), first differentiate (/) with respect to y, obtaining dg/dy = xe® + h’(y); then substitute this result
along with N(x, y) into (5.5) to obtain

xe” +h'(y)=xe¥—2y or h'(y)=-2y
It follows that A(y) = —y?+ ¢,. Substituting this /(y) into (1), we obtain
g, y) =2x+ e —y* + ¢
The solution to the differential equation is given implicitly by (5.6) as

2x+eY—y*=c, (cr=c—cy)
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5.7.

5.8.

5.9.

Determine whether the differential equation y? dt + (2yt + 1) dy = 0 is exact.

This is an equation for the unknown function y(7). In terms of the variables ¢ and y, we have M(t, y) =y?,
N(t,y)=2yt+ 1, and

oM Jd J JN
=T () =2y==Qyr+1) ="
oy ay(y) y (%( yi+1) ER

so the differential equation is exact.

Solve the differential equation given in Problem 5.7.

This equation was shown to be exact, so the solution procedure given by Egs. (5.4) through (5.6), with ¢
replacing x, is applicable. Here

dg _
8t_y

Integrating both sides with respect to 7, we have
Jg 2
—=>dt=|ydt
or (v, =yt +h(y) ()

Differentiating (/) with respect to y, we obtain

98 =2yt + dh
dy dy
Hence, 2yt+ﬁ=2yt+l
dy

where the right side of this last equation is the coefficient of dy in the original differential equation. It follows
that

dh _

==
dy

h(y) =y + ¢y, and (1) becomes g(z, y) = y*t + y + ¢,. The solution to the differential equation is given implicitly by
(5.6) as

Yi+y=c (r=c—cy) @)

We can solve for y explicitly with the quadratic formula, whence

I EN T

yE 2t
Determine whether the differential equation

(2x% — 2x3) dt + (4x> — 6%t + 2x%) dx =0
is exact.

This is an equation for the unknown function x(¢). In terms of the variables ¢ and x, we find
(9 2 3 2 a 3 2 2
—2xt=2x")=4xt —6x" =—(4x" —6x7t+2xt")
dx dt

so the differential equation is exact.
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5.10.

5.11.

5.12.

EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 5

Solve the differential equation given in Problem 5.9.

This equation was shown to be exact, so the solution procedure given by Eqgs. (5.4) through (5.6), with 7 and x
replacing x and y, respectively, is applicable. We seek a function g(z, x) having the property that dg is the right side
of the given differential equation. Here

I8 =2x% - 2x°
Jat

Integrating both sides with respect to ¢, we have

f%dz =f(2x2t -2x%)dt

or g(x, 1) = ¥’ = 2%t + h(x) @)

Differentiating (/) with respect to x, we obtain

98 _ 2xt? — 6x°t + dh
dx dx
Hence, 2xt? - 6x°t + ah _ 4x° - 6x°t + 2xt°

dx

where the right side of this last equation is the coefficient of dx in the original differential equation. It follows that

dh _
dx

4x°

Now h(x) = x* + ¢, and (/) becomes
gt x) =X’ =23t + x*+ ¢ = (P = x> + ¢
The solution to the differential equation is given implicitly by (5.6) as
@2 -x)’=c, (ca=c-cy)
or, by taking the square roots of both sides of this last equation, as
X -xt=c, ¢ =%4/c, @)

We can solve for x explicitly with the quadratic formula, whence

t =41 + 4,

2

X =

Solve y'=l_+23; y(2)=-5.

The differential equation has the differential form given in Problem 5.1. Its solution is given in (2) of Problem 5.2
as x”y + y = ¢,. Using the initial condition, y = =5 when x = 2, we obtain (2)%(=5) + (=5) = ¢,, or ¢, = —=25. The solution
to the initial-value problem is therefore x%y + y = =25 or y = —25/(x* + 1).

Solve § = 2y_ty+ =2,

This differential equation in standard form has the differential form of Problem 5.7. Its solution is given in (2)
of Problem 5.8 as y’# + y = ¢,. Using the initial condition y = -2 when ¢ = 1, we obtain (-2)%(1) + (=2) = ¢, or ¢, = 2.
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The solution to the initial-value problem is y*t + y = 2, in implicit form. Solving for y directly, using the quadratic

formula, we have
—1-1+8¢
YR

where the negative sign in front of the radical was chosen to be consistent with the given initial condition.

2x%(x —1)

5.13. Solve x= 5 5 5
4x” —6x°t + 2xt

;o x(2)=3.

This differential equation in standard form has the differential form of Problem 5.9. Its solution is given in (2)
of Problem 5.10 as x> — xt = ¢5. Using the initial condition x = 3 when ¢ = 2, we obtain (3)> - 3(2) = c3, or c3=3. The
solution to the initial-value problem is x*>+ xz = 3, in implicit form. Solving for x directly, using the quadratic formula,
we have

X :%(z +42 +12)

where the positive sign in front of the radical was chosen to be consistent with the given initial condition.

5.14. Determine whether —1/x? is an integrating factor for the differential equation y dx —x dy = 0.

It was shown in Problem 5.3 that the differential equation is not exact. Multiplying it by —1/x%, we obtain
-1 -y 1
— (ydx—xdy)=0 or —-dx+—dy=0 1)
X x X

Equation (/) has the form of Eq. (5.1) with M(x, y) = —y/x* and N(x, y) = 1/x. Now

oM _9 [y _Z1_9d (1) oN
dy dyl x* x> Ix\x) OJx
so (/) is exact, which implies that —1/x? is an integrating factor for the original differential equation.

5.15. Solve ydx—-xdy=0.

Using the results of Problem 5.14, we can rewrite the given differential equation as

xdy—ydx
e

which is exact. Equation (/) can be solved using the steps described in Egs. (5.4) through (5.6).
Alternatively, we note from Table 5-1 that (/) can be rewritten as d(y/x) = 0. Hence, by direct integration, we
have y/x = ¢, or y = cx, as the solution.

5.16. Determine whether —1/(xy) is also an integrating factor for the differential equation defined in Problem 5.14.

Multiplying the differential equation y dx — x dy = 0 by —1/(xy), we obtain

_—l(ydx—xdy)zo or —ldx+ldy=0 (1
Xy X y

Equation (/) has the form of Eq. (5.7) with M(x, y) =—1/x and N(x, y) = 1/y. Now

IM_J( 1) j_d (1) N
dy dy| «x ox\y ] ox

so (1) is exact, which implies that —1/xy is also an integrating factor for the original differential equation.
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5.17.

5.18.

5.19.

EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 5

Solve Problem 5.15 using the integrating factor given in Problem 5.16.
Using the results of Problem 5.16, we can rewrite the given differential equation as
xdy—ydx _
xy

0 0]

which is exact. Equation (/) can be solved using the steps described in Eqs. (5.4) through (5.6).
Alternatively, we note from Table 5-1 that (/) can be rewritten as d[In (y/x)] =0. Then, by direct integration,
In (y/x) = ¢,. Taking the exponential of both sides, we find y/x = e, or finally,

y=cx (c=e")

Solve (y*—y) dx +x dy=0.

This differential equation is not exact, and no integrating factor is immediately apparent. Note, however, that
if terms are strategically regrouped, the differential equation can be rewritten as

—(ydx—xdy)+y*dx=0 @)

The group of terms in parentheses has many integrating factors (see Table 5-1). Trying each integrating factor
separately, we find that the only one that makes the entire equation exact is /(x, y) = 1/y°. Using this integrating factor,
we can rewrite (/) as

_yde—xdy oo )
y2

Since (2) is exact, it can be solved using the steps described in Egs. (5.4) through (5.6).
Alternatively, we note from Table 5-1 that (2) can be rewritten as —d(x/y) + 1dx =0, or as d(x/y) = 1dx.
Integrating, we obtain the solution

X
—=Xx+c or y=
x+c
Solve (y — xy?) dx + (x + x*y?) dy = 0.

This differential equation is not exact, and no integrating factor is immediately apparent. Note, however, that
the differential equation can be rewritten as

(y dx+xdy) + (—xy* dx + x*y* dy) = 0 )

The first group of terms has many integrating factors (see Table 5-1). One of these factors, namely I(x, y) = 1/(xy)?,
is an integrating factor for the entire equation. Multiplying (1) by 1/(xy)?, we find

ydx + xdy N —xy’dx + x*y* dy o
(xy)* (xy)?
or equivalently,
ydx+xdy 1

T @

Since (2) is exact, it can be solved using the steps described in Egs. (5.4) through (5.6).
Alternatively, we note from Table 5-1

ydx + xdy —d -1
(xy)* xy

so that (2) can be rewritten as

d[_l]zldx—ldy
Xy X
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5.20.

5.21.

5.22.

Integrating both sides of this last equation, we find

—=Inlxl-y+c¢
Xy
which is the solution in implicit form.

2

, 3yx
Solve y = %
x +2y

Rewriting this equation in differential form, we have

Gy dy+(—x* =2y dy=0

which is not exact. Furthermore, no integrating factor is immediately apparent. We can, however, rearrange this
equation as

X*QBydx—xdy)—2y*dy=0 )

The group in parentheses is of the form ay dx + bx dy, where a =3 and b = —1, which has an integrating factor x%y 2.
Since the expression in parentheses is already multiplied by x%, we try an integrating factor of the form I(x, y) =y
Multiplying (/) by y~2, we have

Xy 2By dx—xdy)—2y>dy=0
which can be simplified (see Table 5-1) to
ey =2y dy @)
Integrating both sides of (2), we obtain

3.-1 3

as the solution in implicit form.

Convert y” = 2xy — x into an exact differential equation.
Rewriting this equation in differential form, we have
(—2xy +x)dx+dy=0 )
Here M(x, y) =—2xy + x and N(x, y) = 1. Since

a—Mz—Zx and a—N=O
dy dx

are not equal, (/) is not exact. But

1(oM _IN ) (20-O) __,

N| dy odx 1
is a function of x alone. Using Eq. (5.8), we have I(x,y)=e T integrating factor. Multiplying (/)
by ¢, we obtain

(=2xye™ +xe " )dx+e  dy=0 )

which is exact.

Convert y? dx + xy dy = 0 into an exact differential equation.

Here M(x, y) = y* and N(x, y) = xy. Since

C9—M=2y and oN
dy dx
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5.23.

EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 5

are not equal, (/) is not exact. But

dy ox

5 —

I[BM aNJ_Zy—y_l
y

V = =

is a function of y alone. Using Eq. (5.9), we have as an integrating factor /(x, y) = e Uy = gony = 1/y. Multiplying
the given differential equation by I(x, y) = 1/y, we obtain the exact equation y dx + x dy = 0.

Convert ¥ = into an exact differential equation.

Rewriting this equation in differential form, we have
Yl —xy)dx+xdy=0 ()
Here M(x, y) = y(1 — xy) and N(x, y) = x. Since
oM

——=1-2xy and a—Nzl
dy dx

are not equal, (/) is not exact. Equation (5.7/0), however, is applicable and provides the integrating factor
1 -1
Ay —xyl=yx ()

1(x, y)=

Multiplying (/) by I(x, y), we obtain

Xy;ldx—%dyzo
Xy Xy

which is exact.

Supplementary Problems

In Problems 5.24 through 5.40, test whether the differential equations are exact and solve those that are.

5.24.

5.26.

5.28.

5.30.

5.32.

5.34.

5.36.

5.38.

5.40.

(y+2xy%) dx+ (1 +3x5*+x) dy =0 525. (xy+ 1) dx+(xy—-1)dy=0
e Bxly—x)dx+e dy=0 5.27. 332 dx+ (2 + 4y dy =0
ydx+xdy=0 529. (x—y)dx+(x+y)dy=0
y o2y
(ysinx+xycosx)dx+(xsinx+1)dy=0 531. —=dt+—dy=0
t t
2y 1
—?dt+t—2dy=0 5.33. Y2 dr+dy=0
3.3 4.2 ty—1 1
@y’ —2ty) dt + 3ty*— ) dy =0 535. ——dr——dy=0
ry y
(FP-x)dt—tdx=0 537. (P+x3)di+Qix—x)dx=0
2xe® dt + (1 +e*) dx =0 5.39. sintcosxdt—sinxcostdx=0

(cosx+xcost)dt+ (sint—tsinx)dc=0
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In Problems 5.41 through 5.55, find an appropriate integrating factor for each differential equation and solve.

5.41.

5.43.

5.45.

5.47.

5.49.

5.51.

5.53.

5.55.

(y+1)dx—xdy=0
P+y+y)di—xdy=0
y+xY) dx+xdy=0

dx—2xydy=0

ydx+3xdy=0
xy? dx + (%2 + x%y) dy =0
Y+ +xy)dx—xdy=0

3x3y? dx + 2%y + Xy dy =0

5.42.

5.44.

5.46.

5.48.

5.50.

5.52.

5.54.

In Problems 5.56 through 5.65, solve the initial-value problems.

5.56.

5.58.

5.60.

5.62.

5.64.

Problem 5.10 with x(0) =2

Problem 5.10 with x(1) =—5
Problem 5.26 with y(0) = -1
Problem 5.31 with y(2) =-2

Problem 5.36 with x(1) =5

5.57.

5.59.

5.61.

5.63.

5.65.

ydx+(1-x)dy=0
+xy)dx+xdy=0
Bxly—x) dx+dy=0

2xy dx +y* dy =0

[2xy2 + ;de +4x*ydy=0
xy*dx+x%y dy=0

Y=y de+ (B —x) dy=0

Problem 5.10 with x(2) =0

Problem 5.24 with y(1) =—5
Problem 5.31 with y(0) =-2
Problem 5.32 with y(2) =-2

Problem 5.38 with x(1) =-2



CHAPTER 6

Linear First-Order
Differential Equations

METHOD OF SOLUTION

A first-order linear differential equation has the form (see Chapter 3)
Y +p)y=q(x) (6.1)
An integrating factor for Eq. (6.1) is

I(x) = el dx 6.2)

which depends only on x and is independent of y. When both sides of (6.7) are multiplied by /(x), the resulting
equation

1)y + p()I(x)y = I(x)g(x) (6.3)

is exact. This equation can be solved by the method described in Chapter 5. A simpler procedure is to rewrite
(6.3) as

aon _

I
i q(x)

integrate both sides of this last equation with respect to x, and then solve the resulting equation for y.

REDUCTION OF BERNOULLI EQUATIONS

A Bernoulli differential equation has the form
Y+ p@)y = gx)y" (6.4)
where 7 is a real number. The substitution
z=y' " (6.5)
transforms (6.4) into a linear differential equation in the unknown function z(x).

42
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6.1.

6.2.

6.3.

6.4.

6.5.

Solved Problems

Find an integrating factor for y’ — 3y = 6.
The differential equation has the form of Eq. (6.7), with p(x) = =3 and g(x) = 6, and is linear. Here

Ip() dx =] -3 dx=-3x
so (6.2) becomes

I(x) = P dr = 73 ()

Solve the differential equation in the previous problem.

Multiplying the differential equation by the integrating factor defined by (/) of Problem 6.1, we obtain

—3x

ey =3¢y =6e or i(ye*“) =6e™"
dx

Integrating both sides of this last equation with respect to x, we have

J.di(ye’”) dx = J.6e’3xdx
by

ye =—2e +¢

y=ce* -2

Find an integrating factor for y" — 2xy = x.

The differential equation has the form of Eq. (6.7), with p(x) = —2x and g(x) = x, and is linear. Here

Ip(x) dx = J(~2x) dx = —x2
so (6.2) becomes

I(x) =% =g

(N

Solve the differential equation in the previous problem.

Multiplying the differential equation by the integrating factor defined by (/) of Problem 6.3, we obtain

2 ) 2 _x2 d [ 7)‘2] _x2
ey =2xe'y=xe' or —[ye " ]=xe”
dx
Integrating both sides of this last equation with respect to x, we find that

J.di(ye’xz) dx = J.xe’x2 dx
X

Find an integrating factor for y’ + (4/x)y = x*.
The differential equation has the form of Eq. (6.1), with p(x) = 4/x and g(x) = x*, and is linear. Here

J.p(x)dx=J-%dx=41nle:lnx4
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6.6.

6.7.

6.8.

6.9.

6.10.

LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 6

so (6.2) becomes

— Ip(x)dx_ lnx4_ 4
I(x)=e¢ =e"" =x %)

Solve the differential equation in the previous problem.

Multiplying the differential equation by the integrating factor defined by (/) of Problem 6.5, we obtain
4.7 3 8 d 4 8
XY +4x'y=x" or —(yx)=x
dx
Integrating both sides of this last equation with respect to x, we obtain

4

1 C 1

4 9 5

Y =—x+c or y=—/+—Xx
9 X 9

Solve y" + y = sin x.

11 dx

Here p(x) = 1; hence I(x) = ¢’ “* = ¢*. Multiplying the differential equation by /(x), we obtain

x./ X X L1 d X X 1
e’y +e'y=e'sinx or —(ye*)=e"sinx
dx
Integrating both sides of the last equation with respect to x (to integrate the right side, we use integration by parts
twice), we find

1 . I 1
ye‘:Ee‘(smx—cosx)+c or y:ce”+gsmx—5cosx

Solve the initial-value problem y’ + y = sin x; y(7) = 1.

From Problem 6.7, the solution to the differential equation is

x

1 1
y=ce ' +—sin x ——cos x
2 2

Applying the initial condition directly, we obtain

V4

1 1
l=y(m)=ce*+— or c=—e¢
y(m) 3 5

1 1 1 1
Thus y=—e€"e " +—sin x ——cos x =—(e
2 2 2 2

T—x

+sin x — cos x)

Solve y" — 5y =0.
Here p(x) =—5 and I(x) = ¢/ % = ¢~ Multiplying the differential equation by I(x), we obtain

d
ey —5¢7y=0 or —(ye)=0
y y o (ye™)

Integrating, we obtain ye > = ¢ or y = ce™.

Note that the differential equation is also separable. (See Problem 4.4.)

Solve ﬂ —XZ=-X.
dx

This is a linear differential equation for the unknown function z(x). It has the form of Eq. (6.1) with y replaced
by z and p(x) = g(x) = —x. The integrating factor is

_ 2
1(x)=ef( x)dx =2
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Multiplying the differential equation by /(x), we obtain

_epndz i 2
e X /27_xe x/ZZz_xe x°/2
dx
d, _» e
or 7(16)/2):_)(6.(/2
dx

Upon integrating both sides of this last equation, we have

2 2
-x7/2 —x°/2
=e

ze +c

whereupon 2(x)=ce" " +1

6.11. Solve the initial-value problem 7" — xz = —x; z(0) = —4.

The solution to this differential equation is given in Problem 6.10 as
z2(x)=1+ ce’
Applying the initial condition directly, we have

4=z0)=1+c®=1+c

or ¢ =—5. Thus,

2(x)=1—-"5¢"

6.12. Solve 7' — Ez = %x“.
X 3

This is a linear differential equation for the unknown function z(x). It has the form of Eq. (6.1) with y replaced
by z. The integrating factor is

-2 —21Inlxl Inx2 -2
1(x)=ej( I0dv _ g2l _ pnaT

Multiplying the differential equation by /(x), we obtain

_ _ 2
X727 —2x 3z=§x2

or i(x’zz) = gx2
dx 3

Upon integrating both sides of this last equation, we have
x7z= %x3 +c
9
2 2 5
whereupon zZ(x)=cx" + gx

6.13. Solve £+ 2 0=4
dt 10+ 2t

This is a linear differential equation for the unknown function Q(#). It has the form of Eq. (6.7) with y replaced
by O, x replaced by ¢, p(t) = 2/(10 + 2¢), and ¢(¢) = 4. The integrating factor is

[(t) — eJ‘[2/(10+2t)] dr _ eln [10+21] _ 10 +2¢ (l > 75)
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Multiplying the differential equation by (), we obtain

(10+2t)(2—Q+2Q=40+81
t

or di[(lo +21)0]=40 + 8t
t

Upon integrating both sides of this last equation, we have

(104200 =401+ 4> + ¢

2
whereupon o) = A0r+dr +e (t>-5)
10 +2¢
L do 2
6.14. Solve the initial-value problem — + 0=4; 0(2)=100.
dt 10 +2¢
The solution to this differential equation is given in Problem 6.13 as
40t + 4> + ¢
H=———— (t>-5

o) 10 +2¢ ( )
Applying the initial condition directly, we have

100 = 0(2) = 402) +4&d) +c¢

10 +2(2)

or ¢ = 1304. Thus,

4% + 40t + 1304
)= —— (t>-5
0 2t+10 ( )

6.15. Solve Ci—T + kT =100k, where k denotes a constant.
t

This is a linear differential equation for the unknown function 7(¢). It has the form of Eq. (6.1) with y replaced
by T, x replaced by ¢, p(f) = k, and g(¢) = 100k. The integrating factor is

I(t) = efk dr — okt

Multiplying the differential equation by I(¢), we obtain
e ar + ke"T =100ke"
dt
d kt kt
or —(Te") =100ke
dt

Upon integrating both sides of this last equation, we have

Te" = 100" + ¢

whereupon T(t) = ce™™ + 100

6.16  Solve y’ + xy = xy°.

This equation is not linear. It is, however, a Bernoulli differential equation having the form of Eq. (6.4) with
p(x) = g(x) = x, and n = 2. We make the substitution suggested by (6.5), namely, z = y'~2=y~!, from which follow
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6.17.

6.18.

6.19.

Substituting these equations into the differential equation, we obtain

== or 7 -xz=-x

This last equation is linear. Its solution is found in Problem 6.10 to be z = ce” +1. The solution of the original
differential equation is then
1 1

y=—=—F—"
Z cet?+1

4 1/3

Solve y’—§y=x Y.
X

This is a Bernoulli differential equation with p(x) = =3/x, g(x) =x*, and n = 1. Using Eq. (6.5), we make the

substitution z = y' =" = y3 Thus, y = z¥? and y’ = 27'/*7". Substituting these values into the differential equation,

we obtain

3 3 2 2
B . L N L Z’—*Z=§x4

2/3

This last equation is linear. Its solution is found in Problem 6.12 to be z = cx” + %xS. Since z = y~°, the solution of

the original problem is given implicitly by y*"* = cx” + 2x°, or explicitly by y == (cx® + 2x°)*"2.

Show that the integrating factor found in Problem 6.1 is also an integrating factor as defined in Chapter 5
Eq. (5.7).

The differential equation of Problem 6.1 can be rewritten as

ﬂ=3y+6
X

which has the differential form

dy = (3y +6) dx

or By+6)dx+(-1)dy=0 (@))]
Multiplying (1) by the integrating factor I(x) = =¥, we obtain

Bye ™ + 6¢7) dx + (- ) dy =0 2
Setting M(x,y) =3ye > + 67 and N(x,y)=-e*
we have % =3¢ = %

from which we conclude that (2) is an exact differential equation.

Find the general form of the solution of Eq. (6.1).
Multiplying (6.1) by (6.2), we have

ey’ 4 P dip )y = P g (x) )

i[efp(x)dx
dx

Since 1=¢"7%p(x)
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. . . . d
it follows from the product rule of differentiation that the left side of (/) equals —[ej P@dry] Thus, (1) can be
rewritten as dx

i[ejp(x) dx

I p(x) dx
2
I q(x) 2

yl=e
Integrating both sides of (2) with respect to x, we have
d I/;(,r) dx f/)(x) dx
Ja[e yldx = '[e q(x) dx
or, ej/;(.r)d.ry + Cl — Jejl)(x)(lxq(x) dx (3)
Finally, setting ¢; = —c and solving (3) for y, we obtain
y= Ce—jp(x)zir + e—jp(x)dxJe'[p(x)dxq(x) dx

“

Solved Problems

In Problems 6.20 through 6.49, solve the given differential equations.

6.20.

6.22.

6.24.

6.26.

6.28.

6.30.

6.32.

6.34.

6.36.

6.38.

6.40.

6.42.

6.44.

6.46

D sy=0 621. Y _s5y-0
dx dx
ﬂ—o.my:o 6.23. @+2xy=0
dx dx
Y +3x%y=0 6.25. y —x%y=0
, 1
y =3x%=0 627. y+—y=0
X
y'+gy=0 6.29. y'—%y:O
X X
’ 2 ’ X
y—?y=0 631. Yy -Ty=e
y —T7y=14x 6.33. y —7y=sin2x
, 3 1
Y +x%y =x° 635. y-—y=—
X x
Y =cos x 637. Yy +y=y
xy +y=xy 639. Yy +xy= 6x\/;
Yy +y=y 641. Y +y=y?
d
Y +y=y% 6.43. d—f+50y=0
1
%——zzo 6.45. d—Nsz, (k = a constant)
dr 2t dt
@_lp—t2+3t—2 647. d£+ 2 Q:4

a dt 20—t
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648, 259 L7 —gpe 0 649. P 2,4
dt dz z

Solve the following initial-value problems.

, 2
6.50. Y+—y=x;y(1)=0 6.51. Yy +6xy=0;y(n)=5
X
’ 3 ’ 2 9.5
6.52. Y +2xy=2x";y0)=1 653. y4+—y=—xy;y-1)=2
X
6.54. v +2v=32;v0)=0 6.55. 4q +qg=4cos2t;q(0)=1
dt dt
dN 1 dr

6.56. —+-N=1N(2)=8 6.57. —+0.069T =2.07;T(0)=~30
dr t dt



Applications
of First-Order
Differential Equations

GROWTH AND DECAY PROBLEMS

Let N(7) denote the amount of substance (or population) that is either growing or decaying. If we assume
that dN/dt, the time rate of change of this amount of substance, is proportional to the amount of substance
present, then dN/dt = kN, or

d—N—KNzo (7.1
dt

where £ is the constant of proportionality. (See Problems 7.1-7.7.)

We are assuming that N(¢) is a differentiable, hence continuous, function of time. For population
problems, where N(¢) is actually discrete and integer-valued, this assumption is incorrect. Nonetheless, (7.1)
still provides a good approximation to the physical laws governing such a system. (See Problem 7.5.)

TEMPERATURE PROBLEMS

Newton’s law of cooling, which is equally applicable to heating, states that the time rate of change of the
temperature of a body is proportional to the temperature difference between the body and its surrounding
medium. Let T denote the temperature of the body and let 7,, denote the temperature of the surrounding
medium. Then the time rate of change of the temperature of the body is d77/dt, and Newton’s law of cooling can
be formulated as d7/dt=—k(T —T,,), or as

ar + kT =kT, (7.2)
dt

where k is a positive constant of proportionality. Once k is chosen positive, the minus sign is required in
Newton’s law to make d77/dt negative in a cooling process, when T is greater than 7,,, and positive in a heating
process, when T is less than 7,,. (See Problems 7.8-7.10.)

50
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FALLING BODY PROBLEMS

Consider a vertically falling body of mass m that is being influenced only by gravity g and an air resistance
that is proportional to the velocity of the body. Assume that both gravity and mass remain constant and, for
convenience, choose the downward direction as the positive direction.

Newton’s second law of motion: The net force acting on a body is equal to the time rate of change of the
momentum of the body; or, for constant mass,

dv
F=m— 7.3
7 (7.3)

where F is the net force on the body and v is the velocity of the body, both at time t.

For the problem at hand, there are two forces acting on the body: (1) the force due to gravity given by the
weight w of the body, which equals mg, and (2) the force due to air resistance given by —kv, where k>0 is a
constant of proportionality. The minus sign is required because this force opposes the velocity; that is, it acts in
the upward, or negative, direction (see Fig. 7-1). The net force F on the body is, therefore, F'=mg — kv.
Substituting this result into (7.3), we obtain

dv
mg—kv=m—
8 dt
or ﬂ+£v:g 74
dr m

as the equation of motion for the body.
If air resistance is negligible or nonexistent, then £ =0 and (7.4) simplifies to

dv

av _ 7.5
i g (7.5

kv

Falling body

______ V, gal

| Ground

f gal/min
4' 7 \
Positive x-direction

Fig. 7-1 Fig. 7-2
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(See Problem 7.11.) When & > 0, the limiting velocity v, is defined by

mg
y =" (7.6)
Caution: Equations (7.4), (7.5), and (7.6), are valid only if the given conditions are satisfied. These equa-
tions are not valid if, for example, air resistance is not proportional to velocity but to the velocity squared, or if
the upward direction is taken to be the positive direction. (See Problems 7.14 and 7.15.)

DILUTION PROBLEMS

Consider a tank which initially holds V|, gal of brine that contains a Ib of salt. Another brine solution,
containing b lb of salt per gallon, is poured into the tank at the rate of e gal/min while, simultaneously, the
well-stirred solution leaves the tank at the rate of f gal/min (Fig. 7-2). The problem is to find the amount of salt
in the tank at any time z.

Let O denote the amount (in pounds) of salt in the tank at any time 7. The time rate of change of Q, dQ/dft,
equals the rate at which salt enters the tank minus the rate at which salt leaves the tank. Salt enters the tank at
the rate of be Ib/min. To determine the rate at which salt leaves the tank, we first calculate the volume of brine
in the tank at any time #, which is the initial volume V, plus the volume of brine added et minus the volume of
brine removed f¢. Thus, the volume of brine at any time is

Vo+et—ft (7.7)

The concentration of salt in the tank at any time is Q/(V, + et — ft), from which it follows that salt leaves the
tank at the rate of

Q .
f(VO +et—ft]lb/mm

Thus, d—Q:be—f(L]
dt V, +et—ft
or WO, T oepe (7.8)

dt V,+(e—f)
(See Problems 7.16-7.18.)

ELECTRICAL CIRCUITS

The basic equation governing the amount of current / (in amperes) in a simple RL circuit (Fig. 7-3)
consisting of a resistance R (in ohms), an inductor L (in henries), and an electromotive force (abbreviated emf)
E (in volts) is

dl R E
—+—I=— (7.9
dt L L
For an RC circuit consisting of a resistance, a capacitance C (in farads), an emf, and no inductance (Fig. 7-4),
the equation governing the amount of electrical charge ¢ (in coulombs) on the capacitor is

dq 1 E

dt  RC 1 R (710
The relationship between ¢ and [ is
dgq
I=—2 (7.11)
dt

(See Problems 7.19—7.22.) For more complex circuits see Chapter 14.
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Fig. 7-3 Fig. 7-4

ORTHOGONAL TRAJECTORIES

Consider a one-parameter family of curves in the xy-plane defined by
F(x,y¢)=0 (7.12)

where ¢ denotes the parameter. The problem is to find another one-parameter family of curves, called the
orthogonal trajectories of the family (7.12) and given analytically by

G(x, 5, k)=0 (7.13)

such that every curve in this new family (7.13) intersects at right angles every curve in the original family (7.72).

We first implicitly differentiate (7.12) with respect to x, then eliminate ¢ between this derived equation and
(7.12). This gives an equation connecting x, y, and y’, which we solve for y’ to obtain a differential equation of
the form

&
2= fxy) (7.14)
dx
The orthogonal trajectories of (7./2) are the solutions of
dy___1 (7.15)
e f(x,y)

(See Problems 7.23-7.25.)
For many families of curves, one cannot explicitly solve for dy/dx and obtain a differential equation of the
form (7.14). We do not consider such curves in this book.

Solved Problems

7.1. A person places $20,000 in a savings account which pays 5 percent interest per annum, compounded
continuously. Find (@) the amount in the account after three years, and (b) the time required for the
account to double in value, presuming no withdrawals and no additional deposits.

Let N(#) denote the balance in the account at any time z. Initially, N(0) = 20,000. The balance in the account
grows by the accumulated interest payments, which are proportional to the amount of money in the account. The
constant of proportionality is the interest rate. In this case, k = 0.05 and Eq. (7.1) becomes

aN _ 0.05N =0
dt

This differential equation is both linear and separable. Its solution is

N(@®) = ce”* €))
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At t=0, N(0) =20,000, which when substituted into (/) yields

20,000 = %50 = ¢
With this value of ¢, (/) becomes

N(#) = 20,0000 2
Equation (2) gives the dollar balance in the account at any time 7.
(a) Substituting # =3 into (2), we find the balance after three years to be
N(@3) =20,000%953) = 20,000(1.161834) = $23,236.68

(b) We seek the time ¢ at which N(¢) = $40,000. Substituting these values into (2) and solving for z, we obtain

40,000 = 20,0009
9 = 005

In 121 = 0.05¢
t= L1r1 [21=13.86 years
0.05

A person places $5000 in an account that accrues interest compounded continuously. Assuming no
additional deposits or withdrawals, how much will be in the account after seven years if the interest
rate is a constant 8.5 percent for the first four years and a constant 9.25 percent for the last three years?

Let N(7) denote the balance in the account at any time . Initially, N(0) = 5000. For the first four years, k = 0.085
and Eq. (7.1) becomes

aN _ 0.085N =0
dt

Its solution is
N(t) = ce"08% 0<r<4) @)
At r=0, N(0) = 5000, which when substituted into (/) yields

5000 = %0830 = ¢

and (/) becomes
N(t) = 5000e°98"  (0<r<4) 2)

Substituting 7 = 4 into (2), we find the balance after four years to be
N(t) = 5000e"985® = 5000(1.404948) = $7024.74

This amount also represents the beginning balance for the last three-year period.
Over the last three years, the interest rate is 9.25 percent and (7./) becomes

‘;—N—o.09251v:0 (4<t<7)
t

Its solution is
N(t) = ce®09t 4<t<7) 3)
At 1 =4, N(4) = $7024.74, which when substituted into (3) yields

7024.74 = ce®09%™ = ¢(1.447735) or c=4852.23

and (3) becomes
N(t) = 4852.23e0095  (4<1<7) 4)

Substituting 7 =7 into (4), we find the balance after seven years to be

N(7) = 4852.23£00925(1) = 4852.23(1.910758) = $9271.44
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7.3.

74.

What constant interest rate is required if an initial deposit placed into an account that accrues interest
compounded continuously is to double its value in six years?

The balance N(7) in the account at any time # is governed by (7.7)

aN —kN =0
dt
which has as its solution
N(t) = ce® )

We are not given an amount for the initial deposit, so we denote it as N,. At =0, N(0) = Ny, which when
substituted into (/) yields

Ny=cek®=¢
and (/) becomes
N(t) = Ny e 2)

We seek the value of k for which N=2N, when #=6. Substituting these values into (2) and solving for £,
we find

2N = Nyek©
e =2

6k =1n 12|

k=éln 121=0.1155

An interest rate of 11.55 percent is required.

A bacteria culture is known to grow at a rate proportional to the amount present. After one hour, 1000
strands of the bacteria are observed in the culture; and after four hours, 3000 strands. Find (a) an expres-
sion for the approximate number of strands of the bacteria present in the culture at any time 7 and () the
approximate number of strands of the bacteria originally in the culture.

(a) Let N(¢) denote the number of bacteria strands in the culture at time 7. From (6.1), dN/dt — kN =0, which is
both linear and separable. Its solution is

N(7) = ce! )
At t=1, N=1000; hence,

1000 = ce* 2)
At t=4, N =3000; hence,

3000 = ce** 3

Solving (2) and (3) for k and ¢, we find
k= %ln 3=0.366 and c¢=1000e""% =694

Substituting these values of £ and ¢ into (7), we obtain
N(t) = 694036 )

as an expression for the amount of the bacteria present at any time 7.

(b) We require N at 7= 0. Substituting 7 = 0 into (4), we obtain N(0) = 69403090 = 94,
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7.6.
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The population of a certain country is known to increase at a rate proportional to the number of people
presently living in the country. If after two years the population has doubled, and after three years the
population is 20,000, estimate the number of people initially living in the country.

Let N denote the number of people living in the country at any time #, and let N, denote the number of people
initially living in the country. Then, from (7.1),

aN _N=o0
dt
which has the solution
N = cel @)

At t=0, N = Ny; hence, it follows from (/) that Ny = ceX?, or that ¢ = N,. Thus,

N=Nyek 2

At t=2, N = 2N,. Substituting these values into (2), we have
2N, =N,e** from which k= %ln 2=0.347

Substituting this value into (2) gives
N= NOeO.347t (3)

At t=3, N=20,000. Substituting these values into (3), we obtain

20,000 = Npe®3*P3 = Ny(2.832) or  N,=7062

A certain radioactive material is known to decay at a rate proportional to the amount present. If initially
there is 50 milligrams of the material present and after two hours it is observed that the material has lost
10 percent of its original mass, find (@) an expression for the mass of the material remaining at any time ¢,
(b) the mass of the material after four hours, and (c) the time at which the material has decayed to one
half of its initial mass.

(a) Let N denote the amount of material present at time ¢. Then, from (7.1),

AN _ v =0
dt

This differential equation is separable and linear; its solution is
N=cek @)
At t=0, we are given that N = 50. Therefore, from (1), 50 = ceX?, or ¢ = 50. Thus,
N=50¢ @)

At t=2, 10 percent of the original mass of 50 mg, or 5 mg, has decayed. Hence, at t =2, N =50 — 5 =45.
Substituting these values into (2) and solving for &, we have

45=50e* or k=lln£=—0.053
2 50

Substituting this value into (2), we obtain the amount of mass present at any time 7 as

N=50 e—0.0S3t (3)
where ¢ is measured in hours.

(b) We require N at ¢ = 4. Substituting 7 =4 into (3) and then solving for N, we find that

N = 5020059 = 50 (0.809) = 40.5 mg



CHAP. 7] APPLICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS 57

7.1.

(c) We require  when N =50/2 =25. Substituting N = 25 into (3) and solving for ¢, we find

25=50e"""" or —0.053t= 1n% or t=13hours

The time required to reduce a decaying material to one half its original mass is called the half-life of the
material. For this problem, the half-life is 13 hours.

Five mice in a stable population of 500 are intentionally infected with a contagious disease to test
a theory of epidemic spread that postulates the rate of change in the infected population is proportional
to the product of the number of mice who have the disease with the number that are disease free.
Assuming the theory is correct, how long will it take half the population to contract the disease?

Let N(¢) denote the number of mice with the disease at time 7. We are given that N(0) =5, and it follows that
500 — N(¢) is the number of mice without the disease at time ¢. The theory predicts that

aN _ kN (500 — N) )
dt

where k is a constant of proportionality. This equation is different from (7.7) because the rate of change is no longer
proportional to just the number of mice who have the disease. Equation (/) has the differential form

dN

— —kdt=0 2
N(500 — N)
which is separable. Using partial fraction decomposition, we have

1 _1/500+ 1/500
N(500 - N) N 500 - N

hence (2) may be rewritten as

L L+ 1 dN —kdt=0
500{ N 500-N

Its solution is

ALyt dN—Jkdt:c
5009 N 500 - N

or L(lnlNI—lnISOO—NI)—ktzc
500
which may be rewritten as
In N =500(c + kt)
500 -N
N = 0 HkD 3)
500 -N

But 300k = p300¢ o500k Getting ¢, = 9%, we can write (3) as

N 500 kt
——=ce 4
500-N X

At t=0, N=35. Substituting these values into (4), we find

i — Clesnok(o) =c
495
so ¢; = 1/99 and (4) becomes
N _ Lesoo kt

= 5
500-N 99 -
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7.9.
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We could solve (5) for N, but this is not necessary. We seek a value of r when N =250, one-half the population.
Substituting N = 250 into (5) and solving for 7, we obtain

1= Lesom«
99
99 = 50K

In 99 =500 kt

or t =0.00919/k time units. Without additional information, we cannot obtain a numerical value for the constant of
proportionality £ or be more definitive about z.

A metal bar at a temperature of 100°F is placed in a room at a constant temperature of 0°F. If after
20 minutes the temperature of the bar is 50°F, find (a) the time it will take the bar to reach a temperature
of 25°F and (b) the temperature of the bar after 10 minutes.

Use Eq. (7.2) with T,, = 0; the medium here is the room which is being held at a constant temperature of 0°F.
Thus we have

d—T +kT =0
dt
whose solution is
T=ce™ ()

Since 7'= 100 at £ = 0 (the temperature of the bar is initially 100° F), it follows from (7) that 100 = ce™*© or 100 = c.
Substituting this value into (/), we obtain

T=100e™ (2)
At 1 =20, we are given that 7= 50; hence, from (2),

50 =100e* from which k= ilnﬂ = _—1(—0.693) =0.035
20 100 20

Substituting this value into (2), we obtain the temperature of the bar at any time 7 as
T =100¢ 0% ()

(a) We require # when T = 25. Substituting 7= 25 into (3), we have

25=100¢""" or -0.035¢t= lni

Solving, we find that 7 = 39.6 min.
(b) We require T when ¢ = 10. Substituting # = 10 into (3) and then solving for 7, we find that
T = 1007003900 = 100(0.705) = 70.5° F
It should be noted that since Newton’s law is valid only for small temperature differences, the above

calculations represent only a first approximation to the physical situation.

A body at a temperature of 50°F is placed outdoors where the temperature is 100° F. If after 5 minutes
the temperature of the body is 60°F, find (a) how long it will take the body to reach a temperature of
75°F and (b) the temperature of the body after 20 minutes.

Using (7.2) with T, = 100 (the surrounding medium is the outside air), we have

ar + kT =100k
dt
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7.10.

This differential equation is linear. Its solution is given in Problem 6.15 as
T=ce* + 100 ()

Since 7= 50 when 7=0, it follows from () that 50 = ce™*® + 100, or ¢ = —50. Substituting this value into (1),
we obtain

T =—-50e %+ 100 )
At t=35, we are given that 7 = 60; hence, from (2), 60 = —50e%% + 100. Solving for k, we obtain

—40=-50e"" or k= _—llnﬂ = _—1(—0.223) =0.045
5 50 5

Substituting this value into (2), we obtain the temperature of the body at any time ¢ as
T =-50e"04 1 100 )

(a) We require t when T =75. Substituting 7= 75 into (3), we have

75=-50e"" +100 or ™' = 1
Solving for ¢, we find
1 .
—0.045¢ = IHE or t=154min

(b) We require 7 when ¢ = 20. Substituting # = 20 into (3) and then solving for 7, we find

T =-50e0049C% 1 100 = —50(0.41) + 100 = 79.5° F

A body at an unknown temperature is placed in a room which is held at a constant temperature of 30° F.
If after 10 minutes the temperature of the body is 0° F and after 20 minutes the temperature of the body
is 15°F, find the unknown initial temperature.

From (7.2),
2—7; + kT =30k
Solving, we obtain
T=ce ™ +30 ()

At t= 10, we are given that 7= 0. Hence, from (/),

0=ce'%+30 or ce % =_30 2)
At r =20, we are given that 7= 15. Hence, from (/) again,

15 =ce 2% + 30 or ce %k =_15 3

Solving (2) and (3) for k and ¢, we find

k=$1n2=0.069 and ¢=-30e"" =-30(2) =-60
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7.12.
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Substituting these values into (/), we have for the temperature of the body at any time ¢

T = —-60e709% 1 30 )
Since we require T at the initial time ¢ =0, it follows from (4) that

Ty = —60e 09690 1 30 = _60 + 30 = -30° F

A body of mass 5 slugs is dropped from a height of 100 ft with zero velocity. Assuming no air resist-
ance, find (a) an expression for the velocity of the body at any time ¢, (b) an expression for the position
of the body at any time ¢, and (c¢) the time required to reach the ground.

Falling body

I e Xx=0

x=100
i /////i//////////é

Positive x-direction

Ground

Fig. 7-5

(a) Choose the coordinate system as in Fig. 7-5. Then, since there is no air resistance, (7.5) applies: dv/dt = g. This
differential equation is linear or, in differential form, separable; its solution is v=gr+c. When t=0, v=0
(initially the body has zero velocity); hence 0 = g(0) + ¢, or ¢ = 0. Thus, v = gt or, assuming g = 32 ft/sec?,

v =32t )

(b) Recall that velocity is the time rate of change of displacement, designated here by x. Hence, v = dx/dt, and
(1) becomes dx/dt = 32¢t. This differential equation is also both linear and separable; its solution is

x=16+c, )
But at 7 =0, x = 0 (see Fig. 7-5). Thus, 0 = (16)(0)> + ¢, or ¢, = 0. Substituting this value into (2), we have

x=16£ 3)

(¢) We require t when x = 100. From (3)  =+/(100)/(16) =2.5sec.

A steel ball weighing 2 1b is dropped from a height of 3000 ft with no velocity. As it falls, the ball
encounters air resistance numerically equal to v/8 (in pounds), where v denotes the velocity of the ball
(in feet per second). Find (@) the limiting velocity for the ball and (b) the time required for the ball to
hit the ground.

Locate the coordinate system as in Fig. 7-5 with the ground now situated at x =3000. Here w=2 1b and

k=1/8. Assuming gravity g is 32 ft/sec?, we have from the formula w = mg that 2 = m(32) or that the mass of the
ball is m = 1/16 slug. Equation (7.4) becomes

ﬂ+2v:32
dt
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which has as its solution

v(t)=ce '+ 16 ()

At =0, we are given that v = 0. Substituting these values into (/), we obtain

0=ce?P+16=c+16

from which we conclude that ¢ = —16 and (/) becomes

(@)
(b)

() =-16¢2+ 16 2)
From (1) or (2), we see that as r — %, v — 16 so the limiting velocity is 16 ft/sec?.

To find the time it takes for the ball to hit the ground (x = 3000), we need an expression for the position of the
ball at any time #. Since v = dx/dt, (2) can be rewritten as

dx

= =—16e +16
dt

Integrating both sides of this last equation directly with respect to 7, we have

x(£) =8¢ + 16t + ¢, 3
where c; denotes a constant of integration. At # =0, x = 0. Substituting these values into (3), we obtain

0=8¢2D+16(0)+c, =8 +c,

from which we conclude that ¢; = —8 and (3) becomes

x(f) =8¢ + 16t -8 “
The ball hits the ground when x(7) = 3000. Substituting this value into (4), we have

3000 = 8¢ + 161 -8
or 376 = + 2t ®)

Although (5) cannot be solved explicitly for 7, we can approximate the solution by trial and error, substituting
different values of ¢ into (5) until we locate a solution to the degree of accuracy we need. Alternatively, we
note that for any large value of 7, the negative exponential term will be negligible. A good approximation is
obtained by setting 27 = 376 or ¢ = 188 sec. For this value of 7, the exponential is essentially zero.

7.13. A body weighing 64 Ib is dropped from a height of 100 ft with an initial velocity of 10 ft/sec. Assume
that the air resistance is proportional to the velocity of the body. If the limiting velocity is known to be
128 ft/sec, find (a) an expression for the velocity of the body at any time ¢ and (b) an expression for the
position of the body at any time 7.

(@)

Locate the coordinate system as in Fig. 7-5. Here w = 64 1b. Since w = myg, it follows that mg = 64, or m =2
slugs. Given that v, = 128 ft/sec, it follows from (7.6) that 128 = 64/k, or k = % Substituting these values into
(6.4), we obtain the linear differential equation

v + 1 v=32
dr 4
which has the solution
v=ce™+128 @)

At t=0, we are given that v = 10. Substituting these values into (1), we have 10 = ce” + 128, or ¢ =—118. The
velocity at any time 7 is given by

v=-118¢"+ 128 2)
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(b) Since v = dx/dt, where x is displacement, (2) can be rewritten as

@:—llige”/4 +128
dt

This last equation, in differential form, is separable; its solution is
x=472¢ " + 128t + ¢, A3
At t=0, we have x =0 (see Fig. 7-5). Thus, (3) gives
0=472¢% + (128)(0) + ¢, or ¢ =-472
The displacement at any time ¢ is then given by

x=472¢ + 128¢ — 472

7.14. A body of mass m is thrown vertically into the air with an initial velocity v,. If the body encounters an
air resistance proportional to its velocity, find (a) the equation of motion in the coordinate system of
Fig. 7-6, (b) an expression for the velocity of the body at any time ¢, and (c) the time at which the body
reaches its maximum height.

T Positive x-direction

v |

Rising body

mg
kv

1
|
Ground |

////%/‘//// /A

Fig. 7-6

(a) In this coordinate system, Eq. (7.4) may not be the equation of motion. To derive the appropriate equation,
we note that there are two forces on the body: (1) the force due to the gravity given by mg and (2) the force
due to air resistance given by kv, which will impede the velocity of the body. Since both of these forces act in
the downward or negative direction, the net force on the body is —mg —kv. Using (7.3) and rearranging,
we obtain

Dok, 1)
da m

as the equation of motion.

(b) Equation (1) is a linear differential equation, and its solution is v = ce"*™" — mg/k. At t=0, v =v,; hence
v = ce"®mMO _ (mglk), or ¢ = v, + (mglk). The velocity of the body at any time 7 is



CHAP. 7] APPLICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS 63

(¢) The body reaches its maximum height when v = 0. Thus, we require # when v = 0. Substituting v =0 into (2)
and solving for ¢, we find

k
e—(k/m)t — 1
4 Yok
mg
—(k/m)t =1n !
4 2ok
mg

t=mln[l+v‘]k]
k mg

7.15. A body of mass 2 slugs is dropped with no initial velocity and encounters an air resistance that is
proportional to the square of its velocity. Find an expression for the velocity of the body at any time 7.

The force due to air resistance is —kv?; so that Newton’s second law of motion becomes

mﬂzmg—kv2 or 2ﬂ—64 kv?
dt dt
Rewriting this equation in differential form, we have
2

————dv—-dt=0 1

64 — kv’ 0
which is separable. By partial fractions,

2 2

1 1
= = 8 =+ 8
64 — kv’ (8—\/zv)(8+\/2v) 8—kv 8++kv

Hence (/) can be rewritten as

1

1 1
St |av—dr=0
8| 8 —Vkv 8+\/Zv]

This last equation has as its solution

1 1 1
— + dv—|dt=c
SI 8—x/Ev 8+x/zv] '[

8[ \/Elnls \/_v|+\/_ln|8+\/_v|}—t—c

or

which can be rewritten as
8 + \/— kv
8 — kv

8+\/—v ,SJZ: (C
8— \/—v :

At r=0, we are given that v =0. This implies ¢; = 1, and the velocity is given by

8-+ kv =M o v= itanh dfkt

8—\/Ev \/;

Note that without additional information, we cannot obtain a numerical value for the constant 4.

=8kt + 8ke

or

=+ 68\/;6)
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7.16.

7.17.

7.18.
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A tank initially holds 100 gal of a brine solution containing 20 b of salt. At # =0, fresh water is poured
into the tank at the rate of 5 gal/min, while the well-stirred mixture leaves the tank at the same rate. Find
the amount of salt in the tank at any time z.

Here, V=100, a =20, b =0, and e = f= 5. Equation (7.8) becomes

dg 1
—+—0=0
dt 20 Q
The solution of this linear equation is
Q =c e—t/ZO ( ])

At r=0, we are given that Q = a = 20. Substituting these values into (1), we find that ¢ = 20, so that (/) can be
rewritten as Q = 20e~"?. Note that as r — e, Q — 0 as it should, since only fresh water is being added.

A tank initially holds 100 gal of a brine solution containing 1 Ib of salt. At # =0 another brine solution
containing 1 1b of salt per gallon is poured into the tank at the rate of 3 gal/min, while the well-stirred
mixture leaves the tank at the same rate. Find (a) the amount of salt in the tank at any time ¢ and (b) the
time at which the mixture in the tank contains 2 1b of salt.

(a) Here Vy=100,a=1,b=1, and e = f=3; hence, (7.8) becomes

99 L 0.030=3
dt

The solution to this linear differential equation is
0 =ce™™ +100 )

At t=0, Q =a= 1. Substituting these values into (1), we find 1 = ce® + 100, or ¢ =—99. Then (/) can be
rewritten as

0=-99¢"" +100 2)

(b) We require r when Q = 2. Substituting Q =2 into (2), we obtain

2 — 9964).032 + 100 or 64).032 — %
99
from which
t= —Lln% =0.338 min
0.03 99

A 50-gal tank initially contains 10 gal of fresh water. At # = 0, a brine solution containing 1 1b of salt per
gallon is poured into the tank at the rate of 4 gal/min, while the well-stirred mixture leaves the tank at
the rate of 2 gal/min. Find (a) the amount of time required for overflow to occur and (b) the amount of
salt in the tank at the moment of overflow.

(a) Herea=0,b=1,e=4,f=2,and V, = 10. The volume of brine in the tank at any time 7 is given by (7.7) as
Vo + et — ft = 10 + 2¢. We require # when 10 + 27 = 50; hence, ¢ = 20 min.

(b) For this problem, (7.8) becomes

Q. 2
dt 10+2¢

0=4

This is a linear equation; its solution is given in Problem 6.13 as

40t +48 + ¢

0= 10 +2¢ 0

At t=0, Q =a=0. Substituting these values into (/), we find that ¢ =0. We require Q at the moment of
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7.19.

7.20.

overflow, which from part (a) is ¢ = 20. Thus,

_40(20) + 4(20)
T 10+2(20)

0 =481b

An RL circuit has an emf of 5 volts, a resistance of 50 ohms, an inductance of 1 henry, and no initial
current. Find the current in the circuit at any time 7.

Here E=5, R=50, and L = 1; hence (7.9) becomes

dl
—+501/=5
dt
This equation is linear; its solution is
I=ce™ + L
10
Att=0,1=0; thus, 0 = ce ® + X, or ¢ =—-. The current at any time  is then
1=—L —5(1r+i )
10 10

=50t

The quantity —<te™" in (1) is called the transient current, since this quantity goes to zero (“dies out”) as # — ce.

The quantity - in (/) is called the steady-state current. As t — o, the current I approaches the value of the steady-
state current.

An RL circuit has an emf given (in volts) by 3 sin 2¢, a resistance of 10 ohms, an inductance of 0.5 henry,
and an initial current of 6 amperes. Find the current in the circuit at any time 7.

Here, E =3 sin 2t, R=10, and L =0.5; hence (7.9) becomes

£+201:6sin2t
dt

This equation is linear, with solution (see Chapter 6)
[aue™) = [6e” sin2ear

Carrying out the integrations (the second integral requires two integrations by parts), we obtain

" ﬂsin 2t — icosZt
101 101

I=ce

At =0, I = 6; hence,

6=ce™" + 3—Osin 2(0) - icosZ(O) or 6=c— i
101 101 101

whence ¢ = 609/101. The current at any time ¢ is

= @e’zo’ + ﬂsin 2t — icos 2t
101 101 101

1

As in Problem 7.18, the current is the sum of a transient current, here (609/101)¢™?", and a
steady-state current,

ﬂsin 2t —iCOSZl‘
101 101
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7.22.

7.23.
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Rewrite the steady-state current of Problem 7.20 in the form A sin (27 — ¢). The angle ¢ is called the
phase angle.

Since A sin (27 — ¢) = A(sin 2¢ cos ¢ — cos 27 sin ¢), we require

I, :ﬂsin Zt—icos2t = Acos ¢ sin 2t — Asin ¢ cos 2¢
© 101 101

30 . 3
Thus, A cos ¢ =— and A sin ¢ = —. It now follows that
101 101

30 2+ 3 2=A2cosz¢+Azsinzd)=A2(cos2q)+sin2¢)=A2
101 101

and tan(p:Asm(p: i / 370 =i
Acos¢ | 101 101 ) 10

Consequently, /; has the required form if

A= igz = A and ¢= arctanL =0.0997 radians
aon”  +io1 10

An RC circuit has an emf given (in volts) by 400 cos 2¢, a resistance of 100 ohms, and a capacitance of
1072 farad. Initially there is no charge on the capacitor. Find the current in the circuit at any time z.

We first find the charge g and then use (7.//) to obtain the current. Here, E =400 cos2t, R =100, and
C =1072; hence (7.10) becomes

4q +q=4cos2t
dt

This equation is linear, and its solution is (two integrations by parts are required)
. 8. 4
q=ce” +—sin2t + — cos2t
5 5
Att=0, g =0; hence,

4 4
0=ce @+ §sin 2(0) + —cos2(0) or c=——
5 5 5

Thus qz—ﬂe” +§sin2t+ﬂc052t
5 5 5

and using (7.11), we obtain

dq = ie” + ?cosZt - gsin2t

I=-
dt 5

Find the orthogonal trajectories of the family of curves x> + y*> = ¢%.

The family, which is given by (7.12) with F(x, y, ¢) = x> + y> — ¢?, consists of circles with centers at the origin
and radii c¢. Implicitly differentiating the given equation with respect to x, we obtain
dy X

2x+2yy’=0 or —=-=
dx y
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7.24.

7.25.

Here f(x, y) = —x/y, so that (7.15) becomes

This equation is linear (and, in differential form, separable); its solution is
y=hkx (N

which represents the orthogonal trajectories.
In Fig. 7-7 some members of the family of circles are shown in solid lines and some members of the family

(1), which are straight lines through the origin, are shown in dashed lines. Observe that each straight line intersects
each circle at right angles.

AY

Fig. 7-7

Find the orthogonal trajectories of the family of curves y = cx?.

The family, which is given by (7.12) with F(x, y, ¢) =y — cx?, consists of parabolas symmetric about the
y-axis with vertices at the origin. Differentiating the given equation with respect to x, we obtain dy/dx = 2cx.
To eliminate ¢, we observe, from the given equation, that ¢ = y/x?; hence, dy/dx = 2y/x. Here f(x, y) = 2y/x, so (7.15)
becomes

Q =X

— or xdx+2ydy=0
dx 2y y

The solution of this separable equation is %xz + y® = k. These orthogonal trajectories are ellipses. Some members

of this family, along with some members of the original family of parabolas, are shown in Fig. 7-8. Note that each
ellipse intersects each parabola at right angles.

Find the orthogonal trajectories of the family of curves x> + y* = cx.
Here, F(x, y, ¢) = x> + y* — cx. Implicitly differentiating the given equation with respect to x, we obtain

2x+2yﬂzc
dx
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7.27.

7.28.
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Fig. 7-8

Eliminating ¢ between this equation and x* + y> — cx = 0, we find

4y ﬂ_yz—xz

or
2xy

2x + ZyQ =
dx

Here f(x, y) = (y* — x%)/2xy, so (7.15) becomes

b _ 2w
dx x> -y’

This equation is homogeneous, and its solution (see Problem 4.14) gives the orthogonal trajectories as x> + y* = ky.

Supplementary Problems

Bacteria grow in a nutrient solution at a rate proportional to the amount present. Initially, there are 250 strands of the
bacteria in the solution which grows to 800 strands after seven hours. Find (a) an expression for the approximate
number of strands in the culture at any time ¢ and (b) the time needed for the bacteria to grow to 1600 strands.

Bacteria grow in a culture at a rate proportional to the amount present. Initially, 300 strands of the bacteria are in
the culture and after two hours that number has grown by 20 percent. Find (@) an expression for the approximate
number of strands in the culture at any time ¢ and () the time needed for the bacteria to double its initial size.

A mold grows at a rate proportional to its present size. Initially there is 2 oz of this mold, and two days later there
is 3 oz. Find (@) how much mold was present after one day and () how much mold will be present in ten days.
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7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

7.36.

7.37.

7.38.

7.39.

7.40.

7.41.

7.42.

7.43.

7.44.

7.45.

A mold grows at a rate proportional to its present size. If the original amount doubles in one day, what proportion
of the original amount will be present in five days? Hint: Designate the initial amount by Nj. It is not necessary to
know N, explicitly.

A yeast grows at a rate proportional to its present size. If the original amount doubles in two hours, in how many
hours will it triple?

The population of a certain country has grown at a rate proportional to the number of people in the country. At
present, the country has 80 million inhabitants. Ten years ago it had 70 million. Assuming that this trend continues,
find (a) an expression for the approximate number of people living in the country at any time 7 (taking # =0 to be
the present time) and (b) the approximate number of people who will inhabit the country at the end of the next
ten-year period.

The population of a certain state is known to grow at a rate proportional to the number of people presently living in
the state. If after 10 years the population has trebled and if after 20 years the population is 150,000, find the number
of people initially living in the state.

A certain radioactive material is known to decay at a rate proportional to the amount present. If initially there are
100 milligrams of the material present and if after two years it is observed that 5 percent of the original mass has
decayed, find (a) an expression for the mass at any time ¢ and (b) the time necessary for 10 percent of the original
mass to have decayed.

A certain radioactive material is known to decay at a rate proportional to the amount present. If after one hour it is
observed that 10 percent of the material has decayed, find the half-life of the material. Hint: Designate the initial
mass of the material by N,. It is not necessary to know N, explicitly.

Find N(7) for the situation described in Problem 7.7.

A depositor places $10,000 in a certificate of deposit which pays 6 percent interest per annum, compounded
continuously. How much will be in the account at the end of seven years, assuming no additional deposits or
withdrawals?

How much will be in the account described in the previous problem if the interest rate is 71 percent instead?

A depositor places $5000 in an account established for a child at birth. Assuming no additional deposits or with-
drawals, how much will the child have upon reaching the age of 21 if the bank pays 5 percent interest per annum
compounded continuously for the entire time period?

Determine the interest rate required to double an investment in eight years under continuous compounding.

Determine the interest rate required to triple an investment in ten years under continuous compounding.

How long will it take a bank deposit to triple in value if interest is compounded continuously at a constant rate of
54 percent per annum?

How long will it take a bank deposit to double in value if interest is compounded continuously at a constant rate of
82 percent per annum?

A depositor currently has $6000 and plans to invest it in an account that accrues interest continuously. What interest
rate must the bank pay if the depositor needs to have $10,000 in four years?

A depositor currently has $8000 and plans to invest it in an account that accrues interest continuously at the rate of
6+ percent. How long will it take for the account to grow to $13,500?

A body at a temperature of 0°F is placed in a room whose temperature is kept at 100°F. If after 10 minutes
the temperature of the body is 25°F, find (a) the time required for the body to reach a temperature of 50°F, and
(b) the temperature of the body after 20 minutes.
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7.47.

7.48.

7.49.

7.50.

7.51.

7.52.

7.53.

7.54.

7.55.

7.56.

7.57.

7.58.

7.59.

7.60.

7.61.
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A body of unknown temperature is placed in a refrigerator at a constant temperature of 0° F. If after 20 minutes the
temperature of the body is 40° F and after 40 minutes the temperature of the body is 20°F, find the initial temper-
ature of the body.

A body at a temperature of 50°F is placed in an oven whose temperature is kept at 150° F. If after 10 minutes the
temperature of the body is 75°F, find the time required for the body to reach a temperature of 100° F.

A hot pie that was cooked at a constant temperature of 325°F is taken directly from an oven and placed outdoors
in the shade to cool on a day when the air temperature in the shade is 85°F. After 5 minutes in the shade, the
temperature of the pie had been reduced to 250° F. Determine (a) the temperature of the pie after 20 minutes and
(b) the time required for the pie to reach 275°F.

A cup of tea is prepared in a preheated cup with hot water so that the temperature of both the cup and the brewing
tea is initially 190° F. The cup is then left to cool in a room kept at a constant 72° F. Two minutes later, the temper-
ature of the tea is 150° F. Determine (a) the temperature of the tea after 5 minutes and (b) the time required for the
tea to reach 100° F.

A bar of iron, previously heated to 1200° C, is cooled in a large bath of water maintained at a constant temperature
of 50° C. The bar cools by 200° in the first minute. How much longer will it take to cool a second 200°?

A body of mass 3 slugs is dropped from a height of 500 ft in a with zero velocity. Assuming no air resistance, find
(a) an expression for the velocity of the body at any time 7 and (b) an expression for the position of the body at any
time ¢ with respect to the coordinate system described in Fig. 7-5.

(a) Determine the time required for the body described in the previous problem to hit the ground. (b) How long
would it take if instead the mass of the body was 10 slugs?

A body is dropped from a height of 300 ft with an initial velocity of 30 ft/sec. Assuming no air resistance, find (a)
an expression for the velocity of the body at any time 7 and (b) the time required for the body to hit the ground.

A body of mass 2 slugs is dropped from a height of 450 ft with an initial velocity of 10 ft/sec. Assuming no air
resistance, find (a) an expression for the velocity of the body at any time ¢ and () the time required for the body to
hit the ground.

A body is propelled straight up with an initial velocity of 500 ft/sec in a vacuum with no air resistance. How long
will it take the body to return to the ground?

A ball is propelled straight up with an initial velocity of 250 ft/sec in a vacuum with no air resistance. How high
will it go?

A body of mass m is thrown vertically into the air with an initial velocity v,. The body encounters no air resistance.
Find (a) the equation of motion in the coordinate system of Fig. 7-6, (b) an expression for the velocity of the body
at any time ¢, (¢) the time ¢,, at which the body reaches its maximum height, (d) an expression for the position of
the body at any time 7, and (e) the maximum height attained by the body.

Redo Problem 7.51 assuming there is air resistance which creates a force on the body equal to —2v 1b.
Redo Problem 7.54 assuming there is air resistance which creates a force on the body equal to 1v Ib.

A ball of mass 5 slugs is dropped from a height of 1000 ft. Find the limiting velocity of the ball if it encounters a
force due to air resistance equal to —1-v.

A body of mass 2 kg is dropped from a height of 200 m. Find the limiting velocity of the body if it encounters a
resistance force equal to —50v.

A body of mass 10 slugs is dropped from a height of 1000 ft with no initial velocity. The body encounters an air
resistance proportional to its velocity. If the limiting velocity is known to be 320 ft/sec, find (a) an expression for
the velocity of the body at any time 7, (b) an expression for the position of the body at any time ¢, and (c) the time
required for the body to attain a velocity of 160 ft/sec.
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A body weighing 8 1b is dropped from a great height with no initial velocity. As it falls, the body encounters a force
due to air resistance proportional to its velocity. If the limiting velocity of this body is 4 ft/sec, find (a) an expres-
sion for the velocity of the body at any time ¢ and (b) an expression for the position of the body at any time .

A body weighing 160 Ib is dropped 2000 ft above ground with no initial velocity. As it falls, the body encounters a
force due to air resistance proportional to its velocity. If the limiting velocity of this body is 320 ft/sec, find (a) an
expression for the velocity of the body at any time ¢ and (b) an expression for the position of the body at any time .

A tank initially holds 10 gal of fresh water. At =0, a brine solution containing 11b of salt per gallon is poured into
the tank at a rate of 2 gal/min, while the well-stirred mixture leaves the tank at the same rate. Find (a) the amount
and (b) the concentration of salt in the tank at any time .

A tank initially holds 80 gal of a brine solution containing $1b of salt per gallon. At =0, another brine solution con-
taining 1 Ib of salt per gallon is poured into the tank at the rate of 4 gal/min, while the well-stirred mixture leaves the
tank at the rate of 8 gal/min. Find the amount of salt in the tank when the tank contains exactly 40 gal of solution.

A tank contains 100 gal of brine made by dissolving 80 1b of salt in water. Pure water runs into the tank at the rate
of 4 gal/min, and the well-stirred mixture runs out at the same rate. Find (a) the amount of salt in the tank at any
time ¢ and (b) the time required for half the salt to leave the tank.

A tank contains 100 gal of brine made by dissolving 60 1b of salt in water. Salt water containing 1 1b of salt per
gallon runs in at the rate of 2 gal/min and the well-stirred mixture runs out at the rate of 3 gal/min. Find the amount
of salt in the tank after 30 minutes.

A tank contains 40 1 of solution containing 2 g of substance per liter. Salt water containing 3 g of this substance
per liter runs in at the rate of 4 1/min and the well-stirred mixture runs out at the same rate. Find the amount of
substance in the tank after 15 minutes.

A tank contains 40 1 of a chemical solution prepared by dissolving 80 g of a soluble substance in fresh water. Fluid
containing 2 g of this substance per liter runs in at the rate of 3 I/min and the well-stirred mixture runs out at the
same rate. Find the amount of substance in the tank after 20 minutes.

An RC circuit has an emf of 5 volts, a resistance of 10 ohms, a capacitance of 1072 farad, and initially a charge of
5 coulombs on the capacitor. Find (a) the transient current and () the steady-state current.

An RC circuit has an emf of 100 volts, a resistance of 5 ohms, a capacitance of 0.02 farad, and an initial charge on
the capacitor of 5 coulombs. Find (@) an expression for the charge on the capacitor at any time ¢ and (b) the current
in the circuit at any time ¢.

An RC circuit has no applied emf, a resistance of 10 ohms, a capacitance of 0.04 farad, and an initial charge on the
capacitor of 10 coulombs. Find (a) an expression for the charge on the capacitor at any time ¢ and (b) the current in
the circuit at any time 7.

A RC circuit has an emf of 10 sin 7 volts, a resistance of 100 ohms, a capacitance of 0.005 farad, and no initial
charge on the capacitor. Find (a) the charge on the capacitor at any time ¢ and () the steady-state current.

A RC circuit has an emf of 300 cos 2f volts, a resistance of 150 ohms, a capacitance of 1/6x1072 farad, and an
initial charge on the capacitor of 5 coulombs. Find (a) the charge on the capacitor at any time ¢ and (b) the steady-
state current.

A RL circuit has an emf of 5 volts, a resistance of 50 ohms, an inductance of 1 henry, and no initial current. Find
(a) the current in the circuit at any time ¢ and (b) its steady-state component.

A RL circuit has no applied emf, a resistance of 50 ohms, an inductance of 2 henries, and an initial current of
10 amperes. Find (a) the current in the circuit at any time ¢ and (b) its transient component.

A RL circuit has a resistance of 10 ohms, an inductance of 1.5 henries, an applied emf of 9 volts, and an initial current
of 6 amperes. Find (@) the current in the circuit at any time ¢ and (b) its transient component.
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7.81.

7.82.

7.83.

7.84.

7.85.

7.86.

7.87.

7.88.

7.89.

APPLICATIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS [CHAP. 7

An RL circuit has an emf given (in volts) by 4 sin 7, a resistance of 100 ohms, an inductance of 4 henries, and no
initial current. Find the current at any time 7.

The steady-state current in a circuit is known to be Zsin ¢ — - cos ¢. Rewrite this current in the form A sin ( — ¢).
Rewrite the steady-state current of Problem 7.21 in the form A cos (2t + ¢). Hint: Use the identity cos (x +y) =
COS X €OS y — sin x sin y.

Find the orthogonal trajectories of the family of curves x* — y? = %

Find the orthogonal trajectories of the family of curves y = ce".
Find the orthogonal trajectories of the family of curves x> — y? = cx.
Find the orthogonal trajectories of the family of curves x> + y? = cy.
Find the orthogonal trajectories of the family of curves y> = 4cx.

One hundred strands of bacteria are placed in a nutrient solution in which a plentiful supply of food is constantly
provided but space is limited. The competition for space will force the bacteria population to stabilize at 1000
strands. Under these conditions, the growth rate of bacteria is proportional to the product of the amount of bacteria
present in the culture with the difference between the maximum population the solution can sustain and the current
population. Estimate the amount of bacteria in the solution at any time 7 if it is known that there were 200 strands
of bacteria in the solution after seven hours.

A new product is to be test marketed by giving it free to 1000 people in a city of one million inhabitants, which is
assumed to remain constant for the period of the test. It is further assumed that the rate of product adoption will be
proportional to the number of people who have it with the number who do not. Estimate as a function of time the
number of people who will adopt the product if it is known that 3000 people have adopted the product after four
weeks.

A body of mass 1 slug is dropped with an initial velocity of 1 ft/sec and encounters a force due to air resistance
given exactly by —8v2. Find the velocity at any time 1.



CHAPTER 8

Linear Differential
Equations: Theory
of Solutions

LINEAR DIFFERENTIAL EQUATIONS
An nth-order linear differential equation has the form
b,(x)y™ + b, ()" + -+ b, (x)y” + b (x)y + by (x)y = g(x) (8.1)
where g(x) and the coefficients b; (x) (j=0, 1, 2, ..., n) depend solely on the variable x. In other words, they
do not depend on y or on any derivative of y.
If g(x) =0, then Eq. (8.7) is homogeneous; if not, (8.1) is nonhomogeneous. A linear differential equation

has constant coefficients if all the coefficients b,(x) in (8.1) are constants; if one or more of these coefficients is
not constant, (8.7) has variable coefficients.

Theorem 8.1. Consider the initial-value problem given by the linear differential equation (8.7) and the » initial

conditions
y(x()) = Cp» y,(x()) =Cy, y”(x()) =0Cpyenns y(nil)(x()) =Cp-1 (82)
If g(x) and b;(x) (j=0, 1, 2, ..., n) are continuous in some interval $ containing x, and if

b,(x) #0 in ¥, then the initial-value problem given by (8.7) and (8.2) has a unique (only one)
solution defined throughout $.

When the conditions on b,(x) in Theorem 8.1 hold, we can divide Eq. (8.1) by b,(x) to get
Y7 +a, YU+t a, (0)Y + a (x)Y + ay(x)y = o(x) (8.3)

where a;(x) = by(x)/b,(x) (j=0,1, ..., n—1) and ¢(x) = g(x)/b,(x).
Let us define the differential operator L(y) by

Ly =y" +a,,(x) y" ™+ +a,(x)y" + a,(x)y" + a,(x)y 84
where a;(x) (i=0, 1,2, ..., n— 1) is continuous on some interval of interest. Then (8.3) can be rewritten as
L(y) =9 (8.5)
and, in particular, a linear homogeneous differential equation can be expressed as
L(y)=0 (8.6)
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LINEARLY INDEPENDENT SOLUTIONS

A set of functions {y;(x), y»(x), ..., y,(x)} is linearly dependent on a < x < b if there exist constants ¢,
Cyy ..., Cy, nOt all zero, such that
Cly]('x)+C2y2('x)+.“+cnyn('x)50 (87)
ona<x<h.

Example 8.1. The set {x, 5x, 1, sin x} is linearly dependent on [—1, 1] since there exist constants ¢; =5, ¢, =1, ¢3 =0,
and ¢4 = 0, not all zero, such that (8.7) is satisfied. In particular,

-5-x+1-5%x+0-1+0-sinx=0

Note that ¢; =c¢, = --- = ¢, =0 is a set of constants that always satisfies (8.7). A set of functions is linearly
dependent if there exists another set of constants, not all zero, that also satisfies (8.7). If the only solution to
(8.7)is ¢y =cy=---=¢, =0, then the set of functions {y;(x), y»(x), ... , y,(x)} is linearly independent on
a<x<bh.

Theorem 8.2. The nth-order linear homogeneous differential equation L(y) =0 always has n linearly inde-

pendent solutions. If y;(x), y,(x), ..., y,(x) represent these solutions, then the general solution
of L(y)=0is
YX) =3 (x) +6,y,(x) + -+ +¢,3,(x) (8.8)
where ¢y, ¢y, ... , ¢, denote arbitrary constants.
THE WRONSKIAN
The Wronskian of a set of functions {z;(x), zo(x), ... , z,(x)} on the interval a < x < b, having the property

that each function possesses n — 1 derivatives on this interval, is the determinant

Zl Z2 e Zn

’ ’ ’

Z Z 7

” 4 4

W(z, 2505 2,) =| 74 zZ ;
-1 -1 -1
Z](n ) Z;n )L Zf,n )

Theorem 8.3. 1If the Wronskian of a set of n functions defined on the interval a < x < b is nonzero for at
least one point in this interval, then the set of functions is linearly independent there. If the
Wronskian is identically zero on this interval and if each of the functions is a solution to the
same linear differential equation, then the set of functions is linearly dependent.

Caution: Theorem 8.3 is silent when the Wronskian is identically zero and the functions are not known to be
solutions of the same linear differential equation. In this case, one must test directly whether Eq. (8.7) is satisfied.

NONHOMOGENEOUS EQUATIONS

Let y, denote any particular solution of Eq. (8.5) (see Chapter 3) and let y,, (henceforth called the homogeneous
or complementary solution) represent the general solution of the associated homogeneous equation L(y) = 0.

Theorem 8.4. The general solution to L(y) = ¢(x) is

Y=YtV (8.9)
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8.1.

8.2.

8.3.

8.4.

Solved Problems

State the order of each of the following differential equations and determine whether any are linear:

(@) 2xy” +x%y —(sinx)y=2 b)) W Hxy+y=x2
© y'-y=0 d) 3y +xy=e”
X, X d4y 4
(e) 2" +ey' =1 ) —+y"=0
dx
(8 Y +y+y=x (h) y+2y+3=0

(@) Second-order. Here by(x) = 2x, b(x) = x%, by(x) = —sin x, and g(x) = 2. Since none of these terms depends on
y or any derivative of y, the differential equation is linear.

(b) Third-order. Since b3 =y, which does depend on y, the differential equation is nonlinear.

(¢) Second-order. Here by(x) =1, bi(x) =0, by(x) =1, and g(x) = 0. None of these terms depends on y or any
derivative of y; hence the differential equation is linear.

(d) First-order. Here b(x) =3, by(x) =x, and g(x):ef"z; hence the differential equation is linear. (See also
Chapter 5.)

(e) Third-order. Here b3(x) = 2¢*, by(x) = €%, bi(x) = by(x) =0, and g(x) = 1. None of these terms depends on y or
any of its derivatives, so the equation is linear.

(f) Fourth-order. The equation is nonlinear because y is raised to a power higher than unity.

(g) Second-order. The equation is nonlinear because the first derivative of y is raised to a power other than unity,
here the one-half power.

(h) First-order. Here b;(x) = 1, by(x) = 2, and g(x) = —3. None of these terms depends on y or any of its derivatives,
so the equation is linear.

Which of the linear differential equations given in Problem 8.1 are homogeneous?

Using the results of Problem 8.1, we see that the only linear differential equation having g(x) =0 is (¢), so
this is the only one that is homogeneous. Equations (a), (d), (e), and (k) are nonhomogeneous linear differential
equations.

Which of the linear differential equations given in Problem 8.1 have constant coefficients?

In their present forms, only (c) and (&) have constant coefficients, for only in these equations are all the
coefficients constants. Equation (e) can be transformed into one having constant coefficients by multiplying it by
e*. The equation then becomes

2y/// + y// =

Find the general form of a linear differential equation of (a) order two and () order one.

(a) For a second-order differential equation, (8.7) becomes

by(x)y” + by(x)y" + bo(x)y = g(x)

If by(x) # 0, we can divide through by it, in which case (8.3) takes the form

Y+ a0y + ag(0)y = o(x)
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(b) For a first-order differential equation, (8./) becomes
If b;(x) # 0, we can divide through by it, in which case (8.3) takes the form
Y +ag(x)y=¢ (%)

This last equation is identical to (6.1) with p(x) = ay(x) and g(x) = ¢ (x).

8.5.  Find the Wronskian of the set {¢*, ¢*}.

x —x

e e
W(e',e™)=ge* de*|= ¢
dx  dx

=e'(—e)—e " (e)=-2

x —x

8.6.  Find the Wronskian of the set {sin 3x, cos 3x}.

sin 3x cos 3x .
W(sin 3 30 sin 3x cos 3x
sin 3x, cos 3x) = i =
d(sin 3x) - d(cos 3x) 3cos3x —3sin 3x
| dx dx

=—3(sin” 3x +cos’ 3x) =-3

8.7.  Find the Wronskian of the set {x, x%, x°}.

2 3

X x X
d(x) d(x*) d(x)
W(x, x*, x*) =] dx dx dx

) ) A
ax’ ax’ ax’

2 3

X X X
=1 2x 3x*=2x°
0 2 o6x

This example shows that the Wronskian is in general a nonconstant function.

8.8.  Find the Wronskian of the set {1 —x, 1 +x, 1 — 3x}.

I-x 1+x 1-3x
dl-x) d(Q+x) d(1-3x)
Wa-x,14x,1-3x)= dx dx dx
d’(1-x) d*(1+x) d*(1-3x)
dx? dx* dx?
1-x 1+x 1-3x
=| -1 1 -3 |=0
0 0 0

8.9.  Determine whether the set {e*, ¢} is linearly dependent on (—o, »).

The Wronskian of this set was found in Problem 8.5 to be —2. Since it is nonzero for at least one point in the
interval of interest (in fact, it is nonzero at every point in the interval), it follows from Theorem 8.3 that the set is

linearly independent.
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8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

Redo Problem 8.9 by testing directly how Eq. (8.7) is satisfied.
Consider the equation
ciet+cre™=0 1)
We must determine whether there exist values of ¢; and ¢,, not both zero, that will satisfy (/). Rewriting (1), we
have c,e™ = —c e or

¢, = —c1e¥ 2)

For any nonzero value of ¢, the left side of (2) is a constant whereas the right side is not; hence the equality in (2)
is not valid. It follows that the only solution to (2), and therefore to (1), is ¢; = ¢, = 0. Thus, the set is not linearly
dependent; rather it is linearly independent.

Is the set {x, x*, x*} linearly dependent on (o, 2)?

The Wronskian of this set was found in Problem 8.7 to be 2x. Since it is nonzero for at least one point in
the interval of interest (in particular, at x =3, W =154 # 0), it follows from Theorem 8.3 that the set is linearly
independent.

Consider the set {x?, x, 1} on (%, ). By testing directly, show that this set is linearly independent.

Consider the equation
X+ ex+c3=0 )

Since this equation is valid for all x only if ¢; = ¢, =c3 =0, the given set is linearly independent. Note that if any
of the ¢’s were not zero, then the quadratic equation (/) could hold for at most two values of x, the roots of the equa-
tion, and not for all x.

Determine whether the set {1 —x, 1 + x, 1 — 3x} is linearly dependent on (—o°, ).

The Wronskian of this set was found in Problem 8.8 to be identically zero. In this case, Theorem 8.3 provides
no information, and we must test directly how Eq. (8.7) is satisfied.
Consider the equation

i1 =x)+c(1+x)+c3(1-3x)=0 )
which can be rewritten as
(—c1+c=3c3)x+(c;+c+¢3) =0
This linear equation can be satisfied for all x only if both coefficients are zero. Thus,
—c1+c;—3¢c3=0 and ci+cy+ce3=0

Solving these equations simultaneously, we find that ¢; = —2¢3, ¢, = c3, with ¢; arbitrary. Choosing c; = 1 (any other
nonzero number would do), we obtain ¢; =—2, ¢, =1, and ¢3 =1 as a set of constants, not all zero, that satisfy (7).
Thus, the given set of functions is linearly dependent.

Redo Problem 8.13 knowing that all three functions of the given set are solutions to the differential
equation y” =0.

The Wronskian is identically zero and all functions in the set are solutions to the same linear differential equation,
so it now follows from Theorem 8.3 that the set is linearly dependent.

Find the general solution of y” + 9y =0 if it is known that two solutions are

y1(x) = sin 3x and Yo(x) = cos 3x
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8.16.

8.17.

8.18.

8.19.

8.20.

8.21.
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The Wronskian of the two solutions was found in Problem 8.6 to be —3, which is nonzero everywhere. It
follows, first from Theorem 8.3, that the two solutions are linearly independent and, then from Theorem 8.2 that the
general solution is

y(x) = ¢y sin 3x + ¢, cos 3x

Find the general solution of y” —y =0 if it is known that two solutions are

yi)=¢e and »x)=e™

It was shown in both Problems 8.9 and 8.10 that these two functions are linearly independent. It follows from
Theorem 8.2 that the general solution is

V(x) =c1e" + cre™

Two solutions of y” —2y" + y=0 are ¢™ and 5¢™. Is the general solution y = ¢;e™ + ¢,5¢™?

We calculate

Wie™,se)=| ¢ Se

—e -5

Therefore the functions e™ and Se™ are linearly dependent (see Theorem 8.3), and we conclude from Theorem 8.2
that y = cie™ + ¢,5¢™ is not the general solution.

Two solutions of y” — 2y + y =0 are ¢* and xe*. Is the general solution y = c;e* + c,xe™?
We have

X X

e xe )

W(e, xe*)=| = #£0
e

e’ + xe'

It follows, first from Theorem 8.3, that the two particular solutions are linearly independent and then from Theorem 8.2,
that the general solution is

y=ce"+ cxe’

V4

2

Three solutions of y”” =0 are x, x, and 1. Is the general solution y = c;x> + c,x + ¢3?

Yes. It was shown in Problems 8.11 and 8.12 that three solutions are linearly independent, so the result is
immediate from Theorem 8.3.

7"’

Two solutions of y”” — 6y” + 11y’ — 6y = 0 are ¢* and e**. Is the general solution y = c,e* + c,e**?

No. Theorem 8.2 states that the general solution of a third-order linear homogeneous differential equation is a
combination of three linearly independent solutions, not two.

Use the results of Problem 8.16 to find the general solution of
Y —y=2sinx
if it is known that —sin x is a particular solution.

We are given that y, =—sin x, and we know from Problem 8.16 that the general solution to the associated
homogeneous differential equation is y;, = cie* + c,e™™. It follows from Theorem 8.4 that the general solution to the
given nonhomogeneous differential equation is

Y=Ypty,=cie + e —sinx
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8.22.

8.23.

8.24.

8.25.

Use the results of Problem 8.18 to find the general solution of
Y =2y +y=x°
if it is known that x> + 4x + 6 is a particular solution.
We have from Problem 8.18 that the general solution to the associated homogeneous differential equation is
v =cre* + cpxe’
Since we are given that y, = x% + 4x + 6, it follows from Theorem 8.4 that

y=yh+yp:cle"+czxe"+x2+4x+6

Use the results of Problem 8.18 to find the general solution of
Y =2 +y=e¥
if it is known that 1¢* is a particular solution.
We have from Problem 8.18 that the general solution to the associated homogeneous differential equation is
Vi =c1e" + cpxe”

In addition, we are given that y, = %eb‘. It follows directly from Theorem 8.4 that

1
y=y,ty,= e’ +cxet + Zegx

Determine whether the set {x°, Ix*|} is linearly dependent on [-1, 1].

Consider the equation
X+l =0 1)

Recall that Ix*l = x% if x 2 0 and Ix’l = —x3 if x < 0. Thus, when x > 0, (/) becomes

X+ e’ =0 2)

whereas when x < 0, (/) becomes
X —ex*=0 (&)

Solving (2) and (3) simultaneously for ¢, and c,, we find that the only solution is ¢; = ¢, = 0. The given set is, therefore,
linearly independent.

Find W3, I¥’]) on [-1, 1].

We have
Y x>0 di] 3x* ifx>0
|x3={ " ?fx‘o (d’;)= 0 ifx=0
s —3x* ifx<0
Then, for x>0,
XX
we 1) = =
3x% 3x°
For x <0,
L
w13 = =0
3x* —3x7
For x =0,
00
W, 1x3 ) = =0
00

Thus, W3, 1¥*1) =0 on [-1, 1].
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8.26.

8.27.

8.28.

8.29.

8.30.

8.31.

8.32.
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Do the results of Problems 8.24 and 8.25 contradict Theorem 8.3?

No. Since the Wronskian of two linearly independent functions is identically zero, it follows from Theorem 8.3
that these two functions, x> and Ix’l, are nor both solutions of the same linear homogeneous differential equation of
the form L(y) =0.

Two solutions of y” — (2/x)y’ =0 on [~1, 1] are y = x*> and y = Ix’l. Does this result contradict the solution
to Problem 8.26?

No. Although W(x?, 1x*l) = 0 and both y = x* and y = Ix’| are linearly independent solutions of the same linear
homogeneous differential equation y” — (2/x)y’ =0, this differential equation is not of the form L(y)=0. The
coefficient —2/x is discontinuous at x = 0.

The initial-value problem y"=24/lyl; y(0) = 0 has the two solutions y = x Ix| and y = 0. Does this result
violate Theorem 8.1?

No. Here ¢ = ZM , which depends on y; therefore, the differential equation is not linear and Theorem 8.1 does
not apply.

Determine all solutions of the initial-value problem y” + ¢y’ + (x + 1)y=0; y (1) =0, y'(1) =0.

Here, by(x) =1, b1(x) = €%, by(x) = x + 1, and g(x) = 0 satisfy the hypotheses of Theorem 8.1; thus, the solution to
the initial-value problem is unique. By inspection, y =0 is a solution. It follows that y = 0 is the only solution.

Show that the second-order operator L(y) is linear; that is

Liciyi + c2y2) = eik(y1) + e2L(y2)
where ¢ and ¢, are arbitrary constants and y; and y, are arbitrary n-times differentiable functions.

In general,
L) =y"+ a;(x)y" + ap(x)y

Thus Licy +63,) = (e, +6,3,)" +a (x)(e,y, +6,3,) + ay(x)(e,y, +¢,3,)
=)+ 6,)) + a(x)ey] + a,(x)c,y; + ay(x)e,y, + a,(x)c,y,
=c, [y + a,(x)y; + a,(xX)y, ]+ ¢, [y + a,(x)y, + a,(x)y,]
=cLk(y) + L)

Prove the principle of superposition for homogeneous linear differential equations; that is, if y; and
¥, are two solutions of L(y) =0, then cy; + ¢,y, is also a solution of L(y) =0 for any two constants ¢,
and c,.

Let y, and y, be two solutions of L(y) = 0; that is, L(y,) =0 and L(y,) = 0. Using the results of Problem 8.30,
it follows that

L(ciyy +c2y2) = ¢k (y1) + c;k(y2) = ¢1(0) + c2(0) =0

Thus, ¢y, + ¢,y is also a solution of L(y) =0.

Prove Theorem 8.4.
Since L(y;) =0 and L(y,) = ¢ (), it follows from the linearity of L that

LO)=L(y,+y)=Ln+L(y,)=0+¢(x)=9¢(x)

Thus, y is a solution.
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To prove that it is the general solution, we must show that every solution of L(y) = ¢ (x) is of the form (8.9).
Let y be any solution of L(y) = ¢ (x) and set z=y —y,. Then

L@ =L(y-y,)=L(»M-L(y,)=0x)-0x)=0

so that z is a solution to the homogeneous equation L(y) = 0. Since z =y —y,, it follows that y = z + y,, where z is
a solution of L(y) =0.

Supplementary Problems

8.33.  Determine which of the following differential equations are linear:

(@ y'+xy+2y=0 (h) y"—y=x

() ¥y +5y=0 d) YP+x" +xy" =y +2y=x>+x+ 1
(&) Y +2xy +y=4xy’ () Y -2y=xy

(9 Y +yy=x (h)y ¥+ -1y =2y +y=5sinx

(i) y +y(sinx)=x (j) Y +x(siny)=x

(k) Y +e'=0 () Y +e'=0

8.34. Determine which of the linear differential equations in Problem 8.33 are homogeneous.
8.35. Determine which of the linear differential equations in Problem 8.33 have constant coefficients.

In Problems 8.36 through 8.49, find the Wronskians of the given sets of functions and, where appropriate, use that information
to determine whether the given sets are linearly independent.

8.36.  {3x,4x} 837. {x%x}

8.38. {x} %) 8.39. (¥} x}

8.40. {x%5) 8.41. {¥% %}

8.42. {e¥ ™) 8.43. {e¥ e}

8.44. {3¢™, 5¢*) 845. {x,1,2x-7}

846. {x+1,x>+x,2x>—x-3} 847. {21, x%

8.48. (¢ ¢, e} 8.49. {sinx, 2 cos x, 3 sin x + cos x}

8.50. Prove directly that the set given in Problem 8.36 is linearly dependent.
8.51.  Prove directly that the set given in Problem 8.41 is linearly dependent.
8.52.  Prove directly that the set given in Problem 8.44 is linearly dependent.
8.53.  Prove directly that the set given in Problem 8.45 is linearly dependent.

8.54.  Prove directly that the set given in Problem 8.46 is linearly dependent.
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8.55.

8.56.

8.57.

8.58.

8.59.

8.60.

8.61.

8.62.

8.63.

8.64.

8.65.

8.66.

8.67.

8.68.

8.69.

8.70.
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Prove directly that the set given in Problem 8.49 is linearly dependent.
Using the results of Problem 8.42, construct the general solution of y” — 4y = 0.
Using the results of Problem 8.43, construct the general solution of y” — 5y" + 6y = 0.

What can one say about the general solution of y” + 16y = 0 if two particular solutions are known to be y, = sin 4x
and y, = cos 4x?

What can one say about the general solution of y” — 8y’ = 0 if two particular solutions are known to be y, = €3 and
W= 1?

What can one say about the general solution of y”+y” =0 if two particular solutions are known to be y, =8 and
Yo = 1?

”r

What can one say about the general solution of y”” —y” =0 if two particular solutions are known to be y; =x and

yy,=e*?

”r

What can one say about the general solution of y” + y” + y" + y = 0 if three particular solutions are known to be the

functions given in Problem 8.49?

”r

What can one say about the general solution of y” — 2y” —y’" + 2y = 0 if three particular solutions are known to be

the functions given in Problem 8.48?

What can one say about the general solution of @®y/dx® = 0 if three particular solutions are known to be the functions
given in Problem 8.47?

Find the general solution of y” + y = x2, if one solution is y = x*> — 2, and if two solutions of y” +y = 0 are sin x and
COS X.

2

Find the general solution of y” —y=x?, if one solution is y =-x? -2, and if two solutions of y”—y=0 are e*

and 3e*.

”

Find the general solution of y” —y”—y +y=5, if one solution is y=35, and if three solutions of y” —y
—y +y=0are ¢, ¢, and xe".

The initial-value problem y’ — (2/x)y = 0; y(0) = 0 has two solutions y = 0 and y = x2. Why doesn’t this result violate
Theorem 8.1?

Does Theorem 8.1 apply to the initial-value problem y” — (2/x)y = 0; y(1) = 3?

The initial-value problem xy” — 2y = 0; y(0) = 0 has two solutions y =0 and y = x*>. Why doesn’t this result violate
Theorem 8.1?



CHAPTER 9

Second-Order

Linear Homogeneous
Differential
Equations with
Constant Coefficients

INTRODUCTORY REMARK

Thus far we have concentrated on first-order differential equations. We will now turn our attention to the
second-order case. After investigating solution techniques, we will discuss applications of these differential
equations (see Chapter 14).

THE CHARACTERISTIC EQUATION

Corresponding to the differential equation
Y +ay +apy=0 9.1
in which a; and a are constants, is the algebraic equation
M+al+ay=0 9.2)

which is obtained from Eq. (9.1) by replacing y”, y" and y by A%, A!, and A° = 1, respectively. Equation (9.2) is
called the characteristic equation of (9.1).

Example 9.1. The characteristic equation of y”+3y —4y=0 is A2+3A—4=0; the characteristic equation of
Y =2y +y=0is A2—2A+1=0.
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Characteristic equations for differential equations having dependent variables other than y are obtained
analogously, by replacing the jth derivative of the dependent variable by A/ (j =0, 1, 2).
The characteristic equation can be factored into

A=A =22 =0 9.3)

THE GENERAL SOLUTION

The general solution of (9.1) is obtained directly from the roots of (9.3). There are three cases to consider.

Case 1. A, and A, both real and distinct. Two linearly independent solutions are " and ¢**

the general solution is (Theorem 8.2)

, and

y=ce" +c,e™ 9.4)

In the special case A, = —A, the solution (9.4) can be rewritten as y = k; cosh A;x + k, sinh A,x.

Case 2. A;=a+ ib, a complex number. Since a, and q in (9.1) and (9.2) are assumed real, the roots
of (9.2) must appear in conjugate pairs; thus, the other root is A, = a — ib. Two linearly independent
solutions are e“*®*¥ and e~ and the general complex solution is

y= dle(aJr ib)x + dze(“ —ib)x (95)
which is algebraically equivalent to (see Problem 9.16)
y =™ cos bx + c,e™ sin bx 9.6)

Case 3. A, =A,. Two linearly independent solutions are ¢** and xe}”‘x, and the general solution is
y=c,e" +c,xe"” (9.7)

Warning: The above solutions are not valid if the differential equation is not linear or does not have constant
coefficients. Consider, for example, the equation y” — x?y = 0. The roots of the characteristic equation are A, = x
and A, = —x, but the solution is not

_ 2 _42
e (= =ce’ +ce’

y=¢ +ce

Linear equations with variable coefficients are considered in Chapters 27, 28 and 29.

Solved Problems

9.1. Solvey”—y —2y=0.

The characteristic equation is A> — A —2 = 0, which can be factored into (A + 1)(A—2) = 0. Since the roots
A;=—1 and A, =2 are real and distinct, the solution is given by (9.4) as

y=cie "+ e

9.2. Solvey” -7y =0.

The characteristic equation is A2 — 7A = 0, which can be factored into (A — 0)(A — 7) = 0. Since the roots A; = 0
and A, = 7 are real and distinct, the solution is given by (9.4) as

y=c1e™ + ce™ = ¢) + e
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93. Solvey”-5y=0.

The characteristic equation is A2 —5 =0, which can be factored into (A — \/g)(h + \/g) =0. Since the roots
A= J5 and A, =— V5 are real and distinct, the solution is given by (9.4) as

5 —V5x
y= cleﬁ‘ +c,e "

94. Rewrite the solution of Problem 9.3 in terms of hyperbolic functions.

Using the results of Problem 9.3 with the identities

M =cosh Ax+sinh Ax and e =cosh Ax — sinh Ax

we obtain,

— \/g,\ —5x
y=ce +C2€

=c¢,(cosh \/gx + sinh x/gx) + ¢, (cosh x/gx —sinh \/gx)
=(c, +c,)cosh J5x+ (¢, —c,)sinh J5x
=k, cosh \/gx + k, sinh x/gx

where k; = ¢+ ¢, and ky =c| — ;.

9.5. Solve y+10y+21y=0.
Here the independent variable is 7. The characteristic equation is
A2+ 10A+21=0
which can be factored into
A+3)A+7)=0
The roots A; = =3 and A, = —7 are real and distinct, so the general solution is

y=cie M+ cpe

9.6. Solve ¥ —-0.01x=0.
The characteristic equation is
A2-001=0
which can be factored into
A-0.)(A+0.1)=0
The roots A; =0.1 and A, =—0.1 are real and distinct, so the general solution is

y =10+ cpe 0l

or, equivalently,
y =k cosh 0.17 + k, sinh 0.1¢

9.7. Solve y”+4y" +5y=0.
The characteristic equation is
M+4r+5=0

Using the quadratic formula, we find its roots to be

LN O O R

2

These roots are a complex conjugate pair, so the general solution is given by (9.6) (witha=-2 and b= 1) as

y=ce2* cos x + c,e” > sin x
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9.8.

9.9.

9.10.

9.11.

9.12.

SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

Solve y” +4y =0.
The characteristic equation is
A +4L=0
which can be factored into

(A= 20)(h+2i) =0

[CHAP. 9

These roots are a complex conjugate pair, so the general solution is given by (9.6) (with @ =0 and b =2) as

Yy =y coS 2x + ¢ sin 2x

Solve y” — 3y + 4y =0.
The characteristic equation is
A —-30+4=0

Using the quadratic formula, we find its roots to be

Ao T -4 3 T

2 2 2

These roots are a complex conjugate pair, so the general solution is given by (9.6) as

J7

V7 .
y= cle(s/z)"COSTx + cze“””sm7x

Solve y — 6y + 25y =0.
The characteristic equation is
A —6L+25=0
Using the quadratic formula, we find its roots to be

2
po O ENEO 43S L,

5 =

These roots are a complex conjugate pair, so the general solution is

y =€ cos 4t + c,e sin 4t

2
Solve d—zl + 2oﬂ +2007 =0.
dt dt

The characteristic equation is
A% — 201 +200 =0
Using the quadratic formula, we find its roots to be

5 o —QOEJQ0)" ~4(200) _ 10

2

These roots are a complex conjugate pair, so the general solution is

I=ce'% cos 10t + coe7'% sin 107

Solve y” — 8y + 16y =0.
The characteristic equation is
A —8L+16=0

which can be factored into
A-4)2=0
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9.13.

9.14.

9.15.

9.16.

The roots A; = A, = 4 are real and equal, so the general solution is given by (9.7) as
y = ce™ + coxe™

Solve y" = 0.

The characteristic equation is A> = 0, which has roots A, = A, = 0. The solution is given by (9.7) as

y = c1€™ + cxe® = ¢; + cox

Solve X +4x +4x=0.

The characteristic equation is

M +4h+4=0
which can be factored into
M+2)?%=0

The roots A, = A, = =2 are real and equal, so the general solution is

2t

x=cie 2+ cpte™

d°N dN
——-20—+ N =0.
dt dt
Dividing both sides of the differential equation by 100, to force the coefficient of the highest derivative to be

unity, we obtain

Solve 100

2
9N 029N 001w =0
di di

Its characteristic equation is
A -021+0.01=0
which can be factored into
(A=0.12=0

The roots A; =L, = 0.1 are real and equal, so the general solution is

N = c]eo'”+ Czte().lr

Prove that (9.6) is algebraically equivalent to (9.5).
Using Euler’s relations

e = cos bx + i sin bx e ™ = cos bx — i sin bx

we can rewrite (9.5) as

iba —iba A ib. —iba
y=dleaxerv+dzemexv=eaV(dlelx+dze !\’)

ax

= e"[d,(cos bx + isin bx) + d,(cos bx — isin bx)]
=e"[(d, + d,)cosbx +i(d, - d,)sin bx]

=c,e™ cosbx + c,e™ sin bx @)

where ¢ =d; + d, and ¢, = i(d; — d,).

Equation (/) is real if and only if ¢; and ¢, are both real, which occurs, if and only if d; and d, are com-
plex conjugates. Since we are interested in the general real solution to (9.1), we restrict d; and d, to be a
conjugate pair.
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Supplementary Problems

Solve the following differential equations.

917. y'-y=0 9.18. y' -y -30y=0

9.19. ' -2y"+y=0 9.20. y'+y=0

9.21. y'+2y'+2y=0 9.22. y'—-T7y=0

9.23. y"+6y"+9y=0 9.24. y"+2y"+3y=0

9.25. y”"-3y'-5y=0 9.26. y'+y + iy =0

9.27. X-20x+64x=0 9.28. X +60x+500x=0

9.29. i-3x+x=0 9.30. Xx-10x+25x=0

9.31. X+25x=0 9.32. X+25x=0

933. X+x+2x=0 934, i—-2u+4u=0

9.35. ii—4u+2u=0 9.36. ii—36u=0

9.37. ii—36u=0 9.38. dzzQ - Sd—Q +70=0

dt dt

939. 2 790 55 9.40. dzf—l8£+81P:0
dt dt dt dt

9.41. &P + 2d—P +9P=0 9.42. &N + Sd—N —-24N=0
dx’ dx dx’ dx

9.43. &N + Sd—N +24N =0 9.44. T + 3Od—T +225T =0
dx’ dx de’ do

9.45. <R +5 R _ 0

40> T do

[CHAP. 9



CHAPTER 10

nth-Order Linear
Homogeneous
Differential Equations
with Constant
Coefficients

THE CHARACTERISTIC EQUATION

The characteristic equation of the differential equation

y(”)_ﬁr_an_ly(”’l)_lr_...+a1y'+aoy:0 (]0])
with constant coefficients a; (=0, 1, ..., n—1) is
N+a, AN~ '+ +ai+ay=0 (10.2)

The characteristic equation (/0.2) is obtained from (10.1) by replacing y by M (j=0, 1,..., n—1).
Characteristic equations for differential equations having dependent variables other than y are obtained analo-
gously, by replacing the jth derivative of the dependent variable by M (j=0, 1, ..., n—1).

Example 10.1. The characteristic equation of y® —3y” +2y” —y=0 is A*~3A3+2A2—1=0. The characteristic
equation of
dx [ d’x _dx

d5 —37“'5?—7)(:0
t t t

is AM-3+50-7=0

Caution: Characteristic equations are only defined for linear homogeneous differential equations with
constant coefficients.
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THE GENERAL SOLUTION
The roots of the characteristic equation determine the solution of (70.1). If the roots A, A,, ..., A, are all
real and distinct, the solution is

_ Ax
y=ce" +ce

MY 4 cne}‘"" (10.3)
If the roots are distinct, but some are complex, then the solution is again given by (/0.3). As in Chapter 9, those
terms involving complex exponentials can be combined to yield terms involving sines and cosines. If A is a root
of multiplicity p [that is, if (A — A,)? is a factor of the characteristic equation, but (A — A,)” * ! is not] then there
will be p linearly independent solutions associated with A, given by e™*,xe™*,x’¢™",...,x""'e**. These
solutions are combined in the usual way with the solutions associated with the other roots to obtain the complete
solution.

In theory it is always possible to factor the characteristic equation, but in practice this can be extremely
difficult, especially for differential equations of high order. In such cases, one must often use numerical techniques
to approximate the solutions. See Chapters 18, 19 and 20.

Solved Problems

10.1. Solve y” —6y” + 11y’ — 6y =0.
The characteristic equation is A*> — 6A% + 11A — 6 = 0, which can be factored into
=D =2)A-3)=0
The roots are A; = 1, A, = 2, and A3 = 3; hence the solution is

y=cie + e + cze*

10.2.  Solve y* —9y” + 20y =0.

The characteristic equation is A* — 9A% + 20 = 0, which can be factored into
A =2)(h+2)A =5 A ++/5)=0

The roots are A} =2, A, =2, A, = \/g, and A, = —\/g; hence the solution is

V5.

T+ qe'ﬁx

_ 2x —2x
y=ce +C2€

= k, cosh 2x + k, sinh 2x + k, cosh~/5x + k, sinh/5x

+cye

10.3. Solve y —5y=0.

The characteristic equation is A —5=0, which has the single root A, =5. The solution is then y=c,e
(Compare this result with Problem 6.9.)

S5x

10.4. Solve y” — 6y” + 2y’ + 36y =0.

The characteristic equation, A~ 6A%+ 2L +36=0, has roots A; =2, A, =4+iy2, and A,=4—i2.
The solution is

y:Cle—z,v +dze(4+iﬁ)x +d3e(4—iﬁ)x
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10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

which can be rewritten, using Euler’s relations (see Problem 9.16) as

y=ce " + e’ cosv2x + cyet sin2x

4 3 2
Solve £ 44X 74X 4 6o,
dt dt dt dt

The characteristic equation, A*— 4A% + 7A% — 4L + 6 =0, has roots A, =2+ 2, A, =2- 2, A=1i, and
A4 = —i. The solution is

xzdle(znﬁ)z +dze(27iﬁ)l +d3eir +d4e—ix

If, using Euler’s relations, we combine the first two terms and then similarly combine the last two terms,
we can rewrite the solution as

x = c,e* cos\2t + ¢, sin/2t + ¢, cost + ¢, sint

Solve y + 8y” + 24y” + 32y’ + 16y =0.

The characteristic equation, A* + 8A3 + 24A? + 32A + 16 = 0, can be factored into (A + 2)* = 0. Here A, = -2 is
a root of multiplicity four; hence the solution is

y=c1e 2 + coxe >+ cqxe X + exde >

d&’p d'P _dP _d’P dP
———F " 2—F+2—F+—-P=0.
dt dt dt dt dt
The characteristic equation can be factored into (A — 1)3(A + 1)> = 0; hence, A, = 1 is a root of multiplicity three
and A, = —1 is a root of multiplicity two. The solution is

Solve

P =cie + cote' + c3te! + cpe” + cste™!

4 3 2
Solve j—?—Sd—g+32d—?—64£

+640=0.
x dx dx dx

The characteristic equation has roots 2 +i2 and 2 £ i2; hence A, =2+ i2 and A, =2 — i2 are both roots of
multiplicity two. The solution is
Q — dle(2+ i2)x + dzxe(2+i2)x + dSe(Z—Q)x + d4xe(2—i2)x
=¥ (d ™ + dye ™) + xe™ (dre'™ + dye ™)
=¥ (¢} cos 2x + ¢ sin 2x) + xe* (¢, cos 2x + ¢, sin 2x)

= (¢} + cox) €2 cos 2x + (c3 + c4x) e sin 2x

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if one solution is known to be x’e*".

If x>¢* is a solution, then so too are x%¢*', xe**, and ¢**. We now have four linearly independent solutions to a
fourth-order linear, homogeneous differential equation, so we can write the general solution as

Y(x) = 3™ + cyx%e™

+ crxe™ + e
Determine the differential equation described in Problem 10.9.

The characteristic equation of a fourth-order differential equation is a fourth-degree polynomial having
exactly four roots. Because x’¢*" is a solution, we know that A = 4 is a root of multiplicity four of the corresponding
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10.11.

10.12.

10.13.

10.14.

10.15.

nth-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS [CHAP. 10

characteristic equation, so the characteristic equation must be (A — 4)*=0, or
At = 1613 + 962 — 256\ + 256 = 0

The associated differential equation is

Y —16y” +96y” — 256y”+ 256y =0

Find the general solution to a third-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if two solutions are known to be e >* and sin 3x.

If sin 3x is a solution, then so too is cos 3x. Together with ¢ >, we have three linearly independent solutions

to a third-order linear, homogeneous differential equation, and we can write the general solution as

y(x) = c;e7 + ¢, cos 3x + ¢5 sin 3x

Determine the differential equation described in Problem 10.11.

The characteristic equation of a third-order differential equation must have three roots. Because ¢ >* and sin 3x

are solutions, we know that A = —2 and A = * i3 are roots of the corresponding characteristic equation, so this equation
must be

A +2)A—i3)(h+i3)=0
or AM+202+90+18=0

The associated differential equation is

”

V7 +2y"+9y +18y=0

Find the general solution to a sixth-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if one solution is known to be x%¢”* cos 5x.

If x%¢7* cos 5x is a solution, then so too are xe’™ cos 5x and e”* cos 5x. Furthermore, because complex roots of

a characteristic equation come in conjugate pairs, every solution containing a cosine term is matched with another
solution containing a sine term. Consequently, x%¢’* sin 5x, xe”* sin 5x, and e’ sin 5x are also solutions. We now
have six linearly independent solutions to a sixth-order linear, homogeneous differential equation, so we can write

the general solution as

2,0x

Y(x) = ¢;x%e™ cos 5x + cox?e™ sin 5x + cyxe’™

€os 5x + cyxe™ sin 5x + cse’* cos 5x + cge™ sin Sx

Redo Problem 10.13 if the differential equation has order 8.

An eighth-order linear differential equation possesses eight linearly independent solutions, and since we can
only identify six of them, as we did in Problem 10.13, we do not have enough information to solve the problem. We
can say that the solution to Problem 10.13 will be part of the solution to this problem.

d* d’ d’ d
Solve —‘): - —g) 5521362 =36y =0 if one solution is xe*".
dx dx dx* dx
If xe* is a solution, then so too is e>* which implies that (A —2)? is a factor of the characteristic equation
At — 403 — 502 + 36\ — 36 = 0. Now,

MY — 40 = 5\% +36L - 36
-2y

=A -9

so two other roots of the characteristic equation are A =3, with corresponding solutions e** and ¢~**. Having
identified four linearly independent solutions to the given fourth-order linear differential equation, we can write the
general solution as

y(x) = ¢ + coxe™ + e3¢ + e
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Supplementary Problems

In Problems 10.16 through 10.34, solve the given differential equations.

10.16.

10.18.

10.20.

10.22.

10.24.

10.26.

10.28.

10.30.

10.32.

10.34.

V72— +2y=0 10.17. y”—y"—y +y=0

V3 43y —y=0 10.19. y”"—y"+y —y=0

Y 42y +y=0 10.21. y®—-y=0

YD +2y” 2y —y=0 10.23. Yy —4y” + 16y +32y=0

Y 45y =0 1025, y®P+2y” +3y"+2y +y=0

YO — 5y 1 16y” + 36y” — 16y — 32y =0 10.27. ‘Z;f + 4% +6 ‘Zf + 4% +x=0
‘;f:o 10.29. %+10%+9x=0

%_ ‘Zf +25%—125x:0 1031, @ +g"-2g=0

¢P =3¢ +2¢=0 10.33. N”— 12N” - 28N + 480N =0

5 4 3 2
d—’5+ T T A A
do° " d do® " do T do

In Problems 10.35 through 10.41, a complete set of roots is given for the characteristic equation of an nth-order near homoge-
neous differential equation in y(x) with real numbers as coefficients. Determine the general solution of the differential equation.

10.35.

10.37.

10.39.

10.41.

10.42.

10.43.

10.44.

10.45.

10.46.

10.47.

10.48.

10.49.

10.50.

2,8,-14 10.36. 0,+i19

0,0,2+i9 10.38. 2+i9,2+i9

5,5,5,-5,-5 10.40. +i6, +i6, +i6
—3+i,-3%+i,3+i,3+i

Determine the differential equation associated with the roots given in Problem 10.35.

Determine the differential equation associated with the roots given in Problem 10.36.
Determine the differential equation associated with the roots given in Problem 10.37.
Determine the differential equation associated with the roots given in Problem 10.38.
Determine the differential equation associated with the roots given in Problem 10.39.

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if one solution is known to be x’¢ ™.

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if two solutions are cos 4x and sin 3x.

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if one solution is x cos 4x.

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if two solutions are xe?* and xe™".



The Method of
Undetermined
Coefficients

The general solution to the linear differential equation L(y) = ¢(x) is given by Theorem 8.4 as y =y, +y,
where y, denotes one solution to the differential equation and y,, is the general solution to the associated homo-
geneous equation, L(y) =0. Methods for obtaining y, when the differential equation has constant coefficients
are given in Chapters 9 and 10. In this chapter and the next, we give methods for obtaining a particular solution
Yy, once yy, is known.

SIMPLE FORM OF THE METHOD

The method of undetermined coefficients is applicable only if ¢(x) and all of its derivatives can be written
in terms of the same finite set of linearly independent functions, which we denote by {y;(x), y,(x), ... , y,(x)}.
The method is initiated by assuming a particular solution of the form

V) = Ay () + Apyr(x) + -+ + A, y,(x)

where A, A,, ... , A, denote arbitrary multiplicative constants. These arbitrary constants are then evaluated by
substituting the proposed solution into the given differential equation and equating the coefficients of like terms.

Case 1. ¢(x) =p,(x), an nth-degree polynomial in x. Assume a solution of the form
yp=A,,x”+A,1,|x”"+ e+ A+ A (11.1)

where A; (j=0, 1,2, ..., n) is a constant to be determined.

Case 2. ¢(x) = ke®™ where k and o are known constants. Assume a solution of the form

yp=Ae™ (11.2)

where A is a constant to be determined.
Case 3. ¢(x) = k; sin Bx + k, cos Bx where ky, k;, and 8 are known constants. Assume a solution

94
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of the form
y, = A sin fx + B cos Px (11.3)

where A and B are constants to be determined.

Note: (11.3) in its entirety is assumed even when k; or k, is zero, because the derivatives of sines or
cosines involve both sines and cosines.

GENERALIZATIONS

If ¢(x) is the product of terms considered in Cases 1 through 3, take y, to be the product of the corresponding
assumed solutions and algebraically combine arbitrary constants where possible. In particular, if ¢(x) = ¢®p,(x)
is the product of a polynomial with an exponential, assume

Yy = €M (A, X"+ A, X+ Ax + Ag) (11.4)

where A; is as in Case 1. If, instead, @(x) =e®p,(x) sin Bx is the product of a polynomial, exponential,
and sine term, or if ¢(x) =e*p,(x) cos PBx is the product of a polynomial, exponential, and cosine term, then
assume

Y, = e sin Bx (A, x" + .- + Ajx + Ag) + e™ cos Bx (Bx" + --- + Bix + B) (11.5)

where A;and B; (j=0, 1, ..., n) are constants which still must be determined.
If ¢(x) is the sum (or difference) of terms already considered, then we take y, to be the sum (or difference)
of the corresponding assumed solutions and algebraically combine arbitrary constants where possible.

MODIFICATIONS

If any term of the assumed solution, disregarding multiplicative constants, is also a term of y,, (the homoge-
neous solution), then the assumed solution must be modified by multiplying it by x™, where m is the smallest
positive integer such that the product of x” with the assumed solution has no terms in common with y,.

LIMITATIONS OF THE METHOD

In general, if ¢(x) is not one of the types of functions considered above, or if the differential equation does
not have constant coefficients, then the method given in Chapter 12 applies.

Solved Problems

11.1. Solve y” —y — 2y = 4x%.

From Problem 9.1, y, = ¢;e™ + c,e*. Here ¢(x) = 4x%, a second-degree polynomial. Using (/1.1), we assume that
¥y =Ax? + Aix + Ay )
Thus, y, = 2A,x + A} and y, = 2A,. Substituting these results into the differential equation, we have

24, — (A + A)) — 2(Ax° + Ajx + Ag) = 4x?
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11.2.

11.3.
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or, equivalently,
(—2A)x% + (24, — 2A)x + (24, — A — 2A0) = 4 + (0)x + 0
Equating the coefficients of like powers of x, we obtain
—2A,=4 —2A,-2A,=0 24— A —24,=0
Solving this system, we find that A, =2, A; =2, and A; =—3. Hence (/) becomes
yp=—2x2+2x—3
and the general solution is

yzyh+yp=cle_x+c262)‘—2x2+2x—3

Solve y” —y" =2y = e

From Problem 9.1, y, = ¢;e ™ + c,¢™. Here ¢(x) has the form displayed in Case 2 with k=1 and o= 3. Using
(11.2), we assume that

yp=Ae™ e)
Thus, y;, = 3A¢* and Vy= 9A¢™. Substituting these results into the differential equation, we have

9Ae™ — 3463 —2Ae¥ = ¥ or 4Ae =¥

so that (/) becomes y, = %e”. The general solution then is

It follows that 4A =1, or A=

1
)

~ 1
y=ce" + czeb + Zeh

Solve y” —y" — 2y = sin 2x.

Again by Problem 9.1, y, = ¢;e ™ + c,¢*. Here ¢(x) has the form displayed in Case 3 with k; = 1, k, =0, and
B=2. Using (/1.3), we assume that

yp = A sin 2x + B cos 2x (@)

Thus, y), = 2A cos 2x — 2B sin 2x and y, = —4A sin 2x — 4B cos 2x. Substituting these results into the differential
equation, we have

(—4A sin 2x — 4B cos 2x) — (2A cos 2x — 2B sin 2x) — 2(A sin 2x + B cos 2x) = sin 2x

or, equivalently,
(—6A + 2B) sin2x + (=6B — 2A) cos 2x = (1) sin 2x + (0) cos 2x
Equating coefficients of like terms, we obtain
—6A + 2B =1 —-2A-6B=0

Solving this system, we find that A = —3/20 and B = 1/20. Then from (/),
y, = —isin 2x + Lcost
v 20 20
and the general solution is

3 . 1
y=ce™ +ce” ——sin2x + —cos2x
20 20
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11.4.

11.5.

.. . .t t
Solve yj — 6y +25y = 2s1n5 - cosz.
From Problem 9.10,

yp = c1€3 cos 4t + c,e sin 4t

Here ¢(#) has the form displayed in Case 3 with the independent variable ¢ replacing x, k; =2, k,=—1, and 8 =1.
Using (/1.3), with ¢ replacing x, we assume that

t t
= Asin— + Bcos— )
¥y, 3 5 @)
Consequently,
= écosf _Zginl
Yy 2 2 2 2
. A.t B t
and y,=—=sin———cos—
4 2 4 2

Substituting these results into the differential equation, we obtain

—ésini—ﬁcosi -6 écosi—gsin£ +25 AsinL+Bcos£ =2sin£—cos£
4 2 4 4 2 2 2 2 2 2 2 2

or, equivalently
%A +3B sini +|-3A+ %B cosi = 2sin£ - cosi
4 2 4 2 2 2
Equating coefficients of like terms, we have

P a43B=2 -34+2B=11
4 4

It follows that A = 56/663 and B = —20/663, so that (/) becomes

56 .t t
¥, =——sin————-cos—
663 2 663 2
The general solution is
. 56 .t 20 t
y=y,+, =ce” cosdt +c,e’ sindt + —sin— — —cos—

663 2 663 2

Solve y— 6y +25y=64¢™".
From Problem 9.10,

yp = c1e3 cos 4t + c,e sin 4t

Here ¢(¢) has the form displayed in Case 2 with the independent variable ¢ replacing x, k = 64 and a=—1. Using
(11.2), with t replacing x, we assume that

yp=Ae” 0]
Consequently, y, =—Ae™" and y, = Ae™". Substituting these results into the differential equation, we obtain
Ae™"— 6(=Ae™") + 25(Ae™) = 64e!

or, equivalently, 32Ae™" = 64¢7". It follows that 32A = 64 or A =2, so that (/) becomes y, = 2¢™". The general
solution is

Y=y +y,=c1e¥ cos 4t + ¢y’ sin 4t + 2¢!
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Solve % — 6y + 25y =507’ —36¢” — 63t +18.

Again by Problem 9.10,
v, = c1e cos 4t + cpe™ sin 4t

Here ¢(¢) is a third-degree polynomial in z. Using (/1.1) with ¢ replacing x, we assume that

y, = A3t + Aot + Ayt + Ay )
Consequently,
¥, =3A4% +2A,1 + A
and y, =06A¢ +2A,

Substituting these results into the differential equation, we obtain
(A5t + 2A,) — 6(3A5F + 2A51 + Ay) + 25(A38 + Axf? + Ayt + Ag) = 508 — 362 — 631 + 18
or, equivalently,
(25A5)F + (=18A5 + 25A)F + (6A5 — 12A, + 25A)) + (24, — 6A; + 25A,) = 50 — 36/% — 631 + 18
Equating coefficients of like powers of 7, we have
25A5=50; —18A3+25A,=-36; O6A;—12A,+ 25A;=-63; 2A,—06A; +254,=18

Solving these four algebraic equations simultaneously, we obtain A; =2, A, =0, A; =-3, and Ay =0, so that (/)
becomes

y, =26 =3t
The general solution is

YEYy Y, = 1% cos 4t + e sin 41 + 28 = 3t

Solve y” — 6y” + 11y’ — 6y = 2xe ™.

From Problem 10.1, y, = c,e* + c,¢* + c3e™*. Here ¢(x) = e®p,(x), where ac=—1 and p,(x) = 2x, a first-degree
polynomial. Using Eq. (/1.4), we assume that y, = ¢ (A;x + Ag), or

Yp=Axe "+ Age™ (@))]

Thus, Vo =—Axe ™+ Aje™ = Age™

Vo= Axe =247 + Age ™

V' =—Axe™ +3A167 — Age™
Substituting these results into the differential equation and simplifying, we obtain

—24Axe™ + (26A, — 24Ap)e™ = 2xe™ + (0)e™

Equating coefficients of like terms, we have

—24A,=2 26A;-24A,=0

from which A; =—-1/12 and A, =—-13/144.
Equation (/) becomes

e 13
r 12 144
and the general solution is
x 2x 3x —x 13 —x
y=ce +c,e +cet ——xe

127 144
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11.8.

11.9.

11.10.

11.11.

Determine the form of a particular solution for y” = 9x* + 2x —1.

Here ¢(x)=9x*>+2x— 1, and the solution of the associated homogeneous differential equation y” =0 is
Yi =X+ ¢o. Since ¢(x) is a second-degree polynomial, we first try y, = Ayx? + Ajx + Ay. Note, however, that this
assumed solution has terms, disregarding multiplicative constants, in common with y;: in particular, the first-power
term and the constant term. Hence, we must determine the smallest positive integer m such that X”'(A,x> + A, x + Ag)
has no terms in common with yj,.

For m =1, we obtain

(A + Ax + Ag) = Ax® + Ax? +Apx
which still has a first-power term in common with y,. For m = 2, we obtain
XA+ Ax + Ag) = Apx* + Axd +Ax?

which has no terms in common with y,; therefore, we assume an expression of this form for y,.

Solve y” = 9x? + 2x —1.

Using the results of Problem 11.8, we have y, = ¢;x + ¢y and we assume
¥, = At + A + Apx? (1
Substituting (/) into the differential equation, we obtain
124,27 + 6A\x + 245 = 9% + 2x — 1

from which A, = 3/4, A; = 1/3, and Ay =—1/2. Then (/) becomes

3 4 1 3 2
=—x"+-—x —=x
Ve 4 3 2
and the general solution is
1
y=cx+c, + x4+7x3—5x2

The solution also can be obtained simply by twice integrating both sides of the differential equation with
respect to x.

Solve y’ — 5y = 2¢%,

From Problem 10.3, y, = c,¢>*. Since ¢(x) = 2¢%, it would follow from Eq. (/1.2) that the guess for Y, should
be y, = Ape®. Note, however, that this ¥, has exactly the same form as y;; therefore, we must modify y,. Multiplying
¥, by x (m=1), we obtain

Vp = Agxe™™ (1)

As this expression has no terms in common with y; it is a candidate for the particular solution. Substituting (/) and

¥, = Age™ + 5A,xe™ into the differential equation and simplifying, we obtain Aje™ =2¢>, from which A, =2.

Equation (/) becomes y, = 2xe™, and the general solution is y = (¢; + 2x)e>.

Determine the form of a particular solution of
Y —=5y=(x-1)sinx+ (x+1)cosx

Here ¢(x) = (x— 1) sin x + (x + 1) cos x, and from Problem 10.3, we know that the solution to the associated
homogeneous problem y’ — 5y =0 is y, = ¢;¢>*. An assumed solution for (x — 1) sin x is given by Eq. (/1.5) (with
a=0) as

(Ajx + Ap) sin x + (B1x + By) cos x
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and an assumed solution for (x + 1) cos x is given also by Eq. (/1.5) as
(Cix + Cp) sin x + (D1x + Dy) cos x

(Note that we have used C and D in the last expression, since the constants A and B already have been used.)
We therefore take

Yp = (Apx + Ap) sin x + (Bjx + By) cos x + (Cyx + Cp) sin x + (Dx + D) cos x
Combining like terms, we arrive at
Yp = (E1x + Ep) sin x + (Fyx + Fp) cos x

as the assumed solution, where E;=A; + C;and F;=B;+ D; (j=0, 1).

Solve y =5y =(x— 1) sinx + (x + 1) cos x.
From Problem 10.3, y;, = ¢;e>*. Using the results of Problem 11.11, we assume that
¥p = (Eyx + Ep) sin x + (Fyx + Fy) cos x (@))]
Thus, Vp=(E; = Fix— Fy) sin x + (E\x + Eg + E}) cos x

Substituting these values into the differential equation and simplifying, we obtain
(—SEI - Fl)x sin x + (—SE() + E| - F()) sin x + (—SFI + El) X COS X + (—SF() + E(] + F]) COoS x
=(l)xsinx+ (=1)sin x + (1)x cos x + (1) cos x

Equating coefficients of like terms, we have

—SEI—F1=1
—5E0+E|—F0:—1
E —5F =1

E0—5F0+F]=1

Solving, we obtain E; = -2/13, Ey=71/338, F; =-3/13, and F; =—-69/338. Then, from (/),

2 71 . 3 69
Y, =| x4+ |sinx+| ——x+—— |cosx
! 13 338 13 338

and the general solution is
se [ 2 71 ) . 3 69
y=c¢e'+| —x+—— |sinx—| —x+—— |cosx
13 338 13 338

Solve y' — 5y =3¢* — 2x + 1.

From Problem 10.3, y,=c,e>". Here, we can write ¢(x) as the sum of two manageable functions:

d(x) = (3¢*) + (2x + 1). For the term 3¢* we would assume a solution of the form Ae*; for the term —2x + 1 we
would assume a solution of the form B,x + Bj. Thus, we try

yp=Ae'+ Bix+ By )
Substituting (/) into the differential equation and simplifying, we obtain
(—4A)e* + (=5B))x + (B; — 5By) = (3)e* + (2)x + (1)
Equating coefficients of like terms, we find that A =-3/4, B; =2/5, and B, = —3/25. Hence, (/) becomes
3
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and the general solution is

11.14. Solve ¥’ — 5y = x%¢* — xe*.

101

From Problem 10.3, y;, = ¢,¢>*. Here ¢(x) = x%¢* — xe>*, which is the difference of two terms, each in manageable

form. For x%¢* we would assume a solution of the form
(A + Ax + Ap)
For x> we would try initially a solution of the form

(B x+By) = Bxe>* + Bye™

0]

But this supposed solution would have, disregarding multiplicative constants, the term ¢>* in common with y,,. We

are led, therefore, to the modified expression
xe>(Bx + By) = (Bix* + Byx)
We now take y, to be the sum of (1) and (2):
Yp= e"(Azx2 +Ax+ Ay + eSX(le2 + Byx)

Substituting (3) into the differential equation and simplifying, we obtain

[(—4A)x> + (2A, — 4ADx + (A — 4Ap)] + e[(2B))x + By

= e [(Dx* + (0)x + (0)] + € [(=1)x + (0)]
Equating coefficients of like terms, we have

—4A2=1 2A2 —4A]=0 A1—4A0=0 231=—1

from which
1 1 1
A=—— A =—— [
g 8A° 32
1
B =—— B,=0

Equation (3) then gives

and the general solution is

Supplementary Problems

@)

€))

In Problems 11.15 through 11.26, determine the form of a particular solution to L(y) = ¢(x) for ¢ (x) as given if the solution

to the associated homogeneous equation L(y) = 0 is yj, = c;e** + c,e™.
11.15. ¢(x)=2x-7 11.16. ¢(x) =-3x>
11.17.  ¢(x) =132x% — 388x + 1077 11.18. ¢(x)=0.5¢%

1119, ¢(x)= 13> 11.20. ¢(x) = 4™
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11.21. ¢(x)=2 cos 3x 11.22. ¢(x)= %cosSx —3sin3x
11.23. ¢(x) =x cos 3x 11.24.  ¢(x) =2x + 3™
11.25.  ¢(x) = 2xe> 11.26.  ¢(x) = 2xe™*

In Problems 11.27 through 11.36, determine the form of a particular solution to L(y) = ¢(x) for ¢(x) as given if the solution

Sx

to the associated homogeneous equation L(y) = 0 is y;, = ¢;e>* cos 3x + c,e> sin 3x.

11.27. ¢(x) = 2> 11.28. ¢(x) = xe™

11.29. ¢(x) = —23¢> 11.30. ¢(x) = (x> - )e™
1131, ¢(x) = S5cosv2x 1132, ¢(x) = x*sin/2x
11.33. ¢(x) =—cos 3x 11.34. ¢(x) =2 sin 4x — cos 7x
11.35. ¢(x) =31e™ cos 3x 11.36. ¢(x)=— éesx cos3x

In Problems 11.37 through 11.43, determine the form of a particular solution to L(x) = ¢(¢) for ¢(¢) as given if the solution
to the associated homogeneous equation L(x) =0 is x;, = ¢; + co€’ + cste.

11.37. ¢ =t 11.38. ¢(f) =2 -3t+82
11.39. ¢()=te ¥ +3 11.40. ¢(z) = -6
11.41. ¢ =1t 11.42. ¢(t)=3+1cost

11.43. §(r) = te* cos 3t

In Problems 11.44 through 11.52, find the general solutions to the given differential equations.

1144, v -2y +y=x*—1 11.45. y" =2y +y=3e*
11.46. y" -2y +y=4cosx 11.47. y" -2y +y=3¢"
11.48. y" -2y +y=xe* 11.49. y —y=¢"

11.50. y —y=xe*+1 11.51. y"—y=sin x+cos 2x

11.52. y”7-3y"+3y —y=e"+1



Variation of
Parameters

Variation of parameters is another method (see Chapter 11) for finding a particular solution of the nth-order
linear differential equation

L) =) (12.1)

once the solution of the associated homogeneous equation L(y) = 0 is known. Recall from Theorem 8.2 that if
V1(X), y2(x), ... , y,(x) are n linearly independent solutions of L(y) =0, then the general solution of L(y) =0 is

Vi = () + 6y, (X) + -+ ¢y, (x) (12.2)

THE METHOD
A particular solution of L(y) = ¢ (x) has the form
Y, =V vy, ey, (12.3)
where y;=y;(x) (i=1,2, ... ,n)is givenin Eq. (/2.2) and v; (i =1, 2, ... , n) is an unknown function of x which

still must be determined.
To find v;, first solve the following linear equations simultaneously for v;”:

’ ’ ’

Vi VY, 4,y =0
’ 7 ’ 7 ’ 7
Vi VY, 4,y =0

7\ (n=2) 7 (n-2) 7 (n=2) (]24)
iy +vy, Tty 7 =0

7 (n=1) 7 (n—1) 7 (n=1y _

22 +v,y, +eetvy, =¢(x)

Then integrate each v; to obtain v;, disregarding all constants of integration. This is permissible because we are
seeking only one particular solution.

Example 12.1. For the special case n =3, Eqs. (/12.4) reduce to

VY + vy, +viy3 =0
Viyl+ vy +viyi=0 (12.5)

ro”

Viyy+viyy+viyy = o)

103
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For the case n =2, Eqs. (/2.4) become

vy +v3y, =0

Viyi +viy: = 9(x) (12.6)

and for the case n = 1, we obtain the single equation
viyr = 9(x) (12.7)
Since y;(x), y2(x), ..., y,(x) are n linearly independent solutions of the same equation L(y) =0, their

Wronskian is not zero (Theorem 8.3). This means that the system (/2.4) has a nonzero determinant and can be
solved uniquely for vi(x), v;(x), ... ,v,(x).

SCOPE OF THE METHOD

The method of variation of parameters can be applied to all linear differential equations. It is therefore more
powerful than the method of undetermined coefficients, which is restricted to linear differential equations with
constant coefficients and particular forms of ¢ (x). Nonetheless, in those cases where both methods are applicable,
the method of undetermined coefficients is usually the more efficient and, hence, preferable.

As a practical matter, the integration of v;(x) may be impossible to perform. In such an event, other methods
(in particular, numerical techniques) must be employed.

Solved Problems

12.1. Solve y” +y" =sec x.

This is a third-order equation with
Yp =€y + €y COS X+ 3 8in X
(see Chapter 10); it follows from Eq. (1/2.3) that
Yp =i+ vy COS X + V3 8in x @))]
Here y; =1, y, =cos x, y; = sin x, and ¢ (x) = sec x, so (/2.5) becomes
vi(1) + v5(cos x) + vi(sin x) =0

v{(0) + v3(=sin x) + v3(cos x) =0

v1(0) + v3(—cos x) + v3(—sin x) = sec x

Solving this set of equations simultaneously, we obtain v{ = sec x, v; = —1, and v; = —tan x. Thus,

v =Iv,' dx=jsecx dx =1nIsec x + tan x|
v, =jv; dx =J.—l dx =—x

sin x
v, = Jv; dx = J—tanx dx=— J—dx = Inlcosxl
cos X

Substituting these values into (/), we obtain
¥p =InIsec x + tan x| — x cos x + (sin x) In Icos
The general solution is therefore

Yy=y,+y,=c;+cpcosx+cssinx+Inlsec x + tan x| — x cos x + (sin x) In Icos xI
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x

12.2. Solve y” —3y"+2y' =

1+e™
This is a third-order equation with

Y =1 + et + e3¢

(see Chapter 10); it follows from Eq. (/2.3) that

Yp=Vvit e+ Ve )

Here y, = 1, y, = €%, y; = >, and ¢ (x) = */(1 + ™), so Eq. (12.5) becomes

Vi) +vi(e") + v;(ez") =0
vi(0) + V] (e") + V;(Zez") =0

X

e

vi(0) + v (e") + vi(4e™) = =

Solving this set of equations simultaneously, we obtain

, 1 e’
v, =— —
2{1+e

v, = -
P lte

, 1 e
Vi=— —
2l 1+e

Thus, using the substitutions u =e*+ 1 and w=1 + ¢, we find that

1 e’ 1 e’ )
o= dx =— e“dx
! 2J.1+e”‘ ZJeX+1

=lj”_1du=lu—11n|u|
27 u 2 2

1 . 1
=—(e"+1)—=In(e" +1
2( ) 5 ( )

-1 x
Vz:'[1+ef" dx:_J.e"e+ldx

:—J.@:—ln lul=—1In (e +1)
u

vgzlj e‘i dx:—l d—w:—llnlwlz—lln(l+e"‘)
o201 4e 20w 2 2

Substituting these values into (/), we obtain
1 X 1 x X X 1 -X 2x
y,= E(e +1)—Eln(e +1) [+[=In (e’ +1)]e* + —Eln(1+e ) |e
The general solution is

y=y,+y,=¢ tce +ce +%(e” +1) —%ln (e"+1D)—e'In(e* +1) —%e“ In(d+e™)
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12.3.

12.4.
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x

Solve y”—2y’+y=e—.
X

Here n =2 and y;, = ¢,e* + c,xe*; hence,

Yp=viet +vpxe*

Since y; = €%, y, = xe*, and ¢(x) = e'/x, it follows from Eq. (/2.6) that

Vi(e") + vy (xe) =0

X

) e
Vi(e") +vi(e" + xe')=—
X

Solving this set of equations simultaneously, we obtain v{ =—1 and v; = 1/x. Thus,

v, =J.v,'dx='[—1dx=—x

vzzjv;dx:_[idlenlxl

Substituting these values into (/), we obtain

yp =—xe* + xe* In Ixl

The general solution is therefore,

y=y,+y,=ce" +cxe’ —xe' + xeInlxl

_ X x x _
=ce +cexe' +xe’Inlxl (c;=c,-1)

Solve y” =y’ =2y = ¢*'.
Here n =2 and y, = c;e™ + c,¢**; hence,

Yp=viet+ vye>
Since y, = e, y, = %, and @(x) = e, it follows from Eq. (I2.6) that

vi(e™ +v5(e*) =0

vi(=e™) + v (2e*) = ¢

[CHAP. 12

(€))

(€))

Solving this set of equations simultaneously, we obtain v{ =—¢*/3 and v; = ¢%/3, from which v, = —¢*/12 and

v, = €*/3. Substituting these results into (/), we obtain

1 ' )
y, == Be“e’* + ge”ez* =— Ee“ + ge

The general solution is, therefore,
2x

- 1
y=ce " +tce +Ze

(Compare with Problem 11.2.)

Uoso 1 s

Lo

=—e

4
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12.5.

12.6.

Solve ¥ + 4x =sin” 2¢.
This is a second-order equation for x(7) with
Xj, =y €OS 2t + ¢, sin 2t
It follows from Eq. (/2.3) that

X, =V, cos 2t + v, sin 2¢ ()

where v, and v, are now functions of 7. Here x; = cos 21, x, = sin 2¢ are two linearly independent solutions of the
associated homogeneous differential equation and ¢ (¢) = sin®2t, so Eq. (12.6), with x replacing y, becomes

Vi cos 2t + v, sin 2t =0
v{(=2 sin 2£) + v5(2 cos 2f) = sin’ 2t

The solution of this set of equations is
1.
V) =——sin’ 2¢
2

1.
Vv, = Esm2 2t cos2t

1¢. 1 1
Thus, v, =—7J‘sm32t dt ==cos2t ——cos’ 2t
2 4 12
1 .2 1 .3
Vv, = fJ.sm 2t cos2t dt =—sin’ 2t
2 12
Substituting these values into (/), we obtain
1 1, 1.,
X, =|—cos2t ——cos” 2t [cos2t +| —sin” 2t |sin 2¢
ol4 12 12
= lcos2 2t — i(cos4 2t —sin® 21)
4 12
1 1 .
=—cos’ 2t — —(cos’ 2t — sin” 2¢)(cos” 2¢ + sin® 2¢)
4 12
= lcos2 2t + isin2 2t
6 12
because cos® 2¢ + sin® 2¢ = 1. The general solution is

. 1 1 .
X=X, +x =c cos2t+c,sin2t + —cos’ 2t + —sin” 2t
7 6 12

d*N dN

Solve #* o 2t >y + 2N =tInzt if it is known that two linearly independent solutions of the associated
t

homogeneous differential equation are ¢ and .

We first write the differential equation in standard form, with unity as the coefficient of the highest derivative.
Dividing the equation by 7, we obtain
d°N 2dN 2 1

a o e

with ¢ (£) = (1/£) In 7. We are given N, = ¢ and N, = £ as two linearly independent solutions of the associated second-
order homogeneous equation. It follows from Theorem 8.2 that

Nj, = cit + cpt?
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12.7.

12.8.
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We assume, therefore, that

N,

= Vit + Vol

Equations (/2.6), with N replacing y, become
Vi) + vy () =0
/ / l
vi()+v,(2t)=-1Int
t
The solution of this set of equations is

7 1 ’ 1
vy=—-Int and V,=—Int
t t

Thus, v, =—Jllntdt =—%ln2t
t

1 1 1
v, :J‘tlentdt:—;]nt—;

and (/) becomes

1 1 1
N,=|-=In’t|t+|—-Int -~ P=—tin2r —tinr—t
2 t t 2

The general solution is

t
N=N,+N,=ct+ct’ ——In’t—tlnr -1t
2

t .
=ct+et —Elnzt—tlnt (with e, =¢, —1)

4
Solve y' + —y = x".
X
Here n = 1 and (from Chapter 6) y, = ¢,x™*; hence,
v, = v

Since y,=x* and ¢(x)=x* Eq. (I12.7) becomes vix*

Equation (/) now becomes y, = x°/9, and the general solution is therefore
4,15
y=cx + gx

(Compare with Problem 6.6.)

Solve y = 5x by variation of parameters.
Here n =4 and y, = ¢| + cox + c3x% + ¢4x°; hence,
Yp=Vit+vx+ Vax? + v
Since y; = 1, y, =x, y3 = x%, y4 = x°, and ¢ (x) = Sx, it follows from Eq. (12.4), with n = 4, that
Vi) +v3(x) +v3 () +vi (%) =0
Vi(0) + v (1) + vi(2x) +vi(3x%) =0
vi(0) +v5(0) + v3(2) + v4(6x) =0
v{(0) + v;(0) + v3(0) + v4(6) = 5x

[CHAP. 12

)

)

=x* from which we obtain v{=x% and v, =x%09.

(N
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Solving this set of equations simultaneously, we obtain

v =——x* v, ==x v3=—§x2 vgzéx
2 6
whence v =—lx5 v, =§x4 V3 =—§x3 v, =ix2
6 8 6 12
Then, from (1),
1 5 5, 5 5 5 2,3 I
=——x +-xX X))+ —x(x)=—x
Y 6 8 ) 6 ) 12 @ 24

and the general solution is

1
v, =c¢ +ox+ext +ex + axs

The solution also can be obtained simply by integrating both sides of the differential equation four times with
respect to x.

Supplementary Problems

Use variation of parameters to find the general solutions of the following differential equations:

12.9.

12.11.

12.13.
12.14.

12.15.
12.16.

12.18.

12.20.

12.22.

12.23.
12.24.

12.25.

12.27.

12.29.

12.30.

x

e

y”_zy'+y:? 12.10. Y’ +y=secx
Y =y =2y = e 1212, y”— 60y’ — 900y = 5¢'%
yll _ 7y/ —— 3

, 1, 1 . . .
y”+—y ——y=Inx if two solutions to the associated homogeneous problem are known to be x and 1/x.
X X

x%y” — xy’ = x3¢" if two solutions to the associated homogeneous problem are known to be 1 and x°.

, 1 ,
y-—y=x 12.17.  y' +2xy=x
X
I3
V=12 12.19. x—2x+x=%
3t
F-6i+9x=" 1221, §+4x=dsec’2
t
45 +3x=—2
1+¢

(> = 1)X — 2% + 2x = (#* — 1) if two solutions to the associated homogeneous equations are known to be  and % + 1.

E+Di+Q-1)i—Q+0x =1t +1)* if two solutions to the associated homogeneous equations are known to be
¢ and 1/1.

1
?'—3f+3f—r=67 12.26. ¥ + 6§ + 127 +8r =12¢7
d3z d2Z dZ _ e39

%= 57+25-1257=1000 12.28. d . =
Ao’ “de*  "do 1+e

£y +3¢* =1 if three linearly independent solutions to the associated homogeneous equations are known to be
1/t¢, 1, and t.

y(S) — 4y(3) =32e%



Initial-Value
Problems for Linear
Differential Equations

Initial-value problems are solved by applying the initial conditions to the general solution of the differential
equation. It must be emphasized that the initial conditions are applied only to the general solution and not to the
homogeneous solution yj,, even though it is y, that possesses all the arbitrary constants that must be evaluated.
The one exception is when the general solution is the homogeneous solution; that is, when the differential equation
under consideration is itself homogeneous.

Solved Problems

13.1. Solve y” —y —2y=4x% y(0) =1, y'(0) = 4.

The general solution of the differential equation is given in Problem 11.1 as
y=cre ™+ e =223 +2x -3 )
Therefore, Y ==+ 200 — dx + 2 2)
Applying the first initial condition to (/), we obtain
y(0) = cle’([» + (22(32(0) - 2(0)2 +20)-3=1 or c1+c=4 3
Applying the second initial condition to (2), we obtain

Y (0)=—c1e™® +2¢,e*® - 40y +2=4 or —1+2c,=2 “)

Solving (3) and (4) simultaneously, we find that ¢; =2 and ¢, = 2. Substituting these values into (/), we obtain the
solution of the initial-value problem as

y=2¢" 42> - 2x2+2x -3

110
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13.2.

13.3.

x

Solve y" =2y +y = 67; Y(1)=0,y(1)=1.
The general solution of the differential equation is given in Problem 12.3 as
y=ce" + c3xe’ + xe* In Ixl
Therefore, Y =cie' + e3¢ + czxe’ + € In lxl + xe* In Ixl + &
Applying the first initial condition to (/), we obtain
y(1)=cie' +c;(De’ + (e In1=0
or (noting that In 1 =0),
cie+cze=0
Applying the second initial condition to (2), we obtain

YD =cre' +cze' +cz(De’ +e' In1+(De' In1+e' =1

or cie+2ce=1—-e¢

111

(N
@)

(€))

4

Solving (3) and (4) simultaneously, we find that ¢; = —c3 = (e — 1)/e. Substituting these values into (/), we obtain

the solution of the initial-value problem as
y=e"e—1)(1—x)+xe In Ixl

Solve y” + 4y" + 8y =sin x; y(0) = 1, y’(0) = 0.

Here y, = ¢ *(c; cos 2x + ¢, sin 2x), and, by the method of undetermined coefficients,

= lsinx - icosx
Ve 65 65

Thus, the general solution to the differential equation is
=e (¢, cos2x + ¢, sin2x) + lsinx - icosx
g : : 65 65
Therefore,

, _ . _ . 7 4 .
Y =-2e7"(c, cos2x + ¢, sin2x) + e 7" (=2¢, sin 2x + 2¢, c0s2x) + —cosx + —sin x
65 65

Applying the first initial condition to (/), we obtain

_6
65

G
Applying the second initial condition to (2), we obtain

—2¢, +2¢, =~ P

(N

@)

€))

4

Solving (3) and (4) simultaneously, we find that ¢; = 69/65 and ¢, = 131/130. Substituting these values into (/),

we obtain the solution of the initial-value problem as

oo 69 131 . 7 . 4
y=e | —co0s2x + —sin2x |+ —sinx ——cosx
65 130 65 6
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13.4.

13.5.

13.6.

INITIAL-VALUE PROBLEMS

Solve y” = 6y”" + 11y’ — 6y =0; y(m) =0, y'(m) =0, y"(m) = 1.

From Problem 10.1, we have
Vp = 1"+ e + cye™

Vi ="+ 2c,e™ + 3cze™

Vi = ci€ + dcre™ + 9cqe™

[CHAP. 13

(€]

Since the given differential equation is homogeneous, y, is also the general solution. Applying each initial condition

separately, we obtain
V() = 1" + 2" + 3637 =0

V() = c1€™ + 2¢,e* + 3c3¢3F =0
V(1) = 1™ + 4cpe? + 9cze3T = |
Solving these equations simultaneously, we find

1

— - _ P
c=—€" c,=—¢ c,=—e

Substituting these values into the first equation (/), we obtain

1 o R
L _ 2wy 1 e

Y75

Solve # + 4x = sin®2¢; x(0) = 0, %(0) = 0.

The general solution of the differential equation is given in Problem 12.5 as

1 1
X =c, €082t + ¢, sin2t + —cos’ 2 + —sin’ 2¢
6 12
1
Therefore, X =-2¢,sin2t + 2¢, cos2t — gcos 2tsin 2t

Applying the first initial condition to (/), we obtain

1
x(0)=cl+g=0

Hence ¢, = —1/6. Applying the second initial condition to (2), we obtain
x(0)=2¢, =0

Hence ¢, = 0. The solution to the initial-value problem is

x=- lc052t + lcos2 2t + isin2 2t
6 6 12

Solve ¥+ 4x = sin® 2¢; x(7/8) = 0, %(7/8) = 0.

(0]

@)

The general solution of the differential equation and the derivative of the solution are as given in (/) and (2)

of Problem 13.5. Applying the first initial condition, we obtain

6 4 12 4

:C]ﬁﬂzﬁg(l} ! (1]

T V4 . 1 ,r 1 . ,=r
0=x| — |=¢,cos—+c,sin—+—cos” — + —sin” —
8 4 4

2 2 6l2) 12]2

2

or c+te,=——m
1 2
8

(N
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Applying the second initial condition, we obtain

0=i/ % =-2¢ sin£+202<:os£—lcos£sin£
8 4 4 3 4 4

V2 2 1(&][6]
==20,—+2c,———| — | —
2 2 31 2 2
or —cl+czzﬁ 2
12

Solving (/) and (2) simultaneously, we find that
¢ S 2 and ¢, Z—L\/E
48 48
whereupon, the solution to the initial-value problem becomes

x=- S 2 cos2t —L\/EsinZt + lcos2 2t + isin22t
48 48

Supplementary Problems

Solve the following initial-value problems.

13.7.

13.8.

13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

Y=y =2y=ey0)=1,Y(0)=2
Y =Y =2y=ey(0)=2,y(0) =1
Y=y =2y=0;50)=2,y(0)=1
Y=Y =2y=ey()=2,y(1)=1
Y +y=xy1)=0,y()=1

Y’ + 4y =sin® 2x; y(7) =0,y () =0
Y +y=0;y(2)=0,y(2)=0
Y7=12;3(1)=0,y'(1)=0,y"(1)=0

Y+ 2y+ 2y =sin 2t + cos 2t; y(0) =0, y(0) = 1



Applications of
Second-Order
Linear Differential
Equations

SPRING PROBLEMS

The simple spring system shown in Fig. 14-1 consists of a mass m attached to the lower end of a spring
that is itself suspended vertically from a mounting. The system is in its equilibrium position when it is at rest.
The mass is set in motion by one or more of the following means: displacing the mass from its equilibrium
position, providing it with an initial velocity, or subjecting it to an external force F (7).

Equilibrium position Initial position at t =0

2 2

=
)
(=)

F(@)

\
Positive x-direction

Fig. 14.1
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Hooke’s law: The restoring force F of a spring is equal and opposite to the forces applied to the spring and
is proportional to the extension (contraction) | of the spring as a result of the applied force; that is, F = —kl,
where k denotes the constant of proportionality, generally called the spring constant.

Example 14.1. A steel ball weighing 128 Ib is suspended from a spring, whereupon the spring is stretched 2 ft from its
natural length. The applied force responsible for the 2-ft displacement is the weight of the ball, 128 1b. Thus, F =—128 Ib.
Hooke’s law then gives —128 = —k(2), or k = 64 Ib/ft.

For convenience, we choose the downward direction as the positive direction and take the origin to be the
center of gravity of the mass in the equilibrium position. We assume that the mass of the spring is negligible
and can be neglected and that air resistance, when present, is proportional to the velocity of the mass. Thus, at
any time ¢, there are three forces acting on the system: (1) F(f), measured in the positive direction; (2) a restoring
force given by Hooke’s law as Fy = —kx, k > 0; and (3) a force due to air resistance given by F, =—ax, a >0,
where a is the constant of proportionality. Note that the restoring force F always acts in a direction that will
tend to return the system to the equilibrium position: if the mass is below the equilibrium position, then x is
positive and —kx is negative; whereas if the mass is above the equilibrium position, then x is negative and —kx
is positive. Also note that because a > 0 the force F, due to air resistance acts in the opposite direction of the
velocity and thus tends to retard, or damp, the motion of the mass.

It now follows from Newton’s second law (see Chapter 7) that mx =—kx —ax + F(t), or

PO I ) (14.1)
m m m

If the system starts at =0 with an initial velocity v, and from an initial position x,, we also have the initial
conditions
x(0)=x, x(0)=v, (14.2)

(See Problems 14.1-14.10.)

The force of gravity does not explicitly appear in (/4.7), but it is present nonetheless. We automatically
compensated for this force by measuring distance from the equilibrium position of the spring. If one wishes to
exhibit gravity explicitly, then distance must be measured from the bottom end of the natural length of the
spring. That is, the motion of a vibrating spring can be given by

. a. k F(@)
X+—X+—x=g8g+——
m m m

if the origin, x = 0, is the terminal point of the unstretched spring before the mass m is attached.
ELECTRICAL CIRCUIT PROBLEMS

The simple electrical circuit shown in Fig. 14-2 consists of a resistor R in ohms; a capacitor C in farads;
an inductor L in henries; and an electromotive force (emf) E(f) in volts, usually a battery or a generator, all

O+
E(I)T ¢
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connected in series. The current / flowing through the circuit is measured in amperes and the charge g on the
capacitor is measured in coulombs.

Kirchhoff’s loop law: The algebraic sum of the voltage drops in a simple closed electric circuit is zero.

It is known that the voltage drops across a resistor, a capacitor, and an inductor are respectively RI, (1/C)q,
and L(dl/dt) where g is the charge on the capacitor. The voltage drop across an emf is —E(#). Thus, from
Kirchhoft’s loop law, we have

dal 1
RI+L—+—g—E@®)=0 (14.3)
s ol Q)
The relationship between ¢ and 7 is

,_da dl _d'q

dt dt  dr (14.4)
Substituting these values into (/4.3), we obtain
2

d—?+5ﬂ+Lq=lEu) (14.5)

dt Ld LC L
The initial conditions for g are

d
40)=q, =N =10)=, (14.6)

t=0

To obtain a differential equation for the current, we differentiate Eq. (/4.3) with respect to ¢ and then
substitute Eq. (/4.4) directly into the resulting equation to obtain

d*I Rdl 1 1 dE(t

— 14.7
> Ldt LC L dt (14.7)
The first initial condition is /(0) = I,. The second initial condition is obtained from Eq. (/4.3) by solving for
dl/dt and then setting # = 0. Thus,

1

1 R
=—EO0)-—~1, - — 14.8
L 0) 10T e (14.8)

dl
dt

t=0

An expression for the current can be gotten either by solving Eq. (/4.7) directly or by solving Eq. (/4.5) for
the charge and then differentiating that expression. (See Problems 14.12-14.16.)

BUOYANCY PROBLEMS

Consider a body of mass m submerged either partially or totally in a liquid of weight density p. Such a body
experiences two forces, a downward force due to gravity and a counter force governed by:

Archimedes’ principle: A body in liquid experiences a buoyant upward force equal to the weight of the liquid
displaced by that body.

Equilibrium occurs when the buoyant force of the displaced liquid equals the force of gravity on the body.
Figure 14-3 depicts the situation for a cylinder of radius r and height H where & units of cylinder height are
submerged at equilibrium. At equilibrium, the volume of water displaced by the cylinder is 7zr*h, which provides
a buoyant force of 7r*hp that must equal the weight of the cylinder mg. Thus,
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Positive x-direction
A

Equilibrium state Equilibrium position

T
x=0 X(i)
- T - - . - Water line
h

e

— =

N P e |

Fig. 14.3

Motion will occur when the cylinder is displaced from its equilibrium position. We arbitrarily take the
upward direction to be the positive x-direction. If the cylinder is raised out of the water by x(¢) units, as shown
in Fig. 14-3, then it is no longer in equilibrium. The downward or negative force on such a body remains mg
but the buoyant or positive force is reduced to m2[h — x(t)]p. It now follows from Newton’s second law that

mx =mr’[h - x(H)]p —mg
Substituting (/4.9) into this last equation, we can simplify it to
mi =—mr’x(t)p

2

r px:O
m

or X+

(14.10)

(See Problems 14.19-14.24.)

CLASSIFYING SOLUTIONS

Vibrating springs, simple electrical circuits, and floating bodies are all governed by second-order linear
differential equations with constant coefficients of the form

X+ax+a,x=f(t) (14.11)

For vibrating spring problems defined by Eq. (14.1), a; = alm, ay = k/m, and f(¢f) = F(t)/m. For buoyancy problems
defined by Eq. (14.10), a, =0, a, = mp/m, and f(t) = 0. For electrical circuit problems, the independent variable
x is replaced either by g in Eq. (/4.5) or I in Eq. (14.7).

The motion or current in all of these systems is classified as free and undamped when f(t) = 0 and a, = 0.
It is classified as free and damped when f(f) is identically zero but a; is not zero. For damped motion, there are
three separate cases to consider, depending on whether the roots of the associated characteristic equation (see
Chapter 9) are (1) real and distinct, (2) equal, or (3) complex conjugate. These cases are respectively classified
as (1) overdamped, (2) critically damped, and (3) oscillatory damped (or, in electrical problems, underdamped).
If f(#) is not identically zero, the motion or current is classified as forced.

A motion or current is transient if it “dies out” (that is, goes to zero) as t — . A steady-state motion or
current is one that is not transient and does not become unbounded. Free damped systems always yield transient
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motions, while forced damped systems (assuming the external force to be sinusoidal) yield both transient and
steady-state motions.
Free undamped motion defined by Eq. (/4.17) with a; = 0 and f(f) = 0 always has solutions of the form

x(f) = ¢, cos Wt + ¢, sin ot (14.12)

which defines simple harmonic motion. Here ¢y, ¢,, and @ are constants with @ often referred to as circular
frequency. The natural frequency fis

and it represents the number of complete oscillations per time unit undertaken by the solution. The period of
the system of the time required to complete one oscillation is

T==
f

Equation (/4.12) has the alternate form
x(1) = (=1)* A cos (w1 - ¢) (14.13)

where the amplitude A =\/c] + ¢}, the phase angle ¢ = arctan (c,/c,), and k is zero when ¢, is positive and unity
when ¢, is negative.

Solved Problems

14.1. A steel ball weighing 128 Ib is suspended from a spring, whereupon the spring is stretched 2 ft from its
natural length. The ball is started in motion with no initial velocity by displacing it 6 in above the equi-
librium position. Assuming no air resistance, find (a) an expression for the position of the ball at any
time ¢, and (b) the position of the ball at = /12 sec.

(a) The equation of motion is governed by Eq. (/4.1). There is no externally applied force, so F(¢) =0, and no
resistance from the surrounding medium, so a = 0. The motion is free and undamped. Here g =32 ft/sec?,
m = 128/32 =4 slugs, and it follows from Example 14.1 that k£ = 64 Ib/ft. Equation (/4.]) becomes X + 16x =0.
The roots of its characteristic equation are A = £44, so its solution is

x(t) = ¢y cos 4t + ¢, sin 4t )
Att=0, the position of the ball is X, =—1 ft (the minus sign is required because the ball is initially displaced

above the equilibrium position, which is in the negative direction). Applying this initial condition to (/), we
find that

1
3 =x(0)=c¢,cos0 +c,sin0 =¢,
so (/) becomes

1
x(t)=-— Ecos4t + ¢, sin4t

@)

The initial velocity is given as v, = 0 ft/sec. Differentiating (2), we obtain

v(t) = X(¢) = 2sin4t + 4¢, cos 4t
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14.2.

14.3.

whereupon 0=v(0)=25sin 0+ 4c,cos 0 =4c,

Thus, ¢, =0, and (2) simplifies to

x(t)=— %cos 4t 3

as the equation of motion of the steel ball at any time 7.

T 1 4rm 1
x| — |=—=cos—=——ft
[12) 212 4

A mass of 2 kg is suspended from a spring with a known spring constant of 10 N/m and allowed to come
to rest. It is then set in motion by giving it an initial velocity of 150 cm/sec. Find an expression for the
motion of the mass, assuming no air resistance.

(b) Att=n/12,

The equation of motion is governed by Eq. (/4.7) and represents free undamped motion because there is no
externally applied force on the mass, F(7) = 0, and no resistance from the surrounding medium, a = 0. The mass and
the spring constant are given as m = 2 kg and k = 10 N/m, respectively, so Eq. (14.1) becomes X + 5x =0. The roots
of its characteristic equation are purely imaginary, so its solution is

x(t) = c, cos Vi + ¢, sin NG @)

At t=0, the position of the ball is at the equilibrium position x, =0 m. Applying this initial condition to (7),
we find that

0=x(0)=c;cos 0+ c,sin 0 =¢,

whereupon (/) becomes

x(1) = ¢, sin/5t )
The initial velocity is given as vy = 150 cm/sec = 1.5 m/sec. Differentiating (2), we obtain

v(t) = i) =5 ¢, cos/5t

1.5

whereupon, 1.5=v(0) = \/ng cos0 = \/gcz c, = =0.6708

S

and (2) simplifies to

x(1)=0.6708 sin~/5¢ (3)

as the position of the mass at any time 7.

Determine the circular frequency, natural frequency, and period for the simple harmonic motion
described in Problem 14.2.

Circular frequency: w=+/5=2236 cycles/sec =2.236 Hz

J5

Natural frequency: f=w/2r = Ey =0.3559 Hz
yi4
. 2r
Period: T=1/f=—==2.81sec

J5
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14.4.

14.5.

14.6.

14.7.

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS [CHAP. 14

Determine the circular frequency, natural frequency, and period for the simple harmonic motion
described in Problem 14.1.

Circular frequency: w =4 cycles/sec =4 Hz
Natural frequency: f=4/27=0.6366 Hz
Period: T=1/f=m/2=1.57 sec

A 10-kg mass is attached to a spring, stretching it 0.7 m from its natural length. The mass is started in
motion from the equilibrium position with an initial velocity of 1 m/sec in the upward direction. Find
the subsequent motion, if the force due to air resistance is —90x N.

Taking g = 9.8 m/sec?, we have w = mg = 98 N and k = w/l = 140 N/m. Furthermore, a = 90 and F(t) = 0 (there
is no external force). Equation (/4.1) becomes

£+9%+14x=0 (1)

The roots of the associated characteristic equation are A; =—2 and A, =—7, which are real and distinct; hence this

problem is an example of overdamped motion. The solution of (/) is
x=cie 2+ e

The initial conditions are x(0) = 0 (the mass starts at the equilibrium position) and x(0) = —1 (the initial velocity is
in the negative direction). Applying these conditions, we find that ¢, =—c¢, =—1, so that x =1 (e”" —¢™>"). Note that
x — 0 as t — oc; thus, the motion is transient.

A mass of 1/4 slug is attached to a spring, whereupon the spring is stretched 1.28 ft from its natural length.
The mass is started in motion from the equilibrium position with an initial velocity of 4 ft/sec in the down-
ward direction. Find the subsequent motion of the mass if the force due to air resistance is —2x1b.

Here m=1/4, a=2, F()=0 (there is no external force), and, from Hooke’s law, k=mg/l
= (1/4)(32)/1.28 = 6.25. Equation (/4.1) becomes

¥ +8%+25x=0 (N

The roots of the associated characteristic equation are A; = —4 + i3 and A, = —4 — i3, which are complex conjugates;
hence this problem is an example of oscillatory damped motion. The solution of (/) is

x=e"¥(c, cos 3t + ¢, sin 31)

The initial conditions are x(0) =0 and %(0) =4. Applying these conditions, we find that ¢; =0 and ¢, =%; thus,
x= %g*" sin3z. Since x — 0 as t — oo, the motion is transient.

A mass of 1/4 slug is attached to a spring having a spring constant of 1 1b/ft. The mass is started in motion
by initially displacing it 2 ft in the downward direction and giving it an initial velocity of 2 ft/sec in the
upward direction. Find the subsequent motion of the mass, if the force due to air resistance is —1x1b.

Here m=1/4,a=1, k=1, and F(t) = 0. Equation (/4.1) becomes
¥+4x+4x=0 (1)

The roots of the associated characteristic equation are A; = A, =—2, which are equal; hence this problem is an example
of critically damped motion. The solution of (/) is

x=cie 2+ cpte™

The initial conditions are x(0) = 2 and x(0) =—2 (the initial velocity is in the negative direction). Applying these
conditions, we find that ¢; = ¢, = 2. Thus,

x=2e2 4217

Since x — 0 as ¢ — o, the motion is transient.
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14.8.

14.9.

Show that the types of motions that result from free damped problems are completely determined by the
quantity a*> — 4 km.

For free damped motions F(¢) =0 and Eq. (/4.1) becomes
. .k
i+ Li+Sx=0
m m
The roots of the associated characteristic equation are

A _—a+\/a2—4km A _—a—\/a2—4km
= , =

! 2m 2m

If > — 4 km > 0, the roots are real and distinct; if a> — 4 km = 0, the roots are equal; if a> — 4 km < 0, the roots
are complex conjugates. The corresponding motions are, respectively, overdamped, critically damped, and oscillatory
damped. Since the real parts of both roots are always negative, the resulting motion in all three cases is transient.

(For overdamped motion, we need only note that \/a> — 4 km < a, Whereas for the other two cases the real parts are
both —a/2m.)

A 10-kg mass is attached to a spring having a spring constant of 140 N/m. The mass is started in motion
from the equilibrium position with an initial velocity of 1 m/sec in the upward direction and with an
applied external force F(7) =5 sin ¢. Find the subsequent motion of the mass if the force due to air
resistance is —90xN.

Here m =10, k=140, a =90, and F(¢) = 5 sin 7. The equation of motion, (/4.1), becomes
.. . 1.
x+9x+14x:5smt (@))]

The general solution to the associated homogeneous equation X +9x +14x =0 is (see Problem 14.5)
xp=cre X + o

Using the method of undetermined coefficients (see Chapter 11), we find

x, =23 Ginr——cost 2

’ 500 500
The general solution of (/) is therefore
oy 0 13 9
x=x,+x,=ce " +ce" +——sint ———cost
500 500

Applying the initial conditions, x(0) = 0 and x(0) =—1, we obtain

-

xX=
500

(-90e™ +99¢™" +13sint — 9cost)

Note that the exponential terms, which come from x;, and hence represent an associated free overdamped motion,
quickly die out. These terms are the transient part of the solution. The terms coming from x,, however, do not die
out as t — o¢; they are the steady-state part of the solution.

14.10. A 128-1b weight is attached to a spring having a spring constant of 64 1b/ft. The weight is started in

motion with no initial velocity by displacing it 6 in above the equilibrium position and by simultaneously
applying to the weight an external force F(#) = 8 sin 4z. Assuming no air resistance, find the subsequent
motion of the weight.

Here m =4, k=64, a=0, and F(¢) = 8 sin 4¢; hence, Eq. (/4.1) becomes

X +16x =2sin4t (1
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14.12.

14.13.
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This problem is, therefore, an example of forced undamped motion. The solution to the associated homogeneous
equation is

Xp, = ¢y coS 4t + ¢, sin 4¢

A particular solution is found by the method of undetermined coefficients (the modification described in Chapter 11
is necessary here): x, =~ cos 4¢. The solution to (/) is then

X =c, cos 4t +c, sin 4¢ —it cos 4t
Applying the initial conditions, x(0) = — 1 and %(0) =0, we obtain
x=—l cos 4t+i sin 4t—lt cos 4t
2 16

Note that IxI — o as r — . This phenomenon is called pure resonance. It is due to the forcing function F(r)
having the same circular frequency as that of the associated free undamped system.

Write the steady-state motion found in Problem 14.9 in the form specified by Eq. (/4.13).
The steady-state displacement is given by (2) of Problem 14.9 as
9 13 .
x(t) =———cost + ——sint
500 500

Its circular frequency is @ = 1. Here

2 2
A= 13 + 2 =0.0316
500 500

13/500 =-0.965 radians

and ¢ = arctan

The coefficient of the cosine term in the steady-state displacement is negative, so k = 1, and Eq. (/4.13) becomes

x(1) =-0.0316 cos (¢ + 0.965)

An RCL circuit connected in series has R = 180 ohms, C = 1/280 farad, L = 20 henries, and an applied
voltage E(¢) = 10 sin #. Assuming no initial charge on the capacitor, but an initial current of 1 ampere at
t =0 when the voltage is first applied, find the subsequent charge on the capacitor.

Substituting the given quantities into Eq. (/4.5), we obtain
.- 1.
G+9q+14q = Esmt

This equation is identical in form to (/) of Problem 14.9; hence, the solution must be identical in form to the
solution of that equation. Thus,

~ 13 . 9
g=ce " +c,e’ +——sint ———cost
500 500

Applying the initial conditions ¢(0) =0 and ¢(0) =1, we obtain ¢; = 110/500 and ¢, =—-101/500. Hence,
q= L(l 10 —101e™ +13sinz — 9cost)
500
As in Problem 14.9, the solution is the sum of transient and steady-state terms.
An RCL circuit connected in series has R = 10 ohms, C = 1072 farad, L = Lhenry, and an applied voltage

E =12 volts. Assuming no initial current and no initial charge at # =0 when the voltage is first applied,
find the subsequent current in the system.
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14.14.

14.15.

Substituting the given values into Eq. (/4.7), we obtain the homogeneous equation [since E(f) = 12, dE/dt = 0]

2
4T 204 4 2001 =0
dr di

The roots of the associated characteristic equation are A; =—10 + 10i and A, = —10 — 10i; hence, this is an example
of a free underdamped system for the current. The solution is
I=¢"" (¢, cos 10t + ¢, sin 107) @)

The initial conditions are /(0) = 0 and, from Eq. (/4.8),

- (10)(0)_1 ©)=24

arj - _12
o 12 |12 (1/2)(1072)

dt

Applying these conditions to (/), we obtain ¢; =0 and ¢, ="2; thus, /="2¢"" sin10z, which is completely
transient.

Solve Problem 14.13 by first finding the charge on the capacitor.

We first solve for the charge g and then use /= dg/dt to obtain the current. Substituting the values given in
Problem 14.13 into Eq. (/4.5), we have ¢ +20g +200g =24, which represents a forced system for the charge, in
contrast to the free damped system obtained in Problem 14.3 for the current. Using the method of undetermined
coefficients to find a particular solution, we obtain the general solution

g=e""(c,cos10¢t + c, sin10¢) + %

Initial conditions for the charge are ¢(0) =0 and ¢(0) =0; applying them, we obtain ¢; = ¢, = =3/25. Therefore,

g=—e 3 o106 +=sin10r |+ =
25 25 25

,_da_12

and = e 'sinl0¢
dt 5

as before.
Note that although the current is completely transient, the charge on the capacitor is the sum of both transient
and steady-state terms.

An RCL circuit connected in series has a resistance of 5 ohms, an inductance of 0.05 henry, a capacitor
of 4 x 10~* farad, and an applied alternating emf of 200 cos 100 volts. Find an expression for the current
flowing through this circuit if the initial current and the initial charge on the capacitor are both zero.

Here R/L = 5/0.05 = 100, 1/(LC) = 1/[0.05(4 x 10™)] = 50,000, and

L dE®) = L200(—100 sin 1007) = — 400,000 sin 1007
L dt 005

so Eq. (14.7) becomes
] I
d—z + IOOd— + 50,0007 = —400,000 sin 1007
dt dt
The roots of its characteristic equation are —50 iSOx/Ei, hence the solution to the associated homogeneous
problem is

I, = c]e’so’ cos 50\/Bt + cze’so’ sin 50\/Bt

Using the method of undetermined coefficients, we find a particular solution to be

1 =ﬂ cos 10()t—@ sin 100¢
17 17

P
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so the general solution is
Y S0t 40 160 .
I=1,+1,=ce cosSO\/Et +c,e sm50\/ﬁt +ﬁ005100t—7s1n100t ()
The initial conditions are /(0) = 0 and, from Eq. (/4.8),

dl 200

— 7_7( )_

——(0)=4000
dr),_, 005 005 ~ 0.054x10™)

Applying the first of these conditions to (/) directly, we obtain
0=1(0)=c,(1)+c,(0) +%

or ¢; =—40/17 = —-2.35. Substituting this value into (/) and then differentiating, we find that

% =—2.35(=50¢ " c0s 50+/19¢ — 50+/19¢™ sin 50/19¢)

+¢,(=50¢7 sin 50+/19¢ + 50v/19¢ ™ cos 50/19: z)—@ n100¢ —16’1(;00c05100t

whereupon 4000 = g =—2.35(=50) + ¢,(50/19) —
t

1=0

16,000
17
and ¢, = 22.13. Equation (/) becomes

=—2.35¢"" cos 50/19¢ + 22.13¢™ sin 50+/19¢ + %coleOt - %sinlOOt

14.16. Solve Problem 14.15 by first finding the charge on the capacitor.

Substituting the values given in Problem 14.15 into Eq. (/4.5), we obtain
d’q
ar

The associated homogeneous equation is identical in form to the one in Problem 14.15, so it has the same solution
(with 7;, replaced by ¢;). Using the method of undetermined coefficients, we find a particular solution to be

+ 100% + 50,0004 = 4000 cos100¢

q =£005100t+isin100t
’ 170 170

so the general solution is

1 4
4=q, +q, =ce™ cos50,/191 + c,e™ sin 50,191 + % cos 100t + 0 sin 100¢ 0))
The initial conditions on the charge are ¢(0) = 0 and

dq

=1(0)=0
| =IO

Applying the first of these conditions to (/) directly, we obtain

16
0=¢(0)=c,(1) +¢,(0) + m

or ¢; =—16/170 = — 0.0941. Substituting this value into (/) and then differentiating, we find that

% = —0.0941(=50¢ ™ c0s50/197 — 50719 ¢ 5in 50+/191)
t

+¢,(=50¢7 sin 507197 + 50819 6™ cos 504/191) — %sin 100¢ + % cos100¢ 2)
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14.17.

whereupon 0= %‘1 =—0.0941(=50) + ¢, (50~/19) + %
t

1=0

and ¢, = —0.0324. Substituting this value into (2) and simplifying, we obtain as before

I(t) = %z —2.35¢ cos 504197 +22.13¢ sin 504/191 + % 0s100z — % sin100¢ 3)
t

Determine the circular frequency, the natural frequency, and the period of the steady-state current found
in Problem 14.16.

The current is given by (3) of Problem 14.16. As t — o<, the exponential terms tend to zero, so the steady-state
current is

1(t)= ﬂ cos100z — @ sin100¢
17 17

Circular frequency: w=100 Hz
Natural frequency: f=w/2r=1002r=15.92 Hz
Period: T=1/f=2n/100 = 0.063 sec

14.18. Write the steady-state current found in Problem 14.17 in the form specified by Eq. (/4.13).

The amplitude is
2 2
A= il + _160 =9.701
17 17

¢ =arctan —160/17 =—1.326 radians
40/17

The circular frequency is @= 100. The coefficient of the cosine term is positive, so k=0 and Eq. (/4.13) becomes

and the phase angle is

1) = 9.701 cos (1007 + 1.326)

14.19. Determine whether a cylinder of radius 4 in, height 10 in, and weight 15 1b can float in a deep pool of

14.20.

water of weight density 62.5 1b/ft>.

Let i denote the length (in feet) of the submerged portion of the cylinder at equilibrium. With r = 11t, it follows
from Eq. (/4.9) that

_omg 15
_717 2 T 2
"p n(;] 62.5

=0.688ft =8.251in

Thus, the cylinder will float with 10 — 8.25 = 1.75 in of length above the water line at equilibrium.

Determine an expression for the motion of the cylinder described in Problem 14.19 if it is released with
20 percent of its length above the water line with a velocity of 5 ft/sec in the downward direction.

Here r = 1ft, p=62.5 Ib/ft, m = 15/32 slugs and Eq. (14.10) becomes

X +46.5421x =0
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The roots of the associated characteristic equation are +4/46.5421i =+ 6.82i; the general solution of the differential
equation is

x(t) = ¢; cos 6.82t + ¢, sin 6.82¢ )
At t=0, 20 percent of the 10-in length of the cylinder, or 2 in, is out of the water. Using the results of Problem 14.19,
we know that the equilibrium position has 1.75 in above the water, so at # =0, the cylinder is raised 1/4 in or 1/48 ft
above its equilibrium position. In the context of Fig. 14-3, x(0) = 1/48 ft. The initial velocity is 5 ft/sec in the down-

ward or negative direction in the coordinate system of Fig. 14-3, so x(0) =—35. Applying these initial conditions to
(1), we find that

¢ =$=0.021 and ¢, =6_—852=—0.73

Equation (/) becomes
x(f) =0.021 cos 6.82¢ —0.73 sin 6.82¢

Determine whether a cylinder of diameter 10 cm, height 15 cm, and weight 19.6 N can float in a deep
pool of water of weight density 980 dynes/cm?.

Let & denote the length (in centimeters) of the submerged portion of the cylinder at equilibrium. With » =5 cm
and mg = 19.6 N = 1.96 x 10° dynes, it follows from Eq. (/4.9) that

_omg  1.96x10°
nr’p  m(5)*(980)

Since this is more height than the cylinder possesses, the cylinder cannot displace sufficient water to float and will
sink to the bottom of the pool.

Determine whether a cylinder of diameter 10 cm, height 15 cm, and weight 19.6 N can float in a deep
pool of liquid having weight density 2450 dynes/cm?.

Let /2 denote the length of the submerged portion of the cylinder at equilibrium. With 7 =5 cm and mg = 19.6 N
=1.96 x 10° dynes, it follows from Eq. (14.9) that

_omg 1.96x10° _
wr’p  w(5)*(2450)

Thus, the cylinder will float with 15 — 10.2 = 4.8 cm of length above the liquid at equilibrium.

Determine an expression for the motion of the cylinder described in Problem 14.22 if it is released at
rest with 12 cm of its length fully submerged.

Here r =5 cm, p = 2450 dynes/cm?, m = 19.6/9.8 = 2 kg = 2000 g, and Eq. (14.10) becomes
X+96.21x=0

The roots of the associated characteristic equation are ++/96.21i =+ 9.8;; the general solution of the differential
equation is

x(1) =c; cos 9.81t + ¢, sin 9.81¢ @)
At t=0, 12 cm of the length of the cylinder is submerged. Using the results of Problem 14.22, we know that the
equilibrium position has 10.2 cm submerged, so at =0, the cylinder is submerged 12 — 10.2 = 1.8 cm below its
equilibrium position. In the context of Fig. 14-3, x(0) = —1.8 cm with a negative sign indicating that the equilibrium

line is submerged. The cylinder begins at rest, so its initial velocity is X(0) =0. Applying these initial conditions to
(I), we find that ¢; =—1.8 and ¢, = 0. Equation (/) becomes

x(r)= —1.8 cos 9.81¢
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14.24.

14.25.

A solid cylinder partially submerged in water having weight density 62.5 Ib/ft>, with its axis vertical, oscil-
lates up and down within a period of 0.6 sec. Determine the diameter of the cylinder if it weighs 2 1b.

With p = 62.5 Ib/ft® and m = 2/32 slugs, Eq. (14.10) becomes

¥+10007r°x =0

which has as its general solution

x(t) =c, cos4/10007rt + ¢, sin 10007 rt @)

Its circular frequency is @ =r+/10007; its natural frequency is f=cw/2w =r~250/7 =8.92r; its period is
T=1/f=1/8.92r. We are given 0.6 = T = 1/8.92r, thus r =0.187 ft = 2.24 in with a diameter of 4.48 in.

A prism whose cross section is an equilateral triangle with sides of length / floats in a pool of liquid of
weight density p with its height parallel to the vertical axis. The prism is set in motion by displacing it
from its equilibrium position (see Fig. 14-4) and giving it an initial velocity. Determine the differential
equation governing the subsequent motion of this prism.

Equilibrium occurs when the buoyant force of the displaced liquid equals the force of gravity on the body. The
area of an equilateral triangle with sides of length /is A= 3P%/4. For the prism depicted in Fig. 14-4, with / units
of height submerged at equilibrium, the volume of water displaced at equilibrium is +/3/24/4, providing a buoyant
force of \/31%h p /4. By Archimedes’ principle, this buoyant force at equilibrium must equal the weight of the prism
mg; hence,

2 -
N pl4=mg (1
We arbitrarily take the upward direction to be the positive x-direction. If the prism is raised out of the water by
x() units, as shown in Fig. 14-4, then it is no longer in equilibrium. The downward or negative force on such a body

remains mg but the buoyant or positive force is reduced to \/g PP[h - x(t)]p /4.1t now follows from Newton’s second
law that

= V31 [h;xa)]p .

Substituting (/) into this last equation, we simplify it to

2
+\/§Zp

4m

x=0

Positive x-direction
A

Equilibrium state Equilibrium position

~
~

~

‘Water line
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Fig. 14.4
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Supplementary Problems

A 10-1b weight is suspended from a spring and stretches it 2 in from its natural length. Find the spring constant.
A mass of 0.4 slug is hung onto a spring and stretches it 9 in from its natural length. Find the spring constant.
A mass of 0.4 g is hung onto a spring and stretches it 3 cm from its natural length. Find the spring constant.

A mass of 0.3 kg is hung onto a spring and stretches it 15 cm from its natural length. Find the spring constant.

A 20-1b weight is suspended from the end of a vertical spring having a spring constant of 40 1b/ft and is allowed to
reach equilibrium. It is then set into motion by stretching the spring 2 in from its equilibrium position and releasing
the mass from rest. Find the position of the weight at any time ¢ if there is no external force and no air resistance.

Solve Problem 14.30 if the weight is set in motion by compressing the spring by 2 in from its equilibrium position
and giving it an initial velocity of 2 ft/sec in the downward direction.

A 20-g mass is suspended from the end of a vertical spring having a spring constant of 2880 dynes/cm and is
allowed to reach equilibrium. It is then set into motion by stretching the spring 3 cm from its equilibrium position
and releasing the mass with an initial velocity of 10 cm/sec in the downward direction. Find the position of the mass
at any time ¢ if there is no external force and no air resistance.

A 32-Ib weight is attached to a spring, stretching it 8 ft from its natural length. The weight is started in motion by
displacing it 1 ft in the upward direction and by giving it an initial velocity of 2 ft/sec in the downward direction.
Find the subsequent motion of the weight, if the medium offers negligible resistance.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.31.

Determine (a) the circular frequency, (b) the natural frequency, and (c) the period for the vibrations described in
Problem 14.32.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.33.

Find the solution to Eq. (/4.1) with initial conditions given by Eq. (/4.2) when the vibrations are free and
undamped.

A I-slug mass is hung onto a spring, whereupon the spring is stretched 6 in from its natural length. The mass is

then started in motion from the equilibrium position with an initial velocity of 4 ft/sec in the upward direction. Find
the subsequent motion of the mass, if the force due to air resistance is —2x Ib.

A 1-slug mass is attached to a spring so that the spring is stretched 2 ft from its natural length. The mass is started
in motion with no initial velocity by displacing it 1ft in the upward direction. Find the subsequent motion of the
mass, if the medium offers a resistance of —4x Ib.

A 1-slug mass is attached to a spring having a spring constant of 6 1b/ft. The mass is set into motion by displacing
it 6 in below its equilibrium position with no initial velocity. Find the subsequent motion of the mass, if the force
due to the medium is —4x 1b.

A 3-kg mass is attached to a spring having a spring constant of 8 N/m. The mass is set into motion by displacing
it 10 cm above its equilibrium position with an initial velocity of 2 m/sec in the upward direction. Find the
subsequent motion of the mass if the surrounding medium offers a resistance of —4xN.

Solve Problem 14.41 if instead the spring constant is 8.01 N/m.

Solve Problem 14.41 if instead the spring constant is 7.99 N/m.
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A 1-slug mass is attached to a spring having a spring constant of 8 1b/ft. The mass is initially set into motion from
the equilibrium position with no initial velocity by applying an external force F(f) = 16 cos 4¢. Find the subsequent
motion of the mass, if the force due to air resistance is —4x Ib.

A 64-1b weight is attached to a spring whereupon the spring is stretched 1.28 ft and allowed to come to rest. The
weight is set into motion by applying an external force F(f) = 4 sin 2¢. Find the subsequent motion of the weight if
the surrounding medium offers a negligible resistance.

A 128-1b weight is attached to a spring whereupon the spring is stretched 2 ft and allowed to come to rest. The weight is
set into motion from rest by displacing the spring 6 in above its equilibrium position and also by applying an external
force F(f) = 8 sin 4¢. Find the subsequent motion of the weight if the surrounding medium offers a negligible resistance.

Solve Problem 14.38 if, in addition, the mass is subjected to an externally applied force F(f) = 16 sin 8.

A 16-1b weight is attached to a spring whereupon the spring is stretched 1.6 ft and allowed to come to rest. The
weight is set into motion from rest by displacing the spring 9 in above its equilibrium position and also by applying
an external force F(f) =5 cos 2¢. Find the subsequent motion of the weight if the surrounding medium offers a
resistance of —2x Ib.

Write the steady-state portion of the motion found in Problem 14.48 in the form specified by Eq. (/4.13).

A 1-kg mass is attached to a spring having a spring constant of 6 N/m and allowed to come to rest. The mass is set
into motion by applying an external force F(f) =24 cos 3¢ —33 sin 3¢. Find the subsequent motion of the mass if the
surrounding medium offers a resistance of —3x N.

Write the steady-state portion of the motion found in Problem 14.50 in the form of Eq. (/4.13).

An RCL circuit connected in series with R =6 ohms, C =0.02 farad, and L =0.1 henry has an applied voltage
E(?) = 6 volts. Assuming no initial current and no initial charge at =0 when the voltage is first applied, find the
subsequent charge on the capacitor and the current in the circuit.

An RCL circuit connected in series with a resistance of 5 ohms, a condenser of capacitance 4 X 10 farad, and an
inductance of 0.05 henry has an applied emf E(¢) = 110 volts. Assuming no initial current and no initial charge on the
capacitor, find expressions for the current flowing through the circuit and the charge on the capacitor at any time .

An RCL circuit connected in series with R = 6 ohms, C = 0.02 farad, and L = 0.1 henry has no applied voltage. Find

the subsequent current in the circuit if the initial charge on the capacitor is 7; coulomb and the initial current is zero.

An RCL circuit connected in series with a resistance of 1000 ohm, a condenser of capacitance 4 X 107° farad, and
an inductance of 1 henry has an applied emf E(¢) = 24 volts. Assuming no initial current and no initial charge on the
capacitor, find an expression for the current flowing through the circuit at any time z.

An RCL circuit connected in series with a resistance of 4 ohms, a capacitor of 1/26 farad, and an inductance of
1/2 henry has an applied voltage E(f) = 16 cos 2¢. Assuming no initial current and no initial charge on the capacitor,
find an expression for the current flowing through the circuit at any time 7.

Determine the steady-state current in the circuit described in Problem 14.56 and write it in the form of Eq. (/4.13).

An RCL circuit connected in series with a resistance of 16 ohms, a capacitor of 0.02 farad, and an inductance of
2 henries has an applied voltage E(7) = 100 sin 3z. Assuming no initial current and no initial charge on the capacitor,
find an expression for the current flowing through the circuit at any time .

Determine the steady-state current in the circuit described in Problem 14.56 and write it in the form of Eq. (/4.13).

An RCL circuit connected in series with a resistance of 20 ohms, a capacitor of 107* farad, and an inductance of
0.05 henry has an applied voltage E(f) = 100 cos 200z. Assuming no initial current and no initial charge on the
capacitor, find an expression for the current flowing through the circuit at any time z.

Determine the steady-state current in the circuit described in Problem 14.60 and write it in the form of Eq. (/4.13).



130

14.62.

14.63.

14.64.

14.65.

14.66.

14.67.

14.68.

14.69.

14.70.

14.71.

14.72.

14.73.

14.74.

14.75.

14.76.

14.77.

14.78.

14.79.

14.80.

14.81.

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS [CHAP. 14

An RCL circuit connected in series with a resistance of 2 ohms, a capacitor of 1/260 farad, and an inductance of
0.1 henry has an applied voltage E(¢) = 100 sin 60z. Assuming no initial current and no initial charge on the capacitor,
find an expression for the charge on the capacitor at any time z.

Determine the steady-state charge on the capacitor in the circuit described in Problem 14.62 and write it in the form
of Eq. (14.13).

An RCL circuit connected in series has R = 5 ohms, C = 1072 farad, L =1 henry, and no applied voltage. Find the
subsequent steady-state current in the circuit. Hinz: Initial conditions are not needed.

An RCL circuit connected in series with R = 5 ohms, C = 10 2 farad, and L = + henry has applied voltage E(7) = sin .
Find the steady-state current in the circuit. Hint: Initial conditions are not needed.

Determine the equilibrium position of a cylinder of radius 3 in, height 20 in, and weight 57 Ib that is floating with
its axis vertical in a deep pool of water of weight density 62.5 1b/ft>.

Find an expression for the motion of the cylinder described in Problem 14.66 if it is disturbed from its equilibrium
position by submerging an additional 2 in of height below the water line and with a velocity of 1 ft/sec in the
downward direction.

Write the harmonic motion of the cylinder described in Problem 14.67 in the form of Eq. (/4.13).

Determine the equilibrium position of a cylinder of radius 2 ft, height 4 ft, and weight 600 Ib that is floating with
its axis vertical in a deep pool of water of weight density 62.5 Ib/ft>.

Find an expression for the motion of the cylinder described in Problem 14.69 if it is released from rest with 1 ft of
its height submerged in water.

Determine (@) the circular frequency, () the natural frequency, and (c) the period for the vibrations described in
Problem 14.70.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.67.

Determine the equilibrium position of a cylinder of radius 3 cm, height 10 cm, and mass 700 g that is floating with
its axis vertical in a deep pool of water of mass density 1 g/cm?.

Solve Problem 14.73 if the liquid is not water but another substance with mass density 2 g/cm®.

Determine the equilibrium position of a cylinder of radius 30 cm, height 500 cm, and weight 2.5 x 107 dynes that
is floating with its axis vertical in a deep pool of water of weight density 980 dynes/cm®.

Find an expression for the motion of the cylinder described in Problem 14.75 if it is set in motion from its equilib-
rium position by striking it to produce an initial velocity of 50 cm/sec in the downward direction.

Find the general solution to Eq. (/4.10) and determine its period.

Determine the radius of a cylinder weighing 5 Ib with its axis vertical that oscillates in a pool of deep water
(p = 62.5 Ib/ft®) with a period of 0.75 sec. Hint: Use the results of Problem 14.77.

Determine the weight of a cylinder having a diameter of 1 ft with its axis vertical that oscillates in a pool of deep
water (p = 62.5 Ib/ft’) with a period of 2 sec. Hint: Use the results of Problem 14.77.

A rectangular box of width w, length /, and height 4 floats in a pool of liquid of weight density p with its height
parallel to the vertical axis. The box is set into motion by displacing it x, units from its equilibrium position and
giving it an initial velocity of vy. Determine the differential equation governing the subsequent motion of the box.

Determine (a) the period of oscillations for the motion described in Problem 14.80 and (b) the change in that period
if the length of the box is doubled.



Matrices

MATRICES AND VECTORS

A matrix (designated by an uppercase boldface letter) is a rectangular array of elements arranged in horizontal
rows and vertical columns. In this book, the elements of matrices will always be numbers or functions of the
variable 7. If all the elements are numbers, then the matrix is called a constant matrix.

Matrices will prove to be very helpful in several ways. For example, we can recast higher-order differential
equations into a system of first-order differential equations using matrices (see Chapter 17). Matrix notation
also provides a compact way of expressing solutions to differential equations (see Chapter 16).

Example 15.1.

1 2 1 € 2
, , and [1 £ cost]
3 4 r -1 1
are all matrices. In particular, the first matrix is a constant matrix, whereas the last two are not.

A general matrix A having p rows and n columns is given by

all a12 aln

a a a
21 22 2n

A =[] : :
Clpl Clp2 apn

where a;; represents that element appearing in the ith row and jth column. A matrix is square if it has the same
number of rows and columns.

A vector (designated by a lowercase boldface letter) is a matrix having only one column or one row. (The
third matrix given in Example 15.1 is a vector.)

MATRIX ADDITION

The sum A + B of two matrices A = [q;] and B = [b;;] having the same number of rows and the same number
of columns is the matrix obtained by adding the corresponding elements of A and B. That is,

Matrix addition is both associative and commutative. Thus, A+ (B+C)=(A+B)+ Cand A+ B=B + A.

131
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SCALAR AND MATRIX MULTIPLICATION

If A is either a number (also called a scalar) or a function of ¢, then AA (or, equivalently, AMA) is defined to
be the matrix obtained by multiplying every element of A by A. That is,

Let A= [a;] and B = [b;;] be two matrices such that A has r rows and n columns and B has n rows and p
columns. Then the product AB is defined to be the matrix C = [¢;] given by

c; = azb,; (i=12...r;j=12,..p)
k=1

The element c¢;; is obtained by multiplying the elements of the ith row of A with the corresponding elements of
the jth column of B and summing the results.

Matrix multiplication is associative and distributes over addition; in general, however, it is not commutative.
Thus,

ABC) =(AB)C, AB+C)=AB + AC, and B+CA=BA+CA

but, in general, AB # BA.

POWERS OF A SQUARE MATRIX

If n is a positive integer and A is a square matrix, then

A"=AA---A
ntimes

In particular, A>= AA and A’ = AAA. By definition, A’ = I, where

00 ..00
010 ..00
00100
000 .. 10
000 ... 0 1]

is called an identity matrix. For any square matrix A and identity matrix I of the same size

AI=TA=A

DIFFERENTIATION AND INTEGRATION OF MATRICES

The derivative of A = la;] is the matrix obtained by differentiating each element of A; that is,
dA | da;
dt dt
Similarly, the integral of A, either definite or indefinite, is obtained by integrating each element of A. Thus,

'[:Adtz[Jjaijdt] and [Adr=][a,dt]
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THE CHARACTERISTIC EQUATION

The characteristic equation of a square matrix A is the polynomial equation in A given by
det (A—AD=0 (15.1)
where det( ) stands for “the determinant of.” Those values of A which satisfy (15.1), that is, the roots of (15.1),
are the eigenvalues of A, a k-fold root being called an eigenvalue of multiplicity k.

Theorem 15.1. (Cayley-Hamilton theorem). Any square matrix satisfies its own characteristic equation.
That is, if
det (A —=AI) = b, N+ b,  N'"' + - + byA? + b\ + b,

then bA" + b, A"+ o+ b A2+ DA + bl =0

Solved Problems

1 2 5 6
A= B=
3 4 7 8
{1 2} {5 6] {1+5 2+6} {6 8}
A+B= + = =
3 4| |7 8| |3+7 4+8 10 12
5 6] [1 2] [541 6+2 6 8
B+A= + = =
T B

Since the corresponding elements of the resulting matrices are equal, the desired equality follows.

15.1. Show that A+ B =B + A for

15.2. Find 3A — 1B for the matrices given in Problem 15.1.

12
3A-1B=3 ALy e
2 3 4 2|7 8
5
- -2 3
36
"o 12}r 3
L L4
2
3+[—5] 6+-3) | |L 3
_ 2 |2
- RS
9+[—7) 12+-4)] |= 8
| 2 2

15.3. Find AB and BA for the matrices given in Problem 15.1.

apo|! 21L[5 6]_[1®+2) 1©@+2®)]_[19 22
3 4] |7 8| [35)+4(7) 36)+4®)| |43 50

sa—|® 6]t 2]_[50+6G) 5@+6)]_[23 34
7 o83 4| |71)+83) T2)+84)| |31 46

Note that for these matrices, AB # BA.
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15.4. Find (2A — B)? for the matrices given in Problem 15.1.

[1 2} {5 6} {2 4} [—5 —6} {—3 —2}

2A-B=2 +(=1) = + =

3 4 7 8] |6 8| |-7 =8| |-1 0
R -3 23 =2

and (2A-B) :(2A—B)(2A—B):[_1 }[ }

0ojl-1 0

B33+ () B3+ (=)0 116
Tl 13 +0(=1) —1(=2)+00) | | 3 2

15.5. Find AB and BA for
1 2 3 7 0
A S . B =
4 5 6 8 -1 _
Since A has three columns and B has two rows, the product AB is not defined. But

BA_F 0]{1 2 3}_[7(1”(0)(4) 7(2) + (0)(5) 7(3)+(O)(6)}

8 —1l4 5 6| |81)+(=D@) 8(2)+(=1)5) 8(3)+(=1)(6)
[7 14 21
14 11 18

15.6. Find AB and AC if

4 2 0 2 3 1 31 3
A= 2 1 0|, B=| 2 2 2, C=| 0 2 6
-2 -1 1 -1 2 1 -1 2 1

42)+22)+O) =D 43)+2(=2)+(0)2) 41 +2(=2)+(O0)D)
AB=| 2Q)+1Q)+O0) =)  2Q3)+1(=2)+(0)2)  2(1)+1(-2)+(0)1)
2@2)+ D@+ 1D =20) +(=D(2) +12) - =2(1) + (=D(=2) + 1(D)

(12 8 0
= 6 4 0
-7 2 1

[ 4B3)+20)+O)=D 4D +22)+(0)2)  4(=3)+2(6) +(0)(1)
AC=| 23)+1(0)+O)=1) 2 +1Q)+(0)2)  2(=3)+1(6) +(0)(1)
[203)+ DO +1(=D) 2D+ (=DH2)+1(2) =2(=3) + (=1)(6) +1()

[12 8 0
= 6 4 0
-7 =2 1

[CHAP. 15

Note that for these matrices AB = AC and yet B # C. Therefore, the cancellation law is not valid for matrix

multiplication.
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15.7. Find Ax if
1 2 3 4 -1
A = X =
56 78 -2

{1(9) +2(-D) +3(-2) + 4(0)} (1 }
Ax = = 55

5(9) + 6(=1) + 7(=2) + 8(0)

2 2t
158. Find A ira=|" T €,
dt sint 45

d , d o
JA E(t +1) E(e ) o 5
cost O

d d
—(sint) —(45
dt( ) dt( )

4 x,(?)
15.9. Find & ifx=|x,(1)|.
dt
x5(1)
dx, (1)
di .
X, (1)
éz dxz(t) — )-Cl(t)
d dt z
ey | LRO
di

15.10. Find [ A dt for A as given in Problem 15.8.

[hd- [ +nar [ear émﬁcl %ez’+cz
Jsintdz J45dz

—cost+c; 45t +c,

1
15.11. Find .[ledt ifx=|e |.
0
1
jldr
o 1
J’lxdtz Ile'dt =le—1
0 0
0

'[OlOdz
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1 3
15.12. Find the eigenvalues of A = [4 }

2
‘We have
A_M{‘ 3}”_;@[1 0}
4 2 0 1
_[ros] [ o]fr-r 3
14 2 0 x| | 4 2-2
1—
Hence, det(A — AI) = det A3
4 2-A

=1-M2-M)-3)4)=A"-31-10

The characteristic equation of A is A> — 3A — 10 = 0, which can be factored into (A — 5) (A + 2) = 0. The roots of this
equation are A; =5 and A, = —2, which are the eigenvalues of A.

2 5
15.13. Find the eigenvalues of Arif A = { { 2:|.

At—7ﬂ=|: 2 S}H(—k){l 0]

-1 =2 0 1
|2t 5t N -2 0 B 2t — A\ 5t
N 0 Al | -+ —2t-2

2t -\ 5t
-t 2t-A

=2t = AN)(2t =) = (50)(=1) =A% + ¢

Then, det(A -AD) = de{

and the characteristic equation of At is A2+ > = 0. The roots of this equation, which are the eigenvalues of Az, are
Ay =it and A, = —it, where i =+/—1.

4 1 0
15.14. Find the eigenvalues of A={ -1 2 0].
2 1 3
4 1 0 100
-M=|-1 2 0|-A|0 1 O
2 -3 0 0 1

Thus, det(A—A)=det| -1 2-A 0

=(=3-M[(E -2 -A) —A)(-1)]
=(=3-MA-3)(A-3)
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The characteristic equation of A is
(3 -MA-3HA=3)=0
Hence, the eigenvalues of A are A; =3, A, =3, and A3 = 3. Here A = 3 is an eigenvalue of multiplicity two, while

A =-3 is an eigenvalue of multiplicity one.

15.15. Find the eigenvalues of

5 7 0 0
|35 0 o0
o 0o 2 1
0 0 0 =2
5-A 7 0 0
A= -3 —S5-A 0 0
0 0 2-A 1
0 0 0 2-A
and det(A=AD=[(5-A)(=5-L) = (=3)(D](-2-A)(-2-1A)

= (M =42 =)= )
The characteristic equation of A is
W =2 -A)(=2-1=0

which has roots A, =2, A, =2, A3 =-2, and A, = —2. Thus, A =-2 is an eigenvalue of multiplicity three, whereas
A =2 is an eigenvalue of multiplicity one.

2 -7
15.16. Verify the Cayley—Hamilton theorem for A = L‘ 6}'

For this matrix, we have det (A — AI) = A> — 8\ + 33; hence

2 72 -7 2 -7 10
A>—8A +331= -8 +33

3 6J3 6] [3 6 0 1

_[-17 -s6] [16 -56] 33 o0
24 15] |24 48] | 0 33

_Jo o
oo

15.17. Verify the Cayley—Hamilton theorem for the matrix of Problem 15.14.
For this matrix, we found det (A — AI) = —(A + 3) (A — 3)%; hence

r ar 2

7101 1 0
—~(A+3DA-3D*=-|-1 5 0| -1 -1 0
|2 1 0Jl2 1 -6

7 1 0] o 0o 0] [0 0 0

=—|-1 50| 0 0 0f={0 00

| 2 0J|-11 =5 36| [0 0 O
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In Problems 15.18 through 15.38, let

15.18.
15.19.
15.20.
15.21.
15.22.
15.23.
15.24.
15.25.
15.26.
15.27.
15.28.
15.29.
15.30.
15.31.
15.32.
15.33.
15.34.
15.35.
15.36.

15.37.

Find A + B.

Find 3A - 2B.

Find C - D.

Find 2C + 5D.

Find A + D.

Find x — 3y.

Find (a) AB and (b) BA.
Find A2,

Find A”.

Find B2

Find (a) CD and (b) DC.
Find (a) Ax and (b) xXA.
Find AC.

Find (C + D)y.

MATRICES

Supplementary Problems

3 50
2 3 1 -4
A{ }B[ }C:—z 30
1 =2 30
111
10 2 1 1
D=101x:[2}y=1
2 0 4 B 2

Find the characteristic equation and eigenvalues of A.

Find the characteristic equation and eigenvalues of B.

Find the characteristic equation and eigenvalues of A + B.

Find the characteristic equation and eigenvalues of 3A.

Find the characteristic equation and eigenvalues of A + 5I.

[CHAP. 15

Find the characteristic equation and the eigenvalues of C. Determine the multiplicity of each eigenvalue.
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15.38. Find the characteristic equation and the eigenvalues of D. Determine the multiplicity of each eigenvalue.

2
15.39. Find the characteristic equation and the eigenvalues of A = |:t ! }

1 2t

t 6t 0
15.40. Find the characteristic equation and the eigenvalues of A=|4t —t 0 |.

0 1 5t

dA
15.41. Find o for A as given in Problem 15.39.

312

dA cos2t
15.42. Find — for A= .
dt te

15.43. Find J.OlAdt for A as given in Problem 15.42.



CHAPTER 16

DEFINITION
For a square matrix A,
At _ 1 1 2.2 _ o 1 n.n
e =I+EAZ+5AZ +oe= Y —A't 16.1)

n:On!

The infinite series (/6.1) converges for every A and ¢, so that e*’ is defined for all square matrices.

COMPUTATION OF e*!

For actually computing the elements of e*’, (16.1) is not generally useful. However, it follows (with some
effort) from Theorem 15.1, applied to the matrix A¢, that the infinite series can be reduced to a polynomial in z. Thus:

Theorem 16.1. If A is a matrix having n rows and n columns, then
A= o, AV 4 o, SATHT 4 0 AT+ o AL+ ol (16.2)

where o, ¢, ..., o,_; are functions of ¢ which must be determined for each A.

Example 16.1. When A has two rows and two columns, then n =2 and

A= oAt + ol (16.3)
When A has three rows and three columns, then n =3 and
M= oA’ + oAt + oL (16.4)
Theorem 16.2. Let A be as in Theorem 16.1, and define
rN) = o, (N7 o, DN+ oA+ o+ o (16.5)
Then if A; is an eigenvalue of At,
eM=r\) (16.6)
Furthermore, if A; is an eigenvalue of multiplicity &, k > 1, then the following equations are
also valid:
d
A
e =—r(\
™ M) )
d2
A
e =—r(h) (16.7)
dA A=h,
dk -1
e = —r(A)
dA -
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Note that Theorem 16.2 involves the eigenvalues of At; these are ¢ times the eigenvalues of A. When com-
puting the various derivatives in (/6.7), one first calculates the appropriate derivatives of the expression (16.5)
with respect to A, and then substitutes A = A;. The reverse procedure of first substituting A = A; (a function of 7)
into (16.5), and then calculating the derivatives with respect to z, can give erroneous results.

Example 16.2. Let A have four rows and four columns and let A = 57 and A = 2¢ be eigenvalues of Az of multiplicities
three and one, respectively. Then n =4 and

r(\) = o5 3+ A2+ o\ + o
() = 30502 + 200A +
(N =605\ + 20,
Since A = 5t is an eigenvalue of multiplicity three, it follows that ¢> = r(5¢), 3= r/(5¢), and ¢ = r”(5¢). Thus,
&' = 03(50)° + (507 + 04 (51) + 0
e =305(507+ 20,(50)% + o
&' = 605(50) + 201
Also, since A = 2¢ is an eigenvalue of multiplicity one, it follows that e* = 7(27), or
Y= 0320 + (207 + 0y (28) + 0
Notice that we now have four equations in the four unknown o’s.

Method of computation: For each eigenvalue A,, of At, apply Theorem 16.2 to obtain a set of linear
equations. When this is done for each eigenvalue, the set of all equations so obtained can be solved for o,
ay, ..., 0,_;. These values are then substituted into Eq. (/6.2), which, in turn, is used to compute A

Solved Problems

1 1
16.1. Find ' for A=[9 J.

Here n=2. From Eq. (16.3),

e =alAt+a(,I={ 0))

ot+eo, ot ]
ot oyt +a

and from Eq. (16.5), r(A) = oy A + 0. The eigenvalues of At are A, = 4t and A, = —2¢, which are both of multiplicity
one. Substituting these values successively into Eq. (/6.6), we obtain the two equations

M= 4ton + o
e Y= 2toy+ o

Solving these equations for ¢ and ¢, we find that

-2t

1 1
o :a(e‘” —e™) and ¢, :g(e4r +2e7)

Substituting these values into (/) and simplifying, we have

4 2 4 2
N 1]3e" +3e7 eV —e™

6] 9e" — 9™ 3e' +3e7
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. A 0 1
16.2. Find ™ for A= .
8 2
Since n = 2, it follows from Eqgs. (/6.3) and (/6.5) that
Q ot
M=o Ar+ol=| " ! )
8oyt 204t + o

and r (A) = gL + 0. The eigenvalues of Arare A, = 27 and A, = —41, which are both of multiplicity one. Substituting
these values successively into (/6.6), we obtain
=20+ 0oy = oy(—4t) + o

Solving these equations for ¢ and ¢, we find that
o, = i(ez’ -y o= l(2.«32’ +e™)
6t 3
Substituting these values into (/) and simplifying, we have

6

16.3.

0

Find €A for A :{

1| 4e* +2¢™
eA, |:e e

eZI _241
8e* —8e™  2¢¥ +4e™

|

Here n = 2; hence,

M=o, At + oI =
—ot «,

o, alz} o

and r(A) = oA + 0. The eigenvalues of At are A, = it and A, = —iz, which are both of multiplicity one. Substituting
these values successively into Eq. (/6.6), we obtain

ei[: (Xl(lt) + O e_it: (Xl(—ll) + O
Solving these equations for ; and oy and using Euler’s relations, we find that

i(eit _ey= sint

o =
2it t

1.
o, :5(8” +e ™) =cost

Substituting these values into (/), we obtain

A cost  sint
e =

—sint cost

0 1
16.4. Find ¢ for A = .
-9 6
Here n=2. From Eq. (16.3),
Q, ot
M=o At+ol=| ° : (N
—Oout 6ot +
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and from Eq. (16.5), r(A) = oA + 0. Thus, dr(\)/d k= o,. The eigenvalues of Ar are A; = A, = 3¢, which is a single
eigenvalue of multiplicity two. It follows from Theorem 16.2 that

e3t = 3[@1 + O

(33’= Oy
Solving these equations for ¢ and ¢, we find that

og=e and op=eY(1-30)

Substituting these values into (/) and simplifying, we have

Ar 3 1-3¢ t
et'=e
-9t 1+3¢

310
16.5. Find e for A={0 3 1.
0 0 3

Here n = 3. From Egs. (/16.4) and (/6.5) we have

M =, A’ + o, At + o

9 6 1 310 1 00
=a,|0 9 6|F+a|0 3 1|t+|0 1 0
00 9 0 0 3 0 0 1
9a,t” + 304t + @ 60,t” + oyt a,t’
= 0 9o,t” + 304t + @, 60,t” + ot )
0 0 90,,1> + 304t + 0
and r (L) = oA+ oA + 0. Thus,
2
ar®) _ 20,\ + 0 d r(?) =20,
d\ A

Since the eigenvalues of At are A; = A, = A3 = 3¢, an eigenvalue of multiplicity three, it follows from Theorem 16.2
that

e = 0,97+ a3t + o
&= 0,6t + o
=20,

The solution to this set of equations is

azzée“ a, =(1-3t)e” a0=(1—3t+zt2 je”

Substituting these values into (/) and simplifying, we obtain
1t 2

eM=e"l0 1t

00 1
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0 1 0
16.6. Find eAfor A=|0 0 1.
0 -1 2

Here n=3. From Eq. (16.4),

M =0, A’ + oAt + o
2
o, oyt ot
=0 -t +a 20,t° + ot @)
0 =20t —at 3o,t” +204t +0,

and from Eq. (16.5), r(A) = apA? + oy A + . The eigenvalues of Az are A, =0 and A, = Ay =1; hence A =1 is an
eigenvalue of multiplicity two, while A =0 is an eigenvalue of multiplicity one. It follows from Theorem 16.2 that
e' = r(1), ¢ = r'(f), and € = r(0). Since (L) = 20\ + @, these equations become

e'= o+ oyt + o
=20+ o
=0y

which have as their solution
e’ —e +1 _—te' +2e' -2

a, 2 1 P o, =1

Substituting these values into (/) and simplifying, we have

1 —te'+2e' =2 te' —e' +1
eM=0 —te' +¢' te'
0 —te' te' +¢'
0O 1 O
16.7. Find e* for A={0 -2 -5]|.
o 1 2

Here n=3. From Eq. (16.4),

M =, A’ + o, At + o, 1

o, 20, +ot 50,1
=[ 0 -0t =204t +0 S04t )
0 —o,t —o,t” + 204t + 0

and from Eq. (16.5), r(\) = apA* + oy h + ot The eigenvalues of At are A, =0, A, = it, and A5 = —it. Substituting
these values successively into (/6.6), we obtain the three equations

"= o5(0)* + 04(0) + 0ty

€' = on(it)* + ay(it) + o

e = op(—in’* + oy (—it) + o
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which have as their solution

e +e " =2 1—cost
: 27 1
e —e " sint
al = - = —
2it t
o, =1

Substituting these values into (/) and simplifying, we have

1 —-2+2cost+sint —5+15cost
eM=]0 cost —2sint —5sint
0 sint cost + 2 sint

16.8. Establish the necessary equations to find eA’ if

—_ O A~ L N

S O O O O =
S O O O = N
S O O NN W
S O NV W W s
S O W b~ B~ W

Here n =6, so

eM = o AP + oAt + oA+ AP+ oy At + ol

and r(A) = oA + oAt + o\ + oA+ o + o
r'(7\.) = 5(15}\,4 + 4-0(47\,3 + 30!37\.2+ 20627»2 + 0
r(N) = 20065\ + 120,A% + 60\ + 201y

The eigenvalues of Az are Aj =A, =A3=1, Ay =As5=21, and Ag=0. Hence, A =1 is an eigenvalue of multiplicity
three, A = 2t is an eigenvalue of multiplicity two, and A = 0 is an eigenvalue of multiplicity one. It now follows from
Theorem 16.2 that

¥ =r(21) = 05207 + ou(20* + 03(20° + 021 + (20 + o
e =71 (20 = 50520* + 40u(20)> + 30520 + 20,(20) + @y
> =1"(2f) = 20055(21)° + 12044(21)% + 603(21) + 201,
e'=r(0) = 05(t)° + ou()* + a3(t)® + (D + o (t) + o
e'=r(t) = So5(t)* + dou(t)* + 303()% + 206(1) + o
¢ = r(0) = 05(0)° + 04(0)* + 03(0)° + x(0)* + 04 0) + et
or, more simply,
e*'=32005+ 16t* 0y + 8L 03 + 4170, + 2t 0y + o
2= 80r* o5 + 32 oy + 12703 + 4ton, + 0y
e?= 1600 + 48 0y + 1210 + 201y
e'=1ros+rtay+ Pog+ oy + tay + o
e'=5tas + 4oy + 30 + 2ton + oy

]=O£0
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16.9. Find e*'¢P and ¢ * B for

0 1
A= and B
oo

0 0
-1 0
0 1 .
Here, A+B =|: | 0}. Using Theorem 16.1 and the result of Problem 16.3, we find that

o 1z o = 1o Jaemi _| cost sin?
01 -t 1 —sint cost
1 ¢ 1 0 _f?
Thus’ eAreBrz _ 1—1¢ t ¢e(A+B)t
0 1||-r 1 A |

16.10. Prove that eAeP’ = ¢(A * B if and only if the matrices A and B commute.
If AB = BA, and only then, we have

and verify that, for these matrices, eA'eB’ # (A +B),

(A+B)’=(A+B)YA+B)=A”+AB+BA + B> = A’ + 2AB + B*

2 (2
:Z A"FBE
icol k

and, in general, (A+B)" = Z[Z ]A”'kB" 0
k=0
!
where | " —__ ™ isthe binomial coefficient (“n things taken k at a time”).
k k'(n—k)!

Now, according to Eq. (/6.1), we have for any A and B:

Y n An kBk . oo n n ok tn
Z[Z A k)‘k']t :z{z[ ]A B }' @

and also A = Z (A+B)'t" = Z(A +B) - &)

nOn n=0

We can equate the last series in (3) to the last series in (2) if and only if (/) holds; that is, if and only if A and B
commute.

16.11. Prove that e ™S = AU 9,

Setting =1 in Problem 16.10, we conclude that e
and —As commute, since

AeB = ¢A+B) if A and B commute. But the matrices As
(AN (—As) = (AA)(—ts) = (AA)(—st) = (—As)(Ar)

Consequently, eMe™5 = A=A = A9,



CHAP. 16] M 147

16.12. Prove that ¢® =1, where 0 denotes a square matrix all of whose elements are zero.

From the definition of matrix multiplication, 0" = 0 for n > 1. Hence,

= 1 = 1
0 0r n.n nen —
e =e —néof!Ot =1+ E 7’01 =I+0=1I

n=11!

Supplementary Problems

Find e* for the following matrices A.

16.13. 20 16.14. 32
0 -3 14 1
16.15. > 6 16.16. o
|4 -5 18 -2
16.17. 0 1 1618. |2 ©
|-14 -9 10 2
1619, |> ! 1620. | * >
10 2 -4 —4
16.21. 01 16.22. o1
-16 0 |64 —16
1623 | 01 16.24. 01
-4 — =36 0
16.25. 0 1 1626, |5 2
25 -8 18 2
2 1 0 (2 0]
16.27. [0 2 1 16.28. |0 2 1
0 0 2 0 0 2]
-1 1 0 [0 0 0]
16.29. | 0 2 1 16.30. |0 0 0
[0 0 2 0 0 0]
[0 1 0 (0 0 0]
16.31. [0 0 O 1632. |1 0 0
0 0 1 1 0 1)




Reduction of Linear
Differential Equations
to a System of First-
Order Equations

AN EXAMPLE

In Chapter 15, we introduced the idea of a matrix with associated concepts. Consider the following second-
order differential equation:

L d’x .o dx
t W+(smt)g—4x=lnt 17.1)

We see that (/7.1) implies

d*x 4 sint dx Int
e E+7‘ (17.2)

Since that derivatives can be expressed in many ways — using primes or dots are but two of them — we let
2

V= d_x =x'=xand V' = dt)f = x" = X. Then Eq. (17.1) can be written as the following matrix equation:
’ 2
. 0 1 0
X X
[.}= 4 —sint [ }‘F Int (17.3)
v = Ta |V —

t

because x=0x + lvand v = ix St v+ ln—f We note, finally, that Eq. (/7.1) can also be expressed as
t

14 t

dx(nldt = A(¥) x(t) + £(¢) (17.4)
Note that if x(0) =5 and x(0) = -=12 in (/7.1), then these initial conditions are written as x(0) = 5, v(0) = -12.
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REDUCTION OF AN n"-ORDER EQUATION

As in the case of the second-order differential equation, with associated initial conditions, we can recast
higher order initial-value problems into a first-order matrix system as illustrated below:

nfl

b, (t) "~ 4b, ,<r) T b (0 + by (Dx = g(0); (17.5)

x(t,) =cy, )'c(to):c,, S (BT (17.6)

with b,(¢) # 0, can be reduced to the first-order matrix system

x(1) = A()x(¢) + £(1)
x(t)) = ¢ 7.7)

where A(?), f(¢), ¢, and the initial time 7, are known. The method of reduction is as follows.
Step 1. Rewrite (/7.5) so that d"x/dt" appears by itself. Thus,

d"x d"’lx

W:""-‘([) +t+a()x+a,(t)x+ f(1) (17.8)

where aj(t) = ~b(1)/b,(1) (j=0, 1, ..., n— 1) and f() = g(1)/b, ().

Step 2. Define n new variables (the same number as the order of the original differential equation);
x1(1), x5(1), ... , x,(), by the equations

dx(t dzx t d"'x(t
50 =x0. x0="C 0= 0= (17.9)
These new variables are interrelated by the equations
X, (1) = x, (1)
xz (t) =X (t)
() = x,0) (17.10)

xn—l([) = 'xn(t)

Step 3. Express dx,/dt in terms of the new variables. Proceed by first differentiating the last equation of (/7.9)
to obtain

x =
= dr"™! dr"

d [d”'lx(t)} _d"x(0)
Then, from Egs. (/7.8) and (17.9),

5B =a, ) d; 2O 400 + a0 + )

=a,_()x,(t)+-+a,@)x,(t) +a,®)x, @)+ f(t)

For convenience, we rewrite this last equation so that x;(7), appears before x,(7), etc. Thus,

£ (1) =a,(0x,(0) + a,(O)x, (1) + - +a,_,(Ox, )+ f() (17.11)
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Step 4. Equations (/7.10) and (/7.11) are a system of first-order linear differential equations in x;(z),

X5(1), ..., x,(t). This system is equivalent to the single matrix equation X(z) = A(H)x(¢) + f(r) if we
define
x, (1)
t
x(n=| 2" (17.12)
x, (1)
0
0
tn=| : (17.13)
0
f®
0 1 0 0 0 |
0 0 1 0 0
0 0 0 1 0
A =| . . : . : (17.14)
0 0 0 o - 1
_ao(f) a@) a,t) a)(t) - an—l(t)_

Step 5. Define

Then the initial conditions (/7.6) can be given by the matrix (vector) equation x(#y) = c. This last equa-
tion is an immediate consequence of Eqs. (/7.12), (I17.13), and (17.6), since

x](to) x(to) CO
xty=| 2| W4,

x,(t) | | x" V)| e

Observe that if no initial conditions are prescribed, Steps 1 through 4 by themselves reduce any linear
differential Eq. (17.5) to the matrix equation x(7) = A(1)x(z) + (7).

REDUCTION OF A SYSTEM

A set of linear differential equations with initial conditions also can be reduced to System (/7.7). The
procedure is nearly identical to the method for reducing a single equation to matrix form; only Step 2 changes.
With a system of equations, Step 2 is generalized so that new variables are defined for each of the unknown
functions in the set.
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17.1.

17.2.

17.3.

Solved Problems

Put the initial-value problem
i+2i—8x=e5 x(0)=1, %0)=-4

into the form of System (17.7).

Following Step 1, we write ¥ = —2x + 8x + ¢'; hence, a,(t) = =2, ay(f) = 8, and f(r) = ¢'. Then, defining x,(f) = x
and x,(r)=x (the differential equation is second-order, so we need two new variables), we obtain X, =x,.
Following Step 3, we find

. dx .
X, =—5=-2k+8x+e¢ =-2x,+8x +¢
dt

Thus, X, =0x, +1x, +0

X, =8x, = 2x, +¢'

These equations are equivalent to the matrix equation x(7) = A()x(?) + f(7) if we define

[x0 _fo 1 _[o
i) oy 2w

1
4}, then the initial conditions can be given by x(#;) = ¢, where 7, = 0.

Furthermore, if we also define ¢ E|:

Put the initial-value problem
X+2x—8x=0; x(1)=2, %(1)=3

into the form of System (/7.7).

Proceeding as in Problem 17.1, with ¢’ replaced by zero, we define

[x@® _fo 1 [o
] oy 2 o]

The differential equation is then equivalent to the matrix equation X(r) = A(¢)x(¢) + f(¢), or simply x(¢) = A(¥)x(¢),

2
since f(7) = 0. The initial conditions can be given by x(7)) = ¢, if we define 7,=1 and ¢ = {3}

Put the initial-value problem
¥+x=3; x(m)=1, x(m)=2

into the form of System (17.7).
Following Step 1, we write ¥ = —x + 3; hence, a,(f) =0, ay(?) = —1, and f(¢) = 3. Then defining x(#) = x and
X,(t) = X, we obtain &, = x,. Following Step 3, we find
X, =X=-x+3=-x,+3
Thus, X, =0x, +1x, +0
X, =—=1x, +0x, +3
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174.

17.5.
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These equations are equivalent to the matrix equation x(7) = A(£)x(?) + f(¢), if we define

ExG o1 o
o[ ] w0-[ o] 0=

o

then the initial conditions take the form x(z;) = ¢, where 7y = 7.

Furthermore, if we also define

Convert the differential equation X — 6x + 9x = ¢ into the matrix equation
x(1) = A(D)x(r) + £(2)
Here we omit Step 5, because the differential equation has no prescribed initial conditions. Following Step 1,

we obtain

X=6xX—-9x+1¢
Hence a,(t) = 6, ap(t) =9, and f(r) = t. If we define two new variables, x,(f) = x and x,(¢) = x, we have

X, =x, and X,=X=6xX-9x+¢t=6x,—9x, +1¢

Thus, X, =0x,+1x,+0

X, ==9x, +6x, +¢

These equations are equivalent to the matrix equation x(7) = A(H)x(?) + f(7) if we define

o="" an=| ! 1=’
M= x, (1) 19 6 e

Convert the differential equation

d*x d*x ﬂ_

£X .22 0
dr’ dr*  dr

into the matrix equation X(¢) = A(r)x(t) + (7).

The given differential equation has no prescribed initial conditions, so Step 5 is omitted. Following Step 1, we
obtain
Ix &
a’ dr ar

Defining x,(f) = x, x,(f) =X, and x3(¢) = i (the differential equation is third-order, so we need three new variables),
we have that x; = x,, and X, = x3, Following Step 3, we find

d’x
X, =——=2X—-X=2x;,— X
3 ar 3 2
Thus, X, =0x, +1x, +0x,

X, =0x, +0x, +1x,

X, =0x, —1x, +2x,
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We set
x,(®) 0O 10 0
x()=|x,®)| A®=|0 0 1| f@®=|0
X;(1) 0 -1 2 0

Then the original third-order differential equation is equivalent to the matrix equation X(7) = A(9)x(¢) + f(¢), or, more
simply, X(z) = A(1)x(r) because f(z) = 0.

17.6. Put the initial-value problem

d'x d’x ,,dx
_e e

att dr dt

x()=2, (=3, ¥D=4, ¥1=5

-t

»
S5e™;

into the form of System (/7.7).

Following Step 1, we obtain

d*x d*x dx
¢ _pr

— = +5
dt* dr dt

Hence; a;(f) = 0, ay(r) = €', a,(f) = —*¢¥, ay(1) = 0, and f(7) = 5. If we define four new variables,

dx d*x d*x
x=x x,t)=— x,O)=— x,(t)=—+
‘ ’ a darr ! ar’
we obtain x| = x,, X, = X3, X3 = X4, and, upon following Step 3,
. d* . .
X, = dtf =e'X¥—re’i+5=¢x,—t’e"x, +5
Thus, X, =0x, +1x, +0x; +0x, +0

X, =0x, +0x, +1x; +0x, +0
X, =0x, +0x, +0x; +1x, +0

%, =0x, —t’e¥x, +e'x; +0x, +5

These equations are equivalent to the matrix equation X(7) = A(1)x(¢r) + £(¢) if we define

x,(1) 0 1 00 0
. t 0 0 1 0 0
w0 =| 2P| A= f(6) =

x3(0) 0O 0 01 0

x,() 0 —’e* ¢ 0 5

, then the initial conditions can be given by x(#,) = ¢, where 7, = 1.

2
3
Furthermore, if we also define ¢ = 4
5
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17.7. Put the following system into the form of System (/7.7):

X=tx+x—-y+t+1
$=(sint)x +x—y+¢
x(D)=2, x(1)=3, x)=4, y)=5 y1)=6

Since this system contains a third-order differential equation in x and a second-order differential equation in y,
we will need three new x-variables and two new y-variables. Generalizing Step 2, we define

dx d’x
x®=x x,)=— x;(t)=—4
' a7 ae
dy
(0= N=—
N y Y dr
Thus, X =x,
Xy =X,
. dx .
x3=?=tx+x—y+t+1=tx3+xl—y2+t+1
=y
. dzy . . 2 . 2
y2=7=(smt)x+x—y+t =(sint)x, + x, —y, +1t
or X, =0x, +1x, +0x; + 0y, + 0y, +0

X, =0x, +0x, +1x; +0y, + 0y, +0
Xy =1x, +0x, +tx; + 0y, — 1y, +(t +1)
¥, =0x, +0x, +0x; +0y, +1y, +0
y, =1x, + (sinf)x, +Ox, — 1y, + 0y, + £

These equations are equivalent to the matrix equation x(7) = A(H)x(?) + f(¢) if we define

x,(®) O 1 0 0 O 0
x, (1) 0o 0 1 0 O 0

xO=|x@| AO=|1 0 ¢ 0 -1| f@O)=|r+1
¥,(1) 0O 0 0 o0 1 0
¥,(2) 1 sint 0 -1 O ?
2
3

Furthermore, if we define ¢ =| 4 | and 7, = 1, then the initial condition can be given by x(7)) = c.

5
6

17.8. Put the following system into the form of System (/7.7):

¥=-2i-5y+3
y=x+2y;
x(0)=0, %0)=0, y(0)=1

Since the system contains a second-order differential equation in x and a first-order differential equation in y,
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we define the three new variables

KO=x xnO=2 50=
Then, X, =x,
X, =X=-2x-5y+3=-2x, -5y, +3
Y =y=x+2y=x,+2y
or, X, =0x, +1x, +0y, +0
X, =0x, —2x, =5y, +3
¥, =0x, +1x, + 2y, +0

These equations are equivalent to the matrix equation X(¢) = A(#)x(7) + £(¢) if we define

x,(?) 0 1 0 0
x()=|x,@) | A@=|0 2 -5| f(r=|3
() 0o 1 0 0
0
If we also define 7y =0 and ¢ =| 0 |, then the initial conditions can be given by x(z)) = c.
1

17.9. Put the following system into matrix form:

X=x+y
y=9%x+y
We proceed exactly as in Problems 17.7 and 17.8, except that now there are no initial conditions to consider.

Since the system consists of two first-order differential equations, we define two new variables x(f) =x and
yi(#) = y. Thus,

X =x=x+y=x+y +0
Y =y=9%x+y=9x,+y +0

0= an=" Y t0=|°
B0 BCE! |0

then this last set of equations is equivalent to the matrix equation x(¢) = A(#)x(?) + £(), or simply to x(#) = A()x(?),
since f(7) = 0.

If we define

Supplementary Problems

Reduce each of the following systems to a first-order matrix system.
17.10. ¥ -2x+x=t+1Lx)=1x1)=2
17.11. 25k +x=4¢e;x0)=1,x0)=1

17.12. i —3x—f’x=sins; x(2) =3, x(2) =4
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17.13.

17.14.

17.15.

17.16.

17.17.

17.18.

17.19.

17.20.

REDUCTION OF LINEAR DIFFERENTIAL EQUATIONS

J+59-2ty=1>+1;(0) =11, 3(0) =12
—§+55+6y=0

eX —ti+x—e'x=0;
x(=1)=1,%(=1)=0, ¥(-D) =1
3 2
L§+3L2y_4ﬂ
dt dt dt
Y@y =-1,y(m)=-2,y"(m)==-3

+5y=1" +16¢ +20;

¥ =1 x(0)=0, £0) =0, ¥(0) =0

¥=i+y-z+t

J=tx+y-2y+£ +1
I=x—y+y+z

x()=1,x1)=15,y1)=0,y1)=-7,z(1)=4

¥=2%+5y+3
y=—x-2y
x(0)=0, x(0)=0, y(0)=1

X=x+2y
y=4x+3y;
x(7)=2,y(7)=-3

[CHAP. 17



CHAPTER 18

Graphical and
Numerical Methods for
Solving First-Order
Differential Equations

QUALITATIVE METHODS

In Chapter 2, we touched upon the concept of qualitative methods regarding differential equations; that is,
techniques which are used when analytical solutions are difficult or virtually impossible to obtain. In this
chapter, and in the two succeeding chapters, we introduce several qualitative approaches in dealing with
differential equations.

DIRECTION FIELDS

Graphical methods produce plots of solutions to first-order differential equations of the form

Y =f(x,y) (8.1

where the derivative appears only on the left side of the equation.

Example 18.1. () For the problem y’ = —y + x + 2, we have f(x, y) = —y + x + 2. (b) For the problem y’ =y + 1, we have
f(x,y)=y>+ 1. (c) For the problem y" =3, we have f(x, y) = 3. Observe that in a particular problem, f(x, y) may be
independent of x, of y, or of x and y.

Equation (/8.1) defines the slope of the solution curve y(x) at any point (x, y) in the plane. A line element
is a short line segment that begins at the point (x, y) and has a slope specified by (/8.1); it represents an approxi-
mation to the solution curve through that point. A collection of line elements is a direction field. The graphs of
solutions to (/8.7) are generated from direction fields by drawing curves that pass through the points at which
line elements are drawn and also are tangent to those line elements.

If the left side of Eq. (/8.1) is set equal to a constant, the graph of the resulting equation is called an
isocline. Different constants define different isoclines, and each isocline has the property that all line elements

157
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emanating from points on that isocline have the same slope, a slope equal to the constant that generated the
isocline. When they are simple to draw, isoclines yield many line elements at once which is useful for
constructing direction fields.

EULER’S METHOD
If an initial condition of the form

y(x0) =¥ (18.2)

is also specified, then the only solution curve of Eq. (/8.1) of interest is the one that passes through the initial
point (xo, Yo)-

To obtain a graphical approximation to the solution curve of Eqs. (/8.7) and (/8.2), begin by constructing
a line element at the initial point (xy, ¥o) and then continuing it for a short distance. Denote the terminal point
of this line element as (x;, y;). Then construct a second line element at (x;, y;) and continue it a short distance.
Denote the terminal point of this second line element as (x,, y,). Follow with a third line element constructed
at (x,, y,) and continue it a short distance. The process proceeds iteratively and concludes when enough of the
solution curve has been drawn to meet the needs of those concerned with the problem.

If the difference between successive x values are equal, that is, if for a specified constant i, h =x; — X,
=X, — X| = X3 — X, = ..., then the graphical method given above for a first-order initial-value problem is known
as Euler’s method. It satisfies the formula

Yt = Y + 1 (X V) (18.3)

forn=1, 2, 3, .... This formula is often written as
Vel =Y+ hy, (18.4)
where Y =fCns V) (18.5)

as required by Eq. (18.1).

STABILITY

The constant /2 in Egs. (18.3) and (18.4) is called the step-size, and its value is arbitrary. In general, the smaller
the step-size, the more accurate the approximate solution becomes at the price of more work to obtain that solution.
Thus, the final choice of 7 may be a compromise between accuracy and effort. If / is chosen too large, then the
approximate solution may not resemble the real solution at all, a condition known as numerical instability. To
avoid numerical instability, Euler’s method is repeated, each time with a step-size one half its previous value, until
two successive approximations are close enough to each other to satisfy the needs of the solver.

Solved Problems

18.1. Construct a direction field for the differential equation y’ =2y — x.

Here f(x, y) =2y — x.
Atx=1,y=1, f(1, 1)=2(1) — 1 =1, equivalent to an angle of 45°.
Atx=1,y=2,f(1,2)=2(2) — 1 =3, equivalent to an angle of 71.6°.
Atx=2,y=1,f(2,1)=2(1) - 2 =0, equivalent to an angle of 0°.
Atx=2,y=2,f(2,2)=2(2) — 2 =2, equivalent to an angle of 63.4°.
Atx=1,y=-1, f(1,-1) =2(-1) — 1 =3, equivalent to an angle of —71.6°.
Atx=-2,y=-1,f(-2,-1)=2(-1) — (-2) =0, equivalent to an angle of 0°.
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Line elements at these points with their respective slopes are graphed in Fig. 18-1. Continuing in this manner
we generate the more complete direction field shown in Fig. 18-2. To avoid confusion between line elements asso-
ciated with the differential equation and axis markings, we deleted the axes in Fig. 18-2. The origin is at the center
of the graph.

A
3_
o 4
1,2) (2,2
E o e
1,1 @D
| | | | | I}x
-3 | 1 2 3
(-2,-1) (1,-1)
_1_
_2_
_3_
Fig. 18-1
/ / / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / / /s S
/ / / / / / / / A
/ / / A G G N
/ / / 7 ~ — - — ~ N N \ \
/ / - — N — ~ \ N \ \ \ \
S N N N U N U N
— ~ '~ N NN\ \ \ \ \ \ \
~ N\ \ \ \ \ \ \ \ \ \ \
N \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \

Fig. 18-2
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18.2.

18.3.

18.4.

18.5.
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Describe the isoclines associated with the differential equation defined in Problem 18.1.

Isoclines are defined by setting y” = ¢, a constant. For the differential equation in Problem 18.1, we obtain

c=2y—-x or y=ix+ic
which is the equation for a straight line. Three such isoclines, corresponding to ¢ = 1, ¢ =0, and ¢ = -1, are graphed
in Fig. 18-3. On the isocline corresponding to ¢ = 1, every line element beginning on the isocline will have a slope
of unity. On the isocline corresponding to ¢ =0, every line element beginning on the isocline will have a slope
of zero. On the isocline corresponding to ¢ = —1, every line element beginning on the isocline will have a slope of
negative one. Some of these line elements are also drawn in Fig. 18-3.

Fig. 18-3

Draw two solution curves to the differential equation given in Problem 18.1.

A direction field for this equation is given by Fig. 18-2. Two solution curves are shown in Fig. 18-4, one that
passes through the point (0, 0) and a second that passes through the point (0, 2). Observe that each solution curve
follows the flow of the line elements in the direction field.

Construct a direction field for the differential equation y’ = x> +y* — 1.

Here f(x, y) =x>+y* - 1.
Atx=0,y=0,£0, 0) = (0)>+ (0)> - 1 = —1, equivalent to an angle of —45°.
Atx=1,y=2,£(1,2)=(1)>+(2)* - 1 = 4, equivalent to an angle of 76.0°.
Atx=-1,y=2,f(-1,2) = (=1)*+ (2)> — 1 =4, equivalent to an angle of 76.0°.
Atx=0.25,y=0.5, f(0.25, 0.5) = (0.25)> + (0.5)> — 1 = —0.6875, equivalent to an angle of —34.5°,
Atx=-0.3,y=-0.1, £(-0.3, -0.1) = (-0.3)> + (-0.1)> — 1 = -0.9, equivalent to an angle of —42.0°.

Continuing in this manner, we generate Fig. 18-5. At each point, we graph a short line segment emanating from
the point at the specified angle from the horizontal. To avoid confusion between line elements associated with the
differential equation and axis markings, we deleted the axes in Fig. 18-5. The origin is at the center of the graph.

Describe the isoclines associated with the differential equation defined in Problem 18.4.

Isoclines are defined by setting y" = ¢, a constant. For the differential equation in Problem 18.4, we obtain
c=x*+y>— 1 or x> +y?>=c+ 1, which is the equation for a circle centered at the origin. Three such isoclines,
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Fig. 18-5

corresponding to ¢=4, c=1, and ¢=0, are graphed in Fig. 18-6. On the isocline corresponding to ¢ =4,
every line element beginning on the isocline will have a slope of four. On the isocline corresponding to ¢ = 1, every
line element beginning on the isocline will have a slope of unity. On the isocline corresponding to ¢ =0, every
line element beginning on the isocline will have a slope of zero. Some of these line elements are also drawn in
Fig. 18-6.
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18.6. Draw three solution curves to the differential equation given in Problem 18.4.

A direction field for this equation is given by Fig. 18-5. Three solution curves are shown in Fig. 18-7, the top
one passes through (0, 1), the middle curve passes through (0, 0), and the bottom curve passes through (0, —1).
Observe that each solution curve follows the flow of the line elements in the direction field.

w
I

Fig. 18-6

_ — — — — — — — — e — —

/
/
/
/
/
/
|
|
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18.7.

18.8.

18.9.

T - o —~| -
Il Il Il Il 1]
N N - L — - _ - - / /
N N - L - - _ - e / /
N N N L — - — - e / /
N N - L — - — - - / /
N N N L - - _ L e / /
N N N L - - _ - e / /
N N - L — - — - e / /
N N - L - - — - e / /
N N N L — - — - e 7/ /
N N - L — - — - e / /
N N N L — - _ = - / /
N N - L — - — -~ - 7/ /
N N - L — - — -~ - 7/ /
line line line line line
x=-2 x=- x=0 x=1 x=2
Fig. 18-8

Construct a direction field for the differential equation y” = x/2.

Isoclines are defined by setting y' = ¢, a constant. Doing so, we obtain x =2¢ which is the equation for a
vertical straight line. On the isocline x = 2, corresponding to ¢ = 1, every line element beginning on the isocline will
have a slope of unity. On the isocline x =1, corresponding to ¢ =—1/2, every line element beginning on the
isocline will have a slope of —1. These and other isoclines with some of their associated line elements are drawn
in Fig. 18-8, which is a direction field for the given differential equation.

Draw four solution curves to the differential equation given in Problem 18.7.

A direction field for this equation is given by Fig. 18-8. Four solution curves are drawn in Fig. 18-9, which
from top to bottom pass through the points (0, 1), (0, 0), (0, —1), and (0, —2), respectively. Note that the differential
equation is solved easily by direct integration. Its solution, y = x*/4 + k, where k is a constant of integration, is a
family of parabolas, one for each value of k.

Draw solution curves to the differential equation y" = 5y(y — 1).

A direction field for this equation is given by Fig. 18-10. Two isoclines with line elements having zero slopes
are the horizontal straight lines y =0 and y = 1. Observe that solution curves have different shapes depending on
whether they are above both of these isoclines, between them, or below them. A representative solution curve of
each type is drawn in Fig. 18-11(a) through (c).
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0,-2)

Fig. 18-9

Fig. 18-10

18.10. Give a geometric derivation of Euler’s method.

is also known, via Eq. (/8.5). Draw a straight

’
n
and use /(x) to approximate y(x) on the interval [x,, x,,] (see

v (x,) has already been computed, so that y

Assume that y,
line /(x) emanating from (x,, y,) and having slope y

’
n»
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18.11.

Fig. 18-12). The value /(x,,) is taken to be y,.;. Thus
1) = )x + [y = ()]
and 1x,.) = ()X, + 1y, = (), ]
:yn + (y:x)(‘xrﬁ»l _xn) :yn + hy;:

Hence, y,.; =y, + hy,, which is Euler’s method.

Give an analytic derivation of Euler’s method.

Let Y(x) represent the true solution. Then, using the definition of the derivative, we have

Y/(x,) = lim Y(x,+Ax)-Y(x,)
Ax—0 Ax
If Ax is small, then

Y(x)= Y(x, + Ax)-Y(x,)
Ax
Setting Ax = h and solving for Y(x, + Ax) = Y(x,,,), we obtain
Y(x,,) =Y(x,)+hY'(x,) ()
Finally, if we use y, and y, to approximate Y(x,) and Y’(x,), respectively, the right side of (/) can be used to

approximate Y(x,.;). Thus,

Vet =Yn+hy,
which is Euler’s method.

| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
A A A /A Y A A
/oSS S S S
N N N N N N N N N N N N N N N N N N N
NN O N N N N N N N NN NN NN NN NN
N N N N N N N N N N N N N N N N N N N
/ / / / / / / / / / / / / / / / / / /
A A A A
| | | | | | | | | | | | | | | | | | |
] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
(a)

Fig. 18-11
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(b

Fig. 18-11 (cont.)

L
T

y —x; so Eq. (18.5) becomes y

2, using Euler’s method with #

vy —x; y(0)

18.12. Find y(1) for y’

Yn—X,. Because h=1,

’
n

For this problem, xy =0, yo =2, and f(x, y)

X, =x;+h=1

0, 1, 2, 3 successively, we now compute the corresponding y-values.

Using Eq. (/8.4) with n
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y
A
y =1
Slope =y,
Yl = l(xn+|)
()~ 7
N
N
N
(s V)
\ \ \ |
Xo X1 Xy X, X
(15 1)
(0> Yo)
Fig. 18-12
n=0: y =y,+hyg
But yg = f(xg, ¥o) =yo =% =2-0=2
1 5
Hence, y, =2+ —-(2)==
i 4( ) >
n=1: y,=y, +hy
, 51 9
But = X, = -, =———=—
ut y =)=y -x i
NI IO
ence. 275" 4l4 T 16
n=2: y;=y;+hy;
, 49 1 41
But = X = -, =————=—
ut ¥, =, m)=y, —x, T
49 1(41 237
Hence, y;=—+—| — |=—
16 4|16 ] 64
n=3: y,=ys+hy;
, 237 3 189
But y; = f(x5,5;) =y; — x5 ZH_Z:Q

237 1(m9j 1137
Hence, y,=—+—| — |=—

64 4| 64 | 256
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Thus,

1137
=y, =——=4.441
yh=y, 256

Note that the true solution is Y(x) = ¢* +x + 1, so that Y(1) =4.718. If we plot (x,, y,) forn=0, 1, 2, 3, and 4,
and then connect successive points with straight line segments, as done in Fig. 18-13, we have an approximation to
the solution curve on [0, 1] for this initial-value problem.

18.13. Solve Problem 18.12 with 2=0.1.
With 7=0.1, y(1) =y,o. As before, y, =y, — x,. Then, using Eq. (18.4) with n=0, 1, ..., 9 successively,
we obtain
n=0: xo=0, y,=2, yo=yo—Xx=2-0=2
yi=yo+hyy=2+(0.1)2)=2.2

n=1: x,=01, y; =22, y/=y;,—x,=22-0.1=2.1
Vo= yy + hy! =224 (0.1)(2.1) = 2.41

n=2 x,=02, y,=241, yj=y,—x,=241-02=221
Y3 =y, + hyy = 2.41 +(0.1)(2.21) = 2.631

n=3: x;=03, y;=2.631, y{=y;—x;=2.631-0.3=2331
Ya=ys + hyi =2.631 + (0.1)(2.331) = 2.864

n=4: x,=04, y,=2.864, y/=y;—x,=2.864—-0.4=2464
Vs =y4+ hy; =2.864 + (0.1)(2.464) =3.110

n=5: x;=0.5, ys=3.110, y{=ys—x5=3.110-0.5=2.610
Yo =ys + hyd =3.110 + (0.1)(2.610) = 3.371

n=6: x,=0.6, ys=3371, yi=ys—Xs=3.371-0.6=2.771
V7= yg + byt = 3.371 + (0.1)(2.771) = 3.648

n=T7: x;=0.7, y;=3.648, y;=y;=x7;=3.648—-0.7=2.948
Yo = vy + iy = 3.648 + (0.1)(2.948) = 3.943

n=8: x3=08, y3=3.943, y{=ys—x3=3.943-0.8=3.143
Yo = yg + hyg = 3.943 + (0.1)(3.143) = 4.257

n=9: x9=09, yo=4257, y{=yy—xo=4.257-0.9=3357
Y10 = Yo + hyd = 4.257 + (0.1)(3.357) = 4.593

44p - - — - - - - - - -

R

2.5

24

Blemb - — — — —
Rl= [ — — — — — — —
N T e

Fig. 18-13
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18.14.

The above results are displayed in Table 18-1: For comparison, Table 18-1 also contains results for # =0.05,
h=0.01, and & = 0.005, with all computations rounded to four decimal places. Note that more accurate results are
obtained when smaller values of / are used.

If we plot (x,,, y,) for integer values of n between 0 and 10, inclusively, and then connect successive points with
straight line segments, we would generate a graph almost indistinguishable from Fig. 18-13, because graphical
accuracy with the chosen scales on the axes is limited to one decimal place.

Find y(0.5) for y’ =y; y(0) = 1, using Euler’s method with 7 =0.1.
For this problem, f(x, y) =1y, xo=0, and y, = 1; hence, from Eq. (/8.5), y, =f(X,, ¥») =¥, With 1=0.1,
¥(0.5) = ys. Then, using Eq. (/8.4) with n =0, 1, 2, 3, 4 successively, we obtain
n=0: x=0, y=1, yj=y=1
yi=yo+hyy=1+0.1)(1)=1.1

n=1: x1=0.1, ylzl.l, yl’:ylzl.l
Yo=yy+hy! = 11+ (0.1)(1.1) = 1.21

n=2: x,=02, y,=121, y;=y,=121
Y= vy +hyi =121+ (0.1)(1.21) = 1.331

n=3: x3;=0.3, y;=1331, yi=y;=1.331
Va=vs+hy! = 1331+ (0.1)(1.331) = 1.464

n=4: x,=04, y,=1464, y/=y,=1464
Ys=ya + hy} = 1.464 + (0.1)(1.464) = 1.610

Thus, y(0.5) = ys = 1.610. Note that since the true solution is Y(x) = ¢*, ¥(0.5) = ¢*> = 1.649.

Table 18-1

Method: EULER’S METHOD

Problem: y =y—x; y(0)=2
o In True solution

h=0.1 h=005| h=0.01 | n=0.005| Y(x)=e"+x+1

0.0 2.0000 2.0000 2.0000 2.0000 2.0000
0.1 2.2000 2.2025 2.2046 2.2049 2.2052
0.2 2.4100 2.4155 2.4202 2.4208 2.4214
0.3 2.6310 2.6401 2.6478 2.6489 2.6499
0.4 2.8641 2.8775 2.8889 2.8903 2.8918
0.5 3.1105 3.1289 3.1446 3.1467 3.1487
0.6 3.3716 3.3959 3.4167 3.4194 3.4221
0.7 3.6487 3.6799 3.7068 3.7102 3.7138
0.8 3.9436 3.9829 4.0167 4.0211 4.0255
0.9 4.2579 4.3066 4.3486 4.3541 4.3596
1.0 4.5937 4.6533 47048 47115 47183
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18.15. Find y(1) for y’ =y; y(0) = 1, using Euler’s method with 2 =0.1.

We proceed exactly as in Problem 18.14, except that we now calculate through n=9. The results of these
computations are given in Table 18-2. For comparison, Table 18-2 also contains results for 7 =0.05, 7 =0.001, and

18.16.

GRAPHICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS

h =0.005, with all calculations rounded to four decimal places.

Find y(1) for y’ = y* + 1; y(0) = 0, using Euler’s method with /4 =0.1.

Here, f(x, y)=y*+1, xy=0, and y,=0; hence, from Eq. (18.5), y, =f(x,, y,) = (y,)> + 1. With h=0.1,

¥(1) = y10. Then, using Eq. (/8.4) with n=0, 1, ..., 9 successively, we obtain

n=0: x=0, y=0, yj=)+1=072+1=1
yi=yo+hyy=0+(0.1)(1)=0.1

S
Il
—

X1 :0.1,

»1=0.1,

Yo =y, +hy; = 0.1+ (0.1)(1.01) = 0.201

n=2: x,=0.2,

¥, =0.201

y3=(y)?+1=(0.201)>+ 1 = 1.040
Y3 =y, + hys =0.201 + (0.1)(1.040) = 0.305

n=3: x3=0.3, y;=0.305
y{=(y3)*+ 1=(0.305)%+1=1.093
Y4 =y3 + hys =0.305 + (0.1)(1.093) = 0.414

Y=+ 1=(0.1)2+1=1.01

Table 18-2

Method: EULER’S METHOD

Problem: y =y;y(0)=1
o n True solution

h=0.1 h=0.05| h=0.01 | ~=0.005 Y(x)=¢*

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.1000 1.1025 1.1046 1.1049 1.1052
0.2 1.2100 1.2155 1.2202 1.2208 1.2214
0.3 1.3310 1.3401 1.3478 1.3489 1.3499
0.4 1.4641 1.4775 1.4889 1.4903 1.4918
0.5 1.6105 1.6289 1.6446 1.6467 1.6487
0.6 1.7716 1.7959 1.8167 1.8194 1.8221
0.7 1.9487 1.9799 2.0068 2.0102 2.0138
0.8 2.1436 2.1829 2.2167 2.2211 2.2255
0.9 2.3579 2.4066 2.4486 2.4541 2.4596
1.0 2.5937 2.6533 2.7048 2.7115 2.7183
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Direction fields are provided in Problems 18.17 through 18.22. Sketch some of the solution curves.
18.17.
18.19.
18.21.
18.23.

18.24.

GRAPHICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS

Table 18-3
Method: EULER’S METHOD
Problem: Y =3?+1;y(0)=0
n n True solution
h=0.1 | h=0.05| h=0.01 |~A=0.005 Y(x) =tan x
0.0 0.0000 0.0000 | 0.0000 0.0000 0.0000
0.1 0.1000 0.1001 0.1003 0.1003 0.1003
0.2 0.2010 0.2018 0.2025 0.2026 0.2027
0.3 0.3050 0.3070 | 0.3088 0.3091 0.3093
0.4 0.4143 0.4183 0.4218 0.4223 0.4228
0.5 0.5315 0.5384 | 0.5446 0.5455 0.5463
0.6 0.6598 0.6711 0.6814 0.6827 0.6841
0.7 0.8033 0.8212 | 0.8378 0.8400 0.8423
0.8 0.9678 0.9959 1.0223 1.0260 1.0296
0.9 1. 1615 1.2055 1.2482 1.2541 1.2602
1.0 1.3964 1.4663 1.5370 1.5470 1.5574

n=4: x,=04, y,=0414
yi=(y)?+1=(04142+1=1.171
Vs =y4+ hy;=0.414 +(0.1)(1.171) = 0.531

Continuing in this manner, we find that y;, = 1.396.

The calculations are found in Table 18-3. For comparison, Table 18-3 also contains results for & =0.05,
h=0.01, and /& = 0.005, with all computations rounded to four decimal places. The true solution to this problem is
Y(x) = tan x, hence Y(1) = 1.557.

See Fig. 18-14.
See Fig. 18-16.

See Fig. 18-18.

Supplementary Problems

Draw a direction field for the equation y’=x —y + 1.

Describe the isoclines for the equation in Problem 18.23.

18.18.

18.20.

18.22.

See Fig. 18-15.
See Fig. 18-17.

See Fig. 18-19.
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Fig. 18-16
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Fig. 18-18
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18.25.

18.26.

18.27.

18.28.

18.29.

18.30.

18.31.

18.32.

18.33.

18.34.

18.35.

18.36.

18] GRAPHICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS

Draw a direction field for the equation y” = 2x.

Describe the isoclines for the equation in Problem 18.25.
Draw a direction field for the equation y’ =y — 1.
Describe the isoclines for the equation in Problem 18.27.
Draw a direction field for the equation y’ = y — x%.

Describe the isoclines for the equation in Problem 18.29.

Draw a direction field for the equation y” = sin x — y.

Describe the isoclines for the equation in Problem 18.31.

Find y (1.0) for y’ =—y; y(0) = 1, using Euler’s method with 2 =0.1.
Find y (0.5) for y" = 2x; y (0) = 0, using Euler’s method with 4 =0.1.

Find y (0.5) for y’ = —y + x + 2; y(0) = 2, using Euler’s method with 42 =0.1.

Find y(0.5) for y’ = 4x*; y (0) = 0, using Euler’s method with /= 0.1.
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CHAPTER 19

Further Numerical
Methods for Solving
First-Order Differential
Equations

GENERAL REMARKS

As we have seen in the previous chapter, graphical and numerical methods can be very helpful in obtaining
approximate solutions to initial-value problems at particular points. It is interesting to note that often the only
required operations are addition, subtraction, multiplication, division and functional evaluations.

In this chapter, we consider only first-order initial-value problems of the form

Y =1y y(xo) =y (19.1)

Generalizations to higher-order problems are given in Chapter 20. Each numerical method will produce
approximate solutions at the points x,, x;, x,, ..., where the difference between any two successive x-values is
a constant step-size &; that is, x,,; —x,=h (n=0, 1, 2, ...). Remarks made in Chapter 18 on the step-size
remain valid for all the numerical methods presented below.

The approximate solution at x,, will be designated by y(x,), or simply y,. The true solution at x, will be
denoted by either Y(x,) or Y,. Note that once y, is known, Eq. (/9.1) can be used to obtain y, as

V=S V) (19.2)

The simplest numerical method is Euler’s method, described in Chapter 18.

A predictor-corrector method is a set of two equations for y, , ;. The first equation, called the predictor, is
used to predict (obtain a first approximation to) y, . 1; the second equation, called the corrector, is then used to
obtain a corrected value (second approximation) to y, . ;. In general, the corrector depends on the predicted
value.

176
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MODIFIED EULER’S METHOD

This is a simple predictor-corrector method that uses Euler’s method (see Chapter 18) as the predictor
and then uses the average value of y” at both the left and right end points of the interval [x,, x,, ]
(n=0,1, 2, ...) as the slope of the line element approximation to the solution over that interval. The resulting
equations are:

predictor:  y, . =y, + hy,

h 4 4
corrector: y,,, =y, +5(yn+1 +,)

For notational convenience, we designate the predicted value of y, . | by py, ;. It then follows from Eq. (1/9.2)
that

pyn,-%—l =f(xn+l7 pyn+l) (]93)
The modified Euler’s method becomes

predictor:  py, .=y, + hy,

i (19.4)
corrector:  y,,, =y, + E(py;+I +y)
RUNGE-KUTTA METHOD
Vor1 =V, +%(k1 +2k, +2k; +k,) (19.5)
where ki =hf(xp, y,)
1 1
k2 = l’lf X, + Eh,yn + Ekl
1 1
k3 = l’lf X, + Eh,yn + Ekz
ky=hf(x,+h, y, +ks)
This is not a predictor-corrector method.
ADAMS-BASHFORTH-MOULTON METHOD
predictor: py ., =y +£(55y' =59y +37y._, =9y _J)
. n+1 n 24 n n—1 n=2 n-=3 (]96)
corrector:  y,,; =y, + %(91&2“ +19y, =5y, +¥,)
MILNE’S METHOD
predictor: py ., =y _,+ ﬂ(Zy' -y +2Y )
. n+1 n-3 3 n n—-1 n—-2 (]97)

h 4 ’ ’
corrector:  y, .y =y, +§(Pyn+1 +a4y, +y,.)
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STARTING VALUES

The Adams—Bashforth—-Moulton method and Milne’s method require information at yy, y;, y,, and y3 to
start. The first of these values is given by the initial condition in Eq. (/9.1). The other three starting values are
gotten by the Runge—Kutta method.

ORDER OF A NUMERICAL METHOD

A numerical method is of order n, where n is a positive integer, if the method is exact for polynomials of
degree n or less. In other words, if the true solution of an initial-value problem is a polynomial of degree n or
less, then the approximate solution and the true solution will be identical for a method of order n.

In general, the higher the order, the more accurate the method. Euler’s method, Eq. (/8.4), is of order one,
the modified Euler’s method, Eq. (19.4), is of order two, while the other three, Egs. (/9.5) through (7/9.7), are
fourth-order methods.

Solved Problems

19.1. Use the modified Euler’s method to solve y" =y —x; y(0) =2 on the interval [0, 1] with 2=0.1.

Here f(x, y) =y —x, xo =0, and y, = 2. From Eq. (/9.2) we have yj =f(0, 2) =2 — 0 = 2. Then using Egs. (19.4)
and (/9.3), we compute

n=0: x,=0.1
PY1=Yo + hy(; =2+ 01(2) =22
pyi =f(x, py) =£(0.1,2.2)=22-0.1 =2.1
V=Y, + %(pyf +3,)=2+0.052.1+2)=2.205
yi =f(xy, y;) =£(0.1, 2.205) =2.205 - 0.1 =2.105
n=1: x,=02
py>=y1 +hy{ =2.205+0.1(2.105) = 2.4155
DpYs =f(x2, py») = £(0.2,2.4155) = 2.4155 - 0.2 =2.2155
Y, =yt %(py; + yl') =2.205+0.05(2.2155 + 2.105) =2.421025
V3 =f(x2, y2) = £(0.2, 2.421025) = 2.421025 — 0.2 = 2.221025
n=2: x3;=0.3
py3 =y, + hy; =2.421025 +0.1(2.221025) = 2.6431275
pys =f(x3, py3) = £(0.3, 2.6431275) = 2.6431275 — 0.3 = 2.3431275
Y3=y, + g(py; + ;) =2.421025 + 0.05(2.3431275 + 2.221025) = 2.6492326
v3 =f(x3, y3) = £(0.3, 2.6492326) = 2.6492326 — 0.3 = 2.3492326

Continuing in this manner, we generate Table 19-1. Compare it to Table 18-1.

19.2. Use the modified Euler’s method to solve y’ = y2 + 1; y(0) = 0 on the interval [0, 1] with 2 =0.1.
Here f(x, y) = y* + 1, xo = 0, and y, = 0. From (/9.2) we have yj = f(0, 0) = (0)*> + 1 = 1. Then using (/9.4) and
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Table 19-1

Method: MODIFIED EULER’S METHOD

Problem: y =y—x;y(0)=2
o h=01 True solution

PYn Yn Yx)=e'+x+1

0.0 — 2.0000000 2.0000000
0.1 2.2000000 2.2050000 2.2051709
0.2 2.4155000 2.4210250 2.4214028
0.3 2.6431275 2.6492326 2.6498588
0.4 2.8841559 2.8909021 2.8918247
0.5 3.1399923 3.1474468 3.1487213
0.6 3.4121914 3.4204287 3.4221188
0.7 3.7024715 3.7115737 3.7137527
0.8 4.0127311 4.0227889 4.0255409
0.9 4.3450678 4.3561818 4.3596031
1.0 4.7017999 4.7140808 4.7182818

(19.3), we compute
n=0: x; =0.1

Py1=Yo+hyy=0+0.1(1)=0.1
pyi = f0n, py) =£0.1,0.) = (0.1)+ 1 = 1.01

i =y + (W2)(py{ + y5) =0+ 0.05(1.01 + 1) =0.1005
i = f(x1, 1) = f(0.1, 0.1005) = (0.1005)% + 1 = 1.0101003

n=1: x,=02

pyy =y, + hy] =0.1005 +0.1(1.0101003) = 0.2015100

PV = f(xa, pys) = £(0.2, 0.2015100) = (0.2015100)% + 1 = 1.0406063

Yo =y + (W2)(py; + y{) =0.1005 + 0.05(1.0406063) + 1.0101002 = 0.2030353

¥5 = f(x3, ¥2) = £(0.2, 0.2030353) = (0.2030353)> + 1 = 1.0412233

S
Il
[

X3 =0.3.

PYs =y + hy} =0.2030353 + 0.1(1.0412233) = 0.3071577

Y4 =f(3, pys) = £(0.3,0.3071577) = (0.3071577)% + 1 = 1.0943458

3+ ya + (W2)(py} + v5) = 0.2030353 + 0.05(1.0943458 + 1.0412233) = 0.3098138

i =f(x3, y3) = £(0.3, 0.3098138) = (0.3098138)% + 1 = 1.0959846

Continuing in this manner, we generate Table 19-2. Compare it to Table 18-3.
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Table 19-2

Method: MODIFIED EULER’S METHOD

Problem: y =y?+1;y(0)=0
o h=01 True solution

DYn Vn Y(x) =tan x

0.0 — 0.0000000 0.0000000
0.1 0.1000000 0.1005000 0.1003347
0.2 0.2015100 0.2030353 0.2027100
0.3 0.3071577 0.3098138 0.3093363
0.4 0.4194122 0.4234083 0.4227932
0.5 0.5413358 0.5470243 0.5463025
0.6 0.6769479 0.6848990 0.6841368
0.7 0.8318077 0.8429485 0.8422884
0.8 1.0140048 1.0298869 1.0296386
0.9 1.2359536 1.2592993 1.2601582
1.0 1.5178828 1.5537895 1.5574077

Find y(1.6) for y’ = 2x; y(1) = 1 using the modified Euler’s method with /2 =0.2.

[CHAP. 19

Here f(x, y) = 2x, xo =1, and y, = 2. From Eq. (19.2) we have yj=f(1, 2) = 2(1) = 2. Then using (/9.4) and

(19.3), we compute

n=0: x;=xg+h=1+02=1.2

pyi=yot+hyy=1+022)=14

pyi=f, py)=f(12,14)=2(12)=24
yi=yo+ W2)(py{ +y5)=1+0.12.4+2)=1.44
yi=f,y)=/(1.2, 1.44) =2(1.2) = 2.4

n=1: x=x+h=12+02=14
py>=y1+hy=1.44+0.22.4)=1.92
pyr=f(, pyr) =f(1.4,1.92) =2(1.4) =2.8
ya=y+ (W2)(py, +y)) =144 +0.12.8+2.4)=1.96
Vs =f(xs, y2) =f(1.4,1.96) =2(1.4)=2.8

S
Il
[0

X3=x+h=14+02=16

py; =Yy, +hy; =1.96+0.2(2.8) =2.52

pyi=/(x3, pys) =£(1.6,2.52) =2(1.6) =3.2
Vi =ya+ (W2)(pyi + y3) = 1.96 +0.1(3.2 +2.8) = 2.56

The true solution is Y(x) =x%; hence ¥(1.6) = y(1.6) = (1.6)> = 2.56. Since the true solution is a second-degree

polynomial and the modified Euler’s method is a second-order method, this agreement is expected.
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19.4. Use the Runge-Kutta method to solve y' =y — x; y(0) =2 on the interval [0, 1] with 2 =0.1.

Here f(x, y) =y —x. Using Eq. (19.5) withn=0, 1, ..., 9, we compute
n=0: x=0, y,=2

ki = hf(xo, yo) = 1f(0,2) = (0.1)(2-0)=0.2

ky =hf (xy +%h, y, ++k)=hf[0+3(0.1),2 + £(0.2)]
=hf(0.05,2.1)=(0.1)(2.1 - 0.05) =0.205

ky = hf(x, + L h, y, + 1k,) = hf[0 +1(0.1), 2 + £(0.205)]
= hf(0.05,2.103) = (0.1)(2.103 — 0.05) = 0.205

ky=hf(xg+ h, yo+ k3) = hf(0 + 0.1, 2 + 0.205)
=hf(0.1, 2.205) = (0.1)(2.205 - 0.1) =0.211

Vi =Yy + 2k, + 2k, + 2k, + k)
=2+ +£[0.2 +2(0.205) + 2(0.205) + 0.211] = 2.205

n=1: x,=0.1, y, =2205
ky = hf(x;, y;) =hf(0.1, 2.205) = (0.1)(2.205 - 0.1) =0.211
ky=hf(x, +3h, y, + 3k) =hf[0.1+2(0.1),2.205 + (0.21 D]
=hf(0.15,2.311) =(0.1)(2.311-0.15) =0.216

ky = hf (x, + L h, y, +Lky) = Af[0.1 + 1(0.1),2.205 + 1(0.216)]
=hf(0.15,2.313) =(0.1)(2.313 - 0.15) =0.216

ky=hf(x, + h, y, + k3) = hf(0.1 +0.1, 2.205 + 0.216)
=hf(0.2,2.421)=(0.1)(2.421 - 0.2) = 0.222

Y, =y + sk, + 2k, +2k; + k)
=2.205+ %[0.211 +2(0.216) + 2(0.216) + 0.222]1=2.421

n=2 x,=02, y,=2421

ki = hf(xs, yo) = hf(0.2, 2.421) = (0.1)(2.421 — 0.2) = 0.222

ky = hf(x, + Lh, y, + 1k) = hf[0.2 + 1(0.1), 2.421 + 1(0.222)]
=hf(0.25,2.532) = (0.1)(2.532 — 0.25) =0.228

ky = hf(x, + L h, y, +1k,) = hf[0.2 + 1(0.1),2.421 + 1 (0.228)]
= hf(0.25,2.535) = (0.1)(2.535) — 0.25) = 0.229

ky=hfCer+ h, y + k3) = hf(0.2 + 0.1, 2.421 + 0.229)
=hf(0.3,2.650) = (0.1)(2.650 — 0.3) = 0.235

V3 =y, + 2k + 2k, + 2k, + k)
=2421+ %[0.222 +2(0.228) + 2(0.229) + 0.235] = 2.650

Continuing in this manner, we generate Table 19-3. Compare it with Table 19-1.

19.5. Use the Runge—Kutta method to solve y" =y; y(0) = 1 on the interval [0, 1] with 2 =0.1.

Here f(x, y) =y. Using Eq. (/9.5) withn=0, 1, ... , 9, we compute
n=0: x=0, y,=1
ky = hf(xo, yo) = hf(0, 1) = (0.1)(1) = 0.1
ky =hf (xy +$h, y, + k) =hf[0+3(0.1),1+2(0.D)]
= hf(0.05,1.05) = (0.1)(1.05) =0.105
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Table 19-3
Method: RUNGE-KUTTA METHOD
Problem: y =y—x;y0)=2
X, h=0.1 True solution

Y Yx)=e"+x+1
0.0 2.0000000 2.0000000
0.1 2.2051708 2.2051709
0.2 2.4214026 2.4214028
0.3 2.6498585 2.6498588
0.4 2.8918242 2.8918247
0.5 3.1487206 3.1487213
0.6 3.4221180 3.4221188
0.7 3.7137516 3.7137527
0.8 4.0255396 4.0255409
0.9 4.3596014 4.3596031
1.0 4.7182797 4.7182818

ky = hf (X +Lh, yo +Lky) = Bf[0 +1(0.1),1+1(0.105)]
= hf(0.05,1.053) = (0.1)(1.053) = 0.105

ky=hf(xo+ h, yo + k3) = hf(0 + 0.1, 1 +0.105)
=h#(0.1, 1.105) = (0.1)(1.105) = 0.111

Vi = Yo + 2k, + 2k, + 2k + k)
=1 +é[0.1 +2(0.105) +2(0.105) + 0.111] =1.105

n=1: x=0.1, y =1.105

ky = hf(x, ) = hf(0.1, 1.105) = (0.1)(1.105) = 0.111

ky, = hf (x, + LRy, +1k) = Af[0.1+ £(0.1),1.105 + L(0.111)]
=hf(0.15,1.161) =(0.1)(1.161) =0.116

ky = hf(x, + Lh, y, +1k,) = Af[0.1+ 1(0.1),1.105 + 1(0.116)]
=hf(0.15,1.163) =(0.1)(1.163) =0.116

ky=hf(e +h, y, +k3) = hf(0.1+0.1, 1.105 +0.116)
=hf(0.2, 1.221) = (0.1)(1.221) =0.122

Y, =y + sk, + 2k, + 2k + k)
=1.105+%[0.111+2(0.116)+2(0.116)+0.122]=l.221
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n=2: x,=02, y,=1221

ky = hf(xy, y2) = hf(0.2, 1.221) = (0.1)(1.221) = 0.122
ky = Bf (x, + L1, y, +1k)) = hf[0.2 + 1(0.1),1.221 + £(0.122)]
= hf(0.25,1.282) = (0.1)(1.282) =0.128

ky = hf(x, + L h, y, +1h,) = hf[0.2 + 1(0.1),1.221 + 1(0.128)]
= hf(0.25,1.285) = (0.1)(1.285) = 0.129

ky=hf(xy + h, yo+ k3) = hf(0.2+ 0.1, 1.221 + 0.129)
= hf(0.3, 1.350) = (0.1)(1.350) = 0.135

Vi =, +ky + 2k, + 2k, + k)

=1.221+ 1[0.122 +2(0.128) + 2(0.129) +0.135] = 1.350

Continuing in this manner, we generate Table 19-4.

Table 19-4

Method: RUNGE-KUTTA METHOD
Problem: y =y;y0)=1

X, h=0.1 True solution

Yn Y(x)=e"

0.0 1.0000000 1.0000000
0.1 1.1051708 1.1051709
0.2 1.2214026 1.2214028
0.3 1.3498585 1.3498588
0.4 1.4918242 1.4918247
0.5 1.6487206 1.6487213
0.6 1.8221180 1.8221188
0.7 2.0137516 2.0137527
0.8 2.2255396 2.2255409
0.9 2.4596014 2.4596031
1.0 2.7182797 2.7182818

19.6. Use the Runge—Kutta method to solve y’ = y%+1; ¥(0) = 0 on the interval [0, 1] with A =0.1.

Here f(x, y) = y*> + 1. Using Eq. (19.5) we compute

n=0: X0=0, y0=0

ky = hf(xo. yo) = 1f(0, 0) = (0.D[(0)* + 1] =0.1
ky = hf (xy + L h, 3o+ Lh) + AF10 +1(0.1),0 + 1(0.1)]
= hf(0.05,0.05) = (0.1)[(0.05)> + 1] =0.1
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ky = hf (x, + L1, y, + k) = B[O +1(0.1),0 + 1(0.1)]
= hf(0.05,0.05) = (0.1)[(0.05)* +1]=0.1

ky=hf(xo+h, yo+k3) = hf[0+0.1,0+0.1]
=hf(0.1,0.1) = (0.1)[(0.1)*>+ 1] =0.101

Vi =Yy + £k, + 2k, +2ky + k)
:0+é[0.1+2(0.1)+2(0.1)+0.101]:0.1

n=1: x =01, y;=0.1

ky = hf(x;, 1) = hf(0.1,0.1) = (0.1)[(0.1)> + 1] = 0.101

ky = hf(x, + Lh,y, + Lk,) = hf[0.1+ 1(0.1), (0.1) + 1 (0.101)]
= hf(0.15,0.151) = (0.1)[(0.151)* + 1] =0.102

ky=hf(x, +$h, y, +1k,) = hf[0.1 +1(0.1), (0.1) + 1(0.102)]
= hf(0.15,0.151) = (0.1)[(0.151)* + 1] =0.102

ky=hf(x; + h, y; + k3) = hf(0.1 + 0.1, 0.1 + 0.102)
=hf(0.2,0.202) = (0.1)[(0.202)% + 1] = 0.104

Y, =y + ek + 2k, + 2k, + k)
=0.1+£[0.101+2(0.102) +2(0.102) + 0.104] = 0.202

n=2 x,=02, y,=0202

ki = hf(x, y) = hf(0.2, 0.202) = (0.1)[(0.202)2 + 1] = 0.104

k, = hf(x, + Lh, y, + 1k)) = hf[0.2 +1(0.1),0.202 + 1 (0.104)]
= hf(0.25,0.254) = (0.1)[(0.254)> +1]=0.106

ky=hf(x, + %h, ¥, + %kz) =hf[0.2 + %(0.1), 0.202 + %(0.106)]
= 1f(0.25,0.255) = (0.1)[(0.255)* + 1]=0.107

ky=hf(x, +h, yo +k3) =hf[0.2 4+ 0.1, 0.202 + 0.107]
=hf(0.3,0.309) = (0.1)[(0.309)> + 1] =0.110

V3 =y, + ek + 2k, + 2k + k)
=0.202 + %[0. 104 +2(0.106) +2(0.107) + 0.110] = 0.309

Continuing in this manner, we generate Table 19-5.

Use the Adams—Bashforth—-Moulton method to solve y" = y — x; y(0) = 2 on the interval [0, 1] with 2 =0.1.
Here f(x, y) =y —x, xo =0, and y, = 2. Using Table 19-3, we find the three additional starting values to be
y1 =2.2051708, y, = 2.4214026, and y; = 2.6498585. Thus,
Yo=Yo—Xo=2-0=2 yi =y, —x; =2.1051708
V5= yp — Xy = 2.2214026 V5 =y3 —x3 =2.3498585
Then, using Egs. (19.6), beginning with n = 3, and Eq. (/9.3), we compute
n=3: x,=04
Pya=y3+ (W24)(55y3 — 59y; + 37y{ — 9y)
=2.6498585 + (0.1/24)[55(2.349585) — 59(2.2214026) + 37(2.1051708) — 9(2)]
=2.8918201
DPY4=pys— x4 =2.8918201 — 0.4 = 2.4918201
Yo =y3+ (W24)Opys + 19y35 = 5y, + yi)
=2.6498585 + (0.1/24)[9(2.4918201) + 19(2.3498585) — 5(2.2214026) + 2.1051708]
=2.8918245
Vi=Yys—X4=2.8918245 - 0.4 =2.4918245
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Table 19-5

Method: RUNGE-KUTTA METHOD
Problem: y =y>+1;y(0)=0
X, h=0.1 True solution

Y Y(x)=tan x
0.0 0.0000000 0.0000000
0.1 0.1003346 0.1003347
0.2 0.2027099 0.2027100
0.3 0.3093360 0.3093363
0.4 0.4227930 0.4227932
0.5 0.5463023 0.5463025
0.6 0.6841368 0.6841368
0.7 0.8422886 0.8422884
0.8 1.0296391 1.0296386
0.9 1.2601588 1.2601582
1.0 1.5574064 1.5574077

x5=0.5
PYs = Y4+ (h24)55y; — 593 + 37y; — 9y1)
=2.8918245 + (0.1/24)[55(2.4918245) — 59(2.3498585) + 37(2.2214026) — 9(2.1051708)]
=3.1487164
Pyt =pys —x5=73.1487164 — 0.5 = 2.6487164
¥s = Y4+ (W24)(Opys + 19y — 5y5 + y3)
=2.8918245 + (0.1/24)[9(2.6487164) + 19(2.4918245) — 5(2.3498585) + 2.2214026]
=3.1487213
yi=ys—xs=3.1487213 — 0.5 = 2.6487213
Xxg=0.6
PYs=Ys + (h/24)(55y5 — 59y; + 37y5 = 9y3)
=3.1487213 + (0.1/24)[55(2.6487213) — 59(2.4918245) + 37(2.3498585) — 9(2.2214026)]
=3.4221137
DPYé=pye — Xg=3.4221137 — 0.6 =2.8221137
Y6 =5 + (124)Opys + 19y5 = 5y; + y3)
=3.1487213 + (0.1/24)[9(2.8221137) + 19(2.6487213) — 5(2.4918245) + 2.3498585]
=3.4221191
Ve =ye—X¢=3.4221191 — 0.6 = 2.8221191

Continuing in this manner we generate Table 19-6.
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Table 19-6

Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y =y—x;y(0)=2

o h=01 True solution

DYy VY Yx)=e"+x+1

0.0 — 2.0000000 2.0000000
0.1 — 2.2051708 2.2051709
0.2 — 2.4214026 2.4214028
0.3 — 2.6498585 2.6498588
0.4 2.8918201 2.8918245 2.8918247
0.5 3.1487164 3.1487213 3.1487213
0.6 3.4221137 3.4221191 3.4221188
0.7 3.7137473 3.7137533 3.7137527
0.8 4.0255352 4.0255418 4.0255409
0.9 4.3595971 4.3596044 4.3596031
1.0 4.7182756 4.7182836 4.7182818

19.8. Use the Adams—Bashforth-Moulton method to solve y" = y2 + 1; y(0) =0, on the interval [0, 1] with
h=0.1.

Here f(x, ) =y*>+ 1, x,=0, and y, =0. Using Table 19-5, we find the three additional starting values to be
y1 =0.1003346, y, = 0.2027099, and y; = 0.3093360. Thus,
Yo= () +1=01+1=1
yi=(y)*+1=(0.1003346)*> + 1 = 1.0100670
y5=(y,)? + 1 =(0.2027099) + 1 = 1.0410913
y5=(y3)*+1=(0.3093360)> + 1 = 1.0956888

Then, using Eqgs. (19.6), beginning with n =3, and Eq. (/9.3), we compute
n=3: x,=04

Pys=y3 + (h124)(55y5 — 59y; + 37y{ — 9yg)
=0.3093360 + (0.1/24)[55(1.0956888) — 59(1.0410913) + 37(1.0100670) — 9(1)]
=0.4227151
pyi=(py)?+1=(0.4227151)> + 1 = 1.1786881
ya=y3 + (W24)Opy; + 19y5 = 5y3 + y1)
=0.3093360 + (0.1/24)[9(1.1786881) + 19(1.0956888) — 5(1.0410913) + 1.0100670]
=0.4227981
yi=(y)?+1=(0.4227981)> + 1 = 1.1787582
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X5 = 0.5

PYs = Y4 + (h24)(55y; — 593 + 3Ty; = 9y1)
=0.4227981 + (0.1/24)[55(1.1787582) — 59(1.0956888) + 37(1.0410913) — 9(1.0100670)]
=0.5461974
pyi=(pys)> +1=(0.5461974)> + 1 = 1.2983316
Vs =4+ (h124)(Opys + 19y5 — 5y3 +y3)
=0.4227981 + (0.1/24)[9(1.2983316) + 19(1.1787582) — 5(1.0956888) + 1.0410913]
=0.5463149

yi=(y5)>+ 1= (0.5463149)% + 1 = 1.2984600
Xg = 0.6

PYs=Ys + (h/24)(55y5 — 59y4 + 37y5 — 9y3)
=0.5463149 + (0.1/24)[55(1.2984600) — 59(1.1787582) + 37(1.0956888) — 9(1.0410913)]
=0.6839784
pyé=(pye)’ + 1 =(0.6839784)” + 1 = 1.4678265
Y6 =5 + (h124)Opys + 19y5 = 5y4 + y3)
=0.5463149 + (0.1/24)[9(1.4678265) + 19(1.2984600) — 5(1.1787582) + 1.0956888]
=0.6841611

V= (96)* + 1 =(0.6841611)> + 1 = 1.4680764

Continuing in this manner, we generate Table 19-7.

Table 19-7
Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y =3y?+1;y(0)=0
o h=0.1 True solution

DY Vn Y(x) =tan x
0.0 — 0.0000000 0.0000090
0.1 — 0.1003346 0.1003347
0.2 — 0.2027099 0.2027100
0.3 — 0.3093360 0.3093363
0.4 0.4227151 0.4227981 0.4227932
0.5 0.5461974 0.5463149 0.5463025
0.6 0.6839784 0.6841611 0.6841368
0.7 0.8420274 0.8423319 0.8422884
0.8 1.0291713 1.0297142 1.0296386
0.9 1.2592473 1.2602880 1.2601582
1.0 1.5554514 1.5576256 1.5574077
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Use the Adams—Bashforth—-Moulton method to solve y’ = 2xy/(x> — y?); y(1) = 3 on the interval [1, 2]
with 2 =0.2.

Here f(x, y)=2xy/(x>=y%), xo=1 and y;=3. With h=02, x;=xg+h=12, x,=x; +h=1.4, and
X3=x,+h=1.6. Using the Runge-Kutta method to obtain the corresponding y-values needed to start the
Adams—Bashforth—-Moulton method, we find y; = 2.8232844, y, =2.5709342, and y; = 2.1321698. It then follows
from Eq. (/9.3) that

¥ = 2xy,  _ 203 _
) =) ()P -G)
;: %xlyl = 2(12.2)(2.8232844) i — _1.0375058
(x) =0y (1.2)" —(2.8232844)
y; _ 22x2y2 = 2(12.4)(2.5709342) - _1.5481884
(x,)" = () (1.4)" —(2.5709342)
’ 2x,y, _ 2(1.6)(2.1321698) 34350644

BT (x> = (y;)°  (1.6)° —(2.1321698)*

Then, using Egs. (19.6), beginning with n = 3, and Eq. (/9.3), we compute
n=3 x;=18
pys=y3+ (h/24)(55y5 — 59y + 37y{ = 9yg)
=2.1321698 + (0.1/24)[55(-3.4352644) — 59(—1.5481884) + 37(—1.0375058) — 9(— 0.75)]
=1.0552186
2x,py, _  2(1.8)(1.0552186)
(x,)" = (py,)* (1.8)> —(1.0552186)°
Yo =y3+ (h124)9py;i + 193 — 5y; +y1)
=2.1321698 + (0.1/24)[9(1.7863919) + 19(-3.4352644) — 5(—1.5481884) — (—~1.0375058)]
=1.7780943

;0 2xy, 2(1.8)(1.7780943)
! (x,)" = ()" (1.8)* —(1.7780943)

=1.7863919

Y=

=81.6671689

n=4: x5=2.0
PYs = Y4 + (RI24)(55y; — 595 + 37y5 - 9y()
=1.7780943 + (0.1/24)[55(81.6671689) — 59(—3.4352644) + 37(~1.5481884) — 9(—1.0375058)]
=40.4983398
. 2xpys 2(2.0)(40.4983398)

= = =-0.0990110
s e e — (v’ (2.0)° — (40.4983398)°

Vs =ya+ (h24)(9pys + 19y, — 5y; +y3)
=1.17780943 + (0.1/24)[9(—0.0990110) + 19(81.6671689) — 5(~3.4352644) + (—1.5481884)]
=14.8315380

¥ = 22x5y5 - 2(22.0)(14.8315380) = 02746905
(x5)” = (y5)”  (2.0)" —(14.8315380)

These results are troubling because the corrected values are not close to the predicted values as they should be.
Note that ys is significantly different from pys and yj is significantly different from py;. In any predictor-corrector
method, the corrected values of y and y” represent a fine-tuning of the predicted values, and not a major change.
When significant changes occur, they are often the result of numerical instability, which can be remedied by a
smaller step-size. Sometimes, however, significant differences arise because of a singularity in the solution.

In the computations above, note that the derivative at x = 1.8, namely 81.667, generates a nearly vertical slope
and suggests a possible singularity near 1.8. Figure 19-1 is a direction field for this differential equation. On this
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Fig. 19.1

direction field we have plotted the points (xy, yo) through (x4, y,) as determined by the Adams—Bashforth-Moulton
method and then sketched the solution curve through these points consistent with the direction field. The cusp
between 1.6 and 1.8 is a clear indicator of a problem.

The analytic solution to the differential equation is given in Problem 4.14 as x>+ y?>=ky. Applying
the initial condition, we find k= 10/3, and then using the quadratic formula to solve explicitly for y,
we obtain the solution

y=5+\125—9x2

3

This solution is only defined through x = 5/3 and is undefined after that.

19.10. Redo Problem 19.7 using Milne’s method.
The values of yy, y;, y2, V3, and their derivatives are exactly as given in Problem 19.7. Using Eqgs. (/9.7) and

(19.3), we compute
4h ,_, |, ,
n=3: py,=y, +?(2y3 =Y +2y)
4(0.1)
=2+ 7[2(2.3498585) —2.2214026 + 2(2.1051708)]
=2.8918208
PYi=pys—x4=2.4918208
h ’ 7 4
Vo=t g(py4 +4y, + )

=2.4214026 + %[2.4918208 + 4(2.3498585) +2.2214026]

=2.8918245
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x,=04, yi=ys—x,=2.4918245

4h ’ ’ ’
PYs =N +?(2y4 -y +2y,)

4(0.1)
3

=2.2051708 + [2(2.4918245) — 2.3498585 + 2(2.2214026)]

=3.1487169
DPys =pys — x5 =2.6487169

h ’ 4 7’
Vs =)3 +§(Py5 +4y, +55)

=2.6498585 + 03%][2.64871 69 +4(2.4918245) + 2.3498585]

=3.1487209
x5=0.5, y5=1y5—x5=2.6487209

4h 4 4 ’
DY =Y+ ?(2})5 -y, +2y3)

4(0.1)
3

=2.4214026 +

[2(2.6487209) —2.4918245 + 2(2.3498585)]

=3.4221138
DPYE=Ppye — Xo = 2.8221138

h ’ ’ 4
Yo = Vs +§(Py6 +4y5+yy)

=2.8918245 + %[2.8221 138 + 4(2.6487209) + 2.4918245]

=3.4221186

Continuing in this manner, we generate Table 19-8.

19.11. Redo Problem 19.8 using Milne’s method.

The values of yg, y1, ¥, y3, and their derivatives are exactly as given in Problem 19.8. Using Eqgs. (/9.7) and
(19.3), we compute

n=23:

S
Il
N

4h ., ,
DYy =Y t ?(2)’3 =y +2y)
4(0.1)

3
=0.4227227

pya=(pys)?+1=(0.4227227)> + 1 = 1.1786945

=0+ [2(1.0956888) —1.0410913 + 2(1.0100670)]

h 4 7 7
Ya= +§(py4 T4y, +y,)

=0.2027099 + %[1.1786945 +4(1.0956888) +1.0410913]

=0.4227946
X =04, yi=(y)*+1=(0.4227946)>+ 1 =1.1787553

4h 7 4 4
PYs =) +?(2)’4 -y +2y,)

40.1)
3

=0.1003346 +

[2(1.1787553) —1.0956888 + 2(1.0410913)]
=0.5462019

[CHAP. 19
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Table 19-8

Method: MILNE’S METHOD

Problem: y =y—x;y(0)=2
o h=01 True solution

PYn Vn Y(x)=e'+x+1

0.0 — 2.0000000 2.0000000
0.1 — 2.2051708 2.2051709
0.2 — 2.4214026 2.4214028
0.3 — 2.6498585 2.6498588
0.4 2.8918208 2.8918245 2.8918247
0.5 3.1487169 3.1487209 3.1487213
0.6 3.4221138 3.4221186 3.4221188
0.7 3.7137472 3.7137524 3.7137527
0.8 4.0255349 4.0255407 4.0255409
0.9 4.3595964 4.3596027 4.3596031
1.0 4.7182745 4.7182815 47182818

pyé=(pys) + 1 =(0.5462019)% + 1 = 1.2983365
h, , ,
Ys=Yy; + E(Pys +4y,+y;)
=0.3093360 + %[1 2983365 + 4(1.1787553) + 1.0956888]

=0.5463042
x5=0.5, yi=(ys5)>+1 =(0.5463042)> + 1 = 1.2984483

S
Il
W

4h 4 4 7
DPYs =Y, t ?(2)’5 -y, t2y)

4(0.1)
3

=0.2027099 + [2(1.2984483) —1.1787553 + 2(1.0956888)]

=0.6839791
pye=(pye)® + 1= (0.6839791)% + 1 = 1.4678274

h 4 4 7
Yo = Vs +§(Py6 +4y5+yy)

=0.4227946 + %[1.4678274 +4(1.2984483) +1.1787553]
=0.6841405

Continuing in this manner, we generate Table 19-9.

191
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Table 19-9

Method: MILNE’S METHOD

Problem: y =y>+1;y(0)=0
o h=01 True solution

DYn Vn Y(x) =tan x
0.0 — 0.0000000 0.0000000
0.1 — 0.1003346 0.1003347
0.2 — 0.2027099 0.2027100
0.3 — 0.3093360 0.3093363
0.4 0.4227227 0.4227946 0.4227932
0.5 0.5462019 0.5463042 0.5463025
0.6 0.6839791 0.6841405 0.6841368
0.7 0.8420238 0.8422924 0.8422884
0.8 1.0291628 1.0296421 1.0296386
0.9 1.2592330 1.2601516 1.2601582
1.0 1.5554357 1.5573578 1.5574077

19.12. Use Milne’s method to solve y" =y; y(0) = 1 on the interval [0, 1] with 2=0.1.

[CHAP. 19

Here f(x, y)=y, x=0, and y,=1. From Table 19-4, we find as the three additional starting values
v, = 1.1051708, y, = 1.2214026, and y; = 1.3498585. Note that y; = y,, y; = y», and y; = y3. Then, using Egs. (19.7)

and (/9.3) and we compute

4h 4 7’ 4
n=3 py,=y+ ?(zys -y, +2y)

4(0.1)
3
=1.4918208

=1+

pys=pys=1.4918208

h 7 /7 7
Ya=Y +§(Py4 +4y,+y,)

[2(1.3498585) —1.2214026 + 2(1.1051708)]

=1.2214026 + %[1.4918208 + 4(1.3498585) +1.2214026]

=1.4918245

n=4: x,=04, yj=y,=14918245

4h /7 /7 4
pys=y + ?(2y4 =¥ +2y,)

40.1)

=1.1051708 + 7[2(1.4918245) —1.3498585 + 2(1.2214026)]

=1.6487169
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pys =pys=1.6487169
h 4 7 4
Ys=y; t+ g(l’ys +4y, + )

=1.3498585 + %[1.6487169 +4(1.4918245) +1.3498585]

=1.6487209
x5=0.5, yi=ys=1.6487209

4h 4 4 4
PYs =Y, t ?(2)’5 =y, t2y)

=1.2214026 + @[2(1.6487209) —1.4918245 + 2(1.3498585)]

=1.8221138
Py =pye=1.8221138

ho, ;o
Ve =Yst g(pye +4ys+y,)
=1.4918245 + %[1.8221 138 + 4(1.6487209) + 1.4918245]

=1.8221186

Continuing in this manner, we generate Table 19-10.

Table 19-10

Method: MILNE’S METHOD

Problem: y =y;y0)=1
o h=01 True solution

PYn Yn Y(x)=¢"
0.0 — 1.0000000 1.0000000
0.1 — 1.1051708 1.1051709
0.2 — 1.2214026 1.2214028
0.3 — 1.3498585 1.3498588
0.4 1.4918208 1.4918245 1.4918247
0.5 1.6487169 1.6487209 1.6487213
0.6 1.8221138 1.8221186 1.8221188
0.7 2.0137472 2.0137524 2.0137527
0.8 2.2255349 2.2255407 2.2255409
0.9 2.4595964 2.4596027 2.4596031
1.0 2.7182745 2.7182815 2.7182818
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Supplementary Problems

Carry all computations to three decimal places.

19.13.

19.14.

19.15.

19.16.

19.17.

19.18.

19.19.

19.20.

19.21.

19.22.

19.23.

19.24.

19.25.

19.26.

19.27.

19.28.

Use the modified Euler’s method to solve y’ = —y + x + 2; y(0) = 2 on the interval [0, 1] with 2=0.1.

Use the modified Euler’s method to solve y’ = —y; y(0) = 1 on the interval [0, 1] with 2 =0.1.

2 2
Use the modified Euler’s method to solve y' = Xry

; ¥(1) =3 on the interval [1, 2] with 4 =0.2.

Use the modified Euler’s method to solve y’ = x; y(2) = 1 on the interval [2, 3] with 2 =0.25.
Use the modified Euler’s method to solve y’ = 4x°; y(2) = 6 on the interval [2, 3] with 4 =0.2.
Redo Problem 19.13 using the Runge—Kutta method.

Redo Problem 19.14 using the Runge—Kutta method.

Redo Problem 19.15 using the Runge—Kutta method.

Redo Problem 19.17 using the Runge—Kutta method.

Use the Runge—Kutta method to solve y’ = 5x*; y(0) =0 on the interval [0, 1] with 2 =0.1.
Use the Adams—Bashforth-Moulton method to solve y" =y; y(0) = 1 on the interval [0, 1] with 2 =0.1.
Redo Problem 19.13 using the Adams—Bashforth-Moulton method.

Redo Problem 19.14 using the Adams—Bashforth-Moulton method.

Redo Problem 19.15 using the Adams—Bashforth—Moulton method.

Redo Problem 19.13 using Milne’s method.

Redo Problem 19.14 using Milne’s method.

[CHAP. 19



CHAPTER 20

Numerical Methods for
Solving Second-Order
Differential Equations
Via Systems

SECOND-ORDER DIFFERENTIAL EQUATIONS

In Chapter 17, we showed how a second (or higher)-order differential equation could be expressed as a

system of first-order differential equations.
In this chapter we investigate several numerical techniques dealing with such systems.
In the following system of initial-value problems, y and z are functions of x:

Y =fxy,2)
7 =g, y,2);
¥ (x0) = yo, 2(X0) = 2o

We note that, with y’ = f(x, y, z) = z, System (20.1) represents the second-order initial-value problem
V=g, yxo) =y, ¥(x) =20
Standard form for a system of three equations is

Yy =f(x,y,z,w)
7 =gx,y,z,w)
w=rx,y,z,w);

¥ (Xo) = Yo, 2(xX0) = 29, W(Xg) = Wy

20.1)

(20.2)

If, in such a system, f(x, y, z, w) = z, and g(x, y, z, w) = w, then system (20.2) represents the third-order initial-

value problem

,7

Y7'=r(x,y, o w); yx) =y, Y(xo) =20, Y'(x0) =wp

195
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The formulas that follow are for systems of two equations in standard form (20.7/) Generalizations to
systems of three equations in standard form (20.2) or systems with four or more equations are straightforward.

EULER’S METHOD

Yn+1=Yn+ hy, (20.3)

Zn+1 =Zn+hz;z

RUNGE-KUTTA METHOD

Vo1 =V, +é(k1 + 2k, + 2k, +k,)

(20.4)
Ze1 =2, +é(ll +2L, +2L +1,)
where &k, = hf (x,, Y, 2,,)
ll = hg (xna Yns Zn)
ky=hf(x, ++h,y, +3+k,z, +%1)
L, =hg(x, +%h’yn +%k1’ <, +%ll)
ky=hf(x, +3hy, +1k,, 2, +31,)
L=hg(x, +3hy, +3k,, 2, +31L)
ky=hf(x, +h,y, +ky,z,+1)
L=hg(x,+hy +k;,z,+1)
ADAMS-BASHFORTH-MOULTON METHOD
. h 7 ’ ’ ’
predictors:  py,.; =y, + ﬂ(SSyn =59y, 37y, =9,3)
h ’ ’ ’ ’
pzn+1 = Zn + Q(SSZW - 592/171 + 37Zn72 - 9Zn73)
(20.5)
correctors : Yos1 =V T 2}1—4(9Py;+1 +19y, =5y, +V,_,)
h 7 ’ ’ ’
Zn+1 = Zn + a(gpzni—l + 19Zn - Szn—l + Zn—2)
Corresponding derivatives are calculated from System (20.7). In particular,
y;t+1:f(xn+l’yn+1’zn+l) (206)

’
Zn+l:g(xn+l7yn+l’ Zn+l)

The derivatives associated with the predicted values are obtained similarly, by replacing y and z in Eq. (20.6)
with py and pz, respectively. As in Chapter 19, four sets of starting values are required for the
Adams—Bashforth—-Moulton method. The first set comes directly from the initial conditions; the other three sets
are obtained from the Runge—Kutta method.
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Solved Problems

20.1. Reduce the initial-value problem y” —y = x; y(0) =0, ¥ (0) = 1 to System (20.1).
Defining z=y’, we have z(0)=)"(0)=1 and z'=y”. The given differential equation can be rewritten as
Y’ =y+x, or 7 =y+x. We thus obtain the first-order system
Y=z
I=y+x
y0)=0,2z0)=1

20.2. Reduce the initial-value problem y” — 3y" + 2y = 0; y(0) =—1, y'(0) = 0 to System (20.1).
Defining z=y", we have z(0)=)"(0)=0 and 7' =y”. The given differential equation can be rewritten as
Yy’ =3y’ =2y, or 7’ =3z — 2y. We thus obtain the first-order system
Y=z
Z'=3z-2y;
¥0)=-1,200)=0

20.3. Reduce the initial-value problem 3x%y” — xy’ +y = 0; y(l) = 4, y’(1) = 2 to System (20.1).

Defining z =", we have z(1) = y’(1) =2, and 7" = y”. The given differential equation can be rewritten as

p_ Xy —Y
Y 3x°
’ X7 —
or 7= 72);
3x
We thus obtain the first-order system
y=z
,_XZ—
7= zy
3x

y)=4,z(1)=2

20.4. Reduce the initial-value problem y”” — 2xy” + 4y’ — x%y = 1; y(0) = 1, y’(0) = 2, y"(0) = 3 to System (20.2).
Following Steps 1 through 3 of Chapter 17, we obtain the system
Yi=y
Y2=¥3
Yy =22y = dyy + 2xy3 + 1
y10) =1, y2(0) =2, y3(0) =3
To eliminate subscripting, we define y = y;, z=y,, and w = y;. The system then becomes
Y=z
=w
W =xly — 4z +2xw + 1;

y0)=1,2000=2,w(0)=3
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20.5. Use Euler’s method to solve y” —y = x; y(0) =0, y’(0) = 1 on the interval [0, 1] with 2 =0.1.

Using the results of Problem 20.1, we have f(x,y,2) =z, g(x, y,2) =y + x, X9 =0, 9 = 0, and z = 1. Then, using
(20.3), we compute

n=0: y5=f(0, Yo, 20) =2 =1
20 =80, Y0, 20) =Yg + %9 =0+0=0
yi=yo+hyy=0+(0.1)(1)=0.1
21=20+hzp=1+0.1)0)=1

n=1: yi=f(x,y,z)=z=1
B=g@nynz1,) =y +x=0.1+0.1=02
ya=y;+hy;=0.1+(0.1)(1)=0.2
=71+ hzi=1+(0.1)(0.2)=1.02

n=2: yy=f(xp, y2, 22) =25 =1.02
=80 ¥, 22) = Y2+ 1, =02+02=04
y3=y, +hy;=0.2 + (0.1)(1.02) = 0.302
23=2p+hz5=1.02 + (0.1)(0.4) = 1.06

Continuing in this manner, we generate Table 20-1.

Table 20-1

Method: EULER’S METHOD

Problem: " —y=x;y(0)=0,y(0)=1
o h=0.1 True solution

Vo Zn Yx)=e"—e " —x

0.0 0.0000 1.0000 0.0000
0.1 0.1000 1.0000 0.1003
0.2 0.2000 1.0200 0.2027
0.3 0.3020 1.0600 0.3090
0.4 0.4080 1.1202 0.4215
0.5 0.5200 1.2010 0.5422
0.6 0.6401 1.3030 0.6733
0.7 0.7704 1.4270 0.8172
0.8 0.9131 1.5741 0.9762
0.9 1.0705 1.7454 1.1530
1.0 1.2451 1.9424 1.3504

20.6. Use Euler’s method to solve y” — 3y” + 2y = 0; y(0) = —1, y’(0) = 0 on the interval [0, 1] with
h=0.1.

Using the results of Problem 20.2, we have f(x, y, z) =z, g(x, y, 2) = 3z — 2y, xg =0, yo =—1, and
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7o =0. Then, using (20.3), we compute

n=0: y=f(x0, 0, 20) = 2=0
20 = 8(X0, Yo» 20) = 320 = 2y =3(0) —2(-1) =2
Y1 =Yo+hyy=—1+(0.1)0)=—1
=20+ hZo=0+(0.1)(2)=0.2

n=1: yi=f(x, y,2)=2=02
21= 80y, y1, 21) =321 — 2y, = 3(0.2) — 2(—1) = 2.6
Yo =y1 +hy; =—=1+(0.1)(0.2) = —0.98
2 =21+ hz; =0.2+(0.1)(2.6) = 0.46

Continuing in this manner, we generate Table 20-2.

Table 20-2

Method: EULER’S METHOD

Problem: y”—3y +2y=0;y(0)=-1,y(0)=0
n h=01 True solution

Vn Zn Y(x) = > — 2¢*

0.0 —1.0000 0.0000 —1.0000
0.1 —1.0000 0.2000 —0.9889
0.2 —0.9800 0.4600 -0.9510
0.3 —0.9340 0.7940 —0.8776
0.4 —0.8546 1.2190 —0.7581
0.5 -0.7327 1.7556 —0.5792
0.6 —0.5571 2.4288 —0.3241
0.7 —0.3143 3.2689 0.0277
0.8 0.0126 4.3125 0.5020
0.9 0.4439 5.6037 1.1304
1.0 1.0043 7.1960 1.9525
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20.7. Use the Runge—Kutta method to solve y” —y = x; y(0) =0, y’(0) = 1 on the interval [0, 1] with ~=0.1.

Using the results of Problem 20.1, we have f(x,y,z) =z, g(x,y,2) =y + x, xy =0, yy =0, and zo = 1. Then, using
(20.4) and rounding all calculations to three decimal places, we compute:

n=0: k= hf(x, Yo, z0) = hf(0,0, 1) = (0.1)(1)=0.1
[} = hg(xg, Yo, 20) = hg(0, 0, 1) = (0.1)(0+0) =0

ky=hf(xg +1h,y, + 1k, 2y +31)

= Af[0 +1(0.1),0 + £(0.1), 1+ 1(0)]
=hf(0.05,0.05,1)=(0.1)(1)=0.1
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L=hg(x,+ih,y,+1k,z, +11)
=hg(0.05,0.05,1) =(0.1)(0.05+ 0.05) =0.01

ky=hf(xy++h,y, +3k,, 2o +31)
=hf[0+£(0.1),0 + £(0.1),1+1(0.01)]
= hf(0.05,0.05,1.005) = (0.1)(1.005) =0.101
L=hg(xy +3h, ¥y +1k,, 2o +%1,)
=hg(0.05,0.05,1.005) = (0.1)(0.05 +0.05) =0.01
ky =hf(xo+ h, yo + k3, 20+ 13)
=hf(0+0.1,0+0.101, 1 +0.01)
=hf(0.1,0.101, 1.01) = (0.1)(1.01) = 0.101
ly =hg(xg+h, yo+ ks, 20+ 13)
=hg(0.1,0.101, 1.01) = (0.1)(0.101 + 0.1) = 0.02
Vi = Yo + 2k, + 2k, + 2k + k)
=0+ £[0.1+2(0.1) + 2(0.101) +(0.101)] =0.101
7 =20 + (L + 2L+ 2L+ 1)
=1++£[0+2(0.01) +2(0.01) + (0.02)] =1.01

¢ ki =hf(xy, y1, 7)) = hf(0.1,0.101, 1.01)

=(0.1)(1.01)=0.101
Iy =hg(xy, ¥, z1) = hg(0.1,0.101, 1.01)
= (0.1)(0.101 +0.1) = 0.02
ky=hf(x,+1h,y +1k,z +11)
=hf[0.1+1(0.1),0.101 +1(0.101),1.01 +1(0.02)]
=hf(0.15,0.152,1.02) = (0.1)(1.02) =0.102
L=hg(x +3hy + 3k, 2z, +31)
=hg(0.15,0.152,1.02) =(0.1)(0.152 + 0.15) =0.03
ky=hf(x, +1h,y +1k,,z, +11)
=hf[0.1+1(0.1),0.101 +1(0.102),1.01 + 1 (0.03)]
=hf(0.15,0.152,1.025) = (0.1)(1.025) =0.103
L=hg(x, +3h,y, + 3k, 2, +31)
=hg(0.15,0.152,1.025) = (0.1)(0.152 +0.15) = 0.03
ky =hf Qe+ h, yi + ks, 21+ 13)
=hf(0.1+0.1,0.101 +0.103, 1.01 + 0.03)
=hf(0.2,0.204, 1.04) = (0.1)(1.04) =0.104
ly =hg(xy+h,y1+ks, 21+ 1)
=hg(0.2,0.204, 1.04) = (0.1)(0.204 + 0.2) = 0.04
Yy =y, + ek +2k, + 2k, +k,)
=0.101+¢[0.101 +2(0.102) +2(0.103) + (0.104)]
=0.204
=g+ +2L+ 2L+ 1)
=1.01+£[0.02 +2(0.03) +2(0.03) + 0.04] = 1.04

[CHAP. 20
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Continuing in this manner, but rounding to seven decimal places, we generate Table 20-3.

SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS

Table 20-3

Method: RUNGE-KUTTA METHOD

Problem: y”—y=x;y0)=0,y(0)=1
n h=01 True solution

Y Zn Yx)=e"—e*—x

00 0.0000000 1.0000000 0.0000000
0.1 1.1003333 1.0100083 0.1003335
0.2 0.2026717 1.0401335 0.2026720
0.3 0.3090401 1.0906769 0.3090406
04 0.4215040 1.1621445 0.4215047
0.5 0.5421897 1.2552516 0.5421906
0.6 0.6733060 1.3709300 0.6733072
0.7 0.8171660 1.5103373 0.8171674
0.8 0.9762103 1.6748689 0.9762120
09 1.1530314 1.8661714 1.1530335
10 1.3504000 2.0861595 1.3504024
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Use the Runge—Kutta method to solve y” — 3y + 2y = 0; y(0) =—1,y’(0) =0 on the interval [0, 1] with 2 =0.1.
Using the results of Problem 20.2, we have f(x, y, z) =z, g(x,y,2) =3z —2y,x9=0, yy=—1, and zy = 0. Then,

using (20.4), we compute:

n=0: ki =hf(xo.y0.2)=hf(0,~1,0)=(0.1)(0)=0
Iy = hg(xo, Y0, 20) = hg(0,=1,0) = (0.D[3(0) = 2(=D)] =0.2

ky=hf (xy +3h,yy + 3k, 2y + 1)

= hf[0+1(0.1),-1+1(0),0 + 1(0.2)]
=hf(0.05,—1,0.1)=(0.1)(0.1)=0.01

L, =hg(x, +%h,)’0 +%klszo +%ll)

=hg(0.05,-1,0.1)=(0.1)[3(0.1) = 2(-1)]=0.23

ky = hf (xo +Lh,y, + Lk, 2o +11,)
= hf[0+1(0.1), —1+1(0.01),0 +1(0.23)]
= hf (0.05, —0.995, 0.115)=(0.1)(0.115)=0.012

Ly =hg(x, +%hs)’0 +%kzszo +%lz)
=hg(0.05, —0.995, 0.115)=(0.1)[3(0.115) — 2(-0.995)]

=0.234
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kg =hf(xo+ h, yo + k3, 20+ 13)
=hf(0+0.1,—-1+0.012,0+0.234)
=hf(0.1, —0.988, 0.234) = (0.1)(0.234) = 0.023
ly =hgxo+h, yo+ ks, 20+ 15)
=hg(0.1,—0.988, 0.234) = (0.1)[3(0.234) — 2(—0.988)]
=0.268
Vi =Yy + ek, + 2k, + 2k, + k)
=—1+1[0+2(0.01) +2(0.012) + (0.023)] = —0.989
5 =2+ +2L+2L+1)
=0++[0.2 +2(0.23) +2(0.234) + (0.268)] = 0.233

Continuing in this manner, we generate Table 20-4.

Table 20-4

Method: RUNGE-KUTTA METHOD

Problem: y”—3y +2y=0;y(0)=-1,y(0)=0
a h=01 True solution

YV 2, Y(x) = > — 2¢*

0.0 —1.0000000 0.0000000 —1.0000000
0.1 —0.9889417 0.2324583 —0.9889391
0.2 —0.9509872 0.5408308 —0.9509808
0.3 —-0.8776105 0.9444959 —0.8775988
0.4 —0.7581277 1.4673932 —0.7581085
0.5 -0.5791901 2.1390610 —0.5791607
0.6 —0.3241640 2.9959080 —0.3241207
0.7 0.0276326 4.0827685 0.0276946
0.8 0.5018638 5.4548068 0.5019506
0.9 1.1303217 7.1798462 1.1304412
1.0 1.9523298 9.3412190 1.9524924

20.9. Use the Runge—Kutta method to solve 3x>y” —xy’ +y=0; y(1) =4, y’(1) = 2 on the interval [1, 2]

with 7 =0.2.

It follows from Problem 20.3, we have f(x, y, 2) =z, g(x, y, 2) = (xz — y)/(3x2), xo=1,y0=4, and

7o = 2. Using (20.4), we compute:
n=0: k =hf(xg, yo. 20) =Nf(1,4,2)=0.2(2)=0.4

L =hg(xy, %5, 20) =hg(1,4,2) :0.2|:](32()1)_2 :|=—0.1333333

[CHAP. 20
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ky = hf (x, + %hs Yot %kl’ Zp + %ll)
=hf(1.1,4.2,1.9333333) =0.2(1.9333333) = 0.3866666
L =hg(x,+%h,y,+3k,z,+31)=hg(1.1,4.2,1.9333333)

1.1(1.9333333) — 4.2
=0.2
3(1.1)%

}:—0.1142332

ky = hf(x, + LRy, +1ky 20 +L1,)
= hf(1.1,4.1933333,1.9428834) = 0.2(1.9428834) = 0.3885766
I, =hg(x, +Lh, y, +Lky, 7, +11,) = hg(1.1,4.1933333,1.9428834)

_ .| 1:101.9428834) - 419333333
' 3(1.1)

}=—0.1132871

ky =hf(xo+h, yo+ k3, 20+ 1)
=hf(1.2,4.3885766, 1.8867129) = 0.2(1.8867129) = 0.3773425

1, = hgx, + h, yo + ks, 2 +1,) = hg(1.2, 4.3885766, 1.8867129)
o 2[1.2(1.8867129) — 43885766

3 =-0.0983574
3(1.2)

Vi =Yy + 2k, + 2k, + 2k + k,)
=4+ é[0.4 +2(0.3866666) + 2(0.3885766) + 0.3773425] =4.3879715

L =2+ +2L + 2L+ 1)
=2+ %[—0.1333333 +2(—0.1142332) + 2(—0.1132871) + (—0.0983574)] = 1.8855447

Continuing in this manner, we generate Table 20-5.

Table 20-5

Method: RUNGE-KUTTA METHOD

Problem: 3x%” —xy +y=0;y(1)=4,y(1)=2
o h=02 True solution

Vo Zn Y(x) = x + 3x'3

1.0 4.0000000 2.0000000 4.0000000
1.2 4.3879715 1.8855447 4.3879757
1.4 4.7560600 1.7990579 4.7560668
1.6 5.1088123 1.7309980 5.1088213
1.8 5.4493105 1.6757935 5.4493212
2.0 5.7797507 1.6299535 5.7797632

20.10. Use the Adams—Bashforth-Moulton method to solve 3x%y” —xy’ +y =0; y(1) = 4, y'(1) = 2 on the interval
[1, 2] with 2 =0.2.

It follows from Problem 20.3, that f(x, v, z) =z, g(x, y, 2) = (xz — Y)/(3x%), Xo = 1, ¥y =4, and 7, = 2. From Table 20-5,
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we have

X =12 y, =4.3879715 21 = 1.8855447
X, =14 v, = 4.7560600 2= 17990579

x3=1.6 y;=5.1088123 2= 1.7309980

Using (20.6), we compute

Yo=20=2 Vi =2z, = 1.8855447
v, =z, = 1.7990579 4= 73 = 1.7309980
g =M% X 1@ -4 66667
3x 3(1)
goBATN 1.2(1.8855447) —24.3879715 04919717
3x; 3(1.2)
. xz, -y,  14(1.7990579) — 4.7560600
4 ==2 32x2 2 = S =-0.3805066
2 .
BB 1.6(1.7309980) —25.1088123 03045854
3% 3(1.6)

Then using (20.5), we compute
n=3 x;,=138
h 4 4 4 4
Py,=y:t a(SSY3 =59y, + 37y, = 9,)
=5.1088123 + (0.2/24)[55(1.7309980) — 59(1.7990579) + 37(1.8855447) — 9(2)] = 5.4490260

h ’ ’ ’ ’
Py =23+ a(SSz3 —59z, +37z; = 9z,)

=1.7309980 + (0.2/24)[55(-0.3045854) — 59(-0.3805066) + 37(-0.4919717)
—9(-0.6666667)] =1.6767876

pYs = pzs = 1.6767876

, - 1.8(1. —5.44902
o, = x4PZ34 - Py, _ L& 6767%:16)82)5 90260 _ 02500832
X, .

h ’ 4 ’ 7
Ya=y; t+ a(gpﬂ +19y; =5y, +»)
=5.1088123 + (0.2/24)[9(1.6767876) + 19(1.7309980) — 5(1.7990579) + 1.8855447]
=5.4493982
h ’ ’ ’ ’
2, =2 +£(9pz4 +19z; =5z, + 7))
=1.7309980 + (0.2/24)[9(-0.2500832) + 19(—0.3045854) — 5(—0.3805066) + (—0.4919717)]
=1.6757705
V4 =2z4=1.6757705

e 1.8(1.6757705) - 54493982 <200
3x2 3(1.8%)
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h 4 7 7 /’
pys =Yy, + 5(55)’4 =59y, +37y, = 9y))
=5.4493982 +(0.2/24)[55(1.6757705) — 59(1.7309980) + 37(1.7990579) — 9(1.8855447)]
=5.7796793

h ’ ’ ’ ’
D=2, + E(SSZ4 —59z, +37z, - 9z))

=1.6757705 + (0.2 /24)[55(=0.2503098) — 59(~0.3045854) + 37(~0.3805066) — 9(—0.4919717)]

=1.6303746
pY's=pzs=1.6303746

—PYs _

2.0(1.6303746) — 5.7796793

XsPZs
2} = =57

2
3x;

3(2.0)°

h 7 7 /’ /’
Vs =Yt a(gl’ys +19y, =5y, +y,)
=5.4493982 +(0.2/24)[9(1.6303746) + 19(1.6757705) — 5(1.7309980) + 1.7990579]
=5.7798739

h 7 7 ’ ’
=2, t £(9p25 +192, =52, +2,)

=-0.2099108

=1.6757705 + (0.2/24)[9(=0.2099108) + 19(~0.2503098) — 5(—0.3045854) + (~0.3805066)]
=1.6299149

V5 =25 =1.6299149

r_XsZs = Vs

2.0(1.6299149) — 5.7798739

Zs= 3x52 = 300)° =-0.2100037
See Table 20-6.
Table 20-6

Method: ADAMS-BASHFORTH-MOULTON METHOD

Problem: 3x°y”"—xy'+y=0;y(1)=4,y(1)=2
n h=02 True solution

PYn PZn Vi Zn Y(x) =x +3x'3

1.0 — — 4.0000000 2.0000000 4.0000000
1.2 — — 43879715 1.8855447 43879757
1.4 — — 4.7560600 1.7990579 47560668
1.6 — — 5.1088123 1.7309980 5.1088213
1.8 5.4490260 1.6767876 5.4493982 1.6757705 5.4493212
2.0 5.7796793 1.6303746 5.7798739 1.6299149 5.7797632

205
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20.11. Use the Adams—Bashforth-Moulton method to solve y” —y = x; y(0) =0, y’(0) = 1 on the interval [0, 1]
with 2 =0.1.

It follows from Problem 20.1 that f(x, y, z) = z and g(x, y, z) = y + x and from Table 20-3 that

xXo=0 yo = 0 70 =1

x;=0.1 y; = 0.1003333 z; = 1.0100083
X =02 y» = 0.2026717 72 = 1.0401335
x3=03 y3 = 0.3090401 zz3 = 1.0906769

Using (20.6), we compute
Yo =z20=1 » = z;=1.0100083

V= 2o = 1.0401335  v4 = 23 = 1.0906769
0=Y+x%=0+0=0

2 = y; +x, = 0.1003333 + 0.1 = 0.2003333
25 = yo+x,=0.2026717 + 0.2 = 0.4026717

2= vy +x3 = 0.3090401 + 0.3 = 0.6090401

Then using (20.5), we compute
n=3: X4 = 0.4

h 4 4 4 ’
Py, =y; t 5(55)’3 =59y, +37y, - 9%)

=0.3090401 + (0.1/24)[55(1.0906769) — 59(1.0401335) + 37(1.0100083) — 9(1)]
=0.4214970

h ’ ’ ’ ’
P, =23+ Q(SSZ3 —59z, +37z, - 9z,)

=1.0906769 + (0.1/24)[55(0.6090401) — 59(0.4026717) + 37(0.2003333) — 9(0)]
=1.1621432

Yy =pza=1.1621432
Pz =pys+xy=0.4214970 + 0.4 = 0.8214970

h /7 /7 /7 /7
Ya=Y; +£(9Py4 +19y; =5y, +y))

=0.3090401 + (0.1/24)[9(1.1621432) 4+ 19(1.0906769) — 5(1.0401335) + 1.0100083]
=0.4215046

h ’ ’ ’ ’
2,=2, +i(9pz4 +192; -5z, — 7))

=1.0906769 + (0.1/24)[9(0.8214970) + 19(0.6090401) — 5(0.4026717) + (0.2003333)]
=1.1621445

V4= 2z4=1.1621445

2y =ya+ x4 =0.4215046 + 0.4 = 0.8215046
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Continuing in this manner, we generate Table 20-7.

Table 20-7

Method: ADAMS-BASHFORTH-MOULTON METHOD

Problem: " —y=x;y(0)=0,y(0)=1
o h=01 True solution

PYn Pz Vn - Yx)=e'—e" —x

0.0 — — 0.0000000 1.0000000 0.0000000
0.1 — — 0.1003333 1.0100083 0.1003335
0.2 — — 0.2026717 1.0401335 0.2026720
0.3 — — 0.3090401 1.0906769 0.3090406
0.4 0.4214970 | 1.1621432 | 0.4215046 1.1621445 0.4215047
0.5 0.5421832 | 1.2552496 | 0.5421910 1.2552516 0.5421906
0.6 0.6733000 | 1.3709273 | 0.6733080 1.3709301 0.6733072
0.7 0.8171604 | 1.5103342 | 0.8171687 1.5103378 0.8171674
0.8 0.9762050 | 1.6748654 | 0.9762138 1.6748699 0.9762120
0.9 1.1530265 1.8661677 | 1.1530358 1.8661731 1.1530335
1.0 1.3503954 | 2.0861557 1.3504053 2.0861620 1.3504024

20.12. Formulate the Adams—Bashforth—-Moulton method for System (20.2).
predictors: PYyor =¥, + %(SSyL =59y, +37y,_, =9y, 5)
h ’ ’ ’ ’
D2, =2, a(SSzn -59z,_,+37z,_,—-92,_5)

W, =W, +%(55w; =59w | +37w,_, -9 )

h /7 7 4 4
correctors: Vur1 =Vu F £(9pyn+. +19y, =5y, + ¥, 2)

h ’ ’ 7 7
Zy1 =%, t 5(9101,,“ +19z, =5z, , +z,.,)

’
n+1

+19w) 5w, +w._,)

n

h
w . =w +—OOpw
+1 n 24(17

20.13. Formulate Milne’s method for System (20.1).

. 4h o, ,
predictors: PYyi1 = Vu-3 +?(2)’n =Yoo t2Y,5)

4h ., ,
P21 =Zyos +?(2zn -Z,.,+2z,.,)

207



208 SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS [CHAP. 20

h Ya ’ /7
correctors: Vo1 =Vt g(pym +4y,+Y,.)

h ’
L1 =Ly +§(pzn+l +4Z +Zn 1)

20.14. Use Milne’s method to solve y” —y = x; y(0) =0, y’(0) = 1 on the interval [0, 1] with 2 =0.1.

All starting values and their derivatives are identical to those given in Problem 20.11. Using the formulas given
in Problem 20.13, we compute
4h 4 7 4
n=3: p)’4=yn+*(2y3_)/2+2)’1)

=0 4(0 )[2(1 0906769) —1.0401335 + 2(1.0100083)]

= 0.4214983

4h 7 7 ’
P2 =2, +*(223 -2, +2z)

4(0 1)

=14+ —-[2(0.6090401) — 0.4026717 + 2(0.2003333)]

21.1621433
pya=pzs=1.1621433
PZh=pys+ x4, =0.4214983 + 0.4 = 0.8214983
h 7 7 ’
Ya=Ys +§(py4 +4y;+ )

=0.2026717 + %[1.1621433 +4(1.0906767) +1.0401335]
=0.4215045

h ’ ’ ’
=2 +§(pz4 +4z,+ 7))

=1.0401335 + %[0.8214983 +4(0.6090401) + 0.4026717]
=1.1621445

n=4: y,=z,=1.1621445
2=y, +x,=0.4215045 + 0.4 = 0.8215045

4h 4 7 7
PYs =N +?(2)’4 -y +2y,)

4(0 1)

=0.1003333 + ——[2(1.1621445) —1.0906769 + 2(1.0401335)

=0.5421838

4h ’ ’ ’
Pis=1z, + —(2z4 -3 +2z2,)

=1.0100083 + (3 D [2(0.8215045) - 0.6090401 + 2(0.4026717)]
=1.2552500

pys = pzs = 1.2552500
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ps = pys + x5 = 0.5421838 + 0.5 = 1.0421838

h ’ /7 /7
Vs =Y +§(pys +4y, +y3)

=0.3090401 + %[1 .2552500 + 4(1.1621445) +1.0906769]

=0.5421903

h 7 7 ’
75 =12, +§(pzs +4z, +z3)

=1.0906769 + %[1 0421838 + 4(0.8215045) + 0.6090401]

=1.2552517

Continuing in this manner, we generate Table 20-8.

Table 20-8

Method: MILNE’S METHOD

Problem: y”—y=x;y(0)=0,y'(0)=1
o h=0.1 True solution

PYn PZn Yn Zn Y(x)=e'—e " —x

0.0 — — 0.0000000 1.0000000 0.0000000
0.1 — — 0.1003333 1.0100083 0.1003335
0.2 — — 0.2026717 1.0401335 0.2026720
0.3 — — 0.3090401 1.0906769 0.3090406
0.4 0.4214983 1.1621433 0.4215045 1.1621445 0.4215047
0.5 0.5421838 1.2552500 0.5421903 1.2552517 0.5421906
0.6 0.6733000 1.3709276 0.6733071 1.3709300 0.6733072
0.7 0.8171597 1.5103347 0.8171671 1.5103376 0.8171674
0.8 0.9762043 1.6748655 0.9762120 1.6748693 0.9762120
0.9 1.1530250 1.8661678 1.1530332 1.8661723 1.1530335
1.0 1.3503938 2.0861552 1.3504024 2.0861606 1.3504024

20.15. Reduce the initial-value problem y” +y =0; y(0) = 1, y'(0) = 0 to system (20.1).

Supplementary Problems

20.16. Reduce the initial-value problem y” —y = x; (0) =0, y'(0) = —1 to system (20.1).
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20.17.

20.18.
20.19.
20.20.
20.21.

20.22.

20.23.

20.24.

20.25.

20.26.

20.27.
20.28.
20.29.
20.30.

SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS [CHAP. 20

Reduce the initial-value problem 2yy” — 4xy?y’” + 2(sin x)y* = 6; y(1) = 0, y’(1) = 15 to system (20.1).

Reduce the initial-value problem xy”” — x>y” + (¥')%y = 0; y(0) = 1, y’(0) = 2, y”(0) = 3 to system (20.2).

Use Euler’s method with 2 = 0.1 to solve the initial-value problem given in Problem 20.15 on the interval [0, 1].
Use Euler’s method with /= 0.1 to solve the initial-value problem given in Problem 20.16 on the interval [0, 1].

Use the Runge—Kutta method with /4 = 0.1 to solve the initial-value problem given in Problem 20.15 on the interval
[0, 1].

Use the Runge—Kutta method with = 0.1 to solve the initial-value problem given in Problem 20.16 on the interval
[0, 11.

Use the Adams—Bashforth—-Moulton method with 4 = 0.1 to solve the initial-value problem given in Problem 20.2
on the interval [0, 1]. Obtain appropriate starting values from Table 20-4.

Use the Adams—Bashforth-Moulton method with /= 0.1 to solve the initial-value problem given in Problem 20.15
on the interval [0, 1].

Use the Adams—Bashforth-Moulton method with 2 = 0.1 to solve the initial-value problem given in Problem 20.16
on the interval [0, 1].

Use Milne’s method with 42 =0.1 to solve the initial-value problem given in Problem 20.2 on the interval [0, 1].
Obtain appropriate starting values from Table 20-4.

Use Milne’s method with 4 =0.1 to solve the initial-value problem given in Problem 20.15 on the interval [0, 1].
Formulate the modified Euler’s method for System (20.1).

Formulate the Runge—Kutta method for System (20.2).

Formulate Milne’s method for System (20.2).



The Laplace
Transform

DEFINITION

Let f(x) be defined for 0 < x < o and let s denote an arbitrary real variable. The Laplace transform of f(x),
designated by either £{f(x)} or F(s), is

P} =F(s)= [ e f(x)dx @1.1)
for all values of s for which the improper integral converges. Convergence occurs when the limit

lim jOR e f(x)dx (21.2)

exists. If this limit does not exist, the improper integral diverges and f(x) has no Laplace transform. When evaluating
the integral in Eq. (2/.1), the variable s is treated as a constant because the integration is with respect to x.

The Laplace transforms for a number of elementary functions are calculated in Problems 21.4 through 21.8;
additional transforms are given in Appendix A.

PROPERTIES OF LAPLACE TRANSFORMS

Property 21.1. (Linearity). If £{f(x)} = F(s) and £{g(x)} = G(s), then for any two constants c¢; and ¢,

L1 f(0) + 80} = i L)} + 2F{g(0)} = ¢ 1F(s) + c,G(s) (21.3)
Property 21.2. If £{f(x)} = F(s), then for any constant a
F{e™f(x)} =F(s — a) (21.4)
Property 21.3. If £{f(x)} = F(s), then for any positive integer n
d"
" fOr=(=1" 7[F ()] (21.5)
S(x)

Property 21.4. If £{f(x)} = F(s) and if ling

x>0

exists, then

211



212

THE LAPLACE TRANSFORM

513{1 f(x)} = rF(t) dt
x N

Property 21.5. If £{f(x)} = F(s), then

sg{j: £(0) dt} = %F(s)

Property 21.6. If f(x) is periodic with period @, that is, f(x + @) = f(x), then

j” e F(x)dx
()} =L—r

I—e™

FUNCTIONS OF OTHER INDEPENDENT VARIABLES

[CHAP. 21

(21.6)

1.7)

21.8)

For consistency only, the definition of the Laplace transform and its properties, Eqs. (21.7) through (21.8),

are presented for functions of x. They are equally applicable for functions of any independent variable and
are generated by replacing the variable x in the above equations by any variable of interest. In particular, the
counterpart of Eq. (21.1) for the Laplace transform of a function of ¢ is

21.1.

21.2.

21.3.

K Oy=F(s)=[ e fr)dr

Solved Problems

. . . - 1
Determine whether the improper integral J — dx converges.
2 x

Since

the improper integral converges to the value %

. . . =1
Determine whether the improper integral L —dx converges.
X

Since

. r1 . R
lim | —dx=1imIn lx|
R—eJ9 X R—eo

= }?im(lnR —1In9)=e0

9

the improper integral diverges.

Determine those values of s for which the improper integral J.O e "dx converges.

For s =0,

< g [T~ g s (R _1
Jyerdn=fi et dvmlim [ ) de=fim

R
=limR=o0
0 R—e0
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hence the integral diverges. For s #0,

x=R
- e . 1 _
J e””dxzhmJ. e “dxzhm[—fe ‘”‘]
0 R—oJ0

R—eo s -0

=lim (_1 e 4+ 1]
Roe| g K

when s <0, —sR > 0; hence the limit is o and the integral diverges. When s > 0, —sR < 0; hence, the limit is 1/s and
the integral converges.

21.4. Find the Laplace transform of f(x) = 1.
Using Eq. (21.1) and the results of Problem 21.3, we have
F(s)=F{}= J‘: e "(N)dx= 1 (for s >0)
s
(See also entry 1 in Appendix A.)
21.5. Find the Laplace transform of f(x) = x.
Using Eq. (21.1) and integration by parts twice, we find that

_ 2_007512 —1: R27:x
F(s)—EB{x}—JOe xdx—}elg}joxe dx

: 2 2 7"
. X X _
- llm {_ 76 X — e SX - 76 SX}

R—eo =
s s s o
. R .« 2R _, 2 & 2
=lim| - —e - e - S +
Ry s s s N

For s <0, limg_., [~ (R?/s)e” *F] = =, and the improper integral diverge. For s > 0, it follows from repeated use of
L’Hopital’s rule that
. R _:) .. ([-R*) .. (-2R

(-2
—}Ji‘l(mj—o
1im[—ZRe*R):lim(_zRR]:lim[jz_R]zo
R—co Ky R—co Se: R—co Ky el

Also, limg_,., [- (2/s*)¢~*] = 0 directly; hence the integral converges, and F(s) = 2/s. For the special case s = 0, we have

3
- - . R . R

I e ““xzdx:j e Ox’dx=lim | x’dx=lim — =0
0 0 R—eJ0 R—e 3

Finally, combining all cases, we obtain ${x?} = 2/s%, s > 0. (See also entry 3 in Appendix A.)
21.6. Find L{e™}.
Using Eq. (21.1), we obtain
oo N R
F(s)=%{"}= J. e e“dx=1im | “dx
0 R—J0

—5 x=R -
. e(u s)x . e(a s)R _1
=lim =lim| ———
Ro=| q—§ R—e0 a—s

x=0

= ! (for s >a)
s—a

Note that when s < a, the improper integral diverges. (See also entry 7 in Appendix A.)
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21.7. Find ${sin ax}.
Using Eq. (21.1) and integration by parts twice, we obtain

had v . . R — .
P{sinax} = JO e " sinaxdx = lim J.O e " sinax dx
R—o0

=lim ——
R s"+a

5 . e x=R
—se "sinax ae ™ cosax
2 2
s +a

x=0

2 2 2 2 2 2
s +a s +a s +a

=lim
R—00

[— se ®sinaR  ae**cosaR . a :|

N 5 (fors>0)
+a
(See also entry 8 in Appendix A.)

e’ x<2

21.8. Find the Laplace transform of f(x) = .
3 x>2

=] fdr=] “eretdn+ [ et ()

Logx=2
2 (1-s)x . R o el . _sx|*=R

:J.e dx+3hmJ. e Vdx = —=lime™
0 R—00d2 1—¢ § R—>e x=2
21-5) ~2(s-1)
e 1 3. _ _ 1-e _

= - —Zlimle ™ —e]=————— + = (fors>0)
l-s 1—-5 sk s—1 s

21.9. Find the Laplace transform of the function graphed in Fig. 21-1.

-1 x<4

f(x)z{ 1 x>4

Jx)
A

Fig. 21-1
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PLUF(0)} = j: e f(x)dx = j:e-” (- Ddx + j: e () dx

x=4

R
+1im | e™™dx
R—ed4

B S £ SR R
= ilim| e 4™
s

s s Roel g

—4s
=ze——l (for s >0)
s s

21.10. Find the Laplace transform of f(x) = 3 + 2x°.

Using Property 21.1 with the results of Problems 21.4 and 21.5, or alternatively, entries 1 and 3 (n=3) of
Appendix A, we have

F(s) = L3 +2x°} = 3L} + 2%}
{32
N N N N

21.11. Find the Laplace transform of f(x) = 5 sin 3x — 17¢ >*.

Using Property 21.1 with the results of Problems 21.6 (a =—2) and 21.7 (a = 3), or alternatively, entries 7 and
8 of Appendix A, we have

F(s)=%{5sin3x —17¢ >} = 5F{sin3x} — 17L{ >}

=5(2 3 2]_17[ 1 ]z 215 17
s“+(3) s=(=2)] s4+9 s+2

21.12. Find the Laplace transform of f(x) = 2 sin x + 3 cos 2x.
Using Property 21.1 with entries 8 (a =1) and 9 (a =2) of Appendix A, we have

F(s)=%{2sin x + 3cos2x} = 2%{sin x} + 3%{cos2x}
1 s 2 3s
+3

:2 = +
s2+1 sS+4 $2+1 s7+4

21.13. Find the Laplace transform of f(x) = 2x> — 3x + 4.
Using Property 21.1 repeatedly with entries 1, 2 and 3 (n = 3) of Appendix A, we have

F(s) = ${2x% = 3x + 4} = 2P{x*} — 38{x} + 4 {1}

2 1 1) 4 3 4
2| S -3 |+4] - == -2+ 2
(S3) [Szj (S) S3 S2 N

21.14. Find ${xe*}.

This problem can be done three ways.
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(a) Using entry 14 of Appendix A with n =2 and a =4, we have directly that

1
Plxety=———

{xe™} a4y
(b) Set f(x) = x. Using Property 21.2 with a =4 and entry 2 of Appendix A, we have

L
s2

F(s)=2{f(x)}=F{x} =

and Fle x}=F(s—4)=(s_4)2

(c) Set f(x)=e*. Using Property 21.3 with n=1 and the results of Problem 21.6, or alternatively, entry 7 of
Appendix A with a =4, we find that

F(s)= H{f (1)} = He"p=—
s—4
df 1 1
d 4x = — / = - — = —
an Horey==F ds (s -4 } (s—4)

21.15. Find ${e™* sin 5x}.

This problem can be done two ways.

(a) Using entry 15 of Appendix A with b =—-2 and a =5, we have directly that

5 _ 5
[s—(=2)F +(5)? (s+2)*+25

Pl sin5x}=

(b) Set f(x) = sin 5x. Using Property 21.2 with a = -2 and the results of Problem 21.7, or alternatively, entry 8 of
Appendix A with a =5, we have

5
F(s)= = i =
(8)=L{f (x)}=FL{sin5x} EyTT
Lo _ (o= _ 5
and Fle " sin5x}=F(s—(-2)=F(s+2) 7@ 205

21.16. Find ${xcos/7x}.

This problem can be done two ways.

(a) Using entry 13 of Appendix A with ag= J7 , we have directly that

52 —(J7) _ -7
[+ W7 P (s +7)

P{xcos J7 x}=

(b) Set f(x)= cos/7x. Using Property 21.3 with n =1 and entry 9 of Appendix A with a = \/7 , we have

Fs)=% = =5
(3) = HeosT9 S+ S+
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ds| s> +7] (5>+7)

2_
and iif{xcosﬁx}:—d[ u )—”

21.17. Find £{e™ x cos 2x}.
Let f(x) = x cos 2x. From entry 13 of Appendix A with a =2, we obtain

s’ -4
F(s)=———
() (s> +4)°
Then, from Property 21.2 with a =—1,

(s+1)* -4

$le xcos2x}=F(s+1) Tt 4L

21.18. Find {77},

Define f(x)= Jx. Then x"? =x*Jx =x° f(x) and, from entry 4 of Appendix A, we obtain

F(s)=L{f(x)}=PWx} = % Jrs

It now follows from Property 21.3 with n =3 that

ég{x,%\/;}:(_l)z%(l\/zs—wzj:%ﬁs-wz
s

2 1

which agrees with entry 6 of Appendix A for n=4.

21.19. Find gg{sm 3"}.
X

Taking f(x) = sin 3x, we find from entry 8 of Appendix A with a =3 that

3
2 +9

F(s)= or F(t)=

s+
Then, using Property 21.4, we obtain

${51n3x}:r 3 d = lim R i

5 dt
X ' +9 Reds 1740

R

. t
=lim arctan —
R—e0

s

R—eco

. R s
=lim| arctan — — arctan —
3 3

T s
=— —arctan —
2 3

21.20. Find 35{]: sinh 27 dt}.

Taking f(#) = sinh 2¢, we have f(x) = sinh 2x. It now follows from entry 10 of Appendix A with a =2 that
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F(s) = 2/(s*> — 4), and then, from Property 21.5 that

a(g{j(] sinh 2¢ dt}—s[sz 2 ]—s(sz_4)

21.21. Prove that if fix + @) =— f(x), then

e f(x)dx

°(B{f(x)}:joH_g_ﬂ,: @)

Since

Ja+20) =fl(x + 0) + 0] =~ f(x + @) =~ [~ f()] = f(x)

f(x) is periodic with period 2@. Then, using Property 21.6 with @ replaced by 2®, we have

20)e"”f(x)dx 0)e’”f(x) dx + M e f(x)dx
g{f(x)}: J.O 1- 872(03' = J.O 1 :]2.[:)x

—e

Substituting y = x — @ into the second integral, we find that

.[:w e f(x)dx = J.:) ey toydy=e” .[aw ¢ [=/Oldy
== Jom e f(y)dy

The last integral, upon changing the dummy variable of integration back to x, equals
_ s b — X
e e flx)ax

a- e*“”)jo"’ e F(x)dx

Thus, F{f ()= —
1—e ™
- e*“”)j:e*“ Fodx _[:ue F(x)dx
T (—e™)(1+e®)  1+e®
fix)
A

3 5

-1¢- L—4 —e —e —e

Fig. 21-2
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21.22. Find £{f(x)} for the square wave shown in Fig. 21-2.

This problem can be done two ways.

(@)

(b)

Note that f(x) is periodic with period @ =2, and in the interval 0 < x <2 it can be defined analytically by

F) = 1 0<x<1
P01 1<xs2
From Eq. (21.8), we have
2
e ™ f(x)dx
55{1‘()6)}:‘[07

l—e™

j; e ) dr = [ e (Ddx + jf e (= 1)

= 1(52* —2e +1)= 1(5“ -1)°
N s

Since

it follows that

(-1 d-e*)Y  1-e
s—e) sd—e?)1+e™) s(l+e™)

es/Z 1_e—s es/2 _6—5/2 1 s
= 2 el 5/2 Y =—tanh
e s(l+e™)| s +e''") s 2

The square wave f(x) also satisfies the equation f(x + 1) = — f(x). Thus, using (/) of Problem 21.21 with o =1,
we obtain

F(s)=

1 1
e f(x)dx e " (I)dx
Hf(x)}= IO —= '[0 —
l+e l+e
_ 1/s)(1—=e) _ ltanhi
1+e™ s 2
S(x)

A

T 2 3n 4n S5m 6m  Tnm

Fig. 21-3
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21.23. Find the Laplace transform of the function graphed in Fig. 21-3.

Note that f(x) is periodic with period @ = 27, and in the interval 0 < x < 27 it can be defined analytically by

X 0<x<rm

2 —x m<x<2mw

f(x)={

From Eq. (21.8), we have

JM e f(x)dx
PPy =

. 2 ) 4 2
Since JO e f(x)dx = JO e xdx+ JO e (2m — x)dx

1 1 :
— 72(6727[.‘ _ ze—m + 1) — T(efm _ 1)2
N N

it follows that

A/ (e ™ -1)? _ A/sH(Ee™ -1)?

19 =
{f(x)} l_e—Zﬂ: (l_e—m)(l_’_e—M)
STEEAR
s“\1+e s 2

21.24. Find SB{e‘”x J‘Jle—M sin 3¢ dt}.
t

Using Eq. (21.4) with a = — 4 on the results of Problem 21.19, we obtain

if{le'“ sin 3x} =7 _arctan > 4
X 2

It now follows from Eq. (21.7) that

ii’{rlew sin3¢ dt} =T lalrctan s+4
01 2

and then from Property 21.3 withn =1,

% meleW sin3¢ dt}:iz—izarctans+4 + 3 -
o ¢ 2s° s 3 s[O+(s+4)7]

Finally, using Eq. (27.4) with a = 4, we conclude that the required transform is

T 1 K 3

——— ———arctan —_—
2s—=4) (s—-4) 3 (=D +9)

21.25. Find the Laplace transforms at (@) 7, (b) e“, and (c) sin at, where a denotes a constant.

Using entries 2, 7, and 8 of Appendix A with x replaced by 7, we find the Laplace transforms to be,
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respectively,

a

iz b)) F{"}= 1 (¢) P{sinat}=

N s—a Sz+d

(@) Hr= 5
21.26. Find the Laplace transforms of (a) 62, (b) cos a8, (c) €”% sin a@, where a and b denote constants.

Using entries 3 (with n = 3), 9, and 15 of Appendix A with x replaced by 6, we find the Laplace transforms to
be, respectively.

s a

(s—=b)Y +a’

(@) 513{92}:% (b) F{cosab}= . () P{”sinad}=
-

s +a

Supplementary Problems

In Problems 21.27 and 21.42, find the Laplace transforms of the given function using Eq. (21.1).

21.27. f(x)=3 21.28. f(x)=+/5
21.29. f(x)=e* 21.30. f(x)=e &
21.31. f(x)=x 21.32. f(x)=-8x
21.33. f(x)=cos 3x 21.34. f(x)=cos 4x
21.35. f(x) = cos bx, where b denotes a constant 21.36. f(x)=xe &
21.37. f(x) = xe®*, where b denotes a constant 21.38. f(x)=x>
1 0<x<1
<x< .
21.39. f(x)= {x Osxs<2 21.40. f(x)=1¢' l<x<4
2 x>2 0 x>4
21.41. f(x) in Fig. 21-4 21.42. f(x) in Fig. 21-5

In Problems 21.43 and 21.76, use Appendix A and the Properties 21.1 through 21.6, where appropriate, to find the Laplace
transforms of the given functions.

Jix)
A

._.
(S}
JSCY) SR
~
W

Fig. 21-4
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21.43.

21.45.

21.47.

21.49.

21.51.

21.53.
21.55.
21.57.
21.59.
21.61.
21.63.
21.65.
21.67.
21.69.

21.71.

21.73.

21.75.

THE LAPLACE TRANSFORM
fix)
A
6 -
5 -
4 -
|
| |
3 |
|
2 F |
|
1E l
|
| | | | | | |
1 2 3 4 5 6 7
Fig. 21-5
f@=x 21.44. f(x) = x cos 3x
1
X =xe 2146, f(x)=—
J() f T
1 —X
fn=3e r 21.48. f(x)=5¢"B
£(x) =2sin*+/3x 21.50. f(x) =8¢
F(x)= 3sin% 2152, f(x)=—cos\/19x
-2/
fx)=- VX 21.54. f(x) = e sin 2x
f(x) =€ sin 2x 21.56. f(x)=e*cos 2x
f(x) =e* cos 2x 21.58. f(x)=¢> cos 5x
fx)=e"x 21.60. f(x)=e"Vx
f(x) = e * sin’x 21.62. x> +3cos 2x
5¢% + 7e 21.64. f(x)=2+3x
f(x)=3—4x2 21.66. f(x)=2x+5 sin 3x
f(x) =2 cos 3x —sin 3x 21.68. 2x% cosh x
2x2 ¢~ * cosh x 21.70. x? sin 4x
Jxe 21.72. j( fz sinh ¢ dr
j( :23’ costdt 21.74. f(x)in Fig. 21-6
f(x) in Fig. 21-7 21.76. f(x)in Fig. 21-8

[CHAP. 21



CHAP. 21]

THE LAPLACE TRANSFORM 223

Six)
A
lo— & =
oy
1 2 3 4 5 6 7
Fig. 21-6
fix)
A
B | | |
I I I I
—‘ x
1 2 3 4 5 6 7
Fig. 21-7
fix)
1
\ \ | \
I I I
| | | | ;x
le | | |

Fig. 21-8



Inverse Laplace
Transforms

DEFINITION

An inverse Laplace transform of F(s), designated by $Y{F(s)}, is another function f(x) having the prop-
erty that £{ f(x)} = F(s). This presumes that the independent variable of interest is x. If the independent vari-
able of interest is ¢ instead, then an inverse Laplace transform of F(s) if () where L{f1)} = F(s).

The simplest technique for identifying inverse Laplace transforms is to recognize them, either from mem-
ory or from a table such as Appendix A (see Problems 22.1 through 22.3). If F(s) is not in a recognizable form,
then occasionally it can be transformed into such a form by algebraic manipulation. Observe from Appendix A
that almost all Laplace transforms are quotients. The recommended procedure is to first convert the denominator
to a form that appears in Appendix A and then the numerator.

MANIPULATING DENOMINATORS

The method of completing the square converts a quadratic polynomial into the sum of squares, a form that
appears in many of the denominators in Appendix A. In particular, for the quadratic as”+ bs + ¢, where a, b, and
¢ denote constants,

b
as2+bs+c=a(s2+—s +c
a

, b b Y b
=als"+—s+|— | |+|c——
a 2a 4a
b Y b
=a(s+—j +[c——]
2a 4a

=a(s+ k)’ + h?

where k= b/2a and h=+/c —(b* / 4a). (See Problems 22.8 through 22.10.)

The method of partial fractions transforms a function of the form a(s)/b(s), where both a(s) and b(s) are
polynomials in s, into the sum of other fractions such that the denominator of each new fraction is either a first-
degree or a quadratic polynomial raised to some power. The method requires only that (1) the degree of a(s) be
less than the degree of b(s) (if this is not the case, first perform long division, and consider the remainder term)
and (2) b(s) be factored into the product of distinct linear and quadratic polynomials raised to various powers.

224
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The method is carried out as follows. To each factor of b(s) of the form (s — a)™, assign a sum of m frac-
tions, of the form
A A
L4 LZ 4t m
s—a (s—a) (s—a)"

To each factor of b(s) of the form (s> + bs + ¢)?, assign a sum of p fractions, of the form

B;s+C, N B,s+C, - B,s+C,
S 4+bs+c (s*+bs+c) (s> +bs+c)
Here A;, B;, and C, (i=1,2,...,m; j, k=1, 2,..., p) are constants which still must be determined.
Set the original fraction a(s)/b(s) equal to the sum of the new fractions just constructed. Clear the resulting
equation of fractions and then equate coefficients of like powers of s, thereby obtaining a set of simultaneous

linear equations in the unknown constants A;, B, and Cy. Finally, solve these equations for A;, B, and C;. (See
Problems 22.11 through 22.14.)

MANIPULATING NUMERATORS

A factor s —a in the numerators may be written in terms of the factor s — b, where both a and b are
constants, through the identity s — a = (s — b) + (b — a). The multiplicative constant a in the numerator may be
written explicitly in terms of the multiplicative constant b through the identity

a
a-;(b)

Both identities generate recognizable inverse Laplace transforms when they are combined with:

Property 22.1. (Linearity). If the inverse Laplace transforms of two functions F(s) and G(s) exist, then
for any constants ¢; and c,,

LHeiF(s) + 0G(9)} = e £THFO)} + o.L7H{G(9)}

(See Problems 22.4 through 22.7.)

Solved Problems

. L1
22.1. Find & l{—}.
s
Here F(s)=1/s. From either Problem 21.4 or entry 1 of Appendix A, we have {1} = 1/s. Therefore,
P 1sy=1.

22.2. Find 35“{ ! }

s—8

From either Problem 21.6 or entry 7 of Appendix A with a = 8, we have

g{eSX}=%

s —

Therefore, £ ! =M
s—8
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22.3. Find 581{ - }
s +6

From entry 9 of Appendix A with a = J6 , we have

Preosfort=— 2 -5
{eos 6z} s +(6) s +6
Therefore, %! {25} = cos/6x
sT+6

224. Find ¢1]_ > |
(s> +1)

The given function is similar in form to entry 12 of Appendix A. The denominators become identical if we take
a = 1. Manipulating the numerator of the given function and using Property 22.1, we obtain

il{ 255 2}=§£1{ %(2s)2}=5$1{ 22s z}zsxsinx
=+ G+’ 20 ("+D7] 2

1
22.5. Find &' {—}
Js

The given function is similar in form to entry 5 of Appendix A. Their denominators are identical; manipulating
the numerator of the given function and using Property 22.1, we obtain

-l (-

NN

22.6. Find i S+ L
s2=9

The denominator of this function is identical to the denominator of entries 10 and 11 of Appendix A with a = 3.
Using Property 22.1 followed by a simple algebraic manipulation, we obtain

55-1{52+1}:§£“{ zs }+§£“{ 21 }zcosh3x+§£']{l[232]}
70 -9 s2—=9 3 S—(3)

_3
§% — (3)2

= cosh 3x+;§fl{ }: cosh 3x+%sinh 3x

(s—=2)+9

The denominator of this function is identical to the denominators of entries 15 and 16 of Appendix A witha =3
and b = 2. Both the given function and entry 16 have the variable s in their numerators, so they are the most closely
matched. Manipulating the numerator of the given function and using Property 22.1, we obtain

e s — g (s=2)+2 — g s—2 Lo 2
(s—27+9] (s—2°+9] (s—2)*+9 (s—2)*+9
=e*cos3x+ &L {22} =e*cos3x+ &L {2[32]}
(s=2)"+9 3l (s=2)"+9

=e* cos3x + g.fﬁ" ;2 =e* cos 3x + ge“ sin 3x
3 (s—2)"+9 3

22.7. Find ¥ {;}
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22.8. Find ¥ 2; .
s —=2s+9
No function of this form appears in Appendix A. But, by completing the square, we obtain

2= 25+9=(s> =25+ 1)+ (O —1)=(s—1)* + (V8)

1 1 1 V8
Hence, > = 5 ==l
s =25+9  (s—1P+ (8 \V8)(s—1)+(/8)
Then, using Property 22.1 and entry 15 of Appendix A with a = V8 and b= 1, we find that
8 1
3 = —¢"sin/8x

ol
NG G-12+W8)Y [ V8

¢! -
s”—254+9

. +4
229. Find £~ 1
s*+4s+38
No function of this form appears in Appendix A. Completing the square in the denominator, we have
S +4s+8=(s"+4s+4)+ (8 —4)=(s +2)* + (2)°
s+4 s+4
S +4s+8 (s+2)+(Q2)

Hence,
This expression also is not found in Appendix A. However, if we rewrite the numerator as s + 4 = (s + 2) + 2 and

then decompose the fraction, we have
s+4 s+2 2

s2+4s+8:(s+2)2+(2)2 +(S+2)2+(2)2

Then, from entries 15 and 16 of Appendix A,

1{2s+4 }:gl{ Stz 2}+§£1{ 3 2}
S +4s+8 (s+2) +(2) (s+2) +(2)

=e 2 cos 2x + ¢ *sin 2x

. +2
22.10. Find $'{ "= 1.
s-—=3s+4
No function of this form appears in Appendix A. Completing the square in the denominator, we obtain
2 2
sz—3s+4=(sz—3s+2]+(4—gj=( —g) + ﬂ
4 4 2 2
5o that 2s+2 _ s+2 i
s =3s+4 3V (V7
s——| +| —
(=) 5
We now rewrite the numerator as
3 3 7
PTETITRTY (S 2) \/_[ 2 ]
s 3 7
+2 ) B3
so that - s = 2 _+7 2 i
s*—3s+4 3\? ﬁ 3)\? ﬁ
s—=—| +| — s—= —
( 2) 2 ( 2] 2
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22.11.

22.12.
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Then,
3 V1
s— 2 NI
Pt s+2 = ! 2 + \/75(8—1 2
s°—3s+4 3V (J7Y 3V (J7Y
s==| +|— s==| +|—
SSEE SSEE
=" cosﬂx +72% sinﬂx
2 2
Use partial function to decompose

(s+D)(s>+1)

To the linear factor s + 1, we associate the fraction A/(s + 1); whereas to the quadratic factor 2+ 1, we asso-
ciate the fraction (Bs + C)/(s*> + 1). We then set

1 _ A Bs+C (])
(+D(*+D) s+1 s2+1
Clearing fractions, we obtain

1=AG*+ 1)+ (Bs+C) (s+1) )
or s(0)+5(0)+ 1 =s%(A+B)+s(B+C) +(A+C)

Equating coefficients of like powers of s, we conclude that A+ B=0, B+ C=0, and A+ C = 1. The solution of
this set of equations is A = iz B= —lz, and C = l2 Substituting these values into (/), we obtain the partial-fractions
decomposition

L b b
+DE*+D) s+1 s7+1

The following is an alternative procedure for finding the constants A, B, and C in (/). Since (2) must hold for
all s, it must in particular hold s = —1. Substituting this value into (2), we immediately find A = lz Equation (2) must
also hold for s = 0. Substituting this value along with A = lzinto (2), we obtain C = % Finally, substituting any other
value of s into (2), we find that B= —1

-
1

Use partial fractions to decompose — 5 .
(s"+1D(s" +4s5s+8)

To the quadratic factors s+ 1 and s>+4s+8, we associate the fractions (As+ B)/(s>+ 1) and
(Cs + D)/(s* + 4s + 8). We set

1 =As+B Cs+D
(2+D(s* +45+8) s*+1 s*+4s5+8

(H

and clear fractions to obtain
1=(As+B)(s®>+ 45+ 8) + (Cs + D)(s* + 1)
or 5(0) +5%(0) +s(0) + 1 =53 (A + C) + sX4A + B+ D) + s(8A + 4B + C) + (8B + D)

Equating coefficients of like powers of s, we obtain A+ C=0,4A+B+D=0,84+4B+C=0,and 8B+ D =1.
The solution of this set of equation is
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22.13.

22.14.

22.15.
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4 7 4 9
+ +

B AP A
L __ 65 65, 65" 65

Therefore, > > = > 2
(s"+D(s"+4s+8) s +1 s"+4s+8
. . +

Use partial fractions to decompose L

(s—=2)(s+1)
To the linear factors s — 2 and s + 1, we associate respectively the fractions A/(s — 2) and B/(s + 1). We set
s+3 _ A B

(=-2)(s+1) s-2 s+1

and, upon clearing fractions, obtain
s+3=A(s+1)+B(s—2) N

To find A and B, we use the alternative procedure suggested in Problem 22.11. Substituting s = —1 and then s =2
into (), we immediately obtain A =5/3 and B = —2/3. Thus,

s+3  _5/3 2/3
(s-2)(s+1D) s-2 s+1

Use partial fractions to decompose ——————.
s(s"—s5—-2)

Note that s*> — s — 2 factors into (s — 2)(s + 1). To the factor s° = (s — 0)%, which is a linear polynomial raised to
the third power, we associate the sum A,/s + A,/s> + Ay/s>. To the linear factors (s — 2) and (s + 1), we associate the
fractions B/(s —2) and C/(s + 1). Then

B
+
s—2

C
s+1

or, clearing fractions,
8=AIS(s=2)(s+ 1)+ Ays(s —2)(s + 1) + A3(s = 2)(s + 1) + Bs*(s + 1) + Cs(s = 2)

Letting s =—1, 2, and 0, consecutively, we obtain, respectively, C = 8/3, B=1/3, and A; =—4. Then choosing s =1
and s = -2, and simplifying, we obtain the equations A; + A, =—1 and 2A, — A, = -8, which have the solutions
Ay =-3 and A, =2. Note that any other two values for s (not —1, 2, or 0) will also do; the resulting equations may
be different, but the solution will be identical. Finally,

1/3
s—2

2 3

8/3
+
s+1

-z 2_4
sS(sP=s=2) s 2§

. _ s+3
Find $'4 ————1.
(s=2)(s+1)
No function of this form appears in Appendix A. Using the results of Problem 22.13 and Property 22.1, we
obtain
e s+3 =§$’1 1 _ggg* 1
(s=2)(s+1)| 3 s—2 3 s+1
— 562.\' _ ze—x

3 3
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8
. .SB_I
22.16. Find {s3 (sz s 2)}

No function of this form appears in Appendix A. Using the results of Problem 22.14 and Property 22.1, we obtain
70 I N G T2V LY 373 L
s(s"—s=2) s s
-29 % Ll LU 8y 1
s 3 s—2 3 s+1

=-3+2x-2x" + lez" + §e”‘
3 3

1
. gfl
22.17. Find {—(s TG+ 1)}.

Using the result of Problem 22.11, and noting that

—Is+1 1 K 1 1
= —_ + —
s +1 20 s* +1 20 s* +1

we find that

gl L A Llgl L1 L1 s 1 1g) 1
s+D(s"+1) 2 s+1 2 s +1 2 s +1
1, 1 1.
=—¢ " ——cosx+—sinx
2 2 2
22.18. Find £ !
SO (> +1)(s> +4s+8) |
From Problem 22.12, we have
4 7 4 9
1 -5t — —s+—
-1 1) 65 650, 1) 65 65
(s> +1)(s* +45+8) s +1 s +4s5+8

The first term can be evaluated easily if we note that

4 7
65 65 4 s 7)1
— 2.1 | Zzl=2 Rl Byl e
sT+1 65)s"+1 \65)s +1
To evaluate the second inverse transforms, we must first complete the square in the denominator,
s> +4s+8 = (s +2)?+ (2)% and then note that

4 9

' tes 4 s+2 ) [ o
sSS+4s5+8 65| (s+2)7 +(2) 130| (s +2)* + (2)°
Therefore,

(750 PR S V. 5] S G
P+ D(s* +4s+8) 65 sS+1) 65 s2+1

4 1{ s+2 } 1 ]{ 2 }
+— ——t— T ——
65 (s+22+2)°*] 130 (s+2)72+(2)7

4 7 . 4 . 1 .
=——CosSXx+—sinx+—e " cos2x+—e " sin2x
65 65 65 130
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22.19. Find & 2; .
s(s” +4)

By the method of partial fractions, we obtain

114 (—1/4)s
s(s*+4) s s +4
Thus, @ % :lif"{l}—li’l 2S :l—lcosbc
s+ a7 5] a7 |9 +4[ 2 4

Supplementary Problems

Find the inverse Laplace transforms, as a function of x, of the following functions:

1 2
2220. — 2221. =
S S
22.22. % 22.23. i}
A\ S
1 1
2224, — 22.25.
s s+2
026 2 027, 12
s—2 35s+9
1 1
22.28. 2229, ——
2s—3 (s =2)
12 3s?
2230, - 231, 5
(s +5)°* (s> +1)°
22.32 s 22.33 !
(st +3) TS +4
23 2 2235, ——
(s—2+9 (s+D°+5
25 +1 1
22.36. ———— 2237 ——
(s—1D*+7 27 +1
238, 2239, 213
s —2s4+2 s +2s+5
240, — 24, 1
s> —s+17/4 s*+3s+5
257 1
22.42. 22.43.

(s=D(s* +1) 7 -1

231
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22.44.

22.46.

22.48.

22.50.

22.52.

INVERSE LAPLACE TRANSFORMS

-z
S+ D(s—-1)7°

—s+6

3
N

12 +15Vs
4
S

2(s=1)
s2—s+1

1 1/2

2s-DE —s—1) (- -s-1)

22.45.

22.47.

22.49.

22.51.

22.53.

25 —13
s(s> —4s +13)

5
(s*+9)°

s _ (1/2)s

257 +4s+5/2 S +2s+5/4

[CHAP. 22



Convolutions and
the Unit Step Function

CONVOLUTIONS

The convolution of two functions f(x) and g(x) is
FOO# g0 = fDg(x =t 23.1)
Theorem 23.1.  f(x) * g (x) = g (x) * f(x).
Theorem 23.2. (Convolution theorem).  If ${f(x)} = F(s) and £{g (x)} = G (s), then

L) # g0} = LLf ()} E{g ()} = F(5)G(s)

It follows directly from these two theorems that

LHF($) G(9)} = f(x0) % g (1) = g (x) * f(x) (23.2)

If one of the two convolutions in Eq. (23.2) is simpler to calculate, then that convolution is chosen when
determining the inverse Laplace transform of a product.

UNIT STEP FUNCTION

The unit step function u(x) is defined as

) 0 x<0
u(x)=
1 x>0

As an immediate consequence of the definition, we have for any number c,

( ) 0 x<c
ulx—c)=
1 x=c¢

The graph of u(x — c) is given if Fig. 23-1.

233
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u(x—c)

|1

Fig. 23-1
Theorem 23.3. S{u(x—c)}= le‘”"',
s

TRANSLATIONS

Given a function f(x) defined for x > 0, the function

{ 0 x<c
ux—-o)f(x—c)=

fx—=c) x2c

[CHAP. 23

represents a shift, or translation, of the function f(x) by ¢ units in the positive x-direction. For example, if f(x)

is given graphically by Fig. 23-2, then u (x — ¢) f(x — ¢) is given graphically by Fig. 23-3.

fx) u(x—c)f(x—c)
A A

/_\/

1
1
|

c

TN—

Fig. 23-2 Fig. 23-3

Theorem 23.4. 1f F(s) = £{f(x)}, then

Flulx - o) f(x—c)} = F(s)

Conversely,

R p— { 0 x<c
FHe F(s)y=u(x—c)f(x—¢c)=

fx—c¢) x=2c

>
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Solved problems

23.1. Find f(x) * g (x) when f(x) = ¢** and g (x) = €>*.
Here (1) =¢*, g(x — £) = *“ ™, and

F(x)# g(x) = J'OX X0 gy = -[:e.%ehe—zzdl

x -
=62x'[0 etdt :eZX[et];‘;(); =€2X(€X _ l) :e3x _eZ,x

23.2. Find g(x) = f(x) for the two functions in problem 23.1 and verify Theorem 23.1.
With f(x — ) = 379 and g(r) = €%,

g(x) * f(x) :J:g(t)f(x —1dt :J0x621€3(x71)dt

x -
=e™ J‘O e'dt=e"[-e"]2;
:eSX(_e—x + 1) :eS)c _ eZ):

which, from Problem 23.1 equals f(x) * g(x).

23.3. Find f(x) * g(x) when f(x) = x and g(x) = x°.
Here f(f) =t and g(x — 1) = (x — 1)> = x> — 2xt + £*. Thus,

f(x)*g(x)= J:t()c2 —2xt +1%)dt

2 _ ¥ 2 * 3
=X Ltdt 2xjotdt+_[0tdt
2 3 4
SR, PV A

2 3 4 12

23.4. Find &' R
s"—5s+6

} by convolutions.

Note that
1 1 1 1

S —55+6 (s—3)(s5-2) s-3s5-2

Defining F(s) = 1/(s — 3) and G(s) = 1/(s — 2), we have from Appendix A that f(x) = ¢** and g(x) = €**. It follows from
Eq. (23.2) and the results of Problem 23.1 that

g_l{sz_sls%}Zf(x)*g(x):ezx o o g g

s2 -1

23.5. Find EB_I{ } by convolutions.

e | e el e
s> —1 (s—D(s+1) (s=1)(s+1)

Note that
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Defining F(s) = 1/(s — 1) and G(s) = 1/(s + 1), we have from Appendix A that f(x) = ¢* and g(x) = ™. It follows from
Eq. (23.2) that

¢! {261} =6SL{F(5)G(s)} = 6¢" * e
s

X X
= 6J’0 e dr=6e™ J; e dt

2x
=6e"[e 1}zﬁ%e" —3e™
2

1

23.6. Find ££_] —
s(s”+4)

} by convolutions.

Note that
1 1 1

(7 +4) ss+4

Defining F(s) = 1/s and G(s) = 1/(s> + 4), we have from Appendix A that f(x) = 1 and g(x) = 1sin2x . It now follows
from Eq. (23.2) that

se'l{zl} =L HF()G(s)} = g(x) * [ (x)
s(s*+4)

= jo s f(x—t)dt= jo [;sin 2t j(l)dt

1
=—(1—-cos2x
4( )

See also Problem 22.19.

1
(s=1

23.7. Find 581{ } by convolutions.

If we define F'(s) = G(s) = 1/(s — 1), then f(x) = g(x) = e* and

fff‘{ : 2}=$'{F(s)G(s)}=f(x)*g(x)
-

= J:f(t)g(x —f)dt = J:erex_'dt
=eXJ':(1)d,:xex

23.8. Use the definition of the Laplace transform to find £{u(x — ¢)} and thereby prove Theorem 23.3.
It follows directly from Eq. (27.7) that

c

Plu(x —c)}= J.: e u(x—c)dx = JO e (0)dx + r e () dx

< sx : R : eil‘R —e
:J.e dx=1im | e dx=1lim
c

R—owdc R—oo -

= 16’“ (if s > 0)
s
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23.9. Graph the function f(x) = u(x — 2) — u(x — 3).
Note that
0 x<2 0 x<3
u(x—-2)= and u(x-3)=
1 1 x=3
0-0=0 x<2
Thus, f)=u(x-2)—u(x-3)=41-0=1 2<x<3
1-1=0 x23
the graph of which is given in Fig. 23-4.
23.10. Graph the function f(x) =5 — Su(x — 8) for x > 0.
Note that
0 x<8
Su(x —8) =
5 x=8
5 x<8
Thus =5-5 -8)=
FACY) u(x —8) {0 >8
The graph of this function when x > 0 is given in Fig. 23-5.
u(x—2)—u(x-3) S
A A
6 -
5 1
4+ |
3+ |
1+ — 2+ |
| ! 1+ 1
! I S ! x [ 1 I > x
1 2 3 4 5 2 4 6 8 10 12
Fig. 23-4 Fig. 23-5

23.11. Use the unit step function to give an analytic representation of the function f(x) graphed in Fig. 23-6.

Note that f(x) is the function g(x)=x, x = 0, translated four units in the positive x-direction. Thus,

fO)=ux-—4gx—-4)=x—-4Dulx —4).

23.12. Use the unit step function to give an analytic description of the function g(x) graphed on the interval
(0, ) in Fig. 23-7. If on the subinterval (0, a) the graph is identical to Fig. 23-2.

Let f(x) represent the function graphed in Fig. 23-2. Then g(x) = f(x)[1 — u(x — a)].
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f)

8(x)

Slope=1 /\_/\
.
a

2 3 4 5 6 > x

Fig. 23-6 Fig. 23-7

23.13. Find £{g(x)} if g(x) 0 x<d
.13. Fin i = .
s st (x—4)°" x=24

If we define f(x) = x°, then g(x) can be given compactly as g(x) = u(x — 4) f(x — 4) = u(x — 4)(x — 4)°. Then,
noting that £{ f(x)} = F(s) = 2/s* and using Theorem 23.4, we conclude that

Ple(x)y=Pu(x -4 (x—4)Y}=e™ %

N

. . 0 x<4
23.14. Find £{g(x)} if g(x) ={ R )
x° x=4

We first determine a function f(x) such that f(x — 4) = x>. Once this has been done, g (x) can be written as
g (x) = u(x — 4)f(x — 4) and Theorem 23.4 can be applied. Now, f(x — 4) = x? only if

) =f(x+4-4)=@x+4)>=x>+8x+ 16
. ) 2 8 16
Since (0} =L+ 8L} +16F {1} = <+ — + —
S N N

it follows that

ég{g(x)}=§£{u(x—4)f(x_4)}:e4s(2 8 16]

3 2
s s

23.15. Prove Theorem 23.1.

Making the substitution 7= x — ¢ in the right-hand side of Eq. (23.1), we have

F@g =] gt -ndr =] f(x-D)g()-d)

~[e@f-ndr= g fx-)dr
= () * f(2)
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23.16. Prove that f(x) = [g(x) + 2 (x)] = f(x) = g(x) + f(x) = h(x).

FO)#[8(x) + M= [ FOLg(x =)+ h(x = 0)]dr
= [ g =0+ fohtx—nldr

= jo F(Og(x—t)dt + j; FO(x - t)dt
= f(x) * g(x) + f(x) * h(x)

23.17. The following equation is called an integral equation of convolution type.

Assuming that the Laplace Transform for y(x) exists, we solve this equation, and the next two examples,
for y(x).

y(x)=x+ jy(t) sin(x —1)dt

We see that this integral equation can be written as y(x) = x + y(x) = sin x. Taking the Laplace transform & of
both sides and applying Theorem 23.2, we have

. 1 1
Sy} = L)+ LY Lsinx} = = + £{y} el
Solving for £{y} yields

2
g{y}:s +1

s
N

3
This implies that y(x) = x + %, which is indeed the solution, as can be verified by direct substitution as follows:

3

x 3
x+_[[t+[]sin(x—t)dt=x+x=y(x)
o 6 6

23.18. Use Laplace Transforms to solve the integral equation of convolution type:
y(x)=2- J‘y(t)e'“” dt
0

Here we have y(x) =2 — y(x) * e*. Continuing as in Problem 23.17, we find that

2s

N

2

2

£y =

which gives y(x) =2 — 2x as the desired solution.

23.19. Use Laplace Transforms to solve the integral equation of convolution type:

y(x)=x" + j4y(t) dt
0

Noting that y(x) = x> + 4 # y(x), we find that £{y} =

_6 which gives y(x) = i(—1 +e* —4x —8x%) as
the solution. 4 32

s (s—
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Supplementary problems

23.20. Find x = x. 23.21. Find 2 = x.
23.22. Find 4x ™. 23.23. Find ¥ * e >,
23.24. Find x = €. 23.25. Find x s xe ™.
23.26. Find 3 = sin 2x. 23.27. Find x = cos x.

In Problems 23.28 through 23.35, use convolutions to find the inverse Laplace transforms of the given functions.

23.28. _ 23.29. L
(s—D(s—-2) ($)(s)

2330, —2 23.31. 2;
s(s+1) s”+3s—40

23.32. %
s (s*+3)

23.33. % with F(s) = 1/s> and G(s) = s/(s> + 4). Compare with Problem 23.6.
s(s”+4)

23.34. ZL 23.35. %
s(s”+9) s (s°+9)

23.36. Graph f(x) = 2u(x — 2) — u(x — 4).
23.37. Graph f(x) = u(x — 2) — 2u(x — 3) + u(x — 4).

23.38. Use the unit step function to give an analytic representation for the function graphed in Fig. 23-8.

!

> X
Fig. 23-8
23.39. Graph f(x) = u(x — m) cos 2(x — m). 23.40. Graph f(x)= %(x D u(x-1).
In Problems 23.41 through 23.48, find ${g(x)} for the given functions.
0 x<1 0 x<3
2341. g(x)=19 . 2342, g(x)=
sin(x—1) x=1 x—3 x23
2343, gx={" *3 2344 gw= 0 3
43. X) = 44. X) =
& x x=23 & x+1 x2>3
2345, o= 0. *°° 2346, gw={" *°
45. Xx)= .46. x) =
& e’ x5 & e' x25
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0 x<2
e x22

0 x<2

2347, g(x) ={ Pal xn2

23.48. g(x) ={

In Problems 23.49 through 23.55, determine the inverse Laplace transforms of the given functions.

2349, o> 2350 L o

s +4 s +4
—~TTs 2 25

2351 ——¢ 23.52. e
s*+4 s=3

2353, > o 2354, Lo
s+3 s

2355, Lo

23.56. Prove that for any constant &, [kf(x)] * g(x) = k[ f(x) * g(x)].

In Problems 23.57 through 23.60, assume that the Laplace Transform for y(x) exists. Solve for y(x).

23.57. y(x)=x"+ j(x —1)y(t)dt
0
23.58. y(x)=¢" + j y(t)dt
0
23.59. y(x)=1+ j(t —x)y(r)dt
0

23.60. y(x)= j(t —x)y(t)dt
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Solutions of

Linear Differential
Equations with
Constant Coefficients
by Laplace Transforms

LAPLACE TRANSFORMS OF DERIVATIVES

Denote £{y(x)} by Y(s). Then under broad conditions, the Laplace transform of the nth-derivative
(n=1,2,3,...)of y(x) is

n

gg{icy} =5"Y(5) ="' )(0) =" Y(0) == 5" TP (0) = "7V (0) (24.1)

If the initial conditions on y(x) at x = 0 are given by

y(0) = ¢, YO0 =cy, ...,y D0)=c,, (24.2)

then (24.1) can be rewritten as
d"y n n-1 n-2 24 3
< o =s5"Y(s)—cys" T —es" T ——c,_,5—cC,_, (24.3)

For the special cases of n =1 and n = 2, Eq. (24.3) simplifies to
LY (0)}=sY(s)—¢, (24.4)
P (x)}=5"Y(s) —c,5 — ¢, (24.5)
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SOLUTIONS OF DIFFERENTIAL EQUATIONS

Laplace transforms are used to solve initial-value problems given by the nth-order linear differential equation
with constant coefficients

dn dnfl
n i) + n—1 nf)l)
dx dx

+m+b1ﬂ+b0y=g(x) (24.6)
dx

together with the initial conditions specified in Eq. (24.2). First, take the Laplace transform of both sides of
Eq. (24.6), thereby obtaining an algebraic equation for Y(s). Then solve for Y(s) algebraically, and finally take
inverse Laplace transforms to obtain y(x) = £~'{¥(s)}.

Unlike previous methods, where first the differential equation is solved and then the initial conditions are
applied to evaluate the arbitrary constants, the Laplace transform method solves the entire initial-value problem
in one step. There are two exceptions: when no initial conditions are specified and when the initial conditions
are not at x = 0. In these situations, ¢, through c, in Egs. (24.2) and (24.3) remain arbitrary and the solution to
differential Eq. (24.6) is found in terms of these constants. They are then evaluated separately when appropriate
subsidiary conditions are provided. (See Problems 24.11 through 24.13.)

Solved problems

24.1. Solve y’ —5y=0; y(0) = 2.
Taking the Laplace transform of both sides of this differential equation and using Property 24.4, we obtain
L'} - 5L{y} = £{0}. Then, using Eq. (24.4) with ¢,=2, we find

2

[sY(s)—2]-5Y(s)=0 fromwhich Y(s)= 5
5 —

Finally, taking the inverse Laplace transform of Y(s), we obtain

y(x) =LY (5)} = 55'1{2} = 256"{ ! } =26
s—5 s—5

24.2. Solve y’ —5y=¢>*; y(0)=0.

Taking the Laplace transform of both sides of this differential equation and using Property 24.4, we find that
LYY - 5%{y} = £{e’*}. Then, using Appendix A and Eq. (24.4) with ¢;= 0, we obtain

1 . 1
[sY(s)—0]=5Y(s)= st fromwhich Y (s)= 7@ 5

Finally, taking the inverse transform of Y(s), we obtain

—1 _ -l 1 — S5x
YX)=F¥$)}r=2 {(s 57 } xe

(see Appendix A, entry 14).
24.3. Solve y’ + y=sin x; y(0) = 1.
Taking the Laplace transform of both sides of the differential equation, we obtain

PO+ Py =Lsinx} or [sY(s)—1]+Y(s)=

sT+1



244 SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS [CHAP. 24

Solving for Y(s), we find
1 1
(s+D(Gs"+1) s+1

Y(s)

Taking the inverse Laplace transform, and using the result of Problem 22.17, we obtain

o 1 1
Y =Y ()} = {<s+1>(s2+1)}+$ {m}

1,1 1. L3 1 1.
=|—e ——COSXx+—Smx |[+e =—e ——COSXx+—SInx
20 2 2 20 2 2

24.4. Solve y” +4y=0; y(0) =2, y'(0) = 2.
Taking Laplace transforms, we have £{y”} + 4¥{y} = £{0}. Then, using Eq. (24.5) with ¢;=2 and ¢, =2,
we obtain
[s2Y(s) — 25 — 2] +4Y(s) =0
2s+2 2s 2
2 = 2 + 2
s“+4 sT+4 s +4

or Y(s)=

Finally, taking the inverse Laplace transform, we obtain

y(x)=551{Y(S)}=2§EI{ Zs }+§Bl{ 22 }=20052x+sin2x
s*+4 s°+4

24.5. Solve y"— 3y +4y=0; y(0) =1, y’(0) = 5.
Taking Laplace transforms, we obtain £{y”} — 3%{y’} + 4¥{y} = £{0}. Then, using both Eqs. (24.4) and
(24.5) with ¢y=1 and ¢; =5, we have
[s2Y(s) —s — 5] = 3[sY(s) — 1] +4Y(s) =0

s+2

or Y(§)=——
(s) s —3s+4

Finally, taking the inverse Laplace transform and using the result of Problem 22.10, we obtain

7 N
y(x) = AR cos%x + \ﬁe(m)" s1n§x

24.6. Solve y"—y —2y=4x> y(0) =1, y'(0) = 4.

Taking Laplace transforms, we have $£{y”} — £{y'} — 2%{y} = 4%{x?}. Then, using both Eqs. (24.4) and
(24.5) with ¢y=1 and ¢, =4, we obtain
8
[s°Y(s) —s —4]—[sY(s) = 1] -2Y(s) = —
s
or, upon solving for ¥{(s),
s+3 8
+
—5—2 s(s*—-s5-2)

Y(s)=
(s) =
Finally, taking the inverse Laplace transform and using the results of Problems 22.15 and 22.16, we obtain
2 1
y(x) = S o |y arax—a e Loy B
3 3 3 3
=2¢" +2¢ -2x" +2x -3

(See Problem 13.1.)
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24.7.

24.8.

24.9.

24.10.

Solve y” +4y” + 8y =sin x; y(0) = 1, y’(0) = 0.

Taking Laplace transforms, we obtain £{y”} +4%{y’} + 8%L{y} = L{sin x}. Since ¢y=1 and ¢;=0, this
becomes

[°Y(s) — s — 0] + 4[sY(s) — 1] + 8Y (s) =

s +1

Thus, Y(s)=— s+4 +— 21

s +4s+8 (s"+1)(s”" +4s5s+8)

Finally, taking the inverse Laplace transform and using the results of Problems 22.9 and 22.18, we obtain
y(x) = (e cos2x + e sin2x)

4 7 . 4 —2x 1 —2x 1
+| ——cosx+—sinx+—e " cos2x+—e "sin2x
65 65 130

65
L. 69 131 . 7 . 4
=e —C082x +——sin2x |+ —sinx ——cosx
65 130 65 65

(See Problem 13.3.)

Solve y"= 2y’ +y = f(x); y(0) = 0, y'(0) = 0.
In this equation f(x) is unspecified. Taking Laplace transforms and designating £{f(x)} by F(s), we obtain

F(s)
(s—1°

[s*Y(s) — (0)s —0] = 2[sY(s) — 0]+ Y(s) = F(s) or Y(s)=
From Appendix A, entry 14, £7'{1/(s — 1)*} = xe*. Thus, taking the inverse transform of Y(s) and using convolutions,
we conclude that

y(x) = xe' # f(x)= jﬂ te' f(x —1)dt

0 x<l1

Solve y” +y =f(x); (0) =0, y'(0) = 0 if f(x) = {2 x=>1

Note that f(x) = 2u (x — 1). Taking Laplace transforms, we obtain

[s2¥(s) — (0)s — O] + Y(s) = L{ ()} = 2L{u(x — 1)} = 2¢™/s

2
Y(s)=e " ———
or (s)=e R
Since ¢! 22 =29 {1} 24! % =2-2cosx
s(s”+1) K s +1

it follows from Theorem 23.4 that

y(x) =£_£‘{e3 }=[2—2cos(x—l)]u(x—l)

s(s* +1)

Solve y” +y" = €*; y(0) = y'(0) = y”(0) = 0.

Taking Laplace transforms, we obtain £{y”’} + £{y"} = £(¢*). Then, using Eq. (24.3) with n = 3 and Eq. (24.4),
we have

Y (s) — (0)s — (0)s — _oj= 1 - v
[s7Y(s)—(0)s” —(0)s —0]+[sY(s) - 0] 1 or Y(s) DG 1)
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Finally, using the method of partial fractions and taking the inverse transform, we obtain

1L gt 1,1 .
yx)y=LNH-=+ 2 zf 2l=—1+—e" +—cosx——sinx
s s—1 s°+1 2 2

24.11. Solve y’ =5y =0.
No initial conditions are specified. Taking the Laplace transform of both sides of the differential equation,

we obtain
LY - 5F y} = £{0}

Then, using Eq. (24.4) with cy= y(0) kept arbitrary, we have
[sY(s)—c,]1-5Y(s)=0 or Y(s)= % S
5 —

Taking the inverse Laplace transform, we find that

YO =L ()=, SB‘{ L1
s—5

24.12. Solve y"— 3y’ +2y=¢"".
No initial conditions are specified. Taking Laplace transforms, we have £{y”} — 3F{y’} + 2%{y} = L(e™), or
[s2Y(s) — sco — 1] = 3[sY(s) — co] + 2[¥(s)] = /(s + 1)

Here ¢, and ¢, must remain arbitrary, since they represent y(0) and y’(0), respectively, which are unknown. Thus,
1

Cl 2 + 2
s =3s+2 (s+1("—-3s+2)

s—3
Y(s)=¢ +
) O§* —3s+2

Using the method of partial fractions and noting that s> — 3s +2 = (s — 1)(s — 2), we obtain
1/3 }

-1 + 1 + 1/6_}_—1/2+
s—2 s—2

s+1 s-—1

2+—1}+q$1{
s—1

)=c, !
YO =6 {s—l s=2
=c,(2e" =)+ (=" + &) +| = —=e" +—e”
o )+ ( ) (6 5¢ 3

2 L + +c + LR +—e"
= Cy—C, —— |e —C, C — |e —e
0 1 2 0 1 3 6
=dye* +de” +=e"

6

where dy =2¢, —¢, =t and d, =—¢, +¢, + 3.

24.13. Solve y"— 3y’ +2y=¢"y(1)=0,y'(1)=0
The initial conditions are given at x = 1, not x = 0. Using the results of Problem 24.12, we have as the solution
to just the differential equation
; w1
y=dye' +de" +—e
6
Applying the initial conditions to this last equation, we find that d, = — %e’z and d, = %eig; hence,

y(x):_%ex—Z l 2X_3+7e
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24.14. Solve %Nzo.oszv; N(0) = 20,000.
t

This is a differential equation for the unknown function N(7) in the independent variable z. We set
N(s) = L{N(t)}. Taking Laplace transforms of the given differential equation and using (24.4) with N replacing y,
we have

[sN(s) — N(0)] = 0.05N(s)
[sN(s) —20,000] = 0.05N(s)

or, upon solving for N(s),
20,000

N(s)=
() s—0.05

Then from Appendix A, entry 7 with @ =0.05 and ¢ replacing x, we obtain

s—0.05

N@t) =% {N(s)} = 551{ 208(())05} = 20,00058'{ } =20,000¢""

Compare with (2) of Problem 7.1.

24.15. Solve % +501 =5,1(0) =0.
t

This is a differential equation for the unknown function /(7) in the independent variable 7. We set I(s) = £{I(f)}.
Taking Laplace transforms of the given differential equation and using Eq. (24.4) with I replacing y, we have

[sI(s) = I(0)] + 501 (s) = S[IJ
N

[sI(s)—0]+501(s)= 5(1]
s

or, upon solving for /(s),
5

I(s)=———
() s(s +50)

Then using the method of partial fractions and Appendix A, with ¢ replacing x, we obtain

I(l)=§£1{1(s)}=§gl{ 5 }zgl{l/lo_mo}

s(s +50) s s+ 50
RIS O DS U (0 U D T s
10 s) 10 s+ 50 10 10

Compare with (/) of Problem 7.19.

24.16. Solve ¥ +16x =2sin4#;x(0)=-1,x(0)=0.

This is a differential equation for the unknown function x(f) in the independent variable 7. We set
X(s) = L{x(1)}. Taking Laplace transforms of the given differential equation and using Eq. (24.5) with x replacing
y, we have

[s°X(s) — sx(0) — #(0)] + 16X (s) = 2[ _ 4 J
s +16

(s —s| L |- __8
[s X(s) s( 2) O}+16X(s) ENRY:

8 _s
s$+16 2

(s> +16)X(s) =
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. XO= 516)2 _;(sz i16]
Then using Appendix A, entries 17 and 9 with @ =4 and ¢ replacing x, we obtain
- _ 8 1 s
X0 =LHX ()= 1{(# +16)° 2(& +16 J}
o e
16 (s +16)*] 2 s> +16
= %(sin 4t — 4tcos4t) — %cos 4t
Compare with the results of Problem 14.10.
Supplementary Problems
Use Laplace transforms to solve the following problems.
24.17. y' +2y=0;y0)=1 24.18. y' +2y=2;y(0)=1
24.19. y+2y=¢€%y(0)=1 24.20. y' +2y=0;y(1)=1
24.21. y' +5y=0;y(1)=0 24.22. y —5y=¢e>;y(0)=2
24.23. y +y=xe™; y(0)=-2 24.24. y' +y=sinx
24.25. y'+20y=6sin 2x; y(0) =6 24.26. y" —y=0;y0)=1,y(0)=1
24.27. y”" —y=sinx; y0)=0,y(0)=1 24.28. y' —y=¢%5y(0)=1,y(0)=0
24.29. y” +2y" —3y=sin2x; y(0)=y’(0)=0 24.30. y”+y=sinx; y(0)=0,y'(0)=2
2431, Y +y +y=0;y0)=4,y'(0)=-3 2432, Y +2y +5y=3e 2 y(0)=1,y(0) =1
24.33. y"+5y —3y=u(x—4); y0)=0,y'(0)=0 24.34. y"+y=0;y(m) =0,y (m)=-1
24.35. y"-y=5;y0)=0,y(0)=0,y"(0)=0 24.36. Yy —y=0;y(0)=1,y(0)=0,y"(0)=0,y"(0)=0
24.37. % - 33—2 + 3% —y=x"y(0)=1,y(0)=2,)"(0) =3
24.38. % —0.085N =0; N(0) =5000 24.39. % =3T; T(0)=100
24.40. ar +37'=90;T(0)=100 24.41. v +2v=32
dt dt
24.42. % +q=4cos2t: g(0) =0 2443, 5+9%+14x=0; x(0)=0, £(0)=—1
2444. X+4x+4x=0;x(0)=2, x(0)=-2 24.45. d? + 8% +25x=0; x(7r) =0, x(7r) =6
24.46. d—2q+9ﬂ+l4q=%sint; q(0)=0, g(0)=1

dr* dt



Solutions of Linear
Systems by Laplace
Transforms

THE METHOD

Laplace transforms are useful for solving systems of linear differential equations; that is, sets of two or
more differential equations with an equal number of unknown functions. If all of the coefficients are constants,
then the method of solution is a straightforward generalization of the one given in Chapter 24. Laplace
transforms are taken of each differential equation in the system; the transforms of the unknown functions are
determined algebraically from the resulting set of simultaneous equations; inverse transforms for the unknown
functions are calculated with the help of Appendix A.

Solved Problems

25.1. Solve the following system for the unknown functions u(x) and v(x):

uW+u-v=0
Vi—u+v=2;
u@0)=1, v0)=2
Denote £{u(x)} and £L{v(x)} by U(s) and V(s), respectively. Taking Laplace transforms of both differential
equations, we obtain

[sU(@s) =11+ U(s) = V(s)=0

[sV(s)=2]-U(s)+V(s)= 2
s

(s+DU(Gs)=V(s)=1

o —U(s) + (s + DV (s) = 28D
S

249
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The solution to this last set of simultaneous linear equations is

s+1 25 +1

= Vi =
U(s) = (s) 7

Taking inverse transforms, we obtain

u(x)=££“{U(s>}=££“{st1}=se-l{l+i2}:1 b
S N

v(x)=:£*{V<s)}=§£*‘{23fl}:ggl{hiz}:zﬂ
N

N

25.2. Solve the system
Y+z=x
7 +4y=0;
y0) =1, z(0)=-1
Denote £{y(x)} and £{z(x)} by Y(s) and Z(s), respectively. Then, taking Laplace transforms of both differential
equations, we obtain

sT+1

2
N

V() =11+ Z() == SY(s) + Z(s) =
K
[sZ(s)+1]+4Y(s)=0 or 4Y(s) + sZ(s) =—1

The solution to this last set of simultaneous linear equations is

s+s+1 s +4s’+4
s(s”—4) s (s”—4)

Finally, using the method of partial fractions and taking inverse transforms, we obtain

Y(x)=§fl{Y(s)}=5£‘{_M+ 78 308
S

s—=2 s+2J
:_l+162x+§e—2x
4
1 4 4
z(x):if'l{Z(s)}zif'l{z—w+ 3/ }

& s—2 s4+2

:x_zez,t_,’_ée&x
4 4

25.3. Solve the system
w +y=sinx
y-—z=e¢
+wHy=1;
w0)=0, y0)=1, z0)=1

Denote L{w(x)}, L{y(x)}, and L{z(x)} by W(s), Y(s), and Z(s), respectively. Then, taking Laplace transforms
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of all three differential equations, we have

[sW(s)—-0]+Y(s)=

sW(s)+Y(s)=
sT+1 () ) sT+1

N

[sY(s)—1]—Z(s)= L or sY(s)—Z(s) =

s—1 s —

[sZ(s)—1]+W(s)+Y(s)=l W(s)+Y(s)+sZ(s)=s—+1
s s

The solution to this last system of simultaneous linear equations is

sS4+ K
Y = Z =
() (s-D(s*+1D ) sT+1

W(s)=—
() s(s=1)

Using the method of partial fractions and then taking inverse transforms, we obtain

w(x) = LW (s)) = 55_1{] B 11} =1-¢*
S

1
s—1 s°+1

}ze“ +sinx

y(x) =LY ()} = 5151{

z(x):iE'{Z(s)}:ii"{ 2S }zcosx
s +1

25.4. Solve the system
V'+z+y=0

Z/ + y/ — 0’
¥y0)=0, y(0)=0, z0)=1
Taking Laplace transforms of both differential equations, we obtain
[s°Y(s) = (0)s — (0)]+ Z(s) + Y(s)=0 (s> + DY (s) + Z(s) =0

1
[sZ(s)—1]+[sY(s)—0]=0 or Y(s)+Z(s)=—
s
Solving this last system for Y{s) and Z(s), we find that
1 1 1
Y®)=—— Ze)=—+—
s s s

Thus, taking inverse transforms, we conclude that

y(x) = —%xz zZ(x)=1+ %xz
25.5. Solve the system
7"+y =cos x
Y’ —z=sinx;
20)=-1, ZO)=-1, y0)=1, y(0)=0

Taking Laplace transforms of both differential equations, we obtain

[Z(s) + s + 1] +[sY(s) — 1] = — $*Z(s) + sY(s) = — —
s*+1 s”+1
[V (s)— s — 0] — Z(s) = or “Z(s) + (s = ST

s*+1 s +1
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Solving this last system for Z(s) and Y(s), we find that

s+1 s
Z(s)=— Y(s)=
() s +1 () s +1

Finally, taking inverse transforms, we obtain

z(x) =—cos x —sin x  y(x) =cos x

25.6. Solve the system
w” —y+2z=3e*
2w +2y'+2z=0
2w’ =2y +7 +27"=0;
wO)=1, w(0)=1, »0)=2, z(0)=2, Z(0)=-2

Taking Laplace transforms of all three differential equations, we find that

[s*W(s)—s—11=Y(s) +2Z(s) = 3
s+1

2 [sW(s) — 1] + 2[s¥(s) — 2] + Z(s) = 0

or 2[sW(s) — 1] = 2Y(s) + [sZ(s) — 2] + 2[s°Z(s) =25 + 2] =0
2
SW(s) = Y(s) +2Z(s) = #

—25sW(s) + 2sY(s) + Z(s) =2
25sW(s) — 2Y(s) + (2% + 5) Z(s) = 4s

The solution to this system is

1 2s
W(s) s—1 () (s—=D(s+1) () s+1
Hence,
X -1 1 1 x —x —x
wx)=e' yx)=% { }=e +e™ z(x)=2e
s—1 s+1

Supplementary Problems

Use Laplace transforms to solve the following systems. All unknowns are functions of x.

257. u' -2v=3 258. u' +4u—-6v=0
V4 —u=—x% Vv +3u —5v =0;
#(0) = 0, v(0) = —1 u(0) = 3, v(0) = 2
259. u' +5u—-12v=0 25.10. y'+z=x
Vv +2u—5v=0; 7 —y=0;

u(0) =8, v(0) =3 ¥(0)=1, 2(0)= 0

[CHAP. 25
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2511. y' —z=0 2512, w —w—-2y=1
y—7=0; Y —4w =3y =-1;
y0)=1,z00)=1 w0) =1, y(0)=2
25.13. w -y =0 25.14. u”+v=0
w+y +z=1 u’ —v =-2e"
w—y+z7 =2sinx; u(0)=0, «’'(0)=-2,v(0)=0,v'(0)=2

w(0)=1,y0)=1,2z0) =1

25.15. u” =2v =2 25.16. w” —2z=0
u+v=>5*+1; w+y —z=2x
w0)=2,u'(0)=2,v(0)=1 w =2y +7"=0;

w(0) =0, w'(0) =0, y(0) =0,

2(0)=1,7(0)=0

2517. w+y+z=-1

w+y —z=0
_w/ _y/ + Z”:O;
w(0)=0,w'(0)=1, y(0) =0,

¥(0)=0,200)=-1,Z(0) =1



CHAPTER 26

Solutions of Linear
Differential Equations
with Constant
Coefficients by Matrix
Methods

SOLUTION OF THE INITIAL-VALUE PROBLEM

By the procedure of Chapter 17, any initial-value problem in which the differential equations are all linear
with constant coefficients, can be reduced to the matrix system

X(1) = Ax(t) + £(1);  x(1,)=¢ 26.1)

where A is a matrix of constants. The solution to Eq. (26.17) is

x(t) =™ + M f e ME(s) ds (26.2)

or equivalently
x(t)= e e+ [ MH(s) ds (26.3)

In particular, if the initial-value problem is homogeneous [i.e., f(f) = 0], then both equations (26.2) and (26.3)
reduce to

x(1) =e*"™"¢ (26.4)

In the above solutions, the matrices ¢*“™’, ¢ ™A%, and A are easily computed from e*’ by replacing the

variable ¢ by t — 1), —s, and ¢ — s, respectively. Usually x(¢) is obtained quicker from (26.3) than from (26.2),

254
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since the former equation involves one less matrix multiplication. However, the integrals arising in (26.3) are
generally more difficult to evaluate than those in (26.2).

SOLUTION WITH NO INITIAL CONDITIONS

If no initial conditions are prescribed, the solution of X(¢) = Ax(¢) + £(¢) is
X(t) = ek + e [e M (1) di (26.5)

or, when f(r) = 0,
x(f) = ek (26.6)

where k is an arbitrary constant vector. All constants of integration can be disregarded when computing the
integral in Eq. (26.5), since they are already included in k.

Solved Problems

26.1. Solve X +2x—8x=0;x(1)=2, x(1)=3.
From Problem 17.2, this initial-value problem is equivalent to Eq. (26.7) with

B x,(®) _ 0 1 _ B 2 B
x(t)—Lz(t)} _{8 _2} f)=0 c—L} t, =1

The solution to this system is given by Eq. (26.4). For this A, e’ is given in Problem 16.2; hence,

2(r-1) —4(t-1) 2(r-1) —4(r=1)
AU A 1{46 +2e e —e }

6 8e2(t—l) _ 864()‘—]) zeZ(t—l) + 464()‘—1)

A-1)

Therefore, x(t)=e c

14620 4 0p4D Q27D _ 4D 2
= g 820D _gp AT 9 ,20-h) 4 gD 3

1 |:2(4ez(’1) + 2674(171) + 3(62(’71) _ 64(171)) :|

g 2(8620—1) _86—4(I—|)) + 3(2620—]) + 46_4(,_1))
1_162(171) + 164(171)
_| 6
2620—1) _ ie—4(r-1)
6 6

and the solution to the original initial-value problem is

| TP ST
x(t)=x,(t)=—ce +—e
(1) =x,() 5 5
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26.2. Solve ¥ +2x—8x=¢"x(0)=1, x(0)=-4.
From Problem 17.1, this initial-value problem is equivalent to Eq. (26.1) with

£ ol L

and 7y = 0. The solution is given by either Eq. (26.2) or (26.3). Here, we use (26.2); the solution using (26.3) is found
in Problem 26.3. For this A, ¢’ has already been calculated in Problem 16.2. Therefore,

xl(t)}

x, (1)

]
1|4e* +2¢* e

A0 g = L 2 _ g 1 _ o
6| 8e* —8e™ 2e¥ +4e™ || 4 —4—6741_

—As
e f(s)=—
6| 8™ —8e™ 2e7 +4e | €

1 {4#‘ +2e" e et }{0 } _ 6¢ T%¢

J:I e Mf(s)ds =

0 t 25
J. le” +gess ds
1 70( 3 3

. ‘ 1 1 -42t+2—4t 20 -4t _5—r_51+6
eAr.[ e M(syds=| — | -~ ez ) 4 ez ¢ 4 .y s
%o 6 | 30 )| 8e™ —8e™ 2¢” +4e || -10e” +4e™ +6
1 |: 4e* +2e™)(=5e" —e” +6) + (e —e ) (~10e” +4e” +6) }

T 180 8e* —8e™)(—5e™ — € +6) + (2¢¥ +4e™)(—10e™ +4e> + 6)
1 [ —6e' +5¢* +e }

—10e™ +4e” +6

_J.I le’x—le“ ds
ol 6 6 1 [ 5" - +6 ]

30| —6¢' +10e* — 4e™

Thus,
x(t) = e* e 4 e Jj e Mf(s) ds
31 —4t 1 2t 1 t
, t A +— T
| e +L —6¢ +5¢" +e | 306 66 Se
—4e™ | 30| —6¢" +10e” —4e7 62 ., 1, 1,
——e '+—-e'——¢
15 3 5
31 4, 1, 1,
and x()=x,(t)=—e " +—e" ——e¢
() =x,(1) 30 5 5

26.3. Use Eq. (26.3) to solve the initial-value problem of problem 26.2.

—4t
The vector ¢*"~)¢ remains . Furthermore,
—4e™
) 1|42 42740 Q209 _ g 10
e §)=—
6 862(1—5) _ 86—4(1—.0 262(!—.&) + 464(1—s) es

1T @) _ ptresn
- g 229 4 4459
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[ 1t ey (~41+55)

, 1 e —e lds

J eMI(s) ds = — JO

1o 6 J.I[Ze(zﬂ) +4e(4'+sx)]ds
LJo

1 6 1
e _7e(~41+55):| O L
_1 [ 5 co |1 50T TSS
s=t
¢ 002 4 ieurm) 6 —ée' +2¢e” —ﬂem
5 5 5
L 5=0
Thus,
x(n) =" "Ve + [ N I(s) ds
fy
1 1 1 1
4 BN M L1,
:{ e }L e 50 |30 6 5
_4e | 6 _ge, +20% ie_4, —Qe_‘” n lezz —let
5 5 15 3
as before.

26.4. Solve ¥ +x=3;x(m)=1, x(m)=2.
From Problem 17.3, this initial-value problem is equivalent to Eq. (26.1) with

- o], _[o1 f(Z)_o H
X_xz(t) -1 0 BEY P

and 7y = 7. Then, using Eq. (26.3) and the results of Problem 16.3, we find that

A0 _[ cos(t—m) sin (t—n)}[l} _[ cos (t — ) + 2sin (1 — 1) }

—sin(t—m) cos(t—m)|l2 —sin (t —m)+2cos (t—1)

A (s) = cos(t—s) sin(t—s) |0 |3sin(t—s)
= s

—sin (t—s) cos(t—ys) 3cos (1 —5)

, [(3sin - s)ds
J. Af(s) ds = ';
o jscos (t —s)ds

3sin (t —1)

~ [ 3 cos (t—s)‘z:r _[3—3c0s (t—ﬂ)}

=3sin (t— )|

Thus, x(t)=e*"e + Jﬂ AV (s) ds

_[ cos (t—m)+2sin (t — 1) }+{3—3cos(t—n:)]

| —sin (t — ) + 2cos (t — ) 3sin (- 1)

_|3-2cos(t—m)+2sin(r—7)
| 2cos(t-m)+2sin (t - 1)

and x(1) =x,(t) =3 — 2 cos (t — m) + 2 sin (¢ — ).
Noting that cos (# — ) = —cos t and sin (# — 1) = —sin ¢, we also obtain

x(t)=3+2cost—2sint

257
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26.5. Solve the differential equation X —6x +9x =¢.

This differential equation is equivalent to the standard matrix differential equation with

x,(®) 0 1 0
x(t) = A= f(r) =
X, (1) -9 6 t
(See Problem 17.4). It follows from Problem 16.4 that

N | (1=30)e" te” | A+30e™ e
¢ = 3t 3t so e = =3t =3t
—Ote’ (1+3¢t)e’ Ote (1-31)e

Then, using Eq. (26.5), we obtain
Mk = (1-31)e” te* ki | | [(=3k, + k)t +k, le*
Ot (1+30e” || k, [(—9%, +3k,)t + k,1e*
NE(D) = (1 +30)e™ —te™ 0] —t*e™
9te™ A-30e™ || ¢ (t—3%)e™

1,

2% g —t +gz+i e
~frerar | (30 T Ty

je”"f(t) dt = N
=3 ar R B
39

e o (;t2+9t+27Je3’ lHl
Metayan=| 170 e } 9 27

L 3t 3t 1
9t e (1+30)e t2+lt+l o 1
39

and x(1) =Mk + e j eME(r) dt
12
[(=3k, + k)t + ke + o'ty

[(~9k, +3k,)t + k,] & + é

Thus,
x(0) =x,(t) =[(-3k, + k )t+k]e3'+lt+i—(k +kt)e3‘+lt+l
1 1 2 1 9 27 1 3 9 27

where kz = —3k; + k.

. . . dx d’x  dx
26.6. Solve the differential equation — 22—+ —=
dt dt dt
Using the results of Problem 17.5, we reduce this homogeneous differential equation to the matrix equation
X(1) = Ax(t) with

0.

x,(t) 0 10
x()=|x@)| and A={0 0 1
x,(1) 0 -1 2
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‘We have from Problem 16.6 that

1 —te' +2e' =2 te' —e' +1
er=|0 —te' +e' te'
0 —te' te' +é

Then using Eq. (26.6), we calculate

(1 —te' +2¢' =2 te' —¢' +1][k
erk=|0 —te' +¢' te' k,
0 —te

[k, +k,(—te' +2¢' —2) + ky(te' —¢' +1)
= ky(—te' +e') + ky(te')
ky(—te') + ky(te' +¢')

1

te' +¢ ||k,

Thus x()=x,(t) =k, + k,(—te' +2&' —=2) + k,(te' —¢' +1)
= (k, 2k, + k;) + 2k, — ke’ + (=k, + k, )z’
=k, + k' + kgte'

where k4 = kl - 2k2 + k3, k5 = 2k2 - k3, and k6 =— k2 + k3.

26.7. Solve the system
X=-2x-5y+3
y=x+2y;
x(0)=0, %(0)=0, y0)=1

This initial-value problem is equivalent to Eq. (26.7) with

x, (1) o 1 0 0 0
x(t)=|x,@t)| A=|0 2 5| f@®)=|3]| c=|0
(@) o 1 2 0 1

and 7, = 0. (See Problem 17.8.) For this A, we have from Problem 16.7 that

1 -2+2cost+sint -5+ 5cost
eM=|0 cost —2sint —5sint
0 sint cost +2sint

Then, using Eq. (26.3), we calculate

[1 —2+2cost+sint —5+5cost |[0 -5+ 5 cost
M e =0 cost —2sint —5sint 0|=| —5sint

10 sint cost+2sint || 1 cost + 2 sint

[1 —2+2cos(t—s)+sin (t —s) ~5+5cos (t—s5) 0
AE(s) =0 cos (t—s)—2sin (t —s) =5sin (t —s) 3

10 sin (f — ) cos(t—s)+2sin(t—s)|[0

[—6 + 6 cos (r — 5) + 3 sin (7 — 5)

=| —3cos(t—s)—06sin(t—ys)

3sin (t - 5)

259
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and
jo'[—ﬁ +6c0s (f—s)+3sin (t —s)] ds

f A (s) ds = j;[3 cos (t — s) — 6 sin (7 — 5)] ds

_[;3 sin (t — 5) ds
—[—6s —65sin (r —s)+ 3 cos (t — )],
=| [Bsin(t—s)—-6cos(t—s)],
| 3 cos (t — s)‘:)
[—6¢ +3 + 6 sint — 3 cost
=| —6+3sint+6cost
3—-3cost

Therefore, x() = e e + Jf M (s) ds

[ —5+5cost -6t +3 + 6sint — 3 cost
= —5sint +| —6+3sinr+6cost

| cost + 2 sint 3 -3 cost
[—2 — 61 +2 cost + 6 sint

=| —6+6cost—2sint

3 —2cost+2sint

Finally, x(t) = x,(t) =2cost + 6sint —2 — 6¢
¥(t)=y,(t) =—2cost +2sint +3
26.8. Solve the system of differential equations

X=x+y
y=9%+y

This set of equations is equivalent to the matrix system x(z) = Ax(¢#) with

t 11
x(t)Z[x]()] A:{ }
(@) 9 1
(See Problem 17.9.) The solution is given by Eq. (26.6). For this A, we have from Problem 16.1 that

N 1 |:3e4z + 307 oM :|
e =

6| 9e* —9¢™  3e* 437
1 34t+3 -2t 4t -2t k
hence, x(t)=eVk=— e4 672 64 ‘ ) l
6]9e" —9e™" 3e +3e7 || k,

é(3k1 +ky)et + %(3/«1 — ke

%(3@ +hy)et - %(31(1 —ky)e™

[CHAP. 26
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Thus, x(t) =x,(t) = é(3kl +k)e" + é(3kl —ky)e™

3 .3 -2
Yy =y @)= g(3k1 +ky)e* — g(3k1 —ky)e”

If we define two new arbitrary constants k3 = (3k; + k,)/6 and k4 = (3k; — k,)/6, then

x() = kse™ + kye™  and  y(f) = 3kse™ — 3k

Supplementary Problems

Solve each of the following systems by matrix methods. Note that ¢ for the first five problems is found in Problem 16.2,

while e’ for Problems 26.15 through 26.17 is given in Problem 16.3.

26.9.

26.11.

26.13.

26.15.

26.17.

26.19.

26.21.

26.23.

26.25.

26.27.

26.29.

X+2x-8x=0;x(1)=1 x(1)=0
X+2x-8x=4;x(1)=0, x(1)=0
X+2x—-8x=9¢"x(0)=0, x(0)=0
X+x=0
X+x=t;x(1)=0,x(1)=1

y=y=2y=0,30)=2,y(0)=1

y—y=2y=€"1y(0)=1,(0)=2

X=—4x+6y
y=-3x+5y;
x(0)=3,y(0)=2

f-2y=3
y+y—-x=-+;

x(0)=0, y0)=-1

¥ =6t; x(0) =0, (0)=0, ¥(0) =12

¥=2i+5y+3,
y=—i-2y
x(0)=0,%(0)=0,y(0) =1

26.10.

26.12.

26.14.

26.16.

26.18.

26.20.

26.22.

26.24.

26.26.

26.28.

X+2x-8x=4;x(0)=0, x(0)=0
X+2x-8x=4,x(0)=1, x(0)=2

The system of Problem 26.4, using Eq. (26.2)
X+x=0,x2)=0, x(2)=0

§-3-2y=0

y-y—2y=e"1y(0)=2,y(0)=1

1. .
‘z'+9z’+l4z:551nt; 2(0)=0, z(0)=-1

X+5x-12y=0
y+2x-5y=0;
x(0)=8, y(0)=3

X=x+2y
y=4x+3y

X+y=0
y+x=2e"
x(0)=0,x(0)=-2,y(0)=0



Power Series Solutions
of Linear Differential
Equations with
Variable Coefficients

SECOND-ORDER EQUATIONS
A second-order linear differential equation
by(x)y” + by (x)y" + bo(x)y = g(x) (27.1)

has variable coefficients when b,(x), b;(x), and by(x) are not all constants or constant multiples of one another.
If b,(x) is not zero in a given interval, then we can divide by it and rewrite Eq. (27.1) as

Y+ P)y + Q()y = ¢ (x) (27.2)

where P(x) = b;(x)/by(x), O(x) = by(x)/by(x), and ¢(x) = g(x)/by(x). In this chapter and the next, we describe
procedures for solving many equations in the form of (27.1) or (27.2). These procedures can be generalized
in a straightforward manner to solve higher-order linear differential equations with variable coefficients.

ANALYTIC FUNCTIONS AND ORDINARY POINTS

A function f(x) is analytic at x if its Taylor series about xj,

N f(")(xo)(x - x)"
2—

= n!

converges to f(x) in some neighborhood of xj.
Polynomials, sin x, cos x, and ¢* are analytic everywhere; so too are sums, differences, and products of these
functions. Quotients of any two of these functions are analytic at all points where the denominator is not zero.
The point xq is an ordinary point of the differential equation (27.2) if both P(x) and Q(x) are analytic at x;.
If either of these functions is not analytic at x, then x is a singular point of (27.2).

262
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SOLUTIONS AROUND THE ORIGIN OF HOMOGENEOUS EQUATIONS
Equation (27.1) is homogeneous when g (x) = 0, in which case Eq. (27.2) specializes to
v+ P(x)y + Q(x)y =0 (27.3)

Theorem 27.1. If x =0 is an ordinary point of Eq. (27.3), then the general solution in an interval containing
this point has the form

y= 3 ax = a0 + 4y, (27.4)

n=0

where a; and a, are arbitrary constants and y;(x) and y,(x) are linearly independent functions
analytic at x =0.

To evaluate the coefficients a, in the solution furnished by Theorem 27.1, use the following five-step
procedure known as the power series method.

Step 1. Substitute into the left side of the homogeneous differential equation the power series

n_ 2 3 4
ax"=a, +ax+a,x +ax +ax +--

: (27.5)

n n+l n+2
+anx +a”+1x +an+2x + .-

M

y=

n

together with the power series for

y'=a, + 2ayx + 3azx* + dac + -
+nax" "+ (m+ Da, o X'+ (n+2)a, X+ (27.6)

and

y”=2ay+ 6azx + 12a,x5> + ---
+n(n — Dagd =2+ (n+ D(may . =+ (n+2)(n + Daty , %"+ - (27.7)

Step 2. Collect powers of x and set the coefficients of each power of x equal to zero.

Step 3. The equation obtained by setting the coefficient of x" to zero in Step 2 will contain a; terms for a finite
number of j values. Solve this equation for the a; term having the largest subscript. The resulting equation
is known as the recurrence formula for the given differential equation.

Step 4. Use the recurrence formula to sequentially determine a; (j =2, 3, 4,...) in terms of @ and a;.

Step 5. Substitute the coefficients determined in Step 4 into Eq. (27.5) and rewrite the solution in the form
of Eq. (27.4).

The power series method is only applicable when x =0 is an ordinary point. Although a differential
equation must be in the form of Eq. (27.2) to determine whether x" =0 is an ordinary point, once this condition
is verified, the power series method can be used on either form (27.1) or (27.2). If P(x) or Q(x) in (27.2) are
quotients of polynomials, it is often simpler first to multiply through by the lowest common denominator,
thereby clearing fractions, and then to apply the power series method to the resulting equation in the form of
Eq. (27.1).

SOLUTIONS AROUND THE ORIGIN OF NONHOMOGENEOUS EQUATIONS

If ¢ (x) in Eq. (27.2) is analytic at x =0, it has a Taylor series expansion around that point and the power
series method given above can be modified to solve either Eq. (27.1) or (27.2). In Step 1, Eqgs. (27.5) through
(27.7) are substituted into the left side of the nonhomogeneous equation; the right side is written as a Taylor
series around the origin. Steps 2 and 3 change so that the coefficients of each power of x on the left side of the



264 LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS [CHAP. 27

equation resulting from Step 1 are set equal to their counterparts on the right side of that equation. The form of
the solution in Step 5 becomes

Y+ agy;(x) + a;y,(x) + y3(x)

which has the form specified in Theorem 8.4. The first two terms comprise the general solution to the associated
homogeneous differential equation while the last function is a particular solution to the nonhomogeneous equation.

INITIAL-VALUE PROBLEMS

Solutions to initial-value problems are obtained by first solving the given differential equation and then
applying the specified initial conditions. An alternate technique that quickly generates the first few terms of the
power series solution to an initial-value problem is described in Problem 27.23.

SOLUTIONS AROUND OTHER POINTS

When solutions are required around the ordinary point x# 0, it generally simplifies the algebra if x; is
translated to the origin by the change of variables 7 = x — xy. The solution of the new differential equation that
results can be obtained by the power series method about #=0. Then the solution of the original equation is
easily obtained by back-substitution.

Solved Problems

27.1. Determine whether x = 0 is an ordinary point of the differential equation

Yy —xy +2y=0
Here P(x) = — x and Q(x) = 2 are both polynomials; hence they are analytic everywhere. Therefore, every value

of x, in particular x = 0, is an ordinary point.

27.2. Find a recurrence formula for the power series solution around x = 0 for the differential equation given
in Problem 27.1.

It follows from Problem 27.1 that x=0 is an ordinary point of the given equation, so Theorem 27.1 holds.
Substituting Egs. (27.5) through (27.7) into the left side of the differential equation, we find

[2a, + 6asx + 12a,3% + -+ + n(n — Da,x" 2+ (n+ D)(n)a, 4 1 x" "'+ (n+2)(n + Da, , x"+ ---]
—x[a;+ 2apx + 3asx> + dax 3+ -+ na "+ (n+ Day o X (n+2)a, "+ ]
+2[ag+ a\x + apxX* + ay + agxt + -+ a )"+ a, , x" Ha, x4 =0

Combining terms that contain like powers of x, we have

(Qay + 2ag) + x(6a3 + a,) + x*(12a,) + x*(20as — as)
+ -+ xX"[(n+2)n+ a,,»—na,+2a,]+ -

=0+0x+0x%+0x> + -+ +0x"+ -
The last equation holds if and only if each coefficient in the left-hand side is zero. Thus,
2a,+2ay=0, 6a3+a;=0, 12a,=0, 20as—az=0,

In general, n+2)n+ a,,r,—n—-2)a,=0, or,
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__ =2
T (m+2)(n+1) "

n+2
which is the recurrence formula for this problem.

27.3. Find the general solution near x =0 of y” — xy" + 2y =0.

Successively evaluating the recurrence formula obtained in Problem 27.2 forn=0, 1, 2, ... , we
calculate
a, =—0a,
1
a3 =—- gal
a, =0
el (1 -1,
20 7 200 6 120
2 1
ag=—a,=—(0)=0
30 15 @)

3 1 1 1
G =—0;=—|——— | =———-q
42 14( 120] 1680

Note that since a4 = 0, it follows from the recurrence formula that all the even coefficients beyond a, are also zero.
Substituting (/) into Eq. (27.5) we have

o 1

- ax —--
1680 ")

1 1 1
:ao(l—x2)+a1(x—6x3—x5 7—-~-]

1 1
y=a, + ax —ax’ —galx3 +0x* —@a]x5 +0x

——x
120 1680

If we define

1 1 1
x)=1-x* and N=x——x"——x" ———x’
» (%) ¥,(x) p 20 1630

then the general solution (2) can be rewritten as y = agy;(x) + a;y,(x).

27.4. Determine whether x =0 is an ordinary point of the differential equation

yl/ + y — 0
Here P(x) =0 and Q(x) =1 are both constants; hence they are analytic everywhere. Therefore, every value of

X, in particular x = 0, is an ordinary point.

27.5. Find a recurrence formula for the power series solution around x = 0 for the differential equation given
in Problem 27.4.

It follows from Problem 27.4 that x =0 is an ordinary point of the given equation, so Theorem 27.1 holds.
Substituting Egs. (27.5) through (27.7) into the left side of the differential equation, we find

[2a, + 6azx + 12a,,%+ -+ + n(n — Da, " =2+ (n+ Dna, X"~ '+ (n+2)(n + Day, 6"+ -]
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+ [ag+ ayx + ax® + ayx® + axt +

ot aX " a, X a4 ] =0
or (2ay + ag) + x(6a3 + ay) + x*(12a4+ a) + x*(20as + a3)
+ -+ X'+ 2)(n+ Da, o+ a,] +
=0+0x+0x>+ - +0x"+ ---
Equating each coefficient to zero, we have
2ar+ ap=0, 6az+a;=0, 12a,+a,=0, 20as5+a3;=0
In general
(n+2)(n+1)a,,,+a,=0,
which is equivalent to

27.6.

This equation is the recurrence formula for this problem

‘71‘,"
(n+2)(n+1)

Ay =

Use the power series method to find the general solution near x =0 of y" +y=0

method, Laplace transforms, or matrix methods as y = ¢; cos x + ¢, sin x

forn=0,1,2

Solving by the power series method, we successively evaluate the recurrence formula found in Problem 27.5
,..., Obtaining

1 1
a,=——a,=——a,
2 2!
1 1
ay=——a,=——q
6 3!
1 1 [ 1 ] 1
=T =T T % [T %
(H3) ®HB)L 2! 41
1 1 ( 1 j 1
as=————a;=————| ——aq, |=—q
‘ 5)4) G 3! 5!
1 1 1 1
Qg == ———a4y == ———| —0, |==—d,
6)(5) (6) ()[4' ] 6!
1 1 [1 ] 1
a7 —7(15: =_7a]
(7)(6) (NH(6)| 5! 71

Recall that for a positive integer n, n factorial, which is denoted by n!, is defined by

and 0! is defined as one
n!=nn-1).

Now substituting the above values for a,, a3, ay,

y=a, +ax—

But

n=0

n_ 2n+1
sinx = 2( 1)

1 5 1 s 1 4
—ax’ +—ax* +—ax’ - —ax’ ——ax +
2! 3! 4! 5! 6! 7! )
( 1 1 1 ] ( 1, 1 5 1,5 j
=q|l-=x"+—x'——x"+- |ta|x——xX+ =2 —=xT +-
21 41 6! 31! 5! 7!
n _2n
cosx—z( D'x = ix2+ix4—ix6+
(2n)! 2! 4! 6!
cx-teple Loy
Q2n+1! 3! 5!

. Thus,

—ayx

nl=nn-1)n-2)--3)2)1)

41=#)(3)(2)(1)=24 and 5!

.. into Eq. (27.5) we have

2 _

=(5)#(3)(2)(1) =5(4!)=120. In general

[CHAP. 27

Since this equation has constant coefficients, its solution is obtained easily by either the characteristic equation
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27.7.

27.8.

27.9.

Substituting these two results into (/) and letting ¢, = gy and ¢, = a,, we obtain, as before,
y=¢; COS X+ ¢, Sin x
Determine whether x = 0 is an ordinary point of the differential equation

232y + Tx(x + 1)y’ =3y =0

Dividing by 2x?, we have

T(x+1) 0(x)=

Pey=—1 2

-3
X2

As neither function is analytic at x = 0 (both denominators are zero there), x = 0 is not an ordinary point but, rather,
a singular point.

Determine whether x = 0 is an ordinary point of the differential equation
x5y + 2y +xy=0
Here P(x) = 2/x* and Q(x) = 1/x. Neither of these functions is analytic at x = 0, so x = 0 is not an ordinary point

but, rather, a singular point.

Find a recurrence formula for the power series solution around ¢ = 0 for the differential equation

d’y dy
—+(-1)—+2t-3)y=0
o ( )dt ( )y

Both P(7) =7 — 1 and Q(#) = 2¢ — 3 are polynomials; hence every point, in particular # = 0, is an ordinary point.
Substituting Egs. (27.5) through (27.7) into the left side of the differential equation, with ¢ replacing x, we have
[2a,+ 6ast + 12a4+ -+ + n(n — Da,t" =2+ (n+ Dna, . 1"~ '+ (n+ 2)(n + Da, 4 ot"+ -]
+(t = Dla; + 2ayt + 3azt> + day + - + nat" "+ (n+ Da, , "+ +2a, .ot 1+ -]
+ 2t = ag+ ayt+ art? + azt> + agtt + -+ a "+ a, 1" +a, "+ 1=0
or (2ay— a; — 3ap) + 1(6a3+ a; — 2ay + 2ay— 3ay) + *(12a,+ 2a, — 3a3+ 2a, — 3a,) + -+
+t"[((n+2)(n+1)a,,r+na,—(n+ a,,+2a,_,—3a,] + -
=0+0t+ 02+ -+ 01" + -
Equating each coefficient to zero, we obtain
2a,—a,—3ay=0, 6a3—2a,—2a,+2ay=0, 12a,—3a3—a,+2a;=0, ... @)
In general,
n+2)(n+ a,,.»—n+ a, .+ n-3)a,+2a,_ ;=0
which is equivalent to

(n-3) 2
an+l - n an—l
n+2 n+2)n+1) " (n+2)n+1)

2

an+2 =

Equation (2) is the recurrence formula for this problem. Note, however, that it is not valid for n = 0, because a_;
is an undefined quantity. To obtain an equation for n=0, we use the first equation in (/), which gives
1 3
a2 = Eal + an
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27.10.

27.11.

27.12.

LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS [CHAP. 27

Find the general solution near r=0 for the differential equation given in Problem 27.9.
We have from Problem 23.9 that
1 3
a2=5a1+5a0

Then evaluating recurrence formula (2) in Problem 27.9 for successive integer values of n beginning with n = 1, we
find that

1 1 1 11 3 1 1 1 1
a; =—a, +7al—7ao =— Ea]'f'gao +§al—§a0 =Eal+gao

1 1 1 1(1 1 1(1 3 1 1
a4:Za3+Ea2—ga1:Z Eal+ga0 +E 5a1+5a0 —gal=ga0

Substituting these values into Eq. (27.5) with x replaced by 7, we obtain as the general solution to the given differ-

ential equation
1 3 , (1 1 s (1 4
y=a0+alt+ Eal +Ea0 -+ Eal+ga0 "+ gao o+,

=a, PRSI DT +aq, LI B
2 6 6 2 2

Determine whether x =0 or x = 1 is an ordinary point of the differential equation

(1 =22y =2xy +n(n+1)y=0
for any positive integer n.

We first transform the differential equation into the form of Eq. (27.2) by dividing by x>— 1. Then

nn+1)
x* -1

P(x):_zi and Q(x)=
x =1

Both of these functions have Taylor series expansions around x =0, so both are analytic there and x=0 is an
ordinary point. In contrast, the denominators of both functions are zero at x = 1, so neither function is defined there
and, therefore, neither function is analytic there. Consequently, x = 1 is a singular point.

Find a recurrence formula for the power series solution around x = 0 for the differential equation given
in Problem 27.11.

To avoid fractions, we work with the differential equation in its current form. Substituting Egs. (27.5) through
(27.7), with the dummy index n replaced by £, into the left side of this equation, we have that

(1 = xD)[2ay+ 6azx + 12a4 x>+ -+ + k(k — Dagx* =2+ (k + D)(k)ay , (x* !
+ (k + 2)(k + Dag y oxX*+ -] = 2x[a; + 2a0x + 3ax> + - + kagx* =1+ (k + Day 4 1x*
+ (k4 Qg x4k (k4 D]ag+ ayx + ay X+ ayx3+ - + qxt

+ap, XK+ ap xk 24 1=0
Combining terms that contain like powers of x, we obtain

[2ay+ (0% + n)ag] + x[6a3+ (n*+n — 2)a,] + -+
+ X[k + 2)(k + Da oo+ (0P +n— K= ka] +---=0
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27.13.

27.14.

Noting that n”+ n — k>~ k= (n — k)(n + k + 1), we obtain the recurrence formula

(=R n+k+])

(k+2)(k+1) U 0

Apya =

Show that whenever 7 is a positive integer, one solution near x =0 of Legendre’s equation
(1=x2y" =2xy +n(n+1)y=0
is a polynomial of degree n. (See Chapter 29.)

The recurrence formula for this equation is given by Eq. (/) in Problem 27.12. Because of the factor n — k, we
find, upon letting k = n, that a,,, , = 0. It follows at once that 0 =a,,, 4= a, . 6= a, 4 3= .... Thus, if n is odd, all odd
coefficients a; (k > n) are zero; whereas if n is even, all even coefficients @, (k > n) are zero. Therefore, either y;(x)
or y,(x) in Eq. (27.4) (depending on whether n is even or odd, respectively) will contain only a finite number of
nonzero terms up to and including a term in x”; hence, it is a polynomial of degree n.

Since q( and a,, are arbitrary, it is customary to choose them so that y,(x) or y,(x), whichever is the polyno-
mial, will satisty the condition y(l) = 1. The resulting polynomial, denoted by P,(x), is known as the Legendre
polynomial of degree n. The first few of these are

P(x)=1 P(x)=x Pz(x)zé(3x2—l)

P(x)= %(5)63 -3x) P(x)= é('s‘wSx4 —30x% +3)

Find a recurrence formula for the power series solution around x = 0 for the nonhomogeneous differential
equation (x> + 4)y” +xy = x + 2.

Dividing the given equation by x>+ 4, we see that x =0 is an ordinary point and that ¢ (x) = (x +2)/(x>+ 4) is
analytic there. Hence, the power series method is applicable to the entire equation, which, furthermore, we may
leave in the form originally given to simplify the algebra. Substituting Eqs. (27.5) through (27.7) into the given
differential equation, we find that

(2 +D)[2a, + 6a3x + 12a, x>+ - + n(n— 1)a,x" 2
+(n+ Dnay, . X+ (n+2)(n+ Day, X"+ -]
+x[ag+ apx + ax*+ as+ - +a, X+l =x+2

or (8ay) + x(24a;5+ ag) + X>(2ay + 48a4+ a;) + x3(6a; + 80as+ ay) + -
+x"[n(n - Da,+4n+2)(n+ Da, . »+a, ]+
=2+ (Dx+ 0)x>+ 0)x>+ --- ()
Equating coefficients of like powers of x, we have
8a,=2, 24a3+ag=1, 2a,+48a,+a,;=0, 6as3+80as+a,=0, ... )
In general,
nn—-a,+4n+2)(n+ a,,,+a,_=0 (n=2,3,...)
which is equivalent to

n(n—1) 1
[ a, — a,
! 4n+2)(n+1) 4n+2)(n+1)

€))

(n=2, 3, ...). Note that the recurrence formula (3) is not valid for n =0 or n = 1, since the coefficients of x° and
x' on the right side of () are not zero. Instead, we use the first two equations in (2) to obtain

1 1 1

a, =— a3=g_ﬁao

y) “h
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27.15.

27.16.

LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS [CHAP. 27

Use the power series method to find the general solution near x = 0 of

2+ 4)y” +xy=x+2

Using the results of Problem 27.14, we have that a, and a3 are given by (4) and a, for (n =4, 5, 6, ...) is given
by (3). It follows from this recurrence formula that

1 1 1(1 1 1 1
a=——a-——a=——— |-—a=———-—q

24 48 24\ 4 ) 48 9 48

3 1 3(1 1 1(1 -1 1
aQs=——0y——a,=——| ——— ay |-—| = |=—=+—2q,

40 © 80 40(24 24 80\ 4 ) 160 320

Thus,

1, 1 1 3 1 1 ! 1 P
y=aytax+—x +|———a, X +|-———a, ¥ +| —+—=q, X" +...
4 24 24 9 48 160 320
=aq, I—Lx3+ix5+... +aq, x—ix4+... + lx2+ix3—Lx“—LxS+...
24 320 48 4 24 96 160

The third series is the particular solution. The first and second series together represent the general solution of
the associated homogeneous equation (x*+ 4)y” + xy = 0.

Find the recurrence formula for the power series solution around t=0 for the nonhomogeneous
differential equation (d2y/dt?) +ty=e'"".
Here P(1)=0, Q(f) =1, and ¢(r) =e'* " are analytic everywhere, so #=0 is an ordinary point. Substituting
Egs. (27.5) through (27.7), with ¢ replacing x, into the given equation, we find that
[2ay+ 6ast + 12a,8+ -+ + (n+ 2)(n + Da, o+ -]

+Hag+ ajt + ayt>+ -+ a, "+ )=t

Recall that e’* ! has the Taylor expansion ' *' = ezw 0 t" / n! about 1 = 0. Thus, the last equation can be rewritten as
n=

(2a,) + 1(6a, + a)) + *(12a, + a) + -+ "[(n+ 2)(n+ Da,,, +a, ]+
e e e , e ,
=—+—t+—t" ++—t" 4
or 1 2! n!
Equating coefficients of like powers of ¢, we have
e e e
2a2:a, 6a3+a0=i, 12a4+a1=5, O
In general, (n+2)(n+ 1)a,,,+a, =e/n!forn=1,2,..., or,

A0 =

- an—l +
(n+2)(n+1) (n+2)(n+1Dn!

which is the recurrence formula for n =1, 2, 3,.... Using the first equation in (/), we can solve for a, = e/2.

27.17. Use the power series method to find the general solution near ¢ = 0 for the differential equation given in

Problem 27.16.

Using the results of Problem 27.16, we have a, = e/2 and a recurrence formula given by Eq. (2). Using this
formula, we determine that
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27.18.

27.19.

1 e

a, —ga0+g
e
a, 12al+£

Substituting these results into Eq. (27.5), with x replaced by 7, we obtain the general solution

e, 1 e); 1 e \.4 e \s
y=a,tat+—t"+|——a,+— | +|-—a +— |t +| —— |+
2 6° 6 127 24 60
=a, PR +aq et e Lo oy L Ly
6 12 2 6 24 60

Find the general solution near x =2 of y” — (x — 2)y" + 2y = 0.

To simplify the algebra, we first make the change of variables 7 =x — 2. From the chain rule we find the
corresponding transformations of the derivatives of y:

dy dydt () dy
dx dtdx  dr

o d () d () i) L)Ly
dx*  dx| dx dx\ dt dt\ dt )dx  dr?

Substituting these results into the differential equation, we obtain

and this equation is to be solved near = 0. From Problem 27.3, with x replaced by ¢, we see that the solution is

1,11,
—a,(1-)+a|t——1 ——1F ———1 -
y=ad=r) ‘( 6 1200 1680 ]

Substituting ¢ = x — 2 into this last equation, we obtain the solution to the original problem as

y=a,[1-(x- 2)]+a1[(x 2)—*( -2y’ _7( -2y - (x-2)" - ] (1

120 1680

Find the general solution near x =—1 of y” +xy" + 2x— 1)y =0.

To simplify the algebra, we make the substitution t=x—-(-1)=x+1. Then, as in Problem, 27.18
(dyldx) = (dyldt) and (d®yldx?) = (d®y/df*). Substituting these results into the differential equation, we obtain

d’ y .

i (t—l)—+(2t—3)y 0

The power series solution to this equation is found in Problems 27.9 and 27.10 as

y=a, pedp o Loy +a VO
2 6 6 2 2
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Substituting back 7 =x + 1, we obtain as the solution to the original problem

3 1 1
=a)[1+=(x+1) +=(x+1)’ +=(x+1D* +--
y a0|: 2(x ) 6(x ) 6(x ) }

+a][(x+1)+%(x+l)2+%(x+1)3+0(x+1)4+--1 (n

27.20. Find the general solution near x=1 of y” + (x — 1)y = ¢".
d’y _ d’y

We set t=x— 1, hence x =7+ 1. As in Problem 27.18, ~=—-50 the given differential equation may be
rewritten as dx” dt
dzy t+1
—+ty=e
a "

Its solution is (see Problems 27.16 and 27.17)

y=a, LTI +aq, LIPS O (P P I S S S
6 12 2 6 24 60

Substituting back = x — 1, we obtain as the solution to the original problem
=q 1—l(x—1)3+ +a (x—1)—i(x—1)4+---
y 0 6 A 1 12

! SN PNURNIC U SPPIV RIS ST U
+e[5(x—1) SRR I G Ml CE ]

27.21. Solve the initial-value problem

Y —(x=2)y"+2y=0; y2)=5, y(2)=60

Since the initial conditions are prescribed at x = 2, they are most easily satisfied if the solution to the differential
equation is obtained as a power series around this point. This has already been done in Eq. (/) of Problem 27.18.
Applying the initial conditions directly to this solution, we find that ay=5 and a; = 60. Thus, the solution is

2 DL SC NI NP S B
y—5[1—(x—2)]+60[(x )= x=' - (x-2) ]

=5+6O(x—2)—5(x—2)2—10(x—2)3—%(x—2)5—~-~

27.22. Solve y” +xy"+ 2x— 1)y =0; y(-1) =2, y'(-1) = -2.

Since the initial conditions are prescribed at x =— 1, it is advantageous to obtain the general solution to the
differential equation near x = — 1. This has already been done in Eq. (/) of Problem 27.19. Applying the initial
conditions, we find that ay= 2 and @, = — 2. Thus, the solution is

_ 3 2, 1 s 1 TS
y—2|:l+2(x+1) +6(x+1) +6(x+1) + :|
—2[(x+1)+%(x+1)2+%(x+1)3+O(x+1)4+~--]

=2—2(x+l)+2(x+1)2—%(x+1)3+%(x+1)4+---
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27.23. Solve Problem 27.22 by another method.

TAYLOR SERIES METHOD. An alternative method for solving initial-value problems rests on the
assumption that the solution can be expanded in a Taylor series about the initial point xg; i.e.,

SEACCO P
y:Zy ‘0 (x—xo)
n=0 n!

) ¥(x) (r—x) + Y (xy)
0! 1! 2!

)
(x—xp)" + -+

The terms y(x,) and y’(x,) are given as initial conditions; the other terms y*(x;) (n=2, 3, ...) can be obtained by
successively differentiating the differential equation. For Problem 27.22 we have xo=—1, y(xg) =y(—1) =2, and
Y (x9) =y'(=1) = — 2. Solving the differential equation of Problem 23.22 for y”, we find that

y'=-xy' = (2x- 1y @
We obtain y”(xy) = y”(—1) by substituting x,=— 1 into (2) and using the given initial conditions. Thus,
Y ED == EDY D = 26D = 1y(=1) = 1(=2) = (-3)(2) = 4 (3
To obtain y”(—1), we differentiate (2) and then substitute x,=—1 into the resulting equation. Thus,
Y7 ==y - xy"=2y- 2x - 1)y’ “
and Y (D ==y (D)= 0y (=1) 22y(= 1) = [2(=1) = 1]ly'(=1)
== (D) +4-20)— (3 =4 )
To obtain y(~1), we differentiate (4) and then substitute x,= —1 into the resulting equation. Thus,
YO =2y = (2x+ 1)y~ 4y’ ©)
and YD) ==(=1y” (1) = [2(=1) + 1]y"(=1) = 4y’(-1)
== 4-(-D@) - 4(-2) =38 %)
This process can be kept up indefinitely. Substituting Egs. (3), (5), (7), and the initial conditions into (/), we obtain,

as before,

I 4 , -4 , 8 \
» 2 31 4
=2-2(x+D)+2(x+1) —§(x+1) +§(x+1) + -

One advantage in using this alternative method, as compared to the usual method of first solving the differential
equation and then applying the initial conditions, is that the Taylor series method is easier to apply when only the
first few terms of the solution are required. One disadvantage is that the recurrence formula cannot be found by the
Taylor series method, and, therefore, a general expression for the nth term of the solution cannot be obtained. Note
that this alternative method is also useful in solving differential equations without initial conditions. In such cases,
we set y(xq) = ag and y’(x) = a;, where ay and a; are unknown constants, and proceed as before.

27.24. Use the method outlined in Problem 27.23 to solve y” — 2xy =0; y(2) = 1, y’(2) = 0.
Using Eq. (7) of Problem 27.23, we assume a solution of the form

=M+M(x_2)+@(x_2)2+y"(2)

— 3 e
0! 1! 2! 3! (-2 D

y(x)

From the differential equation,
V(X)) =2xy, V() =2y+2xy, yP@) =4y +2xy,
Substituting x = 2 into these equations and using the initial conditions, we find that
¥ (2)=22)y(2)=4(1) =4
¥7(2) =2y(2) +2(2)y'(2) =2(1) + 4(0) =2

Y(2)=4y'(2) +2(2)y"(2) = 4(0) + 4(4) = 16



274

27.25.
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Substituting these results into Eq. (/), we obtain the solution as

y=l+2(x—2)2+%(x—2)3+§(x—2)4+~~

Show that the method of undetermined coefficients cannot be used to obtain a particular solution of
Y +xy=2.
By the method of undetermined coefficients, we assume a particular solution of the form y,= Ayx™, where m

might be zero if the simple guess y,= A, does not require modification (see Chapter 11). Substituting y, into the
differential equation, we find

m(m — DAX" 2+ Agx™ 1 =2 (N

Regardless of the value of m, it is impossible to assign A, any constant value that will satisfy (7). It follows that the
method of undetermined coefficients is not applicable.

One limitation on the method of undetermined coefficients is that it is only valid for linear equations with
constant coefficients.

Supplementary Problems

In Problems 27.26 through 27.34, determine whether the given values of x are ordinary points or singular points of the given
differential equations.

27.26.

27.28.

27.30.

27.32.

27.34.

27.35.

x=1y"+3y +2xy=0 2727, x=2;(x-2)y"+3(>-3x+2)y +(x—2)?y=0
x=0;(x+1)y”+%y'+xy=0 27.29. x=—1;(x+1)y"+%y'+xy=0

x=0; 2y +y=0 2731, x=0;xy +xy=0

x=0; ey’ + (sinx)y +xy=0 2733, x=—1;(x+ D} + - Dx+D)y +(x-1)y=0

x=2; 0= 4y "+ (x+ Dy + (*=3x+2)y=0

Find the general solution near x =0 of y” —y"=0. Check your answer by solving the equation by the method of
Chapter 9 and then expanding the result in a power series about x = 0.

In Problems 27.36 through 27.47, find (@) the recurrence formula and (b) the general solution of the given differential
equation by the power series method around, the given value of x.

27.36.

27.38.

27.40.

27.42.

27.44.

27.46.

27.48.

27.49.

x=0; y"+xy=0 27.37. x=0; y"=2xy'—2y=0
x=0; y+x% +2xy=0 27.39. x=0; y"—x*" —-y=0
x=0; y+2x%y=0 2741, x=0; - 1)y +xy—y=0
x=0; y"—xy=0 2743. x=1; y"—xy=0

x==2; ¥ =Xy +(x+2)y=0 2745. x=0; (C+4)y +y=x
x=1; y=(x= 1)y =x>-2x 2747. x=0; y'—xy' =€

Use the Taylor series method described in Problem 27.23 to solve y” — 2xy’ + x%y = 0; y(0) = 1, y’(0) = —1.

Use the Taylor series method described in Problem 27.23 to solve y” — 2xy = x% y(1) = 0, y'(1) = 2.



CHAPTER 28

Series Solutions
Near a Regular
Singular Point

REGULAR SINGULAR POINTS
The point x, is a regular singular point of the second-order homogeneous linear differential equation
Y+ P(x)y"+ Q(x)y=0 (28.1)

if x, is not an ordinary point (see Chapter 27) but both (x —x,)P(x) and (x — x0)*Q(x) are analytic at x,. We only
consider regular singular points at x, = 0; if this is not the case, then the change of variables 7 = x —x, will translate
X to the origin.

METHOD OF FROBENIUS

Theorem 28.1. 1If x =0 is a regular singular point of (28.1), then the equation has at least one solution of
the form
y= x?x 2 anxn
n=0

where A and a, (n=0, 1, 2, ...) are constants. This solution is valid in an interval
0 < x < R for some real number R.

To evaluate the coefficients a, and A in Theorem 28.1, one proceeds as in the power series method of
Chapter 27. The infinite series

y:xkzanxn — Zanx?»+n
n=0 n=0
_ A A+1 A+2 A+n—1 A+n At+n+l1
=dayX +(IIX +a2x +w+an_,x +anx +an+1x + - (282)

with its derivatives
y =hag =T+ v+ Dad + L+ 2)ad 1+ -

+A+n-Da,_ " 2+ A+ n)a T+ A+ n+ Da, o X+ - (28.3)
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and Y =AMA = Dagx 2+ A+ DV)ax* '+ A+ 2)(A + Daox® + -+
+A+n—DA+n-2a, "3+ Ah+n)A+n- Dax "2
+A+n+DA+n)a, x4 (28.4)

are substituted into Eq. (28.1). Terms with like powers of x are collected together and set equal to zero. When
this is done for x" the resulting equation is a recurrence formula. A quadratic equation in A, called the indicial
equation, arises when the coefficient of x° is set to zero and qj is left arbitrary.

The two roots of the indicial equation can be real or complex. If complex they will occur in a conjugate
pair and the complex solutions that they produce can be combined (by using Euler’s relations and the identity
x@*ib = yap®ib Inxy ¢4 form real solutions. In this book we shall, for simplicity, suppose that both roots of the
indicial equation are real. Then, if A is taken as the larger indicial root, A = A; 2 A,, the method of Frobenius

always yields a solution

¥, (x) = x" i a,(k)x" (28.5)
n=0

to Eq. (28.1). [We have written a,(A,) to indicate the coefficients produced by the method when A = A,.]
If P(x) and Q(x) are quotients of polynomials, it is usually easier first to multiply (28.7) by their lowest
common denominator and then to apply the method of Frobenius to the resulting equation.

GENERAL SOLUTION

The method of Frobenius always yields one solution to (28.7) of the form (28.5). The general solution (see
Theorem 8.2) has the form y = c¢;y;(x) + c,y,(x) where ¢, and ¢, are arbitrary constants and y,(x) is a second
solution of (28.7) that is linearly independent from y;(x). The method for obtaining this second solution depends
on the relationship between the two roots of the indicial equation.

Case 1. If A, — A, is not an integer, then
¥ () =x" Y a,(h,)x" (28.6)
n=0
where y,(x) is obtained in an identical manner as y;(x) by the method of Frobenius, using A, in place of A,.

Case 2. If A, =A,, then
Y () =y () Inx+x" Y b,(h,)x" (28.7)
n=0
To generate this solution, keep the recurrence formula in terms of A and use it to find the coefficients

a,(n 2 1) in terms of both A and a,, where the coefficient a, remains arbitrary. Substitute these a,, into
Eq. (28.2) to obtain a function y(A, x) which depends on the variables A and x. Then

dy(A, x)
=— 28.8
¥,(%) ETY - ( )
Case 3. If A, — A, =N, a positive integer, then
Y () =d_y, (x) Inx +x™ Y d,(A,)x" (28.9)

n=0

To generate this solution, first try the method of Frobenius. with A,. If it yields a second solution, then
this solution is y,(x), having the form of (28.9) with d_; = 0. Otherwise, proceed as in Case 2 to generate
y(A, x), whence

320 = 10 =)y (9, (28.10)
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Solved Problems

28.1. Determine whether x =0 is a regular singular point of the differential equation

y” _ xyi + 2y — 0
As shown in Problem 27.1, x=0 is an ordinary pont of this differential equation, so it cannot be a regular
singular point.

28.2. Determine whether x =0 is a regular singular point of the differential equation

2x2y" + Tx(x + 1)y =3y =0

Dividing by 2x?, we have
T(x+1)
x

P(x)=

-3
and Q(x)= g

As shown in Problem 27.7, x =0 is a singular point. Furthermore, both
7 ) 3
xP(x)=5(x+l) and x Q(x)=—5

are analytic everywhere: the first is a polynomial and the second a constant. Hence, both are analytic at x =0, and
this point is a regular singular point.

28.3. Determine whether x =0 is a regular singular point of the differential equation

Xy +2x%y +y=0
Dividing by x*, we have

2 1
P(x)=— and Q(x)=—
X X
Neither of these functions is defined at x =0, so this point is a singular point. Here,

xP(x)=2 and xZQ(x):i

The first of these terms is analytic everywhere, but the second is undefined at x = 0 and not analytic there. Therefore,

x =0 is not a regular singular point for the given differential equation.

28.4. Determine whether x =0 is a regular singular point of the differential equation

8x*y” 4+ 10xy" + (x—1)y=0
Dividing by 8x2, we have
1 1

5
P(x)—a and Q(x)—a—g

Neither of these functions is defined at x = 0, so this point is a singular point. Furthermore, both

xP(x) = % and x’Q(x) = é(x -1

are analytic everywhere: the first is a constant and the second a polynomial. Hence, both are analytic at x =0, and
this point is a regular singular point.
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28.5.

28.6.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Find a recurrence formula and the indicial equation for an infinite series solution around x =0 for the
differential equation given in Problem 28.4.

It follows from Problem 28.4 that x = 0 is a regular singular point of the differential equation, so Theorem 24.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining
coefficients of like powers of x, we obtain

XMBAA — Dag + 10hag — ap] + X '[8( + DAa; + 100k + Day +ag — ay] + -+
+ X8+ n)A+n — Da, + 100h+n)a, +a,_,-a,]+---=0
Dividing by x* and simplifying, we have
[8A2 + 2X — 1]ag + x[(8A% + 18X + 9)a, + ag] + -+
+ X [8A+n)?+2\+n)—1la,+a,_}+---=0
Factoring the coefficient of a, and equating the coefficient of each power of x to zero, we find
(8A2+ 20— 1)ag =0 )
and, forn>1,
[AA+n)— 112 +n)+ 1]a,+a,_,=0

an = -l an—l
[4(\ +n) — 11200 + 1) +1] @)

or,

Equation (2) is a recurrence formula for this differential equation.
From (1), either a; =0 or

8A2+24—1=0 A3

It is convenient to keep a, arbitrary; therefore, we must choose A to satisfy (3), which is the indicial equation.

Find the general solution near x = 0 of 8x“y” + 10xy" + (x — 1)y = 0.

The roots of the indicial equation given by (3) of Problem 28.5 are A, =+, and A, =—1. Since A, =&, =2,

the solution is given by Egs. (28.5) and (28.6). Substituting A :% into the recurrence formula (2) of Problem 28.5
and simplifying, we obtain

-1

a =———a n>1
" 2n(4n+3) " (=1
-1 -1 1
Thus, a =—a,, a,=—a =—-dad,,
a7 a4 616 0
and y,(x) = ayx'"* l—ix+ix2+---
! 0 147 616

Substituting A = —4 into recurrence formula (2) of Problem 28.5 and simplifying, we obtain

an = _1 an—l
2n(4n —3)
1 -1 1
Thus, a Z_Ea()’ a, =%al ZE%’

1 1
and X)=ax | 1-—x+—x+-
»(x)=gq, 20
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28.7.

28.8.

The general solution is

Y =¢,y,(%) + ¢,5,(x)
1/4 ! ! 2 —-1/2 ! ! 2
=kx | 1-—x+—x" 4+ [+ kx I——x+—x" +--
14 616 2 40

where k; = ¢1ay and k, = c»a.
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Find a recurrence formula and the indicial equation for an infinite series solution around x = 0 for the

differential equation

2x2y" 4+ Tx(x + 1)y’ =3y =0

It follows from Problem 28.2 that x = 0 is a regular singular point of the differential equation, so Theorem 28.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining

coefficients of like powers of x, we obtain
K2 = Dag + Thag — 3ag] + X '[2(0 + DAay + Thag + T(A + Day — 3a;] + -+
+ X2+ )+ n— Da, + T +n—Da, _ + T\ + n)a, — 3a,] + - 0
Dividing by x* and simplifying, we have
A% + 5h = 3)ag + x[(2A2 + O\ + 4)a, + Thag] + -+
+x"[2(A+n)>+ 5 +n)—3la,+TA+n—Da,_}+---=0
Factoring the coefficient of g, and equating each coefficient to zero, we find

2\ + 50 =3)ay=0
and, forn > 1,

2A+n)—1[(A+n)+3la,+TA+n—1a,_; =0

- T +n-1) .
TR0 +n) - 1[A+n)+3] "

or,

Equation (2) is a recurrence formula for this differential equation.
From (1), either a; =0 or

202 +5L-3=0

It is convenient to keep a arbitrary; therefore, We require A to satisfy the indicial equation (3).

”

Find the general solution near x = 0 of 2x7y” + 7x(x + 1)y’ — 3y = 0.

(H

@)

&)

The roots of the indicial equation given by (3) of Problem 28.7 are A, =1 and A, =-3. Since A, -4, =1, the

solution is given by Egs. (28.5) and (28.6). Substituting A =1 into (2) of Problem 28.7 and simplifying,

2

we obtain

a, =%a,ﬂ (n=1)
Thus, a, =—an, a, =—%al =;47;a0,
and yl(x)zaox”z[l —%x+%x2 +)
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28.9.

28.10.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Substituting A = =3 into (2) of Problem 28.7 and simplifying, we obtain

a, =Man4 n=1)
n2n-"17)
21 7 49 7 343
Thus, alz—gao, azz—galz?ao, a3=—§a2:—1—a0, a,=0

and, since a4 =0, a, =0 for n > 4. Thus,

3 21 49 , 343 |
X)=ax|1l-=x+—x'-"—x
Y,(x)=a, [ 5 5 15

The general solution is

Y=y, (%) + ¢, y,(x)

=kx" l—lx+ﬁx2+--- +hyx l—g)c+£x2—gx3
18 792 5 5 15

where kl =14y and k2 = Crdy.

Find the general solution near x =0 of 3x“y” —xy" +y =0.

Here P(x) = —1/(3x) and Q(x) = 1/(3x%); hence, x = 0 is a regular singular point and the method of Frobenius is
applicable. Substituting Egs. (28.2) through (28.4) into the differential equation and simplifying, we have

ABAE =40+ ag + ' [BA2+ 20a; + - + X "[BA +1n)> — 4 +n) + 1]a, + --- =0
Dividing by x* and equating all coefficients to zero, we find
(BA2 — 4L+ 1)ay=0 (N
and BA+n? -4 +n)+1]a,=0 (n>1) 2
From (7), we conclude that the indicial equation is 31> — 4A + 1 = 0, which has roots A, = 1 and A, =1
Since A, — A, =2, the solution is given by Egs. (28.5) and (28.6). Note that for either value of A, (2) is satisfied by
simply choosing a,, =0, n > 1. Thus,
y,(x) = x' i ax"=ax y,(x)=x" i ax" =ax"

=0 =0
and the general solution is

¥ = i) + () = kpx + kox'?

where k; = ¢ay and k, = ¢, a.

Use the method of Frobenius to find one solution near x = 0 of x?y” + xy’ + x>y = 0.

Here P(x) = 1/x and Q(x) = 1, so x =0 is a regular singular point and the method of Frobenius is applicable.
Substituting Eqs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining
coefficients of like powers of x, we obtain

WA 2ap] + T+ D2ay] + T+ 2)%ay + agl + -+ + P+ n)2a, + a, 5] + - =0
Thus, Nag=0 @)
A+ 1)%a,; =0 2

and, for n =2, (A + n)’a, + a,_, =0, or,

a, =ﬁaH (n=2) 3
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The stipulation n > 2 is required in (3) because a,, _, is not defined for n =0 or n = 1. From (/), the indicial equation
is A2 =0, which has roots, A =X, =0. Thus, we will obtain only one solution of the form of (28.5); the second solution,
y,(x), will have the form of (28.7).

Substituting A =0 into (2) and (3), we find that a; =0 and a,=—(1/n%)a, _,. Since a, =0, it follows that

0 = a3 =as =a;=---. Furthermore,
1 1 1 _ 1
az——z%——m% 04——Raz——m%
ot 1 __1,__1
BT M T T E M BT T pay®
. (=Dk _
and, in general, a,, :W ag(k=1,2,3,...). Thus,
1 1 (-D*
Y, (x) = ayx° {1—22(“)2)8 +WX4 ot RIS x* +}
o =D,
= aoé 27 (nl)? x 4)

28.11. Find the general solution near x = 0 to the differential equation given in Problem 28.10.

One solution is given by (4) in Problem 28.10. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (3) of Problem 28.10, augmented by (2)
of Problem 28.10 for the special case n = 1. From (2), a; =0, which implies that 0 = a3 = a5 = a; = ---. Then, from (3),

-1 -1 1
a,=———4a,, a,= a, = a,,
T+ T 44 v+ (A2
Substituting these values into Eq. (28.2), we have

1 1
A, x) = L S I —— S T
YA a{x a2t Torarasa T }

x+k)

J
Recall that ﬁ(x =x""Inx. (When differentiating with respect to A, x can be thought of as a constant.) Thus,

A+2 1 A+2

M 2 X - X Inx
A +2)° (A +2)*

ar

=aq, [xllnx +

_ 2 xk+4 _ 2 xh+4
A+4)>°\+2)? A+4)*A+2)°
1
+ —
A+4)>A+2)°

Xt 1nx+--}

and
dy(\,x)
Ir

2, 1,
y,(x) = =ao[lnx+>x - —x Inx
o 2} 2?

A=
2 2
- 4322 Xt 4203 Xt 4222
1

1, B
=(1nx)ao[l—22(1!)x +Wx +:|

+a0|: zxz - 4X4 2(1+1J+'":|
2°(1h 272N 2

2 4 3
zyl(x)lnx+ao|:22?1!)2(l)_Tzcw(zj+-~-:| (1

which is the form claimed in Eq. (28.7). The general solution is y = ¢y (x) + ¢, y»(X).

x* lnx+~-~]
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28.12.

28.13.

28.14.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Use the method of Frobenius to find one solution near x = 0 of x%y” — xy’ + y=0.

Here P(x) =—1/x and Q(x) = 1/x%, so x = 0 is a regular singular point and the method of Frobenius is applicable.
Substituting Egs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining coefficients
of like powers of x, we obtain

A= 1D2ag+ N2y + -+ I+ ) =2+ n) + La, + =0
Thus, (A=1)2ay,=0 )
and, in general, [A+n)?=20\+n)+ 1]a,=0 )

From (/), the indicial equation is (A — 1)> =0, which has roots A; = A, = 1. Substituting A = 1 into (2), we obtain
n’a, =0, which implies that a,, = 0, n > 1. Thus, y,(x) = agx.

Find the general solution near x = 0 to the differential equation given in Problem 28.12.

One solution is given in Problem 28.12. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (2) of Problem 28.12. Solving it for
a,, in terms of A, we find that a,=0 (n>1), and when these values are substituted into Eq. (28.2), we have
y (A, x) = apx*. Thus,

dy(\,x) _
A

dy(\,x)
A

A
a,x” Inx

=a,xInx=y,(x)Inx
r=1

and Y, (x)=

which is precisely the form of Eq. (28.7), where, for this particular differential equation, b,(A)) =0 (n=0, 1, 2, ...).
The general solution is

y = c1y1(x) + eaya(x) = ky(x) + kox In x

where k; = ¢ ay, and k, = c,a.

Use the method of Frobenius to find one solution near x = 0 of x%y” + (x> — 2x)y’ + 2y =0.

Here
Px)=1- 2 and Q(x) :%
X X
so x =0 is a regular singular point and the method of Frobenius is applicable. Substituting, Eqs. (28.2) through

(28.4) into the left side of the differential equation, as given, and combining coefficients of like powers of x, we
obtain

A2 = 3L+ 2)ag] + X A2 = MNay + Aag] + -+
+ XA+ n)? =3+ n) + 2la, + A +n—Da, }+---=0

Dividing by x*, factoring the coefficient of a,, and equating the coefficient of each power of x to zero, we obtain
(A2 =3\ +2)ay=0 )
and, in general, [(A + n) — 2][(A+n) — 1]a, + (A+n— Da,_; =0, or,

1
n a,_,
A+n-=2

(nz1) @)

From (1), the indicial equation is A> — 3\ +2 = 0, which has roots A, =2 and A, = 1. Since A, — A, = 1, a positive
integer, the solution is given by Egs. (28.5) and (28.9). Substituting A =2 into (2), we have a,=—-(1/n)a, _,
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28.15.

from which we obtain

a, =-a,
-1

@ 2“1—2!%

4 =-ta,=-11g =1

3 32_ 321 (U 3‘0

. (=DF
and, in general, a, = ' a,. Thus,

< (=" n —x

n=at ¥ E a2 ae )
n=0 M:

Find the general solution near x = 0 to the differential equation given in Problem 28.14.

One solution is given by (3) in Problem 28.14 for the indicial. root A; = 2. If we try the method of Frobenius
with the indicial root A, = 1, recurrence formula (2) of Problem 28.14 becomes

which leaves a;, undefined because the denominator is zero when n = 1. Instead, we must use (28.70) to generate a
second linearly independent solution. Using the recurrence formula (2) of Problem 28.14 to solve sequentially for
a,(n=1,2,3,...) in terms of A, we find

1 1 1 1 -1

—a,, a,=——a,=———4d,, 0;=— a, = ay,
a1 7 !t M- 7 A+ Y v+ DAMA =D °
Substituting these values into Eq. (28.2) we obtain

_ 1 xh+l+ 1 xk+2_ 1 x;\.+3+...
A-1 A1) (A+DAA-1)

Yy, x)=aq, {xl

and, since A— A, =A—1,

(k—}uz)y(k,x):ao[()\’_l)xl_xkﬂ +lx1+2 1 h+3+__.:|

- X
A AA+1)

Then

i[(7u—7u )y(A,x)]=a {xl +=Dx* Inx —x**! lnx—L)c;‘+2 +lx7‘+2 Inx

RN A 0 22 A

+ 1 xk+3 + 1 xk+3 _ 1 xk+3 ll’l.X+"'
A+ AMA+1)? AMA+1)

and

d
=—1TJ(\h-
¥,(x) E (A =A)y(A, x)]

h=hy =1

1 1 1
=a| x+0-x"Inx—-x"+x Inx+=x*+=-x* —=x*Inx+---

2 4 2

2 51, 3.3
=(-Inx)ay| x" —=x" +=x"+- |[+ay| x—x +—x"+---
2 4
2 3 3

=—y1(x)lnx+a0x(1—x +Zx +]

This is the form claimed in Eq. (28.9), with d_, =-1, dy=ay, d, =0, d, :%ao,.... The general solution is
y=cy1(x) + cay(x).
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28.16.

28.17.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Use the method of Frobenius to find one solution near x = 0 of x%y” + xy’ + (x> = 1)y =0.
Here

P(x) =1 and Q(x):l—i2
X X

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Egs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

M2 = Dagl + O+ D2 = ay + 2 +2)% = 1ay + ag} + -+

+ [+ n)?— a, +a,_,}+---=0
Thus, A =1)ay=0 (7
[(A+1)>=1]a; =0 2

and, for n > 2, [A+n)> = 1la, +a,_,=0, or,
-1

a, maﬂf2 (n=2) 3

From (), the indicial equation is A2 — 1 = 0, which has roots A, = 1 and A, = 1. Since A, — A, = 2, a positive integer,
the solution is given by (28.5) and (28.9). Substituting A = 1 into (2) and (3), we obtain a; = 0 and

-1
a=——a n>2
" an+2) "7 ( )

Since a; =0, it follows that 0 = a3 = a5 = a; = ---. Furthermore,

-1 -1 -1 1 -1 -1

a=—4ad,=—_4a,, a,=—-a ="—F7"-4d,, d.=——a,=—F———4a,
T4 0 22 YAy o 2%2130 7 0 e@®) ¢ 2831410
and, in general,
) k=1, 2, 3, ..)
T g T
_ S (=1)" 2n
Thus, Y =ax Y, —————x )

=2l (n+ 1)

Find the general solution near x = 0 to the differential equation given in Problem 28.16.

One solution is given by (4) in Problem 28.16 for the indicial root A; = 1. If we try the method of Frobenius
with the indicial root A, =—1, recurrence formula (3) of Problem 28.16 becomes
1

- a
nn—=2) "°

which fails to define a, because the denominator is zero when n = 2. Instead, we must use Eq. (28.10) to generate
a second linearly independent solution. Using Eqs. (2) and (3) of Problem 28.16 to solve sequentially for
a,(n=1,2,3,..)) in terms of A, we find 0 =a, =a3=as = --- and

azz_ilam a, = ! 2 >
A+3)A+1D) A+5A+3)°(A+1)

Thus, yA, x) =a,| x* - ! PR 1 k PR T
A+3)(A+1) A+35A+3)(A+1)

Since A— A=A+ 1,

-1 1
A=) y\, x) = A+ Dt — A+2 hd g
( 2)Y(A, %) a"{( *hx (x+3)x +(x+5)(x+3)2x " }
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28.18.

and

%{(x L)y, )] =a, [x}‘ + A+ Dx* Inx + #xm

(A +3)°
_ 1 A+2 _ 1 xx+4
A+3) (A +35)° (A +3)
2 A+4 1

Tyt T3y

0
Then Y, (%)= ﬂ[(% = A)y(A,x)]

A=h, =-1

=q,| x”' T PP LI e S N Sy
4 64 32 16

=—l(lnx)a0x l—lx2+--- +a, x'l+lx—ix3+---
2 8 4 64

1 1 5
=——(Inx)y(xX) +ax" | 1+—x" ——x"+--
2( ), (x) + a, ( 4 64 )

X+ lnx+~-~]
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)

S . =5 .
This is in the form of (28.9) with d_ | =— %, dy=ay, d;=0,d, = iao, d;=0,d, = 6—4a0,....The general solution is

y=cyi(x) + c2y2(%).

Use the method of Frobenius to find one solution near x = 0 of x%y” + (x> + 2x)y’ — 2y = 0.

Here

P(x):1+E and Q(x):—i
X X

2

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

A2+ L= 2)agl + x4 T2 +30)a; + Aag] + -+

+ XM+ n)? + (A +n) = 2la, + A+n—Da,_ 1} +--=0

Dividing by x*, factoring the coefficient of a,, and equating to zero the coefficient of each power of x, we obtain

AN +X=2)ay=0
and, forn>1,
[(A+n)+2][A+n)—1la,+(A+n—Da,_,=0
which is equivalent to
1
an - 7an—]
A+n+2

n=1)

(H

@)

From (), the indicial equation is A2+ A — 2 = 0, which has roots A, = 1 and A, =—2. Since A, — A, = 3, a positive
integer, the solution is given by Egs. (28.5) and (28.9). Substituting A = 1 into (2), we obtain a, = [-1/(n + 3)]a, _ 1,

which in turn yields

1 31
[ :_Zao :_Zao
_o Lo (oryosty 3
LETFAT(TS | Ta [T
1 31
a; = a, =
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28.19.

28.20.
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and, in general,
w (=D*3! u
k3
= (<1)"x" (=1)"31x"
Hence, x)=a,x|1+3!
W= { ,,Z{(n+3)!} z (n+3)!

which can be simplified to

y(x )— 0(2 2x +x* —2e) 3

Find the general solution near x = 0 to the differential equation given in Problem 28.18.

One solution is given by (3) in Problem 28.18 for the indicial root A; = 1. If we try the method of Frobenius
with the indicial root A, = —2, recurrence formula (2) of Problem 28.18 becomes

n n n—1 (])
which does define all a,(n = 1). Solving sequentially, we obtain

1 1 1
Cﬁ = —'ao = —'T;ao az = —“Elh = 57[%

and, in general, a; = (—1)*ay/k!. Therefore,

— 1 1 (‘Dk k
Y, (x) =ayx” {1 Fx+;x et T x5

o (=D)'x 2 -
SV
n=0 n!

This is precisely in the form of (28.9), with d_; =0 and d,, = (—1)"ay/n!. The general solution is

Y =c1y1(%) + cp(x)

Find a general expression for the indicial equation of (28.7).

Since x =0 is a regular singular point; xP(x) and x>Q(x) are analytic near the origin and can be expanded in
Taylor series there. Thus,

XP(x) =Y p,x" = p, + px+ px’ + -

n=0

O =Y q,x" =g, +qx+qx"

n=0
Dividing by x and x?, respectively, we have
P()=pox™ +pr+pax+ - Q) =g P+ g Fgpt -
Substituting these two results with Egs. (28.2) through (28.4) into (28.1) and combining, we obtain
2 M = Dag + hagpy + apgel + -+ =0
which can hold only if
ag[ A+ (po = DA+ qol =
Since ay #0 (ay is an arbitrary constant, hence can be chosen nonzero), the indicial equation is

A+ (po— DA+gy=0 (1)
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28.21. Find the indicial equation of x?y” + xe*y’ + (x> — 1)y = 0 if the solution is required near x = 0.
Here
P=% and Q)=x--
x x

and we have
2
xP(x):e“=1+x+%+-~-

X0(x)=x"—1=-1+0x+0x>+1x° + 0x* +---

from which po =1 and ¢ = —1. Using (/) of Problem 28.20, we obtain the indicial equation as A> — 1 = 0.

28.22. Solve Problem 28.9 by an alternative method.

”

The given differential equation, 3x°y” — xy" + y =0, is a special case of Euler’s equation

bx™y ™ + by, x0T 4 box®y” + bixy’ + boy = §(x) ()

where b;(j=0, 1, ..., n) is a constant. Euler’s equation can always be transformed into a linear differential equation
with constant coefficients by the change of variables

z=Inx or x=¢€ 2)

It follows from (2) and from the chain rule and the product rule of differentiation that

dy _dyds_1dy_ .dy .
dx dzdx xdz dz

Cy_d(a)_df, ) [df i
dx*  dxldx | dx dz dz dz )|dx

2 2
fefefelh-rfe e
dz dz dz dz

Substituting Eqs. (2), (3), and (4) into the given differential equation and simplifying, we obtain

2
Iy _ddv 1
dz 3dz 3

Using the method of Chapter 9 we find that the solution of this last equation is y = c;e* + c,e!""»%, Then using (2)
and noting that e(//¥? = (¢%)!3, we have as before,

y=cx+ C2X1/3

28.23. Solve the differential equation given in Problem 28.12 by an alternative method.

The given differential equation, x>y” — xy” +y = 0, is a special case of Euler’s equation, (/) of Problem 28.22.

Using the transformations (2), (3), and (4) of Problem 28.22, we reduce the given equation to

2
d—f— @+y=0
dz dz

The solution to this equation is (see Chapter 9) y = ¢ye* + ¢,ze* Then, using (2) of Problem 28.22, we have for the
solution of the original differential equation
y=cix+cxInx

as before.
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28.24. Find the general solution near x = 0 of the hypergeometric equation

x(1=x)y"+[C—(A+B+ 1)x]y—ABy=0

where A and B are any real numbers, and C is any real nonintegral number.

Since x = 0 is a regular singular point, the method of Frobenius is applicable. Substituting, Egs. (28.2) through
(28.4) into the differential equation, simplifying and equating the coefficient of each power of x to zero, we obtain

AM+(C-Dr=0 )
as the indicial equation and
_(k+n)(k+n+A+B)+ABa @)
"“ A+n+DA+n+C) "

as the recurrence formula. The roots of (/) are A; =0 and A, = 1 — C; hence, A, — A, = C — 1. Since C is not an integer,
the solution of the hypergeometric equation is given by Egs. (28.5) and (28.6).
Substituting A = 0 into (2), we have

_n(n+A+B)+ AB

an+l - an
(n+D(n+C)

which is equivalent to

(A+n)(B+n)

an+l = .4

(n+1D)(n+C)

Thus
AB AB
“ TN

_(A+1)(B+1) _ AA+DBB+1)
STy T aicicH
_(A+2)(B+2) _ AA+1)A+2)BB+1)(B+2)
To3Cc+2) 31C(C + 1)(C +2)

0

3 0

and y(x) = ayF(A, B; C; x), where

F(A,B;C;x)=1+£x+wx2
11C 21C(C +1)
A(A+1)(A+2)B(B+1)(B+2) RN

31C(C +1)(C +2)

The series F(A, B; C; x) is known as the hypergeometric series; it can be shown that this series converges for—1 < x < 1.
It is customary to assign the arbitrary constant a, the value 1. Then y;(x) = F(A, B; C; x) and the hypergeometric series
is a solution of the hypergeometric equation.

To find y,(x), we substitute A = 1 — C into (2) and obtain

_(+1-C)n+1+A+B-C)+AB
" (n+2-C)n+1) !

L A-CrnthB-C+n+l)
m (n+2-C)n+1) "

or

Solving for a, in terms of a,, and again setting a; = 1, it follows that
yz(x):xl_CF(A—C+ 1,B-C+1;2—-C;x)

The general solution is y = ¢;y;(x) + cy5(x).
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Supplementary Problems

In Problems 28.25 through 28.33, find two linearly independent solutions to the given differential equations.

28.25. 2x% —xy +(1-x)y=0 28.26. 2%+ (X —x)y +y=0

28.27. 3x%” —2xy — (2 +x%)y=0 28.28. xy"+y —-y=0

28.29. %y +xy +xy=0 28.30. xy'+(x—x%)y —y=0

28.31. xy"—(x+1)y’—y=0 28.32. 4%y + (dx+ 207y +(Bx—1)y=0

28.33. X2+ (> -3x)y —(x—4)y=0

In Problem 28.34 through 28.38, find the general solution to the given equations using the method described in Problem 28.22.
28.34. 4x%y" +4xy’ —y=0 28.35. x%y’—3xy +4y=0

28.36. 2x%" +11xy’ +4y=0 28.37. x3y—2y=0

28.38. x%y” —6xy’ =0



CHAPTER 29

Some Classical
Differential Equations

CLASSICAL DIFFERENTIAL EQUATIONS

Because some special differential equations have been studied for many years, both for the aesthetic beauty
of their solutions and because they lend themselves to many physical applications, they may be considered
classical. We have already seen an example of such an equation, the equation of Legendre, in Problem 27.13.

We will touch upon four classical equations: the Chebyshev differential equation, named in honor of Pafnuty
Chebyshey (1821-1894); the Hermite differential equation, so named because of Charles Hermite (1822-1901);
the Laguerre differential equation, labeled after Edmond Laguerre (1834—1886); and the Legendre differential
equation, so titled because of Adrien Legendre (1752—1833). These equations are given in Table 29-1 below:

Table 29-1
(Note: n=0,1,2,3,...)

Chebyshev Differential Equation (1=x»y" —xy +n’y=0

Hermite Differential Equation V' =2xy' +2ny=0

Laguerre Differential Equation "+ =x)y +ny=0

Legendre Differential Equation (1 =x2)y" = 2xy" +n(n+1)y=0

POLYNOMIAL SOLUTIONS AND ASSOCIATED CONCEPTS

One of the most important properties these four equations possess, is the fact that they have polynomial
solutions, naturally called Chebyshev polynomials, Hermite polynomials, etc.

There are many ways to obtain these polynomial solutions. One way is to employ series techniques, as
discussed in Chapters 27 and 28. An alternate way is by the use of Rodrigues formulas, so named in honor of
O. Rodrigues (1794-1851), a French banker. This method makes use of repeated differentiations (see, for example,
Problem 29.1).

These polynomial solutions can also be obtained by the use of generating functions. In this approach, infinite
series expansions of the specific function “generates” the desired polynomials (see Problem 29.3). It should be
noted, from a computational perspective, that this approach becomes more time-consuming the further along
we go in the series.

290
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These polynomials enjoy many properties, orthogonality being one of the most important. This condition,
which is expressed in terms of an integral, makes it possible for “more complicated” functions to be expressed
in terms of these polynomials, much like the expansions which will be addressed in Chapter 33. We say that the
polynomials are orthogonal with respect to a weight function (see, for example, Problem 29.2).

We now list the first five polynomials (n =0, 1, 2, 3, 4) of each type:

®  Chebyshev Polynomials, T,,(x):
° Tyx)=1
o Tix)=x
o Tyx)=2x>—1
o Ty(x)=4x—3x

o Tux)=8x*-8x*+1

® Hermite Polynomials, H,(x):
° Hyx)=1
° H(x)=2x
o Hy(x)=4x*-2
°©  H(x)=8x"—12x
o Hy(x)=16x*—48x2+ 12

® Laguerre Polynomials, L,(x):
o Lyx)=1
° Lix)=—x+1
° Lyx)=x"—4x+2
° Lyx)=-x+9x>—18x+6

o Lyx)=x*—16x>+72x> - 96x + 24

® Legendre Polynomials, P, (x):
° Pyx)=1
° Pi(x)=x

© R=5 G D

° P(x)= %(5)&?3 —3x)

° P(x)= %(35)& —30x% +3)
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29.1.

29.2.

29.3.

294.

29.5.

SOME CLASSICAL DIFFERENTIAL EQUATIONS [CHAP. 29

Solved Problems

Let n =2 in the Hermite DE. Use the Rodrigues formula to find the polynomial solution.

The Hermite DE becomes y” — 2xy” + 4y = 0. The Rodrigues formula for the Hermite polynomials, H,(x), is
given by
dﬂ

n

H,(x)=(=1)"e" ~—(e™).

. :d - . . - .
Letting n=2, we have H,(x)=(=1)"¢" F(e *y=4x> —2. This agrees with our listing above and via direct
x
substitution into the DE, we see that 4x> — 2 is indeed a solution.

Notes: 1) Any non-zero multiple of 4x> — 2 is also a solution. 2) When n =0 in the Rodrigues formula, the “0-th
Derivative” is defined as the function itself. That is,

Hy(x)=(=1)"¢" %(e‘*2> =1 ) e ) =1.

Given the Laguerre polynomials L;(x) = —x + 1 and L,(x) = x> — 4x + 2, show that these two functions
are orthogonal with respect to the weight function e”* on the interval (0, =).

Orthogonality of these polynomials with respect to the given weight function means
J.(—x +1) (x* —4x +2)e "dx =0. This integral is indeed zero, as is verified by integration by parts and applying

0
L’Hospital’s Rule.

Using the generating function for the Chebyshev polynomials, 7,(x), find Ty(x), T(x), and T5(x).

The desired generating function is given by

1—7[)6 = iTn(x)tn’

1 -2t 41> 4<%
Using long division on the left side of this equation and combing like powers of # yields:
DO+ )"+ 2x2 = D+ ...

Hence, Ty(x) = 1, T;(x) = x, and T,(x) = 2x> — 1, which agrees with our list above. We note that, due to the nature of
the computation, the use of the generating function does not provide an efficient way to actually obtain the
Chebyshev polynomials.

Let n = 4 in the Legendre DE; verify that P,(x) = %(35)54 —30x* +3) is a solution.

The DE becomes (1 —x?) y” —2xy’ + 20y =0. Taking the first and second derivatives of P,(x), we obtain
, 1 ” 1 . e . .
P4(x):5(35x3 —15x) and P4(x)=5(105x2 —15). Direct substitution into the DE, followed by collecting like
terms of x,

(1= x*)P/(x) — 2xP](x) +20P,(x) =0.

The Hermite polynomials, H,(x), satisfy the recurrence relation

H, 1 1(x) = 2xH,(x) — 2nH,, _ | (x).

Verify this relationship for n = 3.
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29.6.

29.7.

29.8.

29.9.

If n = 3, then we must show that the equation H,(x) = 2xH5(x) — 6H,(x) is satisfied by the appropriate Hermite
polynomials. Direct substitution gives

16x* — 4822 + 12 = (2x)(8x> — 12x) — 6(4x% — 2).

We see that the right-side does indeed equal the left side, hence, the recurrence relation is verified.

Legendre polynomials satisfy the recurrence formula
(n+ P, 1(x) —2n+ 1xP,(x) + nP,_(x)=0.
Use this formula to find Ps (x).

Letting n = 4 and solving for Ps(x), we have P,(x)= §(9xP4(x) —4P,(x)). Substituting for P3(x) and for P(x),
we have P,(x)= é(63x5 —70x° +15x).

Chebyshev polynomials, 7, (x), can also be obtained by using the formula 7,,(x) = cos(n cos™'(x)). Verify
this formula for T5(x) = 2x> — 1.

Letting n=2, we have cos(2cos '(x)). Let o=cos '(x). Then cos(2c) = cos’(c) — sin?(ax) = cos*(ar)
— (1 - cos)(@)) =2 cos(ax) —1. But if or= cos™'(x), then x = cos(cr). Hence, cos(2 cos™'(x)) = 2x> — 1 = T(x).

The differential equation (1 — x?)y” + Axy’ + By = 0 closely resembles both the Chebyshev and Legendre
equations, where A and B are constants. A theorem of differential equations states that this differential
equation has two finite polynomial solutions, one of degree m, the other of degree n, if and only if
A=m+n—1 and B =—-mn, where m and n are nonnegative integers and n + m is odd.

For example, the equation (1 — x?)y” + 4xy’ — 6y = 0 has polynomial solutions of degree 2 and 3:
3
y=1+3x?and y= x+% (these are obtained by using the series techniques discussed in Chapter 27).

We note here that A=4=n+m—1 and B=-6=—-mn necessarily imply that m=2, n=3
(or conversely). Hence our theorem is verified for this equation.

Determine whether the three following differential equations have two polynomial solutions:
a) (1 =x2)y” +6xy’ =12y =0;b) (1 —x)y”" +xy’ +8y=0; ¢) (1 —x%)y” —xy’ +3y=0.

a) HereA=6=n+m—1,B=-mn=-12implies m = 3, n = 4; hence we have two finite polynomial solutions, one
of degree 3, the other of degree 4.

b) Here A=1 and B = 8; this implies m =2, n = —4; therefore, we do not have two such solutions. (We will have
one polynomial solution, of degree 2.)

c¢) Since A=-1, B=3 implies m :\/3_, n:—«/g, we do not have two polynomial solutions to the differential
equation.

Supplementary Problems

Verify H,(x) and H3(x) are orthogonal with respect to the weight function ¢ on the interval (=20, ®).

29.10. Find Hs(x) by using the recurrence formula H,, , (x) = 2xH,(x) — 2nH,, _ {(x).

29.11. The Rodrigues formula for the Legendre polynomials is given by

dﬂ
2"n!dx"

P,(x) = (@ -1y,
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Use this formula to obtain Ps(x). Compare this to the results given in Problem 29.6.

29.12.

29.13.

29.14.

Find P4(x) by following the procedure given in Problem 29.6.

Following the procedure in Problem 29.7, show that

cos(3 cos '(x)) = 4x° — 3x = T5(x).

Chebyshev polynomials satisfy the recursion formula

Ty 1) = 26T, (%) + T, _1(x) = 0.

Use this result to obtain 7’5(x).

29.15.

29.16.

29.17.

29.18.

29.19.

29.20.

1
Legendre polynomials satisfy the condition J.(Pn (x))*dx = % Show that this is true for Pz(x).
4 n+

Laguerre polynomials satisfy the condition J e (L,(x))*dx = (n!)>. Show that this is true for L,(x).
0

Laguerre polynomials also satisfy the equation L, (x) — nL, _(x) + nL, _ (x) =0. Show that this is true for L3(x).

Generate H,(x) by using the equation ¢ = z H"()f)l .
0 n:
Consider the “operator” equation WL,,(X), where m, n=0, 1, 2, 3, .... The polynomials derived from this
X

equation are called Associated Laguerre polynomials, and are denoted L”'(x). Find L3(x) and L}(x).

Determine whether the five following differential equations have two polynomial solutions; if they do, give the
degrees of the solutions: a) (1 —x2)y”+5xy’ —5y=0; b) (1 —x2)y" +8xy’ — 18y=0; ¢) (I —xD)y” +2xy’ + 10y =0;
d) (1 —x2)y" + ldxy’ — 56y =0; e) (1 —x2)y” + 12xy" — 22y = 0.



CHAPTER 30

Gamma and Bessel
Functions

GAMMA FUNCTION

The gamma function, I'(p), is defined for any positive real number p by

T'(p) =J:°x”"e’”dx (30.1)
Consequently, I'(1) = 1 and for any positive real number p,
I(p+1)=pl(p) (30.2)
Furthermore, when p = n, a positive integer,
I'(n+1)=n! (30.3)

Thus, the gamma function (which is defined on all positive real numbers) is an extension of the factorial function
(which is defined only on the nonnegative integers).
Equation (30.2) may be rewritten as

1
I'(p) = ;F(P +1) (30.4)
which defines the gamma function iteratively for all nonintegral negative values of p. I'(0) remains undefined,
because

Jim T(p) = lim L2 D _,
p—0" p—0" p

and lim T(p) = lim -2 F D _ .,
p—0" p—0” p

It then follows from Eq. (30.4) that T'(p) is undefined for negative integer values of p.
Table 30-1 lists values of the gamma function in the interval 1 < p < 2. These tabular values are used with
Egs. (30.2) and (30.4) to generate values of I'( p) in other intervals.

BESSEL FUNCTIONS

Let p represent any real number. The Bessel function of the first kind of order p, J,(x), is

d (_l)kx2k+p
J =
P(x) /;) 22k+pk!1—-(p+k+ 1) (305)

295
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The function J,(x) is a solution near the regular singular point x = 0 of Bessel’s differential equation of order p:
22y +xy + (2= p?y=0 (30.6)

In fact, J,,(x) is that solution of Eq. (30.6) guaranteed by Theorem 28.1.

ALGEBRAIC OPERATIONS ON INFINITE SERIES

Changing the dummy index. The dummy index in an infinite series can be changed at will without altering
the series. For example,

S S

n

S 1 1 1 1
z S
(n+1! 5 p+l)' 1! 21 31 41 5!

Change of variables. Consider the infinite series 2
or k=j—1, then

1
<+ 1)) - If we make the change of variables j=k + 1,

oo

= 1
Zg(k+1)!_27

Note that a change of variables generally changes the limits on the summation. For instance, if j = k + 1, it follows
that j= 1 when k=0, j = o when k = %, and, as & runs from O to o, j runs from 1 to o.
The two operations given above are often used in concert. For example,

Zk+1)v 2 —1)v 2 —1)v

j=2 k=2

Here, the second series results from the change of variables j=k+2 in the first series, while the third
series is the result of simply changing the dummy index in the second series from j to k. Note that all three series
equal

1 1 1

1
—+—t+—F+—+-=e—1
o2t 31 4!

Solved Problems

30.1. Determine I'(3.5).

It follows from Table 30-1 that I'(1.5) = 0.8862, rounded to four decimal places. Using Eq. (30.2) with p =2.5,
we obtain I'(3.5) =(2.5)['(2.5). But also from Eq. (30.2), with p=1.5, we have I'(2.5)=(1.5)I'(1.5). Thus,
T'(3.5)=(2.5)(1.5) T'(1.5) = (3.75)(0.8862) = 3.3233.

30.2. Determine I'(-0.5).

It follows from Table 30-1 that I'(1.5) = 0.8862, rounded to four decimal places. Using Eq. (30.4) with p =0.5,
we obtain I'(0.5) = 2I'(1.5). But also from Eq. (30.4), with p =-0.5, we have ['(-0.5) = -2I7(0.5). Thus, I'(-0.5)
=(-2)(2) I'(1.5) = —4(0.8862) = —3.5448.
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Table 30-1 The Gamma Function (1.00 <x < 1.99)

X I'(x) X I'(x) X T'(x) X I'(x)
1.00 1.0000 0000 1.25 0.9064 0248 1.50 0.8862 2693 1.75 0.9190 6253
1.01 0.9943 2585 1.26 | 0.9043 9712 1.51 0.8865 9169 1.76 0.9213 7488
1.02 0.9888 4420 1.27 0.9025 0306 1.52 0.8870 3878 1.77 0.9237 6313
1.03 0.9835 4995 1.28 0.9007 1848 1.53 0.8875 6763 1.78 0.9262 2731
1.04 0.9784 3820 1.29 | 0.8990 4159 1.54 0.8881 7766 1.79 0.9287 6749
1.05 0.9735 0427 1.30 | 0.8974 7070 1.55 0.8888 6835 1.80 0.9313 8377
1.06 0.9687 4365 1.31 0.8960 0418 1.56 0.8896 3920 1.81 0.9340 7626
1.07 0.9641 5204 1.32 | 0.8946 4046 1.57 0.8904 8975 1.82 0.9368 4508
1.08 0.9597 2531 1.33 0.8933 7805 1.58 0.8914 1955 1.83 0.9396 9040
1.09 0.9554 5949 1.34 | 0.8922 1551 1.59 0.8924 2821 1.84 0.9426 1236
1.10 0.9513 5077 1.35 0.8911 5144 1.60 0.8935 1535 1.85 0.9456 1118
1.11 0.9473 9550 1.36 | 0.8901 8453 1.61 0.8946 8061 1.86 0.9486 8704
1.12 0.9435 9019 1.37 0.8893 1351 1.62 0.8959 2367 1.87 0.9518 4019
1.13 0.9399 3145 1.38 0.8885 3715 1.63 0.8972 4423 1.88 0.9550 7085
1.14 0.9364 1607 1.39 6.8878 5429 1.64 0.8986 4203 1.89 0.9583 7931
1.15 0.9330 4093 1.40 | 0.8872 6382 1.65 0.9001 1682 1.90 0.9617 6583
1.16 0.9298 0307 1.41 0.8867 6466 1.66 0.9016 6837 1.91 0.9652 3073
1.17 0.9266 9961 1.42 | 0.8863 5579 1.67 0.9032 9650 1.92 0.9787 7431
1.18 0.9237 2781 1.43 0.8860 3624 1.68 0.9050 0103 1.93 0.9723 9692
1.19 0.9208 8504 1.44 | 0.8858 0506 1.69 0.9067 8182 | 1.94 0.9760 9891
1.20 0.9181 6874 1.45 0.8856 6138 1.70 0.9086 3873 1.95 0.9798 8065
1.21 0.9155 7649 1.46 | 0.8856 0434 1.71 0.9105 7168 1.96 0.9837 4254
1.22 0.9131 0595 1.47 0.8856 3312 1.72 0.9125 8058 1.97 0.9876 8498
1.23 0.9107 5486 1.48 0.8857 4696 1.73 0.9146 6537 1.98 0.9917 0841
1.24 0.9085 2106 1.49 | 0.8859 4513 1.74 0.9168 2603 1.99 0.9958 1326

30.3. Determine I'(—1.42).
It follows repeatedly from Eq. (30.4) that
1 1 1 1
T(-142)=—T(-042)=—— [F(0.58) ): —| —T1 .58))
-1.42 -1.421-0.42 1.42(0.42)| 0.58

30.4.

From Table 30-1, we have I'(1.58) = 0.8914, rounded to four decimal places; hence

I(-1.42) =

Prove that T'(p+ 1) pI'(p), p > 0.

The result lim,_,.. r’e

—r

I(p+1)= J:x(”“)"e’xdx =1lim

0 is easily obtained by first writing 7”¢™" as r”/e” and then using L’Hospital’s rule.

Using (30.1) and integration by parts, we have

=lim [—x” e

r—eo

08914
1.42(0.42)(0.58)

r—eo

xPe " dx
r +J~r -1 g

x? e dx
0 Up

=lim(~r"e” +0) + pj:x"*'e**dx = pI(p)
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30.5. Prove that T'(1) = 1.
Using Eq. (30.1), we find that

(1) = j:x‘ “le*dx =1lim Ore”‘dx

r—eo

—Jim— e‘ —lim(—e" +1)=1

r—yeo 0 r—eo

30.6. Prove that if p = n, a positive integer, then I'(n + 1) = n!.

The proof is by induction. First we consider n=1. Using Problem 30.4 with p=1 and then Problem 30.5,
we have

T+ D)=1T()=1(1)=1=1!

Next we assume that I'(n + 1) = n! holds for n = k and then try to prove its validity for n =k + 1:

I+ D+ 11=(+ DI+ 1) (Problem 30.4 with p =k + 1)
=(k+1)(k!) (from the induction hypothesis)
=(k+1)!

Thus, I'(n + 1) = n! is true by induction.
Note that we can now use this equality to define 0!; that is,

0l=TO+1)=T()=1
30.7. ProvethatI'(p+k+ D =(p+k)(p+k-D---(p+2)(p+ DI'(p+1).
Using Problem 30.4 repeatedly, where first p is replaced by p + &, then by p + k — 1, etc., we obtain

T(p+k+D)=Tl(p+k)+1]l=(p+ k) (p+k)
=(p+Il(p+k-D+11=(p+k)(p+k-DI(p+k-1)
==(p+h)(p+k-1)-(p+2(p+DI(p+1)

30.8. Express J.:e’x? dx as a gamma function.

1 _ L . . .
Let z = x> hence x = z'? and dx = 57 "?dz. Substituting these values into the integral and noting that as x goes

from O to ¢ so does z, we have

J"‘ef,xzdxzj“”efz 1271/2 dz:ljmz(l/z)flefzdzzlr l
0 0 2 290 2 (2

1
The last equality follows from Eq. (30.7), with the dummy variable x replaced by z and with P = 5

30.9. Use the method of Frobenius to find one solution of Bessel’s equation of order p:
x2y” + Xy' + (xz 7p2)y =0
Substituting Egs. (28.2) through (28.4) into Bessel’s equation and simplifying, we find that

DO = phag + 6P+ 17— pPlay + 24 [+ 2~ pPlay + ag) + -+

+xl+’1{[(7\+n)2_p2]an+an—2}+“':0
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30.10.

Thus, A —p?ag=0 [(A+1)>-pZla,=0 )
and, in general, [(A + n)* - p*la, + a, », =0, or,

1
a,= —mawz (n<2) 2)

The indicial equation is A2 — p* = 0, which has the roots A, = p and A, = —p (p nonnegative).

Substituting A = p into (/) and (2) and simplifying, we find that a; = 0 and

an:—¥an72 (nz22)
n(2p +n)
HCHCC,OZaI:a3:a5:a7:...and
a1 .
P2M(p+1)
a, =— 1 a, = 1 a
2+ 22 +(p+D
1 -1
ag =

T3 (p43) 2B (3 (p+(pa D)

and, in general,

D"

ay = a, (k=1
O K (p+R)p k=1 (p+2(p+D) (k=D
Thus, y(x) =x" 2 a,x" =x" [ao + ZGZkXZk:|
n=0 k=1
o« Z1)k 2
=ax’ |1+ Y, S 3)
i1 27k (p+ k) (pHk=1) - (p+2)(p+1)
. . 1 . -
It is customary to choose the arbitrary constant a, as a, = —————. Then bringing a,x” inside the brackets

2’T(p+1)
and summation in (3), combining, and finally using Problem 30.4, we obtain
1 P+i (=1yf x2+P
2'T(p+1) (P RT(p+ k +1)

y](x):
o ( l)k 2k+p

Z,Z()sz+pk!l"(p+k P

=1,

Find the general solution to Bessel’s equation of order zero.
For p =0, the equation is x%y” + xy’ + x%y =0, which was solved in Chapter 28. By (4) of Problem 28.10, one solution is

ln 2n
=g 3 EVE )x2

2n
n= 02

Changing n to k, using Problem 30.6, and letting g, = L =1 as indicated in Problem 30.9, it follows that

2°TO+1)
y1(x) = Jo(x). A second solution is [see (/) of Problem 28.11, with g, again chosen to be 1]

x* x* 1 x° 1 1
Y, (x)=Jy(x)Inx + {22(1!)2 - Q) (1 + 2]+ G [1 +5 + 3)— }
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which is usually designated by Ny(x). Thus, the general solution to Bessel’s equation of order zero is
¥ =c1Jy(x) + cNop(x).

Another common form of the general solution is obtained when the second linearly independent solution is not
taken to be Ny(x), but a combination of Ny(x) and Jy(x). In particular, if we define

2
Yo(x)=;[N0(x)+(y—ln2)J0(x)] )
where v is the Euler constant defined by

Yy =lim 1+l+l+-~-+l—lnk =0.57721566
koo 2 3 k

then the general solution to Bessel’s equation of order zero can be given as y = ¢;Jy(x) + ¢, Y(x).

30.11. Prove that

i (_l)k (2k)x2k71 o i (_1)kx2k+l
ST (prk+l) A2 (p+ k+2)

Writing the k£ =0 term separately, we have

i (=D*k)x*" ‘0+i (=D k)x**!
S22 T (p+ k+1) 2RI T(p+k+1)

which, under the change of variables j = k — 1, becomes
S (DTG DYTT & (=D)(=1)72() + D!
;)22”““”(j+1)!1"(p+j+1+1) _;22“””(j+1)!1"(p+j+2)

_ N (=D’2¢j + Dx*"!

= AT D) T )

oo (—l)sz‘/H
__,.,Zgzzf*P*‘jzr(p+j+2)

The desired result follows by changing the dummy variable in the last summation from j to k.

30.12. Prove that

_i (_l)kx2k+p+2 B 2 (—l)k(Zk)x2k+p
ey 22k+p+'k!l"(p+k+2) Py 22k+pk!F(p+k+1)
Make the change of variables j=k + 1:

(_l)j—lx2(‘/'—l)+p+2

- (=1 52k +r+2 -
‘E, 2P (p + k +2) :_g{zz”"‘)“’“(j—l)!l"(p+j—1 +2)

o (_1)jx2j+p
_;22’*”*‘(j—1>!r<p+j+1>

Now, multiply the numerator and denominator in the last summation by 2j, noting that j(j—1)!=;! and
2%+r=1(2) = 2%*P_ The result is

i =D/@jx*r
S22 IT(p+ j+1)

Owing to the factor j in the numerator, the last infinite series is not altered if the lower limit in the sum is changed from
j=11t0,j=0. Once this is done, the desired result is achieved by simply changing the dummy index from j to k.
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d . N
30.13. Prove That dx[ XL @]= 2 ().

We may differentiate the series for the Bessel function term by term. Thus,

[ "y (x)]— "”i SR
P = X T+ p+1+1)

dle (_])kx2k+2p+2
Tdx ,;)ZZk*”(Z)k!F(k+p+2)

_ i (=D 2k +2p +2)x2 2!
o 22T RI2T(k+ p+2)

Noting that 2I'(k+p + 2) = 2(k + p + DI'(k+ p + 1) and that the factor 2(k + p + 1) cancels, we have

d 1 o (- l)k 2k+2p+1
—[xP"T L (x)]=
dx[ prt()] ;5 2% PRI T(k + p +1)

_ p+1
=x""J, (x)
For the particular case p =0, it follows that

L (0 = 5y (1)
dx

30.14. Prove that xJ;(x) = pJ,(x) — xJ, ; 1(x).
We have

( 1)k 2k+p oo
22k+”k‘r(p+k+1) g‘z“*“‘kvr(p+k+2)

- (=1) px2k+/) (- l)kx2k+p+2
_Z; R IT(p+k+1) Z ¢ 2PN T (p + k +2)

( I)A 2k+p+1

Pl ()=, (x) = pz

Using Problem 30.12 on the last summation, we find

- (=1)* px?*+? = (1) k)T
() =xJ, ()= 2%+ p + 2 krppy
&2 KT(p+k+1) =2 KT(p+k+1)
oo ( l)k(p+2k)x2k+p
=¥ RIT(p+k+1)

=3/ (x)

For the particular case p =0, it follows that xJ;(x) = —xJ;(x), or

Jo(x) =J,(x)

30.15. Prove that xJ,(x) = —pJ,,(x) + xJ,,_;(x).

( l)kx2k+p 0 (_l)kx2k+p—l
- J x)+xJ X)=— X
Py () + 3,0 (x) pzzzk“’kvr(pwﬂ) g'ozzk*p*‘k!r(pw)

301
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Multiplying the numerator and denominator in the second summation by 2(p + k) and noting that (p + K)I'(p + k)
=T(p+k+1), we find

3 D' =p)r*” + 3 =D 2(p+k)x* "

-pJ (x)+xJ, _ (x
14 ,,( ) p—l( ) k:022k+pk!1—~(p+k+1) k:022k+pkfr(p+k+1)

o 2*PRIT(p+k+1)

—D*Qk + p)x**r ,
> T =)
S RIT(p+ k+1)

i D =p +2(p + 0"

30.16. Use Problems 30.14 and 30.15 to derive the recurrence formula
2p
J, ()= TJP(X) -J, (%)
Subtracting the results of Problem 30.15 from the results of Problem 30.14, we find that
0= 2pJ,(x) = xSy 1(0) = ], 1 (2)
Upon solving for J,,,(x), we obtain the desired result.

30.17. Show that y = xJ,(x) is a solution of xy” —y" — x*J§(x) = 0.

First note that J;(x) is a solution of Bessel’s equation of order one:
X2T7(x) + xJ{(x) + (& = DJy(x) =0 )

Now substitute y = x.J,(x) into the left side of the given differential equation:
1 (0] = 0101 = x2JG00) = X[ 27{(x) + 27 ()] = [/1(0) + xJ{(0)] = °T5(x)
But J4(x) = —J;(x) (by (/) of Problem 30.14), so that the right-hand side becomes
XA (x) + 2xJ1(x) = J1(x) = xJ{(x) + 2201 (x) = X2T 7 (%) + xJ{(x) + (2 = 1DJ;(x) =0

the last equality following from (7).

30.18. Show that y= \/;Jm(x) is a solution of x%y” + (x> — 2)y =0.

Observe that J3(x) is a solution of Bessel’s equation of order 3;
2 7 ’ 2 9
X J3/2(x)+xJ3/2(x)+(x —4]J3,2(x)=0 )
Now substitute y = \/;Js ,,(x) into the left side of the given differential equation, obtaining

Cxd, ,(O] + (% = 2Wxd, (%)

1 — - 4 ”
=x2 {—Zx P20, () + xR (x) + x”zlm(x)} + (= 2)x'"2 T, (x)

= J—[xzjgjz(x) +xJ,(x) + (xz - ZJJM()C)} =0

the last equality following from (7). Thus \/;J3 1, (x) satisfies the given differential equation.
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30.19.
30.20.
30.21.
30.22.
30.23.

30.24.

30.25.

30.26.

30.27.

30.28.

30.29.

30.30.

30.31.

Supplementary Problems

Find T'(2.6).
Find T'(~1.4).
Find T'(4.14).
Find I'(=2.6).
Find I'(~1.33).

0o 3

Express IO e “ dx asa gamma function.
- 4 o

Evaluate J; xle* du.

<D (2k) 2! oo 1) 2!
Prove that Z (Zki)l (2k)x =- 2k( )'x
027 kI T(p+ k) S22k T(p+k+1)

Prove that %[xf”.lp (O]==x7"J,,,(x).
Hint: Use Problem 30.11.

Prove that J, _;(x) —J, . 1(x) = 2J(x).

(a) Prove that the derivative of (1x*)[J (x)+J](x)]is xJg (x).
Hint: Use (1) of Problem 30.13 and (/) of Problem 30.14.

1
(b) Evaluate jo xJ§(x) dx in terms of Bessel functions.

Show that y = xJ,(x) is a solution of x>y” — xy’ + (1 + x> — n?)y = 0.

Show that y = x2/,(x) is a solution of xy” — 3y’ + xy = 0.
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An Introduction to
Partial Differential
Equations

INTRODUCTORY CONCEPTS

A partial differential equation (PDE) is a differential equation in which the unknown function depends on
two or more independent variables (see Chapter 1). For example,

u, —3u, =0 (31.1)

is a PDE in which u is the (unknown) dependent variable, while x and y are the independent variables. The def-
initions of order and linearity are exactly the same as in the ODE case (see Chapters 1 and 8) with the proviso
that we classify a PDE as quasi-linear if the highest-order derivatives are linear, but not all lower derivatives
are linear. Thus, Eq. (31.1) is a first-order, linear PDE, while

3z Iz (9z)
a—;+a—;—(—z}2x+y—4 (31.2)

3
is a second-order, quasi-linear PDE due to the [ﬂ] term.

Jx

Partial differential equations have many applications, and some are designated as classical, much like their ODE
counterparts (see Chapter 29). Three such equations are the heat equation

d’u 19du
&? = zz, (31.3)
the wave equation
’u 1 d%u
Ko G

304
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and Laplace’s equation (named in honor of P. S. Laplace (1749-1827), a French mathematician and
scientist)

2’z 9’z

2 + 2

Jdx*  dy

=0. (31.5)

These equations are widely used as models dealing with heat flow, civil engineering, and acoustics to name but
three areas. Note that & is a positive constant in Eqgs. (37.3) and (31.4).

SOLUTIONS AND SOLUTION TECHNIQUES

If a function, u(x, y, z, ...), is sufficiently differentiable — which we assume throughout this chapter for all
functions — we can verify whether it is a solution simply by differentiating u the appropriate number of times
with respect to the appropriate variables; we then substitute these expressions into the PDE. If an identity is
obtained, then u solves the PDE. (See Problems 31.1 through 31.4.)

We will introduce two solution techniques: basic integration and separation of variables.

Regarding the technique of separation of variables, we will assume that the form of the solution of the PDE
can be “split off”” or “separated” into a product of functions of each independent variable. (See Problems 31.4
and 31.11). Note that this method should not be confused with the ODE method of “separation of variables”
which was discussed in Chapter 4.

Solved Problems

31.1.  Verify that u(x, ) = sin x cos k¢ satisfies the wave equation (31.4).

Taking derivatives of u leads us to u, = cos x cos kt, u,, = —sin x cos kt, u,=— k sin x sin kt, and u,, = —k>
. 1 R . 1 . . .
sin x cos kt. Therefore u,, = ?un implies —sin x cos kt = = (— K? sin x cos kf) = — sin x cos kt; hence, u indeed

is a solution.

31.2. Verify that any function of the form F(x + k7) satisfies the wave equation, (31.4).

Let u=x+ks; then by using the chain rule for partial derivatives, we have F,=Fu. =F,(1)=F,;

1 1
Fxx:Fuuux:E\fx(l):Fx'Ft:Fuut:Fu(k);Ftt: FuuutzkzFuu'Hence’Fxx:E( = F :p(kzF ):F;m,SOWC

x> u — 52t uu

have verified that any sufficiently differentiable function of the form F (x + kz) satisfies the wave equation. We note

that this means that functions such as /X + &, tan"'(x + kf) and In (x + k) all satisfy the wave equation.

31.3. Verify u(x, f) = e X sin x satisfies the heat equation (31.3).

Differentiation implies u, = ™ cos x, u,,=— e sin x, u, = — ke™ sin x. Substituting u,, and u, in (31.3)

clearly yields an identity, thus proving that u(x, 1) = e sin x indeed satisfies the heat equation.

31.4. Verify u(x, 1) = (5x — 6x° + x”)t% satisfies the PDE x°t%u,,, — 9x%t?u,, = tu,,, + 4u,.

We note that u(x, ) has a specific form; i.e., it can be “separated” or “split up” into two functions: a function
of x times a function of 7. This will be discussed further in Problem 31.11. Differentiation of u(x, t) leads to:

Uy = (5= 30x* + 9x®)(30r%), w,, = (—120x% + 72x7)(10), u,, = (—=120x> + 72x7)(6F), and u,, = (5x — 6x° + x°)(301%).
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31.5.

31.6.

31.7.

31.8.

31.9.

31.10.

31.11.

AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS [CHAP. 31

Algebraic simplification shows that

2312 (5 -30x* + 9x%) (301 — 9x%12 (5x — 6x° +x°) (301%) =
1(=120x3 + 72x7)(617) + 4(— 120> + 72x7) (¢9)

because both sides reduce to 720x7#¢ — 1200x°#°. Hence, our solution is verified.

Let u = u(x, y). By integration, find the general solution to u, =0.

The solution is arrived at by “partial integration”, much like the technique employed when solving “exact”
equations (See Chapter 5). Hence, u (x, y) =f(y), where f(y) is any differentiable function of y. We can write this
symbolically as

u(x,y) = J.uﬁx = jO dx=f(y).

We note that a “+ C” is not needed because it is “absorbed” into f(y); that is, f(y) is the most general “constant”
with respect to x.

Let u = u(x, y, z). By integration, find the general solution to «, = 0.

Here, we see by inspection that our solution can be written as f(y, z).

Let u = u(x, y). By integration, find the general solution to u, = 2x.

Since, one antiderivative of 2x (with respect to x) is x2, the general solution is [2xdx = x2 + f(y); where f()
is any differentiable function of y.

Let u = u(x, y). By integration, find the general solution to u, = 2x, u(0, y) = 1n y.

By Problem 31.7, the solution to the PDE is u(x, y) = x> + f(y). Letting x = 0 implies u(0, y) = 0> + f(y) = In y.
Therefore f(y) = In y, so our solution is u(x, y) = x>+ In y.

Let u = u(x, y). By integration, find the general solution to u, = 2x.

Noting that an antiderivative of 2x with respect to y is 2xy, the general solution is given by 2xy + g(x), where
g(x) is any differentiable function of x.

Let u =u(x, y). By integration, find the general solution to u,, = 2x.

Integrating first with respect to y, we have u, = 2xy + f(x), where f(x) is any differentiable function of x. We
now integrate u, with respect to x, we arrive at u(x, y) = ¥’y + g(x) + h(y), where g(x) is an antiderivative of f(x), and
where A(y) is any differentiable function of y.

We note that if the PDE was written as u,, = 2x, our results would be the same.

Let u(x, 7) represent the temperature of a very thin rod of length 7, which is placed on the interval
{x/0 < x < 7}, at position x and time 7. The PDE which governs the heat distribution is given by

32u_18u

ox2 kot

where u, x, t and k are given in proper units. We further assume that both ends are insulated; that is,
u(0, 1) = u(m, t) = 0 are impose “boundary condition” for # = 0. Given an initial temperature distribution
of u(x, 0) =2 sin 4x— 11 sin 7x, for 0 < x < 7, use the technique of separation of variables to find
a (non-trivial) solution, u(x, 7).
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We assume that u(x, ) can be written as a product of functions. That is, u(x, f) = X(x)7(t). Finding the appro-
priate derivatives, we have u,, = X” (x)T(z) and u, = X(x)T’(). Substitution of these derivatives into the PDE yields
the following.

X"(X)T(t) = %X(x)T'(t). (N

Equation (/) can be rewritten as
X"(x) _T@)
X(x) kTG

@)

We note that the left-hand side of Eq. (2) is solely a function of x, while the right-hand side of this equation
contains only the independent variable ¢. This necessarily implies that both ratios must be a constant, because there
are no other alternatives. We denote this constant by c:

X'(x)_T® _

X(x) k@) &
We now separate Eq. (3) into two ODE:s:
X" (x)—cX(x)=0 4
and
T'(t) — ckT (t) = 0. (&)

We note that the Eq. (4) is a “spatial” equation, while Eq. (5) is a “temporal” equation. To solve for u(x, 1), we
must solve these two resulting ODEs.

We first turn our attention to the spatial equation, X” (x) — ¢X (x) = 0. To solve this ODE, we must consider our
insulated boundary conditions; this will give rise to a “boundary value problem” (see Chapter 32). We note that
u(0, ) =0 implies that X(0) =0, since 7(f) cannot be identically O, since this would produce a trivial solution;
similarly, X(7r) = 0. The nature of the solutions to this ODE depends on whether c is positive, zero or negative.

Ve Jex

If ¢ >0, then by techniques presented in Chapter 9, we have X(x) =c,e*" +c,e ", where ¢; and ¢, are

determined by the boundary conditions. X(0) = c;e® + c,e’ = ¢; + ¢, =0 and X(7)= cleﬁ” + ¢, V" These two

equations necessarily imply that ¢; = ¢, = 0, which means that X(x) = 0 which renders u(x, 7) trivial.

If ¢=0, then X(x) =cx+c,, where ¢; and ¢, are determined by the boundary conditions. Here again,
X(0) = X(m) =0 force ¢; = ¢, =0, and we have u(x, ) =0 once more.

Let us assume c < 0, writing ¢ =— A%, A >0 for convenience. Our ODE becomes X” (x) + A2X (x) = 0, which
leads to X(x) = ¢; sin Ax + ¢, cos Ax. Our first boundary condition, X(0) =0 implies ¢, = 0. Imposing X(7) =0, we
have ¢, sin Axr=0.

If we let A=1, 2, 3, ..., then we have a non-trivial solution for X(x). That is, X(x) = ¢; sin nx, where n is a
positive integer. Note that these values can termed “eigenvalues” and the corresponding functions are called “eigen-
functions” (see Chapter 33).

We now turn our attention to Eq. (5), letting ¢ =-A?>=—n?, where n is a_positive integer. That is,
T’(r) + n?kT(r) = 0. This type of ODE was discussed in Chapter 4 and has T(¢) =c,e”" " as a solution, where c; is
an arbitrary constant.

—n*ke —nkt

Since u(x, 1) = X(x)T(t), we have u(x, 1) = ¢y sin nx c;e =a,e sin nx, where a, = c;c3. Not only does
u(x,t)y=a,e” K Sin nx satisfy the PDE in conjunction with the boundary conditions, but any linear combination of
these for different values of n. That is,

N 2
u(x, )= Zane"rk' sinnx, ©6)
n—1
where N is any positive integer, is also a solution. This is due to the linearity of the PDE. (In fact, we can even have
our sum ranging from 1 to oo). N

We finally impose the initial condition, u(x, 0) = 2 sin 4x — 11 sin 7x, to Eq. (6). Hence, u(x,0) = Zan sin nx.

Lettingn=4, as=2 and n="7, a; =-11, we arrive at the desired solution, n=1
u(x, 1) =271 sin 4x — 1174 sin 7x. )

It can easily be shown that Eq. (7) does indeed solve the heat equation, while satisfying both boundary
conditions and the initial condition.
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31.12.

31.13.

31.14.

31.15.

31.16.

31.17.
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Supplementary Problems

Verify that any function of the form F(x — kr) satisfies the wave equation (37.4).

Verify that u = tanh (x — k#) satisfies the wave equation.

If u = f(x—y), show that ? +%:o‘

x dy
Verify u(x, 1) = (55 + 22x% + x'?) sin 2¢ satisfies the PDE 12x*u,, — X’u,,, = 4u,,

A function u(x, y) is called harmonic if it satisfies Laplace’s equation; that is, i, + u,, = 0. Which of the following
functions are harmonic: (@) 3x + 4y + 1; (b) €3* cos 3y; (¢) > cos 4y; (d) In (x> + y?); (e) sin(e™) cos(e?)?

Find the general solution to u, = cos y if u(x, y) is a function of x and y.

Find the general solution to u, = cos y if u(x, y) is a function of x and y.

Find the solution to u, = 3 if u(x, y) is a function of x and y, and u(x, 0) = 4x + 1.

Find the solution to u, = 2xy + 1 if u(x, y) is a function of x and y, and u(0, y) = cosh y.

Find the general solution to u,, =3 if u(x, y) is a function of x and y.

Find the general solution to u,, = 8xy® if u(x, y) is a function of x and y.

Find the general solution to u,,, = -2 if u(x, y) is a function of x and y.

Let u(x, 7) represent the vertical displacement of string of length 7, which is placed on the interval {x/0 < x < 7}, at

position x and time ¢. Assuming proper units for length, times, and the constant k, the wave-equation models the
displacement, u(x, 7):

’u _ 1 d'u

oxt kKol

Using the method of separation of variable, solve the equation for the u(x, f), if the boundary conditions
u(0, 1) = u(m, t) = 0 for 2 0 are imposed, with initial displacement u(x, 0) = 5 sin 3x — 6 sin 8x, and initial velocity
u(x,0)=0for0<x<m.



Second-Order
Boundary-Value
Problems

STANDARD FORM
A boundary-value problem in standard form consists of the second-order linear differential equation
Y+ Py + Q(x)y = ¢ (x) (32.1)
and the boundary conditions
o y@) + By (@=n

(32.2)
o yb)+ By (b)=7

where P(x), O(x), and ¢(x) are continuous in [a, b] and oy, o, B, B, %, and 7, are all real constants.
Furthermore, it is assumed that ¢ and 3, are not both zero, and also that o, and 3, are not both zero.

The boundary-value problem is said to be homogeneous if both the differential equation and the boundary
conditions are homogeneous (i.e. ¢(x) =0 and ¥, = 5= 0). Otherwise the problem is non-homogeneous. Thus
a homogeneous boundary-value problem has the form

Y+ P(x)y’ + Q(x)y = 0;
oy y(a)+ By (@)=0 (32.3)
o y(b)+ B, y'(b)=0

A somewhat more general homogeneous boundary-value problem than (32.3) is one where the coefficients P(x)
and Q(x) also depend on an arbitrary constant A. Such a problem has the form

¥+ P(x, My + O(x, L)y = 0;
oy y@a)+ B y'(@=0 (32.4)
o y(b)+ B,y (h)=0

Both (32.3) and (32.4) always admit the trivial solution y(x) = 0.

309
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SOLUTIONS

A boundary-value problem is solved by first obtaining the general solution to the differential equation,
using any of the appropriate methods presented heretofore, and then applying the boundary conditions to evaluate
the arbitrary constants.

Theorem 32.1. Let y,(x) and y,(x) be two linearly independent solutions of
Y+ Py + 0y =0

Nontrivial solutions (i.e., solutions not identically equal to zero) to the homogeneous boundary-
value problem (32.3) exist if and only if the determinant

a,y,(@) + Byi(a@)  o,y,(a) + By (a)

4 7 32.5
o,y (b) + B,y (b)  04,y,(b) + B,y (b) ( )

equals zero.

Theorem 32.2. The nonhomogeneous boundary-value problem defined by (32.7) and (32.2) has a unique
solution if and only if the associated homogeneous problem (32.3) has only the trivial solution.

In other words, a nonhomogeneous problem has a unique solution when and only when the associated homogeneous
problem has a unique solution.

EIGENVALUE PROBLEMS

When applied to the boundary-value problem (32.4), Theorem 32.1 shows that nontrivial solutions may
exist for certain values of A but not for other values of A. Those values of A for which nontrivial solutions do
exist are called eigenvalues; the corresponding nontrivial solutions are called eigenfunctions.

STURM-LIOUVILLE PROBLEMS
A second-order Sturm—Liouville problem is a homogeneous boundary-value problem of the form
[P()Y'] + q(x)y + Aw(x)y = 0; (32.6)
oy y(a)+ By (a)=0

32.7
oy (b) + By (b)=0 (27

where p(x), p’(x), g(x), and w(x) are continuous on [a, b], and both p(x) and w(x) are positive on [a, b].

Equation (32.6) can be written in standard form (32.4) by dividing through by p(x). Form (32.6), when
attainable, is preferred, because Sturm-Liouville problems have desirable features not shared by more general
eigenvalue problems. The second-order differential equation

a(X)y” + ay(x)y’ + ag(x)y’ + hr(x)y =0 (32.8)

where a,(x) does not vanish on [a, b], is equivalent to Eq. (32.6) if and only if @5(x) = a;(x) (See Problem 32.15.)
This condition can always be forced by multiplying Eq. (32.8) by a suitable factor. (See Problem 32.16.)

PROPERTIES OF STURM-LIOUVILLE PROBLEMS

Property 32.1. The eigenvalues of a Sturm-Liouville problem are all real and nonnegative.

Property 32.2. The eigenvalues of a Sturm-Liouville problem can be arranged to form a strictly increasing
infinite sequence; that is, 0 <A; < A, < A3 < --- Furthermore, A,, — % as n — o,
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Property 32.3. For each eigenvalue of a Sturm-Liouville problem, there exists one and only one linearly

independent eigenfunction.

[By Property 32.3 there corresponds to each eigenvalue A, a unique eigenfunction with lead coefficient

unity; we denote this eigenfunction by e, (x).]

Property 32.4. The set of eigenfunctions {e;(x), e,(x), ...} of a Sturm—Liouville problem satisfies the relation

32.1.

32.2.

32.3.

Lb w(x)e,(x)e,, (x) dx =0 (32.9)

for n # m, where w(x) is given in Eq. (32.6).

Solved Problems

Solve y” + 2y =3y =0; y(0) =0, y'(1) =0.

This is a homogeneous boundary-value problem of the form (32.3), with P(x) =2, Q(x)=-3, o, =1, 3,=0,
=0, B,=1,a=0, and b= 1. The general solution to the differential equation is y = ¢;e™>* + c,¢* Applying the
boundary conditions, we find that ¢; = ¢, = 0; hence, the solution is y = 0.

The same result follows from Theorem 32.1. Two linearly independent solutions are y;(x) = e~>* and y,(x) = e%;
hence, the determinant (32.5) becomes

=e+3e’

1
-3¢ e

Since this determinant is not zero, the only solution is the trivial solution y(x) = 0.

Solve y” =0; y(=1) =0, y(1) —2y’(1) = 0.

This is a homogeneous boundary-value problem of form (32.3), where P(x) = Q(x) =0, o, =1, B, =0, o, =1,
B,=-2,a=-1, and b = 1. The general solution to the differential equation is y = ¢; + ¢,x. Applying the boundary
conditions, we obtain the equations ¢; — ¢, = 0 and ¢; — ¢, = 0, which have the solution ¢, = ¢,, ¢, arbitrary. Thus, the
solution to the boundary-value problem is y = c(1 + x), ¢, arbitrary. As a different solution is obtained for each
value of ¢,, the problem has infinitely many nontrivial solutions.

The existence of nontrivial solutions is also immediate from Theorem 32.1. Here y,(x) = 1, y,(x) = x, and deter-
minant (32.5) becomes

1 -1
1 -1

‘:0

Solve y” + 2y -3y =9x; y(0)=1, y'(1) = 2.

This is a nonhomogeneous boundary-value problem of forms (32.7) and (32.2) where ¢(x)=x, =1, and
Y%= 2. Since the associated homogeneous problem has only the trivial solution (Problem 32.1), it follows from
Theorem 32.2 that the given problem has a unique solution. Solving the differential equation by the method of
Chapter 11, we obtain

y=cie 4 et —3x -2
Applying the boundary conditions, we find
Ci+c=2=1 —3cie+ce—3=2
3e—-5 5+9¢7
whence = — 6= =
e+3e e+3e
(Be —35)e™ +(5+9¢7)e”
y = -3
e+3e”

—-3x-2

Finally,
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Solve y”=2; y(-1) =5, y(1) = 2y’(1) = 1.

This is a nonhomogeneous boundary-value problem of forms (32.7) and (32.2), where ¢(x) =2, =5, and
%= 1. Since the associated homogeneous problem has nontrivial solutions (Problem 32.2), this problem does not
have a unique solution. There are, therefore, either no solutions or more than one solution. Solving the differential
equation, we find that y = ¢, + ¢,x + x%. Then, applying the boundary conditions, we obtain the equations ¢, — ¢, = 4
and ¢, — c,= 4; thus, ¢, =4 + ¢,, ¢, arbitrary. Finally, y = ¢,(1 + x) + 4 +x%; and this problem has infinitely many
solutions, one for each value of the arbitrary constant c,.

Solve y”=2; y(-=1) =0, y(1) = 2y’(1) = 0.

This is a nonhomogeneous boundary-value problem of forms (32.7) and (32.2), where ¢ (x) =2 and ;= %> =0.
As in Problem 32.4, there are either no solutions or more than one solution. The solution to the differential equa-
tion is y = ¢, + c,x +x°. Applying the boundary conditions, we obtain the equations ¢, —c,=—1 and ¢, —c,=3.
Since these equations have no solution, the boundary-value problem has no solution.

Find the eigenvalues and eigenfunctions of
Y —4hy + 4%y =0; y(0)=0, y(1)+y'(1)=0

The coefficients of the given differential equation are constants (with respect to x); hence, the general solution
can be found by use of the characteristic equation. We write the characteristic equation in terms of the variable m,
since A now has another meaning. Thus we have m? — 4Am + 4A2= 0, which has the double root m = 2); the solution
to the differential equation is y = ¢;e**+ c,xe?* Applying the boundary conditions and simplifying, we obtain

61:() C1(1+27\.)+C2(2+27\,)=0

It now follows that ¢, = 0 and either ¢,=0 or A = —1. The choice ¢, =0 results in the trivial solution y = 0; the
choice A = —1 results in the nontrivial solution y = c,xe %, ¢, arbitrary. Thus, the boundary-value problem has the
eigenvalue A = —1 and the eigenfunction y = ¢coxe >,

Find the eigenvalues and eigenfunctions of
Y =4l +40%y=0; Y (1)=0, y(2)+2y’(2)=0

As in Problem 32.6 the solution to the differential equation is y = ¢;¢** + c,xe™ Applying the boundary
conditions and simplifying, we obtain the equations

@Ne+ (1 +20)e,=0

1
(1+40)c, + (4 +80)er =0 "

This system of equations has a nontrivial solution for ¢; and ¢, if and only if the determinant

20 1+2A
1+4A 4+8A

‘ =1+20)@Er-1)

is zero; that is, if and only if either A = —% or A= %.When A=— % , (1) has the solution c¢; = 0, ¢, arbitrary; when

A= %, (1) has the solution ¢, =-3c,, ¢, arbitrary. It follows that the eigenvalues are 7\,1 = —% and 7»2 = i and the

corresponding eigenfunctions are y; = c,xe™ and y, = ¢5(=3 + x)e¥>.

Find the eigenvalues and eigenfunctions of
Y +A'=0; y0)+y(0)=0, y(1)=0

In terms of the variable 1, the characteristic equation is m?+ Am = 0. We consider the cases A=0 and A # 0
separately, since they result in different solutions.
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A=0: The solution to the differential equation is y = c¢; + ¢,x. Applying the boundary conditions, we obtain the
equations ¢+ ¢,=0 and ¢, = 0. It follows that ¢, = ¢, =0, and y = 0. Therefore, A = 0 is not an eigenvalue.

A # 0: The solution to the differential equation is y = ¢, + c,e™*. Applying the boundary conditions, we obtain
¢+ (1=Ne,=0
(=AM, =0
These equations have a nontrivial solution for ¢ and ¢, if and only if

=—Ae*=0

1 1-A
0 —Ae™

which is an impossibility, since A # 0.

Since we obtain only the trivial solution for A =0 and A # 0, can conclude that the problem does not have any
eigenvalues.

32.9. Find the eigenvalues and eigenfunctions of

Y =40 +40y =0, y(0)+y'(0)=0, y(1)-y(1)=0

As in Problem 32.6, the solution to the differential equation is y = c;e?* + coxe®™*. Applying the boundary

conditions and simplifying, we obtain the equations
(1 +27\,)C| +C2:0
(N
(1=20)c; + (=20, =0

Equations (/) have a nontrivial solution for ¢ and ¢, if and only if the determinant

1+20 1
1-20 -2\

‘:—47&—1

is zero; that is, if and only if A =+ %i. These eigenvalues are complex. In order to keep the differential equation
under consideration real, we require that A be real. Therefore this problem has no (real) eigenvalues and the only
(real) solution is the trivial one: y(x) = 0.

32.10. Find the eigenvalues and eigenfunctions of

Y'+hy=0; y0)=0, y1)=0

The characteristic equation is m?+ A = 0. We consider the cases A =0, L <0, and A > 0 separately, since they
lead to different solutions.

A=0: The solution is y = ¢; + c,x. Applying the boundary conditions, we obtain ¢, = ¢, =0, which results in the
trivial solution.

A<0: The solutionis y = clem + e e , where —A and V—A are positive. Applying the boundary conditions,
we obtain
¢ +tc,=0 c]e‘/j —czefJj =0
Here ! ! = e_ﬂ - eﬂ
eﬂ e =

which is never zero for any value of A < 0. Hence, ¢;=¢,=0 and y=0.

A>0: The solution is A sin VAX + Bcosv/Ax. Applying the boundary conditions, we obtain B =0 and A sin Jh=0
Note that sin =0 if and only if 6 =nx, where n=0,% 1, £ 2, ... Furthermore, if 6> 0, then n must be
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positive. To satisfy the boundary conditions, B=0 and either A =0 or Sin \/X =0. This last equation is
equivalent to \/X =nm where n=1, 2, 3, .... The choice A =0 results in the trivial solution; the choice

\/X = n7 results in the nontrivial solution y,= A, sin nzx. Here the notation A, signifies that the arbitrary
constant A, can be different for different values of n.

Collecting the results of all three cases, we conclude that the eigenvalues are A, = n’>z® and the corresponding
eigenfunctions are y,= A, sin nmx, forn=1,2,3, ....

Find the eigenvalues and eigenfunctions of
Y +Ay=0; y0)=0, y(m=0
As in Problem 32.10, the cases A =0, A <0, and A > 0 must be considered separately.
A=0: The solution is y = ¢; + c,x. Applying the boundary conditions, we obtain ¢, = ¢,=0; hence y = 0.

N

A<0: Thesolutionis y =c,e oy cze’Jj , where —\ and V—A are positive. Applying the boundary conditions,

we obtain

¢ +c,=0 ¢ ~N-A el —cN-A e =0

which admits only the solution ¢; = ¢,=0; hence y = 0.

A>0: The solution is y = Asin VA x + BeosvA x. Applying the boundary conditions, we obtain B=0 and

ANA cosvA T =0. For 8> 0, cos 6= 0 if and only if 6 is a positive odd multiple of 77/2; that is, when
0 =Q2n—-1)(m/2)=(n—r, where n=1, 2, 3, .... Therefore, to satisfy the boundary conditions, we

must have B =0 and either A =0 or COS \/X 7t = 0. This last equation is equivalent to \/X =n- % The

choice A =0 results in the trivial solution; the choice \/X =n —% results in the nontrivial solution

y, = A, sin(n—1)x.

Collecting all three cases, we conclude that the eigenvalues are A, = (n — %)2 and the corresponding eigen-
functions are y, = A, sin (n — %)x, wheren=1,2,3, ....

Show that the boundary-value problem given in Problem 32.10 is a Sturm—Liouville problem.

It has form (32.6) with p(x) =1, g(x) =0, and w(x) = 1. Here both p(x) and w(x) are positive and continuous
everywhere, in particular on [0, 1].

Determine whether the boundary-value problem
Y + 2+ 1+heTy=0; y(1)+2y(1)=0, y2)-3y'(2)=0

is a Sturm-Liouville problem.

Here p(x) = x, g(x) = x>+ 1, and w(x) = ¢*. Since both p(x) and g(x) are continuous and positive on [1, 2], the
interval of interest, the boundary problem is a Sturm-Liouville problem.

Determine which of the following differential equations with the boundary conditions y(0) =0, y’(1) =0
form Sturm—Liouville problems:
(a) ey'+eY +Ay=0 b)) xy+yY+@+1+0)y=0
(0) (ly’l+(x+x)y:0 d) Y+Ml+x)y=0
X

() ey +eXy +hy=0

(@) The equation can be rewritten as (¢y)"+Ay=0; hence p(x)=e", g(x)=0, and w(x)=1. This is a
Sturm-Liouville problem.
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32.15.

32.16.

32.17.

32.18.

(b) The equation is equivalent to (xy’)’ + (x>+ 1)y + Ay = 0; hence p(x) = x, g(x) = x>+ 1 and w(x) = 1. Since p(x)
is zero at a point in the interval [0, 1], this is not a Sturm-Liouville problem.

(¢) Here p(x) = 1/x, g(x) = x, and w(x) = 1. Since p(x) is not continuous in [0, 1], in particular at x = 0, this is not
a Sturm—Liouville problem.

(d) The equation can be rewritten as (y') + A(1 +x)y =0; hence p(x) =1, g(x) =0, and w(x) =1+ x. This is a
Sturm-Liouville problem.

(e) The equation, in its present form, is not equivalent to Eq. (32.6); this is not a Sturm-Liouville problem.
However, if we first multiply the equation by ¢, we obtain (¢*y")" + Ae ™"y =0; this is a Sturm—Liouville problem
with p(x) = €%, g(x) =0, and w(x) =™

Prove that Eq. (32.6) is equivalent to Eq. (32.8) if and only if a5(x) = a;(x).
Applying the product rule of differentiation to (32.6), we find that
p@)Y” + p'(x)y" + q(x)y + Aw(x)y = 0 o

Setting a,(x) = p(x), a;(x) = p'(x), ag(x) = g(x), and r(x) = w(x), it follows that (7), which is (32.6) rewritten, is precisely
(29.8) with a5(x) = p'(x) = a;(x).
Conversely, if a5(x) = a;(x). then (32.8) has the form

a(0)y” + ar(x0)y’ + ag(x)y + Ar(x)y =0
which is equivalent to [ay(x)y']+ ap(x)y + Ar(x)y =0. This last equation is precisely (32.6) with p(x) = a(x),
q(x) = ag(x), and w(x) = r(x).

Show that if Eq. (32.8) is multiplied by J(x)= /™™=
Eq. (32.6).
Multiplying (32.8) by I(x), we obtain

Ix)ax(x)y” + I(x)a; (x)y” + I(x)ag(x)y + LI(x)r(x)y = 0

, the resulting equation is equivalent to

which can be rewritten as
a(O[(x)yT + I(x)apx)y + M(x)r(x)y =0 ()

Divide (7) by a,(x) and then set p(x) = [(x), g(x) = I(x)ag(x)/a>(x) and w(x) = I(x)r(x)/a,(x); the resulting equation is
precisely (32.6). Note that since /(x) is an exponential and since a,(x) does not vanish, /(x) is positive.

Transform y” + 2xy” + (x + A)y = 0 into Eq. (32.6) by means of the procedure outlined in Problem 32.16.

IZxdx

Here a,(x) = 1 and a;(x) = 2x; hence a,(x)/a,(x) =2x and I(x) =e =e. Multiplying the given differential

equation by /(x), we obtain
ey +2xe" Y + xe" y+he’ y=0
which can be rewritten as
€YY +xe’ y+he y=0
This last equation is precisely Eq. (32.6) with p(x) = e, q(x) = xe" , and W(x)e‘x2 .

Transform (x +2)y” +4y" +xy+Ae'y=0 into Eq. (32.6) by means of the procedure outlined in
Problem 32.16.

Here a,(x) = x + 2 and a,(x) = 4; hence a,(x)/a,(x) = 4/(x + 2) and

[4/(x+2)]dx 4
eJ’ :e4lnlx+2I:eln(x+2) :(x+2)4

I(x)=
Multiplying the given differential equation by /(x), we obtain
(x+2)%" +4(x + 20 + (x + 2)"xy + Ax + 2)%y =0

which can be rewritten as

(x+ 2)[(x+ 24T + (x + 2)%xy + Ax + 2)*ey =0
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or [(x+ 2T + (x +2)°xy + Mx +2)%y =0

This last equation is precisely (32.6) with p(x) = (x + 2)*, g(x) = (x + 2)’x, and w(x) = (x + 2)*¢*. Note, that since we
divided by a,(x), it is necessary to restrict x # —2. Furthermore, in order that both p(x) and w(x) be positive, we must
require x > 2.

32.19. Verify Properties 32.1 through 32.4 for the Sturm—Liouville problem
Y'+Ay=0; y0)=0, y(1)=0

Using the results of Problem 32.10 we have that the eigenvalues are A, = n?7> and the corresponding eigen-
functions are y,(x) = A, sin nmx, forn =1, 2, 3, ... The eigenvalues are obviously real and nonnegative, and they can
be ordered as A= 7* <A, =471 <A3=97°< ---. Each eigenvalue has a single linearly independent eigenfunction
e,(x) = sin nmx associated with it. Finally, since

. . 1 1
sin nrx sin mwx = ECOS (n—m)mx — ECOS (n+m)mx
we have for n #m and w(x) = 1:

b 11 1
L w(x)e,(x)e, (x) dx = JO |:5 cos(n—m)mwx — ECOS (n+ m)ﬂ:x}dx

x=1

sin(n —m)mwx — ;sin(n + m)nx:|

1
- {2(;1 -m)m 2(n+mw
=0

x=0

32.20. Verify Properties 32.1 through 32.4 for the Sturm—Liouville problem
Y +Ay=0; y(0)=0, y(m)=0
For this problem, we calculate the eigenvalues A, = (n- %)2 and the corresponding eigenfunctions

v,(x)=A, cos(n— %)x, for n=1, 2, .... The eigenvalues are real and positive, and can be ordered as

}\’l:l<7\'2:2<7\'3:§<"'
4 4 4

Each eigenvalue has only one linearly independent eigenfunction e, (x) = cos (n — %)x associated with it. Also, for
n#mand w(x) =1,

Ibw(x)e (x)e, (x) dxzjﬂcos n _L xcos| m _1 x dx
a n m 0 2 2

=r lcos(n+m—1)x+1005(n—m)x dx
of2 2

=r

= [lsin(n +m—-1x+ Lsin(n - m)x}
2(n+m-1) 2(n—m) .

=0

=0

32.21. Prove that if the set of nonzero functions {y;(x), y»(x), ..., y,(x)} satisfies (32.9), then the set is linearly
independent on [a, b].

From (8.7) we consider the equation
Y1) + y2(X) + -+ () + -+ ¢y, (x) =0 @)
Multiplying this equation by w(x)y,(x) and then integrating from a to b, we obtain

& W (09, (0 dx ¢ [ W)y, (09, (6) d o

+ ckI:w(x)yk(x)yk(x) dx + -+ CijW(x)yk(x)yp(x) dx=0
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From Eq. (29.9) we conclude that for i # &,
b
e Wy (0, (x) dx =0
But since y;(x) is a nonzero function and w(x) is positive on [a, b], it follows that
b
[ Wy (T dx#0

hence, ¢, =0. Since ¢,=0, k=1, 2, ..., p, is the only solution to (/), the given set of functions is linearly independent
on [a, b].

Supplementary Problems

In Problems 32.22 through 32.29, find all solutions, if solutions exist, to the given boundary-value problems.

3222, " +y=0; y(0)=0, y(m2) =0 3223, V' +y=x0)=0, y(w2)=0
32.24. y"+y=0;y0)=0, y(m2)=1 32.25. y'+y=x;y0)=-1, y(@2) =1
3226, V' +y=0;y(0)=0, y(2)=0 3227, ' +y=0;y(0) =1, y(w2)=0
32.28. y'+y=x;y'(0)=1, y(w2)=0 32.29. y'+y=x;y'(0)=1, y(w2)=mn/2

In Problems 32.30 through 32.36, find the eigenvalues and eigenfunctions, if any, of the given boundary-value problems.
32.30. 7+ 20 + Ay =0; y(0) +y'(0)=0, y(1)+y'(1)=0 3231, Y+ 20 + Ay =0;y(0)=0, y(1)=0

3232, Y420 + Ay =0; (1) +y'(1)=0,3y(2) +2y’2)=0  32.33. "+ L' =0; y(0)+y(0)=0; y(2)+y(2)=0
32.34. y"—-hy=0; y©0)=0, y(1)=0 32.35. y"+Ay=0; y(0)=0,y5)=0

32.36. y"+Ay=0;y(0)=0, y'(r)=0

In Problems 32.37 through 32.43, determine whether each of the given differential equations with the boundary conditions
y(=1)+2y’(=1) =0, y(1) + 2y’(1) =0 is a Sturm-Liouville problem.

32.37. (2+sinx)y” + (cos x)y' + (1 +A)y=0 32.38. (sin wx)y” + (mwcos mx)y' + (x +A)y=0
32.39. (sin x)y” + (cos x)y"+ (1 +A)y=0 32.40. (x+2)%7+2(x+2)y + (" + X))y =0
3241, (x+2)2 + @ +2)y + (5 + X))y =0 3242. y'+ %Xy =0
3243. y'+ 3 Ay =0

(x—4)

32.44. Transform e*y” + >y’ + (x + 1)y = 0 into Eq. (32.6) by means of the procedure outlined in Problem 32.16.
32.45. Transform x%y” + xy’ + Axy = 0 into Eq. (32.6) by means of the procedure outlined in Problem 32.16.
32.46. Verify Properties 32.1 through 32.4 for the Sturm-Liouville problem

Y +hy=0; Y(0)=0, y(m)=0
32.47. Verity Properties 32.1 through 32.4 for the Sturm-Liouville problem

Y +hy=0; y0)=0, y2m=0



Eigenfunction
Expansions

PIECEWISE SMOOTH FUNCTIONS

A wide class of functions can be represented by infinite series of eigenfunctions of a Sturm—Liouville problem
(see Chapter 32).

Definition:

A function f(x) is piecewise continuous on the open interval a < x < b if (1) f(x) is continuous
everywhere in a < x < b with the possible exception of at most a finite number of points x;, X, ... , X,
and (2) at these points of discontinuity, the right- and left-hand limits of f(x), respectively
Xh_r)r} f(x) and 11_{{1 f(x),exist (j=1,2,...,n).

X>x; X<X;

(Note that a continuous function is piecewise continuous.)

Definition:

Definition:

A function f(x) is piecewise continuous on the closed interval a <x < b if (1) it is piecewise
continuous on the open interval a < x < b, (2) the right-hand limit of f(x) exists at x = a, and (3) the
left-hand limit of f(x) exists at x = b.

A function f(x) is piecewise smooth on [a, b] if both f(x) and f’(x) are piecewise continuous on [a, b].

Theorem 33.1. If f(x) is piecewise smooth on [a, b] and if {e,(x)} is the set of all eigenfunctions of a

Sturm-Liouville problem (see Property 32.3), then

£ =3 e, () G3.1)
[T w0 f (e, (x) dx
where c,=""—; (33.2)
L w(x)ez(x) dx

The representation (33.7) is valid at all points in the open interval (a, b) where f(x) is continuous.
The function w(x) in (33.2) is given in Eq. (32.6).

Because different Sturm—Liouville problems usually generate different sets of eigenfunctions, a given
piecewise smooth function will have many expansions of the form (33.7). The basic features of all such expansions
are exhibited by the trigonometric series discussed below.

318
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FOURIER SINE SERIES

The eigenfunctions of the Sturm-Liouville problem y” + Ay = 0; y(0) = 0, y(L) = 0, where L is a real positive
number, are e,(x) = sin (nmx/L) (n=1, 2, 3, ...). Substituting these functions into (33.1), we obtain

— nwx
= in —— 33.3
f(x) ;cnsm 7 (33.3)

For this Sturm-Liouville problem, w(x) = 1, @ =0, and b = L; so that

b 2 L . ,ATX L
wx)e (x)dx=| sin"——dx=—
J‘a ( )n( ) J.O L 2

and (33.2) becomes

¢ = % jOL F(x)sin ””Tx dx (33.4)

The expansion (33.3) with coefficients given by (33.4) is the Fourier sine series for f(x) on (0, L).

FOURIER COSINE SERIES

The eigenfunctions of the Sturm-Liouville problem y” + Ay = 0; y'(0) = 0, y'(L) =0, where L is a real positive
number, are ¢(x) = 1 and e, (x) = cos (nmx/L) (n=1, 2, 3, ...). Here A =0 is an eigenvalue with corresponding
eigenfunction ey(x) = 1. Substituting these functions into (33.7), where because of the additional eigenfunction
ep(x) the summation now begins at n = 0, we obtain

F(x)=c, + chcosmz—x (33.5)
n=1

For this Sturm-Liouville problem, w(x) = 1, a =0, and b = L; so that

'[j w(x)e; (x) dx = jOL dx=L Lh w(x)e; (x) dx = jOL cos’ medx = %

Thus (33.2) becomes
¢, =% [[rwar e =%j: f(x)cosnz—xdx (n=1,2..) (33.6)

The expansion (33.5) with coefficients given by (33.6) is the Fourier cosine series for f(x) on (0, L).

Solved Problems

. ¥ +1 x=20. . . .
33.1. Determine whether f(x) = is piecewise continuous on [—1, 1].

1/x x<0
The given function is continuous everywhere on [—1, 1] except at x = 0. Therefore, if the right- and left-hand
limits exist at x = 0, f(x) will be piecewise continuous on [—1, 1]. We have

lim f() =lim(x* + =1 lim f(x) = 1_in%l:—oo

x>0 x>0 x<0 x<0

Since the left-hand limit does not exist, f(x) is not piecewise continuous on [—1, 1].
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33.2.

33.3.

334.

EIGENFUNCTION EXPANSIONS [CHAP. 33
sin 7wx x>1
0 0<x<1 . . .
Is f(x)= piecewise continuous on [-2, 5]?
e’ -1<x<0
X’ x<-1

The given function is continuous on [-2, 5] except at the two points x; =0 and x, = —1. (Note that f(x) is
continuous at x = 1.) At the two points of discontinuity, we find that

lim f(x)=1im0=0  lim f(x)=lime* =¢’ =1
;c:)OO x—0 ;\‘joo x—0
and limlf(x) = liml ef=¢ lim] fx)= limI x=-1
x>-1 x<-1 =T

Since all required limits exist, f(x) is piecewise continuous on [-2, 5].

Is the function

x"+1 x<0
fx)= 1 0<x<1
2x+1 x>1

piecewise smooth on [-2, 2]?

The function is continuous everywhere on [-2, 2] except at x; = 1. Since the required limits exist at x;, f(x) is
piecewise continuous. Differentiating f(x), we obtain

2x x<0
f(x={0 0<x<l
2 x>1

The derivative does not exist at x; = 1 but is continuous at all other points in [-2, 2]. At x; the required limits exist;
hence f’(x) is piecewise continuous. It follows that f(x) is piecewise smooth on [-2, 2].

Is the function

1 x<0
f={Jx 0<x<l
X x>1

piecewise smooth on [-1, 3]?

The function f(x) is continuous everywhere on [-1, 3] except at x; = 0. Since the required limits exist at x;, f(x)
is piecewise continuous. Differentiating f(x), we obtain

0 x<0
, 1
fx)=y—= 0O<x<l

2Jx

3x? x>1

which is continuous everywhere on [—1, 3] except at the two points x; =0 and x, = 1 where the derivative does not
exist. At xy,

, . 1
lim f(x)=lim—==0c0
X ;:002 /x

x>x

Hence, one of the required limits does not exist. It follows that f’(x) is not piecewise continuous, and therefore that
f(x) is not piecewise smooth, on [—1, 3].
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33.5. Find a Fourier sine series for f(x) =1 on (0, 5).
Using Eq. (33.4) with L =5, we have

2 . NTX 25 . . nAAX
c, _ZJ’O f(x) Slanx—gJO (1) Slanx

x=5
-2 —icos@ :i[l—cos nn’]=i[1—(—1)"]
5 nmw 5 x=0 nm i

Thus Eq. (33.3) becomes

= 2 nrwx
1=) —[1—-(-1)"]sin——
;m[ (=1"]sin =
4( . mx 1 . 3nrx 1 . Snx
=—|sin— +—sin——+ —sin——+--- @)
T 5 3 5 5 5

Since f(x) =1 is piecewise smooth on [0, 5] and continuous everywhere in the open interval (0, 5), it follows from
Theorem 33.1 that (/) is valid for all x in (0, 5).

33.6. Find a Fourier cosine series for f(x) = x on (0, 3).
Using Eq. (33.6) with L =3, we have

1 ¢L 13 3
COZZJ." f(x)dngjoxdxzf

2
2 (L nrwx 2 3 nx
c, :ZJO f(x) COST dngfoxcosde
2| 3x . nmx 9 nmx ]
=—| —sin——+ ——cos——
3| nr 3 nrw 3 12

2( 9 9 6 )
i(w“’”’”‘w]:w“‘” -

Thus Eq. (33.5) becomes

3.& 6 nwx
xX==+ -1)" = 1] cos——
> ;] - [(=D"-1] 3

2
-1 n

3 12 rx 1 3gx 1 Smx
=———|cos—+—cos——+——cos——+ - )
2 39 325 3

Since f(x) = x is piecewise smooth on [0, 3] and continuous everywhere in the open interval (0, 3), it follows from
Theorem 33.1 that (/) is valid for all x in (0, 3).

0 x<2
33.7. Find a Fourier sine series for f(x) = {2 52 on (0, 3).
x

Using Eq. (33.4) with L =3, we obtain

23 . nmx
c, _EJ." f(x) sm?dx

m—xdx+g
3 3

4] 3 x4 2nr
=0+—| ———cos— =—| cos—— —cos n1
3 3 x=2 3

2 (2 . 3 . NTwX
= 5‘[0 (0) sin J; (2) sin ?dx

niw niw
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Thus Eq. (33.3) becomes

Furthermore, cosz—n =— 1, COS4l =— l, cos6—n =1,...
3 3 3

Hence, Py =2 Lein®X _ 3 6in 27X L 26n3FE . ()
|2 3 4 3 3 3

Since f(x) is piecewise smooth on [0, 3] and continuous everywhere in (0, 3) except at x =2, it follows from
Theorem 33.1 that (/) is valid everywhere in (0, 3) except at x = 2.

33.8. Find a Fourier sine series for f(x) =" on (0, 7).
Using Eq. (33.4) with L = 7, we obtain

,nﬂx 2] € . o
—J — > (sin nx — n cos nx)
x| l+4n o
2
Sl P 5 |(1—é"cos nrr)
w\l+n

Thus Eq. (33.3) becomes

2
751

It follows from Theorem 33.1 that this last equation is valid for all x in (0, 7).

33.9. Find a Fourier cosine series for f(x) = ¢* on (0, 7).
Using Eq. (33.6) with L = &, we have

cO:1 X Ydx——(e -1)
T

xX=r

X
e .
—J s—d —{ 5 (cos nx + n sin nx)}
X

w|l+n o

:2[ IZJ(e”cosmz—l)
w\l+n

Thus Eq. (33.5) becomes

e'=l(e”—1)+g 5
T 1+n

n=1

As in Problem 33.8, this last equation is valid for all x in (0, 7).



CHAP. 33] EIGENFUNCTION EXPANSIONS 323

33.10. Find an expansion for f(x) =e"* in terms of the eigenfunctions of the Sturm-Liouville problem
Y +Ay=0;y(0)=0, y(m) =0.
From Problem 32.20, we have e, (x)=cos (n—1)x for n=1,2,.... Substituting these functions and w(x) =1,
a=0, and b = winto Eq. (33.2), we obtain for the numerator:

Lb w(x) f(x)e,(x)dx = '[)ﬂ e"cos[n - % jx dx

s e ela)
=———|cos|n—— |x+|n——|sin|n—— |x
1+(n—%)2 2 2 2
-1 b _l 1\
_1+(n_12)2|:e (n 2]( 1) +1}

Lb w(x)e, (x)dx = J: cos’ (n - % ] xdx

_ £+sin(2n—1)x X:”_E
2 4n-1) o 2

Thus ¢, = 2|:_1:||:€” (n - 1)(—1)" + 1}
a1+ (n—1y 2

and Eq. (33.1) becomes

x=7

x=0

and for the denominator:

ot 2 1+ (=D"e"(n—-1) 1
—2 ——————>cos| n—— |x
T I+(n-1%) 2
By Theorem 33.1 this last equation is valid for all x in (0, 7).

33.11. Find an expansion for f(x)=1 in terms of the eigenfunctions of the Sturm-Liouville problem
¥+ hy=0;y(0)=0; y'(1) =0.
We can show that the eigenfunctions are e,(x) =sin (n —3)x (n=1,2,...). Substituting these functions and
wx)=1,a=0, b=1 into Eq. (33.2), we obtain for the numerator:

wa(x) Fe, (x) dx = jol sin(n - ;Jm dx
-1 1
= (n _ L)ﬂ- Cos(n - 2)71‘)6

[[we (xydx = | sin’ (n - ;Jnx dx

1

., (ni-Dm

and for the denominator:

2 4n-17)

x=1
_|x _sin@n—-Dmx 1
x=0 2

2

Thus
(n-Hr

CII =

and Eq. (33.1) becomes
1_% S sin (n —3)mx
T n—+

By Theorem 33.1 this last equation is valid for all x in (0, 1).
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33.12.

33.13.

33.14.

33.15.

33.16.

33.17.

33.18.

33.19.

33.20.

33.21.
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Supplementary Problems

Find a Fourier sine series for f(x) =1 on (0, 1).
Find a Fourier sine series for f(x) =x on (0, 3).

Find a Fourier cosine series for f(x) = x> on (0, 7).

0 x<
Find a Fourier cosine series for f(x) = x on (0, 3).
2 x>2

Find a Fourier cosine series for f(x) =1 on (0, 7).

. L . x x<1
Find a Fourier sine series for f(x) = on (0, 2).
2 x>1

Find an expansion for f(x) = 1 in terms of the eigenfunctions of the Sturm-Liouville problem y” + Ay = 0; y’(0) =0,
y(m) =0.

Find an expansion for f(x) = x in terms of the eigenfunctions of the Sturm-Liouville problem y” + Ay = 0; y(0) =0,
y(m)=0.

Determine whether the following functions are piecewise continuous on [—1, 5]:

x? x=2 .
(@ f(x)=44 0<x<2 (b) f(x):{l/(zx—Z) x>2
S5x° -1 x<2
X x<0
© f@= @) fx=—
(-2 x_(x+2)

Which of the following functions are piecewise smooth on [-2, 3]?

x x<0

(@) f(x)=<sinmkx 0<x<1 (b) f(x)={

x> —5x x>1

x

e x<1

\/; x21

(x-1? «x<I
(x-D"* x>1

(© f)=Inlxl ) fx) ={



An Introduction to
Difference Equations

INTRODUCTION

In this chapter we consider functions, y, =f(n), that are defined for non-negative integer values n =0, 1, 2,
3, ... So, for example, if y, = 1’ — 4, then the first few terms are {Y0> Y1> Y2 V3> Ya» ...y Or {—4, -3, 4,23, 60, ...}.
Because we will be dealing with difference equations, we will be concerned with differences rather than
derivatives. We will see, however, that a strong connection between difference equations and differential
equations exists.

A difference is defined as follows: Ay, =y,,1—, and an equation involving a difference is called a difference
equation, which is simply an equation involving an unknown function, y,, evaluated at two or more different n
values. Thus, Ay, =9 + r?, is an example of a difference equation, which can be rewritten as y,,;—y, = 9 + n’
or

Yn+1 :yn+9+n2 (34])

We say that n is the independent variable or the argument, while y is the dependent variable.

CLASSIFICATIONS
Equation (34.7) can be classified as a first-order, linear, non-homogeneous difference equation. These
terms mirror their differential equations counterparts. We give the following definitions:
® The order of a difference equation is defined as the difference between the highest argument and the

lowest argument.

® A difference equation is linear if all appearances of y are linear, no matter what the arguments may be;
otherwise, it is classified as non-linear.

* A difference equation is homogeneous if each term contains the dependent variable; otherwise it is
non-homogeneous.

We note that difference equations are also referred to as recurrence relations or recursion formulas
(see Problem 34.7).

325
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SOLUTIONS

Solutions to difference equations are normally labeled as particular or general, depending on whether there
are any associated initial conditions. Solutions are verified by direct substitution (see Problems 34.8 through
34.10). The theory of solutions for difference equations is virtually identical with that for differential equations
(see Chapter 8) and the techniques of “guessing solutions” are likewise reminiscent of the methods employed
for differential equations (see Chapters 9 and 11).

For example, we will guess y, =p" to solve a constant coefficient, homogeneous difference equation.
Substitution of the guess will allow us to solve for p. See, for example, Problems 34.11 and 34.12.

We will also use the method of undetermined coefficients to get a particular solutions for a non-homogeneous
equation. See Problem 34.13.

Solved Problems

In Problems 34.1 through 34.6, consider the following difference equations and determine the following:
the independent variable, the dependent variable, the order, whether they are linear and whether they are
homogeneous.

34.1. y,3=4y,

The independent variable is n, the dependent variable is y. This is a third-order equation because of the
difference between the highest argument minus the lowest argument is (n + 3) — n = 3. It is linear because of the
linearity of both y,,5 and y,. Finally, it is homogeneous because each term contains the dependent variable, y.

34.2. ti+2 = 4 + ti—3 - 5ti—5

The independent variable is i, the dependent variable is 7. This is a seventh-order equation because the
difference between the highest argument and the lowest argument is 7. It is linear because of the linear appearances
of the 7, and it is non-homogeneous because of the 4, which appears independently of the #;.

34.3. Tk T+l = 10

The independent variable is k, the dependent variable is z. This is a first-order equation. It is non-linear
because, even though both z; and z;,; appear to the first power, they do not appear linearly (any more than sin z is
linear). It is non-homogeneous because of the solitary 10 on the right-hand side of the equation.

34.4. f.»=[u [, where fo=1,f =1

The independent variable is n, the dependent variable is /. This is a second-order equation which is linear and
homogeneous. We note that there are two initial conditions. We also note that this relationship, coupled with the
initial conditions, generate a classical set of values known as the Fibonacci numbers (see Problems 34.7 and 34.30).

345. y,=9cosy, 4

The independent variable is r, the dependent variable is y. This is a fourth-order equation. It is non-linear
because of the appearance of cos y, 4; it is a homogeneous equation because both terms contain the dependent
variable.

34.6. 2" +x,=X,3

The independent variable is n, the dependent variable is x. This is an eighth-order linear difference equation.
It is non-homogeneous due to the 2" term.
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34.7.

34.8.

34.9.

34.10.

34.11.

34.12.

By recursive computations, generate the first 11 Fibonacci numbers using Problem 34.4.

We are given that fy=1 and f; =1, and f,,» =f,.; + /.- Using this recursion formula, with n =0, we have,
fH=fitfo=1+1=2. We now let n=1; this implies f3 =f, + f; =2 + 1 = 3. Continuing in this recursive way, we
have the following: f; =5, s =8, fo =13, f =21, fy =34, /=55 and f, = 89.

Verify y, =c(4"), where c is any constant, solves the difference equation y,,; =4y,

Substituting our solution into the left-hand side of the difference equation, we have y,,; = ¢ (4"*"). The right-
hand side becomes 4c(4") = c(4™"), which is precisely the result we obtained when we substituted our solution into
the left-hand side. The equation is identically true for all »; that is, it can be written as 4c(4") = c(4™*"). Hence, we
have verified our solution. We note that this solution can be considered the general solution to this linear, first-order
equation, since the equation is satisfied for any value of c.

Consider the difference equation a,,, + 5a,,; + 6a, =0 with the imposed conditions; ay =1, a; =—4.
Verify that a, = 2(=3)" — (=2)" solves the equation and satisfies both conditions.

Letting n =0 and n = 1 in q,, clearly gives ay = 1 and a; = —4, hence our two subsidiary conditions are satisfied.
Substitution of a,, into the difference equation gives

2(_3))1+2 _ (_2)n+2 + 5[2(_3)n+1 _ (_2)n+1] + 6[2(—3)” _ (_2)n
9(2)(=3)" = 4(=2)" + 5[-6(=3)" + 2(=2)" + 12(=3)" — 6(=2)"

Il
e

18(=3)" — 4(=2)" — 30(=3)" + 10(=2)" + 12(=3)" — 6(=2)" =

Thus the equation is satisfied by a,,.
We note that this solution can be considered a particular solution, as opposed to the general solution, because
this equation is coupled with specific conditions.

Verify that p,=c(3)" + c»(5)" + 3 +4n, where c¢; and ¢, are any constants, satisfies the difference
equation p,..» = 8p,; — 15p, + 32n.

Letting n, n + 1 and n + 2 into p,, and substituting into the equation yields

32+ ex(5)"2 + 3+ 4(n +2)
= 8[c,(3)™" + cr(5)™! + 3+ 4(n + 1] — 15[c;(3)" + cx(5)" + 3 + 4n] + 32n

whence, both sides simplify to 9¢{(3)" + 25¢,(5)" + 11 + 4n, thereby verifying the solution.

Consider the difference equation, y,.; = —6y,. By guessing y,, = p" for p # 0, find a solution to this equation.

Direct substitution gives p™*! = —6p" which implies p = —6. Hence, y, = (—6)" is a solution to our difference

equation, which we can easily verify. We note that y, = k(—6)" also solves the difference equation, where k is any
constant. This can be thought of as the general solution.

Using the technique employed in the previous problem, find the general solution to
3bpo+4b, +b,=0.

Substitution of the guess b, = p into the difference equation gives 3p™? +4p™! + p" =p" (3p% +4p+1) =0,

-1
which implies 3p% +4p+ 1 =0. This results in p = 37 1. So the general solution, as can easily be verified, is

Y
e [3) +¢,(=1)", where the c; are arbitrary constants.

We note that 3p2+4p+1=0 is called the characteristic equation. Its roots can be treated in exactly the
same way as the characteristic equations derived from constant coefficient differential equations are handled (see
Chapter 9).
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34.13.

34.14.

34.15.

34.16.
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Solve d,,,; = 2d, + 6n, by guessing a solution of d,=An + B, where A and B are coefficients to be
determined.

Substitution of our guess into the difference equation leads to the identity A(n + 1) + B=2(An+ B) + 6n.
Equating the coefficients of like powers of n, we have A =2A + 6 and A + B = 2B, which implies A = B = —6. Hence
our solution becomes d, = —6n-6.

We note that the method of “undetermined coefficients” was presented in Chapter 11 regarding differential
equations. Our guess here is the discrete variable counterpart, assuming a first degree polynomial, because the non-
homogeneous part of the equation is a first degree polynomial.

Find the general solution to the non-homogeneous difference equation d,; = 2d,, + 6n, if we know that
the general solution to the corresponding homogeneous equation is d,, = k(2)", where k is any constant.

Because the theory of solutions for difference equations parallels that of differential equations (see Chapter 8),
the general solution to the non-homogeneous, equation is the sum of the general solution to the corresponding
homogeneous equation plus any solution to the non-homogeneous equation.

Since we are given the general solution to the homogeneous equation, and we know a particular solution to the
non-homogeneous equation (see Problem 34.13), the desired solution is d,, = k(2)" — 6n — 6.

Consider the difference equation y, ., + 6y, +9y,=0. Use the guessing technique presented in
Problem 34.11, find the general solution.

Assuming y, =p" leads to p"(p2+6p+9)=0 which implies p=-3, -3, a double root. We expect two
“linearly independent” solutions to the difference equations, since it is of the second-order. In fact, following the
identical case in which the characteristic equation for second-order differential equations has a double root (see
Chapter 9), we can easily verify that y, = ¢;(=3)" + ¢,n(=3)" indeed solves the equation and is, in fact, the general
solution.

Suppose you invest $100 on the last day of the month at an annual rate of 6%, compounded monthly. If
you invest an additional $50 on the last day of each succeeding month, how much money would have
been accrued after five years.

We will model this situation (see Chapter 2) using a difference equation.

Let y, represent the rotal amount of money ($) at the end of month n. Therefore y, = 100. Since the 6%
interest is compounded monthly, the amount of money at the of the first month is equal to the sum of y, and the
amount made during the first month which is 100(.06/12) = 0.50 (we divide by 12 because we are compounding
monthly). Hence, y, = 100 + 0.50 + 50 = 150.50 (because we add $50 at the end of each month). We note that
1=y + 0.005y, + 50 = (1.005)y, + 50.

Building on this equation, we see that y, = (1.005)y; + 50. And, in general, our difference equation becomes
Y1 = (1.005)y, + 50, with the initial condition y, = 100.

We solve this difference equation by following the methods presented in the five previous problems. That is,
we first guess a homogeneous solution of the form y, = kp”, where £ is a constant to be determined.

Substitution of this guess into the difference equation yields kp”*! = (1.005)kp"; this implies p = 1.005. We
will solve for k after we find a solution to the non-homogeneous part of the difference equation.

Because the degree of the non-homogeneous part of our difference equation is 0 (50 is a constant), we guess
v, = C, where we must determine C.

Substitution into the difference equation implies C = (1.005)C + 50, which leads to C =—10,000.

Summing our solutions leads us to the general solution of the difference equation:

Va = k(1.005)" — 10000. @)

Finally, we obtain k by imposing our initial condition: y, = 100. Letting n=0 in (/) implies 100 = k(1.005)°
— 1000 = k£ — 1000; hence, £ =10,100. So (/) becomes

¥, = 10100(1.005)" — 10000. (2)
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Equation (2) gives us the accrued amount of money after n months. To find the amount of money compiled
after 5 years, we let n =60 in (2) and find that ys, = 3623.39.

Supplementary Problems

In Problems 34.17 through 31.20, consider the following difference equations and determine the following: (1) the inde-
pendent variable; (2) the dependent variable; (3) the order; (4) whether they are linear; (5) whether they are homogeneous.

34.17.

34.18.

34.19.

34.20.

34.21.

34.22.

34.23.

34.24.

34.25.

34.26.

34.27.

34.28.

34.29.

34.30.

34.31.

tyey =64u,
wi=6+k+1+1Inw, .
4+ 21+ 22 + 243 = 0.
8m-2="T8ms2 + Zme11.
Verity a,, = ¢1(2)" + ¢,(—2)" satisfies a,,, = 4a,, where ¢; and ¢, are any constants.
Verify b, = ¢,(5)" + con(5)" satisfies b,., — 10b,,,; + 25b, =0, where ¢, and ¢, are any constants.
Verify r, = B 1(5)" - ln satisfies r,,, = 6r,,; — 5r, + 1, subject to ro =1, r; =0.

16 16 4

Find the general solution to k.| =—17k,,.
Find the general solution to y,,, = 11y, + 12y,.
Find the general solution to x,,,, = 20x,,,; — 100x,,.
Find a particular solution to w,,; = 4w, + 6" by guessing w,, = A(6)", and solving for A.
Find the general solution to v, = 2v,, + n°.
Solve the previous problem with the initial condition vy = 7.
Solve Fibonacci’s equation f,,» = f,..1 + f;, subject to fy =f; = 1.
Suppose you invest $500 on the last day of the month at an annual rate of 12%, compounded monthly. If you invest

an additional $75 on the last day of each succeeding month, how much money would have been accrued after ten
years.



APPENDIX A

Laplace Transforms

Jx) F(s) = £{fx®)}
1. 1 1 (s>0)
S
2. x = (s>0)
S
-
3, ¥l m=1,2,..) (n n) (s>0)
4. Jx %\/7?5"_3/2 (s>0)
5. INx Jrs ™ (s>0)
6. P (=12 <1)<3)<5)-;Ezn—l)ﬁrs-n_m (5>0)
7. e (s>a)
Ss—a
8. sin ax L (5>0)
s”+a
9. cos ax 2S ~ s>0
s”+a
10. sinh ax — (s>lal)
s —a
11. cosh ax — (s>lal)
S —a
12. X sin ax % (s>0)
(s +a’)
22
13. X COS ax % (s>0)
(s+a)
—1)!
14. e (n=1,2, ) (n 1),', (s>a)
(s—a)
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Laplace Transforms (cont.)

J ) F(s)=2{f®)}
15. e sin ax L s>b
(s—-b’+d ( )
16. €™ cos ax % (s>b)
(s=b) +a
. 24°
17. sin ax — ax cos ax ——5 (>0)
(s +a’)
18 7efx/a 1
a 1+as
19. ey 1
a s(s—a)
20. 1 1
s(1+ as)
1
21. —er”/" _
a 1+ as)’
” o™ _ 1
a—-b (s—a)(s—b)
23 e—x/a _ e— x/b 1
a-b 1+ as)(1 + bs)
24. (1 + ax)e™ S
(s—a)
1 s
25. —(a—x)e ' _
a ( ) 1+ as)’
ax bx S
26. ae™ — be >
a—b (s—a)(s—b)
27 aef,\'/b _ befx/a Ry
ab(a—b) 1+ as)(1+ bs)
28. iz(e“ —1-ax) _
a s (s —a)
2
29. sin? ax L
s(s® +4a*)
2
30. sinh? ax e
s(s? —4a?)
. ax &
31. cosh sin— smh CoOsS—
V22 \/_ 2 j st+at
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Laplace Transforms (cont.)
J(x) F(s)={fx)}
2
32. sin— smh as
\/_ \/— st+at
2
33. (cos smh + sin—=cos— } as
V20 V2 f f V2 st+a’
3
34. cos- & cosh X S
V2 f s +a
1, . . &
35. —(sinh ax — sin ax)
2 i —at
1 a’s
36. —(cosh ax — cosax)
2 g
1 . . as
37. —(sinh ax + sin ax)
2 st —at
38. —(cosh ax + cosax)
2 s —at
2
39. sin ax sinh ax 2a’s
st +4a*
2 2
40. cos ax sinh ax as” —2a’)
st +4at
2 2
41. sin ax cosh ax M
st +4a*
3
42. cos ax cosh ax %
s"+4a
1 . as
43. —(sinax + axcosax)
2 (s> +d%)
ax . s
44. cosax — —sinax
2 (s* +d*)
1 . a’
45. —(ax cosh ax — sinh ax)
2 (SZ aZ)Z
X as
46. —sinh ax _—
2 (Sz _ az)z
1 . aSZ
47. —(sinh ax + ax cosh ax) "
2 (sz _ a2)2
3
48. coshax + ﬂsinh ax 5
2 (s> —ad*)>
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S

F(s) = Z£{f0}

49.

asinbx — bsinax

ab

a’ - b (s> +a’)(s” +b%)
50 cosbx — cosax s
) 2 bz ( 2 + 2y 2 bz
a s“+a )(s"+b)
5 asinax — bsin bx 52
a* - b* (s* +a*)(s* +b%)
5 a* cosax — b* cosbx s
' @t — b (s> +a*)(s* +b%)
53 bsinh ax — asinh bx ab
' at -b (s* —a’)(s* - b%)
cosh ax — cosh bx s
4. 2 _p? (52 — d)(s> — b*
a sT—a’ )(s )
55 asinh ax — bsin bx s
' a - b’ (s* —a*)(s* = b%)
56 a* cosh ax — b* cosh bx s
: 42— b (Sz _az)(sz _bz)
2
57. X — lsin ax __a
a 2 (s> +a*)
2
58. Lsinhax - x 4
a §*(s* —a*)
ax . at
59. 1 —cosax — —sinax 3 )
2 s(s*+a’)
ax a’
60. 1 —cosh ax + —sinhax 55
2 s(s”—a’)
61 1+ b* cosax — a* cosbx ab*
a’ -b s(s* + a>)(s* + b%)
62 b* cosax — a* cosh bx a’b’
' 1+ e 2_ a2 g2
a - s(s”—a’)(s”=b)
1 2 an a’
63. —[(3—a"x")sinax — 3axcosax] —
8 (s> +a’)
X . a’s
64. —[sinax — axcosax] 2. 23
8 (s"+a)y
1 2 o . 52
65. g[(l+a x°)sinax — axcosax]

(s2 + az)3
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Laplace Transforms (cont.)

S F(s) = £{f(x)}
1 2 aS
66. ~[(3 + a’x)sinh ax — 3ax cosh ax] —
8 (s” — az)3
X . a’s
67. —(ax cosh ax — sinh ax) _-°
8 (s> —a®y
1 5 g . &s?
68. —[axcoshax — (1 —a"x")sinh ax] 3
8 (s —a’)
1
69. 7(1 _ efx/u)n 1
n! s(as + 1)(as +2) -+ (as + n)
70 sin (ax + b) ssinb +acosh
s +a
7 cos (ax + b) scosb —asinb
s +d
2
72. oo — o s B3 _ Ssin a3 3a
2 2 s +a
73 1+2ax s+a
NTTX s\/;
—ax 1
74. e “Nrx
s+a
1
75. (€™ —e™) s—a—ys=b
2x\Nmx \/7
76 ! cos2Jax Le*«/x
. NmTx Js
77 Lcosh 2Jax Lem
' N Js
1
78. —sin2vax 2l
\ar
1
79. sinh 2v/ax - 32pls
\ar ¢
1 —als
80. Jo2ax) —e
K
1 :
81. /x/aJl(Zx/;) sfzeiab
82. (/)" (2ax) (p>0) Jp—y
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J ) F(s)=2{f®)}
1
83. J,
o(x) 241
2 p—
g4, 7,0 s +1—s
s2+1
2
8. L@ (p>-1) s +1-9)"
\/52 +1
» 1
36. x"J (ax) | p >_l _Qa'T(p+7)
2 \/;(sz +a2)p+(l/2)
p-1
87. ()50 =
I'(p) s’
4"n! 1
88 xnf(I/Z)
N s"s
p-1 1
89. e (p>0)
I'(p) (s +a)
90. 1-e” mi=¢
X s
bx ax —
91. e —e T p—
X S — b
92. gsinh ax In s+a
X s—a
2 2
93, g(l—cosax) lns +2a
X s
2 2
94. %(cos bx — cosax) In sz * az
X s“+b
sinax
95. arctan —
X s
96. % sin ax cosbx arctan L
X sS—d+b*
97. sin lax!

a 1+ ¢ s
JERNPEN R EOR




APPENDIX B

Some Comments
about Technology

INTRODUCTORY REMARKS

In this book we have presented many classical and time-honored methods to solve differential equations.
Virtually all these techniques produced closed-form analytical solutions. These solutions were of an exact
nature.

However, we have also discussed other approaches to differential equations; equations which did not easily
lend themselves to exact solutions. In Chapter 2, we touched upon the idea of qualitative approaches; Chapter 18
dealt with graphical methods; Chapters 19 and 20 investigated numerical techniques.

In Chapter 2, we also dealt with the question of modeling. In Fig. B-1, we see the “modeling cycle” schema
which we introduced in that chapter. The “technology” leg leads from the model (e.g. a differential equation) 7o
a solution. This is (hopefully) the case, especially when the differential equation is too difficult to solve by hand.
The solution may be of an exact nature or it may be given in numerical, graphical or some other form.

Over the last generation, calculators and computer software packages have had a great impact on the field
of differential equations, especially in the computational areas.

What follows are thumbnail descriptions of two technological tools — the TI-89 calculator and the
MATHEMATICA computer algebra system.

solution

Interpretation/
Communication

Fig. B-1

336
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TI-89

The TI-89 Symbolic Manipulation is manufactured by Texas Instruments Incorporated
(http://www.ti.com/calc). It is hand-held, measuring approximately 7 inches by 3.5 inches, with a depth of
nearly an inch. The display screen measures approximately 2.5 inches by 1.5 inches. The TI-89 is powered by
four AAA batteries.

Regarding differential equations, the TI-89 can do the following:

e Graph slope fields to first-order equations;

e Transform higher-order equations into a system of first-order equations;
¢ Runge—Kutta and Euler numerical methods;

e Symbolically solve many types of first-order equations;

e Symbolically solve many types of second-order equations.

MATHEMATICA

There are many versions of MATHEMATICA, such as 5.0, 5.1, etc. MATHEMATICA is manufactured by
Wolfram Research, Inc. (http://www.wolfram.com/). With this package, the user “interacts” with the computer
algebra system.

MATHEMATICA is extremely robust. It has the ability to do everything the TI-89 can do. Among its many
other capabilities, it has a library of classical functions (e.g. the Hermite polynomials, the Laguerre polynomials,
etc.), solves linear difference equations and its graphics powerfully illustrate both curves and surfaces.


(http://www.ti.com/calc
http://www.wolfram.com/

Answers to
Supplementary
Problems

CHAPTER 1

114. (@) 2; (D) y; (o) x 115. (a) 4, (b) y; (o) x

1.16. (a) 2; (b) s; (¢)t 117. (@) 4; b) y; (¢) x

118. (@) n; ) x; (©)y 1.19. (@) 2; () r; (o) y

1.20. (@) 2; ) y; (o) x 1.21. (a) 7; (b) b; (¢) p

1.22. (@ 1; () b; (o) p 1.23. (a) 6; (b) y; (¢) x

1.24. (d) and (e) 1.25. (a), (¢), and (e)

1.26. (D), (d), and (e) 1.27. (a), (c), and (d)

1.28. (d) 1.29. (a), (¢), and (d)

1.30. () and (e) 1.31. (a), (c), and (d)

1.32. ¢=0 1.33. c=1

1.34. c=¢7 1.35. ¢=-3¢*

1.36. c=1 1.37. ¢ can be any real number

1.38. c=-1/3 1.39. No solution

1.40. c¢; =2, ¢, = 1; initial conditions 1.41. c¢; =1, ¢, =2; initial conditions
1.42. ¢, =1, ¢, =-2; initial conditions 1.43. ¢ =c, = 1; boundary conditions
1.44. c¢; =1, ¢, =—1; boundary conditions 1.45. ¢ =-1, ¢, = 1; boundary conditions
1.46. No values; boundary conditions 1.47. c¢; =c,=0; initial conditions

338
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-2
148. ¢ = , G = 2 ; boundary conditions 1.49. No values; boundary conditions
J3 -1 J3-1
1.50. ¢;=-2,¢,=3 1.51. ¢,=0,¢,=1
1.52. Cy =3, C2=—6 1.53. Cy =0, Cy = 1
3
1.54. ¢, =1+, c2=—2—%
e e
CHAPTER 2
5

212, T, = §(TF —-32)

2.13. The volume and the temperature are in direct proportion. As one increases, so will the other; as one decreases,
so will the other.

2.14. The net force acting on a body is proportional the body’s acceleration. This assumes the mass is constant.

2.15. Since ¢ is increasing, and 7(576) = 0, this model is valid for 576 hours. Any time afterwards gives us a negative
radicand, and hence, an imaginary answer, thereby rendering the model useless.

2.16. Att=10, because T7’(10) =0, and T’(r) > 0 for ¢ > 10.

2.17. The motion must be periodic, because sin 2¢ is a periodic function of period 7.

2.18. (a) 2cos?2t; (b) —4 sin 2t

2.19. (a) yisaconstant; (b) yisincreasing; (c) yis decreasing; (d) y is increasing.

X 3 . .
2.20. % =k(M — X)’, where k is a negative constant.
t

2.21. The rates of change of gallons of liquid sugar per hour.

2.22. The rates of change of the vats (gal/hr) are affected by the amount of liquid sugar present in the vats, as the equations
reflect. The signs and magnitudes of the constants (a, b, ¢, d, e, and f) will determine whether there is an increase
or decrease of sugar, depending on the time. The units for a, b, ¢, and d is (1/hr); the units for e and fis (gal/hr).

CHAPTER 3

315, ¥ =—yx 3.16. y' =x/(e"—1)

3.17. y =(sinx—y?> -y 3.18. Cannot reduce to standard form

319. y=-y+Inx 320. y=2andy =x+y+3

i - , xX+y

321, y=2-F 322 V="

y r-y
7 y - X
323. ¥y = 324, y=ye*-e"
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325, y=-1 3.26. Linear

3.27. Linear, separable, and exact 3.28. Linear

3.29. Homogeneous, Bernoulli 3.30. Homogeneous, Bernoulli, separable, and exact
3.31. Linear, homogeneous, and exact 3.32. Homogeneous

3.33. Exact 3.34. Bernoulli

3.35. Linear and exact

CHAPTER 4
423. y=*\k-x",k=2c 424. y=H(k+2x%)" k=—-4c
-173 1, )
425, y=(k+3x)"", k=-3c 426, y=-— Et +t—c
427. y=kx, k=% 4.28. y:lnk,czlnlkl
X
429, y=ke " k=+¢ 430. 23 +61+2y° +3y* =k, k=6¢
431. yr=ke', k=t 4.32. y=tan (x—c¢)
433. y=3+4+2tan 2x+k),k=-"2c¢ 4.34. dex - ldy =0;y=ke " k=te
X y

435. xe*dx—2ydy=0;y=*,/xe* —e" - 4.36. y=i\/x2+2x+k,k:—2c

437. y=-1/(x—¢) 4.38. x=-3/+k),k=3c
3 St 1 Sc
4.39. x=kt k== 4.40. y:—g+ke ,kzige
441. y=—2+2cosx 442, y= PO
443, Len Ly 1 244, X oy miyi=7
A3, 2V —y=y 4. = y y
4

445. x= 8 +—e 4.46. y=xIn lk/xl

3 3
447. y=k>—x 448. Y =Ikx*-x?
4.49. Not homogeneous 4.50. y>=x>—kx
4.51. 32—y =k 452. 2xly+Inlyl=c

1
4.53. Not homogeneous 454. Y =-x|1+——
In lkx“1
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CHAPTER 5

524. xy+x’+y=c,
526. y=ce " +
528. xy=c,

530. xysinx+y=c,

532, y=c,F
534, Y —ry=c,

536 x=ipf-&
3 t

538. x= k 5
l+e

5.40. tcosx+xsint=c,
1

542. I(x,y)=—Fcy=x—1
y

1 1 N
544. I(x,y)=——; —=2x"(x—0)

()

2 i 1

5.46. I(x,y)=e" ; y=ce +§

1 5 2
548. I(x,y)=—;y"=2(c—x")

y

x2

5.50. I(x,y)=y%x*y' + EY =c

L. 1
5.52. I(x,y) =1 (the equation is exact); Exzyz =c

1
554. I(x,y)= ( 3 3x%y + 209t + kxy = =6

xy)

2
N 1
5.56. x(t)= t+yr +16

2

120
558, x(n=N*I2

2

4 5 1
5.60. =——e" +—
y(x) 3¢ 3

5.62. y(1)=-+/2t

5.64. x(t)= Loy 14(]]
3 3\t

5.25.

5.27.

5.29.

5.31.

5.33.

5.35.

5.37.

5.39.

5.41.

5.43.

5.45.

5.47.

5.49.

5.51.

5.53.

5.55.

5.57.

5.59.

5.61.

5.63.

5.65.

Not exact

By +yt=c,

Not exact
y2 = Czt
Not exact
y= -1
tIn lktl
c, =21
28 + 60" —3x* =c,orx=1 |[-2——
6t -3

Not exact

-1
I(x,y)=—F;y=cx—1
x

1
I(x,y)=——; sy y=xtan (x +¢)
X +y

I 1 1
=—x'—cx

I(x,y) = ——: —
Coy) (xy)*y 3

I(x,y) = ; yZ:ln [kxl

C
I, y)=y% ¥ X

1
I(x,y)=——;Inlxyl=c—y
(xy)?
I(x )——#' = xtan lxz+c
Y x2+y2’ Y 2

3.2 y3 _

I(x, y)=e""}/3; x’y'e c

x(H=0

xy +x%y3 +y=-135

No solution

L,
f)=——t
(@) 5
o 2
() = 2(1+ze)
1+e”

341
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CHAPTER 6
6.20. y=ce™>* 6.21. y=ce>*
6.22. y=celOl 623. y=ce "
624. y=ce™ 625. y=ce'”
6.26. y=ce*" 627. y=clx
6.28. y=c/x’ 6.29. y=cx?
—2/x _ 7x 1 X
630. y=ce 631. y=ce" - ge
2
6.32. y=ce" —2x-= 6.33. y=ce" - icos2x - lsin 2x
7 53 53
634. y=ce " +1 6.35. y=ce " - %
. 1
636. y=c+sinx 637. —=ce' +1
y
6.38. y2=1/2x+cxd) 639. y=(6+ce™ ")
+1
640. y=-—F—=— 641. y=(1+ceH?
1—ce**
642. y=e/(c—x) 643. y=ce
644. z=c\r 645. N=cel
646. p= %f +36° = 2tInltl+ct 647. 0=4(20-1+c(20 -1
—0.041 _4 -2
648. T=32t+c)e 649. p= EZ +cz
1 2 2
6.50. y= Z(—x*2 +x7) 6.51. y=5¢"""")
-x? 2 1 31 8 10
6.52. y=2¢" +x -1 6.53. —=-—x +2x
y 16
., 1., 8. 4
6.54. v=-16¢+16 6.55. nge +gsm2l+§cos2t
1{, 40 —0.069
6.56. N= 3 r+— 6.57. T=-60e"""+30
t
CHAPTER 7
7.26. (a) N=250¢"1%" (b) 112 hr 7.27. (a) N=300e"%1%; (b) 7.6 hr
7.28. (a) 2450z; (b) 15.19 0z 7.29. 32 fold increase
7.30. 3.17 hr 7.31. (a) N=280e"013% (in millions);

(b) 91.5 million



7.32.

7.34.

7.36.

7.38.

7.40.

7.42.

7.44.

7.46.

7.48.

7.50.

7.52.

7.54.

7.56.

7.58.

7.60.

7.62.

7.64.

7.66.

7.68.

7.70.
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N =16,620e"1""; Ny = 16,620

N= ]V()E_O‘IOSt; 11/2 =6.6 hr

$15,219.62
$14,288.26
10.99 percent
7.93 yr

8.38 yr

T = 80e 003 T) = 80° F

(a) 138.6°F; (b) 3.12 min
An additional 1.24 min

(a) 5.59 sec; (b) 5.59 sec
(a) 32t+10; (b) 5 sec

976.6 ft

(a) v =48 —48¢7%;
(b) x=T2e72P + 48t -T2

320 ft/sec
(@) v=-320e""+320;

(b) x =3200e%1 + 3207 — 3200;
(c) 6.9 sec

(@) v=2320-7320e"19;

(b) x=3200e 10 + 320t — 3200

Q:—%(ZO—;‘)2 +4(20 —1);

att=10,0=22.51b
(Note that @ = 80(1/8) = 10 Ib.)

56.31b

80 g

7.33.

7.35.

7.37.

7.39.

7.41.

7.43.

7.45.

7.47.

7.49.

7.51.

7.53.

7.55.

7.57.

7.59.

7.61.

7.63.

7.65.

7.67.

7.69.

7.71.

(@) N=100e7092%  (b) 4.05 yr

500
1+99¢ %

$16,904.59
8.67 percent
20.93 yr

12.78 percent

T =-100¢%9%" 4 100;
(@) 239 min; (b) 44°F

T =—100¢92% 4 150; 1,69 = 23.9 min
(@) 113.9°F; (b) 6.95 min

(@) v=32t; (b) 167

(a) 32t+30; (b) 3.49 sec

31.25 sec

@ & ) '+
a) —=-—g; v=- Vo,
d 8 8 0

v, 1
(© fm=§°; (d) x=—58f2+vol;
2
Vo
(e Xw=75"
2g
(@) v=128—118¢";

(b) 6.472 sec
0.392 m/sec with g = 9.8 m/sec?
(@) v=4—4e%;

(b) lee’s‘ +4t—l
2 2

(a) Q=-5¢0%+5;

0 l —e 1)

(b) sz(

(a) Q — 806—0.04t;

(b) 17.3 min

1.lg

(@)

—%e'm'; (b) 0 amp
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7.72.

7.74.

7.76.

7.78.

7.80.

7.82.

7.84.

7.86.

7.88.

ANSWERS TO SUPPLEMENTARY PROBLEMS

(@) g=2+3e71% (b) 1=-30e71""

1 . —2t
a =—(2sint —cost+e ');
(@) ¢ 50( )

1
b) I =—(2cost+sint
b 1, 50( )

1 =501y . :i
@ I=750-¢7; O L=%

1
I=—(9+51e™"
(@) 10( e)

51
by [ =B
& L=1

2 3
A=— =arctan —
34 ? 5
xy=k
1
FCy+-y =k
y 3)’
1
x2+5y2=k(k>0)

_ 1,000,000
1499974

CHAPTER 8

8.33.

8.34.

8.35.

8.37.

8.39.

8.41.

8.43.

8.45.

8.47.

8.49.

8.51.

8.53.

7.73.

7.75.

7.71.

7.79.

7.81.

7.83.

7.85.

7.87.

7.89.

(@) =102 (b) I=-25¢%

(@) q= %(Sin 2t +2cos2t + 23e7);

b I, = %(20052[ —4sin2t)
(@) 1=10e72"; (b) I,=10e™>"

I= L(e’zs’ +25sint — cost)
626

A=—i ¢ = arctan 10
Jio1
y=-2x+k
X +y?=kx
1000
i J_r : =3¢™ or v=2(3¢™ —1)/(3¢™ +1)

(e), (g), ()), and (k) are nonlinear; all the rest are linear. Note that () has the form y” — (2 + x)y =0.

(a), (¢), and ( f) are homogeneous. Note that (/) has the form y” = —¢*.

(b), (¢), and (/) have constant coefficients.
W = —x?; the set is linearly independent.

W = —2x%; the set is linearly independent.

W=0

W = ¢>*; the set is linearly independent.

W=0

W = 2x°; the set is linearly independent.

W=0
[11x2+ [1](=x>) =0

[2]x+[7](D) + [1](2x—=T7)=0

8.36.

8.38.

8.40.

8.42.

8.44.

8.46.

8.48.

8.50.

8.52.

8.54.

¢
W=0

W = —x*; the set is linearly independent.
W =—10x; the set is linearly independent.
W =—4; the set is linearly independent.
W=0

W=0

W = 6¢%; the set is linearly independent.
[4]3x + [-3]4x=0

[513e™) + [-31(5¢™) =0

[B1x+ 1)+ [-2](x% + x)
+[1](2x* —x-3)=0



8.55.

8.57. y=c1e¥ + e
8.59. y=c¥+c,
8.60.
8.61. y=cx+ e’ + c3y; where y; is a third particular solution, linearly independent from the other two.
8.62.
8.63. y=cie + et + 5™
8.64.
x*, y4, ys} is linearly independent.
8.65. y=c;sinx+cycosx+x>—2
8.66.
8.67. y=cie"+cre " +c3xe*+5
8.68. Theorem 8.1 does not apply, since ay(x) = —(2/x) is not continuous about x; = 0.
8.69. Yes; ay(x) is continuous about x; = 1.
8.70. Theorem 8.1 does not apply, since b;(x) is zero at the origin.
CHAPTER 9
9.17. y=cie"+ e 9.18.
9.19. y=cie"+ cxe* 9.20.
9.21. y=ce cosx+ cre sinx 9.22.
9.23. y=ce 3+ cpxe™™ 9.24.
9.25. y=cC" oy c,e®” ol 9.26.
= k, cosh@x +k, sinh@x
2 2
9.27. x=c1e* + cpe'® 9.28.
9.29. x=c,eCT? 4 eV 9.30.
9.31. x=c, cos 5t+ ¢, sin 5t 9.32.

ANSWERS TO SUPPLEMENTARY PROBLEMS

[-6]sin x + [-1](2 cos x)
+[2](3sinx+cosx)=0

8.56. y=ce™+ce ™

8.58. y=c sin4x+ ¢, cos 4x

345

Since y, and y, are linearly dependent, there is not enough information provided to exhibit the general solution.

Since the given set is linearly dependent, not enough information is provided to exhibit the general solution.

v =132 + X% + c3x* + 44 + ¢5ys, where y, and ys are two other solutions having the property that the set {x%, x°,

Since ¢ and 3e* are linearly dependent, there is not enough information given to find the general solution.

y=c1e% 4 e

(%

Y= COS X+ ¢, Sin X

y= Cleﬁx

y=ce " cos V2x + c,e " sin V2x

y=c1e V¥4 coxe

x=c1e% 4+ cpe”

+c,e

Vx

—(1/2)x

107

x=ce' + cypte’’

X=cy;+ e

25t
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933. x=ce " cos—t+c,esin—t
2 2
935. u :Cle(z+ﬁ>r + cze(z—ﬁ>r
9.37. u=ce%+ ce® =k, cosh 61+ k, sinh 6¢
939. 0= Cle<7+@)r/z i cze(7—~/5)z/2
941. P=ce™” cos2+/2x + c,e "sin 22x
. 71 . 71
943. N=ce™” cos£x +c,e” sm£x
2 2
945. R=c +cpe?
CHAPTER 10
10.16. y=ce™ + e’ + ez
10.18. y=c "+ coxe’ + c3x%e’
10.20. y=(c; + cox) cos x + (c3 + ¢4%) sin x
10.22. y=cie* + cre™ + cyxe™ + cx’e™
1024, y=c|+cpx+cx® + cqe™>
10.26. y=c €™ cos 2x + c¢® sin 2x + ¢3¢
+ cgxe ™ + cset + cge™
1028. x=c; +cyt + ¢35t
10.30. x=c,e + ¢, cos 5t + ¢ sin5t
_ x —-x 2x 7\/5)5
1032. g=ce +c,e’ +ce’ +eue
1034. r=c1e 0+ 060+ ;6270 + ¢, 0 + c56%e
10.36. y=c|+c,cos 19x + c3 sin 19x
10.38. y=c,e* cos 9x + c,e> sin 9x
+ c3xe* cos 9x + c,xe® sin 9x
10.40. y=c cos 6x + ¢, sin 6x + c3x cos 6x
+ c4x sin 6x + csx? cos 6x + cgx? sin 6x
1042, y” +4y”—124y"+224y=0

ANSWERS TO SUPPLEMENTARY PROBLEMS

V7 G

9.34.

9.36.

9.38.

9.40.

942.

9.44.

10.17.

10.19.

10.21.

10.23.

10.25.

10.27.

10.29.

10.31.

10.33.

10.35.

10.37.

10.39.

1041.

10.43.

u=c,e cos\/3t + c,e sin/3t

u=cy+ce’

St/2 \/g 5112 s \/3

Q=ce"" cos—t+c,e’" sin—t
: 2 : 2

P=ce” + cyte”

N=ce¥+ce™

T=ce 0+ c,0e7159

y=ce' + cxet + cze™
y=cje'+cpcos x+c3sinx
y=c1€" + cre™ + ¢3 cos X + ¢4 Sin x

y =16 + coxe > + c3e?* cos 2x + cqe® sin 2x

—(1/2)x \/g

y=(c, +c;x)e cos7x

e . N3
+(c, + c,x)e” " sin—x
) TCy 2

x=cie +opte” + c3Pe + e e

X =y COS t+ ¢y sin t + ¢3 cos 3t + ¢4 sin 3¢
g=ce +ce +c cos\/2x + ¢, sin V2x

N= C1€76X+ CzeSx + c3el()x

y=c1e™ + e + ey ™

2x

y = ¢y + ¢ox + 3% cos 9x + c,¢> sin 9x

y = €185 + cpxe® + cx2e> + cpe

+ csxe™>*

y=e"(c,cosx +c,sinx + c;xcosx
+ ¢, xsin x) + € (c; cos x + ¢ sin x

+ c,xc0s X + cgxsin x)

Y +361y =0
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1044, y® —4y” +85y"=0
1046. ¥y —5y@ — 50y +250y” + 625y’ — 3125y =0
10.48. y=c; cos 4x + ¢, sin 4x + c3 cos 3x + ¢4 sin 3x
10.50. y=ce® + cpxe™ + c3>* + cyxe>*
CHAPTER 11
1115, y,=Aix+A
11.17. y,= A+ Ax+ Ay
11.19. y,=Ae™
11.21. y,=Asin 3x + B cos 3x
11.23.  y,=(Ax + Ap) sin 3x + (B,x + By) cos 3x
1125, y,=(A;x+Ape™
1127, y,=Ae*
1129. y,=Ae™
11.31. y, = Asin+/2x + Bcos+2x
11.33. y,=Asin3x+ B cos 3x
11.35. y,=Ae™ sin 3x + Be™ cos 3x
11.37. x,=tAt+ Ap)
1139. x,=(A1+Ape ™ + Bt
1141, x,=rAAt+Age'
1143, x, =(Af+ A))e’ sin3t

+ (Bt + B,)e* cos3t
1145. y=cie + coxe’ + 3>
1147. y=ce' +c,xe’ + %xze"
1149. y=ce +xe*
1151. y=ce’ —lsinx—lcosx

2 2

2 1
+—sin2x — —cos2x
5 5

10.45. y©@ —8y” + 186y” — 680y + 7225y =0

1047. y=ce™ + cpxe™ + cx?e™ + cqxde™

347

10.49. y=c; cos 4x + ¢, sin 4x + c3x cos 4x + c4x sin 4x

11.16. y,=Ax"+Aix+A,
11.18. y,=Ae™

11.20. y,=Axe™

11.22. y,=Asin 3x + B cos 3x
11.24. y,=Ax+Ap+ Be®*
11.26. y,=x(A;x+ Ag)e™™
1128. y,=(A;x+Ape™

11.30. y,= (Ax? + Ayx + Ag)e™

11.32. y, = (A, x* + Ajx + A)sin V2x
+(B,x* + B.x + B,)cos/2x

11.34. y,=Asin4x+ B cos 4x+ C sin 7x+ D cos 7x

11.36. y,=x(Ae> sin 3x + Be> cos 3x)
11.38. xp = t(Aztz + Alt + Ao)

1140. x,= *(Ae")

1142, x,=Ar+(Bt+ By)sin 1+ (C 1+ Cp) cos ¢t

1144. y=cie*+cxe’+ x> +4x+5

11.46. y=cje"+cxe* —2sinx

1148. y=ce' +c,xe’ + éfe"

1150. y=cef+xe™ —e* -1

o1
11.52. y=ce' +cxe’ +cx’e’ + gx3e‘ -1
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CHAPTER 12
. NN g . .

129. y=ce +cxe’ + Ex e 12.10. y=c¢; cos x + ¢, sin x + (cos x) In Icos x| + x sin x

1 1 )
1211, y=ce " +ce™ +—e* 1212, y=c™ +c,xe® +—e™

4 80

3 2
1213. y=c,+c,e’" +>x 12.14. y:c]x+c—2+x—ln|)cl—ﬂx2
’ 7 x 3 9
. 3
with ¢; =¢, +—
’ 49
> 1
1215, y=c +cx" +xef—e* 12.16. y=cx+ Ex
2 1

12.17. y=ce" + 5 12.18. y=c| + cox + x> + 247

t
12.19. x=ce' +cyte’ + 5 12.20. x=cse¥ +cpte¥ — e In el (withcs=c¢;— 1)

t

1

12.21. x=c cos 2t+c,sin2r—1 1222. x=ce' +c,e’ + %ln d+e™)

+ (sin 2¢) In Isec 2t + tan 21l , s
13 1

e e
——In(l+e")+—

2 ( ) 2

. 1 3
with ¢; = ¢, _Z’c4=CZ+Z

4 2 2

ot t
1223. x=ct+e,( +1)+——-— 1224, x=ce +2 - 11
6 2 t 3
tZ
12.25. r=ce +cyte +cit’e + Ee’ Inlzl 12.26. r=ce X +cpte M + c3Pe ¥ + 27
12.27. r=c1€ + ¢, cos 5t + ¢5 sin 51— 8 12.28. z=c, +c,e’ +c,e”

+%(1 +e")[-3+21n(1+¢%)]

c -
12.29. y=—"t+c¢,+cit—1Inlzl 12.30. y=c, +c,x +cx” +ce’ +ce + xe™
; 3

. 7
(wnh Ce =0, —4]

CHAPTER 13
1 2 1 5
137. y=—e "+ +=e" 138. y= Boe2p
12 3 4 12 3 4
139. y=e*+eX 13.10. y=|1+ ie3 e~
12
+|1 —le3 2D 4 163"
3 4
. . 1 1,
13.11. y=-—cos 1 cos x—sin 1 sin x +x 13.12. y=- gc052x + Zcos 2x

=—cos(x—1)+x

1 1
——cos*2x + —sin*2x
12

= é(l +c0s” 2x —2¢cos2x)
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13.13. y=0 13.14. y=-2+6x—6x+2x°

13.15. y=¢" icost+£sint +Lsin2t—icos2t
10 10 10 10

CHAPTER 14
14.26. 60 Ib/ft 14.27. 17.07 1b/ft
14.28. 130.7 dynes/cm 14.29. 19.6 N/m
1 1 1.
14.30. x=—cos8¢ 1431. x=——cos 8t + —sin 8¢
6 6 4
14.32. x=3cosl2t+ %sin 12¢ 14.33. x=sin 2t — cos 2t

1434. (a) w=8Hz; (b) f=4/mrHz; (c) T=mn/4sec 1435. (a) w=12Hz; (b) f=6/rHz; (c) T=m/6 sec

14.36. (@) w=2Hz; (b) f=1/rHz; (¢) T=msec 14.37. x = x,cosJkimt + v,/mlk sink/mt

1
1438. x=- 5\/564“ sin 4\/§t 1439. x=- %e"” —2te™
3 -2t 1 —61 —4t —4t
14.40. xzze —Ze 1441. x=-0.1e7" —=24te
1442, x=-0.le™ cos~/0.02¢ 14.43. x=-8535¢73%" + 8435141
24 .
- e *'sin~0.02¢
10.02
1444. x=¢* gcosZt - Esin 2t 1445, x=- isin 5t+ lsin 2t
5 5 105 21

+ ﬂsin4t - %cos4t
5 5
1 . 1 t 4
1446. x= Esm 4t — 5cos4t - Zcos4z 1447. x=e* cos4\/§t —cos8t

5 3 .
1448, x=-"¢ cosdt——e ' sindt 1449. x = lcosZt + lsin 2t = ﬁcos@t —0.46)
4 4 2 4 4
+ lcos2t + lsin 2t
2 4

14.50. x=—4¢™ cos~/31 — 6:/3¢ ¥ sin/3 ¢ 1451, x =4cos3t +2sin3t =~/20 cos (3¢ — 0.46)
+4cos3t + 2sin 3t

1 11
1452, g=—@@e™" —15¢7"" +12); 14.53. 1=10.09¢7" sin50+19¢; g = ——
7= 700" ) ¢ 1= %50

¢ sin50+/19 t]

3
I= 5(67101 —e™) (1 — e cos504/191 —

I
J19
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14.54. 1 =%(e‘5°’ - 14.55. I=241e>

2 82 .
14.56. [=- gem cos6f + Ee*’ sin 6¢ 14.57. | = %cos 2t — gsin 2t = @cos (2t +1.25)

2
+—cos2t — 9sin2t
5 5

1458, 1=-120 o cog3 242 w3y 14.59. 7 =19 063+ 2B in3
52 52 * 52 52
JIs0 L 205 =5.2c05 (31 —0.983)
52

14.60. [ =—"" cos 400t + %e’m’ sin400¢ 14.61. ] =cos 200z — 2sin 200¢

+ cos 2007 — 2sin 200¢ =+/5c0s (2007 +1.11)
14.62. ¢g= Ee’]o’ cos 507 + ﬁe’]o’ sin 50¢ 14.63. g =- @cos 60t — e sin 60¢

61 61 61 61

~ % o601 g Sin60r =~0.64 cos (607 - 0.69)

1

14.64. 0 14.65. M(6392 cost +320sin?)
14.66. 1.28 ft=15.36 in submerged 14.67. x=- %cos 5t — ésin 5t

14.68. x=-0.260 cos (5t —0.876) 14.69. 0.764 ft submerged

14.70. x=-0.236 cos 6.47t 14.71. (a) w=6.47Hz; (b) f=1.03 Hz;

(c¢) T=0.97 sec

14.72. (@) w=5Hz; (b) f=5/2n) Hz; 14.73. No equilibrium position; it sinks.
(¢) T=2nrl5 sec

14.74. No equilibrium position; it sinks. 14.75. 9.02 cm submerged
npr’ npr’
14.76. x=-4.80 sin 10.42¢ 14.77. x=c, cos t + ¢, sin t;
m m
=2 |Fm
ryp
14.78. 0.236 ft=2.84 in 14.79. 159.151b
. wilp L
14.80. X+ ——x=0 14.81. (o) T=2rm — ——; (b) period is reduced by /42
m wip
CHAPTER 15
558 |0 isa0. | 2
B A | 9 -8
2 5 =2 11 10 10
15.20. |3 -3 -1 15.21. 1 6 5

-1 1 3 12 2 22
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15.22. Not defined

1 -5
1524. (a) {_7 2}

2 3
15.26.

6 11
b)57

8§ 0 11 5 7 2
1528. (@) |-5 0 7| (b | 4 6 1
4 0 7 10 14 4

15.30. Not defined

1532. A2-1=0;=1,A,=-1

1534, A2 —2h—1=0;A, =1+~/2,4, =12

1536. 22— 10A+24=0;A,=4,1,=6

1538. (-0 (A2 =50)=0;1,=0,A,=0,A;=5

The eigenvalue A = 0 has multiplicity
two,while A = 5 has multiplicity one.

15.40. (5t—2A) (A2 =25 =0; A, =5¢t, Ay = 5t, hy = =51

—2sin 2t
15.42. e 32
(1+6t)e™

CHAPTER 16

21
1613, A, =260, =3 {eo 0 }

' —t B .
16.15. }\'l — t, 7\‘2 =—1 36 —2e 3e — 3€
—2e' +2e¢ 2e' +3¢”"

1617. A, =-20,A, =71,

1 7e—21 _ 26771 efzt _ 6771
5| -14e™ +14e7™" -

15.23.

15.25.

15.27.

15.29.

15.31.

15.33.

15.35.

15.37.

15.39.

15.41.

15.43.

16.14.

16.16.

16.18.

Not defined

o
-1
0 1
-11 -8
6 -11
4
(@) |: 3] (b) Not defined

13
-2
14

A2 =20 +13=0; 4, =1+24/3i,
A, =1-23i

}\.2—9:0;7\,1:3,7\42:—3

A=V A+1D)=0;0 =1, =i, \y=—i

Each eigenvalue has multiplicity one.
) ) 31
A =3+ =00, =| = +=-/5 |1,
2 2
A, = 3_15)
2 2

(1 2¢
0 2

1
—sin?2
2

é(f 1

A=—1,A, =58
1 {4&’ +2¢7 2e" — 2e']

6|4e™ —de 265 4 4e

A, =210, =—4
1 {4# +2e

621 _e411
8e¥ —8e™  2¢¥ +4e™

6
10
==z V)
0 1
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16.19. A =X, =21 ¢ Ll) ;] 16.20. A, =2t A, =—21i;
cos2t +2sin2t (5/2)sin2t
—2sin 2t cos2t —2sin2t
4cos2t in 4t 1+ 8¢ t
1621, ), =dit, h, = —dir; | “COSF S 16.22. 2 =), =8¢
4| —16sin4t 4cosdt —64r 1-8¢t
1+ 2¢ t 1| 6cos6t in 6¢
1623, A=A, =-21¢” 1624, X =6it, A, =—6ir,—| oo 0
At 1-2t 6| —36sin6¢ 6C0s6F
| 3cos3t + 4sin3t in 3¢
16.25. &, =(—4+ 30, &, = (43 S| O T St
3 —25sin 3¢ 3cos3t — 4sin3t

) e J15 cos/15¢ + sin/15¢ —2sin/15¢
16.26. A, =B +150)0 L, = (3 —/150) ——
\/E 8sin \/Bt x/Ecos \/Et —sin \/Et
1t 2 1 00
1627. A=A, =A,=21;¢"|0 1| ¢ 1628. A, =A,=A,=21¢"[0 1 ¢
0 0 1 0 0 1
1 00
16.29. A, =—1,A, =k, =21; 16.30. A =%,=X,=0;/0 1 O
| 9¢” 3¢ +3e* e —e* +3te” 0 0 1
2t 2t
9 0 e dte (see Problem 16.12)
0 0 9¢*
1 ¢+ 0 1 0 0
1631. A, =X, =04, =£/0 1 0 1632. A, =A,=0A,=r;| ¢ 1 0
0 0 ¢ e—-1 0 ¢

CHAPTER 17
REI0) o1 [o R
17.10. x(z)—_xz(t)_ A(z)—__l 2} f(z)_LJrJ c_u t, =1
- !
X, (1) 0 1
17.11. = = = = =
x(7) P An=| 1 0 0] {26,} c H 1, =0
S L 2
[x,)] o 1 0 3
17.12. = = =| @ = =
x(1) 5] A(r) K 3/t:| f(H=|sinz| ¢ |:4:| t,=2

(7] o 1 0 11
17.13. = = = = =
x(1) ) A1) B _5} f(1) { } c { } t, =0

17.14. x(n) = n) A= 0 1} f(t)={8} ¢ and £, not specified

L Y2(D) ] 65
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[x,()] [0 1 o0 0 1
17.15. x()=|x0| A@®=[0 0 1| f@&)=[0| c=|0] 7,=-1

|25 () | |1 - te 0 1
[y,@®] 0o 1 o0 0 -1
17.16. x(=|y,(®| A@®=| 0 0 1 | f@)= 0 c=|-2| t,=x
Ly;(0) | |-25 2 -15 0.5t* + 8t +10 -3
[x, )] [0 1 0 0 K
17.17. x()=|x0| A®)=[0 0 1| f@)=|0]| e¢=|0]| 7,=0
EXGY 0 0 0 t 10
[x,)] (01 0 0 0 [0 1
x,(1) 01 0 1 -1 t 15
17.18. x(t)=|y (| A®=|0 0 0 1 0| f(=| 0 c=| 0| #,=1
y,() t 0 21 0 P+l -7
|z, | 1 0 -1 1 1 | 0 4

[x,)] [0 1 o0 0 0
17.19. x(=|x,@) | A@®=|0 2 5| f@)=|3| ¢=|0]| £,=0

L@ | 0 -1 -2

__xl(t)_ 12 _fo [ 2 B
17.20. X(t)—_yl(t)_ A@) = 3} f(t)_M c-{_J t,=17

CHAPTER 18

18.17. See Fig. 18-20.
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Fig. 18-20.
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See Fig. 18-21.

18.18.

Fig. 18-21.

18.19. See Fig. 18-22.

Fig. 18-22.
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18.20. See Fig. 18-23.

PR VA

P

Fig. 18-23.

See Fig. 18-24.

18.21.

Fig. 18-24.
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18.22. Four solution curves are drawn, beginning at the points (1, 3), (1, =3), (-1, —=3), and (-1, 3), respectively, and
continuing in the positive x-direction. See Fig. 18-25.
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A A e B Vv v vy
A L N N G
Fig. 18-25.

18.23. See Fig. 18-17. 18.24. Straight lines of the form y=x+ (1 —¢)

18.25. See Fig. 18-15. 18.26. Vertical straight lines

18.27. See Fig. 18-16. 18.28. Horizontal straight lines

18.29. See Fig. 18-14. 18.30. Parabolas of the form y = x* + ¢

18.31. See Fig. 18-18. 18.32. Curves of the form y =sin x — ¢

For comparison with other methods to be presented in subsequent chapters, answers are carried through x = 1.0, and are
given for additional values of /.



18.33.

18.34.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Method: EULER’S METHOD

Problem: y' = —y;y0)=1
n In True solution

h=0.1 h=005| h=001 Y(x)=¢™"

0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.9000 0.9025 0.9044 0.9048
02 0.8100 0.8145 0.8179 0.8187
03 0.7290 0.7351 0.7397 0.7408
04 0.6561 0.6634 0.6690 0.6703
05 0.5905 0.5987 0.6050 0.6065
0.6 0.5314 0.5404 0.5472 0.5488
0.7 0.4783 04877 0.4948 0.4966
0.8 0.4305 0.4401 0.4475 0.4493
09 0.3874 0.3972 0.4047 0.4066
1.0 0.3487 0.3585 0.3660 0.3679

Method: EULER’S METHOD

Problem: y' =2x; y(0)=0
o o True solution

h=0.1 | h=005 | h=001 Y(x) = 22

0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0000 0.0050 0.0090 0.0100
02 0.0200 0.0300 0.0380 0.0400
03 0.0600 0.0750 0.0870 0.0900
04 0.1200 0.1400 0.1560 0.1600
05 0.2000 0.2250 0.2450 0.2500
0.6 0.3000 0.3300 0.3540 0.3600
0.7 0.4200 0.4550 0.4830 0.4900
0.8 0.5600 0.6000 0.6320 0.6400
09 0.7200 0.7650 0.8010 0.8100
1.0 0.9000 0.9500 0.9900 1.0000
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18.35. Method: EULER’S METHOD

Problem: y =-y+x+2;y0)=2

n In True solution
h=0.1 h=005| h=001 | Yx)=e +x+1
0.0 2.0000 2.0000 2.0000 2.0000
0.1 2.0000 2.0025 2.0044 2.0048
02 2.0100 2.0145 2.0179 2.0187
03 2.0290 2.0351 2.0397 2.0408
04 2.0561 2.0634 2.0690 2.0703
0.5 2.0905 2.0987 2.1050 2.1065
0.6 2.1314 2.1404 2.1472 2.1488
0.7 2.1783 2.1877 2.1948 2.1966
0.8 2.2305 2.2401 2.2475 2.2493
09 2.2874 22972 2.3047 2.3066
1.0 2.3487 2.3585 2.3660 2.3679
18.36. Method: EULER’S METHOD

Problem: ' =4x y(0)=0

o o True solution
h=01 | h=005 | h=001 Yx) = x*
0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0000 0.0000 0.0001 0.0001
02 0.0004 0.0009 0.0014 0.0016
03 0.0036 0.0056 0.0076 0.0081
04 0.0144 0.0196 0.0243 0.0256
05 0.0400 0.0506 0.0600 0.0625
0.6 0.0900 0.1089 0.1253 0.1296
0.7 0.1764 0.2070 0.2333 0.2401
0.8 0.3136 0.3600 0.3994 0.4096
09 0.5184 0.5852 0.6416 0.6561
1.0 0.8100 0.9025 0.9801 1.0000
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CHAPTER 19
19.13. Method: MODIFIED EULER’S METHOD
Problem: y =-y+x+2;y0)=2
o h=01 True solution
PV Y YX)=e*+x+1

0.0 — 2.000000 2.000000
0.1 2.000000 2.005000 2.004837
0.2 2.014500 2.019025 2.018731
0.3 2.037123 2.041218 2.040818
0.4 2.067096 2.070802 2.070320
0.5 2.103722 2.107076 2.106531
0.6 2.146368 2.149404 2.148812
0.7 2.194463 2.197210 2.196585
0.8 2.247489 2.249975 2.249329
0.9 2.304978 2.307228 2.306570
1.0 2.366505 2.368541 2.367879

19.14. Method: MODIFIED EULER’S METHOD

Problem: y =-y;y(0)=1
o h=01 True solution
PYn Vn Y(x)=e™

0.0 — 1.0000000 1.0000000
0.1 0.9000000 0.9050000 0.9048374
0.2 0.8145000 0.8190250 0.8187308
0.3 0.7371225 0.7412176 0.7408182
0.4 0.6670959 0.6708020 0.6703201
0.5 0.6037218 0.6070758 0.6065307
0.6 0.5463682 0.5494036 0.5488116
0.7 0.4944632 0.4972102 0.4965853
0.8 0.4474892 0.4499753 0.4493290
0.9 0.4049777 0.4072276 0.4065697
1.0 0.3665048 0.3685410 0.3678794
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19.15. Method: MODIFIED EULER’S METHOD
2 2
Problem: y’:x bl ;=3
Xy
X, h=0.2 .
True solution
Y(x)=x49+Inx*
PYn Yn
1.0 — 3.0000 3.0000
1.2 3.6667 3.6716 3.6722
1.4 4.3489 4.3530 4.3542
1.6 5.0393 5.0429 5.0444
1.8 5.7367 5.7399 5.7419
2.0 6.4404 6.4432 6.4456

19.16. The true solution is ¥(x) = x%/2 — 1, a second-degree polynomial. Since the modified Euler’s method is a second-
order method, it will generate the exact solution.

19.17. Method: MODIFIED EULER’S METHOD
Problem: Y =-4x%y(2)=6
o h=02 True solution
Pn A Y(x)=x*~10
2.0 — 6.0000 6.0000
2.2 12.4000 13.4592 13.4256
2.4 21.9776 23.2480 23.1776
2.6 34.3072 35.8080 35.6976
2.8 49.8688 51.6192 51.4656
3.0 69.1808 71.2000 71.0000
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Method: RUNGE-KUTTA METHOD
Problem: y =y+x+2;y0)=2

X, h=0.1 True solution

Vn Yx)=e*+x+1

0.0 2.000000 2.000000
0.1 2.004838 2.004837
0.2 2.018731 2.018731
0.3 2.040818 2.040818
04 2.070320 2.070320
0.5 2.106531 2.106531
0.6 2.148812 2.148812
0.7 2.196586 2.196585
0.8 2.249329 2.249329
0.9 2.306570 2.306570
1.0 2.367880 2.367879
Method: RUNGE-KUTTA METHOD
Problem: y =-y;y0)=1

X, h=0.1 True solution

Vn Yx)=e™

0.0 1.0000000 1.0000000
0.1 0.9048375 0.9048374
0.2 0.8187309 0.8187308
0.3 0.7408184 0.7408182
04 0.6703203 0.6703201
0.5 0.6065309 0.6065307
0.6 0.5488119 0.5488116
0.7 0.4965856 0.4965853
0.8 0.4493293 0.4493290
0.9 0.4065700 0.4065697
1.0 0.3678798 | 0.3678794
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19.20. Method: RUNGE-KUTTA METHOD
2 2
Problem: ' = u; y(1)=3
xy
X, h=0.2 True solution
Yn Y(x) = x4/9 + Inx?
1.0 3.0000000 3.0000000
1.2 3.6722028 3.6722045
1.4 4.3541872 4.3541901
1.6 5.0444406 5.0444443
1.8 5.7418469 5.7418514
2.0 6.4455497 6.4455549

19.21. Since the true solution Y(x) = x*— 10 is a fourth-degree polynomial, the Runge-Kutta method, which is a fourth-
order numerical method, generates an exact solution.

19.22. Method: RUNGE-KUTTA METHOD
Problem: y =5x* y(0)=0
X, h=0.1 True solution
Vn Y(x) = x’

0.0 0.0000000 0.0000000
0.1 0.0000104 0.0000100
0.2 0.0003208 0.0003200
0.3 0.0024313 0.0024300
04 0.0102417 0.0102400
0.5 0.0312521 0.0312500
0.6 0.0777625 0.0777600
0.7 0.1680729 0.1680700
0.8 0.3276833 0.3276800
0.9 0.5904938 0.5904900
1.0 1.0000042 1.0000000
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19.23. Method: ADAMS-BASHFORTH-MOULTON METHOD

Problem: y' =y; y(0) =1

o h=01 True solution
PYn Yn Yx)=e™
0.0 — 1.0000000 1.0000000
0.1 — 1.1051708 1.1051709
0.2 — 1.2214026 1.2214028
0.3 — 1.3498585 1.3498588
0.4 1.4918201 1.4918245 1.4918247
0.5 1.6487164 1.6487213 1.6487213
0.6 1.8221137 1.8221191 1.8221188
0.7 2.0137473 2.0137533 2.0137527
0.8 2.2255352 2.2255418 2.2255409
0.9 2.4595971 2.4596044 2.4596031
1.0 2.7182756 2.7182836 2.7182818
19.24. Method: ADAMS-BASHFORTH-MOULTON METHOD

Problem: y' =-y +x+2; y(0)=2

o h=01 True solution
DPYn Yn YX)=e"+x+1
0.0 — 2.000000 2.000000
0.1 — 2.004838 2.004837
0.2 — 2.018731 2.018731
0.3 — 2.040818 2.040818
0.4 2.070323 2.070320 2.070320
0.5 2.106533 2.106530 2.106531
0.6 2.148814 2.148811 2.148812
0.7 2.196587 2.196585 2.196585
0.8 2.249330 2.249328 2.249329
0.9 2.306571 2.306569 2.306570
1.0 2.367880 2.367878 2.367879
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19.25. Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y" =—y; y(0)=1
o h=01 True solution
PYn Yn Yx)=e™
0.0 — 1.0000000 1.0000000
0.1 — 0.9048375 0.9048374
0.2 — 0.8187309 0.8187308
0.3 — 0.7408184 0.7408182
0.4 0.6703231 0.6703199 0.6703201
0.5 0.6065332 0.6065303 0.6065307
0.6 0.5488136 0.5488110 0.5488116
0.7 0.4965869 0.4965845 0.4965853
0.8 0.4493302 0.4493281 0.4493290
0.9 0.4065706 0.4065687 0.4065697
1.0 0.3678801 0.3678784 0.3678794
19.26. Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y’ = X+ yz; y1)=3
Xy
a h=02 True solution
PYn Y Y(x)=x9+Inx’
1.0 — 3.0000000 3.0000000
1.2 — 3.6722028 3.6722045
1.4 — 4.3541872 4.3541901
1.6 — 5.0444406 5.0444443
1.8 5.7419118 5.7418465 5.7418514
2.0 6.4455861 6.4455489 6.4455549
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19.28.
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Method: MILNE’S METHOD

Problem: y =-y+x+2;y0)=2
o h=01 True solution

DYn Yn Yx)=e*+x+1

0.0 — 2.000000 2.000000
0.1 — 2.004838 2.004837
0.2 — 2.018731 2.018731
0.3 — 2.040818 2.040818
0.4 2.070323 2.070320 2.070320
0.5 2.106533 2.106531 2.106531
0.6 2.148814 2.148811 2.148812
0.7 2.196588 2.196585 2.196585
0.8 2.249331 2.249329 2.249329
0.9 2.306571 2.306570 2.306570
1.0 2.367881 2.367879 2.367879

Method: MILNE’S METHOD

Problem: y' =-y; y(0)=1
o h=01 True solution

PYn Yn Yx)=e™

0.0 — 1.0000000 1.0000000
0.1 — 0.9048375 0.9048374
0.2 — 0.8187309 0.8187308
0.3 — 0.7408184 0.7408182
0.4 0.6703225 0.6703200 0.6703201
0.5 0.6065331 0.6065307 0.6065307
0.6 0.5488138 0.5488114 0.5488116
0.7 0.4965875 0.4965852 0.4965853
0.8 0.4493306 0.4493287 0.4493290
0.9 0.4065714 0.4065695 0.4065697
1.0 0.3678807 0.3678791 0.3678794
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CHAPTER 20
20.15. y' =z, =-y; y0)=1, z(0)=0

20.16. y' =z, Z=y+x; y0)=0, z(0)=—1

’ ’ . 3
20.17. y' =2z,7 =2xyz —(sinx)y’ + =; y1) =0, z(1) =15
y

2
2018. Y=z, Z=w,w =xw—-2;y0)=1, 2(0) =2, w(0) =3
X

20.19. Method: EULER’S METHOD
Problem: y”+y=0;y0)=1,y(0)=0

e h=01 True solution

Yn 2y Y(x) =cos x
0.0 1.0000 0.0000 1.0000
0.1 1.0000 —0.1000 0.9950
0.2 0.9900 —0.2000 0.9801
0.3 0.9700 —0.2990 0.9553
0.4 0.9401 —0.3960 0.9211
0.5 0.9005 —0.4900 0.8776
0.6 0.8515 —0.5801 0.8253
0.7 0.7935 —0.6652 0.7648
0.8 0.7270 —0.7446 0.6967
0.9 0.6525 —0.8173 0.6216
1.0 0.5708 —0.8825 0.5403

20.20. Since the true solution Y(x) = —x, a first-degree polynomial, Euler’s method is exact and generates the true solution
Y, =—X, at each x,,.
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20.21. Method: RUNGE-KUTTA METHOD
Problem: y”+y=0;y0)=1,y(0)=0
o h=01 True solution
Yn 2y Y(x)=cos x
0.0 1.0000000 0.0000000 1.0000000
0.1 0.9950042 —0.0998333 0.9950042
0.2 0.9800666 —0.1986692 0.9800666
0.3 0.9553365 —0.2955200 0.9553365
0.4 0.9210611 —0.3894180 0.9210610
0.5 0.8775827 —0.4794252 0.8775826
0.6 0.8253359 —0.5646420 0.8253356
0.7 0.7648425 —0.6442172 0.7648422
0.8 0.6967071 —0.7173556 0.6967067
0.9 0.6216105 —0.7833264 0.6216100
1.0 0.5403030 —0.8414705 0.5403023

20.22. Since the true solution is Y{(x) = —x, a first-degree polynomial, the Runge—Kutta method is exact and generates the
true solution y, = —x, at each x,,.

20.23. Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y” -3y +2y=0; y(0)=-1,y"(0)=0
o h=0.1 True solution
PYn Pl Yn Zn Y(x) = e - 2"
0.0 — — —1.0000000 0.0000000 —1.0000000
0.1 — — —0.9889417 0.2324583 —-0.9889391
0.2 — — —0.9509872 0.5408308 —0.9509808
0.3 — — -0.8776105 0.9444959 —0.8775988
0.4 —0.7582805 1.4670793 —0.7581212 1.4674067 —0.7581085
0.5 —0.5793682 2.1386965 —0.5791739 2.1390948 -0.5791607
0.6 —0.3243735 2.9954802 —0.3241340 2.9959702 —-0.3241207
0.7 0.0273883 4.0822712 0.0276819 4.0828703 0.0276946
0.8 0.5015797 5.4542298 0.5019396 5.4549628 0.5019506
0.9 1.1299923 7.1791788 1.1304334 7.1800757 1.1304412
1.0 1.9519493 9.3404498 1.9524898 9.3415469 1.9524924
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20.24. Method: ADAMS-BASHFORTH-MOULTON METHOD
Problem: y”+y=0;y0)=1,y(0)=0

o h=01 True solution

PYn P Y Zn ¥(x) = cos x
0.0 — — 1.0000000 0.0000000 1.0000000
0.1 — — 0.9950042 | —0.0998333 0.9950042
0.2 — — 0.9800666 | —0.1986692 0.9800666
0.3 — — 0.9553365 | —0.2955200 0.9553365
0.4 0.9210617 —0.3894147 0.9210611 —0.3894184 0.9210610
0.5 0.8775837 —0.4794223 0.8775827 | —0.4794259 0.8775826
0.6 0.8253371 —0.5646396 0.8253357 | —0.5646431 0.8253356
0.7 0.7648439 —0.6442153 0.7648422 | —0.6442186 0.7648422
0.8 0.6967086 —0.7173541 0.6967066 | —0.7173573 0.6967067
0.9 0.6216119 —0.7833254 0.6216096 | —0.7833284 0.6216100
1.0 0.5403043 —0.8414700 0.5403017 | —=0.8414727 0.5403023

20.25. Since the true solution is Y{(x) = —x, a first-degree polynomial, the Adams—Bashforth-Moulton method is exact and
generates the true solution y,= —x, at each x,,.

20.26.

Method: MILNE’S METHOD

Problem: y” -3y +2y=0;y(0)=-1,y(0)=0
e h=01 True solution

PYn Py Yn Zn Y(x) = ¥~ 2¢*

0.0 — — —1.0000000 0.0000000 —1.0000000
0.1 — — —0.9889417 0.2324583 —0.9889391
0.2 — — —0.9509872 0.5408308 —0.9509808
0.3 — — —0.8776105 0.9444959 —0.8775988
0.4 —0.7582563 1.4671290 —0.7581224 1.4674042 —0.7581085
0.5 —0.5793451 2.1387436 —0.5791820 2.1390779 —0.5791607
0.6 —0.3243547 2.9955182 —0.3241479 2.9959412 —0.3241207
0.7 0.0274045 4.0823034 0.0276562 4.0828171 0.0276946
0.8 0.5015908 5.4542513 0.5019008 5.4548828 0.5019506
0.9 1.1299955 7.1791838 1.1303739 7.1799534 1.1304412
1.0 1.9519398 9.3404286 1.9524049 9.3413729 1.9524924
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ANSWERS TO SUPPLEMENTARY PROBLEMS

Method: MILNE’S METHOD

Problem: y”+y=0;y0)=1,y(0)=0
o h=01 True solution

PYn P Vi Zn Y(x) = cos x

0.0 — — 1.0000000 0.0000000 1.0000000
0.1 — — 0.9950042 |—0.0998333 0.9950042
0.2 — — 0.9800666 |—0.1986692 0.9800666
0.3 — — 0.9553365 |—0.2955200 0.9553365
0.4 0.9210617 —0.3894153 0.9210611 |—0.3894183 0.9210610
0.5 0.8775835 —0.4794225 0.8775827 |—0.4794254 0.8775826
0.6 0.8253369 —0.5646395 0.8253358 |—0.5646426 0.8253356
0.7 0.7648437 —0.6442148 0.7648423 |—0.6442178 0.7648422
0.8 0.6967086 —0.7173535 0.6967069 |—0.7173564 0.6967067
0.9 0.6216120 —0.7833245 0.6216101 |—0.7833272 0.6216100
1.0 0.5403047 —0.8414690 0.5403024 |—0.8414715 0.5403023

predictors:  py, . =y, + hy,

PZy+1= 2+ 2},

h /7 4
correctors: Y, =y, 5(py"+l +Y,)
1
Yns1 = Yu +g(k1 + 2k, +2k; + k,)
1
Zys1 =2, +g(l] +20L +2L,+1,)

1
W, =W, +g(m1 +2m, +2my +m,)

where k= hf (X, Yo Zp» Wp)
ll = hg (xn’ Yns Zn» Wn)

my = hr (-xn’ Yns Zns Wn)

1 1 1 1

k, :hf(xn +Eh’ Y +5k1,2n +511,W,, +Em1}
1 1 1 1

L =hg[x,, t oy Sk bW, +2m1]

1 1 1 1
my,=hr| x, +=h,y, +=k,z, +=1,w, +—m,
2 2 2 2
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1 1 1 1
k.=hf| x +—h,y +—k,,z +—L,w +—m
3 f[ Ty Y 5t T W Ty zJ

L :hg(xn +lh, Y, +lk2, Z, +llz, w, +;m2]

2 2 2

1 1 1 1
my=hr|x, +=hy, +—ky,,z,+=L,w, +—m
3 [n 5 Y 5 5 > 2)

k4: hf(x,7+ h, yn+ k3, Zn+ 13, Wn+ mg)
l4: hg (-xn+ h’ Ynt k}v Znt l3a Wyt m3)

my=hr (x,+ h, y,+ ks, z,+ I3, w,+ ms)

20.30. Same equations as given in Problem 20.13 with the addition of
Py =0, S = 20
h ’ ’ 4
Wy =W, F g(pwn+] +4w, +w,_))
CHAPTER 21
21.27. 3 21.28. ﬁ
s s
1 1
21.29. 21.30.
s=2 s+6
1 8
21.31. — 21.32. ——
s s
s s
21.33. 2.9 21.34. 116
s 1
21.35. ——— 21.36. 3
s +b (s+8)
1 6
21.37. —— 21.38. —
(s—b) s
l—e 2 l—e® e 6D _ gD
21.39. 5 21.40. +
s s s—1
2 1 _ 2
2141, Z(1-e®) 2142, 2220
s s
7! 5°=9
21.43. — 21.44. > >
s (s+9)
120 T
21.45. 5 21.46. —
(s+1) s
1
21.47. 21.48. 15
1+3s 1+3s
8
21.49. 2| —; 6 == 12 21.50.
s(s*+12) | s +12s s+5



2151, 3 V2 _ 6
sSS+1/4 457 +1

2153, —09Jrs

2
21.55. m
s—3
21.57. 7@ T3 44
21.59. ﬁ(s —5)
2
21.61 S
T G+ DI(s+2)* + 4]
5 7
21.63. =2 511
3 8
21.65. ——-—
s s
25 -3
21.67. 10
A s+DI(s+1)*+3
21.69. (s+D[(s+1) ]

[(s+ 1> -1T

1
21.71. 5\/5 (s —2)™"

) 1 s—3
1.73. sl (s=3)7 +1
l—e™ —se™

21.75. m

CHAPTER 22

2220. x
2222, X2
2224. /6

2226. —2¢%
1 3x/2

22.28. —e
2

2230, 2x%e™>

ANSWERS TO SUPPLEMENTARY PROBLEMS

21.52.

21.54.

21.56.

21.58.

21.60.

21.62.

21.64.

21.66.

21.68.

21.70.

21.72.

21.74.

21.76.

22.21.

22.23.

22.25.

22.27.

22.29.

22.31.

)

2 +19
2
(s+1)*+4

s+1
(s+1)° +4

s—3
(s—3)*+25

Jr

Es+5"
2( )

2 . 15

2 5749
4s(s* +3)
(s*=1)°

8(3s% —16)
(s* +16)°

_s
(s* =1

_r
s(l+e™)

(s+De > +5+1

s2(1—e™)

2x

X312

3 .
5(s1n X + X cos x)

371
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1.
22.32. %(sin\/gx +3x cos\/gx) 22.33. Esm 2x
2 5. Ly 1 ..
22.34. —e sin3x 22.35. e COS\/gx ——e sm\/gx
3 J5
22.36 2e‘cos\/7x + ie"sin\ﬁx 22.37 Lsinix
22.38. e'sinx 22.39. e *cos2x+e “sin 2x
22.40. " cos2x + le(m)xsin 2x 22.41. e’“’z)"cosﬁx - Le’(”)*sinﬂx
4 Jit 2
. 1. 1
22.42. ¢+ cos x+sinx 22.43. Ee - Ee
22.44. cosx—e*+xe* 22.45. x+x°
22.46. —x + 3x* 22.47. X2 +xY8
3 8 512 2
2248. 2x+—x 22.49. -1+ e cos 3x
Jr
|
22.50. Ze“/z”cosﬁx - ie“’z“sinﬁx 22.51. —xsin3x
PINEY 2 6
22.52. —le" + le“/z”coshﬁx 22.53. le"‘coslx - e"‘sinlx
2 2 2 2
+ Le“’z”sinh ﬁx
2J5 2
CHAPTER 23
23.20. 16 23.21. 2
1 .. )
23.22. & —(2x+1) 23.23. g(e“* —e™)
2324, ef—x-—1 23.25. xe*+2e +x-2
3
23.26. 5(1 —cos 2x) 23.27. 1—-cosx
23.28. X —¢* 23.29. «x
1
23.30. 2(1-¢™ 23.31. E(e” —e™)
1 . 1
23.32. x———sin\/3x 23.33. —(1—cos 2x)
N 4

23.34. 1—cos 3x 23.35. x-— %sin 3x
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23.36. See Fig. 23-9. 23.37. See Fig. 23-10.

f0) )
A A
2 - *—
| |
1+ : -—— 1~ *—
| |
L | ! ! ! ! > x ! I I 6 ! ! >«
1 2 3 4 5 6 1 2 3 4 5 6
gk P
Fig. 23-9. Fig. 23-10.

23.38. u(x) —u(x—c) 23.39. See Fig. 23-11.

J)
A

LA0A0 - ..
RERRIAAY

Fig. 23-11.

23.40. See Fig. 23-12. 2341.

Fig. 23-12.
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=35

e
23.42. 2 2343. gx)=u(x-3)f(x-3)if f(x)=x+3
Then G(s)=e™ [iz + gj
s° s
e*SA‘
2344, gx)=u(x=3)f(x-3)if f(x) =x+4. 23.45. 1
Then G(s)=e* (LZ + ﬁ}
s° s
e—S(s—l) e—Zs—S
23.46. 23.47.
s—1 s—1
23.48. g(x)=ux-2)f(x—2) 23.49. u(x—3)cos2(x—3)
if f() =x° + 6x% + 12x + 9.
Then G(s)=e ™ (g + 2 + % + 2)
stosT st s
1 . 1 .
23.50. Eu(x —5)sin2(x—5) 23.51. Eu(x —m)sin 2(x — 1)
23.52. 2u(x—2)e*-2 23.53. Su(x—1)e*-D
1
2354 7 u(x=2)(x- 2y’ 23.55. (x— mu(x - 1)
23.56. [kf(x)] * g(x) = fkf(t)g(x — t)dt 23.57. y(x)=-3e*+3e"—6x
0
= kff(t)g(x—t)dt
0
=k[f(x)*g(x)]
23.58. y(x)=e"+ xe* 23.59. y(x)=cos x
23.60. y(x)=0
CHAPTER 24
24.17. y=e> 24.18. y=1
24.19. y= %e’“ + ée‘ 2420, y=¢20-D
24.21. y=0 2422, y=2¢>+ x>
24.23. y=-2¢"+ %e"‘ 2424. y= %sin x— %cos x+dye” (do =c, +
2425, y= ﬁ(@%ﬂ” +30 sin 2x — 3 cos 2x) 24.26. y=¢"
1
24.27. y= ge* ——e - lsin X 24.28. y=—e"+ ie"‘ +—xe”
4 4 2 4 4
2429, y= ie" - Le"“ - icos 2x — lsin 2x 24.30. y= §sin X - lx cos x
10 26 65 65 2 2
2431, y= 4e’“m"cosﬁx - ie’“’z”smﬁx 2432, y= 3o 4 2 rcos 2x 4 B osin 2x
27 B 2 5 5 10
24.33. y= 1 + le’(s’z)(”"”cosh@(x -4 24.34. y=sinx
3 3 2
+ie"5m("’4)sinh \/E (x—4) lu(x—4)

337 2



24.35.

24.37.

24.39.

24.41.

24.43.

24.45.

ANSWERS TO SUPPLEMENTARY PROBLEMS

y=-5+ 3ot 4 10 o cosﬁx
3 3 2

=e" 1+x+x—5
y 60

T =100

v= d()e_Zt +16 (d() =Cy— 16)

x=—2¢*"Dgin 3¢

CHAPTER 25

25.7.

25.9.

25.11.

25.13.

25.15.

25.17.

ux)=x>+x vix)=x-1
ux)=2e"+6e* vix)y=e"'+2e*

yx) =et zlx)=e'

w(x) = cos x + sin x

y(x)=cosx—sinx z(x)=1
u(x)=e>+1 vx)=2e>-1

wx)=sinx yx)=-—1+cosx

z(x) = sin x — cos x

CHAPTER 26

26.9.

26.11.

26.13.

26.15.

26.17.

26.19.

| 2 -
X =2 4 220D

3 3

2164(171) +lez(171) _l
6 3 2

X

1 ~
X:7€4“+7€2t—€t
x =k cos t+k,sin ¢t

x=—cos(t—1)+1¢

y=e"+e¥

24.36.

24.38.

24.40.

24.42.

24.44.

24.46.

25.8.

25.10.

25.12.

25.14.

25.16.

26.10.

26.12.

26.16.

26.18.

26.20.

1, 1 .1
y=—e +—e " +—-cosx
4 4 2

N = 5000¢" %%

T=70e7+30

q= _ie” + §sin 2t + icos 2t
5 5 5

x=2(1+0e?

q= L(l 10e™ —101e”” +13sint — 9cost)
500

u(x) =e>+2¢> vx)=e>+e
yx) =1 z(x)=x

wx)=eX—eF+1

y(x) = 20+ e — 1

ux)=—e*+e* vix)=e'—e™*

wx)=x> yx)=x z(x)=1

x= 1e'4‘+lez’—l
3 2

x=—e" +i32' 1
3

x=0
y = ke + kye?

yzge"+% 21+le3r
12 3 4

375



376

ANSWERS TO SUPPLEMENTARY PROBLEMS

26.21. y= Le" + %ez' + 163‘ 26.22. z= L(13sint —9cost —90e™ +99¢77")
12 3 4 500
26.23. x=e¥+2e" y=e+2e 26.24. x=2¢'+6e" y=e€'+2e"
2625. x=£+t y=t—1 26.26. x=lkzed + ke y=2kze™ — kye!
26.27. x= it“ + 61 26.28. x=—¢'+e' y=eé—e¢"
26.29. x=—8cost—6sint+8+6f y=4cost—2sint—3
CHAPTER 27
27.26. Ordinary point 27.27. Ordinary point
27.28. Singular point 27.29. Singular point
27.30. Singular point 27.31. Singular point
27.32. Ordinary point 27.33. Singular point
27.34. Singular point
2 3
2735. y=a,+a (x +?+€+ ~-~]=cl + e, where ¢ =ag—a, and ¢; = a,
-1
27.36. RF (recurrence formula): a,,,=——a,_,
(n+2)(n+1)
y=a, 1—lx3 +Lx6 +-- |+ aq x—ix4 +Lx7 + -
6 180 12 504
2
27.37. RF: a,,,= a,
(n+2)
y=a,|1+x° +lx4 +lx(’ +-- |+ a x+2x3 +ix5 +ix7 + e
2 6 3 15 105
-1
27.38. RF: a, ,=—a,_,
(n+2)
y=a, RPN NI +a, w-tey Loy
3 18 4 28
27.39. RF: n-l !

Apyy =T,  + ————a,
(n+2)(n+1) (n+2)(n+1)

y=a, 1+lx2+ix4+ix5+-~- +a, x+lx3+ix4+ix5+---
2 6 120

24 20 12



27.40.

27.41.

27.42.

27.43.

27.44.

27.45.

27.46.

27.417.

27.48.

27.49.

ANSWERS TO SUPPLEMENTARY PROBLEMS

a, . =_72an72
(n+2)(n+1)

y=a, l—lx4+ix8+--- +aq, x—ix5+ix9+--~
6 168 10 360

RF: a, ,= a,
n+2

1 1 1
yzao(l—zx2 e —~-~]+a1x

RF:

8 16

RF: a,,, Z;Qn,]

(n+2)(n+1)
y=a, 1+lx3+ix6+--- +aq, x+ix4+ix7+~--

6 180 12 504
1

RF: a, ,=—F—(a,+aq, )

(n+2)(n+1)

1 , 1 301 4
=a)|1+=(x-D)"+=-(x-1)"+—(x-1"+--
y 0|: 2( ) 6( ) 24( ) ]

1

D+ ie—1y
+al[(x 1)+6(x 1) +]2

(x—1)4+-~}

n—2 4n 4

RF: a,,,=———a,_, - a,+ Ay
(n+2)(n+1) (n+2)(n+1) n+2

1 , 1
y=ao[1—g(x+2)’ —g(x+2)4+..}
+al[(x+2)+2(x+2)2+2(x+2)3+§(x+2)4+...:|

a _ n”—n+l a
A+ D+

I, 7 3 7

3 5 Lo 1, [
y=| —x ———x" +-- [+q|l-—=x"+—x"+- |+q| X ——Xx +——Xx
24 1920 8 128 24 1920

a, . =$an’

(n+2)(n+1)
y=—%(x—1)z +a, +al[(x—1)+é(x—1)3 +41—0(x—1)5 +}
n (-1"

RF: = a,+
(n+2)(n+1) nl(n+2)(n+1)

()

Lo T Ly 15 Lo 1s
y=|=x"—=x"+-x" ——x"+-- [tag,ta| x+—-x+—x"+---
2 6 8 30 6 40

15 1
=l-x—=x"——x" -
Y 3 12

y=2(x—1)+%(x—1)2+(x—1)3+...

+]
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CHAPTER 28

1
TR+ -+ —1] !

yl(x)zaox(l +%x+ix2 +Lx3 +j

28.25. RF (recurrenceformula): a

30 630
y(x)=a Jx 1+x+lx2+ix3+~-~
2 (U 6 90

a :—71%1
20+ m)—1

11, 1 .
X)=aqx|l—=x+—x"———x" +---
5 0( 37150105 ]

1 1 1
V=anNx|l-—x+-x——x"+-
»(x)=q, [ ) 3 48 ]

a = il a _,
" BA+n)+1A+n)=2] "

28.26. RF:

28.27. RF:

1 1
V=ax | 1+—x+—x*+-
W =4 26 1976

1 1 1
x)=ax Pl 1l-=x*——x* ———x" -
%)= 2" 40" T 2640

28.28. For convenience, first multiply the differential equation by x. Then
-1

RF: a,=———a,_,
(A+n)

1 1
=ax| l+x+—x"+—x"+-
n(x)=a, ( 4 36 J

yz(x)=yl(x)lnx+a0(— 2x—%x2 + )

-1
a =——da
n (;\.+i’l)2 n-3

L, 1 s
X)=qy|1—=x"+—x"+---
n(x) 0( 9 304 j

28.29. RF:

2 1
)=y @) Inx+a,| —x ——x"+--
Y2(%) = y,(x) 0(27 a ]

-1

2830. RF: a¢,=———a,
A+n)+1
1 1 1 2 '
N=ax| l+—x+—x>+—x+- |=Zqg (" —1—x
»(x) 0 ( 3 12 60 ) . o ( )

1 1
Y, (x0)= aox" [1 +x+ Exz + §X3 + ]: aoxilex

28.31. For convenience, first multiply the differential equation by x. Then

1

RF: a,=———a,_,
A+n)-2

1 1 !
yl(x)=a0x2(1+x+2')€2 +§x3 +---]=a0x2e”

Y, (x) ==y (x)Inx+a,(1-x—x"+0x +---)
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-1

28.32. a,=————a,_,
2 +n)—1
1 1, 1 4
N=anx|l-—x+-x'——x +--
W)= ( 2778 T8 j
] -12 l 2 3 3
X)==y(xX)+ax | 1—=x"+—=x" +--
»,(x) 2Y1( ) +a, ] 3
2833, RF: a=—— 4
A+n)-2
(x) = a,x’ 1—x+lx2—lx3+~~ =gyx’e™"
g 0 217 3 0
3 11
0 =y,(xX)Inx+ax*| x—=x"+—x>+--
Y, (x)=y,(x) 0 [ 2 36
2834, y=cx"? 4+ cx? 28.35. y=cxX>+cx’lnx
28.36. y=cx P 4+cepx? 28.37. y=cx '+

28.38. y=c;+cx’

CHAPTER 29
29.9. j(4x2 —2)8x* = 12x)e “dx =0 29.10. Hs(x) = 32x° — 160x> + 120x
29.11. Py(x)= %(63x5 —70x° +15x) 29.12. P(x)= %(231x6 —315x* +10x* = 5)
29.14. Ts5(x) = 16x° — 20x> + 5x
2
29.15. - 29.16. 4

29.18. H;(x)=2x

29.19. L(x)=-6x+18; L,(x)=4x" —48x" + 144x — 96

29.20. (a) no; (b) yes (3 and 6); (c) no; (d) yes (7 and 8); (e) yes (2 and 11)

CHAPTER 30

30.19. 1.4296 30.20. 2.6593

30.21. 7.1733 30.22. —0.8887
1.1

30.23. 3.0718 30.24. §F[§)

30.25. ll"(2) = 1
2 2

30.26. First separate the k =0 term from the series, then making the change of variables j =k — 1, and finally change the
dummy index from j to k.

30.29(b). %[13(1) +JH D]
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CHAPTER 31
31.16. (a) harmonic; (b) harmonic; (c) not harmonic; (d) harmonic; (e) not harmonic
31.17. xcosy+f(y), where f(y) is any differentiable function of y
31.18. sin y + f(x), where f(x) is any differentiable function of x
31.19. 3y+4x+1
31.20. x*y+x+coshy
31.21. %xz + xg(y) + h(y), where g(y) and A(y) are any differentiable functions of y
31.22.  u(x, y) = x>y* + g(x) + h(y), where g(x) is a differentiable function of x, i(y) is a differentiable function of y
31.23.  u(x, y) =—x%y + g(x) + xh(y), where g(x) is a differentiable function of x, and A(y) is a differentiable function of y
31.24.  u(x, 1) =5 sin 3x cos 3kt — 6 sin 8x cos 8kt
CHAPTER 32
3222, y=0 3223, y=x—Tsinx
32.24. y=sinx 32.25. y=x+ (1 - %n’ ]sin X —Ccosx
32.26. y =B cos x, B arbitrary 32.27. No solution
32.28. No solution 32.29. y=x+ B cosx, B arbitrary
3230. A=1,y=ce™ 32.31. No eigenvalues or eigenfunctions
3232, A=2,y=cxe Fand A= %, y = cy(=3 + x)e™?
32.33. A=1,y=ce™ (¢, arbitrary)
3234, \,=-n’m,y,=A,sinnmx (n=1,2,...) (A, arbitrary)
32.35. A, = (1n 1 ]2 n’,y, =B, Cos(ln - ljﬂx (n=1,2,...) (B, arbitrary)
5 10 5 10
32.36. A,=n%y,=B,cosnx(n=1,2,...) (B, arbitrary)
32.37. Yes 32.38. No, p(x) =sin mxis zero at x==% 1, 0.
32.39. No, p(x) =sin x is zero at x =0. 32.40. Yes
32.41. No, the equation is not equivalent to (29.6). 32.42. No, w(x)= % is not continuous at x = 0.
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32.43. Yes

3245, I(x)=x; (xy)+Ay=0

2

n nx
3247. A, =—;e (x)=sin— ((n=12,...
7 (x) > ( )

n

CHAPTER 33

2&1
33.12. — ) —[1-(=1)"]sinnmx
ﬂ;n[ D"

33.14. l7r2+42 (_12) cosnx
n=1 N

3

33.16. 1

33.17. 2( 4 sinﬂ+icos%—icosnﬂ

nn 2 nw nrw

25 D _1
33.18. NZ _lcos(n 2)){

32.44.

32.46.

33.13.

33.15.

33.19.

I(x) =€ (YY) + xe™y + he™y =0

7»,,=n2; e,(x)=cosnx (n=0,1,2,...)

_gz(—l) Sinrm'x
Taoon

2 4&1 . 2nr nrx

f—fzfsm— —_—
3 mioin 3
2 (=D 1

-—— ) >sinf n—— |x
ﬂn:l( l) 2

n——

33.20. (a) yes; (b) no, lirr; f(x)=00; (c) noO, lirr% f(x)=-00; (d) yes, f(x) is continuous on [-1, 5]

x>2

33.21. (a) yes; (b) yes; (c)no, since liII(l) In Ixl=—o0;

x>0

CHAPTER 34

3417 (a) n; (b) u; (¢) 7, (d) non-linear;

3418 (a) k; (b) w; (c¢) 1, (d) non-linear;

3419 (a) t; (b) zz (¢) 3; (d) linear;

3420 (a) m; (b) g; (c¢) 13; (d) linear;

34.24  k(-17)", where k is any constant

3425 ¢/ (-1)"+cx(12),
where ¢ and ¢, are any constants

1
3427 —(6)"
5©®
3429 10Q)"-n*—2n-3

3431 $18,903.10

(d) no, since lim

(e) homogeneous

(e) homogeneous

(e) homogeneous

34.26

34.28

34.30

a1 3(x — 1)2/3 -

x>1

(e) non-homogeneous

¢1(10)" + c,n(10)",
where ¢; and ¢, are any constants

k(2)" — n* — 2n — 3, where k is any constant

L 1+\/§ n+l_ 1_\/5 n+1
NI 2




Adams-Bashforth—-Moulton method, 177

for systems, 196, 207
Addition of matrices, 131
Amplitude, 118
Analytic functions, 262
Applications:

to buoyancy problems, 116

to cooling problems, 50

to dilution problems, 52

to electrical circuits, 52, 115

to falling-body problems, 51

of first-order equations, 50

to growth and decay problems, 50

to orthogonal trajectories, 53

of second-order equations, 114

to spring problems, 114

to temperature problems, 50
Archimedes principle, 116

Bernoulli equation, 14, 42

Bessel functions, 295

Bessel’s equation, of order p, 296
of order zero, 299

Boundary conditions, 2, 309

Boundary-value problems:
definition, 2, 309
Sturm-Liouville problems, 310

Boyle’s law, 10

Buoyancy problems, 116

Cayley—Hamilton theorem, 133
Characteristic equation:

for a linear differential equation, 83, 89

of a matrix, 133
Characteristic value (see Eigenvalue)
Charles’ law, 12
Chebyshev’s differential equation, 290
Chebyshev’s polynomials, 291
Circular frequency, 118
Complementary solution, 74

Completing the square, method of, 224
Constant coefficients, 73, 83, 89, 94, 254
Constant matrix, 131

Convolution, 233

Cooling problems, 50

Critically damped motion, 117

Damped motion, 117
Decay problems, 50
Derivative:
of a Laplace transform, 211
of a matrix, 132
Difference, 325
Difference equations, 9, 325
Differential equation, 1
Bernoulli, 42
with boundary conditions, 2, 309
exact, 15, 31
homogeneous, 15, 21, 73 (See also Homogeneous
linear differential equations)
with initial conditions, 2, 110
linear, 14, 42, 73 (See also Linear differential
equations)
order of, 1
ordinary, 1
partial, 1, 304
separable, 15, 21
solution of (see Solutions of ordinary differential
equations)
systems of (see Systems of differential equations)
Differential form, 14
Dilution problems, 52
Direction field, 157

e, 140, 254
Eigenfunctions, 307, 310, 318
Eigenvalues:
for a boundary-value problem, 307, 310
of a matrix, 133
for a Sturm-Liouville problem, 310



Electrical circuits, 52, 115
Equilibrium point:
for a buoyant body, 116
for a spring, 114
Euler’s constant, 300
Euler’s equation, 287
Euler’s method, 158
modified, 177
for systems, 196
Euler’s relations, 87
Exact differential equation, 15, 31
Existence of solutions:
of first-order equations, 19
of linear initial-value problems, 73
near an ordinary point, 262
near a regular singular point, 275
Exponential of a matrix, 140

Factorial, 266, 298
Falling-body problem, 51
Fibonacci numbers, 326, 327, 329
First-order differential equations:
applications of, 50
Bernoulli, 14, 42
differential form, 14
exact, 15, 31
existence and uniqueness theorem, 19
graphical methods, 157
homogeneous, 15, 22, 29
integrating factors, 32
linear, 14, 42, 73
numerical solutions of (see Numerical methods)
separable, 15, 21
standard form, 15
systems of (see Systems of differential equations)
Fourier cosine series, 319
Fourier sine series, 319
Free motion, 117
Frequency, circular, 118
natural, 118
Frobenius, method of, 275

Gamma function, 295
table of, 297
General solution, 74 (See also Solutions of ordinary
differential equations)
Graphical methods for solutions, 157
Growth problems, 50

Half-life, 57

Harmonic function, 308

Harmonic motion, simple, 118
Heat equation, 304

Hermite’s differential equation, 290
Hermite’s polynomials, 291

INDEX 383

Homogeneous boundary conditions, 309
Homogeneous boundary-value problem, 309
Sturm-Liouville problem, 310
Homogeneous difference equation, 325
Homogeneous linear differential equation, 73
characteristic equation for, 83, 89
with constant coefficients, 83, 89, 254
solution of (see Solutions of ordinary differential
equations)
with variable coefficients, 262, 275
Homogeneous first-order equations, 15, 22, 29
Homogeneous function of degree n, 29
Hooke’s law, 115
Hypergeometric equation, 288
Hypergeometric series, 288

Ideal Gas law (see Perfect Gas law)
Identity matrix, 132
Indicial equation, 276
Initial conditions, 2, 148
Initial-value problems, 2
solutions of, 2, 21, 110, 242, 254, 264
Instability, numerical, 158
Integral of a matrix, 132
Integral equations of convolution type, 239
Integrating factors, 32
Inverse Laplace transform, 224
Isocline, 157

J,(x) (see Bessel functions)

Kirchhoff’s loop law, 116

L(y), 73
Laguerre’s differential equation, 290
Laguerre’s polynomials, 291

Associated polynomials, 294
Laplace differential equation, 305
Laplace transforms, 211

applications to differential equations, 242

of convolution, 233

of derivatives, 242

derivatives of, 211

of integrals, 212

inverse of, 224

of periodic functions, 212

for systems, 249

table of, 330

of the unit step function, 234
Legendre’s differential equation, 269, 290
Legendre’s polynomials, 269, 291
Limiting velocity, 52
Line element, 157
Linear dependence of functions, 74
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Linear difference equation, 325

Linear differential equations:
applications of, 50, 114
characteristic equation for, 83, 89
with constant coefficients, 73, 83, 89, 94, 254
existence and uniqueness of solution of, 73
first-order, 14, 42

general solution of, 74 (See also Solutions of ordinary

differential equations)
homogeneous, 73, 262
nth-order, 89
nonhomogeneous, 73, 94, 103
ordinary point of, 262
partial differential equation, 304
regular singular point of, 275
second-order, 83, 262, 275
series solution of (see Series solutions)
singular point, 262
solutions of, 73 (See also Solutions of ordinary
differential equations)
superposition of solutions of, 80
systems of (see Systems of differential equations)
with variable coefficients, 73, 262, 275
Linear independence:
of functions, 74
of solutions of a linear differential equation, 74
Logistics population model, 12, 57

Mathematica ®, 337
Mathematical models, 9
Matrices, 131

eM. 140, 254
Method of Frobenius, 275

general solutions of, 276
Milne’s method, 177

for systems, 207
Modeling (see Mathematical models)
Modeling Cycle, 9, 10, 336
Modified Euler’s method, 177
Multiplication of matrices, 132
Multiplicity of an eigenvalue, 133

n!, 266, 298
Natural frequency, 118
Natural length of a spring, 115
Newton’s law of cooling, 50
Newton’s second law of motion, 51, 115
Nonhomogeneous boundary conditions, 309
Nonhomogeneous boundary-value problem, 309
Nonhomogeneous difference equation, 325
Nonhomogeneous linear differential equations, 73
existence of solutions, 74
matrix solutions, 254
power series solutions, 263
undetermined coefficients, 94
variation of parameters, 103

INDEX

Nontrivial solutions, 307, 310
Numerical instability, 158
Numerical methods, 176
Adams—Bashforth—-Moulton method, 177, 196, 207
Euler’s method, 158, 196
Milne’s method, 177, 207
Modified Euler’s method, 177
order of, 178
Runge—Kutta method, 177, 196
stability of, 158
starting values, 178
for systems, 195

Order:

of a difference equation, 325

of an ordinary differential equation, 1

of a numerical method, 178

of a partial differential equation, 304
Ordinary differential equation, 1
Ordinary point, 262
Orthogonal trajectories, 53
Orthogonality of polynomials, 291
Oscillatory damped motion, 117
Overdamped motion, 117

Partial differential equation, 1, 304
Partial fractions, method of, 224
Particular solution, 74

Perfect Gas law, 10

Period, 118

Periodic function, 212

Phase angle, 66, 118

Piecewise continuous function, 318
Piecewise smooth function, 318
Power series method, 263

Powers of a matrix, 132
Predator-Prey model, 12
Predictor-corrector methods, 176
Pure resonance, 122

Qualitative approach in modeling, 10
Quasi-linear partial differential equations, 304

RC circuits, 45
RCL circuits, 115
Recurrence formula, 263
Reduction to a system of differential equations, 148
Regular singular point, 275
Resonance, 122
RL circuit, 45
Runge—Kutta method, 177
for systems, 196
Rodrigues’ formula, 290



Scalar multiplication, 132
Second-order linear equations, 83, 262, 275
(See also Linear differential equations)
Separable equations, 15, 21
Separation of variables, method of
for partial differential equations, 306
Series solutions:
existence theorems for, 263
indicial equation, 276
method of Frobenius, 275
near an ordinary point, 263
recurrence formula, 263
near a regular singular point, 276
Taylor series method, 273
Simple harmonic motion, 118
Singular point, 262
Solutions of difference equations:
general, 326
particular, 326
Solutions of ordinary differential equations, 2, 73
boundary-value problems, 2, 309
from the characteristic equation, 83, 89
complementary, 74
for exact, 31
existence of (see Existence of solutions)
general, 74, 276
by graphical methods, 157
homogeneous, 21, 74, 83, 89
by infinite series (see Series solutions)
for initial-value problem, 2, 73, 110
by integrating factors, 32
by Laplace transforms, 242
for linear first order, 42
linearly independent, 74
by matrix methods, 254
by the method of Frobenius, 275

INDEX

Standard form, 14
Starting values, 178
Steady-state current, 65, 117
Steady-state motion, 117
Step size, 158
Sturm—Liouville problems, 310, 318
Superposition, 80
Systems of differential equations, 249
homogeneous, 254
in matrix notation, 148
solutions of, 195, 249, 254

Taylor series, 163, 273
Temperature problems, 50
TI-89 ®, 337

Transient current, 65, 117
Transient motion, 117
Trivial solution, 307, 310

Underdamped motion, 117
Undetermined coefficients, method of
for difference equations, 326
for differential equations, 94
Uniqueness of solutions:
of boundary-value problems, 310
of first-order equations, 19
of linear equations, 73
Unit step function, 233

Variable coefficients, 73, 262, 275
Variables separated
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by numerical methods (see Numerical methods) for ordinary differential equations, 15
near an ordinary point, 262 for partial differential equations, 305, 306
particular, 74 Variation of parameters, method of, 103
by power series, 263 Vectors, 131
near a regular singular point, 275 Vibrating springs, 114
for separable equations, 21
by superposition, 80
of systems, 195, 249, 254
by undetermined coefficients, 94
uniqueness of (see Uniqueness of solutions)
by variation of parameters, 103

Spring constant, 115

Spring problems, 114

Square matrix, 131

Wave equation, 304
Weight function, 291
Wronskian, 74

Zero factorial, 298
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