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PREFACE

This book is a revision of the sixth edition, published in 1996. That edition has served,
just as the earlier ones did, as a textbook for a one-term introductory course in the
theory and application of functions of a complex variable. This edition preserves the
basic content and style of the earlier editions, the first two of which were written by
the late Ruel V. Churchill alone.

In this edition, the main changes appear in the first nine chapters, which make up
the core of a one-term course. The remaining three chapters are devoted to physical
applications, from which a selection can be made, and are intended mainly for self-
study or reference.

Among major improvements, there are thirty new figures; and many of the old
ones have been redrawn. Certain sections have been divided up in order to emphasize
specific topics, and a number of new sections have been devoted exclusively to exam-
ples. Sections that can be skipped or postponed without disruption are more clearly
identified in order to make more time for material that is absolutely essential in a first
course, or for selected applications later on. Throughout the book, exercise sets occur
more often than in earlier editions. As a result, the number of exercises in any given
set is generally smaller, thus making it more convenient for an instructor in assigning
homework.

As for other improvements in this edition, we mention that the introductory
material on mappings in Chap. 2 has been simplified and now includes mapping
properties of the exponential function. There has been some rearrangement of material
in Chap. 3 on elementary functions, in order to make the flow of topics more natural.
Specifically, the sections on logarithms now directly follow the one on the exponential

XYV



Xvi  PREFACE

function; and the sections on trigonometric and hyberbolic functions are now closer
to the ones on their inverses. Encouraged by comments from users of the book in the
past several years, we have brought some important material out of the exercises and
into the text. Examples of this are the treatment of isolated zeros of analytic functions
in Chap. 6 and the discussion of integration along indented paths in Chap. 7.

The first objective of the book is to develop those parts of the theory which
are prominent in applications of the subject. The second objective is to furnish an
introduction to applications of residues and conformal mapping. Special emphasis
is given to the use of conformal mapping in solving boundary value problems that
arise in studies of heat conduction, electrostatic potential, and fluid flow. Hence the
book may be considered as a companion volume to the authors’ “Fourier Series and
Boundary Value Problems” and Ruel V. Churchill’s “Operational Mathematics,” where
other classical methods for solving boundary value problems in partial differential
equations are developed. The latter book also contains further applications of residues
in connection with Laplace transforms.

This book has been used for many years in a three-hour course given each term at
The University of Michigan. The classes have consisted mainly of seniors and graduate
students majoring in mathematics, engineering, or one of the physical sciences. Before
taking the course, the students have completed at least a three-term calculus sequence,
a first course 1n ordinary differential equations, and sometimes a term of advanced
calculus. In order to accommodate as wide a range of readers as possible, there are
footnotes referring to texts that give proofs and discussions of the more delicate results
from calculus that are occasionally needed. Some of the material in the book need not
be covered in lectures and can be left for students to read on their own. If mapping
by elementary functions and applications of conformal mapping are desired earlier
in the course, one can skip to Chapters 8, 9, and 10 immediately after Chapter 3 on
elementary functions.

Most of the basic results are stated as theorems or corollaries, followed by
examples and exercises illustrating those results. A bibliography of other books,
many of which are more advanced, is provided in Appendix 1. A table of conformal
transformations useful in applications appears in Appendix 2.

In the preparation of this edition, continual interest and support has been provided
by a number of people, many of whom are family, colleagues, and students. They
include Jacqueline R. Brown, Ronald P. Morash, Margret H. Hoft, Sandra M. Weber,
Joyce A. Moss, as well as Robert E. Ross and Michelle D. Munn of the editorial staff
at McGraw-Hill Higher Education.

James Ward Brown
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CHAPTER

1

COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and vy,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)
correspond to points on the y axis and are called pure imaginary numbers. The y axis
is, then, referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that

(1) z2=1(x, y).

The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively; and we write

(2) Rez=x, Imz=y.

Two complex numbers z; = (x, y;) and z, = (x;, y,) are equal whenever they have
the same real parts and the same imaginary parts. Thus the statement z7; = z, means
that z; and z, correspond to the same point in the complex, or z, plane.
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The sum z; + 2, and the product z,z, of two complex numbers z; = (x;, y;) and
22 = (x5, y,) are defined as follows:

(3) (x1, ¥ + (X2, y2) = (X1 + x2, y1 + ¥2)»
4) (x1, YD (X2, ¥2) = (x1x2 = ¥1¥2, Y1X2 + X12).

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers;

(x1, 0) + (x5, 0) = (x1 + x2, 0),
(xb O)(xZa O) = (x1x29 O)

The complex number system is, therefore, a natural extension of the real number
system,

Any complex number z = (x, y) can be written z = (x, 0) 4+ (0, y), and it is easy
to see that (0, 1)(y, 0) = (0, y). Hence

2=1(x,0)+ (0, D(y, 0);

and, if we think of a real number as either x or (x, 0) and let i denote the imaginary
number (0, 1) (see Fig. 1), it is clear that*

s) z=x+iy.

2 - zZ, 7= zzz, etc., we find that

i2=(0, D0, 1) = (—1, 0),

Also, with the convention z

or

(6) it=—1,

Y
°oz=(x,y)

ei=(0,1)

‘ .

Ol x=(0) ¥ FIGURE 1

In view of expression (5), definitions (3) and (4) become
(7 (ry +iyp) + (xp +iyp) = (x; +x2) +i(y; + y2),
(8) (xp 4+ iy (xp +iyy) = (x1x3 — y1y2) +i(nixa + x1y2).

*In electrical engineering, the letter j is used instead of /.
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Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i* by — 1 when it occurs.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

(D 21+ =2+ 21, 412 =227
and the associative laws
(2) (z1+2) +3=21+ (22 +23). (2223 =121(2223)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if zy = (x1, ¥1)
and z, = (x5, ¥,), then

it za=@x it x, y1+n) =@+ . nty)=0+2
Verification of the rest of the above laws, as well as the distributive law
(3) 2(z1+ 22) =221 + 222,

is similar.

According to the commutative law for multiplication, iy = yi. Hence one can
write z = x + yi instead of z = x + iy. Also, because of the associative laws, a sum
7, + 2 + 73 or a product z (2,23 is well defined without parentheses, as is the case with
real numbers.

The additive identity 0 = (0, 0) and the multiplicative identity 1= (1, 0) for real
numbers carry over to the entire complex number system. That is,

(4) z40=z and z-1=z

for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 9).
There is associated with each complex number z = (x, y) an additive inverse

(5) —i = (_x, —y)a

satisfying the equation z + (—z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation (x, y) + (u, v) = (0, 0) implies that ¥ = —x and
v = —y. Bxpression (5) can also be written —z = —x — iy without ambiguity since
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(Exercise 8) —(iy) = (—i)y = i(—y). Additive inverses are used to define subtraction:
(6) 71— 22 =21+ (—27).

So if z; = (xy, yy) and z3 = (x5, y), then

(7 21— 2= (0 — X2, y1— ¥2) = (¥ — %) +E(yi — y)-

For any nonzero complex number z = (x, y), there is a number z~! such that
zz~ 1= 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real numbers u and v, expressed in terms of x and y, such that

(x, ), v)=(1,0).

According to equation (4), Sec. 1, which defines the product of two complex numbers,
u and v must satisfy the pair

xu—yv=1, yu+xv=0
of linear simultaneous equations; and simple computation yields the unique solution

X y = -V

H —

So the multiplicative inverse of z = (x, y) 1S

,~1 * 4 ,
(8) < - (xz_*_yzy x2+y2) (4-7'{:0)

The inverse z ™! is not defined when z = 0. In fact, z = 0 means that x*> + y? = 0; and
this is not permitted in expression (8).

EXERCISES

1. Verify that

@ (V2-i)—i(1-V2))=-2;  (b) (2, =32, D) =(-18);

_ 1 1

(c) (3, B3, =D (“5', T(S) = {2, 1).
2. Show that
(a) Re(iz) = — Im z; (b Im(iz) =Rez.
Show that (1 +z)% = 1 + 2z 4 22, |
Verify that each of the two numbers z = 1 £ i satisfies the equation 2 -2z42=0.
Prove that multiplication is commutative, as stated in the second of equations (1), Sec. 2.
Verify
(a) the associative law for addition, stated in the first of equations (2), Sec. 2;
(b) the distributive law (3), Sec. 2.

AR O
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7. Use the associative law for addition and the distributive law to show that
2y + 29 + 23) = 227 + 237 + 223,

8. By writing i = (0, 1) and y = (y, 0), show that —(iy) = (—i)y =i(—y).
9. (a) Write (x, ¥) + (4, v) = (x, ¥) and point out how it follows that the complex number
0 = (0, 0) is unique as an additive identity.
(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1 = (1, () is aunique
multiplicative identity.

10. Solve the equation z° 4+ z + 1 = 0 for z = (x, y) by writing
(x, W(x, ¥) +x,y) +(1L,0)=(0,0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show
that y # 0.

Ans. z = —-l, :i:£ .
2 2

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses enables
us to show that if a product z,z, is zero, then so is at least one of the factors 7| and
25. For suppose that z;z; = 0 and z; # 0. The inverse z"{l exists; and, according to the
definition of multiplication, any complex number times zero is zero. Hence

—l
({,1-\,2 O O

N
I
—.
&4
-
&
rw-'

zzzl-z

That is, if zyz» = 0, either z; =0 or z, = 0; or possibly both z; and z, equal zero.
Another way to state this result is that if two complex numbers z, and z, are nonzero,
then so is their product z125.

Division by a nonzero complex number is defined as follows:

(1) 5212;1 (22#0).

N|N
E\S)

If z; = (x;. y)) and z5 = (x5, ¥»), equation (1) here and expression (8) in Sec. 2 tell us

that
} X7 —Y2 ) _ [ X1X2 Y12 YiXa— X1
a CITR AV B R mvem 2. 2 0 2.2 |
X5+ y; X5+ Y; x5+ ¥ X3+ ¥

3 lN
()
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That is,
;XX + L Y1Xy — X .
(2) 21 M 3 y;}’z 42 .; 32}’2 (z2 # 0).
22 x5+ ¥y, x5+ ¥y

Although expression (2) is not easy to remember, it can be obtained by writing (see
Exercise 7)

(3) 21 _ Gt iy)Ge —iy)
22 (o +iy)lg —iy)

multiplying out the products in the numerator and denominator on the right, and then
using the property

21 +2 -~ - -t 71,z
C 2m(zl+zz)z31=zlz3l+zzz3im—1+--~2>~ (z3 #0).
Z3 3 23

(4)

The motivation for starting with equation (3) appears in Sec. 5.
There are some expected identities, involving quotients, that follow from the
relation

() =2 (22 #0),

which is equation (1) when z; = 1. Relation (5} enables us, for example, to write
equation (1) in the form

(6) 4= Zl(i) (z2 #0).

22 22

Also, by observing that (see Exercise 3)
(zlzg)(zg"}zgl) = (zlzl'l)(zzzgi). =] (z1 0,2, #0),

and hence that (z,z,) "1 = zl'lzz' ! one can use relation (5) to show that

(7) =(z12) =27 '2; = ('}“’) (“‘1“) (2; #0,2270).

2122 <1 <2

Another useful identity, to be derived in the exercises, is

2142 <1
1334 23

&3

A

) (z3 #0,24 #0).
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EXAMPLE. Computations such as the following are now justified:

( 1 )( 1)__ 1 1 5+i 5+
2-3i/\1+i/ _@2-30)A+i) 5-i 5+i (G-DGE+i)
S+i 5 i 5 1,

26 2626 26 26

Finally, we note that the binomial formula involving real numbers remains valid

with complex numbers. That is, if z, and z, are any two complex numbers,

€

n
(z;+ Zg)n = Z (:) z';_kz’; n=12,...)

k={)

where

1
C)mmmi—— k=0,1,2,...,n)
k]~ kln - k)

and where it is agreed that 0! = 1. The proof, by mathematical induction, is left as an
exercise.

EXERCISES

1. Reduce each of these quantities to a real number:

3—4i 5i (1 -2 -@3-1

Ans. (a) —2/5; (b) —1/2; (c)—4.
Show that

@ (=Dz = —z; wq%=z@¢m

Use the associative and commutative laws for multiplication to show that

(c) (1= i)~

(a)

(2122)(2324) = (2123) (2224}

Prove that if 7;2,23 = 0, then at least one of the three factors is zero.
Suggestion: Write (z;2,)z3 =0 and use a similar result (Sec. 3) involving two
factors.

Derive expression (2), Sec. 3, for the quotient z;/z, by the method described just after
it.

6. With the aid of relations (6) and (7) in Sec. 3, derive identity (8) there.

7. Use identity (8) in Sec. 3 to derive the cancellation law:

YE_Z (7, £0, 2 £0).

232 o)
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8. Use mathematical induction to verify the binomial formula (9) in Sec. 3. More precisely,
note first that the formula is true when n = 1. Then, assuming that it is valid when n = m
where m denotes any positive integer, show that it must hold whenn =m + 1.

4. MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents z (Sec. 1) in the
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the
numbers z = x + iy and —2 + i are displayed graphically as both points and radius
vectors.

2. 1)
.

-2 Y *  FIGURE2

According to the definition of the sum of two complex numbers z; = x; + iy,
and z, = x; + iy,, the number z; + 2, corresponds to the point (x| + xz, y; + vo). It
also corresponds to a vector with those coordinates as its components. Hence z; + 25
may be obtained vectorially as shown in Fig. 3. The difference z; — 25 = 21 + (—232)
corresponds to the sum of the vectors for z, and —z; (Fig. 4).

x FIGURE 3

Although the product of two complex numbers z; and z, is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for z,
and z,. Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector analysis.

The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x + /y is defined as the nonnegative real
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FIGURE 4

number +/x2 + y? and is denoted by |z|; that is,

() 2] = V22 + y2.

Geometrically, the number |z| is the distance between the point (x, y) and the origin,
or the length of the vector representing z. It reduces to the usual absolute value in the
real number system when y = 0. Note that, while the inequality 7, < 2 is meaningless
unless both 7, and 7, are real, the statement |z)| < |z;| means that the point z; 1s closer
to the origin than the point z; is.

EXAMPLE 1. Since |— 3+ 2i| = v/13 and |1 + 4i| = +/17, the point —3 + 2i is
closer to the origin than 14 41 is.

The distance between two points z; = x; + iy and z, = x5 + iy, is |21 — zo|. This
is clear from Fig. 4, since |z; — 2| is the length of the vector representing 2y — 2; and,
by translating the radius vector z; — 2, one can interpret zy — 2 as the directed line
segment from the point (x;, y,) to the point (xy, y). Alternatively, it follows from the
expression

71— 2= (x1 — x2) + i(y1 — ¥2)

and definition (1) that

12y — 22 =V (x; — x2)2 + (3; — ¥2)*.

The complex numbers z corresponding to the points lying on the circle with center
zo and radius R thus satisfy the equation |z — zo| = R, and conversely. We refer to this
set of points simply as the circle |z — zg| = R.

EXAMPLE 2. The equation |z — 1 + 3i| = 2 represents the circle whose center is
zg = (1, —3) and whose radius is R = 2.

It also follows from definition (1) that the real numbers |z|, Rez =x,andImz =y
are related by the equation

2) 1712 = (Re 2)° + (Im z2)*.
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Thus
(3) Rez<|Rez|<l|z] and Imz<|Imz]| <]zl

We turn now to the triangle inequality, which provides an upper bound for the
modulus of the sum of two complex numbers z; and z;:

4) |21 + 22l < lzyl + |22l

This important inequality is geometrically evident in Fig. 3, since it is merely a
statement that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. We can also see from Fig. 3 that inequality (4)
is actually an equality when O, z;, and z, are collinear. Another, strictly algebraic,
derivation is given in Exercise 16, Sec. 5.

An immediate consequence of the triangle inequality is the fact that

(5) 23 + 2] = llzy| = lz2ll-
To derive inequality (5), we write
21l = (21 + 22) + (—22)| Sz + 22| + | — 22l
- which means that
(6) 121 + 22l = |2a] — {22l

This is inequality (5) when jz;| > |za]. If |z4] < |z;|, we need only interchange z, and
Z, in inequality (6) to get

121 + 221 = —(z4] — [z2D),

which is the desired result. Inequality (5) tells us, of course, that the length of one side
of a triangle is greater than or equal to the difference of the lengths of the other two
sides.

Because |— z,| = |z,|, one can replace z, by —z3 in inequalities (4) and (5) to
summarize these results in a particularly useful form:

(7 121 = 20l < lzgl + |22,

(8) 121 £ 22| = [lz1] = l22ll

EXAMPLE 3. If a point z lies on the unit circle |z| = 1 about the origin, then
lz=2|<|z|+2=3

and

Iz =2 2 {lzl = 2| =1L
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The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number of terms:

9) lZ1+ 22+ -+ 2 Sl + lzpl 4+ -+ 12, n=2,3,...).

To give details of the induction proof here, we note that when r = 2, inequality (9) is
just inequality (4). Furthermore, if inequality (9) is assumed to be valid when n = m,
it must also hold when n = m + 1 since, by inequality (4),

(Z1+ 204+ 2) F Zpsl Slor+ 20+ + 2l + 2441l
< (zil +1z2l + - -+ 120D + |2l

EXERCISES
1. Locate the numbers z; + 7z, and z, — z, vectorially when
2
@z =2 n=3-i B)z1= (=3, 1, z3=(+/3,0);

©z1=(=31, z22=(1L4; @zu=xi+iy, z22=x1—1Iy.
2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z].

. 3, Verify that +/2{z| > |Re z| + |Im z|.
Suggestion: Reduce this inequality to (x| — | y|)? = 0.

4. In each case, sketch the set of points determined by the given condition:
(@lz—-1+il=1 (b) |z +il <3 (c)lz —4i| >4,

5. Using the fact that |z; — z,| is the distance between two points z; and z,, give a geometric
argument that

(@) |z — 4i] + |z + 4i| = 10 represents an ellipse whose foci are (0, £4);
(b) |z — 1| = |z + i| represents the line through the origin whose slope is —1.

5. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number z = x + iy Is
defined as the complex number x — iy and is denoted by z; that 1s,

(D Z=Xx—1y.

The number 7 is represented by the point (x, —y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

7=z and |Z] =]z

for all z.
If21 =X+ iyl and =Xy + i}’z, then

21+ 22 = (x1 +x9) —i(yy + y2) = (x1 —iy) + (xp — iy2).
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(x, ¥)

&3

&5

}
!
|
H
é (x,—-y) FIGURE §

So the conjugate of the sum is the sum of the conjugates:

(2) 21t =7+ 22

In like manner, it is easy to show that

3 71— 22 =21 — Z2.

(4) 2123 = 2] 22,

and

5) (—‘) =L (g, #0).
<2 <2

The sum z + Z of a complex number z = x + iy and its conjugate 7 =x — iy 18
the real number 2x, and the difference z — 7 is the pure imaginary number 2iy. Hence
z+z Z2—2

6 Re z = , Imz=-—
©) 2 ) 2

An important identity relating the conjugate of a complex number z = x + iy to
its modulus is

ST

¥

(7) z 2

:;7
uy

where each side is equal to x? + y*. It suggests the method for determining a quotient
z1/2- that begins with expression (3), Sec. 3. That method is, of course, based on
multiplying both the numerator and the denominator of z;/zy by z, so that the
denominator becomes the real number |z, .

EXAMPLE 1. As an illustration,

—1+3i _ (=14+30)Q+i)  —S+5 _ -5+5 _ .
2—i Q-DQ+i) [2-i 5 |

See also the example near the end of Sec. 3.
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Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

t)) 12122] = lz4l1z2]

and

(4) a = lz—ll (2.'2 # 0)
22| zol

Property (8) can be established by writing

21221* = (2122) @172) = (2122) @1 72) = @Z)(2273) = 212122 = (1241 22))°
and recalling that a modulus is never negative. Property (9) can be verified in a similar

way.

EXAMPLE 2. Property (8) tells us that |z?| = |z|* and |z3| = |z|°. Hence if 7 is a
point inside the circle centered at the origin with radius 2, so that |z] < 2, it follows
from the generalized form (9) of the triangle inequality in Sec. 4 that

122 +322 =22+ 1 < [zP + 3Iz{2 + 2Jz| + 1 < 25.

EXERCISES

1. Use properties of conjugates and moduli established in Sec. 5 to show that

(@)Z+3i =z — 3i; (b)iz =—iz;

©Q+?=3-4i; (DIZ+HV2-D=+32z+5.
2. Sketch the set of points determined by the condition

(@Re(z—i)=2; (b)|2z—i|l=4.

3. Verfy properties (3) and (4) of conjugates in Sec. 5.
4. Use property (4) of conjugates in Sec. 5 to show that
@O Tz =150 »t=z4
5. Venfy property (9) of moduli in Sec. 5.
6. Use results in Sec. 5 to show that when z, and z5 are nonzero,
(a)(m;j= RINENC al_
223/ 2213 [2211z3]

7. Use established properties of moduli to show that when |z3] # |z4],

21
27223

21+ 3o
23+ 24

< 1z1] + 1zl ‘
[1z3l — Iz4l|
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8.

9.

10.

11.

12,

13.

14.

13.

16.
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Show that
Re(2+Z+ )| <4  when|z] <1

It is shown in Sec. 3 that if 7,2, = 0, then at least one of the numbers z; and z, must be
zero. Give an alternative proof based on the corresponding result for real numbers and
using identity (8), Sec. 5.

By factoring z* — 422 + 3 into two quadratic factors and then using inequality (8), Sec. 4,
show that if z lies on the circle |z[ = 2, then

1
A —472 43

=

1
3
Prove that

(a) zisrealif and only if 7 = z;

(b) z is either real or pure imaginary if and only if 7° = z°.

Use mathematical induction to show that whenn =2, 3, ...,

@Wz1++-+, =01+ ++Zs BV, =722 2

Let ag, ay, as, . . ., a, (n > 1) denotc real numbers, and let z be any complex number.
With the aid of the results in Exercise 12, show that

ap+aiz+a?+ o da " =agtait i+ +a,z"

Show that the equation |z — zg| = R of a circle, centered at z with radius R, can be
written

1z)* — 2 Re(zZg) + lzol* = R?.

Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x?—yr=1
can be written

2+ =2
Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)
|z1 + z2] < lzq| + |zl

{a) Show that

9]
Fa

21 + 2l = (21 + 2)z1 + 22) = 2127 + (2922 + 0122) + 2222

(&) Point out why
2172 + 2122 = 2 Re(2/Z7) < 20z4l1z2l.
(¢) Use the results in parts (a) and (b) to obtain the inequality
21+ z21* < (1] + |z2D)°,

and note how the trianglc inequality follows.
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6. EXPONENTIAL FORM

Let r and & be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x 4+ {y. Since x =r cos & and y = r sin 6, the number z can be
written in polar form as

() z=r(cosf +isinb).

If z =0, the coordinate # is undefined; and so it is always understood that z # 0
whenever arg z is discussed.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z; that is, r = |z|. The real number 6 represents the angle,
measured in radians, that z makes with the positive real axis when z is interpreted as
a radius vector (Fig. 6). As in calculus, # has an infinite number of possible values,
including negative ones, that differ by integral multiples of 27r. Those values can be
determined from the equation tan # = y/x, where the quadrant containing the point
corresponding to z must be specified. Each value of 6 is called an argument of z, and
the set of all such values is denoted by arg z. The principal value of arg z, denoted by
Arg z, is that unique value © such that —7 < © < w. Note that

(2) arg z = Arg z + 2nm (n=0, 1, £2, .. ).

Also, when z is a negative real number, Arg z has value 7, not —.

-
N :

FIGURE 6

EXAMPLE 1. The complex number —1 — i, which lies in the third quadrant, has
principal argument —3z7 /4. That is,

RJ/4
Arg(—1—i)=—"—.
g( ) 2
It must be emphasized that, because of the restriction —7 < ® < 7 of the principal
argument @, it is not true that Arg(—1 - i) = 5 /4.
According to equation (2),

arg(---»l---£)=——-34£+2mr (n=0, 1, £2,...).
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Note that the term Arg z on the right-hand side of equation (2) can be replaced by any
particular value of arg z and that one can write, for instance,

arg(—l—-i)z%%—%m (n=0, £1,£2,...).

The symbol ¢'?, or exp(i6), is defined by means of Euler’s formula as
(3) '’ =cos@ +isin6,

where 6 is to be measured in radians. It enables us to write the polar form (1) more
compactly in exponential form as

4) z=ré’.

The choice of the symbol €% will be fully motivated later on in Sec. 28. Its use in Sec.
7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number —1 — i in Example 1 has exponential form
(5) —1—i=+2exp [1(—%{)]

With the agreement that e~'¢ = ¢!=#), this can also be written —1 — i = v/2 ™37/,
Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of —1 — i:

(6) wl—i:«.@exp [i(——% +2mr):| (n=0, 1, £2,...).

Note how expression (4) with r = 1 tells us that the numbers ¢'? lie on the circle
centered at the origin with radius unity, as shown in Fig. 7. Values of e'? are, then,
immediate from that figure, without reference to Euler’s formula. It 1s, for instance,

git

FIGURE 7
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geometrically obvious that
Ff=—1, e ™2~=_i and e ¥ =1.
Note, too, that the equation
7 z=Re®  (0<6<2n)

is a parametric representation of the circle |z| = R, centered at the origin with radius
R. As the parameter 6 increases from 8 =0 to 8 = 27, the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More
generally, the circle |z — zg| = R, whose center is zo and whose radius is R, has the
parametric representation

(8) z=zg+ Re® (0<6<2n).

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
lz — zo| = R once in the counterclockwise direction corresponds to the sum of the
fixed vector zg and a vector of length R whose angle of inclination 6 varies from 6 =0
to 6 = 2m.

* FIGURE 8

7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL FORM

Simple trigonometry tells us that e’® has the familiar additive property of the exponen-
tial function in calculus:

e®1e!%2 = (cos B, + i sin 0;)(cos 6 + i sin 6,)

= (cos 8 cos 9, — sin 6y sin B,) + i(sin §) cos &, + cos & sin 6)

= cos(B; + 6) + i sin(; + 6;) = &' @18,
Thus, if z; = rie'?1 and z, = r,e'%2, the product z,z, has exponential form
1 1 2 2 P 122 p

(H 212y = ryry€’t1e'% = rir et @102
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Moreover,

. 2 r €% ¢i (6,—62)

= N ie-6)
ra 6{0 ry

Because 1= 1¢'0, it follows from expression (2) that the inverse of any nonzero
complex number z = re'? is

1 .
(3) 7 l=c =7,

Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual
algebraic rules for real numbers and e”.
Expression (1) yields an important identity involving arguments:

4) arg(zyz,) = arg 7| + arg z».

It is to be interpreted as saying that if values of two of these three (multiple-valued)
arguments are specified, then there is a value of the third such that the equation holds.

We start the verification of statement (4) by letting 8, and 6, denote any values
of arg z; and arg z,, respectively. Expression (1) then tells us that §; + 6, is a value of
arg(z4z,). (See Fig. 9.) If, on the other hand, values of arg(z,z,) and arg z; are specified,
those values correspond to particular choices of n and n, in the expressions

arg(z(z2) = (61 + 6) + 2n7 (n=0, 41, £2,..))
and

arg z; =6, + 2nmm (n;=0, &1, £2,...).

Since

B+ 86, +2n7 =B+ 2nm) + [0, +2(n — npn],

¥ FIGURE 9
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equation (4) is evidently satisfied when the value
argzy =t +2(n — nPnw

is chosen. Verification when values of arg(z;z,) and arg z, are specified follows by

symmetry.
Statement (4) is sometimes valid when arg is replaced everywhere by Arg (see
Exercise 7). But, as the following example illustrates, that is not always the case.

EXAMPLE1. Whenz,=—landz, =1,

. 3
Arg(z12) = Arg(—i) = —-’i’- but Argz, +Argz, =7 + % = —i’f
If, however, we take the values of arg z; and arg z, just used and select the value
4 3
Arg(z129) + 2 = ey +2n = -é-l;

of arg(z,z,), we find that equation (4) is satisfied.
Statement (4) tells us that
1Y _ SIS N ~1
arg(—) = arg(z;z, ) =argz1 + arg(z, ),

)

and we can see from expression (3) that

(5) &rg(z{l) = —arg z,.

Hence

(6) arg(-?) =arg z; — arg z,.
22

Statement (5) is, of course, to be interpreted as saying that the set of all values on the
left-hand side is the same as the set of all values on the right-hand side. Statement (6)
is, then, to be interpreted in the same way that statement (4) is.

EXAMPLE 2. In order to find the principal argument Arg ; when

)
1+ 3

observe that

arg z = arg(—2) — arg(1 + «/ii).
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Since

Arg(—2y=nm and Arg(l+ V3i) = -{734-,

one value of arg z is 2,r/3; and, because 277 /3 is between —m and n, we find that
Arg z =2m/3.

Another important result that can be obtained formally by applying rules for real
numbers to 7 = re'? is

(7) 7" = pleint (n=0,£1,£2,...).

It is easily verified for positive values of n by mathematical induction. To be specific,
we first note that it becomes z = re'? when n = 1. Next, we assume that it is valid
when n = m, where m is any positive integer. In view of expression (1) for the product
of two nonzero complex numbers in exponential form, it is then valid forn =m + 1:

mi+1 sz — rezﬁrmé,;m(? — rm+lei(m+1)9'

l

Z

Expression (7) is thus verified when r is a positive integer. It also holds when n =0,
with the convention that z% = 1. If n = —1, —2, .. ., on the other hand, we define 7"
in terms of the multiplicative inverse of z by writing

"= (z"ly" where m=-n=12,...

Then, since expression (7) is valid for positive integral powers, it follows from the
exponential form (3) of z~ ! that

1 . m 1N . 1\ .
M= [_et(““@)] —_ (_) etm(—-ﬂ) — (.._) ez(-—n)(mé) _ irn‘?m?
r ¥ r

(n=-1,-2,...).

Expression (7) is now established for all integral powers.
Observe that if r = 1, expression (7) becomes

(8) @ =6 (n=0, %1, £2,..)).
When written in the form
(D (cos 0 + i sin 8)" = cos nf + i sin nh (n =0, X1, £2,...),

this is known as de Moivre’s formula.
Expression (7) can be useful in finding powers of complex numbers even when
they are given in rectangular form and the result is desired in that form.
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EXAMPLE 3. In order to put (+/3 + )7 in rectangular form, one need only write

(V3+i) =™ =270 = (2% 1‘(2ef“/6'jfé= —64(~/3 +1).

EXERCISES

1.

Find the principal argument Arg z when

ot - _ b
@z=——> Bz=3-D

Ans. (a) =3n/4; (D).

2. Show that (@) || = 1; (b) e/ = e~1.

3. Use mathematical induction to show that

ezgleiﬂg . eiﬂn — ei(6]+92+-..+9n) (n — 2, 3, .. ‘)‘

Using the fact that the modulus |ef® — 1] is the distance between the points ¢'® and 1 (see
Sec. 4), give a geometric argument to find a value of 6 in the interval 0 <6 < 2 that
satisfies the equation [¢/f — 1] =2.

Ans. .

Use de Moivre’s formula (Sec. 7) to derive the following trigonometric identities:
(a) cos 30 = cos? 8 — 3 cos 6 sin? 6; (bysin360 =3 cos? 6 sin @ — sin’ 6.

By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

@i(l—V3)N3+)=2(1+4/3D);  (B)5i/Q+i)=1+2i;
() (—1+ )7 =-801+1i); d) (1 ++/3)"10 = 2= (=1 + /30).
Show that if Re z; > 0 and Re z, > 0, then

Arg(z12p) = Arg 2y + Arg 25,

where Arg(z;2,) denotes the principal value of arg(z,z;), etc.

Let z be a nonzero complex number and n a negative integer (n = —1, —2, .. .). Also,
writt z =re' andm = —n =1, 2, ... . Using the expressions

. _ 1 .o
M ="M and 7 1__ (_) il 9),
¥

verify that (z")"! = (z~1)" and hence that the definition z” = (z~")" in Sec. 7 could
have been written alternatively as z* = (™)L

Prove that two nonzero complex numbers z; and z, have the same moduli if and only if
there are complex numbers c; and ¢; such that z; = ¢;¢; and 7; = ¢C3.
Suggestion: Note that

exp(i % -; 82) exp(i?f—gf-?-“-) = exp(i6,)
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and [see Exercise 2(b)]

h -0
exp(i o ; 6‘) exp(ig&w—z-—g) = exp(if,).

10. Establish the identity

1— n+l

1+z+z’*’*+---+z”z—;—‘fm—— (z#1)
— 2

and then use it to derive Lagrange’s trigonometric identity:

I sinl@n+ DO g <o,
2 2 sin(8/2)

14+cosf +cos280+ - +cosnfl =

Suggestion: As for the first identity, write S=1+2z + 72 + ot z" and consider
the difference S — z3S. To derive the second identity, write z = ¢'? in the first one.

11. (a) Use the binomial formula (Sec. 3) and de Moivre’s formula (Sec. 7) to write

I
cos nf +isin né = Z (ﬂ) cos" % @i sin 6)* (n=12,...).
k=0 k

Then define the integer m by means of the equations

- nj2 if n is even,
Tl (n—1/2 ifnisodd

and use the above sum to obtain the expression [compare Exercise 3(a)})
. (n
cos nf = ~1)* cos" % g sin** 6 n=1,2,...).
szo (z_k)< ) | o)

(b) Write x = cos # and suppose that 0 <6 <, in which case —1 < x < |. Point out
how it follows from the final result in part (a) that each of the functions

T,(x) = cos(n cos™ ! x) n=0,12,..)

is a polynomial of degree n in the variable x.*

8. ROOTS OF COMPLEX NUMBERS

Consider now apoint z = re'?, lying on a circle centered at the origin with radius » (Fig.
10). As 6 is increased, z moves around the circle in the counterclockwise direction. In
particular, when 8 is increased by 27, we arrive at the original point; and the same is

*These polynomials are called Chebyshev polynomials and are prominent in approximation theory.
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7= ret

FIGURE 10

true when @ is decreased by 2. It is, therefore, evident from Fig. 10 that two nonzero
complex numbers

61 )

z1=rie'! and zp=r€

are equal if and only if
r=rnr and 01$92+2kﬁ',

where k is some integer (k =0, £1, £2,...).

This observation, together with the expression z”* = r*e"% in Sec. 7 for integral
powers of complex numbers z = re'?, is useful in finding the nth roots of any nonzero
complex number zj = rge'%, where n has one of the valuesn =2, 3, . .. . The method
starts with the fact that an nth root of zy is a nonzero number z = re'? such that 7" = 20
or

rﬂefﬂé — rgeig(}.
According to the statement in italics just above, then,
r”zrg and n9$90+2kﬂ',

where k is any integer (k =0, 21, £2, ...). Sor = /1y, where this radical denotes
the unique positive nth root of the positive real number ry, and

_90'{-2;{31'_“%4_“2}5?_
- H{ ——n n

0 (k=0, £1, £2,...).

Consequently, the complex numbers

7= {‘/@exp[i(gg -+ -&)] (k=0,+1,£2,...)

n n

are the nth roots of zy. We are able to see immediately from this exponential form of
the roots that they all lie on the circle |z| = #/ry about the origin and are equally spaced
every 2 /n radians, starting with argument 8y/n. Evidently, then, all of the distinct
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roots are obtained when k =0, 1, 2, ..., n — 1, and no further roots arise with other
values of k. Weletc; (k=0, 1,2, ..., n — 1) denote these distinct roots and write

(D) {*/r_exP[ (9 +Eﬁfj)} k=0,12,...,n—1D.
n

(See Fig. 11.)

FIGURE 11

The number 7/rg is the length of each of the radius vectors representing the n
roots. The first root ¢y has argument 8y/n; and the two roots when n =2 lie at the
opposite ends of a diameter of the circle |z| = 2/rg, the second root being —cy. When
n > 3, the roots lie at the vertices of a regular polygon of n sides inscribed in that circle.

We shall let z, 1/ denote the set of nth roots of z zo. If, in particular, z; is a positive
real number g, the symbol rG/ denotes the entire set of roots; and the symbol /ry in
expression (1) is reserved for the one positive root. When the value of 6 that is used in
expression (1) is the principal value of arg zo (—n < 6y < i), the number ¢, is referred
to as the principal root. Thus when z; is a positive real number ry, its principal root is
Hry.

Finally, a convenient way to remember expression (1) is to write Zg in its most
general exponential form (compare Example 2 in Sec. 6)

(2) 2o =rge"OFHT (1 =0, £1, £2,...)

and to formally apply laws of fractional exponents involving real numbers, keeping in
mind that there are precisely n roots:

1/n

2/ = [rﬁ ei(60+2k;’r)] i(6p + 2km ):]

= i*/r_oexp[
n

6
= Yrg exp[i (—9 + %]Er-)] k=0,1,2,...,n—1.
n

Il

The examples in the next section serve to illustrate this method for finding roots of
complex numbers.
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9. EXAMPLES

In each of the examples here, we start with expression (2), Sec. 8, and proceed in the
manner described at the end of that section.

EXAMPLE 1. In order to determine the nth roots of unity, we write
I = lexp[i(0+ 2km)] (k=0,£1,£2...)

and find that
] . 2
(1) 17" = ﬁexp[z(g + 35‘55)] :exp(zﬂ) k=0,1,2,....,n—1).
n n n

When n = 2, these roots are, of course, -=1. When n > 3, the regular polygon at whose
vertices the roots lie is inscribed in the unit circle |z| = 1, with one vertex corresponding
to the principal root z = 1 (k = 0).

If we write

2
(2) w, = exp (i -1) ,

n

it follows from property (8), Sec. 7, of ¢'? that

ﬁmexp(ig-k-z) (k=012 ...n—1.
H

Hence the distinct nth roots of unity just found are simply

2 n—l K

L, w,, w,...,w,

See Fig. 12, where the cases n = 3, 4, and 6 are illustrated. Note that @ = 1. Finally,

$

— s el o o e — s — -

g
) D

FIGURE 12
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it is worthwhile observing that if ¢ is any particular nth root of a nonzero complex
number z;, the set of nth roots can be put in the form

2 a—1
C, Chp, €Ay oo, CO,T

This is because multiplication of any nonzero complex number by w, increases the
argument of that number by 277 /n, while leaving its modulus unchanged.

EXAMPLE 2. Letus find all values of (—8i)!/3, or the three cube roots of —8i. One
need only write

—8i =8 exp[i (—5;— + 2kn)] k=0, +1,+2, ..

to see that the desired roots are

3) Cp = Zexp[i(—% + %{{-)] (k=0,1,2).

They lie at the vertices of an equilateral triangle, inscribed in the circle |z| = 2, and
are equally spaced around that circle every 27 /3 radians, starting with the principal
root (Fig. 13)

cO=2exp[i(—%)] 22({:05% — i 8in %) =v3—i.

Without any further calculations, it is then evident that ¢; = 2i; and, since ¢, is
symmetric to ¢, with respect to the imaginary axis, we know that ¢, = —3 -1
These roots can, of course, be written

y) . 2?1'
Co» Cows, Cows where w3 =exp z-—-§-~ .

(See the remarks at the end of Example 1.)

FIGURE 13
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EXAMPLE 3. The two values ¢; (k = 0, 1) of (/3 4+ i)!/4, which are the square
roots of +/3 + i, are found by writing

~/§+i=2f:xp[£(%+2k7r)] k=0, £1,4+2,...)

and (see Fig. 14)

4) Cp = ﬁexp[i(% +k::r)] k=0, 1).
y
Co
Ci=—Cgy \ g
FIGURE 14

Euler’s formula (Sec. 6) tells us that

c{):\/iexp(z’%) zﬁ(COS%%—isinf—

12

and the trigonometric identities

©)

enable us to write

T
CO&2 — =

2

i)z_._.m,
(5)="5

L4 T I( R’)
sin® — = —~ { 1 — cos —
12 2 6

1+ coso

I

o [

bie
(1 -+ COS —)
6

1
12 2

I

1
2

)
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Consequently,

2
co=+2 +f \/ \/2+f+n/2 f)
Since ¢ = —cy, the two square roots of V3 + i are, then,

EXERCISES

1. Find the square roots of (a) 2i; (b) 1 — +/3i and express them in rectangular coordinates.

3~
J2

2. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of
certain squares, and point out which is the principal root:

(@) (—16)%,  (b) (=8 — 8/3i)1/4,
Ans. (@) £V2(1+ 1), 21— i);  (b) £(V3 = i), £(1 + V/30).

3. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root:

(@) (-D3;  (b)8YE,

1+ +/3i L= J3i
VNI
4. According to Example 1 in Sec. 9, the three cube roots of a nonzero complex number z;
can be written cg, cows, Cga)%, where cg is the principal cube root of zy and

wr = eX (iz)—_m_l+\/§i
3 = EXp 3 )7 > .

Ans. (@) £(1+1);, (b)x

Ans. (b) £2, £

Show that if zy = —4+/2 + 44/2i, then Co= ﬁ(l + 1) and the other two cube roots are,
in rectangular form, the numbers

—(V3+ )+ /3-Di 2 (V3-1D -3+ D

Cowy = » Cply, =
" V2 - V2
5. (a) Let a denote any fixed real number and show that the two square roots of @ + I are
i\/ﬁ exp (i %) .

where A =+/a” + 1 and o = Arg(a + i).
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(b) With the aid of the trigonometric identities (5) in Example 3 of Sec. 9, show that the
square roots obtained in part (a) can be written

:t:/l,—i(\/A Ya+iva—a).

[Note that this becomes the final result in Example 3, Sec. 9, when a = NEN

6. Find the four roots of the equation z* + 4 = 0 and use them to factor z* + 4 into quadratic
factors with real coefficients.

Ans. (22 + 22+ 2)(2* - 22+ 2).
7. Show that if ¢ is any nth root of unity other than unity itself, then
l+c+ct+-+" =0,

Suggestion: Use the first identity in Exercise 10, Sec. 7.

8. (@) Prove that the usual formula solves the quadratic equation
az? +bz+ec=0 (@#0)

when the coefficients a, b, and ¢ are complex numbers. Specifically, by completing
the square on the left-hand side, derive the quadratic formula

—b + (b? — dac)V/?
2a ’

7 =
ey

where both square roots are to be considered when b% — 4ac #0,
(b) Use the result in part (a) to find the roots of the equation 2Z2+2z+ (1= =0.

. 1 i 1 i
Ans. (b) («_1+-_)+—_, (4_ )w .
2/ V2 V2! V2
9, Let z = re‘% be any nonzero complex number and anegative integer (n =—1, -2, .. ).
Then define z/" by means of the equation zV/" = (z~")/™, where m = —n. By showing

that the m values of (z1/)~! and (z~D)V/™ are the same, verify that z//* = (z!/™)~L,
(Compare Exercise 8, Sec. 7.)

10. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the z plane,
and their closeness to one another. Our basic tool is the concept of an & neighborhood

(D Iz —z0l <€

of a given point z;. It consists of all points z lying inside but not on a circle centered at
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O *  FIGURE 15

zp and with a specified positive radius ¢ (Fig. 15). When the value of ¢ is understood or
is immaterial in the discussion, the set (1) is often referred to as just a neighborhood.
Occasionally, it is convenient to speak of a deleted neighborhood

(2) O0<|z—29l <&,

consisting of all points z in an & neighborhood of zq except for the point z itself.

A point z; is said to be an interior point of a set S whenever there is some
neighborhood of zg that contains only points of S; it is called an exterior point of
S when there exists a neighborhood of it containing no points of S. If z, is neither of
these, it is a boundary point of S. A boundary point is, therefore, a point all of whose
neighborhoods contain points in S and points not in §. The totality of all boundary
points is called the boundary of S. The circle |z} = 1, for instance, is the boundary of
each of the sets

(3) Izl <1 and |z| <1

A set is open if it contains none of its boundary points. It is left as an exercise
to show that a set is open if and only if each of its points is an interior point. A set is
closed if it contains all of its boundary points; and the closure of a st S is the closed
set consisting of all points in § together with the boundary of S. Note that the first of
the sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set to be not open,
there must be a boundary point that is contained in the set; and if a set is not closed,
there exists a boundary point not contained in the set. Observe that the punctured disk
0 < |z} < 1is neither open nor closed. The set of all complex numbers is, on the other
hand, both open and closed since it has no boundary points.

An open set S is connected if cach pair of points z; and z; in it can be joined
by a polygonal line, consisting of a finite number of line segments joined end to end,
that lies entirely in S. The open set |z| < 1 is connected. The annulus 1 < {z] < 2 is,
of course, open and it is also connected (see Fig. 16). An open set that is connected
is called a domain. Note that any neighborhood is a domain. A domain together with
some, none, or all of its boundary points is referred to as a region.
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FIGURE 16

A set S is bounded if every point of § lies inside some circle |z| = R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z > 0
is unbounded.

A point z, is said to be an accumulation point of a set § if each deleted neigh-
borhood of z contains at least one point of S. It follows that if a set § is closed, then
it contains each of its accumulation points. For if an accumulation point z, were not
in S, it would be a boundary point of S; but this contradicts the fact that a closed set
contains all of its boundary points. Tt is left as an exercise to show that the converse
is, in fact, true. Thus, a set is closed if and only if it contains all of its accumulation
points.

Evidently, a point z; is nor an accumulation point of a set S whenever there exists
some deleted neighborhood of z; that does not contain points of §. Note that the origin
is the only accumulation point of the setz, =i/n (n =1,2,...).

EXERCISES
1. Sketch the following sets and determine which are domains:
(@lz—24il< (b) 122+ 3| > 4;
(c)Imz > 1; (dyimz=1;

(e)0<argz=<nm/4(z#0) (Niz—4=lzl.
Ans. (b), (¢) are domains.
2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e).
3. Which sets in Exercise 1 are bounded?
Ans. (a).
4. In each case, sketch the closure of the set:
(@) ~m <argz <m (2 #0); (b) IRe z} < |z};

(c) Re(-l-) = -E; (d) Re(z?) > 0.
Z 2
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Let S be the open set consisting of all points z such that |z] < 1or |z — 2| < 1. State why
S 18 not connected.

Show that a set S is open if and only if each point in S is an interior point.

Determine the accumulation points of each of the following sets:
@z, =i"n=12,...) byz,=i"/n(n=12,...)

O0<agz<n/2@£0) (2= =D+ =12,
Ans. (a) None; (b) 0; (d) (1 +1).

Prove that if a set contains each of its accumulation points, then it must be a closed set.

n

. Show that any point zg of a domain is an accumulation point of that domain.

Prove that a finite set of points z;, 23, . . . , 2, cannot have any accumulation points.
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2

ANALYTIC FUNCTIONS

We now consider functions of a complex variable and develop a theory of differenti-
ation for them. The main goal of the chapter is to introduce analytic functions, which
play a central role in complex analysis.

11. FUNCTIONS OF A COMPLEX VARIABLE

Let § be a set of complex numbers. A function f defined on S is a rule that assigns to
each z in § a complex number w. The number w is called the value of f at z and is
denoted by f(2); thatis, w = f(z). The set S is called the domain of definition of f.*

It must be emphasized that both a domain of definition and a rule are needed in
order for a function to be well defined. When the domain of definition is not mentioned,
we agree that the largest possible set is to be taken. Also, it is not always convenient
to use notation that distinguishes between a given function and its values.

EXAMPLE 1. If f is defined on the set z # 0 by means of the equation w = 1/z, it
may be referred to only as the function w = 1/z, or simply the function 1/z.

Suppose that w = u + iv is the value of a function f at z = x 4 iy, so that

w+iv= f(x+iy).

* Although the domain of definition is often a domain as defined in Sec. 10, it need not be.

33
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Each of the real numbers u and v depends on the real variables x and y, and it follows
that f(z) can be expressed in terms of a pair of real-valued functions of the real
variables x and y:

(1) f@)=ux,y) +iv(x,y).

If the polar coordinates r and &, instead of x and y, are used, then
u+iv= f(re“:g),

where w = u + iv and z = re'?. In that case, we may write

(2) f()=u{r,0)+iv(r,8).

EXAMPLE 2. If f(z) = z2, then
flx+iy)=x+ .iy)2 =x? - y2 +i2xy.
Hence
u(x, y)= x* — y2 and v(x, y) =2xy.
When polar coordinates are used,
f(rew) = (refe 2 =126 =12 cos 26 + ir? sin 26.
Consequently,

u(r,0)=r>cos20 and v(r,6)=r?sin26.

If, in either of equations (1) and (2), the function v always has value zero, then
the value of f is always real. Thatis, f is a real-valued function of a complex variable.

EXAMPLE 3. A real-valued function that is used to illustrate some important
concepts later in this chapter is

f@) =1z)* = x* + y? +i0.

If n is zero or a positive integer and if ag, ay, a,, . . ., a, are complex constants,
where a,, # 0, the function

P(2y=ag+aiz +az® + -+ a,d"

is a polynomial of degree n. Note that the sum here has a finite number of terms and that
the domain of definition is the entire z plane. Quotients P(z)/Q(z) of polynomials are
called rational functions and are defined at each point z where Q(z) # 0. Polynomials
and rational functions constitute elementary, but important, classes of functions of a
complex variable.
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A generalization of the concept of function is a rule that assigns more than one
value to a point z in the domain of definition. These multiple-valued functions occur
in the theory of functions of a complex variable, just as they do in the case of real
variables. When multiple-valued functions are studied, usually just one of the possible
values assigned to each point is taken, in a systematic manner, and a (single-valued)
function is constructed from the multiple-valued function.

EXAMPLE 4. Let z denote any nonzero complex number. We know from Sec. 8
that z'/2 has the two values

2 =3 exp(i%),

where r = |z| and ©(—7 < ® < 7) is the principal value of arg z. But, if we choose
only the positive value of +./r and write

(3) f(z)z\/;exp(i—(;) (r>0,—m<®<m),

the (single-valued) function (3) is well defined on the set of nonzero numbers in the z
plane. Since zero is the only square root of zero, we also write f(0) = 0. The function
f 1s then well defined on the entire plane.

EXERCISES

1. For each of the functions below, describe the domain of definition that is understood:

1 1
(@) f(&)= m; (h) f(z):Arg( );

Z 1
() f(2)=——=; (d) f(z)=- .
! 2473 / 1 —lzf?
Ans. (a) z # xi; (c)Rez#0.
2. Write the function f(z) = z3 + z + lin the form f(z) = u(x, ¥) + iv(x, y).
Ans. (3 =3y  +x+ D+ i(3x2y — y2 + y).

3. Suppose that f(z) = x? — y* — 2y +i(2x — 2xy), where z = x + iy. Use the expres-
stons (see Sec. 5)

+z z—2Z
T2 and y=—
2i

X =

to write f(z) in terms of z, and simplify the result.
Ans. 32 +2iz.
4. Write the function
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in the form f(z) =u(r, 6) + iv(r, 9).

Ans. (r 4 l) cos 8 4 i(r — 1) sin .
r r

12. MAPPINGS

Properties of a real-valued function of a real variable are often exhibited by the graph
of the function. But when w = f(z), where z and w are complex, no such convenient
graphical representation of the function f is available because each of the numbers
z and w is located in a plane rather than on a line. One can, however, display some
information about the tunction by indicating pairs of corresponding points z = (x, y)
and w = (u, v). To do this, itis generally simpler to draw the z and w planes separately.

When a function f is thought of in this way, it is often referred to as a mapping,
or transformation. The image of a point z in the domain of definition S is the point
w = f(z), and the set of images of all points in a set T that is contained in S is called
the image of T'. The image of the entire domain of definition § is called the range of
f. The inverse image of a point w is the set of all points z in the domain of definition
of f that have w as their image. The inverse image of a point may contain just one
point, many points, or none at all. The last case occurs, of course, when w is not in the
range of f.

Terms such as translation, rotation, and reflection are used to convey dominant
geometric characteristics of certain mappings. In such cases, it is sometimes convenient
to consider the z and w planes to be the same. For example, the mapping

w=z+1=x+1+iy,

where z = x + iy, can be thought of as a translation of each point z one unit to the
right. Since i = ¢/™/2, the mapping

‘ * ﬁ
w=1iz= rexp[z (6 + "2--):1,

where z = re'?, rotates the radius vector for each nonzero point z through a right angle
about the origin in the counterclockwise direction; and the mapping

w=z=x—1Iy

transforms each point z = x + iy into its reflection in the real axis.

More information is usually exhibited by sketching images of curves and regions
than by simply indicating images of individual points. In the following examples, we
illustrate this with the transformation w = z2.

We begin by finding the images of some curves in the z plane,
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EXAMPLE 1. According to Example 2 in Sec. 11, the mapping w = z* can be
thought of as the transformation

(1) u=x>— yz, v=2xy

from the xy plane to the uv plane. This form of the mapping is especially useful in
finding the images of certain hyperbolas.
It is easy to show, for instance, that each branch of a hyperbola

(2) x2—yt=¢, (/>0

is mapped in a one to one manner onto the vertical line u = c;. We start by noting
from the first of equations (1) that u = ¢; when (x, y) is a point lying on either branch.
When, in particular, it lies on the right-hand branch, the second of equations (1) tells

us that v = 2y+/y? + ¢;. Thus the image of the right-hand branch can be expressed
parametrically as

u=cy, v=2y/y*+c (—00 < y < 00);

and it is evident that the image of a point {(x, y) on that branch moves upward along the
entire line as (x, y) traces out the branch in the upward direction (Fig. 17). Likewise,
since the pair of equations

u=cy, v=-2y/y%+c¢ (—00 < y < 00)

furnishes a parametric representation for the image of the left-hand branch of the
hyperbola, the image of a point going downward along the entire left-hand branch
is seen to move up the entire line » = ¢;.

On the other hand, each branch of a hyperbola

(3) 2xy =05 (cy > 0)

is transformed into the line v = ¢,, as indicated in Fig. 17. To verify this, we note from
the second of equations (1) that v = ¢, when (x, y) is a point on either branch. Suppose

HECIZ)O
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FIGURE 17
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w=2".
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that it lies on the branch lying in the first quadrant. Then, since y = ¢,/(2x), the first
of equations (1) reveals that the branch’s image has parametric representation

2 C:,%
u=x"——=, Uv=0 (0 < x < o0).
4x
Observe that
Imu=-—o00 and lim u=oc.
X3} X =00

=0

Since u depends continuously on x, then, it is clear that as (x, y) travels down the entire
upper branch of hyperbola (3}, its image moves to the right along the entire horizontal
line v = ¢;. Inasmuch as the image of the lower branch has parametric representation

) 2
U=—"=—y°, v=o0 (—oo<y<0)
4y?
and since
Iim #u=-—0¢ and lim u = oo,
Y 00 y=+0

y<i

it follows that the image of a point moving upward along the entire lower branch also
travels to the right along the entire line v = ¢, (see Fig. 17).

We shall now use Example 1 to find the image of a certain region.

EXAMPLE 2. The domain x > 0, y > 0, xy < 1 consists of all points lying on the
upper branches of hyperbolas from the family 2xy = ¢, where 0 < ¢ < 2 (Fig. 18). We
know from Example 1 that as a point travels downward along the entirety of one of
these branches, its image under the transformation w = z2 moves to the right along
the entire line v = c. Since, for all values of ¢ between 0 and 2, the branches fill out

D' 2i E’

FIGURE 18
w= Zz.
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the domain x > 0, y > 0, xy < 1, that domain is mapped onto the horizontal strip
O<v<2.

In view of equations (1), the image of a point (0, y) in the z plane is (—y?2, 0).
Hence as (0, y) travels downward to the origin along the y axis, its image moves to the
right along the negative u axis and reaches the origin in the w plane. Then, since the
image of a point (x, 0) is (x2, 0), that image moves to the right from the origin along
the u axis as (x, 0) moves to the right from the origin along the x axis. The image
of the upper branch of the hyperbola xy = 1 is, of course, the horizontal line v = 2.
Evidently, then, the closed region x > 0, y > 0, xy < 1is mapped onto the closed strip
0 < v <2, as indicated in Fig. 18.

Our last example here illustrates how polar coordinates can be useful in analyzing
certain mappings.

EXAMPLE 3. The mapping w = z* becomes

w = 12612
when z = re'?. Hence if w = pel®, we have pe'® = r2¢'2?; and the statement in italics
near the beginning of Sec. 8 tells us that

p=r> and ¢ =20+ 2kmn,

where k has one of the values k =0, =1, 2, . . . . Evidently, then, the image of any
nonzero point z is found by squaring the modulus of z and doubling a value of arg z.

Observe that points 7 = rpe’® on a circle r = ry are transformed into points
w = r3e'?? on the circle p = r2. As a point on the first circle moves counterclockwise
from the positive real axis to the positive imaginary axis, its image on the second
circle moves counterclockwise from the positive real axis to the negative real axis (see
Fig. 19). So, as all possible positive values of r;, are chosen, the corresponding arcs
in the z and w planes fill out the first quadrant and the upper half plane, respectively.
The transformation w = z? is, then, a one to one mapping of the first quadrant r > 0,
0 <8 <7/2 in the z plane onto the upper half p > 0, 0 < ¢ < m of the w plane, as
indicated in Fig. 19. The point z = 0 is, of course, mapped onto the point w = 0.

The transformation w = z* also maps the upper half plane r > 0, 0 <6 <7 onto
the entirc w plane. However, in this case, the transformation is not one to one since

FIGURE 19

w=z2.
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both the positive and negative real axes in the z plane are mapped onto the positive
real axis in the w plane.

When n is a positive integer greater than 2, various mapping properties of the
transformation w = z", or pe"‘?’ = r"e'"¥  are similar to those of w = z2. Such a
transformation maps the entire z plane onto the entire w plane, where each nonzero
point in the w plane is the image of » distinct points in the z plane. The circle r = ry
is mapped onto the circle p = ryj; and the sector r < ry, 0 <6 < 27 /n is mapped onto
the disk p < rg, but not in a one to one manner.

13. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and develop properties of a number of elementary func-
tions which do not involve polynomials. That chapter will start with the exponential
function

(1) et = e*e'? (z=x+1iy),

the two factors ¢* and ¢ being well defined at this time (see Sec. 6). Note that
definition (1), which can also be written

ex—i—zy — gxely’

is suggested by the familiar property

6171‘3'12 — p¥lg*2

of the exponential function in calculus.

The object of this section is to use the function e* to provide the reader with
additional examples of mappings that continue to be reasonably simple. We begin by
examining the images of vertical and horizontal lines.

EXAMPLE 1. The transformation
(2) w = ¢*

can be written pe'® = e*¢’, where z = x + iy and w = pe!®. Thus p = ¢* and
¢ =y + 2nm, where n is some integer (see Sec. 8); and transformation (2) can be
expressed in the form

(3) p=¢e, o=y.

The image of a typical point z = (c¢;, y) on a vertical line x = ¢; has polar
coordinates p = exp ¢y and ¢ = y in the w plane. That image moves counterclockwise
around the circle shown in Fig. 20 as z moves up the line. The image of the line is
evidently the entire circle; and each point on the circle is the image of an infinite
number of points, spaced 2z units apart, along the line.
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¥ v

FIGURE 20
w = ¢exp z.

A horizontal line y = ¢; is mapped in a one to one manner onto the ray ¢ = ¢,. To
see that this is so, we note that the image of a point z = (x, ¢,) has polar coordinates
p = ¢€* and ¢ = c,. Evidently, then, as that point z moves along the entire line from
left to right, its image moves outward along the entire ray ¢ = ¢,, as indicated in
Fig. 20.

Vertical and horizontal line segments are mapped onto portions of circles and rays,
respectively, and images of various regions are readily obtained from observations
made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformation w = * maps the rectangular
regiona <x < b, c <y <dontothe region ¢ < p < el c < ¢ < d. The two regions
and corresponding parts of their boundaries are indicated in Fig. 21. The vertical line
segment AD is mapped onto the arc p = ¢%, ¢ < ¢ < d, which is labeled A’D’. The
images of vertical line segments to the right of AD and joining the horizontal parts
of the boundary are larger arcs; eventually, the image of the line segment BC is the
arc p = e®, ¢ < ¢ < d, labeled B'C’. The mapping is one to one if d — ¢ < 2. In
particular, if ¢ =0 and d = 7, then 0 < ¢ < 7r; and the rectangular region is mapped
onto half of a circular ring, as shown in Fig. 8, Appendix 2.

y v C’
d“ D | C ™ -
D’ N

; A Y

I ™\ B’
“ A B p=d _“y

p=c

0 a b x 0 u
FIGURE 21

w=expz.
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QOur final example here uses the images of horizontal lines to find the image of a

horizontal strip.

EXAMPLE 3. When w = e°, the image of the infinite strip O < y < 7 is the upper
half v > O of the w plane (Fig. 22). This is seen by recalling from Example 1 how
a horizontal line y = ¢ is transformed into a ray ¢ = ¢ from the origin. As the real
number ¢ increases from ¢ = 0 to ¢ = x, the y intercepts of the lines increase from
0 to = and the angles of inclination of the rays increase from ¢ = 0 to ¢ = 7. This
mapping 1s also shown in Fig. 6 of Appendix 2, where corresponding points on the
boundaries of the two regions are indicated.

Y v ,
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FIGURE 22
W == eXp 2.
EXERCISES

1. By referring to Example 1 in Sec. 12, find a domain in the z plane whose image under

the transformation w = z? is the square domain in the w plane bounded by the lines
u=1,u=2v=1,and v =2. (See Fig. 2, Appendix 2.)

Find and sketch, showing corresponding orientations, the images of the hyperbolas

X2 =y =c1(c;<0) and 2xy=c; (¢ <0)

under the transformation w = 72.

Sketch the region onto which the sector r < 1, 0 < 6 < /4 is mapped by the transfor-

mation (a) w = z%; (b) w = z°; (¢) w = z%.

Show that the lines ay = x (a % 0) are mapped onto the spirals p = exp(a¢) under the
transformation w = exp z, where w = p exp(i¢).

By considering the images of horizontal line segments, verify that the image of the
rectangularregiona < x < b, ¢ < y < 4 under the transformation w = exp z is the region
e < p<e’, c<¢<d, asshownin Fig. 21 (Sec. 13).

Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transformation is w = exp z.

Find the image of the semi-infinite strip x > 0, 0 < y < 7 under the transformation
w = exp 2, and label corresponding portions of the boundaries.
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8. One interpretation of a function w = f(2) = u(x, y) +iv(x, y) isthat of a vector field in
the domain of definition of f. The function assigns a vector w, with components u(x, )
and v(x, y), to each point z at which it is defined. Indicate graphically the vector fields
represented by (@) w =iz; (b) w = z/|z].

14. LIMITS

Let a function f be defined at all points z in some deleted neighborhood (Sec. 10) of
zo. The statement that the limit of f(z) as z approaches z is a number wy, or that

(1) lim f(z) =wy,

means that the point w = f(z) can be made arbitrarily close to wy if we choose the
point z close enough to z,, but distinct from it. We now express the definition of limit
in a precise and usable form.

Statement (1) means that, for each positive number ¢, there is a positive number
& such that

(2) | f(z) — wyl <& whenever 0 < |z —zo] <.

Geometrically, this definition says that, for each e neighborhood {w — wy| < & of wy,
there is a deleted 8 neighborhood 0 < |z — z¢] < & of 2, such that every point z in it
has an image w lying in the & neighborhood (Fig. 23). Note that even though all points
in the deleted neighborhood 0 < |z — zg| < § are to be considered, their images need
not fill up the entire neighborhood |w — wy| < &. If f has the constant value wy, for
instance, the image of z is always the center of that neighborhood. Note, too, that once
a § has been found, it can be replaced by any smaller positive number, such as §/2.
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It is easy to show that when a limit of a function f(2) exists at a point zq, it is
unique. To do this, we suppose that

lim f(Z) = Wy and Iim f(z) =w,.

I Iy
Then, for any positive number &, there are positive numbers &, and 8 such that

| f(z) —wgl <& whenever 0 <z —2Zpl <3
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and
|f(z) —wy| <& whenever 0 < |z— 79| <3$.

S0if 0 < |z — zg| < 8, where § denotes the smaller of the two numbers &, and 8;, we
find that

lwy — wol =111 (@) —wol = [f (@) —wll <|f (@) —wol + | f(2) —wy| <& +e&=2e.
But |w; — wy| is a nonnegative constant, and ¢ can be chosen arbitrarily small. Hence
w;—wy=0, or w;=wy.

Definition (2) requires that f be defined at all points in some deleted neighbor-
hood of zj. Such a deleted neighborhood, of course, always exists when z is an interior
point of a region on which f is defined. We can extend the definition of limit to the case
in which zq is a boundary point of the region by agreeing that the first of inequalities
(2) need be satisfied by only those points z that lie in both the region and the deleted
neighborhood.

EXAMPLE 1. Let us show that if f(z) =iz/2 in the open disk |z]| < 1, then
i
3 1‘ _—
(3) lim f(@) 5

the point 1 being on the boundary of the domain of definition of f. Observe that when
z is in the region |z]| < 1,

i iz 1 Iz —1]
) — —| =|——— = .
‘f( ) 2 2 2 2
Hence, for any such z and any positive number ¢ (see Fig. 24),
If(z)--—-—- fi <& whenever 0<|z—1| <2e,
y v

o —

Vs N,
S| ol Ty

N

AN

\‘m

FIGURE 24
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Thus condition (2) is satisfied by points in the region |z| < 1 when § is equal to 2¢ or
any smaller positive number.

If zy is an interior point of the domain of definition of f, and limit (1) is to
exist, the first of inequalities (2) must hold for a// points in the deleted neighborhood
0 < {z — zp| < 8. Thus the symbol z — z; implies that z is allowed to approach z;
in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE2. If

@) fla)=—=,
)

the limit

5) lim f(2)

does not exist. For, if it did exist, it could be found by letting the point z = (x, y)
approach the origin in any manner. But when z = (x, 0) is a nonzero point on the real
axis (Fig. 25),

x+z'()__“
x—i0

f(2)=

1;

and when z = (0, y) is a nonzero point on the imaginary axis,

0+iy
0—1y B

-1

f@)=

Thus, by letting z approach the origin along the real axis, we would find that the desired
limit is 1. An approach along the imaginary axis would, on the other hand, yield the
limit —1. Since a limit is unique, we must conclude that limit (5) does not exist.

-
z=(x,0) x

FIGURE 25
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While definition (2) provides a means of testing whether a given point wy is a
limit, it does not directly provide a method for determining that limit. Theorems on
limits, presented in the next section, will enable us to actually find many limits.

15. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we use their definition
and properties freely.

Theorem 1. Suppose that

f(Z)mH(xs}’)+iv(x,y), Z()=X(}+iyg, and w{)ﬁfig“}-fvg.

Then
(1) lim f(z) = wg
>Zo
if and only if
2 lim u(x,yv)=u, and lim vi(x, y) = vp.
@ (X, ¥)=>{Xg.¥p) (x> 7) 0 (x,y)— (xg,¥p) (x,y 0

To prove the theorem, we first assume that limits (2) hold and obtain limit (1).
Limits (2) tell us that, for each positive number ¢, there exist positive numbers §; and
8, such that

(3) e — ugl| < g- whenever 0 <. /(x —x9)% + (¥ — y9)? < §,
and
(4) lv — vyl < % whenever 0 < /(x — x)% + (y — yp)? < &s.

Let § denote the smaller of the two numbers 8, and §,. Since
|(u + iv) — (ug +ivg)| = [(u —ug) +i(v — vp)| <|u —up| + |v — vy

and

V=302 + (& — yo)2 =[x — x9) +i(y — yo)| = 1(x +iy) — (xg + i)l

it follows from statements (3) and (4) that

: ) I3
l(u+w)m(u0+w0)|<—2—+~;—:3
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whenever
0<|(x+iy)—(xg+ivy)| < 8.

That is, limit (1) holds.
Let us now start with the assumption that limit (1) holds. With that assumption,
we know that, for each positive number ¢, there is a positive number § such that

(5) (u+iv) — (ug +ivg)| <e
whenever

(6) 0 < [(x +iy) — (xg +iyo)l <.
But

U —ug|l < | —ug) +i(v —vy)| = (1 + iv) — (ug + ivg)l,
v —vg| < [(u —ug) +i(v —vy)| = |(u +iv) — (ug + ivg)l,

and

(e +y) = (xp + iy = [(x = x0) +i(y — ¥o)l =V (x — x)2 + (¥ — yp)*.
Hence it follows from inequalities (5) and (6) that
lu —ugl <¢ and |v—yy <e

whenever

0<(x —xp)?+ (y — yp)? < 8.

This establishes limits (2), and the proof of the theorem is complete.

Theorem 2. Suppose that

(7 lim f(z) =wy and lm F(z) = W,.
20 >3

Then

® lim (@) + F @)1= wo + W,

©) lim [ (@) F ()] = wo Wy

and, if Wy # 0,

(10) lim L@ _ %o

i~z F(z) W,y
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This important theorem can be proved directly by using the definition of the limit
of a function of a complex variable. But, with the aid of Theorem 1, it follows almost
immediately from theorems on limits of real-valued functions of two real variables.

To verify property (9), for example, we write

f@=ulx, y)+ivlx,y), F@)=Ukx,y)+iVix,y),
ZOZXO“{"fyG, H)Ozllg+iv(}, W0=U0+iV0.
Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches

(xg, Vo) of the functions u, v, U, and V exist and have the values ug, vy, Uy, and Vj,
respectively. So the real and imaginary components of the product

FOF()=wU —vV)Y+iQU +uV)

have the limits uoUy — vy Vo and vgUy + ugVp, respectively, as (x, y) approaches
(xo, Vo). Hence, by Theorem 1 again, f(z)F (z) has the limit

(uolUqy — v Vo) + i(vgUp + 1 Vp)

as z approaches zg: and this is equal to wyW,. Property (9) is thus established.
Corresponding verifications of properties (8) and (10) can be given.
It is easy to see from definition (2), Sec.14, of limit that

lim c=c¢ and lim z=2z,,

22y I Zg
where 7z, and ¢ are any complex numbers; and, by property (9) and mathematical
induction, it follows that

lim 7" =z, n=1,2,...).

Iy
So, in view of properties (8) and (9), the limit of a polynomial
P(2)=ag+az+ayz° +-- -+ a7
as z approaches a point zg is the value of the polynomial at that point:

(11) lim P(z) = P(zg).

>3

16. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity,
denoted by oo, and to use limits involving it. The complex plane together with this
point is called the extended complex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered at
the point z = 0 (Fig. 26). To each point z in the plane there corresponds exactly one
point P on the surface of the sphere. The point P is determined by the intersection of
the line through the point z and the north pole N of the sphere with that surface. In
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FIGURE 26

like manner, to each point £ on the surface of the sphere, other than the north pole ¥,
there corresponds exactly one point z in the plane. By letting the point N of the sphere
correspond to the point at infinity, we obtain a one to one correspondence between the
points of the sphere and the points of the extended complex plane. The sphere is known
as the Riemann sphere, and the correspondence is called a stereographic projection.

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the point N deleted.
Moreover, for each small positive number ¢, those points in the complex plane exterior
to the circle |z| = 1/¢& correspond to points on the sphere close to N. We thus call the
set |z| > 1/¢ an ¢ neighborhood, or neighborhood, of oo.

Let us agree that, in referring to a point z, we mean a point in the finite plane.
Hereafter, when the point at infinity is to be considered, it will be specifically men-
tioned.

A meaning is now readily given to the statement

lim f(z) = wy

=g
when either z, or wy, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 14, we simply replace the appropriate
neighborhoods of z, and wg by neighborhoods of co. The proof of the following
theorem illustrates how this is done.

Theorem. If 7 and wq are points in the 7 and w planes, respectively, then

(1) lim f(z)=co if andonlyif lim ,...__L_, =0
22 =29 f(2)
and
(2) lim f(z)=wy if and onlyif lim f (i) = wpy.
> 00 2>} z
Moreover,
(3) ;Cﬂl_r;rfo}}3 f(z)=0¢ if and only if ;ff(l) f(llfz) =
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We start the proof by noting that the first of limits (1) means that, for each positive
number &, there is a positive number § such that

(4) | ()] > ! whenever 0 < |z — zg] <.
£

That is, the point w = f(2) lies in the & neighborhood |w| > 1/ of 0o whenever z lies

in the deleted neighborhood 0 < |z — zy] < 8 of zg. Since statement (4) can be written
1
i———m— — 0| <& whenever 0<|z—2zo| <38,
()

the second of limits (1) follows.
The first of limits (2) means that, for each positive number &, a positive number
8 exists such that

1
(5) | f(z) —wg| <& whenever |[z]> s

Replacing z by 1/z in statement (5) and then writing the result as

(2) -

we arrive at the second of limits (2).
Finally, the first of limits (3) is to be interpreted as saying that, for each positive
number &, there is a positive number & such that

<¢e whenever 0<|z—0| <4,

(6) | f(z} > ! whenever |z]| > %
g

When z is replaced by 1/z, this statement can be put in the form

75
f(1/2)

and this gives us the second of limits (3).

<& whenever 0<|z—0|<3$;

EXAMPLES. Observe that

. iz+4+3 . . z+1
lim =00 since lim - =0
z—>-1 741 —>-1iz-+43
and
27+ (2/2) +i 2+iz

2.

lim — 72 since Iim = lim
=% 7 4 1 =0 (1/2)+1 250 142
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Furthermore,
273 — ‘ 2 3
lim ¢ lﬁoo since  lim (1/z)+lmlimz+z = 0.
200 72 41 >0 (2/23) =1 502 — 73

17. CONTINUITY

A function f is continuous at a point z; if all three of the following conditions are
satisfied:

(1) lim f(z) exists,
Fdan g 4y

(2) f(zg) exists,

(3) zlggo [ = f(zp).

Observe that statement (3) actually contains statements (1) and (2), since the existence
of the quantity on each side of the equation there is implicit. Statement (3) says that,
for each positive number &, there is a positive number § such that

4) | f(2) — f(zg)| <& whenever |z—zpl <8.

A functiou of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.

If two functions are continuous at a point, their sum and product are also continu-
ous at that point; their quotient is continuous at any such point where the denominator
is not zero. These observations are direct consequences of Theorem 2, Sec. 15. Note,
too, that a polynomial is continuous in the entire plane because of limit (11), Sec. 15.

We turn now to two expected properties of continuous functions whose verifica-
tions are not so immediate. Qur proofs depend on definition (4), and we present the
results as theorems.

Theorem 1. A composition of continuous functions s itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
w = f(z) be a function that is defined for all z in a neighborhood |z — zy| < 8 of a
point z,, and we let W = g(w) be a function whose domain of definition contains the
image (Sec. 12) of that neighborhood under f. The composition W = g[ f (z)] is, then,
defined for all z in the neighborhood |z — 7| < 8. Suppose now that f is continuous at
zg and that g is continuous at the point f(z,) in the w plane. In view of the continuity
of g at f(z), there is, for each positive number &, a positive number y such that

lglf (D] — gl fzp)ll <& whenever |f(z) — fzp)l <v.
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(See Fig. 27.) But the continuity of f at 7, ensures that the neighborhood |z — zp| <é
can be made small enough that the second of these inequalities holds. The continuity
of the composition g f(z)] is, therefore, established.

Theorem 2. Ifafunction f(z) is continuous and nonzero at a point 7y, then f(z) #0
throughout some neighborhood of that point.

Assuming that f(z) is, in fact, continuous and nonzero at z,;, we can prove
Theorem 2 by assigning the positive value | f(zg)|/2 to the number ¢ in statement
(4). This tells us that there is a positive number & such that

| f(z0)!
2

| f(2) = fzo)l <

whenever |z — Zp| < 4.

So if there is a point z in the neighborhood |z — zg| < § at which f(z) =0, we have
the contradiction

z
Fao < L2,
2
and the theorem is proved.
The continuity of a function
(5) f@y=ulx, y)+ivix, y)

is closely related to the continuity of its component functions u(x, y) and v(x, y).
We note, for instance, how it follows from Theorem 1 in Sec. 15 that the function
(5) is continuous at a point zy = (xg, yo) if and only if its component functions are
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continuous there. To illustrate the use of this statement, suppose that the function (35) is
continuous in a region R that is both closed and bounded (see Sec. 10). The function

VG, 12+ [v(x, )12

is then continuous in R and thus reaches a maximum value somewhere in that region.*
That is, f is bounded on R and | f(z)| reaches a maximum value somewhere in R.
More precisely, there exists a nonnegative real number M such that

(6) |f(z)| <M forall zin R,

‘where equality holds for at least one such z.

EXERCISES
1. Use definition (2), Sec. 14, of limit to prove that
=2
(@) im Re z = Re z; (b) lim z = zg; (c) lim L _ 0.
T=r2g =2y z—>0 7

2. Let a, b, and ¢ denote complex constants. Then use definition (2), Sec. 14, of limit to
show that

(@) lim (az +b) =azg+b; () lim (ZZ+e)=z5+c
~*ZH >y
(c) lirin x+iCx+y)l=1+i{z=x+iy).
1—1—i

3. Letn be a positive integer and let P(z) and Q(z) be polynomials, where Q(z5) # 0. Use
Theorem 2 in Sec. 15 and limits appearing in that section to find

1 iz =1 .

a) im — (zp £ 0); b) Him : ¢) lim ——,

@ Jim - @#0; G Em (@ Jim o

Ans. (@) 1/zgs () 0: (¢} Plzg)/Q(2p)-
4. Use mathematical induction and property (9), Sec. 15, of limits to show that

lim 7" = zg
=20

when n 18 a positive integer (n = 1, 2, . . ).

z 2
f(o)= (T)
Z

as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and z = (x, x)
approach the origin. [Note that it is not sufficient to simply consider points z = (x, 0)
and z = (0, y), as it was in Example 2, Sec. 14.]

5. Show that the limit of the function

* See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125-126 and p. 529,
1983.
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10.

11.

12.
13.

18.
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Prove statement (8) in Theorem 2 of Sec. 135 using

(a) Theorem ! in Sec. 15 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 14, of limit.

Use definition (2), Sec. 14, of limit to prove that

if Hm f(zy=wy, then lim |f(2)] = |wpl.
Z=rZn

2

Suggestion: Observe how inequality (8), Sec. 4, enables ane to write
U — Twell = [ £ () — wol.
Write Az = z — z, and show that
lim f(z) =wy if and only if ali?}o f(zp + Az) = wy.
Show that
Jim f@g(@)=0 if lim f(z)=0

and if there exists a positive number M such that |g(z)| < M for all z in some neighbor-
hood of z,.

Use the theorem in Sec. 16 to show that

47 -2
(@) Im ¢ =4, (b) liin = 00; (¢) lim + = Q.
o (7 — 1)2 = 1(z — 1)3 200 7 —
With the aid of the theorem in Sec. 16, show that when
az+ b
T(z)= ad — bc #0),
@ cz+d ( )

(@) imT(z)=x ifc=0
IO

) lim T(z)=2 and lim T(z)=o00 ifc#0.
> 00 C z——d/c

State why limits involving the point at infinity are unique.,

Show that a set § 1s unbounded (Sec. 10) if and only if every neighborhood of the point

at infinity contains at least one point in S.

DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood of a point z,.
The derivative of f at z,, written f’(zy), is defined by the equation

(h

=z 7 —2Zg

provided this limit exists. The function f is said to be differentiable at zy when its
derivative at z; exists.
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By expressing the variable z in definition (1) in terms of the new complex variable
Az =2z — 2z,

we can write that definition as

_ Az) — f(zp)
(2) 1 (zo) AJim, Az
Note that, because f is defined throughout a neighborhood of 7, the number
fzo+ A2)

is always defined for | Az| sufficiently small (Fig. 28).

¥
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When taking form (2) of the definition of derivative, we often drop the subscript
on z; and introduce the number

Aw = f(z 4+ Az) — f(z),

which denotes the change in the value of f corresponding to a change Az in the point
at which f is evaluated. Then, if we write dw/dz for f'(z), equation (2) becomes

dw ) Aw
—= lim  —.
dz Az—0 Az

(3)

EXAMPLE 1. Suppose that f(z) = z°. At any point z,

. Aw . (z+A?r-=-72
Im — = lim
Az—0 Az Az—0 Az

= lm (2z + Az) =2z,
Az—0
since 2z + Az is a polynomial in Az. Hence dw/dz =2z, or f/(2) = 2z.

EXAMPLE 2. Consider now the function f(z) = |z|%. Here

Aw Az|2 — |z]? A A7) —77 . — A
Aw _ |2+ Az = 2] _ 2+ AZ)E + A2 2= AT B
Nz Az Az Az
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Ay
(0, Ay)e
Y
L 4 s o
(0, 0) (Ax,0) Ax
FIGURE 29

If the limit of Aw/Az exists, it may be found by letting the point Az = (Ax, Ay)
approach the origin in the Az plane in any manner. In particular, when Az approaches
the origin horizontally through the points (Ax, 0) on the real axis (Fig. 29),

Az=Ax+i0=Ax —i0=Ax +i0 = Az.

In that case,
Aw
Az

Hence, if the limit of Aw/Az exists, its value must be z + z. However, when Az
approaches the origin vertically through the points (0, Ay) on the imaginary axis, $oO
that

=74+ Az + 2.

Az=0+4iAy=—(0+iAy)=—-Az,

we find that

Aw _ —
=7+ Az —2Z.

vd
£

Hence the limit must be 7 — z if it exists. Since limits are unique (Sec. 14), it follows
that

I4+z2=z—2%,

orz =0, if dw/dz is to exist.

To show that dw/dz does, in fact, exist at z = 0, we need only observe that our
expression for Aw/Az reduces to Az when z = 0. We conclude, therefore, that dw /dz
exists only at z = 0, its value there being 0.

Example 2 shows that a function can be differentiable at a certain point but
nowhere else in any neighborhood of that point. Since the real and imaginary parts
of f(z) = |z|* are

(4) u(x,y)=x>+y* and w(x,y)=0,
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respectively, it also shows that the real and imaginary components of a function of a
complex variable can have continuous partial derivatives of all orders at a point and
yet the function may not be differentiable there.

The function f(z) = |z|* is continuous at each point in the plane since its com-
ponents (4) are continuous at each point. So the continuity of a function at a point
does not imply the existence of a derivative there. It is, however, true that the existence
of the derivative of a function at a point implies the continuity of the function at that
point. To see this, we assume that f'(zq) exists and write

(@) = f(zo) lim (z - z9) = f'(zp)-0=0,

— 2 <

lim [f(2) — f(zo)]= lm

i
=2 =>Z0
from which it follows that
lim f(@) = f ().

This is the statement of continuity of f at z; (Sec. 17).

Geometric interpretations of derivatives of functions of a complex variable are
not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.

19. DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 18 is identical in form to that of the derivative of a
real-valued function of a real variable. In fact, the basic differentiation formulas given
below can be derived from that definition by essentially the same steps as the ones used
in calculus. In these formulas, the derivative of a function f at a point z is denoted by
either

%f(z,‘) or f(2),

depending on which notation is more convenient.
Let ¢ be a complex constant, and let f be a function whose derivative exists at a
point z. It is easy to show that

d d :
— = - _Z = 1- I Z- - V Z -
(1) 7 0, 7 . dz[cf( N=cf(2)

Also, if n is a positive integer,

d
2 2=t
(2) 1

This formula remains valid when » is a negative integer, provided that z # 0.
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If the derivatives of two functions f and F exist at a point z, then
d : / /
(3) Eg[f@ + F(2)]= f (2} + F(2),

d / /
4) gg[f(z)F(z)]x FRQF () + f(DF ()

and, when F(z) #0,

(5)

,i[ﬂ@}=”@f®*fwﬁﬁ)
dz LF(2) [F(2)]? '

Let us derive formula (4). To do this, we write the following expression for the
change in the product w = f(2)F(2):

Aw= f(z+ ADF(z+ Az) — f(DF(2)
= f()F(z+ Az) — F()1+ [f(z + Az) — f(DIF(z + Az).
Thus

A F( A — F(z ' AzZ) — f(z
W _ oy FetA)—F@ | [+ 89 = f@)
Az Az Az

F(z 4+ A2);

and, letting Az tend to zero, we arrive at the desired formula for the derivative of
f(z)F(z). Here we have used the fact that F is continuous at the point z, since F'(z)
exists; thus F(z + Az) tends to F(z) as Az tends to zero (see Exercise 8, Sec. 17).

There is also a chain rule for differentiating composite functions. Suppose that f
has a derivative at 7, and that g has a derivative at the point f(zg). Then the function
F(z) = g[f(z)] has a derivative at z, and

(6) F'(z0) = &'1f (z0)1f (z9)-
If we write w = f(z) and W = g(w), so that W = F(z), the chain rule becomes

dw dW dw
dz  dw dz

EXAMPLE. To find the derivative of (2z% + i)°, write w =2z° 4+ i and W = w°.
Then
d _ 2, .5 4 > .4
?(ZZ + 1) = 5wz =20z(2z° +i)".

To start the proof of formula (6), choose a specific point zg at which f'(zq)
exists. Write wy = f(zo) and also assume that g’(wg) exists. There is, then, some
e neighborhood |w — wy| < & of wy such that, for all points w in that neighborhood,
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we can define a function ¢ which has the values ® (wy) = 0 and

g(w) — g(wp)
W — wy

(7) O(w) = — g'(wg) when w # wy.

Note that, in view of the definition of derivative,

(8) Im ®(w)=0.
W= Wy
Hence & is continuous at wy,.
Now expression (7) can be put in the form

9 g(w) — g(wy) = [g'(wg) + P(w)l(w —wg)  (Jw—wy| <é),

which is valid even when w = wy; and, since f'(zy) exists and f is, therefore,
continuous at z,, we can choose a positive number & such that the point f(z) lies in
the ¢ neighborhood [w — wy| < € of wy if z lies in the § neighborhood [z — z¢| < 6 of
zo- Thus it is legitimate to replace the variable w in equation (9) by f(z) when z is any
point in the neighborhood |z — zp| < §. With that substitution, and with wy = f(2p).
equation (9) becomes

gLf(2)] - glfzp)l _ (£ (z0)] + PLEDT J(z) — flzp)
Z—2p L= 20
(0 < |z —2z0l <9),
where we must stipulate that z # z so that we are not dividing by zero. As already

noted, f is continuous at zy and & is continuous at the point wy = f(zg). Thus the
composition ®[ f(z)]is continuous at zg; and, since @ (wgy) =0,

lim ®[f(2)]=0.

I

(10

So equation (10) becomes equation (6) in the limit as z approaches z.

EXERCISES
1. Use results in Sec. 19 to find f'(z) when
(@) f(2) =32° = 22+ 4 (b) f(2) = (1—4z%)%;
_z-1 _1/7 , (4! \
(t:’)f(z)—%_Jr_l(:<:'9é /2y () flz)= 2 (z #0).

2. Using results in Sec. 19, show that
(a) a polynomial
P(z)=ag+a;z+ a2z2 +-+a,z” (a, #0)

of degree n (n > 1) is differentiable everywhere, with derivative

P =a;+2amz+ - +na,2"
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(b) the coefficients in the polynomial P(z) in part (@) can be written

P'(0 P (0) P®(0
ag = P(0), alzz—-—i{'—«)-, a2=-—--2-(¥—-, cevy Oy = ).

n!
3. Apply definition (3), Sec. 18, of derivative to give a direct proof that
1 1
fl@y=== when f(z)=- (2#0).
4 z
4. Suppose that f(zy) = g(zo) = 0 and that f’(z¢) and g'(zo) exist, where g'(zg) # 0. Use

definition (1), Sec. 18, of derivative to show that

lim f@ _ ff(Zo)‘
>0 g(z)  g'(2p)

5. Derive formula (3), Sec. 19, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 19, for the derivative of z” when n is a positive integer by
using
(@) mathematical induction and formula (4), Sec. 19, for the derivative of the product of
two functions;
(b) definition (3), Sec. 18, of derivative and the tinomial formula (Sec .3).
7. Prove that expression (2), Sec. 19, for the derivative of 7" remains valid when 7 is a
negative integer (n = —1, —2, .. ), provided that z # 0.

Suggestion: Write m = —n and use the formula for the derivative of a quotient of
two functions.

8. Use the method in Example 2, Sec. 18, to show that f’(z) does not exist at any point
when

(@) f(2)=7. (B f@=Rez; (o) flzy=Imz.
9. Let f denote the function whose values are
=2
£l2) = -é— when z#0,
0 when z=0.

Show that if z =0, then Aw/Az = 1 at each nonzero point on the real and imaginary
axes in the Az, or Ax Ay, plane. Then show that Aw/Az = —1 at each nonzero point
(Ax, Ax) on the line Ay = Ax in that plane. Conclude from these observations that
£'(0) does not exist. (Note that, to obtain this result, it is not sufficient to consider only
horizontal and vertical approaches to the origin in the Az plane.)

20. CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of
the component functions # and v of a function

(1) f@)=ux,y)+ivix,y)
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must satisfy at a point zy = (xq, ¥g) when the derivative of f exists there. We also
show how to express f'(zy) in terms of those partial derivatives.
We start by writing zg = xg + iyg, Az = Ax +iAy, and

Aw = f(zg + Az) — f(z¢)
= [u(xg + Ax, yog + Ay) — u(xy, yo)l +ilv(xg + Ax, yog + Ay) — v(xg, o))

Assuming that the derivative

Aw
2 ! = lim —
@ flieg) = Jim ==
exists, we know from Theorem 1 in Sec. 15 that
3) fl(zp) = lim Re ﬂ + i lim Im &

(Ax,Ay)—>(0,0) Az (Ax,Ay)—(0,0) Az

Now it is important to keep in mind that expression (3) is valid as (Ax, Ay)
tends to (0, 0) in any manner that we may choose. In particular, we let (Ax, Ay) tend
to (0, 0) horizontally through the points (Ax, 0), as indicated in Fig. 29 (Sec. 18).
Inasmuch as Ay = 0, the quotient Aw/Az becomes

Aw _ u(xg+ Ax, yo) — u(xo, Yo) vi v(xg + Ax. yo) — v(xg, Yo)

Az Ax Ax
Thus
A . A » - 1
lim Re e Iim u(x + A%, o) = ulXo. Yo) = U, (X0 Yo)
and
A A M - »
lim Im =2 = lim v + Ax. o) ~ vlxo. o) = U, (Xg, Yo)
(Bx, Ay)—(0,0) Az  Ax—0 Ax

where i, (xg, Vo) and v, (xg, ¥o) denote the first-order partial derivatives with respect
to x of the functions u and v, respectively, at (x, yg). Substitution of these limits into
expression (3) tells us that

(4) f(zg) = uy (xq, ¥o) + ivy(xg, Yo)-

We might have let Az tend to zero vertically through the points (0, Ay). In that
case, Ax = 0 and

Aw _ ulxp, Yo+ Ay) — u(xo, ¥o) i v(xg, yo + Ay) — v{xp, Yp)
Az iAy iAy
_ U(xp, Yo+ Ay) — v(x0, Yo) _ 4 (Xg, Yo + Ay) — u(Xo, Yo)
Ay Ay ‘
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Evidently, then,

, Aw X v(xp, ¥ Ay) — vixq,
lim Re — = lim (*0. Yo + 47) Xo. Yo) = v,(Xp, Yo)
(Ax, Ay)—(0,0) Az Ay—0 Ay ]
and
: Aw . u(xg, Ay) — u(xg,
lim Im — = — lim (X9, Yo + AY) = u(Xo: Yo) = —u,(xg. Yo)-
(Ax,Ay)—(0,0) Az Ay—0 Ay

Hence it follows from expression (3) that

(5) f’(z{}) - Uy(XQ, yﬁ) - iuy(xﬂs y{))a

where the partial derivatives of u and v are, this time, with respect to y. Note that
equation (5) can also be written in the form

ff(z()) - _'i[uy(-x()s }’(}) + ivy(-x()a }’0)]

Equations (4) and (5) not only give f'(zq) in terms of partial derivatives of the
component functions u and v, but they also provide necessary conditions for the
existence of f’(zq). For, on equating the real and imaginary parts on the right-hand
sides of these equations, we see that the existence of f'(zy) requires that

(6) iy (X9, yo) = y(xg, yo) and (g, Yo) = —v,(Xg, Yo)-

Equations (6) are the Cauchy—Riemann equations, so named in honor of the French

mathematician A. L. Cauchy (1789-1857), who discovered and used them, and in

honor of the German mathematician G. F. B. Riemann (1826-1866), who made them

fundamental in his development of the theory of functions of a complex variable.
We summarize the above results as follows.

Theorem. Suppose that

f@=ux,y) +ivx,y)

and that f'(z) exists at a point 7o = xo + iyg. Then the first-order partial derivatives
of u and v must exist at (xg, yo), and they must satisfy the Cauchy-Riemann equations

(7) Uy =UVy, Uy = —U;
there. Also, f'(zg) can be written
(8) f(z0) = uy +ivy,

where these partial derivatives are to be evaluated at (xg, yg)-
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EXAMPLE 1. InExample 1, Sec. 18, we showed that the function
f@) =z =x* -y +idxy

is differentiable everywhere and that f'(z) = 2z. To verify that the Cauchy—Riemann
equations are satisfied everywhere, we note that

u(x, v) =x% - y2 and v(x, y)=2xy.
Thus

Uy =2X=10 Uy, =—2y=—v,.

y!

Moreover, according to equation (8),

fl(@)=2x +i2y =2(x +iy) =2z.

Since the Cauchy—Riemann equations are necessary conditions for the existence
of the derivative of-a function f at a point z,, they can often be used to locate points
at which f does not have a derivative.

EXAMPLE 2. When f(z) = |z]?, we have
u(x, y) =x2 + y2 and wv{x, y)=0.

If the Cauchy—Riemann equations are to hold at a point (x,-y), it follows that 2x = 0
and 2y =0, or that x = y = 0. Consequently, f’(z) does not exist at any nonzero point,
as we already know from Example 2 in Sec. 18. Note that the above theorem does not
ensure the existence of f’(0). The theorem in the next section will, however, do this.

21. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy—Riemann equations at a point zy = (xg, yg) is not sufficient
toensure the existence of the derivative of a function f(z) at that point. (See Exercise 6,
Sec. 22.) But, with certain continuity conditions, we have the following useful theorem.

Theorem. Let the function

J@=ulx,y)+iy(x,y)

be defined throughout some & neighborhood of a point 73 = x4 + iy, and suppose
that the first-order partial derivatives of the functions u and v with respect to x and y
exist everywhere in that neighborhood. If those partial derivatives are continuous at
(xo, yo) and satisfy the Cauchy—Riemann equations

at (xg, yo), then f'(zq) exists.
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To start the proof, we write Az = Ax + iAy, where 0 < |Az| < ¢, and

Aw = f(zo+ Az) — f(z0)-

Thus
(N Aw = Au + i Av,
where
Au=u(xy+ Ax, yg + Ay) — u(xy, ¥o)
and

Av = U(XQ + Ax, yo + A}?) - ’v(xo, V{))

The assumption that the first-order partial derivatives of u and v are continuous at the
point (x,, ¥o) enables us to write*

(2) Au =, (xg, Yo) Ax + 1, (xg, Yo) Ay + £1v/ (Ax)?2 + (Ay)?
and
(3) Av = v, (xg, Yo) Ax + vy (xg, Yo)AY + e/ (Ax)2 + (Ay)?,

where £, and ¢, tend to 0 as (Ax, Ay) approaches (0, 0) in the Az plane. Substitution
of expressions (2) and (3) into equation (1) now tells us that

@) Aw=u,(xg, Y Ax +uy(xg, yo) Ay + &1V (Ax)2 + (Ay)?

+ i [vx(xg, Yo) Ax + vy (xg, Yo} Ay + £y (AX)? + (Ay)z]-

Assuming that the Cauchy—Riemann equations are satisfied at (xy, yp), we can
replace u, (xg, yo) by —v,(xg, yo) and v,(xp, ¥o) by u,(xg, yo) in equation (4) and
then divide through by Az to get

Aw . , ] Ax)? + (Ay)?
(5) E = u, (xy, ¥g) + iv,(xg, vo) + (&) + 182)\/( )A" (4) .

*See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 150-151 and 197-
198, 1983.



SEC. 22 PorLar COORDINATES 65

But /(Ax)2 + (Ay)2 = |Az], and so

V(AX)2 + (Ay)?
Az

= 1.

Also, &) + i, tends to 0 as (Ax, Ay) approaches (0, 0). So the last term on the right
in equation (5) tends to O as the variable Az = Ax 4 i Ay tends to 0. This means that
the limit of the left-hand side of equation (5) exists and that

(6) f'@o) = uy +ivy,

where the right-hand side is to be evaluated at (x;, yg).

EXAMPLE 1. Consider the exponential function
fRy=eé=e"e” (=x+iy),

some of whose mapping properties were discussed in Sec. 13. In view of Euler’s
formula (Sec. 6), this function can, of course, be written

f@)=e*cosy+ie*siny,
where y is to be taken in radians when cos y and sin y are evaluated. Then
ux,y)=e*cosy and v(x,y)=¢e"siny.

Since u, = v, and u, = —v, everywhere and since these derivatives are everywhere

continuous, the conditions in the theorem are satisfied at all points in the complex
plane. Thus f’(z) exists everywhere, and

'@ =u, +iv, =e*cosy+ie*siny.

Note that f'(z) = f(2).

EXAMPLE 2. It also follows from the theorem in this section that the function
f(z) = |z|%, whose components are

u(x,y)=x>+y> and uv(x,y)=0,

has a derivative at z = 0. In fact, f'(0) =0+ i0 = 0 (compare Example 2, Sec. 18). We
saw in Example 2, Sec. 20, that this function cannot have a derivative at any nonzero
point since the Cauchy—Riemann equations are not satisfied at such points.

22. POLAR COORDINATES

Assuming that zg # 0, we shall in this section use the coordinate transformation

() x=rcosf, y=rsinf
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to restate the theorem in Sec. 21 in polar coordinates.
Depending on whether we write

Z=x-+1y oOr z=re'? (z#0)

when w = f(2), the real and imaginary parts of w = u + i v are expressed in terms of
either the vaniables x and y or r and 6. Suppose that the first-order partial derivatives
of u and v with respect to x and y exist everywhere in some neighborhood of a given
nonzero point zy and are continuous at that point. The first-order partial derivatives
with respect to r and 6 also have these properties, and the chain rule for differentiating
real-valued functions of two real variables can be used to write them in terms of the
ones with respect to x and y. More precisely, since

8um8u8x+8u8y Bum8u8x+8u8y
dr ox dr 9y 9r 86 8x 36 By 96

one can write

(2) U, = U, cosé—i—uy SIiNG, U= —U,T siné-{—uyrcosé.
Likewise,
(3) U, =U, 080 4,800, vg=-—v,rsind +uv,rcosb.

If the partial derivatives with respect to x and y also satisfy the Cauchy—Riemann
equations

(4) U, = Uy = —Vy
at z;, equations (3) become

(5) U= —u,cos0 +u,sinf, vyg=u,rsind +u,rcosf

y
at that point. It is then clear from equations (2) and (5) that

(6) Fu, = Vg, Ug = —FV,

at the point z;.

If, on the other hand, equations (6) are known to hold at zj, it is straightforward
to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore,
an alternative form of the Cauchy—Riemann equations (4).

We can now restate the theorem in Sec. 21 using polar coordinates.

Theorem. Let the function
f()=ur,8)+iv(r,8)

be defined throughout some & neighborhood of a nonzero point 75 = ro exp(ify), and
suppose that the first-order partial derivatives of the functions u and v with respect tor
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and 6 exist everywhere in that neighborhood. If those partial derivatives are continuous
at (ry, 9y) and satisfy the polar form

r, = Vg, Ug = =TV,

of the Cauchy—Riemann equations at (rg, 8y), then f'(zg) exists.

The derivative f'(z,) here can be written (see Exercise 8)

(7) flzg) =, +iv,),

where the right-hand side 1s to be evaluated at (ry, ;).

EXAMPLE 1. Consider the function

(8) f(z)mlmA.mle_iezl(cos@—isiné) (z #0).
z ret? r r

Since
u(r, 0) = cos and v(r,0) = _sing ,

r

the conditions in the above theorem are satisfied at every nonzero point z = re'? in the
plane. In particular, the Cauchy-Riemann equations

cos 6 sin 6 _

= —rv,

ru, = = Vg and Ug = —

¥ r

are satisfied. Hence the derivative of f exists when z 3 0; and, according to expres-
sion (7),

- _1‘6 .
£ = =it _cosf ny sin 6 _ it l _ 1 .
72 r2 r2 (rezé)z 72

EXAMPLE 2. The theorem can be used to show that, when ¢ is a fixed real number,
the function

(9) f)=re?? (r>0,a<0<a+2n)

has a derivative everywhere in its domain of definition. Here

u(r, 0) = Jr cos % and v(r,H) = Jr sin %

Inasmuch as
3 8 3
mrm“/—;cos—mvg and ugm—ﬁ siném—wr
3 3 3 3
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and since the other conditions in the theorem are satisfied, the derivative f'(z) exists
at each point where f(z) is defined. Furthermore, expression (7) tells us that

f’(z)me“ie[ 1 2«:032—}—@ : > sin éj],
3 2 3@ ]
or

_'a
[ A :

3R 3 B[]

Note that when a specific point z is taken in the domain of definition of f, the
value f(z) is one value of z'/3 (see Sec. 11). Hence this last expression for f/(z) can
be put in the form

4oL
dz 3 (31/3)2

when that value is taken. Derivatives of such power functions will be elaborated on in
Chap. 3 (Sec. 32).

EXERCISES

1. Use the theorem in Sec. 20 to show that f’(z) does not exist at any point if
@ fR=2 G f@=2-72 © f@=2x+ixy% () fx)=¢€e".

2. Use the theorem in Sec. 21 to show that f'(z) and its derivative f”/(z) exist everywhere,
and find f”(z) when
@ f@=iz+2; (B) fz)=e e,
(¢) f@)=2% (d) f(z) =cos x cosh y — i sin x sinh y.

Ans. () ') = f):; @ f'()=—-f(2).

3. From results obtained in Secs. 20 and 21, determine where f’(z) exists and find its value
when

@ f@=1z; ) f@Q=x*+iy%, (¢) f(x)=zImz.
Ans.(a) f/(2)=—-1/2 ( #0); (®) f/(x+ix)=2x; () f'(0)=0.

4. Use the theorem in Sec. 22 to show that each of these functions is differentiable in the
indicated domain of definition, and then use expression (7) in that section to find f'(z):

@) fz)=1/z*(z #0);
(b) () =1’ (r>0,a <0 <a+27),
(¢) f(z)=ePcosInr) +ie Psin(lnr) (r >0,0<8 < 27).

Ans. (b) f'(z) = 2—;&-)-; © fi@y =il f)‘
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5. Show that when f(z) = x> +i(1 — y)3, it is legitimate to write
(@) =u, +iv, =3x*

only when z = 1.

6. Let u and v denote the real and imaginary components of the function f defined by the
equations

=2

f(z) = % when z3#0,

0 when z=0.

Verify that the Cauchy-Riemann equations u, = v, and u, = —v, are satisfied at the
origin z = (0, 0). [Compare Exercise 9, Sec. 19, where it is shown that f/(0) nevertheless
fails to exist.]

7. Solve equations (2), Sec. 22, for u, and u,, to show that

sin 6 . cos 8
Wy =1U,Cco88 —ug , Uy =u,siné +ug
r r

Then use these equations and similar ones for v, and v, to show that, in Sec. 22, equations
(4) are satisfied at a point z¢ if equations (6) are satisfied there. Thus complete the
verification that equations (6), Sec. 22, are the Cauchy-Riemann equations in polar form.

8. Let a function f(z) = u + iv be differentiable at a nonzero point zy = ry exp(i6y). Use
the expressions for «, and v, found in Exercise 7, together with the polar form (6), Sec.
22, of the Cauchy-Riemann equations, to rewrite the expression

f;(zi)) = U, + ivx
in Sec. 21 as
fleo) = e (u, +ivy),

where u, and v, are to be evaluated at (r, ;).

9. (a) With the aid of the polar form (6), Sec. 22, of the Cauchy-Riemann equations, derive
the alternative form

F(20) = —(up + ivg)
20

of the expression for f'(zy) found in Exercise 8.

(b) Use the expression for f'(zy) in part (a) to show that the derivative of the function
f(z) = 1/z (z # 0) in Example 1, Sec. 22, is f'(z) = —1/z2.

10. (a) Recall (Sec. 5) thatif z =x + iy, then

z2+2 zZ
X = 5 and y=-——,

3

21
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By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression

éiﬂﬁﬁﬁﬁ+3£3_y._i(£+fa_fi)
9z 9x 97 8y 97 2 \dx 3y /)
(b) Define the operator

o 1 ( 0 n 0 )

5z 2\8x ay/’
suggested by part (a), to show that if the first-order partial derivatives of the real
and imaginary parts of a function f(z) = u(x, y) + iv(x, y) satisfy the Cauchy-
Riemann equations, then

aF 1 ,
o EI(H“ —vy) +i(v, +u,)]=0.

Thus derive the complex form 3f/37 = O of the Cauchy—Riemann equations.

23. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of the
complex variable z is aralytic in an open set if it has a derivative at each point in that
set.* If we should speak of a function f that is analytic in a set $ which 18 not open,
it is to be understood that f is analytic in an open set containing S. In particular, f is
analytic at a point z if it is analytic throughout some neighborhood of zj.

We note, for instance, that the function f(z) = 1/z is analytic at each nonzero
point in the finite plane. But the function f(z) = |z|* is not analytic at any point since
its derivative exists only at z = 0 and not throughout any neighborhood. (See Example
2, Sec. 18.) '

An entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows that every
polynomial is an entire function.

If a function f fails to be analytic at a point z; but is analytic at some point
in every neighborhood of z;, then z; is called a singular point, or singularity, of f.
The point z = 0 is evidently a singular point of the function f(z) = 1/z. The function
£(z) = |z|*, on the other hand, has no singular points since it is nowhere analytic.

A necessary, but by no means sufficient, condition for a function f to be analytic
in a domain D is clearly the continuity of f throughout D. Satisfaction of the Cauchy-
Riemann equations is also necessary, but not sufficient. Sufficient conditions for
analyticity in D are provided by the theorems in Secs. 21 and 22.

Other usetul sufficient conditions are obtained from the differentiation formulas
in Sec. 19. The derivatives of the sum and product of two functions exist wherever the

* The terms regular and holomorphic are also used in the literature to denote analyticity.
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functions themselves have derivatives. Thus, if two functions are analytic in a domain
D, their sum and their product are both analytic in D. Similarly, their quotient is
analytic in D provided the function in the denominator does not vanish at any point in
D. In particular, the quotient P (z)/Q(z) of two polynomials is analytic in any domain
throughout which Q(z) # 0.

From the chain rule for the derivative of a composite function, we find that
a composition of two analytic functions is analytic. More precisely, suppose that a
function f(z) is analytic in a domain D and that the image (Sec. 12) of D under the
transformation w = f(z) is contained in the domain of definition of a function g(w).
Then the composition g[ f (z)]is analytic in D, with derivative

4 el f @)1= gLf DI @),
dz

The following theorem is especially useful, in addition to being expected.

Theorem. If f'(z) =0 everywhere in a domain D, then f(z) must be constant
throughout D.

We start the proof by writing f(z) = u(x, y) + iv(x, y). Assuming that f'(z) =0
in D, we note that u, + iv, =0; and, in view of the Cauchy—Riemann equations,

v, — iu, = 0. Consequently,

at each point in D,

Next, we show that u(x, y) is constant along any line segment L extending from
a point P to a point P’ and lying entirely in D. We let s denote the distance along L
from the point P and let U denote the unit vector along L in the direction of increasing
s (see Fig. 30). We know from calculus that the directional derivative du/ds can be
written as the dot product

(1) —— = (grad u) - U,

0 ¥ FIGURE 30
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where grad u is the gradient vector
(2) gradu =u,i+u,j

Because i, and u, are zero everywhere in D, then, grad u is the zero vector at all
points on L. Hence it follows from equation (1) that the derivative du /dss is zero along
L; and this means that i is constant on L.

| Finally, since there is always a finite number of such line segments, joined end
to end, connecting any two points P and Q in D (Sec. 10), the values of u at P and
Q must be the same. We may conclude, then, that there is a real constant a such that
u(x, y) = a throughout D. Similarly, v(x, ¥) = b; and we find that f(z) = a + bi at
each pointin D.

24. EXAMPLES

As pointed out in Sec. 23, it is often possible to determine where a given function is
analytic by simply recalling various differentiation formulas in Sec. 19.

EXAMPLE 1. The quotient

P+ 4
1@ 2 =3)2+ D

is evidently analytic throughout the z plane except for the singular points z = +/3
and z = +i. The analyticity is due to the existence of familiar differentiation formulas,
which need be applied only if the expression for f'(z) is wanted.

When a function is given in terms of its component functions #(x, ¥) and v(x, y),
its analyticity can be demonstrated by direct application of the Cauchy-Riemann
equations.

EXAMPLE 2. When
f(2) = cosh x cos y + i sinh x sin y,
the component functions are
u(x,yy=coshxcosy and wv(x,y)=sinhxsiny.
Because
u, =sinhxcosy=v, and u,=—coshxsiny=—v,

everywhere, it is clear from the theorem in Sec. 21 that f is entire.



SEC. 24 Exercises 73

Finally, we illustrate how the theorems in the last four sections, in particular the
one in Sec. 23, can be used to obtain some important properties of analytic functions.

EXAMPLE 3. Suppose that a function
f@)=ulx,y) +iv(x, y)

and its conjugate

f@)=ux,y)—ivix, y)

are both analytic in a given domain D. It is easy to show that £(z) must be constant
throughout D.
To do this, we write f(z) as

f@=Ux,y)+iV(x, y),
where
(D Ulx,y)=u(x,y) and V(x,y)=-v(x,y).
Because of the analyticity of f(z), the Cauchy-Riemann equations
2) U, =v

hold in D, according to the theorem in Sec. 20. Also, the analyticity of f(z) in D tells
us that

U=V, Uy=-V,.
In view of relations (1), these last two equations can be written
(3) Uy = —Vy, Uy =1,

By adding corresponding sides of the first of equations (2) and (3), we find that
u, =0 in D. Similarly, subtraction involving corresponding sides of the second of
equations (2) and (3) reveals that v, = 0. According to expression (8) in Sec. 20, then,

fl=u,+iv,=0+i0=0;

and it follows from the theorem in Sec. 23 that f(z) is constant throughout D.

EXERCISES
1. Apply the theorem in Sec. 21 to verify that each of these functions is entire:
(@ fD)=3x+y+iQGy—x); (b) f(z) =sinx cosh y + i cos x sinh y;

(©) f(x)=eVsinx —ie Vcosx; (d) f(2)= (g% — e *e ™V,
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With the aid of the theorem in Sec. 20, show that each of these functions is nowhere
analytic:

@ f(z)=xy+iy; (B) f@D=2xy+i(x2—¥?; (o) fl2) =e¥e™,

State why a composition of two entire functions is entire. Also, state why any linear

combination ¢y f1(z) + ¢, fo(z) of two entire functions, where c¢; and ¢, are complex
constants, is entire.

In each case, determine the singular points of the function and state why the function is
analytic everywhere except at those points:
2z 41 4 2> + 1
a) f(R)=—7—7; & f@)= (o f@)= .
@7 2(22+ 1) d 22 —3z+2 ! (z+ 2022+ 2z +2)
Ans. (@) z=0,%i; BHz=12; (c)z=-2,-1%i.

According to Exercise 4(b), Sec. 22, the function

S(Z)=\/;859/2 (r>0,—71 <0 <m)
is analytic in its domain of definition, with derivative

1
2g(z)

Show that the composite function G(z) = g(2z — 2 + i) is analytic in the half plane
x > 1, with derivative

g (@)=

1
g2z —2+1i)

Suggestion: Observe that Re(2z — 2 +i) >0 whenx > L

G'(z) =

Use results in Sec. 22 to verify that the function
g(@=Inr+id (r>0,0<6 <2m)

is analytic in the indicated domain of definition, with derivative g’(z) = 1/z. Then show
that the composite function G(z) = g(z? + 1) is analytic in the quadrant x > 0, y > 0,
with derivative

2z
22+1

G'(z) -

Suggestion: Observe that Im(z%> + 1) > O when x > 0, y > 0.

Let a function f(z) be analytic in a domain D. Prove that f(z) must be constant
throughout D if
(a) f(z) is real-valued for all z in D, (b) | F(2)| is constant throughout D.
Suggestion: Use the Cauchy-Riemann equations and the theorem in Sec. 23 to
prove part (a). To prove part (&), observe that
o2

f@= I if |f(z)l=c(c#0);

then use the main result in Example 3, Sec. 24.
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25. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in a given
domain of the xy plane if, throughout that domain, it has continuous partial derivatives
of the first and second order and satisfies the partial differential equation

(1) H,y(x, y)+Hyy(x9 y) =0,

known as Laplace’s equation.

Harmonic functions play an important role in applied mathematics. For example,
the temperatures 7' (x, y) in thin plates lying in the xy plane are often harmonic. A
function V(x, y) is harmonic when it denotes an electrostatic potential that varies
only with x and y in the interior of a region of three-dimensional space that is free of
charges.

EXAMPLE 1. Itis easy to verify that the function T (x, y) = ¢~ sin x is harmonic
in any domain of the xy plane and, in particular, in the semi-infinite vertical strip
0 <x <m, y> 0. Italso assumes the values on the edges of the strip that are indicated
in Fig. 31. More precisely, it satisfics all of the conditions

Tex (%, ¥) + Ty (x, ) =0,
rO,y)=0, T(,y)=0,
T(x,0)=sinux, yl_i_fl;o T(x,y)=0,
which describe steady temperatures 7 (x, y) in a thin homogeneous plate in the xy

plane that has no heat sources or sinks and is insulated except for the stated conditions
along the edges.

Il
<
=~
1l
<

T=0| T, +T,

0 T=sinx 7w X
FIGURE 31

The use of the theory of functions of a complex variable in discovering solutions,
such as the one in Example 1, of temperature and other problems is described in
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considerable detail later on in Chap. 10 and in parts of chapters following it.* That
theory is based on the theorem below, which provides a source of harmonic functions.

Theorem 1. If a function f(z) = u(x, y) +iv(x, y) is analytic in a domain D, then
its component functions u and v are harmonic in D.

To show this, we need a result that is to be proved in Chap. 4 (Sec. 48). Namely,
if a function of a complex variable is analytic at a point, then its real and imaginary
components have continuous partial derivatives of all orders at that point.

Assuming that f is analytic in D, we start with the observation that the first-
order partial derivatives of its component functions must satisfy the Cauchy-Riemann
equations throughout D:

(2) Uy, =0

yr Uy =g

Differentiating both sides of these equations with respect to x, we have
(3) Uxx =Vyy, Uyx = —Usy.

Likewise, differentiation with respect to y yields
(4) Uxy = Uyy,  Myy = —Usy.

Now, by a theorem in advanced calculus,’ the continuity of the partial derivatives of
u and v ensures that u,, = u,, and v, = v,,. It then follows from equations (3) and
(4) that

Upy +uyy =0 and vy, + vy, =0.

That is, # and v are harmonic in D.

EXAMPLE 2. The function f(z) =e ¥ sinx —ie™” cos x is entire, as is shown
in Exercise 1(c), Sec. 24. Hence its real part, which is the temperature function
T (x, y) = e 7 sin x in Example 1, must be harmonic in every domain of the xy plane.

EXAMPLE 3. Since the function f(z) = i/z° is analytic whenever z # 0 and since

P02 iR 2y 4ir—y?)

22 2 EZ — (22)2 - |Z|4 - (xi + y2)2

bl

* Another important method is developed in the authors’ “Fourier Series and Boundary Value Problems,”
6th ed., 2001.

" See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 199-201, 1983.
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the two functions

X2 y2
(x2 4+ y2)2

2xy
(x*+y

ulx, y)= 72 and v(x,y)=

are harmonic throughout any domain in the xy plane that does not contain the origin.

If two given functions u and v are harmonic in a domain D and their first-order
partial derivatives satisfy the Cauchy—-Riemann equations (2) throughout D, v is said
to be a harmonic conjugate of u. The meaning of the word conjugate here is, of course,
different from that in Sec. 5, where 7 is defined.

Theorem 2. A function f(z) = u(x, y) + iv(x, y) is analytic in a domain D if and
only if v is a harmonic conjugate of u.

The proof is easy. If v is a harmonic conjugate of # in D, the theorem in Sec.
21 tells us that f is analytic in D. Conversely, if f is analytic in D, we know from
Theorem 1 above that # and v are harmonic in D; and, in view of the theorem in Sec.
20, the Cauchy—Riemann equations are satisfied.

The following example shows that if v is a harmonic conjugate of u in some
domain, it is not, in general, true that « is a harmonic conjugate of v there. (See also
Exercises 3 and 4.)

EXAMPLE 4. Suppose that
u(x,y)=x*—y* and w(x,y) = 2xy.

Since these are the real and imaginary components, respectively, of the entire function
f(z) = 7, we know that v is a harmonic conjugate of u throughout the plane. But u
cannot be a harmonic conjugate of v since, as verified in Exercise 2(), Sec. 24, the
function 2xy + i (x> — y?) is not analytic anywhere.

In Chap. 9 (Sec. 97) we shall show that a function u which is harmonic in a
domain of a certain type always has a harmonic conjugate. Thus, in such domains,
every harmonic function is the real part of an analytic function. It is also true that a
harmonic conjugate, when it exists, is unique except for an additive constant.

EXAMPLE 5. We now illustrate one method of obtaining a harmonic conjugate of
a given harmonic function. The function

(5) u(x, y) =y — 3x2y
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is readily seen to be harmonic throughout the entire xy plane. Since a harmonic
conjugate v(x, y) is related to u(x, y) by means of the Cauchy—Riemann equations

(6) Uy =V
the first of these equations tells us that
vy(x, y) = —bxy.

Holding x fixed and integrating each side here with respect to y, we find that

(7) v(x, ¥) = —3xy” + (%),

where ¢ is, at present, an arbitrary function of x. Using the second of equations (6),
we have

3y* — 3x? =3y — ¢'(x),

or ¢'(x) = 3x%. Thus ¢ (x) = x> + C, where C is an arbitrary real number. According
to equation (7), then, the function

(8) v(x, y) = =3xy* + x>+ C

1$ a harmonic conjugate of u(x, y).
The corresponding analytic function is

9 f@ =07 =) +i(=3xy* + x>+ O).

The form f(z) = i(z? + C) of this function is easily verified and is suggested by noting
that when y = 0, expression (9) becomes f(x) =i(x> + C).

EXERCISES

1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y)
when

@ux, y)=2x(L—y); B ulx, y)=2x — x> 4 3xy%;
(c) u(x, y) = sinh x sin y; (d) u(x, y) = y/(x% + y?).
Ans. (@) v(x, y)=x*—y2+2y; (B v(x, y) =2y - 3xZy 4+
(¢) v(x, y) = — cosh x cos y; (d) v(x, y) = x/(x% + ¥).

2. Show that if v and V are harmonic conjugates of u in a domain D, then v(x, y) and
V (x, y) can differ at most by an additive constant.

3. Suppose that, in a domain D, a function v is a harmonic conjugate of u and also that u
is a harmonic conjugate of v. Show how it follows that both u(x, ¥) and v(x, y) must be
constant throughout D.

4. Use Theorem 2 in Sec. 25 to show that, in a domain D, v is a harmonic conjugate of u
if and only if —u is a harmonic conjugate of v. (Compare the result obtained in Exer-
cise 3.)
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Suggestion: Observe that the function f(z) = u(x, y) + iv{x, y) is analytic in D
if and only if —i f(z) is analytic there.

Let the function f(z) = u(r, 8) + iv(r, &) be analytic in a domain D that does not
include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 22)
and assuming continuity of partial derivatives, show that, throughout D, the function
u(r, B) satisfies the partial differential equation

rzuﬂ(r, B) 4+ ru,(r,8)+ uga(r,9)=0,

which is the polar form of Laplace’s equation. Show that the same is true of the function
v(r, 0).

Verify that the function u(r, #) = In r is harmonic in the domainr > 0,0 < 8 < 27 by
showing that it satisties the polar form of Laplace’s equation, obtained in Exercise 5. Then
use the technique in Example 5, Sec. 25, but involving the Cauchy—Riemann equations
in polar form (Sec. 22), to derive the harmonic conjugate v(r, 8) = 6. (Compare Exercise
6, Sec. 24.)

Let the function f(z2) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the
families of level curves u(x, y) = c; and v(x, y) = ¢, where ¢ and ¢, are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
zo = (xg, ¥p) 1s a point in D which is common to two particular curves u(x, y) = ¢,
and v(x, y) = ¢y and if f’(zp) # O, then the lines tangent to those curves at (xq, yg) are
perpendicular.

Suggestion: Note how it follows from the equations «(x, y) =cjand v(x, y) = ¢
that

8u+3u dy:() and @+@d_ym
dx dy dx dx  dy dx

0.

Show that when f(z) = z2, the level curves u(x, y) = ¢y and v(x, y) = ¢, of the compo-
nent functions are the hyperbolas indicated in Fig. 32. Note the orthogonality of the two

FIGURE 32
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families, described in Exercise 7. Observe that the curves u(x, y) = 0 and v(x, y) =0
intersect at the origin but are not, however, orthogonal to each other. Why is this fact in
agreement with the result in Exercise 77

9. Sketch the families of level curves of the component functions u and v when f(z) = 1/z,
and note the orthogonality described in Exercise 7.

10. Do Exercise 9 using polar coordinates.

11. Sketch the families of level curves of the component functions » and v when

z—1

z+1

fla)=

and note how the result in Exercise 7 is illustrated here.

26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an analytic
function in a domain D are affected by its values in a subdomain or on a line segment
lying in D. While these sections are of considerable theoretical interest, they are not
central to our development of analytic functions in later chapters. The reader may pass
directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that

(i) afunction f is analytic throughout a domain D;

(ii) f(z) = 0 at each point z of a domain or line segment contained in D,
Then f(z) =0in D; thatis, f(2) is identically equal to zero throughout D.

To prove this lemma, we let f be as stated in its hypothesis and let zy be any
point of the subdomain or line segment at each point of which f(z) = 0. Since D isa
connected open set (Sec. 10), there is a polygonal line L, consisting of a finite number
of line segments joined end to end and lying entirely in D, that extends from zg to any
other point P in D. We let d be the shortest distance from points on L to the boundary
of D, unless D is the entire plane; in that case, d may be any positive number. We then
form a finite sequence of points

ZO, ZIy 221 voe ey Zﬂ‘—‘l’ Zn

along L, where the point z, coincides with P (Fig. 33) and where each point is
sufficiently close to the adjacent ones that

!Z;{“Zk_li<d (k,-——l;z,...,fz).
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Finally, we construct a finite sequence of neighborhoods
Ngs Ny, Ny, .0 . N, _|, N,

where each neighborhood Nj is centered at z; and has radius d. Note that these
neighborhoods are all contained in D and that the center z; of any neighborhood N,
(k=1,2,...,n) lies in the preceding neighborhood Ny _;.

At this point, we need to use a result that is proved later on in Chap. 6. Namely,
Theorem 3 in Sec. 68 tells us that since f is analytic in the domain Ny and since
f(z) =0 1n a domain or on a line segment containing z;, then f(z) =0 in N,. But
the point z; lies in the domain N,. Hence a second application of the same theorem
reveals that f(z) =0 in Ny; and, by continuing in this manner, we arrive at the fact
that f(z) =0 in N,,. Since N, is centered at the point P and since P was arbitrarily
selected in D, we may conclude that f(z) = 0 in D. This completes the proof of the
lemma.

Suppose now that two functions f and g are analytic in the same domain D and
that f(z) = g(z) at each point 7 of some domain or line segment contained in D. The
difference |

h(z) = f(2)—8(2)

is also analyticin D, and 2 (z) = O throughout the subdomain or along the line segment.
According to the above lemma, then, /(z) = 0 throughout D; that is, f(z) = g(z) at
each point z in D). We thus arrive at the following important theorem.

Theorem. A function that is analytic in a domain D is uniquely determined over D
by its values in a domain, or along a line segment, contained in D.

This theorem is useful in studying the question of extending the domain of
definition of an analytic function. More precisely, given two domains D; and D,,
consider the intersection Dy N D, consisting of all points that lie in both D and D,.
If Dy and D, have points in common (see Fig. 34) and a function f; is analytic in Dy,
there may exist a function f,, which is analytic in D5, such that f5(z) = fi(z) for each
z in the intersection Dy N Ds. If so, we call f, an analytic continuation of f into the
second domain D,.

Whenever that analytic continuation exists, it is unique, according to the theorem
just proved. That is, not more than one function can be analytic in D5 and assume the
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value fi(z) at each point 7 of the domain D; N D, interior to D,. However, if there is
an analytic continuation f3 of f, from D, into a domain D5 which intersects Dy, as
indicated in Fig. 34, it is not necessarily true that f3(z) = f;(z) for each z in D{ N D,
Exercise 2, Sec. 27, illustrates this.

If £, is the analytic continuation of f; from a domain D, into a domain D,, then
the function F defined by the equations

fi(z) when zisin Dy,
f>(z) when zisin D,

F(z) = {

i8 analytic in the union D, U D,, which is the domain consisting of all points that lie
in either Dy or D,. The function F is the analytic continuation into D U D, of either
fior f5; and f; and f, are called elements of F.

27. REFLECTION PRINCIPLE

The theorem in this section concerns the fact that some analytic functions possess the
property that f(z) = f(Z) for all points z in certain domains, while others do not. We
note, for example, that z 4+ 1and z2 have that property when D is the entire finite plane;
but the same is not true of z + i and i z°. The theorem, which is known as the reflection
principle, provides a way of predicting when f(z) = f(2).

Theorem. Suppose that a function f is analytic in some domain D which contains
a segment of the x axis and whose lower half is the reflection of the upper half with
respect to that axis. Then

(1) f@=f@

for each point z in the domain if and only if f(x) is real for each point x on the segment.

We start the proof by assuming that f(x) is real at each point x on the segment.
Once we show that the function

2) Foy=f@
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is analytic in D, we shall use 1t to obtain equauon (1). To establish the analyticity of
F(z), we write

f@Q=ulx, y)+ivix,y), F@=Ux,y)+iV(x,y)

and observe how it follows from equation (2) that, since

3) @ =ulx, —y) —iv(x, —y),

the components of F(z) and f(z) are related by the equations

) UGy =u(x. ) and  V(x,y) = —v(x. 1),

where t = —y. Now, because f(x + i) is an analytic function of x + if, the first-

order partial derivatives of the functions u(x. t) and v(x, #) are continuous throughout
D and satisfy the Cauchy—Riemann equations®

(3) Uy =V,  Up = Uy,

Furthermore, in view of equations (4),

and the second of equations (5) tells us that U, = —V,. Inasmuch as the first-order
partial derivatives of U{(x, y) and V(x, y) are now shown to satisty the Cauchy—
Riemann equations and since those derivatives are continuous, we find that the function
F(z) is analytic in D. Moreover, since f (x) is real on the segment of the real axis lying
in D, v(x, 0) = 0 on that segment; and, in view of equations (4), this means that

Fxy=U&x, ) +iVix, 0 =ulx,0) —ivix, 0) =ulx, 0).
That is,
(6) F(o)=f()

at each point on the segment. We now refer to the theorem in Sec. 26, which tells us
that an analytic function defined on a domain D is uniquely determined by its values
along any line segment lying in D). Thus equation (6) actually holds throughout D.

* See the paragraph immediately following Theorem 1 in Sec. 25.
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Because of definition (2) of the function F (z), then,

(7) f@=f@:

and this is the same as equation (1).
To prove the converse of the theorem, we assume that equation (1) holds and note
that, in view of expression (3), the form (7) of equation (1) can be written

u(x, —y) —ivlx, —y) =u(x,y) +iv(x, y).
In particular, if (x, 0) is a point on the segment of the real axis that lies in D,
u(x,0) —ivix, 0y = ulx, 0) +iv(x, 0);
and, by equating imaginary parts here, we see that v(x, 0) = 0. Hence f(x) is real on

the segment of the real axis lying in D.

EXAMPLES. Just prior to the statement of the theorem, we noted that

t+1=z41 and 22=7°

for all z in the finite plane. The theorem tells us, of course, that this is true, since x + 1
and x? are real when x is real. We also noted that 7 + i and i 72 do not have the reflection
property throughout the plane, and we now know that this is because x 4+ and ¢ x? are
not real when x is real.

EXERCISES

1. Use the theorem in Sec. 26 to show that if f(z) is analytic and not constant throughout
a domain D, then it cannot be constant throughout any neighborhood lying in D.
Suggestion: Suppose that f(z) does have a constant value wy throughout some
neighborhood in D.

2. Starting with the function
f}(Z)=«/;€i€/2 r>0,0<8<m)

and referring to Exercise 4(b), Sec. 22, point out why

f(z) = Sre'?"? (r > (), % <8< 23!’)

is an analytic continuation of f; across the negative real axis into the lower half plane.
Then show that the function

falz) = Jre?? (r >0,71 <8 < 5%{)

is an analytic continuation of f, across the positive real axis into the first quadrant but
that f3(z) = — fi(z) there.
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3

State why the function
fa(2) = s/?_‘é’iafz r>0—n<8<m)

is the analytic continuation of the function f;(z) in Exercise 2 across the positive real
axis into the lower half plane.

We know from Example 1, Sec. 21, that the function
f@)=ee™

has a derivative everywhere in the finite plane. Point out how it follows from the reflection
principle (Sec. 27) that

f@Q=f@

for each z. Then verify this directly.

Show that if the condition that f (x) is real in the refiection principle (Sec. 27) is replaced
by the condition that f(x) is pure imaginary, then equation (1) in the statement of the
principle is changed to

f@=-f@.






CHAPTER

3

ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define corre-
sponding functions of a complex variable. To be specific, we define analytic functions
of a complex variable z that reduce to the elementary functions in calculus when
z = x + i0. We start by defining the complex exponential function and then use it
to develop the others.

28. THE EXPONENTIAL FUNCTION

As anticipated earlier (Sec. 13), we define herc the exponential function e by writing
(1) ¢ =e*e (z=x+1ivy),

where Euler’s formula (see Sec. 6)

(2) ¢Y =cosy+isiny

is used and y is to be taken in radians. We see from this definition that e* reduces to
the usual exponential function in calculus when y = 0; and, following the convention
used in calculus, we often write exp z for .

Note that since the positive nth root /e of ¢ is assigned to e* when x = 1/n
(n=2,3,...), expression (1) tells us that the complex exponential function e is also
e whenz =1/n (n=2, 3, ...). This is an exception to the convention (Sec. 8) that
would ordinarily require us to interpret e!/” as the set of nth roots of e.

87
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According to definition (1), e*e”? = ¢**'; and, as already pointed out in Sec. 13,
the definition is suggested by the additive property

exle.rz — ex1+x3

of e* in calculus. That property’s extension,
(3) ezlezz — eZI-E-Zg,
to complex analysis is easy to prove. To do this, we write
Zy=x1+iy; and zZy=xy 4+ iyy.
Then
evle%? = (exzef}‘l)(exzef}’z) — (exfexz)(efylef}’z).
But x, and x, are both real, and we know from Sec. 7 that

el — ity

Hence

81?2 = o1t x2) gl (i ty2).
and, since

(xj+x)+ iy +y2) =G +iyp+ (xp+iy) =21+ 22,

the right-hand side of this last equation becomes %1122, Property (3) is now established.
Observe how property (3) enables us to write e*17%2¢% = ¢%1, or

4
4) - T,

From this and the fact that €” = 1, it follows that 1/¢* = 2.
There are a number of other important properties of e¢* that are expected. Accord-
ing to Example 1 in Sec. 21, for instance,

d
5 mez = gz
(5) 7z
everywhere in the z plane. Note that the differentiability of e* for all z tells us that
e* is entire (Sec. 23). It is also true that
(6) e #0 for any complex number z.

This is evident upon writing definition (1) in the form

¢? = pe'® where p=¢*and ¢ =y,
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which tells us that
(7) le*| =e* and arg(e®) =y +2nm (n=0, £1, £2,...).

Statement (6) then follows from the observation that |e?| is always positive.
Some properties of e* are, however, not expected. For example, since

z+2mi

e — €Z eEm

and €i=1,

we find that e° is periodic, with a pure imagina riod 2mi:
D g
(8) I — ot

The following example illustrates another property of e* that e* does not have.
Namely, while e* is never negative, there are values of e° that are.

EXAMPLE. There are values of z, for instance, such that
9) et =—1.

To find them, we write equation (9) as e*e'¥ = 1¢!®. Then, in view of the statement
in italics at the beginning of Sec. 8 regarding the equality of two nonzero complex
numbers in exponential form,

e*=1 and y=n+2n7 (n=0,=%1,£2,..).

Thus x = 0, and we find that

(10) z2=02n + Dmi (n =0, £1, £2,...).
EXERCISES
1. Show that
. . - X ’2 =+ i i? ..
(@) exp(2 £ 3mi) = —e=; (b) exp ( = V 3 (1+i);

(c)exp(z +mi)=—expz.
2. State why the function 2z% — 3 — ze* + e~ is entire.

3. Use the Cauchy—Riemann equations and the theorem in Sec. 20 to show that the function
f(z) =exp 7 is not analytic anywhere.

4, Show in two ways that the function eXp(zz) is entire. What 1s its denivative?
Ans. 2z exp(zz).
5. Write |exp(2z + i)} and ]exp(z‘z2)| in terms of x and y. Then show that

lexp(2z + i) + exp(iz?)| < e™ + e,

6. Show that 1exp(z,2)l < exp(lzlz).
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7. Prove that |exp(—2z)| < 1if and only if Re z > 0.
8. Find all values of z such that
(a) et = —-2; (bye* =1+ V3i; (c)exp(2z — 1) =1
Ans. (@z=In2+ 2n+ Dxi (n=0,x1,x£2,...)

B)z=In2+ (Zn + %)m’ (n=0, 1, £2,...);
1
(c) z= -2~ +ami (n=0, £1, £2,...).
9, Show that exp(iz) = exp(iZ) if and only if z =nx (n =0, £1, £2, ...). (Compare

Exercise 4, Sec. 27.)

10. (@) Show thatif e*isreal,thenImz=n7 (n =0, £1, £2,...).
(b) If €% is pure imaginary, what restriction is placed on z?

11. Describe the behavior of €% = e*¢'” as (a) x tends to —o0; (b) y tends to 00.

12. Write Re(e'/?) in terms of x and y. Why is this function harmonic in every domain that
does not contain the origin?

13. Let the function f(z) =u(x, y) +iv(x, y) be analytic in some domain D. State why the
functions

Ux, )= cosu(x,y), V(x,y)= e** ) sinv(x, y)
are harmonic in D and why V (x, y) is, in fact, a harmonic conjugate of U (x, y).
14. Establish the identity
(%) = e™* (n=0, +1,£2,...)

in the following way.

(a) Use mathematical induction to show that it is valid whenn =0, 1,2, ... .
(b) Verify it for negative integers » by first recalling from Sec. 7 that

F=cE"hH" m=-n=12,..)

when z # 0 and writing (€%)" = (1/€%)™. Then use the result in part (a), together
with the property 1/e° = ¢~% (Sec. 28) of the exponential function.

29. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the
equation

(1) e =7z

for w, where z is any nonzero complex number. To do this, we note that when z and
w are written 7z = r¢‘'9(—1 < © < ) and w = u + iv, equation (1) becomes

etel? = re'®,
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Then, in view of the statement in italics in Sec. 8 regarding the equality of two complex
numbers expressed in exponential form,

u

e’ =r and v=0O 4+ 2nrw

where n is any integer. Since the equation e = r is the same as ¥ = ln r, it follows
that equation (1) 1s satisfied if and only if w has one of the values

w=Inr +i(®+ 2nm) (n=0, £1, £2,...).
Thus, if we write
(2) logz=Inr +i(® + 2nm) (n=0, 1, £2, ...,
we have the simple relation
3 ti=7  (z#£0),

which serves to motivate expression (2) as the deﬁnitim of the (multiple-valued)
logarithmic function of a nonzero complex variable z = re'®,

EXAMPLE 1. Ifz=—1-+/3i,thenr =2 and ® = —2x/3. Hence

| 2 1
log(—1—+3i)=n2+ i(ﬁ-—; i znn) =In2+2(n - -%_) i

(n=0, £1, £2, .. .).

It should be emphasized that it is not true that the left-hand side of equation (3)
with the order of the exponential and logarithmic functions reversed reduces to just z.
More precisely, since expression (2) can be written

logz=In|z|+iargz
and since (Sec. 28)
le*| =¢* and arg(e®) =y +2nm (n=0, +1, +2,...)
when z = x + iy, we know that

log(e®) =1n || +i arg(e®) = In(e®) + i(y + 2nm) = (x +iy) + 2nni
(n=0, 1, £2,...).

That 1s,

(4) log(e®) =z + 2nmi (n=0, =1, £2,...).
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The principal value of log z is the value obtained from equation (2) whenn =0

there and is denoted by Log z. Thus

(5) Logz=Inr +i®.

Note that Log z is well defined and single-valued when z # 0 and that

(6) log z = Logz+ 2nmi (n=0, +1, £2,...).

It reduces to the usual logarithm in calculus when z is a positive real number z =r. To
see this, one need only write z = re'?, in which case equation (5) becomes Logz =Inr.
That is, Logr =Inr.

EXAMPLE 2. From expression (2), we find that
logl=In14+i(0+ 2nm)="2nmi (n=0, £1, £2,...).
As anticipated, Log1=0.

Our final example here reminds us that, although we were unable to find loga-
rithms of negative real numbers in calculus, we can now do so.

EXAMPLE 3. Observe that
log(—D)=Inl1+i(mr +2n7)=(2n + i (n=0, +1, £2,...)
and that Log(—1) = mi.

30. BRANCHES AND DERIVATIVES OF LOGARITHMS

If z = re'? is a nonzero complex number, the argument 6 has any one of the values
=0 +2n7 (n=0, 1, 2, ...), where © = Arg z. Hence the definition

logz=Inr +i(® + 2nm) (n=0, %1, £2,...)
of the multiple-valued logarithmic function in Sec. 29 can be written
(D) logz=Inr+i6.

If we let & denote any real number and restrict the value of 6 in expression (1) so
that o < @ < o + 27, the function

(2) logz=Inr +i6 (r>0,0 <0 <a+2m),
with components

(3) u(r,8)=Inr and v(r,0)=26,
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BT * FIGURE 35

is single-valued and continuous in the stated domain (Fig. 35). Note that if the function
(2) were to be defined on the ray 6 = «, it would not be continuous there. For, if z is
a point on that ray, there are points arbitrarily close to z at which the values of v are
near « and also points such that the values of v are near o + 2.

The function (2) is not only continuous but also analytic in the domain r > 0,
o < 6 < a + 27 since the first-order partial derivatives of « and v are continuous
there and satisfy the polar form (Sec. 22)

ri, = vy, Ug = —ri,

of the Cauchy—Riemann equations. Furthermore, according to Sec. 22,

d : of 1 1
— logz = e“g(u, +iv,) = e—‘le(— -+ iO) = —
'z r rett
that 1s,
d 1 .
(4) g—logzx: (Jz] > 0, ¢ <argz < o + 27).
In particular,
| d 1
(3) ~— Logz=— (|z] >0, —m < Argz < ).
2 2

A branch of a multiple-valued function f is any single-valued function F that is
analytic in some domain at each point z of which the value F(z) is one of the values
f(2). The requirement of analyticity, of course, prevents F from taking on a random
selection of the values of f. Observe that, for each fixed o, the single-valued function
(2) is a branch of the multiple-valued function (1). The function

(6) Logz=Inr+1i0 (r>0,-r<0®<m)

is called the principal branch.

A branch cut is a portion of a line or curve that is introduced in order to define a
branch F of a multiple-valued function f. Points on the branch cut for F are singular
points (Sec. 23) of F, and any point that is common to all branch cuts of f is called a
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branch point. The origin and the ray 8 = « make up the branch cut for the branch (2)
of the logarithmic function. The branch cut for the principal branch (6) consists of the
origin and the ray ® = 7. The origin is evidently a branch point for branches of the
multiple-valued logarithmic function.

EXERCISES
1. Show that
. . o1 7,
(a)Log(—ez)=1—--51, (b) Log(l-—z)m-mzmln.?— Zl.

Verify that whenn =0, £1, +2, ...,
|
(a)loge =14 2nmi; (b)logi = (Zn + 5) mi,

() log(—1++/3i)=In2+2 (n + %) i,

Show that
(@) Log(1+i)>=2Log(1+1);  (b)Log(—1+i)2 #2Log(—1+i).
Show that

(a) log(i®) =2logi when 108221Dr+i9(r>0s%<9<¥);

(b) log(i®) #2logi when 10gz=lnr+i€(r>0,§£-<6<—l-?).

. Show that

(a) the set of values of log(i /%) is (n + —ﬁ-)m’ (n=0, £1, £2,...) and that the same is
true of (1/2) log i;
(b) the set of values of log(i?) is not the same as the set of values of 2 log i.

Given thatthe branchlog z =1Inr +i6 (r > 0, ¢ < 8 < & + 277) of the logarithmic func-
tion is analytic at each point z in the stated domain, obtain its derivative by differentiating
each side of the identity exp(log z) = z (Sec. 29) and using the chain rule.

Find all roots of the equation log z = in /2.
Ans.z =1,

Suppose that the point z = x + iy lies in the horizontal strip ¢ < y < a + 27. Show that
when the branch log z =1Inr 4+ i@ (r > 0, ¢ < 6 < a + 2) of the logarithmic function
is used, log(e?) = z.

. Show that

(a) the function Log(z — i) is analytic everywhere except on the half line y = 1 (x < 0);
(b) the function

Log(z + 4)
2240

is analytic everywhere except at the points + (1 — i)/+/2 and on the portion x < —4
of the real axis.
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10. Show in two ways that the function In(x? + v?) is harmonic in every domain that does
not contain the origin.

11. Show that
Re[log(z — 1)] = % G-+ @#D).

Why must this function satisfy Laplace’s equation when z # 1?7

31. SOME IDENTITIES INVOLVING LOGARITHMS

As suggested by relations (3) and (4) in Sec. 29, as well as Exercises 3, 4, and 5 with
Sec. 30, some identities involving logarithms in calculus carry over to complex analysis
and others do not. In this section, we derive a few that do carry over, sometimes with
qualifications as to how they are to be interpreted. A reader who wishes to pass to Sec.
32 can simply refer to results here when needed.

If z; and z; denote any two nonzero complex numbers, it is straightforward to
show that

(1) - log(zy20) = log zy + log 2.

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

(2) arg(zjz;) = arg 21 + arg z,

was in Sec. 7. That is, if values of two of the three logarithms are specified, then there
is a value of the third logarithm such that equation (1) holds.

The proof of statement (1) can be based on statement (2) in the following way.
Since |z1z7| = |21]lz,| and since these moduli are all positive real numbers, we know
from experience with logarithms of such numbers in calculus that

In |z1z] =1n 29| + In |25].
So it follows from this and equation (2) that
(3) In 7125 4@ arg(z,2,) = (In |29| + i arg z;) + (In |2,] + i arg z,).
Finally, because of the way in which equations (1) and (2) are to be interpreted,

equation (3) 1s the same as equation (1).

EXAMPLE. To illustrate statement (1), write z; = z, = —1 and note that z;7;, = L.
If the values log zy = mi and log z, = —mi are specified, equation (1) is evidently
satisfied when the value log(z,z,) = 0 1s chosen.

Observe that, for the same numbers z; and z,,

Log(z1z2) =0 and Logz;+ Logz,=2nri.

Thus statement (1) is not, in general, valid when log is replaced everywhere by Log.
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Verification of the statement

Z
(4) log(“—l—) = log z, — log 25,
22
which is to be interpreted in the same way as statement (1), is left to the exercises.
We include here two other properties of log z that will be of special interest 1n
Sec. 32. If z is a nonzero complex number, then

(5) =" (n=0+1,42,..)

for any value of log z that is taken. When n = 1, this reduces, of course, to relation (3),
Sec. 29. Equation (5) is readily verified by writing z = re'? and noting that each side
becomes r'e'"?,

It is also true that when z # 0,

(6) 2 = eXp(}- log z) n=12,...).
n

That is, the term on the right here has n distinct values, and those values are the nth
roots of z. To prove this, we write z = r exp(i®), where @ is the principal value of
arg z. Then, in view of definition (2), Sec. 29, of log z,

| 1 (&) 42
exp(l log z) = exp[-— Inr+ HO + kn)],
n n R

where k =0, £1, £2, ... . Thus

(7) exp(l log Z) = {‘/?_”exp[i(@- + -z—kj—{)] k=0, %1, +£2,...).
n n n
Because exp(i2km/n) has distinct values only when k =0, 1, ..., n — 1, the right-

hand side of equation (7) has only n values. That right-hand side is, in fact, an
expression for the nth roots of z (Sec. 8), and so it can be written z1/#, This establishes
property (6), which is actually valid when n is a negative integer too (see Exercise 3).

EXERCISES
1. Show thatif Re z; > 0 and Re z, > 0, then
Log(zyz3) = Log zy + Log z5.
2. Show that, for any two nonzero complex numbers z; and z,,
Log(z127) =Log z; +Log z, + 2N

where N has one of the values 0, £1. (Compare Exercise 1.)
3. Verify expression (4), Sec. 31, for log(z,/z2) by
(a) using the fact that arg(z/z,) = arg z; — arg z, (Sec. 7);
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(b) showing thatlog(1/z} = — log z (z # 0), in the sense that log(1/z) and — log z have
the same set of values, and then referring to expression (1), Sec. 31, for log(z,2»).

4. By choosing specific nonzero values of z; and z,, show that expression (4). Sec. 31, for
log(z;/z,) 1s not always valid when log is replaced by Log.

Show that property (6), Sec. 31, also holds when 7 is a negative integer. Do this by writing
2V = (zV/my~ ] (m = —n}), where n has any one of the negative values n = —1, =2, . ..
(see Exercise 9, Sec. 9), and using the fact that the property is already known to be valid
for positive integers.

h

6. Let z denote any nonzero complex number, written z = re'® (—7 < © < 7), and let n
denote any fixed positive integer (n =1, 2, . . .). Show that all of the values of log(z'/™)
are given by the equation

i(~)+2(pn + k)

log(z'/") = LT +
n n

where p =0, 1,42, ...andk=0,1,2,...,n — 1. Then, after writing

1
! logz =~ lnr+iM,
n n n
where =0, 1, 2, ..., show that the set of values of]og(z‘/”‘) is the same as the set
q

of values of (1/n) log z. Thus show that log(z!/?) = (1/n) log z, where, corresponding
to a value of log(z /") taken on the left, the appropriate value of log z is to be selected on
the right, and conversely. [The result in Exercise 5(a). Sec. 30, is a special case of this
one.]

Suggestion: Use the fact that the remainder upon dividing an integer by a positive
integer n is always an integer between 0 and »n — 1, inclusive; that is, when a positive
integer # is specified, any integer ¢ can be written g = pn + k, where p is an integer and
k has one of the valuesk=0,1,2,...,n— 1.

32. COMPLEX EXPONENTS

When z # 0 and the exponent c is any complex number, the function z¢ is defined by
means of the equation

(1) Zcmeclogz’

where log z denotes the multiple-valued logarithmic function. Equation (1) provides
a consistent definition of z¢ in the sense that it is already known to be valid (see Sec.
3Dwhenc=n (n=0,x1,£2,.. )Yandc=1/n (n = £1, £2, .. .). Definition (1)
is, in fact, suggested by those particular choices of c.

EXAMPLE 1. Powers of 7 are, in general, multiple-valued, as illustrated by writing

iTH = exp{—2i log i)
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and then
. T . 1
log i =lnl+z(—~2- +2mr) =z(2n+ —2—)3': (n=0, 1, £2,...).

This shows that
(2) i~ —exp[(@n+ D]  (n=0,%1,%2,...).

Note that these values of i =% are all real numbers.
Since the exponential function has the property 1/e? = ¢™%, one can see that

1 1
— = =exp(—clogz)=2z"¢
z¢ exp(clogz) Pl g2)

and, in particular, that 1/i% =i ~%. According to expression (2), then,
p g p

3) —,%;: =expl(4n + D] (n=0, 1, 2, ...).
i

If z = re'® and ¢ is any real number, the branch
logz=Inr +i6 (r>0,0<b <a+2m)

of the logarithmic function is single-valued and analytic in the indicated domain (Sec.
30). When that branch is used, it follows that the function z¢ = exp(c log z) is single-
valued and analytic in the same domain. The derivative of such a branch of z© is found
by first using the chain rule to write

4 7 = 4 exp(clog z) = z exp(c log z)
dz dz <

and then recalling (Sec. 29) the identity z = exp(log z). That yields the result
d . exp(clogz)

—Z =C =cexp[(c — 1) log z},
dz exp(log z) Pl Jlog 2l
or
d c c—1
4) = (lz] >0, ¢ < arg z < & + 271).
F4
The principal value of z¢ occurs when log z is replaced by Log z in definition (1):
(5) PV. ;" = 082,

Equation (5) also serves to define the principal branch of the function z° on the domain
|z} >0, -mr < Argz < 7.



SEC. 32 EXErCISEs 99

EXAMPLE 2. The principal value of (—i) is

expli Log(—i)] = exp[ (111 1-— 1-{!2——)] = exp -T-;--

That 1s,

(6) PV. (=) =exp 5’-;—

EXAMPLE 3. The principal branch of z2/? can be written

2 2, 2
exp(% Log z) wexp(g Inr+ %i@)) \/r exp( f))

2
(7) PV. 72 = f603m+zszsin—é(:)~

Thus

This function is analytic in the domain r > 0, —7 < ©® < m, as one can sec¢ directly
from the theorem in Sec. 22.

According to definition (1), the exponential function with base ¢, where c is any
nonzero complex constant, is written

(8) ¢t = et loBc,

Note that although 7 is, in general, multiple-valued according to definition (8), the
usual interpretation of ¢ occurs when the principal value of the logarithm is taken.
For the principal value of log e is unity.

When a value of log ¢ is specified, ¢? is an entire function of z. In fact,

ficz — iez loge _ P log ¢ l€)g c:
dz dz
and this shows that
d . .
(9) —c*=c*logec.
dz

EXERCISES

1. Show that whenn =0, 1, £2, .

(@) (1+i) =exp(-= + 2mg) eXp(-i- In 2); (b) (—=DYT = e@n+Di,

4 2
2. Find the principal value of
y P N Eat i
@it ®[z-1-v30]5 @a-pt
Ans. (a) exp(—m/2); (b) —exp(2n?); (c) €"[cos(21n2) + i sin(21n 2)].
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3. Use definition (1), Sec. 32, of z¢ to show that (—1 + +/3i)¥%2 = £ 24/2,

4, Show that the result in Exercise 3 could have been obtained by writing
@ (=14 +/3)¥2 =[(=1+ +/3i)/2] and first finding the square roots of —1+ +/3i;
(b) (=14 ~/3)¥2 =[(—1+ +/3i)%/2 and first cubing —1 + +/3i.

5. Show that the principal nth root of a nonzero complex number z, defined in Sec. 8, is
the same as the principal value of z(l,’f ", defined in Sec. 32.

6. Show that if z # 0 and a is a real number, then |z%| = exp(a In |z}) = |z]%, where the
principal value of |z} is to be taken.

7. Let ¢ = a + bi be a fixed complex number, where ¢ £ 0, £1, +2, .. ., and note that i¢
is multiple-valued. What restriction must be placed on the constant ¢ so that the values
of |i¢| are all the same?

Ans. ¢ is real.

8. Let ¢, d, and 7 denote complex numbers, where z # 0. Prove that if all of the powers
involved are principal values, then

(@ 1/zf =275 GYHYN'=z"@m=12,...)
((L‘) Zczd — zc+d; (d) zc/zd — Zc“d.

9. Assuming that f’(z) exists, state the formula for the derivative of ¢/,

33. TRIGONOMETRIC FUNCTIONS

Euler’s formula (Sec. 6) tells us that

¥ =cosx +isinx and e F=cosx —isinx

for every real number x, and it follows from these equations that

¥ —e ™ =92isinx and e€F+e " =2cosx.
That is,
eix _ e-ix eix 4 e“ix
Sin x = - and cosx =
21 2

It is, therefore, natural to define the sine and cosine functions of a complex variable z
as follows:

. pl? — iz el 4. g7z
(1) sin 7 = ————,  C0$7 = ————

2i 2

These functions are entire since they are linear combinations (Exercise 3, Sec. 24)
of the entire functions ¢'? and e~*%. Knowing the derivatives of those exponential
functions, we find from equations (1) that

d . d )
(2) —ginz=¢08z, —COSZ=—SINZ.
3 hrd

Ay

Z
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It is easy to see from definitions (1) that
(3) sin{(—z)=—sinz and cos(—z)=cos2Z;

and a variety of other identities from trigonometry are valid with complex variables.

EXAMPLE. In order to show that
4) 2 sin gy cos 29 = sin(z| + 23) + sin(z; — 22),

using definitions (1) and properties of the exponential function, we first write

iz _ =12 fza _ ,—iZ

. e e ettt — e

2smzicoszzm2( 5; )( 5 )
!

Multiplication then reduces the right-hand side here to

[V

el T+ _ itz pila1—22) L p=i(21—22)

+ ,
2i | 2i

or
sin(zy + 22) + sin(z; — 22);

and identity (4) is established.

Identity (4) leads to the identities (see Exercises 3 and 4)

(3) sin(z| + z,) = sin 2z €Os 2, + €OS g| sin 2y,

6) cos(z; + z,) = €08 Z{ €COS 2, — sin Z; Sin z,;
|+ 22 1 2 1 2

and from these it follows that

.09

{(7) sin® 7 + cos? 7 = 1,

(8) sin2z=2s8nz¢08z, COS2Z= cos® z — sin? z,
| o 7w o  om

(9 sm(z + E) = COS 2, sm(z — E) = — COS Z.

When y is any real number, one can use definitions (1) and the hyperbolic
functions

!" _‘t: }3 -.}}
. e’ —e - e’ +e
sinh y = e and coshy=—+—

from calculus to write

(10) sin(iyy=1isinhy and cos(iy)=coshy.
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The real and imaginary parts of sin z and cos z are then readily displayed by writing
zy = x and z, = iy in identities (5) and (6):

(11 sin z = sin x cosh y + / cos x sinh y,
(12) cos z =Cos x cosh y — i sin x sinh y,

where z = x + i y.

A number of important properties of sin z and cos z follow immediately from
expressions (11) and (12). The periodic character of these functions, for example, is
evident:

(13) sin(z +27) =sinz, sin(z + )= —sinz,
(14) cos(z +2m)=cosz, cos(z+mT)=—COSZ.

Also (see Exercise 9)
(15) Isin z|% = sin” x + sinh? y,

(16) |cos zf2 — cos? x + sinh? y.

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two
equations that sin z and cos 7 are not bounded on the complex plane, whereas the
absolute values of sin x and cos x are less than or equal to unity for all values of x.
(See the definition of boundedness at the end of Sec. 17.)

A zero of a given function f(z) is a number z; such that f(zy) = 0. Since sin z
becomes the usual sine function in calculus when z is real, we know that the real
numbers z = nx (n =0, 1, £2, .. .) are all zeros of sin z. To show that there are no
other zeros, we assume that sin z = 0 and note how it follows from equation (15) that

sin? x + sinh? y =0.
Thus
sinx=0 and sinhy=0.
Evidently, then, x =nmr (n =0, 1, 2, . ..) and y = 0; that is,
(17 sinz=0 ifandonlyif z=nx (n=0,x1,£2,...).

) T
COS 7 = — sm(z - —),
2

according to the second of identities (9),

Since

(18) cosz=0 if and only if z=g~+m(n=0,i1,ﬂ,,..).

So, as was the case with sin z, the zeros of cos z are all real.
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The other four trigonometric functions are defined in terms of the sine and cosine
functions by the usual relations:

sin z cos z
(19) tan 7 = , COt 2= =
COS Z sin z
1 1
(20) secz = , CSCz=—.
COS 2 sin z

Observe that the quotients tan 7 and sec z are analytic everywhere except at the
singularities (Sec. 23)

z:§+n3‘r (n=0,+1,42,...),

which are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros
of sin z, namely

7=nm (n =0, 41, +2, .. ).

By differentiating the right-hand sides of equations (19) and (20), we obtain the
expected differentiation formulas

d
21 --—-tanz;seczz, — cotz = wcsczz,
dz dz
d d
(22) Ewsecz=secztanz, d—csczm—csc.zcotz.
Z Z

The periodicity of each of the trigonometric functions defined by equations (19) and
(20) follows readily from equations (13) and (14). For example,

(23) tan(z + ) = tan z.

Mapping properties of the transformation w = sin z are especially important in
the applications later on. A reader who wishes at this time to learn some of those
properties is sufficiently prepared to read Sec. 89 (Chap. 8), where they are discussed.

EXERCISES

1. Give details in the derivation of expressions (2), Sec. 33, for the derivatives of sin z and
cos z.

2. Show that Euler’s formula (Sec. 6) continues to hold when 6 is replaced by z:

e =cosz+isinz.

Suggestion: To verify this, start with the right-hand side.

3. In Sec. 33, interchange z; and z, in equation (4) and then add corresponding sides of the
resulting equation and equation (4) to derive expression (5) for sin(z; + z3).
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4.

10.

11.

12.

13.

14.

15.
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According to equation {3} in Sec. 33,

sin{z + z,) = sin 7 ¢0S 75 + €Os 2 8in 5.
By differentiating each side here with respect to z and then setting z = z,, derive expres-
sion (6) for cos(z| + z,) in that section.

Verify identity (7) in Sec. 33 using
(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 26 and the fact that the entire function

f(z)zsin22+c0522— 1

has zero values along the x axis.

Show how each of the trigonometric identities (8) and (9) in Sec. 33 follows from one
of the identities (5) and (6) in that section.

Use identity (7) in Sec. 33 to show that
(@) 1+ tan? z = sec? z; (b) 1 4 cot? 7 =csc? z.

Establish differentiation formulas (21) and (22) in Sec. 33.

In Sec. 33, use expressions (11) and (12) to derive expressions (15) and (16) for |sin z|2
and |cos z/2.

Suggestion: Recall the identities sin® x + cos?

x = 1and cosh? y —sinh” y = 1.

Point out how it follows from expressions (15) and (16) in Sec. 33 for |sin 2 12 and |cos z|?
that

(@) |sin z| > [sinx|; (&) [cos z] > |cos x|.

With the aid of expressions (15) and (16) in Sec. 33 for |sin z|? and |cos z|%, show that
(a) |sinh y| < |sin z| < cosh y; (b) |sinh y} < |cos z| < cosh y.

(a) Use definitions (1), Sec. 33, of sin 7z and cos z to show that
2sin(zy + zp) sin(zy — z3) = cos 2z, — cos 27;.

(b) With the aid of the identity obtained in part (a), show that if cos z; = c0s z», then at
least one of the numbers z; + 75 and z; — z4 18 an integral multiple of 2.

Use the Cauchy—Riemann equations and the theorem in Sec. 20 to show that neither sin 7
nor cos z is an analytic function of z anywhere.

Use the reflection principle (Sec. 27} to show that, for all z,

(a) sin z = Sin Z; (b) COS 7 =COS Z.

With the aid of expressions (11) and (12) in Sec. 33, give direct verifications of the
relations obtained in Exercise 14.
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16. Show that
(@) cos(iz) =cos(iz) forallz;
(b) sin(iz) =sin(iz) ifandonlyif z=nmxi (n=0,=x1,£2,...).

17. Find all roots of the equation sin z = cosh 4 by equating the real parts and the imaginary
parts of sin z and cosh 4.
Ans. (g- + 2mz') +4i (n=0,%1,4£2,..)).

18. Find all roots of the equation cos z = 2.
Ans. 2nw +icosh 12, 0r2nr +iIn(2+ v3) (n=0, £1, £2,...).

34. HYPERBOLIC FUNCTIONS

The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as
they are with a real variable; that is,

et — et e+ et
1) sinhz=————_, coshz=———.
( 2 2

Since % and ™% are entire, it follows from definitions (1) that sinh z and cosh z are
entire. Furthermore,

d d .
(2) — sinh z =coshz, — cosh z=sinh z.
dz dz

Because of the way in which the exponential function appears in definitions (1)
and in the definitions (Sec. 33) :

) etz . e—'IZ eEZ + e“lZ
sing=————, ¢€0§7= ———
21 2

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those
trigonometric functions:

3) —i sinh(iz) =sinz, cosh(iz) =cos z,
4) —i sin(iz) =sinhz, cos(iz) =coshz.

Some of the most frequently used identities involving hyperbolic sine and cosine
functions are

(5) sinh(—z) = —sinh z, cosh{—z) =cosh z,
(6) cosh? z — sinh? z = 1,
(7) sinh(zy + z,) = sinh z; cosh z; + cosh z; sinh z,

(8) cosh(z; + z9) = cosh z; cosh z, + sinh z; sinh z5
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and

(9) sinh z = sinh x cos y + i cosh x sin y,
(10) cosh z = cosh x cos y + i sinh x sin y,
(11) |sinh zlzzsinhz X +sin2y,
(12) |cosh zl‘2 — sinh” x + cos? Y,

where 7 = x + iy. While these identities follow directly from definitions (1), they
are often more easily obtained from related trigonometric identities, with the aid of
relations (3) and (4).

EXAMPLE. To illustrate the method of proof just suggested, let us verify identity
(11). According to the first of relations (4), [sinh 2|2 = |sin(iz)|%. That is,

(13) Isinh z|2 = [sin(—y + ix)|%,
where z = x + iy. But from equation (15), Sec. 33, we know that
Isin(x 4 iy)|* = sin® x + sinh? y;

and this enables us to write equation (13) in the desired form (11).

In view of the periodicity of sin z and cos z, it follows immediately from relations
(4) that sinh z and cosh z are periodic with period 2mri. Relations (4) also reveal that

(14) sinhz=0 ifandonlyif z=nmi(n=0,+1,42,..)

and
(15) coshz=0 ifandonlyif z= (% + mr)i (n=0, £1, £2, ...}

The hyperbolic tangent of z is defined by the equation

sinh z

(16) tanh z =
cosh z

and is analytic in every domain in which cosh z # 0. The functions coth z, sech z, and
csch 7 are the reciprocals of tanh z, cosh z, and sinh z, respectively. Itis straightforward

to verify the following differentiation formulas, which are the same as those established
in calculus for the corresponding functions of a real variable:

d 7 d
(17 — tanh z = sech” z, 2 cothz=—csch? z,

7 =
& A

d d
(18) E— sech z = — sech z tanh z, 7 csch z = — ¢sch z coth z.
Z ¥4
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EXERCISES

1.
2.

Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 34.

Prove that sinh 2z = 2 sinh z cosh z by starting with
(@) definitions (1), Sec. 34, of sinh z and cosh z;
(b) the identity sin 2z = 2 sin z cos z (Sec. 33) and using relations (3) in Sec. 34.

Show how identities (6) and (8) in Sec. 34 follow from identities (7) and (6), respectively,
in Sec. 33.

. Write sinh z = sinh(x + iy) and cosh z = cosh(x 4 iy), and then show how expressions

(9) and (10) in Sec. 34 follow from identities (7) and (8), respectively, in that section.

. Verify expression (12), Sec. 34, for |cosh z|2.

6. Show that [sinh x| < |cosh z| < cosh x by using

10.
11.

12.
13.

14.

13.

(@) identity (12), Sec. 34;
(b) the inequalities |sinh y| < |cos z| < cosh y, obtained in Exercise 11(b), Sec. 33.

Show that
(@) sinh(z + mi) = — sinh z; (b) cosh(z + mi) = —cosh z;
(¢) tanh(z + 7ri) = tanh z.

Give details showing that the zeros of sinh z and cosh z are as in statements (14) and (13)
in Sec. 34.

Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic
tangent function.

Derive differentiation formulas (17), Sec. 34.

Use the reflection principle (Sec. 27) to show that, for all z,

(@) sinh z = sinh Z; (b) cosh z = cosh Z.

Use the results in Exercise 11 to show that tanh z = tanh 7 at points where cosh z # 0.

By accepting that the stated identity is valid when z is replaced by the real variable x and
using the lemma in Sec. 26, venify that

(@) cosh? 7z — sinh? 7 == 1; (b) sinh z + cosh z = &*.
[Compare Exercise 5(b), Sec. 33.]

Why is the function sinh(e®) entire? Write its real part as a function of x and y, and state
why that function must be harmonic everywhere.

By using one of the identities (9) and (10} in Sec. 34 and then proceeding as in Exercise
17, Sec. 33, find all roots of the equation
(@)sinhz =1i; (b)coshz:%.

Ans. (@) (2n + —21-) i (n=0,+Ll, £2,...);

(b) (2n + %) i (n=0,=+1, £2,...).
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16. Find all roots of the equation cosh z = —2. (Compare this exercise with Exercise 18,
Sec. 33.)

Ans. £ In2 + 3+ Cn+ Dri (n=0, £1, +2, .. ).

35. INVERSE TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of
logarithms.

In order to define the inverse sine function sin™!

Z, We write

w = sin~! z when z=sinw.

! z when

That is, w = sin™
iw - iw

2i

&3

If we put this equation in the form

(™) = 2iz(e') — 1=0,
which is quadratic in e'* and solve for €' [see Exercise 8(a), Sec. 9], we find that
(1 ¢V =iz+(1-2)"2

where (1 — z%)1/2 js, of course, a double-valued function of z. Taking logarithms of
each side of equation (1) and recalling that w = sin~! z, we arrive at the expression

(2) sin~lz = —ilogliz + (1 - 2H)"2).

The following example illustrates the fact that sin~!

with infinitely many values at each point z.

z is a multiple-valued function,

EXAMPLE. Expression (2) tells us that
sin~'(=i) = —i log(! £ v2).
But
log(1++v2)=In(1 + V2)+ 2nni (1 =0, +1,+2,...)
and

log(l—v2) =In(~2— D+ Q2n+Dri  (1=0,%1,+2,...).
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Since

|

= —1n(1 4+ 2,
+ 42 ( |

ln(v2=1)=In 1

then, the numbers
(D" In(1 ++v2) +nwi  (n=0,£1,4£2,..)
constitute the set of values of log(1 & +/2). Thus, in rectangular form,

sin"i =) =nx +i(—=D" T In(1++2) (n=0,+1,£2,..).

One can apply the technique used to derive expression (2) for sin™! z to show that
4% - )

f

(3) | COS_l 7= —-fklog[z e 1(1 . 12)1/2] .:.5
and that
(4) [an—EZ:E—logl._{_z‘

2 i —z

The functions cos™! z and tan~! 7 are also multiple-valued. When specific branches of
the square root and logarithmic functions are used, all three inverse functions become
single-valued and analytic because they are then compositions of analytic functions.

The derivatives of these three functions are readily obtained from the above
expressions. The derivatives of the first two depend on the values chosen for the square
roots:

d . _ 1

®) P e YTk
d -1 —1

(6) Zi_z cos  z= e 22)1/2.

The derivative of the last one,

d tan~! !
— Z —_— .
dz 1422

(7

does not, however, depend on the manner in which the function is made single-valued.
Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

(8) sinh™! z =log[z + (2 + D'/?],

9) cosh™! z =log[z + (z* — D'?],
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and
I+
lm

&

(10) tanh~ 'z = log

S -
&

CHAP. 3

Finally, we remark that common alternative notation for all of these inverse

functions is arcsin z, etc.

EXERCISES
1. Find all the values of

(@ tan~'(2i):  (B)ytan~'(1+1i);  (c)cosh™l(=1);  (d)tanh™!0.

1 )
Ans. (a) (n + ;)—) T+ % n3(n=0,+1, £2....);

it

(d)nmi (n=0. %1, £2, .. ).
2. Solve the eqguation sin z = 2 for z by
(a) equating real parts and imaginary parts in that equation;

(b) using expression (2), Sec. 35, for sin™! z.

Ans. (2}2 -+ %) 7 4iln2+ V3 (n=0, =1, £2,...

3. Solve the equation cos z = +/2 for z.

4. Derive formula (5), Sec. 35, for the derivative of sin~! z.

5. Derive expression (4), Sec. 35, for tan"! z.
6. Derive formula (7), Sec. 35, for the derivative of tan™' z.

7. Derive expression (9), Sec. 35, for cosh™!z.



CHAPTER

4

INTEGRALS

Integrals are extremely important in the study of functions of a complex variable. The
theory of integration, to be developed in this chapter, is noted for its mathematical
elegance. The theorems are generally concise and powerful, and most of the proofs
are simple.

36. DERIVATIVES OF FUNCTIONS w()

In order to introduce integrals of f(z) in a fairly simple way, we need to first consider
derivatives of complex-valued functions w of a real variable 1. We write

(D w) =u(t) +iv(),

where the functions u# and v are real-valued functions of ¢. The derivative w'(t), or
d[w(t)]/dt, of the function (1) at a point ¢ is defined as

(2) w'(1) = u'(t) +iv'(@),

provided each of the derivatives u’ and v’ exists at ¢.
From definition (2), it follows that, for every complex constant zg = xg + Y,

d . : :
g?[zow(f)] = [(xg + iyg) (u + iv)] = [(xou — yov) + i (you + xgv)
= (xgut ~ yov) +i(you + xv) = (xgu’ — yov') + i (You' + xgv’).

111
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But
(xou’ — you') + i (you' + xgv") = (xg + iyp) (' + iv') = zqw' (1),
and so
3) 9 Lzgw(t)] = 2w (1)
dr TN R0 '
Another expected rule that we shall often use is
d

4 ——e"’ﬂt = 7 e“:()t’
4 7 0

where 7y = xg + iyg. To verify this, we write

€% = " M0 = g™ cog yor + 1™ sin yyt

and refer to definition (2) to see that

— ™ = (¥ cos yot) + i (€™ sin ygt).
i Yo Yo

Familiar rules from calculus and some simple algebra then lead us to the expression

d , ol s
dmé’z“’ = (xp + iy)(e™ cos yof + ie™™ sin yot),
t

or

{%ez‘)‘ = (xg + iyy)e™ e,
This is, of course, the same as equation (4).

Various other rules learned in calculus, such as the ones for differentiating sums
and products, apply just as they do for real-valued functions of t. As was the case
with property (3) and formula (4), verifications may be based on corresponding rules
in calculus. It should be pointed out, however, that not every rule for derivatives in
calculus carries over to functions of type (1). The following example iliustrates this.

EXAMPLE. Suppose that w(r) is continuous on an interval a < ¢ < b; that is, its
component functions u(z) and v(z) are continuous there. Even if w'(z) exists when
a < { < b, the mean value theorem for derivatives no longer applies. To be precise, it
is not necessarily true that there is a number ¢ in the interval a < t < b such that

_ w(b) —wla)

wAe) b—a

To see this, consider the function w(r) = €'’ on the interval 0 <t < 27. When that
function is used, |w’(#)| = |ie'!| = 1; and this means that the derivative w'(z) is never
zero, while w(27) — w(0) = 0.
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37. DEFINITE INTEGRALS OF FUNCTIONS w(¢)

When w(t) is a complex-valued function of a real variable ¢ and is written
(1 w(t) =ut) +iv(@),

where u and v are real-valued, the definite integral of w(¢) over anintervala <t <b
is defined as

b b b
(2) f w(t) dtmf u(t) dr-l-i[ v(t) dt

when the individual integrals on the right exist. Thus

b b b b
(3) Re[ w(l) dt“—:f Re[w(r)]dt and Imf w(t) dtxf Im[w(t)] dt.

EXAMPLE 1. For an illustration of definition (2),

1 1 1
f(1+it)2dt:/(l—r2)dt+if ztdzxg--i-i.
0 0 0 3

Improper integrals of w(¢) over unbounded intervals are defined in a similar way.

The existence of the integrals of ¥ and v in definition (2) is ensured if those
functions are piecewise continuous on the interval a <t < b. Such a function is
continuous everywhere in the stated interval except possibly for a finite number of
points where, although discontinuous, it has one-sided limits. Of course, only the right-
hand limit is required at a; and only the left-hand limit is required at b. When both «
and v are piecewise continuous, the function w is said to have that property.

Anticipated rules for integrating a complex constant times a function w(¢), for
integrating sums of such functions, and for interchanging limits of integration are all
valid. Those rules, as well as the property

b c b
[w(t)a'tﬂf w(:)dr+[ w(t) dt,

are easy to verify by recalling corresponding results in calculus.

The fundamental theorem of calculus, involving antiderivatives, can, moreover,
be extended so as to apply to integrals of the type (2). To be specific, suppose that the
functions

w()=ul@)+iv() and WEH=U@)+iV()
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are continuous on the interval a <t <b. If W () = w(t) when a <t <b, then
U'(r) =u(t) and V'(¢) = v(¢). Hence, in view of definition (2),

b b b
[ w(t)dt.—_U(t)] +iV(r)}

a a

=[UB)+iV®)]—[U)+iVia}l.
That is,
b

b
4) f w(t)dt = W(b) — W(a)= W(t)] :

o

EXAMPLE 2. Since (¢"') =ie'! (see Sec. 36),

jr/4 ‘ . :T!“/4 '
[ e'! dt:—ie”} — /Y
0 0

(o))

We finish here with an important property of moduli of integrals. Namely,

b
[ w(t) dit

This inequality clearly holds when the value of the integral on the left is zero, in
particular when a = b. Thus, in the verification, we may assume that its value is a
nonzero complex number. If ry is the modulus and 8, is an argument of that constant,

then
b »
f wdt = roe‘gﬂ.
7

b
(5) sf w@)di (@ <b).

Solving for r,, we write

b
(6) ro m] e owdr.
a

Now the left-hand side of this equation is a real number, and so the right-hand side is
too. Thus, using the fact that the real part of a real number is the number itself and
referring to the first of properties (3), we see that the right-hand side of equation (6)
can be rewritten in the following way:

b b b ,
[ e "%y dt = Re [ e Py dt = f Re(e"Pw) dr.
a a a
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Equation (6) then takes the form

b
(7) ro= f Re(e™'%w) dt.

But
Re(e 'w) < |e *ow| = |e™*%||w| = |w|;

and so, according to equation (7),

b
7o 5[ |w| dt.
&

Because ry is, in fact, the left-hand side of inequality (5) when the value of the integral
there is nonzero, the verification is now complete.
With only minor modifications, the above discussion yields inequalities such as

[m w(t) dt s[m W) dt,

provided both improper integrals exist,

(8)

EXERCISES
1. Use the corresponding rules in calculus to establish the following rules when
w@)=u(t) +iv()
is a complex-valued function of a real variable ¢ and w’(¢) exists:

(@) -;w(mr) = —w'(—1), where w'(—) denotes the derivative of w(z) with respect to
t
t, evaluated at —¢;

®) ?‘fw[w(r)]2 — 20w (0).
I

2. Evaluate the following integrals:

2 /7 2 /6 o0
(a)f (; — f) dt: (b) f el dt; (C)[ e ¢ dt (Rez>0).
1 0 0

Ans. (a) —% —ilnd, (B +

b

[ 1
- (¢) —.
2 (c) .
3. Show that if m and n are integers,

2r _
f etmﬁemmﬁ 46 = [ 0 when m #n,
0 27 whenm =n.

4. According to definition (2), Sec. 37, of integrals of complex-valued functions of a real

variable,
ki1 . Fid Fi e
f eUTD% g x xf e‘cosxdx+1i f e*sinx dx.
0 0 0
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Evaluate the two integrals on the right here by evaluating the single integral on the left
and then using the real and imaginary parts of the value found.

Ans. —(1+e™)/2, (1+¢e7)/2.

5. Let w(#) be a continuous complex-valued function of ¢ defined onan interval a <t < b,
By considering the special case w(r) = ¢'’ on the interval 0 <t < 2, show that it is not
always true that there is a number ¢ in the interval @ < 1 < b such that

b
f w(t) dt = w(cHb — a).

Thus show that the mean value theorem for definite integrals in calculus does not apply
to such functions. (Compare the example in Sec. 36.)

6. Let w(r) = u(r) + iv(r) denote a continuous complex-valued function defined on an
interval —a <t <a,

(a) Supposethat w(t) is even; thatis, w(—¢) = w(t) foreach point ¢ in the given interval.

Show that
a a
[ w(r)dr=2f w(t) dt.
—a 0

(#) Show that if w{r) is an odd function, one where w({—t) = —w(t) for each point ¢ in

the interval, then
a
] w(t)dt =0.
—a

Suggestion: In each part of this exercise, use the corresponding property of
integrals of real-valued functions of ¢, which is graphically evident.

7. Apply inequality (5), Sec. 37, to show that for all values of x in the interval —1 <x < 1,
the functions®

T
Pn(x)m_mi[ (x +iv1—x2cos0)" do (n=0,12,...)
T J0O

satisfy the inequality | P,(x)] < L

38. CONTOURS

Integrals of complex-valued functions of a complex variable are defined on curves in
the complex plane, rather than on just intervals of the real line. Classes of curves that
are adequate for the study of such integrals are introduced in this section,

*These functions are actually polynomials in x. They are known as Legendre polynomials and are
important in applied mathematics. See, for example, Chap. 4 of the book by Lebedev that is listed
in Appendix 1.



SEC. 38 Contours 117

A set of points z = (x, y) in the complex plane is said to be an arc if

(1) x=x(), y=y@) (a <t <b),

where x(¢) and y(¢) are continuous functions of the real parameter ¢. This definition
establishes a continuous mapping of the interval @ <t < b into the xy, or z, plane; and
the image points are ordered according to increasing values of ¢. It i1s convenient to
describe the points of C by means of the equation -

(2) z=12z(t) (a <t <b),
where
3) z(1) = x(1) + iy(1).

The arc C is a simple arc, or a Jordan arc,” if it does not cross itself; that is, C is
simple if z(¢)) # z(t,) when t; # t,. When the arc C is simple except for the fact that
z(b) = z(a), we say that C is a simple closed curve, or a Jordan curve.

The geometric nature of a particular arc often suggests different notation for the
parameter ¢ in equation (2). This is, in fact, the case in the examples below.

EXAMPLE 1. The polygonal line (Sec. 10) defined by means of the equations

4)

7 — x+ix when0=<x <1,
T lx+i whenl=<x<2

and consisting of a line segment from 0 to 1+ i followed by one from 1+ i to 2 4
(Fig. 36) is a simple arc.

1+i 2+1i

FIGURE 36

EXAMPLE 2. The unit circle
(5) z=€?  (0<06<2m)

* Named for C. Jordan (1838-1922), pronounced jor-don’'.
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about the origin is a simple closed curve, oriented in the counterclockwise direction.
So is the circle

6) z=2+ R’ (0<0<2m),

centered at the point z and with radius R (see Sec. 6).
The same set of points can make up different arcs.

EXAMPLE 3. The arc
(7) t=e? (0=6<2m)
is not the same as the arc described by equation (5). The set of points is the same, but

now the circle is traversed in the clockwise direction.

EXAMPLE 4. The points on the arc
(8) z=e"% (0 <6 <2m)

are the same as those making up the arcs (5) and (7). The arc here differs, however, from
each of those arcs since the circle is traversed twice in the counterclockwise direction.

The parametric representation used for any given arc C is, of course, not unique.
It is, in fact, possible to change the interval over which the parameter ranges to any
other interval. To be specific, suppose that

) t=¢(t) (a=t=p),

where ¢ is a real-valued function mapping an interval ¢ < t < 8 onto the interval
a <t < b in representation (2). (See Fig. 37.) We assume that ¢ is continuous with a
continuous derivative. We also assume that ¢’(z) > 0 for each t; this ensures that ¢
increases with 7. Representation (2) is then transformed by equation (9) into

(10) 7= Z(t) (@ <1 <B),

|
|
|
i
i
| 3
E i FIGURE 37
of @ p To1=¢(
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where

(11) Z(t) =z[¢(v)].

- This is illustrated in Exercise 3, where a specific function ¢ (z) is found.
Suppose now that the components x'(¢) and y'(¢) of the derivative (Sec. 36)

(12) Z(t) =x'@t) + iy ()

of the function (3), used to represent C, are continuous on the entire intervala <t < b.
The arc is then called a differentiable arc, and the real-valued function

12O =V [XOF + [y OP

is integrable over the interval a <t < b.In fact, according to the definition of arc length
in calculus, the length of C is the number

b
(13) Lz[ 1Z'(¢)] dt.

The value of L is invariant under certain changes in the representation for C that
is used, as one would expect. More precisely, with the change of variable indicated in
equation (9), expression (13) takes the form [see Exercise 1()]

B
L= f (6 ()16 (z) dr.

So, if representation (10) is used for C, the derivative (Exercise 4)

(14) | Z'(ty =Z'[¢(D)]p'(v)

enables us to write expression (13) as

B
L= f 1Z'(v)| d.

Thus the same length of C would be obtained if representation (10) were to be used.
If equation (2) represents a differentiable arc and if z’(¢) # 0 anywhere in the
interval a <t < b, then the unit tangent vector

_ 2@
12'(0)]
is well defined for all ¢ in that open interval, with angle of inclination arg z'(t).

Also, when T turns, it does so continuously as the parameter ¢ varies over the entire
interval a <t < b. This expression for T is the one learned in calculus when z(#) is
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interpreted as a radius vector. Such an arc is said to be simooth. In referring to a smooth
arc z = z(t)(a <t < b), then, we agree that the derivative z'(¢) is continuous on the
closed interval a <t < b and nonzero on the open interval a < ¢ < b.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(z) is
continuous, whereas its derivative z'(¢) is piecewise continuous. The polygonal line
(4) is, for example, a contour. When only the initial and final values of z(¢) are the
same, a contour C 1s called a simple closed contour. Examples are the circles (5) and
(6), as well as the boundary of a triangle or a rectangle taken in a specific direction.
The length of a contour or a simple closed contour is the sum of the lengths of the
smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are boundary
points of two distinct domains, one of which is the interior of C and is bounded. The
other, which is the exterior of C, is unbounded. It will be convenient to accept this
statement, known as the Jordan curve theorem, as geometrically evident; the proof is
not easy.*

EXERCISES

1. Show that if w(z) = u(¢) 4+ iv(?) is continuous on an interval a < ¢ < b, then

—a b
(@) f w(wt)dfu[ w(t)dr;
—-b a

b B :
(&) [ w(t) dt = f wle(1)lp'(t) dt, where ¢(7) is the function in equation (9),

Sec. 38.
Suggestion: These identities can be obtained by noting that they are valid for
real-valued functions of ¢.

2. Let C denote the right-hand half of the circle |z| = 2, in the counterclockwise direction,
and note that two parametric representations for C are

- T i1
7=12(0) =2¢"° (mmﬁﬁﬁm)
(0) =2e 5 5

and

z=Z(Y)=v4—-yr*+iy (-2=<y=<2).

* See pp. 115-116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in
Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol.
1 of the work by Hille, also cited in Appendix 1.
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Verify that Z(y) = z[¢(y)], where

¢(y) = arctan 7 (m-:g» < arctant < %)

V4 — y?

Also, show that this function ¢ has a positive derivative, as required in the conditions
following equation (9), Sec. 38.

Derive the equation of the line through the points (o, a) and (8, b) inthe T plane, shown
in Fig. 37. Then use it to find the linear function ¢(t) which can be used in equation (9),
Sec. 38, to transform representation (2) in that section into representation (10) there.
b—a af — bo

T+ .
p—u p—o
Verify expression (14), Sec. 38, for the derivative of Z(t) = z[¢(7)].
Suggestion: Write Z(t) = x[¢(t)] + iy[¢(r)] and apply the chain rule for real-
valued functions of a real variable.

Ans.¢(t) =

Suppose that a function f(z) is analytic at a point zy == z(#;) lying on a smooth arc
z =z{(t) (a <t < b). Show that if w(z) = f[z(z)], then

w'(t) = f'lz(H)e (1)

when s = fp.
Suggestion: Write f(z) =u(x, v) +iv(x, y)and z(¢t) = x(¢) + iy(¥), so that

w(t) =ulx(®), yOl+ iv[x(@), y@)].
Then apply the chain rule in calculus for functions of two real variables to write
w' = (ux’ +uyy') +i(vx’ +vyy'),

and use the Cauchy-Riemann equations.

Let y(x) be a real-valued function defined on the interval 0 < x < 1 by means of the
equations

y(x) = x3 sin(g—;-) when( <x <1,

0 when x = 0.

(a) Show that the equation
Z=x+iy(x) O<x=<1

represents an arc C that intersects the real axis atthe pointsz =1/n (n=1,2,...)
and z =0, as shown in Fig. 38.

(h) Verify that the arc C in part (a) is, in fact, a smooth arc.
Suggestion: To establish the continuity of y(x) at x = 0, observe that

) b o
x3 sin ———) < x3
X

0=
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when x > 0. A similar remark applies in finding y'(0) and showing that y'(x) is
continuous at x = 0.

FIGURE 38

39. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex variable z.
Such an integral is defined in terms of the values f(z) along a given contour C,
extending from a point z = z; to a point z = z, in the complex plane. It is, therefore,
a line integral; and its value depends, in general, on the contour C as well as on the
function f. It is written

/f(z)dz or [mzf(z)dz,
C 71

the latter notation often being used when the value of the integral 1s independent of
the choice of the contour taken between two fixed end points. While the integral may
be defined directly as the limit of a sum, we choose to define it in terms of a definite
integral of the type introduced in Sec. 37.

Suppose that the equation

(D z=12z(t) (@a<t<b)

represents a contour C, extending from a point z; = z(a) to a point z; = z(b). Let the
function f(z) be piecewise continuous on C; thatis, f[z(f)]1s piecewise continuous
on the interval a <t < b. We define the line integral, or contour integral, of f along
C as follows:

b
(2) fc f@dz= f flz(OIZ' () dt.

Note that, since C is a contour, z'(¢) is also piecewise continuous on the interval
a <t < b; and so the existence of integral (2} is ensured.

The value of a contour integral is invariant under a change in the representation of
its contour when the change is of the type (11), Sec. 38. This can be seen by following
the same general procedure that was used in Sec. 38 to show the invariance of arc
length.
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It follows immediately from definition (2) and properties of integrals of complex-
valued functions w(#) mentioned in Sec. 37 that

3) f%ﬂ@&m@fjﬁwa
C C

for any complex constant zg, and

4) f[f(z)-!—g(z)] dzm[ f(z)dz+fg(z)dz.
c c c

Associated with the contour C used in integral (2) is the contour —C, consisting of
the same set of points but with the order reversed so that the new contour extends from
the point z, to the point z; (Fig. 39). The contour —C has parametric representation

z=2z(—1) (—b <t £ —a);

and so, in view of Exercise 1(a), Sec. 37,

—d

\ flz(=01Z'(=1) dt,

f f(@)dz= i flz(=0] iZ(Mt) dt = —
-C —b dt

where z'(—¢) denotes the derivative of z(¢) with respect to ¢, evaluated at —¢t. Making
the substitution T = —¢ in this last integral and referring to Exercise 1(a), Sec. 38, we
obtain the expression

b
fc fz)dz=— [ flz(0)Z () dr,

which is the same as

(s) f ﬂ@ﬁmmffsz
—C C
y
c
%)
_C
Zi
0 *  FIGURE 39

Consider now a path C, with representation (1), that consists of a contour C; from
z1 to z, followed by a contour C, from z, to z3, the initial point of C; being the final
point of C; (Fig. 40). There is a value ¢ of f, where a < ¢ < b, such that z(c) = z,.
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FIGURE 40
Y X C=C+C,

Consequently, C, is represented by

z=2z(1) (a=r=0)
and C, 1s represented by

z=2(1) (c <t D).

Also, by a rule for integrals of functions w(¢) that was noted in Sec. 37,

b c b
[ flz®)Z' (1) df:f flzOKE' @) dt—l—/ flz(O)Z' () dt.

Evidently, then,
©) f fdi=| @t [ 1o
C Cy Cs

Sometimes the contour C is called the sum of its legs C; and C, and is denoted by
C; + C,. The sum of two contours C; and —C; is well defined when C| and C, have
the same final points, and it is written Cy — C,.

Definite integrals in calculus can be interpreted as areas, and they have other in-
terpretations as well. Except in special cases, no corresponding helpful interpretation,
geometric or physical, is available for integrals in the complex plane.

40. EXAMPLES

The purpose of this section is to provide examples of the definition in Sec. 39 of
contour integrals and to illustrate various properties that were mentioned there. We
defer development of the concept of antiderivatives of the integrands f(z) in contour
integrals until Sec. 42.

EXAMPLE 1. Let us find the value of the integral

(1) zzf Zdz
C
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FIGURE 41

when C is the right-hand half

z = 2¢'° (WESQ££)
2 2

of the circle |z| = 2, from z = —2i to z = 2i (Fig. 41). According to definition (2),
Sec. 39,
T2 ___ )
I= 2619 (2'%Y do;
—n/2

and, since

this means that
n/2 . . /2
[ = ] 2¢192i¢'® dO = 4i f do = 4xi.
- /2 ~m /2

Note that when a point z is on the circle |z| = 2, it follows that zz = 4, or 7 = 4/z.
Hence the result I = 4xi can also be written

dz .
— wm Tl

(2)

C Z

EXAMPLE 2. In this example, we first let Cj denote the contour OAB shown in Fig.
42 and evaluate the integral

3) f(z)dz= f(@dz+ f(z)dz,
C, 0OA AB

where
f@=y—x—i%x? (z=x+iy).

The leg OA may be represented parametrically as z =0+ iy (0 <y < 1); and since
x = 0 at points on that leg, the values of f there vary with the parameter y according
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*  FIGURE 42

to the equation f(z) =y (0 < y < 1). Consequently,

| 1
f(z)dz=f yidy:if ydy = —.
OA 0 0 2

Ontheleg AB,z=x+4+i (0 <x <1); and so

e,

1 1 1
f(z)dz:-"f(lmx—i?yx?‘)vldx:/(lmx)dxn?u'/xzdx=l—i.
0 0 0 2

AB

In view of equation (3), we now see that

@) f(2) dz = Lg---f-

Cy

If C, denotes the segment OB of the line y = x, with parametric representation
z=x+ix(0<x <],

1

5) £(2) dz = f

1
—i3x2(1 4+ i) dx =3(1—i)[ dx=1-—1.
C, 0 0

Evidently, then, the integrals of f(z) along the two paths C; and C, have different
values even though those paths have the same initial and the same final points.

Observe how it follows that the integral of f(z) over the simple closed contour
OABQO, or C — (5, has the nonzero value

B
fdz— | fydz="T1
C o 2

EXAMPLE 3. We begin here by letting C denote an arbitrary smooth arc
z=2z(1) (@<r=b)

from a fixed point 2, to a fixed point z, (Fig. 43). In order to evaluate the integral

b
I:/ zdz::f () () dt,
C a
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\_@zz
z

‘ C

0 ¥ FIGURE 43

we note that, according to Exercise 1(b), Sec. 37,

d [z(0)

R = z(t)z (t).

Thus

I =

{z(r))z]b _ 2@ - z@)?
2 1, 2 '

But z(b) =z, and z(a) =z;; and so [ = (z — zl)/Z Inasmuch as the value of [/
depends only on the end points of C, and is otherwise independent of the arc that
is taken, we may write

2 zzmzz
(6) fzdz: 2 "l
3]

2

(Compare Example 2, where the value of an integral from one fixed point to another
depended on the path that was taken.)

| Expression (6) is also valid when C is a contour that is not necessarily smooth

since a contour consists of a finite number of smootharcs C, (k= 1, 2, . .., n), joined

end to end. More precisely, suppose that each C; extends from z; to 7. Then

2 2 2 2

z -z =z
- dz = [ gy = et "% G T O
(7) [z 2 z2dz = > 5

z1 being the initial point of C and z,,; its final point.

It follows from expression (7) that the integral of the function f(z) = z around
each closed contour in the plane has value zero. (Once again, compare Example 2,
where the value of the integral of a given function around a certain closed path was not
zero.) The question of predicting when an integral around a closed contour has value
zero will be discussed in Secs. 42, 44, and 46.

EXAMPLE 4. Let C denote the semicircular path

z=3¢"¢  (0<6<m)
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— . - — —

*  FIGURE 44

from the point z = 3 to the point z = —3 (Fig. 44). Although the branch (Sec. 30)

(8) f()=+re®?  (r>0,0<8<27)

2

of the multiple-valued function z'/# is not defined at the initial point z = 3 of the contour

C, the integral

(9) I =f 72 dz
C

of that branch nevertheless exists. For the integrand is piecewise continuous on C. To
see that this is so, we observe that when z(6) = 3¢‘?, the right-hand limits of the real
and imaginary components of the function

flz0)] = V3¢9 = /3 cos “95 +i+/3sin % 0<0<n)

at9 = 0 are /3 and 0, respectively. Hence f[z(6)]is continuous on the closed interval
0 < 6 < 7 when its value at & = 0 is defined as /3. Consequently,

s ‘ b 4 x
[ = f V36'9723i 619 do = 34/3i f ¢¥12 dg-
0 0
and

4 2 7 2

f e/ 4o = —€i39/2:] =—=(1+1).
0 3I 0 3£

Finally, then,

I=-2/3(1+1).

EXERCISES

For the functions f and contours C in Exercises 1 through 6, use parametric
representations for C, or legs of C, to evaluate

f (@) dz.
C
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1. f&)=(z+2)/zand C is
(a) the semicircle z =2¢" (0 <8 <m);
(b) the semicircle z = 269 (<6 <27);
(¢) the circle z =2¢'? (0 <6 <2n).
Ans. (@) —4 +2mi; B4+ 2mi; (c)4mi.
2. f(z) =z — land C is the arc from z = 0 to z = 2 consisting of
(a) the semicircle z =1+ ¢ (m <8 <2n),
(b) the segment 0 < x < 2 of the real axis.
Ans.{(a)0; (b)O0.

3, f(z) = 7 exp(xZ) and C is the boundary of the square with vertices at the points 0, 1,
1+ i, and i, the orientation of C being in the counterclockwise direction.

Ans. 4(e™ — 1.
4. f(z) is defined by the equations

_J 1 wheny <0,
f(z)_'{éiy when y > 0,
and C is the arc from z = —1 — i to z = 1 4 i along the curve y = x3,
Ans. 2 + 3i.

5. f(z) =l and C is an arbitrary contour from any fixed point z; to any fixed point z, in
the plane.

Ans. zy — 2y
6. f(2) is the branch

7 =expl(—1+i)logz]l  (|z| > 0,0 <argz < 2m)

of the indicated power function, and C is the positively oriented unit circle |z| = 1.
Ans. i(1 — e™7),

7. With the aid of the result in Exercise 3, Sec. 37, evaluate the integral

/ 7"z7" dz,
C

where m and » are integers and C is the unit circle |z| = 1, taken counterclockwise.

8. Evaluate the integral / in Example 1, Sec. 40, using this representation for C:

z=4—-y +iy (-2<y=<2).
(See Exercise 2, Sec. 38.)
9. Let C and C; denote the circles

;=R (0<0<2r) and z=1z5+ R (0 <6 <27m),
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respectively. Use these parametric representations to show that
[ r0d=[ fe-wd
c Cy

when f 1s piecewise continuous on C.

10. Let C; denote the circle [z — zg| = R, taken counterclockwise. Use the parametric
representation z = zo + Re'(—m < 8 < ) for C, to derive the following integration

formulas:
| dz .
(@ | ——=2ri;  ®) | 2" 'dz=0 (==%1,£2,..)).
C{)Z - Z() C'Q
11. Use the parametric representation in Exercise 10 for the oriented circle C, there to show
that
a
(z — 50)“_1 dz =i — sin{amn),
Co a

where a is any real number other than zero and where the principal branch of the integrand
and the principal value of R? are taken. [Note how this generalizes Exercise 10(b).]

12. {a) Supposethatafunction f(z) is continuous on a smooth arc C, which has a parametric
representation z = z(t) (a <t < b); that is, f[z(¢}] is continuous on the interval
a <t < b, Show that if ¢(t)(« < t < B) is the function described in Sec. 38, then

b 8
] Flz)' () dr = f flZ@IZ () d,

where Z(t) = z[¢(T)].
(b) Point out how it follows that the identity obtained in part («) remains valid when C
is any contour, not necessarily a smooth one, and f(7) is piecewise continuous on
C. Thus show that the value of the integral of f(z) along C is the same when the
representation z = Z(1) (o < t < f) is used, instead of the original one.
Suggestion: In part (a), use the result in Exercise 1(&), Sec. 38, and then refer
to expression (14) in that section.

41. UPPER BOUNDS FOR MODULI
OF CONTOUR INTEGRALS

When C denotes a contour z = z(t)(a <t < b), we know from definition (2), Sec. 39,
and inequality (5) in Sec. 37 that

f f(2)dz
C

So, for any nonnegative constant M such that the values of f on C satisfy the inequality
f() =M,

[e—

b
< / | Flz@))] |2/(0)] dt.

b
] flz(H1Z (¢) dt

b
ng/ 12’ (1)| dt.

f f@dz
C
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Since the integral on the right here represents the length L of the contour (see Sec. 38),
it follows that the modulus of the value of the integral of f along C does not exceed
ML:

(D) <ML.

/ fz)dz
C

This is, of course, a strict inequality when the values of f on C are such that
f(@)] < M.

Note that since all of the paths of integration to be considered here are contours
and the integrands are piecewise continuous functions defined on those contours, a
number M such as the one appearing in inequality (1) will always exist. This is
because the real-valued function | f[z(#)]] is continuous on the closed bounded interval
a <t < b when f is continuous on C; and such a function always reaches a maximum
value M on that interval.* Hence | f(z)| has a maximum value on C when f is
continuous on it. It now follows immediately that the same is true when f is piecewise
continuous on C.

EXAMPLE 1. Let C be the arc of the circle |z] = 2 from z = 2 to z = 2i that lies in
the first quadrant (Fig. 45). Inequality (1) can be used to show that

(2)

This is done by noting first that if z is a point on C, so that |z| = 2, then

z+4] <|z]+4=06

and
12 -1 =P =-11=17
y
21
C
0 2 %  FIGURE 45

* See, for instance A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 8690, 1983,
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Thus, when z lies on C,

Z+4!_,,, lz+4 _6
B-1 122-1"7

Writing M = 6/7 and observing that L = 7 is the length of C, we may now use
inequality (1) to obtain inequality (2).

EXAMPLE 2. Here Cy is the semicircular path
z=Re’ (0<6<m),

and z!/2 denotes the branch
/2 _ - i0/2 ! 4 37
z ﬂ\/}—e 1>0,—E<9<———-2

of the square root function. (See Fig. 46.) Without actually finding the value of the
integral, one can easily show that

/2
(3) lim f dz =0.
R—00 Jo, 2 4+1

For, when |z = R > 1,

2V/2] = |VRe?| = VR
and
1= - =R - 1.
Consequently, at points on Cpg,
12

22 +1

VR
R?—1

<Mgp where Mp=

FIGURE 46
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Since the length of Cj is the number L = 7 R, it follows from inequality (1) that
172
f ; dz
Cp 27+ 1

nRYR 1/R*  w/vR
R2—1 1/R? 1-(1/R%’

< MpL.

But

MgL =

and it is clear that the term on the far right here tends to zero as R tends to infinity.
Limit (3) is, therefore, established.

EXERCISES

1. Without evaluating the integral, show that

|7
cz2—1

when C is the same arc as the one in Example 1, Sec. 41.

¥
< —
3

2. Let C denote the line segment from z =i to z = 1. By observing that, of all the points
on that line segment, the midpoint is the closest io the origin, show that

f%gw’i
¢ 2

3. Show that if C is the boundary of the triangle with vertices at the points 0, 3i, and —4,
oriented in the counterclockwise direction (sec Fig. 47), then

/(ez —2)dz
C

without evaluating the integral.

< 60.

3i

-4 ol x FIGURE 47
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4. Let Cg denote the upper half of the circle [z| = R (R > 2), taken in the counterclockwise
direction. Show that

f 272 — 1 4| < TR(2R?>+ 1)
cp 2+ 52244 (R2 — 1)(R? —4)

Then, by dividing the numerator and denominator on the right here by R4, show that the
value of the integral tends to zero as R tends to infinity.

5. Let Cp be the circle |z| = R (R > 1), described in the counterclockwise direction. Show

that
L
f szdz < (31‘+lnR)’
Cxp 2 - R

and then use I’Hospital’s rule to show that the value of this integral tends to zero as R
tends to infinity.

6. Let C, denote the circle |z| = p (0 < p < 1), oriented in the counterclockwise direction,

and suppose that f(z) is analytic in the disk |z| < 1. Show that if z~1/? represents any
particular branch of that power of z, then there is a nonnegative constant M, independent
of p, such that

<2wM./p.

f V2 f(7) dg
C

0

Thus show that the value of the integral here approaches 0 as p tends to 0.
Suggestion: Note that since f(z) is analytic, and therefore continuous, throughout
the disk |z] < 1, it is bounded there (Sec. 17).

7. Let Cy denote the boundary of the square formed by the lines

1 1
where N is a positive integer, and let the orientation of Cp be counterclockwise.
(a) With the aid of the inequalities
sinz| > sinx| and |sinz| > |sinh y|,

obtained in Exercises 10{a) and 11{a) of Sec. 33, show that | sin z| > 1 on the vertical
sides of the square and that |sin z| > sinh(;r/2) on the horizontal sides. Thus show
that there is a positive constant A, independent of N, such that |sin z| > A for all
points z lying on the contour Cy.

(b) Using the final result in part (a), show that

[ dz
2 .
cy Z°sinz

and hence that the value of this integral tends to zero as N tends to infinity.

16
<
T (2N + DA
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42. ANTIDERIVATIVES

Although the value of a contour integral of a function f(z) from a fixed point z; to a
fixed point z, depends, in general, on the path that is taken, there are certain functions
whose integrals from z, to z, have values that are independent of path. (Compare
Examples 2 and 3 in Sec. 40.) The examples just cited also illustrate the fact that
the values of integrals around closed paths are sometimes, but not always, zero, The
theorem below is useful in determining when integration is independent of path and,
moreover, when an integral around a closed path has value zero.

In proving the theorem, we shall discover an extension of the fundamental theo-
rem of calculus that simplifies the evaluation of many contour integrals. That extension
involves the concept of an antiderivative of a continuous function f in a domain D,
or a function F such that F'(z) = f(z) for all z in D. Note that an antiderivative is, of
necessity, an analytic function. Note, too, that an antiderivative of a given function f
is unique except for an additive complex constant. This is because the derivative of the
difference F(z) — G(z) of any two such antiderivatives F(z) and G(z) is zero; and,
according to the theorem in Sec. 23, an analytic function is constant in a domain D
when its derivative is zero throughout D.

Theorem. Suppose that a function f(z) is continuous on a domain D. If any one of
the following statements is true, then so are the others:
(i) f(z) has an antiderivative F(z) in D;
(ii) the integrals of f(z) along contours lying entirely in D and extending from any
fixed point 7| to any fixed point 7, all have the same value;
(iii) the integrals of f(z) around closed contours lying entirely in D all have value
zero.

It should be emphasized that the theorem does not claim that any of these
statements is true for a given function f and a given domain D. It says only that
all of them are true or that none of them is true. To prove the theorem, it is sufficient
to show that statement (¢7) implies statement (ii), that statement (ii) implies statement
(iif), and finally that statement (iii) implies statement (7).

Let us assume that statement (7) is true. If a contour C from z, to z,, lying in D, is
just a smooth arc, with parametric representation z = z(t)(a <t < b), we know from
Exercise 5, Sec. 38, that

. |
E—;F[z(t)] = F'[z(1)]Z'(t) = flz(O1Z' (@) (@a<t=bh).

Because the fundamental theorem of calculus can be extended so as to apply to
complex-valued functions of a real variable (Sec. 37), it follows that .

5 b
f(: f(Ddz= f flz(O)Z () dt = F[z(r)]} = F[z(b)] — Fz(a)].

a
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Since z(b) = z; and z(a) = z, the value of this contour integral is, then,
F(zp) — F(zy);

and that value is evidently independent of the contour C as long as C extends from 2
to z, and lies entirely in D. That is,

| %
22
0 [ r@di=Fen - Fap=Fo
<1 Z] ‘
when C is smooth. Expression (1) is also valid when C is any contour, not necessarily

a smooth one, that lies in D. For, if C consists of a finite number of smooth arcs
Cr (k=1,2, ..., n), each C; extending from a point z to a point Zy+1> then

f f@di=) | f@dz=> [F) - Fl= Fu) — F2p).
¢ k=1 Cx k=1

(Compare Example 3, Sec. 40.) The fact that statement (if) follows from statement (i)
is now established.

To see that statement (ii) implies statement (7if), we let z, and z, denote any two
points on a closed contour C lying in D and form two paths, each with initial point
z1 and final point z,, such that C = C| — C, (Fig. 48). Assuming that statement (i7) is
true, one can write

(2) f@dz= ] f(2)dz,
Cl Cg
or
(3) f(2)dz + f(z)dz=0.
C, —c,

That 1s, the integral of f(z) around the closed contour C = C; — C, has value zero.

* FIGURE 48

It remains to show that statement (ii{) implies statement (). We do this by
assuming that statement (iii) is true, establishing the validity of statement (ii), and
then arriving at statement (7). To see that statement (if) is true, we let C 1 and C, denote
any two contours, lying in D, from a point z; to a point z, and observe that, in view of
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statement (iii), equation (3) holds (see Fig. 48). Thus equation (2) holds. Integration
is, therefore, independent of path in D; and we can define the function

F(2) = [ £(5) ds

on D. The proof of the theorem is complete once we show that F'(z) = f(z) every-
where in D. We do this by letting z + Az be any point, distinct from z, lying in some
neighborhood of z that is small enough to be contained in D. Then

+Az z z+Az
F(Z-i-AZ)-F(Z)mf f(S)dS—f f(s)de[ f(s)ds,
Z 2o Z

0

where the path of integration from z to z + Az may be selected as a line segment (Fig.

49). Since
2+Az
j ds = Az
g

(see Exercise 5, Sec. 40), we can write

1 7+Az
= [ (@ ds;

and it follows that

. 2+AzZ
F(z+ Az) — F(2) _f(z)zﬁiz_[ [£(s) — f()]ds.

Az

~

FIGURE 49

But f is continuous at the point z. Hence, for each positive number £, a positive number
8 exists such that

| f(s) — f(2)] <e whenever |[s—z|<3d.
Consequently, if the point z 4+ Az is close enough to z so that |Az| < 4, then

F(z 4+ Az) — F(2)
Az

1
— f(2)| < —e|Az| =¢;
|Az] |
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that is,

lim F(z+ Az) = F(2) = £,

Az—0 Az

or F'(z) = f(2).

43. EXAMPLES

The following examples illustrate the theorem in Sec. 42 and, in particular, the use of
the extension (1) of the fundamental theorem of calculus in that section.

EXAMPLE 1. The continuous function f(z) = z* has an antiderivative F(z) = z° /3
throughout the plane. Hence

) | B

I 3 1 p)

f Zdz=>| =-(1+iP=2140
0 3 0 3 3

for every contour fromz =0toz = 1+41i.

EXAMPLE 2. The function f(z) = 1/z*, which is continuous everywhere except
at the origin, has an antiderivative F(z) = —1/z in the domain |z| > 0, consisting of
the entire plane with the origin deleted. Consequently,

dz _

> =0

C Z
when C is the positively oriented circle (Fig. 50)
(1) 7 = 26" (—m <8 <)

about the origin.
Note that the integral of the function f(z) = 1/z around the same circle cannot
be evaluated in a similar way. For, although the derivative of any branch F(z) of log z

FIGURE 50
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is 1/z (Sec. 30), F(z) is not differentiable, or even defined, along its branch cut. In
particular, if a ray 6 = & from the origin is used to form the branch cut, F’(z) fails to
exist at the point where that ray intersects the circle C (see Fig. 50). So C does not
lie in a domain throughout which F’(z) = 1/z, and we cannot make direct use of an
antiderivative. Example 3, just below, illustrates how a combination of two different
antiderivatives can be used to evaluate f(z) = 1/z around C.

EXAMPLE 3. Let C, denote the right half

(2) 7 = 2e (——%’- <9< ?3)

of the circle C in Example 2. The principal branch
Logz=Inr +i® (r>0,—-7m <®<m)

of the logarithmic function serves as an antiderivative of the function 1/z in the
evaluation of the integral of 1/z along C, (Fig. 51):

2i 21
¢, < -2 < —2

¥ i
=l n24+i— |- In2—i—\|=mi.
( +’2) (“ lz)

This integral was evaluated in another way in Example 1, Sec. 40, where representation
(2) for the semicircle was used.

FIGURE 51

Next, let C, denote the left half
3) z =2 (~’f~<653—”)

of the same circle C and consider the branch

logz=Inr +i6 (r >0,0<8 <2m)
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FIGURE 52

of the logarithmic function (Fig. 52). One can write

d -2 3. —2i
f d f d = log z] = log(—2i) — log(2i)
C; 2i 2i

= (1n2+f§f) - (ln2+i£) =i,
2 2

The value of the integral of 1/z around the entire circle C = C; + C» is thus

obtained:
[d [ —mm+m“2m
C C < '> <

EXAMPLE 4. Let us use an antiderivative to evaluate the integral

(4) [ Y2 4z,
Cy

where the integrand is the branch
(3) zl/zzﬁeig/z r=>0,0<6 <2m)

of the square root function and where C; is any contour from z = —3 to z = 3 that,
except for its end points, lies above the x axis (Fig. 53). Although the integrand is
piecewise continuous on C|, and the integral therefore exists, the branch (5) of zV/% i

FIGURE 53
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not defined on the ray 8 = 0, in particular at the point z = 3. But another branch,
fi(z) = Vre'?’? <r>~0,w% <8< -3;)

is defined and continuous everywhere on C;. The values of f(z) at all points on C;
except z = 3 coincide with those of our integrand (5); so the integrand can be replaced
by f1(2). Since an antiderivative of f;(z) is the function

Fi(z) = %gﬁ = %;-\/?e*'%/z (r > 0, —% < < 37”)

we can now write

3 3
] 72 dz = f fix)dz = Fl(z)} =230 — 372y = 2/3(1 + ).
¢ -3

-3

(Compare Example 4 in Sec. 40.)
The integral

©) f V2 g
Gy

of the function (5) over any contour C, that extends from z = —3 to z = 3 below the
real axis can be evaluated in a similar way. In this case, we can replace the integrand
by the branch

fg(z)=\/;e£€jz (r::»«(},-;z <8 < -5—;—{~),

whose values coincide with those of the integrand at z = —3 and at all points on C,
below the real axis. This enables us to use an antiderivative of f»(z) to evaluate integral
(6). Details are left to the exercises.

EXERCISES

1. Use an antiderivative to show that, for every contour C extending from a point z; to a
point 25,

|
fcz” dz = n~——_§_—;(z’§'{’“ji e z’;“) n=0,1,2,..).

2. By finding an antiderivative, evaluate each of these integrals, where the path is any
contour between the indicated limits of integration:

i/2 w28 z 3
(a) f e"tdz, () f 608(5) dz; (o) f (z —2)° dz.
i 0 1

Ans. (@) (1 +i)/m; (bye+ (1/e); () 0.
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3. Use the theorem in Sec. 42 to show that
f (Z“Zg)"mldzm—m() (n==x1,42,...)
Co

when Cy is any closed contour which does not pass through the point zg. |Compare
Exercise 10(b), Sec. 40.]

4. Find an antiderivative F,(z) of the branch f,(z) of z!/? in Example 4, Sec. 43, to show
that integral (6) there has value 243 (—1+ i). Note that the value of the integral of the
function (5) around the closed contour C, — €| in that example is, therefore, —4./3.

5. Show that

1 _ -
f ddz =T (1 p,
-1 2

where 7' denotes the principal branch
7= exp{i Log z) (|z] >0, —r < Argz < 7)

and where the path of integration is any contour from z = —1to z = 1 that, except for its
end points, lies above the real axis.
Suggestion: Use an antiderivative of the branch

7= exp(i log z) (lzl > 0, —-%: <argz < «322)

of the same power function.

44, CAUCHY-GOURSAT THEOREM

In Sec. 42, we saw that when a continuous function f has an antiderivative in a domain
D, the integral of f(z) around any given closed contour C lying entirely in D has value
zero. In this section, we present a theorem giving other conditions on a function f,
which ensure that the value of the integral of f(z) around a simple closed contour
(Sec. 38) is zero, The theorem is central to the theory of functions of acomplex variable;
and some extensions of it, involving certain special types of domains, will be given in
Sec. 46.

We let C denote a simple closed contour z = z(¢) (@ <t < b), described in the
positive sense (counterclockwise), and we assume that f is analytic at each point
interior to and on C. According to Sec. 39,

b
(h fcf(z') dzx/ Flz(0) (1) dt;
and if

f@=ulx,y)+ivix,y) and z(t) =x(t)+iy(),
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the integrand f[z(#)]z'(#) in expression (1) is the product of the functions

ulx(t), (O +ivlx(@), y(©)l, x'(@)+iy'@)

of the real variable ¢. Thus

b b
(2) [ f(ydz x[ (ux’ — vy dt +i f (vx' 4 uy’) dt.
C a a
In terms of line integrals of real-valued functions of two real variables, then,
(3) jf(z)dzzfudx—vderifvdx+udy.
C C C

Observe that expression {3) can be obtained formally by replacing f(z) and dz on the
left with the binomials

u+iv and dx +idy,

respectively, and expanding their product. Expression (3) is, of course, also valid when
C is any contour, not necessarily a simple closed one, and f[z(¢)] is only piecewise
continuous on it.

We next recall a result from calculus that enables us to express the line integrals
on the right in equation (3) as double integrals. Suppose that two real-valued functions
P(x, y)and Q(x, y), together with their first-order partial derivatives, are continuous
throughout the closed region R consisting of all points interior to and on the simple
closed contour C. According to Green’s theorem,

dex-i—Qdymff(mePy)dAb
C R

Now f is continuous in R, since it is analytic there. Hence the functions # and
v are also continuous in R, Likewise, if the derivative f’ of f is continuous in R, so
are the first-order partial derivatives of # and v. Green’s theorem then enables us to
rewrite equation (3) as

(4) /f(z)dz=]f(mvx—uy)dA+i/f(;£x—v},) dA.
C R R

But, in view of the Cauchy—Riemann equations

the integrands of these two double integrals are zero throughout R. So, when [ is
analytic in R and ' is continuous there,

(5) f f(2)dz=0.
C

This result was obtained by Cauchy in the early part of the nineteenth century.
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Note that, once it has been established that the value of this integral is zero, the
orientation of C is immaterial, That is, statement (5) is also true if C is taken in the
clockwise direction, since then

[f(z)dzm—f f()dz=0.
C —C

EXAMPLE. If C is any simple closed contour, in either direction, then
f exp(z’) dz = 0.
C

This is because the function f(z) = exp(z°) is analytic everywhere and its derivative
f'(z) = 3z% exp(z?) is continuous everywhere.

Goursat® was the first to prove that the condition of continuity on f' can be
omitted. Its removal is important and will allow us to show, for example, that the
derivative f’ of an analytic function f is analytic without having to assume the
continuity of f’, which follows as a consequence. We now state the revised form of
Cauchy’s result, known as the Cauchy—Goursat theorem.

Theorem. If a function f is analytic at all points interior to and on a simple closed
contour C, then

f f(@) dz =0.
C

The proof is presented in the next section, where, to be specific, we assume that
C is positively ortented. The reader who wishes to accept this theorem without proof
may pass directly to Sec. 46.

45. PROOF OF THE THEOREM

We preface the proof of the Cauchy—Goursat theorem with a lemma. We start by
forming subsets of the region R which consists of the points on a positively oriented
simple closed contour C together with the points interior to C. To do this, we draw
equally spaced lines parallel to the real and imaginary axes such that the distance
between adjacent vertical lines is the same as that between adjacent horizontal lines.
We thus form a finite number of closed square subregions, where each point of R lies
in at least one such subregion and each subregion contains points of R. We refer to
these square subregions simply as squares, always keeping in mind that by a square we

* E. Goursat (1858-1936), pronounced gour-sah’.
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mean a boundary together with the points interior to it. If a particular square contains
points that are not in R, we remove those points and call what remains a partial square.
We thus cover the region R with a finite number of squares and partial squares (Fig.
54), and our proof of the following lemma starts with this covering.

_ >

—

?
/ )

7
QM//

N
X

o ¥ FIGURE 54

Lemma. Let f be analytic throughout a closed region R consisting of the points
interior to a positively oriented simple closed contour C together with the points on C
itself. For any positive number ¢, the region R can be covered with a finite number of
squares and partial squares, indexed by j = 1,2, ..., n, such that in each one there
is a fixed point z; for which the inequality

f@)— f(z;)

Z—Zj

(1)

- fl@p)|<e  (2#z))
is satisfied by all other points in that square or partial square.

To start the proof, we consider the possibility that, in the covering constructed
just prior to the statement of the lemma, there is some squarc or partial square in
which no point z; exists such that inequality (1) holds for all other points z in it. If
that subregion is a square, we construct four smaller squares by drawing line segments
joining the midpoints of its opposite sides (Fig. 54). If the subregion is a partial square,
we treat the whole square in the same manner and then let the portions that lie outside
R be discarded. If, in any one of these smaller subregions, no point z ; exists such that
inequality (1) holds for all other points z in it, we construct still smaller squares and
partial squares, etc. When this is done to each of the original subregions that requires
it, it turns out that, after a finite number of steps, the region R can be covered with a
finite number of squares and partial squares such that the lemma is true.
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To verify this, we suppose that the needed points z ; do not exist after subdividing
one of the original subregions a finite number of times and reach a contradiction. We
let o denote that subregion if it is a square; if it is a partial square, we let oy denote
the entire square of which it is a part. After we subdivide oy, at least one of the four
smaller squares, denoted by &, must contain points of R but no appropriate point
z;. We then subdivide o) and continue in this manner. It may be that after a square
o1 (k=1,2,...) has been subdivided, more than one of the four smaller squares
constructed from it can be chosen. To make a specific choice, we take o to be the one
lowest and then furthest to the left.

In view of the manner in which the nested infinite sequence

(2) G0, 01,025 «« « s O 1y Ofs + - -

of squares is constructed, it is easily shown (Exercise 9, Sec. 46) that there is a point z;
common to each o, ; also, each of these squares contains points R other than possibly
Zg- Recall how the sizes of the squares in the sequence are decreasing, and note that
any & neighborhood |z — 7| < & of zg contains such squares when their diagonals have
lengths less than §. Every 8 neighborhood |z — 73] < § therefore contains points of R
distinct from zg, and this means that z;; s an accumulation point of R. Since the region
R is a closed set, it follows that z; is a point in R. (See Sec. 10.)

Now the function f is analytic throughout R and, in particular, at z. Conse-
quently, f'(zq) exists, According to the definition of derivative (Sec. 18), there is, for
each positive number ¢, a § neighborhood |z — z3{ < § such that the inequality

F () — f(zp)

A4

— flzg)| < €

is satisfied by all points distinct from zg in that neighborhood. But the neighborhood
|z — zg| < & contains a square o when the integer X is large enough that the length of
a diagonal of that square is less than § (Fig. 55). Consequently, zq serves as the point z
in inequality (1) for the subregion consisting of the square oy or a part of oy . Contrary
to the way in which the sequence (2) was formed, then, it is not necessary to subdivide
og. We thus arrive at a contradiction, and the proof of the lemma is complete.

et

0 X FIGURE 55
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Continuing with a function f which is analytic throughout a region R consisting
of a positively oriented simple closed contour C and points interior to it, we are now
ready to prove the Cauchy—Goursat theorem, namely that

(3) [ f(2)dz=0.
C

Given an arbitrary positive number &, we consider the covering of R in the
statement of the lemma. Let us define on the jth square or partial square the following
function, where z; is the fixed point in that subregion for which inequality (1) holds:

@) - f(z;)
(4) 8](2): Z— Iy

0 whenzzzj.

— f'(z;) whenz #7z;,

According to inequality (1),
(5) 10;(z)] <&

at all points z in the subregion on which §,(z) is defined. Also, the function §;(z) is
continuous throughout the subregion since f (z) is continuous there and

lim 8;(2) = f'(zj) = f'(z)) =0.
SanY

Next, let C ;U= 1,2, ..., n) denote the positively oriented boundaries of the
above squares or partial squares covering R. In view of definition (4), the value of f
at a point z on any particular C; can be written

f@=f@&)—z;f @+ flepz+ @ —2)8;(2);

and this means that

6) [ f2) dz
C;

=[f(zj)—zjf’(zj)][ dz+f’(z_,-)f zdz+/ (z —2;)8;(2) dz.

f dz=0 and fzdzx()
C. C:

J J

But

since the functions 1 and z possess antiderivatives everywhere in the finite plane. So
equation (6) reduces to

(7) / f(z)dz’,“—"f(z“zj)éj(z)dz (j=12,...,n).
C; C,
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The sum of all n integrals on the left in equations (7) can be written

Z[ f(z)dz.’:/ f(2)dz
pfilel C

since the two integrals along the common boundary of every pair of adjacent subregions
cancel each other, the integral being taken in one sense along that line segment in one
subregion and in the opposite sense in the other (Fig. 56). Only the integrals along the
arcs that are parts of C remain. Thus, in view of equations (7),

ydz= —2;)8,;(2) dz;
[ r@a: E[C}(Z 8,(2) dz

and so
n
(8) /f(z)dz SZ f (z —z;)8;(z) dz] .
¢ j=117C;
y
1
S
O X
L FIGURE 56

Let us now use property (1), Sec. 41 to find an upper bound for each absolute
value on the right in inequality (8). To do this, we first recall that each C; coincides
either entirely or partially with the boundary of a square. In either case, welet s ; denote
the length of a side of the square. Since, in the jth integral, both the variable 7 and the
- point z; lie in that square,

2 —z,] = V2s;.

In view of inequality (5), then, we know that each integrand on the right in inequality
(8) satisfies the condition

©) |z = 2,)8;(2)] < V2558
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As for the length of the path C;, itis 4s; if C; is the boundary of a square. In that case,
we let A; denote the area of the square and observe that

(IO) =< \/ESj€4Sj 24\/§Aj8

—z2:3¥: () d
[Cj(z z;)0;(z) dz

If C; is the boundary of a partial square, its length does not exceed 4s; + L ;, where
L ; is the length of that part of C; which is also a part of C. Again letting A; denote
the area of the full square, we find that

< V2s;e(ds; + L;) <4v2A;6 + V25Lje,

(11) lfc (z — 2))8;(2) dz

where S is the length of a side of some square that encloses the entire contour C as
well as all of the squares originally used in covering R (Fig. 56). Note that the sum of
all the A;’s does not exceed 52,

If L denotes the length of C, it now follows from inequalities (8), (10), and (11)
that

< (44/28% + V2SL)s.

f f(2) dz
C

Since the value of the positive number ¢ is arbitrary, we can choose it so that the right-
hand side of this last inequality is as small as we please. The left-hand side, which
is independent of &, must therefore be equal to zero; and statement (3) follows. This
completes the proof of the Cauchy—Goursat theorem.

46. SIMPLY AND MULTIPLY CONNECTED DOMAINS

A simply connected domain D is a domain such that every simple closed contour within
it encloses only points of D. The set of points interior to a simple closed contour is an
example. The annular domain between two concentric circles is, however, not simply
connected. A domain that 1S not simply connected is said to be multiply connected.

The Cauchy—Goursat theorem can be extended in the following way, involving a
simply connected domain.

Theorem 1. If a function f is analytic throughout a simply connected domain D,
then

() [ f(@)dz=0
c

for every closed contour C lying in D.
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)

0 X FIGURE 57

The proof is easy if C is a simple closed contour or if it is a closed contour that
intersects itself a finite number of times. For, if C is simple and lies in D, the function f
is analytic at each point interior to and on C; and the Cauchy—Goursat theorem ensures
that equation (1) holds. Furthermore, if C is closed but intersects itself a finite number
of times, it consists of a finite number of simple closed contours. This is illustrated
in Fig. 57, where the simple closed contours C; (k =1, 2, 3, 4) make up C. Since the
value of the integral around each Cj, is zero, according to the Cauchy—Goursat theorem,
it follows that

4
dz = d2,= .
fc f(z) dz ; ; £(@)

Subtleties arise if the closed contour has an infinite number of self-intersection
points. One method that can sometimes be used to show that the theorem still applies
is illustrated in Exercise 5 below.*

Corollary 1. A function f that is analytic throughout a simply connected domain D
must have an antiderivative everywhere in D.

This corollary follows immediately from Theorem 1 because of the theorem in
Sec. 42, which tells us that a continuous function f always has an antiderivative in a
given domain when equation (1) holds for each closed contour C in that domain. Note
that, since the finite plane is simply connected, Corollary 1 tells us that entire functions
always possess antiderivatives.

The Cauchy—Goursat theorem can also be extended in a way that involves inte-
grals along the boundary of a multiply connected domain. The following theorem is
such an extension.

* For a proof of the theorem involving more general paths of finite length, see, for example, Secs. 6365
in Vol. T of the book by Markushevich, cited in Appendix 1.
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Theorem 2. Suppose that

(i) C is a simple closed contour, described in the counterclockwise direction;

(ii) Cy (k=1,2,...,n) are simple closed contours interior to C, all described in
the clockwise direction, that are disjoint and whose interiors have no points in
common (Fig. 58).

If a function f is analytic on all of these contours and throughout the multiply
connected domain consisting of all points inside C and exterior to each C,, then

2) f f@dz+) | f)dz=0.

0 *  FIGURE 58

Note that, in equation (2), the direction of each path of integration is such that
the multiply connected domain lies to the left of that path.

To prove the theorem, we introduce a polygonal path L, consisting of a finite
number of line segments joined end to end, to connect the outer contour C to the inner
contour C;. We introduce another polygonal path L, which connects C to C,; and we
continue in this manner, with L, ; connecting C, to C. As indicated by the single-
barbed arrows in Fig. 58, two simple closed contours I'| and I', can be formed, each
consisting of polygonal paths L, or —L,; and pieces of C and C; and each described
in such a direction that the points enclosed by them lie to the left. The Cauchy-
Goursat theorem can now be applied to f on I'j and I';, and the sum of the values
of the integrals over those contours is found to be zero. Since the integrals in opposite
directions along each path L, cancel, only the integrals along C and C; remain; and
we arrive at statement (2). |

The following corollary is an especially important consequence of Theorem 2.

Corollary 2. Let Cy and C, denote positively oriented simple closed contours, where
C, is interior to C| (Fig. 59). If a function f is analytic in the closed region consisting
of those contours and all points between them, then

(3) flydz={ f(dz.
C, Cy
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/C'-r

=)

S~

0 *  FIGURE 59

For a verification, we use Theorem 2 to write

fdz+ f(z2)dz=0;
Cl ""’Cz

and we note that this is just a different form of equation (3).

Corollary 2 is known as the principle of deformation of paths since it tells us that
if C is continuously deformed into C,, always passing through points at which f is
analytic, then the value of the integral of f over C| never changes.

EXAMPLE. When C is any positively oriented simple closed contour surrounding
the origin, Corollary 2 can be used to show that

dz .
—_—=2i.
c Z

To accomplish this, we need only construct a positively oriented circle Cy with center
at the origin and radius so small that Cy lies entirely inside C (Fig. 60). Since [Exercise
10(a), Sec. 40]

1
Ny

FIGURE 60
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/ §=2n‘i
Co 2

and since 1/z is analytic everywhere except at z = 0, the desired result follows.
Note that the radius of Cjy could equally well have been so large that C lies entirely
inside Cy.

EXERCISES
1. Apply the Cauchy—Goursat theorem to show that
f f(Ddz=0
C
when the contour C is the circle |z] = 1, in either direction, and when
2
Z
a)f(o)=——7; D) fDd=ze7" (o) flD)= ;
@ @)=~ f@ f@ =5

(d) f(z)=sechz; () f(z)=tanz;  (f) f(2) =Log(z+2).

2. Let C| denote the positively oriented circle |z| = 4 and C, the positively oriented bound-
ary of the square whose sides lie along the lines x = +1, y = £1 (Fig. 61). With the aid
of Corollary 2 in Sec. 46, point out why

f@dz= | f(z)dz
C, C,

when
L ) N z+2 ! _ z
@f@=p OI@O=gony WO
y
X
FIGURE 61
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3. If C denotes a positively oriented circle |z — zo| = R, then

0 whenn ==+1, £2, ...,

. ‘”_}d72
(z — z¢) ~ {Z:rri whenn =0,

Cy
according to Exercise 10, Sec. 40. Use that result and Corollary 2 in Sec. 46 to show

that if C is the boundary of the rectangle 0 < x <3, 0 <y <2, described in the positive
sense, then

z_2___*n~1a,,,___{0 whenn = +1, £2, ...,
/c;( 2 2ri whenn=0.

4. Use the method described below to derive the integration formula

&0 2 2
f e " cos2bx dx = ?e“i’ (b > 0).
0

(@) Show that the sum of the integrals of exp(—z?) along the lower and upper horizontal
legs of the rectangular path in Fig. 62 can be written

a5 B2 a5
2] e " dx —2e / e~ cos2bxdx
0 0

and that the sum of the integrals along the vertical legs on the right and left can be
written

b b
g2 2 a2 2 ;
ie @ f e gy —je @ f e et dy.
0 0
Thus, with the aid of the Cauchy-Goursat theorem, show that

a —x2 —p2 ¢ —d _{a?,_*_biZ) b 2 .
e " cos2bxdx =e e " dx+e e’ sin2ay dy.
Lt {) O 8

y
—-a If bi a+ bi
- (8 " l X
FIGURE 62
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(b) By accepting the fact that*

and observing that

b
«c[ e’ dy,
0

obtain the desired integration formula by letting a tend to infinity in the equation at
the end of part (a).

b,
f e’ sin2ay dy
0

5. According to Exercise 6, Sec. 38, the path C from the origin to the point z = 1 along
the graph of the function defined by means of the equations

y(x) = x3 sin (f,;..,) when 0 <x < |,
when x =0

is a smooth arc that intersects the real axis an infinite number of times. Let C» denote
the line segment along the real axis from z = 1 back to the origin, and let Cy denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its end
points in common with the arcs C; and C, (Fig. 63). Apply the Cauchy-Goursat theorem
to show that if a function f is entire, then

(@) dz = f f(z)dz and f fdi=— [ F@dz
C, Cs C, Cs

FIGURE 63

* The usual way to evaluate this integral is by writing its square as

e 2 & 9] 2 o0 oQ 3 5
f et dx/ e~ dy=f f e E ) dx dy
0 0 0 0

and then evaluating the iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680-681, 1983,
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Conclude that, even though the closed contour C = C; + C; intersects itself an infinite
number of times,

f f(z)dz=0.
C

6. Let C denote the positively oriented boundary of the half disk 0 < r < 1,0 <8 <, and
let £{z) be a continuous function defined on that half disk by writing f(0) = 0 and using
the branch

f(z) = frel?* (r>0,-%<6<§2£)

of the multiple-valued function z'/2. Show that

ff(Z)dz=
c

by evaluating separately the integrals of f(z) over the semicircle and the two radii which
make up C. Why does the Cauchy—Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the region
enclosed by C can be written
1 _
— [ zdz.
2i Jo

Suggestion: Note that expression (4), Sec. 44, can be used here even though the
function f(z) = Z is not analytic anywhere (see Exercise 1(a), Sec. 22).

8. Nested Intervals. An infinite sequence of closed intervalsa, <x <b, (n=0,1,2,...)
is formed in the following way. The interval a; < x < b is either the left-hand or right-
hand half of the first interval ag < x < by, and the interval a, < x < b, is then one of the
two halves of a; < x < by, etc. Prove that there 1$ a point xy which belongs to every one
of the closed intervals a,, < x < b,,.

Suggestion: Note that the left-hand end points a,, represent a bounded nondecreas-
ing sequence of numbers, since qg < a, < a,, | < by: hence they have a limit A as n
tends to infinity. Show that the end points b, also have a limit B. Then show that A = B,
and write x; = A = B.

9. Nested Squares. A square o :ag < x < by, ¢y < y < d; is divided into four equal squares
by line segments parallel to the coordinate axes. One of those four smaller squares
o1:a; <x < by, cy <y <d, is selected according to some rule. It, in turn, is divided
into four equal squares one of which, called o, is selected, etc. (see Sec. 45). Prove
that there is a point (xq, Vo) which belongs to each of the closed regions of the infinite
sequence og, 01, 92, . . .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervalsa,, < x < b, andc, <y <d,(n=0,1,2,...). .
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47. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let f be analytic everywhere inside and on a simple closed contour C,
taken in the positive sense. If 7y is any point interior to C, then

1 d
(1) fl=— [ &%=

2ri Jo 72— 29

Formula (1) is called the Cauchy integral formula. 1t tells us that if a function f
is to be analytic within and on a simple closed contour C, then the values of f interior
to C are completely determined by the values of f on C.

When the Cauchy integral formula is written

f(z)dz

C 1— 3

(2) =2mif (2o),

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z! = 2. Since the function

Z
9— 72

fz) =

is analytic within and on C and since the point z5 = —i is interior (o C, formula (2)

tells us that
- i
] ez :f”(g ‘?f)dz=2nf(-—‘-)m£.
cO—-22@+i) Jo z—(=i) 10 5

We begin the proof of the theorem by letting C, denote a positively oriented circle
|z — zg| = p, where p is small enough that C, is interior to C (see Fig. 64). Since the
function f(z)/(z — zp) is analylic between and on the contours C and C,,, it follows

C Co

0 X FIGURE 64
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from the principle of deformation of paths (Corollary 2, Sec. 46) that

fRdz _ [ f)dz
c z—z2 Jo, 1—z
This enables us to write
dz 7) —
Z—2p , L= -2

But [see Exercise 10(a), Sec. 40]

dz .
f = 277§}
C, <20
and so equation (3) becomes

fl@ydz 2if(z0) = f@) - ),

cC Z—2p C, < =<0

4

Now the fact that f is analytic, and therefore continuous, at z, ensures that,
corresponding to each positive number £, however small, there is a positive number &
such that

(3) | f(2) — f(z¢)| <& whenever |z —zp| <.

Let the radius p of the circle C, be smaller than the number & in the second of these
inequalities. Since |z — zo! = p when z is on C, it follows that the first of inequalities
(5) holds when z is such a point; and inequality (1), Sec. 41, giving upper bounds for
the moduli of contour integrals, tells us that

f f@Q-Ff (Zo)

7_........1-)
“

f:— 2mp = 2me.
o

In view of equation (4), then,

< 27E.

2y dz .
JRA2 itz

C T— 3y

Since the left-hand side of this inequality is a nonnegative constant that is less than an
arbitrarily small positive number, it must equal to zero. Hence equation (2) is valid,
and the theorem is proved.

48. DERIVATIVES OF ANALYTIC FUNCTIONS

It follows from the Cauchy integral formula (Sec. 47) that if a function is analytic at a
point, then its derivatives of all orders exist at that point and are themselves analytic
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there. To prove this, we start with a lemma that extends the Cauchy integral formula
so as to apply to derivatives of the first and second order. -

Lemma. Suppose that a function f is analytic everywhere inside and on a simple
closed contour C, taken in the positive sense. If 7 is any point interior to C, then

1 f(s) ds
27i Je (s — 72)?

and f”(Z) _ __1_ f(s)ds

. = miJe (s =27

Note that expressions (1) can be obtained formally, or without rigorous verifica-
tion, by differentiating with respect to z under the integral sign in the Cauchy integral
formula

@ fly=—— [ {295

2ni Jo s —2z

where z is interior to C and s denotes points on C.
To verify the first of expressions (1), we let d denote the smallest distance from
z to points on C and use formula (2) to write

f(z-i-Az)—f(z): 1 [ ( 1 B 1 )f(s) s
Az 2ni Jc\s—72—Az s—2z) Az
_H__l_ f(s)ds

2ni Jo (s —z— A)(s —2)

where 0 < |Az| < d (see Fig. 65). Evidently, then,
f@+A) = fzy 1 f)ds 1 f Azf(s)ds
C

Az wwi Je (s =202 27i Jo (s—z—AD(s —2)?

3)

0 X FIGURE 65
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Next, we let M denote the maximum value of | f(s)| on C and observe that, since
|s —z| = d and |Az] < d,

Is —z2— Azl =|(s —2) — Az| > ||s — z] — |Az|| > d — |Az| > 0.
Thus

|Az|M
T (d—|Az)d?

f Azf(s)ds
c (s —z— A7 —2)2

where L is the length of C. Upon letting Az tend to zero, we find from this inequality
that the right-hand side of equation (3) also tends to zero. Consequently,

im 1E@tTA89) - f@ 1 Fs)ds _ .
Az—0 Az 2 C (S — 2)2

and the desired expression for f/(z) is established.
The same technique can be used to verify the expression for f”(z) in the statement
of the lemma. The details, which are outlined in Exercise 9, are left to the reader.

Theorem 1. If a function is analytic at a point, then its derivatives of all orders exist
at that point. Those derivatives are, moreover, all analytic there.

To prove this remarkable theorem, we assume that a function f is analytic at a
point z,. There must, then, be a neighborhood |z — zg| < € of z throughout which £ is
analytic (see Sec. 23). Consequently, there is a positively oriented circle C;), centered
at zg and with radius ¢ /2, such that f is analytic inside and on C;) (Fig. 66). According
to the above lemma, |

1 f(s)ds

wi Je, (s — 2)3

f (=

at each point z interior to Cy, and the existence of f”(z) throughout the neighborhood
|z = zgl < £/2 means that f”is analytic at zy. One can apply the same argument to the

£f2

=

0 SN——— X FIGURE 66
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analytic function f’ to conclude that its derivative f” is analytic, etc. Theorem 1 is
now established.
As a consequence, when a function

f@=ulx,y)+ivix,y)

is analytic at a point z = (x, y), the differentiability of f’ ensures the continuity of f
there (Sec. 18). Then, since

7 . .
[@)=uy, +iv, =v, —iuy,

we may conclude that the first-order partial derivatives of # and v are continuous at
that point. Furthermore, since f” is analytic and continuous at z and since

144 . .
Fr@y =y + v, =vy, — iy,
etc., we arrive at a corollary that was anticipated in Sec. 25, where harmonic functions

were introduced.

Corollary. If a function f(z) = u(x,y) +iv(x, y) is defined and analytic at a point
z = (x, y) then the component functions u and v have continuous partial derivatives
of all orders at that point.

One can use mathematical induction to generalize formulas (1) to

@) FM ) = f f&ds 12 )
C

2P Jo (s — )" !

The verification is considerably more involved than for just n = 1 and n = 2, and we
refer the interested reader to other texts for it.* Note that, with the agreement that

O = fz) and 0'=1,

expression (4) is also valid when n = 0, in which case it becomes the Cauchy integral

formula (2).
When written in the form
f(Z) dZ 2mi (n)
5 = Z n=0,12,...,
(5) f(;(z-zﬂ)m PG )

expression (4) can be useful in evaluating certain integrals when f is analytic inside
and on a simple closed contour C, taken in the positive sense, and zq is any point
interior to C. It has already been illustrated in Sec. 47 when #n = 0.

* See, for example, pp. 299-301 in Vol. I of the book by Markushevich, cited in Appendix 1.
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EXAMPLE 1. If C is the positively oriented unit circle |z] = 1 and

f(z) = exp(2z),
then

8l

» - ot
[0y = 3

/’exp(2z) dz_[ fz)dz  2n
c 4 Jo -0 3

EXAMPLE 2. Let z; be any point interior to a positively oriented simple closed
contour C. When f(z) = 1, expression (5) shows that

dz )
/ = 27
C <2

dz
== () n:l,Z,....
/(;‘(Z_Z{))n+E ( )

(Compare Exercise 10, Sec. 40.)

and

We conclude this section with a theorem due to E. Morera (1856—1909). The proof
here depends on the fact that the derivative of an analytic function is itself analytic, as
stated in Theorem 1.

Theorem 2. Let [ be continuous on a domain D. If

(6) f f(@)dz=0
C

Jor every closed contour C lying in D, then f is analytic throughout D.

In particular, when D is simply connected, we have for the class of continuous
functions on D a converse of Theorem 1 in Sec. 46, which is the extension of the
Cauchy—Goursat theorem involving such domains.

To prove the theorem here, we observe that when its hypothesis is satisfied, the
theorem in Sec. 42 ensures that f has an antiderivative in D; that is, there exists an
analytic function F such that F’(z) = f{(z) ateach pointin D. Since f is the derivative
of F, it then follows from Theorem 1 above that f is analytic in D.

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = £ 2 and y = +2. Evaluate each of these integrals:

e tdz COS 7 zdz
(a) —= ) | ———dz; (o) ;
cz—(mi/2) c (2 + 8) c2z+1
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cosh z tan(z /2
7 dz; (e) WLS?E

(d) dz (=2 < xg < 2).

c < c(Z—xgp
Ans.(a) 2m; (B wi/4;, (©) —mif2; (d)0; (e) im sec’(xg/2).

2. Find the value of the integral of g(z) around the circle {z — i| = 2 in the positive sense
when

1
@e@)=——"75 Be= i

Ans. (@) /2; (b) /16.
3. Let C be the circle |z| = 3, described in the positive sense. Show that if

2_ . _n
g(wmfczz 20 (ul £3),

=W
then g(2) = 87i. What is the value of g(w) when [w| > 37

4. Let C be any simple closed contour, described in the positive sense in the z plane, and

write
3
77+ 2z
w) = - dz.
g(w) ]{:(wa)3

Show that g(w) = 6riw when w is inside C and that g(w) = 0 when w is outside C.

5. Show that if f is analytic within and on a simple closed contour C and z; is not on C,
then

f(2) dzm/’ f(Ddz
c

c Z—2 (z = z0)?

6. Let f denote a function that is continuous on a simple closed contour C. Following a
procedure used in Sec. 48, prove that the function

1 f(s)ds

2rni Jo s — 12

g(z) =

is analytic at each point z interior to C and that

' __1___ f(s)ds
g(2) = i | G2

at such a potnt.
7. Let C be the unit circle z = ¢’®(—m < @ < 7). First show that, for any real constant a,
eaz
—dz =2mi.
C Z

Then write this integral in terms of 8 to derive the integration formula

4
/ e@5% cos(asin9) do = 7.
0
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8. (a) With the aid of the binomial formula (Sec. 3), show that, for each value of n, the
function

1 n
e ;zn 72— 1) n=0,1,2,..)

Pn(z) =

is a polynomial of degree n.”

(b) Let C denote any positively oriented simple closed contour surrounding a fixed
point z. With the aid of the integral representation (4), Sec. 48, for the nth derivative
of an analytic function, show that the polynomials in part (&) can be expressed in the
form

P,(z) =

2 __ 1yn
f—gs—_ﬂ—ds n=0,1,2,...).
C

2”*‘%‘5 (S - Z)”+1

(c) Point out how the integrand in the representation for P, (z) in part (b) can be written
(s + /(s — D) if z = 1. Then apply the Cauchy integral formula to show that

P,(y=1 (n=0,1,2,...).
Similarly, show that
P(—=1)= (-1 (n=0,12,..)).
9. Follow the steps below to verify the expression

, 1 5) d:
fl. (Z) —— f(Y) )

i Jo (s —2)°

in the lemma in Sec. 48.
(a) Use the expression for f'(z) in the lemma to show that

£(s)ds

fle+A) - fl)y 1 [ fls)ds _ 1 [ 3(s — 7)Az — 2(Az)?
Az i Jo (s—2)3 27iJo (s —z— A)%s — 2)

(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C. Also, let M be the maximum value of | f(s)] on C and L the length of C. With
the aid of the triangle inequality and by referring to the derivation of the expression
for f’(z) in the lemma, show that when 0 < |Az| < d, the value of the integral on
the right-hand side in part (a) is bounded from above by

(3D|Az] +2|az12)ML
(d — |Az])2d?

(¢) Use the results in parts (a) and (b) to obtain the desired expression for f”(z).

* These are the Legendre polynomials which appear in Exercise 7, Sec. 37, when 7 = x. See the footnote
to that exercise.
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49. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

This section is devoted to two important theorems that follow from the extension of
the Cauchy integral formula in Sec. 48.

Lemma. Suppose that a function f is analytic inside and on a positively oriented
circle Cg, centered at zg and with radius R (Fig. 67). If My denotes the maximum
value of | f(2)| on Cp, then

n n'M R
0 Lﬂhﬂg CE =120,
Y X FIGURE 67

Inequality (1) is called Cauchy’s inequality and is an immediate consequence of
the expression

(n) -:_ﬂf f(2) dz _ 19
" (zp) 271 Jo, = e n=12,...),

which is a slightly different form of equation (5), Sec. 48. We need only apply
inequality (1), Sec. 41, which gives upper bounds for the moduli of the values of
contour integrals, to see that

| M |
<2 YRR (n=12...).

ff ™) (z0)

where M is as in the statement of the lemma. This inequality is, of course, the same
as inequality (1) in the lemma.

The lemma can be used to show that no entire function except a constant is
bounded in the complex plane. Our first theorem here, which is known as Liouville’s
theorem, states this result in a somewhat different way.

Theorem 1. If f is entire and bounded in the complex plane, then f(z) is constant
throughout the plane.
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To start the proof, we assume that f is as stated in the theorem and note that,
since f is entire, Cauchy’s inequality (1) with #n = 1 holds for any choices of z; and
R:

, M
(2) | f'(zp)| < 7’?.

Moreover, the boundedness condition in the statement of the theorem tells us that a
nonnegative constant M exists such that | £ (z)| < M forall z; and, because the constant
M p in inequality (2) is always less than or equal to M, it follows that

, M
3) FECHIESS

where z; is any fixed point in the plane and R is arbitrarily large. Now the number M
in inequality (3) is independent of the value of R that is taken. Hence that inequality
can hold for arbitrarily large values of R only if f'(zg) = 0. Since the choice of z; was
arbitrary, this means that f'(z) = 0 everywhere in the complex plane. Consequently,
f 1s a constant function, according to the theorem in Sec. 23.

The following theorem, known as the fundamental theorem of algebra, follows
readily from Liouville’s theorem.

Theorem 2. Any polynomial
P(z)=ap+a;z+ a222 + -+ a,z" (a, #0)

of degree n (n > 1) has at least one zero. That is, there exists at least one point zq such
that P(zp) =0.

The proof here is by contradiction. Suppose that P(z) is not zero for any value
of z. Then the reciprocal

Fo) = ——

P(z)
is clearly entire, and it is also bounded in the complex plane.
To show that it is bounded, we first write
7] p—1

1 +“'+ .
" " Z

() w=20 4
Zn

so that P(z) = (a, + w)z". We then observe that a sufficiently large positive number
R can be found such that the modulus of each of the quotients in expression (4) is less
than the number |a,|/(2n) when |z] > R. The generalized triangle inequality, applied
to n complex numbers, thus shows that |w| < |a,,|/2 for such values of z. Consequently,
when |z| > R,

4, + wl| = lla,| — [w]| > “’2’";
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and this enables us to write

(5) |P(2)| = |a, + w|Z"| > ?lzl" > L%”—‘R“ whenever |z| > R.
Evidently, then,
i
| (D)= o < TS whenever |z| > R.
n

So f is bounded in the region exterior to the disk |z| < R. But f is continuous in that
closed disk, and this means that f is bounded there too. Hence f is bounded in the
entire plane.

It now follows from Liouville’s theorem that f(z), and consequently P(z), is
constant. But P(z) is not constant, and we have reached a contradiction.”

The fundamental theorem tells us that any polynomial P(z) of degree n (n > 1)
can be expressed as a product of linear factors:

(6) P(D)=clz—z)(z—z22) - (T —2y),

where ¢ and z;, (k =1, 2, .. ., n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z;. Then, according to Exercise 10, Sec. 50,

P(z) =(z—z1)0,(2),

where Q(z) is a polynomial of degree n — 1. The same argument, applied to Q1(z),
reveals that there is a number z; such that

P(2) = (z — z2)(z — 22) 02(2),

where Q,(z) is a polynomial of degree n — 2. Continuing in this way, we arrive at
expression (6). Some of the constants 7 in expression (6) may, of course, appear more
than once, and it is clear that P(z) can have no more than n distinct zeros.

50. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a needed lemma.

Lemma. Suppose that |f(2)| < 1f(zp)| at each point z in some neighborhood
|z — zg| < € in which f is analytic. Then f(2) has the constant value f (zg) throughout
that neighborhood.

* For an interesting proof of the fundamental theorem using the Cauchy-Goursat theorem, see R. P
Boas, Ir., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.
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0 X FIGURE 68

To prove this, we assume that f satisfies the stated conditions and let z; be any
point other than z; in the given neighborhood. We then let p be the distance between
zj and zg. If C,, denotes the positively oriented circle |z — zy| = p, centered at z, and
passing through z, (Fig. 68), the Cauchy integral formula tells us that

. 1
0 flag) = — [ L@z

2ri Je, 72

and the parametric representation
z=zp+pe®  (0<6<2m)

for C,, enables us to write equation (1) as

2
(2) flzg) = 1 f(zo + pe'®) do.
2 Jo
We note from expression (2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
result is called Gauss’s mean value theorem.
From equation (2), we obtain the inequality

1 23'{ i
3) f o)l < ~——f 1f (2o + pei®)] db.
27 Jo
On the other hand, since
(4) 1 fzo+peD <1 f(z))l  (0<6<2m),
we find that

2w _ 27
fﬂ F (2o + pei®)| d6 < fo (o)l d6 = 27 f(zp)l.

Thus
2

1 .
) )= = f £ (2o + pe'®] db.
T J0
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It is now evident from inequalities (3) and (5) that

2

1 ;
|f(20)[--—-—f | f(zo + pe')| d8,
2 Jo

or

2n '
fO UGl = | F (2o + pe®)[1d0 = 0.

The integrand in this last integral is continuous in the variable 6; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0 <6 < 27.
Because the value of the integral is zero, then, the integrand must be 1dentically equal
to zero. That is,

(6) 1f(zo+ pe) =1f(zp)l  (0<86<2m).

This shows that | £ (z)| = | f(zg)| for all points z on the circle |z — zg| = p.

Finally, since z; is any point in the deleted neighborhood 0 < |z — zp| < &, we
see that the equation | f(2)| = | f (zg)| is, in fact, satisfied by all points z lying on any
circle |z — zg| = p, where 0 < p < &. Consequently, | f{z)| = | f(zp)| everywhere in
the neighborhood |z — zy| < e. But we know from Exercise 7(b), Sec. 24, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f(z) = f(zy) for each point z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the
maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then
| £ ()| has no maximum value in D. That is, there is no point 7 in the domain such

that | f ()| < | f(zo)l for all points z in it.

Given that f is analytic in D, we shall prove the theorem by assuming that | f(z)|
does have a maximum value at some point z in D and then showing that f(z) must
be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in
Sec. 26. We draw a polygonal line L lying in D and extending from z to any other
point P in D. Also, d represents the shortest distance from points on L to the boundary
of D. When D is the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points

200215225 - - -5 Zn—15 Zp
along L such that z,, coincides with the point P and

7 — 25| < d k=12,...,n).
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On forming a finite sequence of neighborhoods (Fig. 69)
Ng, N\, Ny, ..., N,_|, N,

where each Nj has center z; and radius d, we see that f is analytic in each of these
neighborhoods, which are all contained in D, and that the center of each neighborhood
Ny (k=1,2,...,n) lies in the neighborhood N, _,.

Since | f(z)| was assumed to have a maximum value in D at z,, it also has a
maximum value in N, at that point. Hence, according to the preceding lemma, f(z)
has the constant value f(z;) throughout Ny. In particular, f(z,) = f(zy). This means
that | f(z)| < | f(z))| for each point z in N}; and the lemma can be applied again, this
time telling us that

f(@) = f@z) = flzg)

when z is in N;. Since z; is in Ny, then, f(z) = f(z). Hence | f(2)] < | f(z7)] when
z 1s in Nj; and the lemma is once again applicable, showing that

f(2) = f(z) = f(zp)

when 7 is in N;. Continuing in this manner, we eventually reach the neighborhood N,
and arrive at the fact that f(z,) = f(zg).

Recalling that z,, coincides with the point P, which is any point other than z; in
D, we may conclude that f(z) = f(zy) for every point z in D. Inasmuch as f(z) has
now been shown to be constant throughout D, the theorem is proved.

If a function f that is analytic at each point in the interior of a closed bounded
region R is also continuous throughout R, then the modulus | £ (z)| has a maximum
value somewhere in R (Sec. 17). That is, there exists a nonnegative constant M such
that | f(z)| < M for all points z in R, and equality holds for at least one such point.
If f is a constant function, then | f(z)| = M for all z in R. If, however, f(z) is not
constant, then, according to the maximum modulus principle, | f(z)| # M for any
point z in the interior of R. We thus arrive at an important corollary of the maximum
modulus principle.



SEC. 50 Exercises 171

Corollary. Suppose that a function f is continuous on a closed bounded region R
and that it is analytic and not constant in the interior of R. Then the maximum value
of | f(2)| in R, which is always reached, occurs somewhere on the boundary of R and
never in the interior.

EXAMPLE. Let R denote the rectangular region 0 < x < 7, 0 < y < 1. The corol-
lary tells us that the modulus of the entire function f(z) = sin z has a maximum value
in R that occurs somewhere on the boundary, and not in the interior, of R. This can be
verified directly by writing (see Sec. 33)

|£(2)] = y/sin? x + sinh?
and noting that, in R, the term sin® x is greatest when x = 7 /2 and that the increasing
function sinh? y is greatest when y = 1. Thus the maximum value of | #(z)| in R occurs
at the boundary point z = (;r/2, 1) and at no other point in R (Fig. 70).

*>
(n/2,1)

o n *  FIGURE 70

When the function f in the corollary is written f(z) = u(x, y) +iv(x, y), the
component function w(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 25). For the
composite function g(z) = exp[ f(z)]is continuous in R and analytic and not constant
in the interior. Consequently, its modulus |g(z)| = exp[u(x, y)], which is continuous
in R, must assume its maximum value in R on the boundary. Because of the increasing
nature of the exponential function, it follows that the maximum value of u (x, y) also
occurs on the boundary.

Properties of minimum values of | f (z)| and u(x, y) are treated in the exercises.

EXERCISES

L. Let f be an entire function such that | f(z)| < Alz| for all z, where A is a fixed positive
number. Show that f(z) = a;z, where a, is a complex constant.
Suggestion: Use Cauchy’s inequality (Sec. 49) to show that the second derivative
f"(z) is zero everywhere in the plane. Note that the constant M in Cauchy’s inequality
18 less than or equal to A(jzg| + R).
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2. Suppose that f(z) is entire and that the harmonic function u(x, y) = Re[ f (z)] has an
upper bound uy; that is, u(x, y) <u, for all points (x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane.

Suggestion: Apply Liouville’s theorem (Sec. 49) to the function g(z) = expl f(2)].

3. Show that, for R sufficiently large, the polynomial P(z) in Theorem 2, Sec. 49, satisfies
the inequality

|P(z)| <2l|a,||z|” whenever |z] > R,

[Compare the first of inequalities (5), Sec. 49.]
Suggestion: Observe that there is a positive number R such that the modulus of
each quotient in expression (4), Sec. 49, is less than |a,|/n when |z] > R.

4. Let afunction f be continuous in a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming that f(z) # 0 anywhere in R, prove
that | f(z)| has a minimum value m in R which occurs on the boundary of R and never
in the interior. Do this by applying the corresponding result for maximum values (Sec.
50) to the function g(z) = 1/f(2).

S. Use the function f(z) = z to show that in Exercise 4 the condition f(z) # 0 anywhere
in R is necessary in order to obtain the result of that exercise. That is, show that | £(2)|
can reach its minimum value at an interior point when that minimum value is zero.

6. Consider the function f(z) = (z + 1)? and the closed triangular region R with vertices
at the points z =0, z =2, and z = {. Find points in R where | f (z)| has its maximum and
minimum valucs, thus illustrating results in Sec. 50 and Exercise 4.

Suggestion: Interpret | £ ()| as the square of the distance between z and —1.

Ans.z=2,7=90.

7. Let f(z) =u(x, y) + iv(x, y) beafunction that is continuous on a closed bounded region
R and analytic and not constant throughout the interior of R. Prove that the component
function u(x, y) has a minimum value in R which occurs on the boundary of R and never
in the interior. (See Exercise 4.)

8. Let f be the function f(z) = ¢% and R the rectangular region 0 < x < 1,0 <y <.
Ilustrate results in Sec. 50 and Exercise 7 by finding points in R where the component
function u(x, v) = Re[ f(z)] reaches its maximum and minimum values.

Ans.z=1,z=1+ mi.

9. Let the function f(z) = u(x, y) + iv(x, y) be continuous on a closed bounded region
R, and suppose that it is analytic and not constant in the interior of R. Show that the
component function v(x, y) has maximum and minimum values in R which are reached
on the boundary of R and never in the interior, where it is harmonic.

Suggestion: Apply results in Sec. 50 and Exercise 7 to the function g(z) = —if(z).

10. Let z, be a zero of the polynomial

Pit)=ap+az+az*+ - +a," (@, #0)
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of degree n (n > 1). Show in the following way that
P(z)=(z — z0)Q(2),

where ((z) is a polynomial of degree n — 1.
(a) Verify that

= -)@ 4 2k g *k=2,3,..).
(b) Use the factorization in part (a) to show that
P(z) — P(z9) = (z — 290 2(D),

where Q(z) is a polynomial of degree n — 1, and deduce the desired result from this.






CHAPTER

S

SERIES

This chapter is devoted mainly to series representations of analytic functions. We
present theorems that guarantee the existence of such representations, and we develop
some facility in manipulating series.

51. CONVERGENCE OF SEQUENCES

An infinite sequence

(1) L1325+« o5 lps -

of complex numbers has a limit 7 if, for each positive number &, there exists a positive
integer ng such that

2) iz, — z| <& whenever n > ny.

Geometrically, this means that, for sufficiently large values of n, the points z, lie in
any given & neighborhood of z (Fig. 71). Since we can choose & as small as we please,
it follows that the points z,, become arbitrarily close to z as their subscripts increase.
Note that the value of n; that is needed will, in general, depend on the value of ¢.
The sequence (1) can have at most one limit. That is, a limit z is unique if it exists
(Exercise 5, Sec. 52). When that limit exists, the sequence is said to converge to z; and
we write
(3) lim z, =z.

R—00

If the sequence has no limit, it diverges.

175
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Theorem. Supposethatz,=x,+iy,(n=12,..)andz=x+1iy. Then

(4) lim z, =2
. n—>00
if and only if
(5) lim x,=x and lim y,=y.
n—>0C n=>00

To prove this theorem, we first assume that conditions (5) hold and obtain
condition (4) from it. According to conditions (5), there exist, for each positive number
g, positive integers n and n, such that

£
|x, — x| < 5 whenever »n > n,

and

£
¥ — ¥l < 5 whenever n > n;.

Hence, if ny is the larger of the two integers n; and n5,

€ €
lx, — x| < S and |y, — vyl < > whenever n > ng.

At

Since
|(x, +iy,) — x+ivl=x, = x) +i(y, = VI <X, — x|+ |y, — ¥l
then,

g €
Izn——z!<§~+~ims whenever n > ny.

Condition (4) thus holds.
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Conversely, if we start with condition (4), we know that, for each positive number
g, there exists a positive integer ny such that

|(x, +iy,) — (x +iy)| <& whenever n > ny.
But
Xy — X| S |(xy = %) + iy — W = (x, +iy,) — (x +iy)|
and
1Yn =Y = |Gty = ) +i(yn = Y =[x +1y,) = (x +iy)];
and this means that
|x, —x| <& and |y,—y| <& whenever n > ng.

That is, conditions (5) are satisfied.
Note how the theorem enables us to write

Im (x, +iy,)= lim x_, +i lim
n—a»cx:( n In. n—o00 o 00 Yn

whenever we know that both limits on the right exist or that the one on the left exists.

EXAMPLE. The sequence

1
zn=—3+i m=12,...)
n

converges to ¢ since

lim (-—1-~+i)m Iim -l-—%-i m 1=0+4+i-1=1.

A 00 n3 R 00 n3 =00

By writing

lznmi{::;s

one can also use definition (2) to obtain this result. More precisely, for each positive
number ¢,

|z, —i| <& whenever n

1
B e—,
e
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52. CONVERGENCE OF SERIES

An infinite series

o0

(1) Y=zt nt o

n=1
of complex numbers converges to the sum § if the sequence

N
(2) Sv=Y Za=utnto+wy N=12,..)

n=|

of partial sums converges to S; we then write

fo'e)
3 ms
n=1

Note that, since a sequence can have at most one limit, a series can have at most one
sum. When a series does not converge, we say that it diverges.

Theorem. Supposethatz,=x,+iy, (n=12,...)and §=X +iY. Then

o0
3 Z z,=3S
n=1
if and only if
o o0
(4) Y x,=X and > =Y.
n=1 n=]
This theorem tells us, of course, that one can write
oC o0 oC
SN G tiv) = xat+i) v
n==1 n==1 n=1

whenever it is known that the two series on the right converge or that the one on the
left does.
To prove the theorem, we first write the partial sums (2) as

(5) Sy =Xn+iYy,

where

N N
XNxen and YN=Zyn.
n=1 n=1
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Now statement (3) is true if and only if

6 lim Sy =25;

() Nggo N

and, in view of relation (5) and the theorem on sequences in Sec. 51, limit (6) holds if
and only if

(7 lim Xy=X and Ilim Yy =Y.

N—o0 N—>oo
Limits (7) therefore imply statement (3), and conversely. Since X and Yy are the
partial sums of the series (4), the theorem here is proved.

By recalling from calculus that the nth term of a convergent series of real numbers
approaches zero as n tends to infinity, we can see immediately from the theorems in
this and the previous section that the same is true of a convergent series of complex
numbers. That is, a necessary condition for the convergence of series (1) is that
(8) lim z, =0.

n— G
The terms of a convergent series of complex numbers are, therefore, bounded. To be
specific, there exists a positive constant M such that |z,| < M for each positive integer
n. (See Exercise 9.)

For another important property of series of complex numbers, we assume that
series (1) is absolutely convergent. That is, when z,, = x,, + [y, the series

o0 o0
Dol =2 Jar+ v
nm'I nml

of real numbers ,/x2 + y2 converges. Since

X, < Jx2+¥2 and |y, < /x5 + 7

we know from the comparison test in calculus that the two series

oG o0
Y x, and ) Iyl
n=1 n=1

must converge. Moreover, since the absolute convergence of a series of real numbers
implies the convergence of the series itself, it follows that there are real numbers X and
Y to which series (4) converge. According to the theorem in this section, then, seties
(1) converges. Consequently, absolute convergence of a series of complex numbers
implies convergence of that series.

In establishing the fact that the sum of a series is a given number §, it is often
convenient to define the remainder py after N terms:

(9) pNzS—SN.
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Thus S = Sy + py; and, since |Sy — S| = |py — O}, we see that a series converges
to a number S if and only if the sequence of remainders tends to zero. We shall make
considerable use of this observation in our treatment of power series. They are series
of the form
o0

Zan(Z _2g)n zag+a1(z - Z(}) + ap(z —ZQ)2+ e -+an(z— Zg)n + -

n=0
where z, and the coefficients a, are complex constants and z may be any point in a
stated region containing zg. In such series, involving a variable z, we shall denote sums,
partial sums, and remainders by S(z), Sy (2), and py(z), respectively.

EXAMPLE. With the aid of remainders, it is easy to verify that

o0
(10) E "= -1—--1----- whenever |z| < 1.
: — 2
=0

We need only recall the identity (Exercise 10, Sec. 7)

1 — z1'1-}~1

1+z+22+~~+z”——_~i-~—-w (z#1)
to write the partial sums
N-1
Sy =) '=l+z+2+--+71 @#D
n=0
as
1-—~zN
Sy(z) =
11—z
1f
1
S(K) _ Ty,
- Z
then,
N
pn(2) =8(2) = Sy(z) = 1 (z#1).
Thus
2|V
lon ()| = ,
11—z

and it is clear from this that the remainders py(z) tend to zero when |z| < 1 but not
when |z| > 1. Summation formula (10) is, therefore, established.
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EXERCISES

1.

Show in two ways that the sequence

(=D"

Iy =—2+1 2

converges to —2.

Let r, denote the moduli and @, the principal values of the arguments of the complex
numbers z,, in Exercise 1. Show that the sequence 7, (n = 1, 2, .. .) converges but that
the sequence ©, (n =1, 2, ...) does not.

. Show that

if lim z,=2z, then lim |z,|=Izl.
3 O K30

Write z = re'?, where 0 < r < 1, in the summation formula that was derived in the

example in Sec. 52. Then, with the aid of the theorem in Sec. 52, show that

o0

o0
n _rcosf—r " _
E r cosn9m1m2rcosé+r2 and E r’ sinnf =

n=1 n=]

2 r sin @

1—2rcos@ +r?

when 0 < r < 1. (Note that these formulas are also valid when r =0.)

Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding resuit for a sequence of real numbers.

Show that

00 o0
it Y z,=8, then ) Z;=S.
n—1 n=1

Let ¢ denote any complex number and show that

oo

20
if Y z,=5, then » cz,=cS.

n=1 n=]

By recalling the corresponding result for series of real numbers and refeiring to the
theorem in Sec. 52, show that

o0 oo o0
if ZznzS and an=T, then Z(zn+wn):S+T.
n=1 n=]

=3

Let asequence z, (n = 1, 2, .. .) converge to a number z. Show that there exists a positive
number M such that the inequality |z,| < M holds for all . Do this in each of the ways
indicated below.

(a) Note that there is a positive integer n such that
2ol =z + (2, — 2} < |z] + 1

whenever n > ng.
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(b) Write z,, = x,, + iy, and recall from the theory of sequences of real numbers that
the convergence of x, and y, (n = 1, 2, .. .) implies that |x,| < M and |y,| = M,
(n=1,2,...) for some positive numbers M and M,.

53. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Suppose that a function f is analytic throughout a disk |z — 7| < Ry,
centered at 7o and with radius Ry (Fig. 72). Then f(2) has the power series represen-
tation

(1) f@=) az—z)" (22l <Ry,
~ n=0
where
(n)
) a, = F7k) —o012, ).

n!

That is, series (1) converges to f(z) when 2 lies in the stated open disk.

y
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This is the expansion of f(z) into a Taylor series about the point z,. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable. With
the agreement that

@@y = f(zy) and 0!=1,
series (1) can, of course, be written

flzo),. ., f'(zo)
TR Y

3) f@) = fz) + (z—20)%+---  (lz— 20l < Rp).
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Any function which is analytic at a point zy must have a Taylor series about 2.
For, if f is analytic at z;, it is analytic throughout some neighborhood [z — zg| < £ of
that point (Sec. 23); and ¢ may serve as the value of Ry in the statement of Taylor’s
theorem. Also, if f is entire, Ry can be chosen arbitrarily large; and the condition of
validity becomes |z — z3| < 00. The series then converges to f(z) at each point 7 in
the finite plane,

We first prove the theorem when zg = 0, in which case series (1) becomes

| = ™
@ =L gz <ry
n=0

n!

and is called a Maclaurin series. The proof when z; is arbitrary will follow as an
immediate consequence.

To begin the derivation of representation (4), we write |z| = r and let Cy denote
any positively oriented circle |z| = ry, where r < ry < R (see Fig. 73). Since f is
analytic inside and on the circle Cy and since the point z is interior to Cy, the Cauchy
integral formula applies:

5) fo) = — [ 18

2ni Jo, §s—z

FIGURE 73

Now the factor 1/(s — z) in the integrand here can be put in the form

| 1 1
©) =
s—z § 1—1(z/%)

and we know from the example in Sec. 52 that

(7) — =) "+
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when z is any complex number other than unity. Replacing z by z/s in expression (7),
then, we can rewrite equation (6) as

oY e
~ Sn+i Z (S-—Z)SN'

Multiplying through this equation by f(s) and then integrating each side with respect
to s around Cy, we find that

(8)

§—Z

f(s)ds_NZ: f(s)ds "+2Nf f(s)ds
Co

Co S—2 c, "1 (s — )V’
In view of expression (5) and the fact (Sec. 48) that

1 [ fyds _ f*0)

——————

27i Je, sntl n!

(n=0,1,2,...),

this reduces, after we multiply through by 1/(27i), to

0
©) fa=3 1 O @,
n=0 )
where
N d
(10) on(z) = z ....f_gf)._“.“_

2mi Je, (s — 2)sN
Representation (4) now follows once it is shown that
(11) lim pyn(z) =0.
N-—oo

To accomplish this, we recall that |z} = r and that Cy has radius ry, where ry > r. Then,
if s is a point on Cy, we can see that

s —zl= sl —lzll=rg—r.

Consequently, if M denotes the maximum value of | f(s)| on C,

N N

r M Mr r

oy £ — - = 27rg = . (_) -
2 (rg—rirg ro—r \7y

Inasmuch as (r/rg) < 1, limit (11) clearly holds.

To verify the theorem when the disk of radius Ry is centered at an arbitrary point
zg, we suppose that f is analytic when |z — zy| < Ry and note that the composite
function f(z + zg) must be analytic when |(z + zg) — zg| < Ry. This last inequality
is, of course, just |z| < Ry; and, if we write g(z) = f(z + Zg), the analyticity of g in
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the disk |z| < Ry ensures the existence of a Maclaurin series representation:

N Y1)
g(z) = Z g nf )z” (Iz] < Ry).
=0 )

That is,

o0

fe+z) =)

n=0

f(n) (ZG) Zn

: (Iz] < Rp).
n.

After replacing z by z — z, in this equation and its condition of validity, we have the
desired Taylor series expansion (1).

54. EXAMPLES

When it is known that f is analytic everywhere inside a circle centered at zg, conver-
gence of its Taylor series about z, to f(z) for each point z within that circle is ensured;
no test for the convergence of the series is required. In fact, according to Taylor’s theo-
rem, the series converges to f (z) within the circle about z whose radius is the distance
from z; to the nearest point z; where f fails to be analytic. In Sec. 59, we shall find
that this is actually the largest circle centered at zo such that the series converges to
f (z) for all z interior to it.

Also, in Sec. 60, we shall see that if there are constants ¢, (# =0, 1,2 .. .) such
that

F@) =) a)z—z)"

n=0

for all points z interior to some circle centered at zg, then the power series here must
be the Taylor series for f about zg, regardless of how those constants arise. This
observation often allows us to find the coefficients g, in Taylor series in more efficient
ways than by appealing directly to the formula a,, = f M (z4)/n!in Taylor’s theorem.

In the following examples, we use the formula in Taylor’s theorem to find the
Maclaurin series expansions of some fairly simple functions, and we emphasize the
use of those expansions in finding other representations. In our examples, we shall

freely use expected properties of convergent series, such as those verified in Exercises
7 and 8, Sec. 52.

EXAMPLE 1. Since the function f(z) = ¢° is entire, it has a Maclaurin series
representation which is valid for all z. Here £ (z) = e%; and, because f™(0) = 1, it
follows that

(1) =) — (lz] < 00).
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Note that if z = x + {0, expansion (1) becomes
=\ x"
E — (—o0 < x < 00).
n!

The entire function z2¢> also has a Maclaurin series expansion. The simplest
way to obtain it is to replace z by 3z on each side of equation (1) and then multiply
through the resulting equation by z%:

o0

I
2 32 3 n-t2
et = —_— < OC).
z E nlz (Iz )

n=0
Finally, if we replace n by n — 2 here, we have

5 3 00 3n——2
et = ) ek zl < 00).
Yoo (<

EXAMPLE 2. One can use expansion (1) and the definition (Sec. 33)
SiN Z =

to find the Maclaurin series for the entire function f(z) = sin z. To give the details,
we refer to expansion (1) and write

'}’I}I

iz i 1 > z
§in z = — [Z( Z( < ] Z[l—( 1)”] o (|z] < 00).
' n=0
But 1 — (—1)" = 0 when n is even, and so we can replace n by 2n + 1in this last series:
oG

1 ‘..}H-]zZ}H-l

sinz = — 1— 2”‘“] 7| < 00).
2i HZ_G [ - Qn + 1! (Jz] < 20)

Inasmuch as

this reduces to

) sin z = Z(m P (2] <00).
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Term by term differentiation will be justified in Sec. 59. Using that procedure
here, we differentiate each side of equation (2) and write

o0 n o0
cosz= -D* 4 ,,,2n+1ﬂz(_1)nm2_”._+_lw 2
— (2n+ 1! dz~ —~_ 7 2+
That is,
o0 Z2n
3 COS 7 = - z|l < 00).
3) ;0( o (@l <o)

EXAMPLE 3. Because sinh z = —i sin(iz) (Sec. 34), we need only replace z by iz
on each side of equation (2) and multiply through the result by —i to see that

o0 L2n+1
(4) sinh 7 = E — (|z] < 00).
= (2n + D!

Likewise, since cosh z = cos(iz), it follows from expansion (3) that

o0 . 2n

(5) C08h32£ o (Iz] < 00).

Observe that the Taylor series for cosh z about the point zy = —27 i, for example,
is obtained by replacing the variable z by z + 27i on each side of equation (5) and
then recalling that cosh(z 4+ 2ni) = cosh z for all z:

o0 i n
cosh z = Z z TQ::;:) (Iz] < 00).

n=0

EXAMPLE 4. Another Maclaurin series representation is

1 20
©6) —=> " (zl<D.
l1—z
=0
The derivatives of the function f(z) = 1/(1 — z), which fails to be analytic at 7 = 1,
are
YR _ ‘
Z)= n=0,12,...);
rP0=gm ¢ )

and, in particular, f (n )(O) = n!. Note that expansion (6) gives us the sum of an infinite
geometric series, where z is the common ratio of adjacent terms:

1
1+Z+ZZ+Z3+“'31—WE (]Z§<1)
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This is. of course, the summation formula that was found in another way in the example
in Sec. 52.

If we substitute —z for z in equation (6) and its condition of validity, and note
that |z] < 1 when | — z| < 1, we see that

1 o0
— =) (-D%" 7| < 1).
e % (lz) < 1)

If, on the other hand, we replace the variable z in equation (6) by 1 — z, we have
the Taylor series representation

1 oC
=) =)'e-D" (z-l<D.
=0

z
This condition of validity follows from the one associated with expansion (6) since
|1—2z] < listhesameas |z — 1] < 1.

EXAMPLE 5. For our final example, let us expand the function

1422 1 2(1+2H -1 1 ( 1 )
B+ 2 14 22 23 14 22

into a series involving powers of z. We cannot find a Maclaurin series for f(z) since
it is not analytic at z = 0. But we do know from expansion (6) that

f@)=

=l -l S <D,
Hence, when 0 < |z] < 1,
! 24, .6 8 1 1 3 s
f@==5Q-1+ -+ -2+ )= +-—2+T -+
< 2z

We call such terms as 1/z> and 1/z negative powers of z since they can be written 773

and z7!, respectively. The theory of expansions involving negative powers of z — 2
will be discussed in the next section.

EXERCISES*
1. Obtain the Maclaurin series representation
Z cosh(zz) * i il (Jz] < 00).
o (2n)!

*In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 54.
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2. Obtain the Taylor series

el =g Z S .....,il)n (|]z — 1] < 0Q)
— n!

for the function f(z) =e* by
(@ using fP(D) (n=0,1,2,..);  (b) writing e* = e*le.

3. Find the Maclaurin series expansion of the function
Z Z 1

S 19 9 149

ans. 3 CW it < v3),

2n+2
na=0 3

4. Show that if f(z) = sin z, then
fe0)=0 and VO =" (=012,..)).

Thus give an alternative derivation of the Maclaurin series (2) for sin z in Sec. 54.

5. Rederive the Maclaurin series (3) in Sec. 54 for the function f(z) = cos by
(a) using the definition

etﬁ + e——tZ

cos 7 =
2

in Sec. 33 and appealing to the Maclaurin series (1) for ¢ in Sec. 54;
(b) showing that

0 =(=n" and f@PO)=0 (=0,12,...).

6. Write the Maclaurin series representation of the function f(z) = sin(z2), and point out
how it follows that

A0 =0 and f@*YO)=0 (=0,12,...).

7. Derive the Taylor series representation

%;ZM (2 —i| < V2).

(1 _ i)n+1

Suggestion: Start by writing

1 1 _ 1 1
1—7 (=-i)—@—-i) 1—i l=(z—i)/A-i)
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8. With the aid of the identity (see Sec. 33)

. b/
€08 Z = — 81N Z““z— R

expand cos z into a Taylor series about the point zg = /2,

9, Use the identity sinh(z + i) = — sinh z, verified in Exercise 7(a), Sec. 34, and the fact
that sinh z is periodic with period 2 i to find the Taylor series for sinh z about the point
Z(} =7ml.

oo
(Z _ Hi)2"+1 ’
Ans.—z Gn s D)l (lz — mi| < 00).

10. What is the largest circle within which the Maclaurin series for the function tanh z
converges to tanh z? Write the first two nonzero terms of that series.

11. Show that when z £ 0,

(a)fim——1»+l+l+ RS
2 72 2t 31 4!
.2 2 .6 10
sin(z 1 z 2

py D 1L L

¢ 2 35T
12, Derive the expanqions
smh z 2n»+wl

—W+Z(2n+3)! (0 < |z] < o0);

(@)

1 Z 1 1
3 —_— 73 . J
b) z cosh(—z-) =3 +z° 4 E : on ) 2l (0 < |z]| < 00).
A=

13. Show that when 0 < |z] < 4,

55. LAURENT SERIES

If a function f fails to be analytic at a point z, we cannot apply Taylor’s theorem
at that point. It is often possible, however, to find a series representation for f(z)
involving both positive and negative powers of z — zq. (See Example 5, Sec. 54, and
also Exercises 11, 12, and 13 for that section.) We now present the theory of such
representations, and we begin with Laurent’s theorem.

Theorem. Suppose that a function f is analytic throughout an annular domain
Ry < |z — 2| < Ry, centered at zy, and let C denote any positively oriented simple
closed contour around z, and lving in that domain (Fig. 74). Then, at each point in
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the domain, f(2) has the series representation

1 f@= Z a,(z — 20)" + Z (R, < |z — 20} < Ry),
(z — Z(})”
where
1 f2)dz _
2) ay=7— fc Py (n=0,1,2,..)
and
3) b = — f(@) dz n=0,1,2,...).

2mi Jo (z — zp) "t}

X
FIGURE 74
Expansion (1) is often written
0
4) fO= Y clz—z2)" (Ri<lz—2zl <Ry,
H=0x0
where
(5) ¢, = 1,[ f(2) dz (n=0,+1,+2,...).
2ri Je (z — zg)" !

In either of the forms (1) or (4), it is called a Laurent series.

Observe that the integrand in expression (3) can be written f(z)(z — zg)"™ I Thus
it is clear that when f is actually analytic throughout the disk |z — zg| < Ky, this
integrand is too. Hence all of the coefficients b, are zero; and, because (Sec. 48)

(n)
._1..... f(Z) dz f (ZG) (n= 0,1, 2, ),

2mi Jeo (z — zg)”‘“i'l n!
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expansion (1) reduces to a Taylor series about zy,.

If, however, f fails to be analytic at 7y but is otherwise analytic in the disk
|z — zy| < R», the radius R; can be chosen arbitrarily smail. Representation (1) is
then valid in the punctured disk 0 < |z — 2| < R;. Similarly, if f is analytic at each
point in the finite plane exterior to the circle |z — zg] = Ry, the condition of validity is
R| < |z — zg| < 0o. Observe that if f is analytic everywhere in the finite plane except
at z,, series (1) is valid at each point of analyticity, or when 0 < |z — z¢| < 00.

We shall prove Laurent’s theorem first when zg = 0, in which case the annulus is
centered at the origin. The verification of the theorem when zg is arbitrary will follow
readily.

We start the proof by forming a closed annular region r; < |z] < r; that is con-
tained in the domain R; < |z| < R, and whose interior contains both the point z and
the contour C (Fig. 75). We let C; and C, denote the circles |z| = ry and [z| = ry, re-
spectively, and we assign those two circles a positive orientation. Observe that f is
analytic on C; and C,, as well as in the annular domain between them.

Next, we construct a positively oriented circle y with center at z and small enough
to be completely contained in the interior of the annular region r; < |z| < r,, asshownin
Fig. 75. It then follows from the extension of the Cauchy-Goursat theorem to integrals
of analytic functions around the oriented boundaries of multiply connected domains
{(Theorem 2, Sec. 46) that

f(s)ds

§—=2

fo)ds _ f ferds _
4

Cg § =2 Cl_ §—2Z

}?

FIGURE 75
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But, according to the Cauchy integral formula, the value of the third integral here is
2mif(z). Hence

(©) foy= L [ L9041 [ fds

2ni Jo, §—2 2ni Jo, 7z— 5

Now the factor 1/(s — z) in the first of these integrals is the same as in expression
(5), Sec. 53, where Taylor’s theorem was proved; and we shall need here the expansion

(7

1
§ — 7 ZS-H (sz)sN’
which was used in that earlier section. As for the factor 1/(z — s) in the second integral,

an interchange of s and z in equation (7) reveals that

I B 1 N

Z — - $"’"’""ﬂ Zn+1 ZN 7 — s

If we replace the index of summation n here by n — 1, this expansion takes the form

1 sY

(8) — - ' 3
7—5 n_..l —J’H-l 7" ZN z—85

which is to be used in what follows.
Multiplying through equations (7) and (8) by f(s)/(2mi) and then integrating
each side of the resulting equations with respect to s around C; and C, respectively,

we find from expression (6) that

N—1
) f@= Z a,2" + pn(2) + Z + oy (),
n= l
where the numbers a, (n =0,1,2,..., N —1Dand b, (n=1,2,..., N) are given
by the equations
1
(10) g, = —— f(s)ds} bﬁm”i": f(s)ds
27i Jo, s*tl 2 s+l
and where
N N
Z f(s)ds 1 f s™ f(s) ds
) — ———, ONIJ) = .
PN = 2ni Je, (s — 2)sN (@) 2mizh c, -5

As N tends to oo, expression (9) evidently takes the proper form of a Laurent
serics in the domain R, < |z] < Ry, provided that

(1D lim py(z)=0 and lim on(z) =0
N-00 N-—>00
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These limits are readily established by a method already used in the proof of Taylor’s
theorem in Sec. 53. We write |z] =r, so that ry <r < r;, and let M denote the
maximum value of | f(s)| on Cy and C,. We also note that if s is a point on C5, then
ls —z| > ry —r;and if s is on Cy, |z — s| > r — ry. This enables us to write

M N N
oy (D] < —2 (i) and oy (2)] < M (ﬂ*) :

g —r s

Since (r/ry) < 1 and (r{/r) < 1, it is now clear that both py(2) and oy (z) have the
desired property.

Finally, we need only recall Corollary 2 in Sec. 46 to see that the contours used in
integrals (10) may be replaced by the contour C. This completes the proof of Laurent’s
theorem when z; = 0 since, if z is used instead of 5 as the variable of integration,
expressions (10) for the coefficients a, and b,, are the same as expressions (2) and (3)
when zy = 0 there.

To extend the proof to the general case in which zg is an arbitrary point in the
finite plane, we let f be a function satisfying the conditions in the theorem; and, just
as we did in the proof of Taylor’s theorem, we write g(z) = f(z + zg). Since f(z) is
analytic in the annulus R < |z — zg| < R,, the function f(z + z) is analytic when
Ry < |(z + zg) — 7] < R,. That s, g is analytic in the annulus R, < |z] < R,, whichis
centered at the origin. Now the simple closed contour C in the statement of the theorem
has some parametric representation z = z(f) (@ <t < b), where

(12) Ry <|2(t) — 2ol < Ry
for all ¢ in the interval ¢ <t < b. Hence if I denotes the path
(13) z=2z() — 2 (@ <t <b),

I" is not only a simple closed contour but, in view of inequalities (12), it lies in the
domain R, < |z| < R,. Consequently, g(z) has a Laurent series representation

o0 o0 b
(14) g@=3 a"+) - (Ri<ll<Ry,
=0 n=1|
where
1 g(z2) dz .
(15) a, — 5;’; - Z”"H (fi = 0, 1, 2, - .),
(16) b= [ 8R4 o)

2xi Jr gzl

Representation (1) is obtained if we write f(z + zp) instead of g(z) in equation
(14) and then replace z by z — zg in the resulting equation, as well as in the condition of
validity Ry < |z} < R,. Expression (15) for the coefficients a,, is, moreover, the same
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as expression {(2) since

féf@dzg P OO f f(z)dz
r C

Pl a [z() —zo)"t! - (7 — zo)" !

Similarly, the coefficients b, in expression (16) are the same as those in expres-
sion (3).

56. EXAMPLES

The coefficients in a Laurent series are generally found by means other than by
appealing directly to their integral representations. This is illustrated in the examples
below, where it is always assumed that, when the annular domain is specified, a Laurent
series for a given function in unique. As was the case with Taylor series, we defer the
proof of such uniqueness until Sec. 60.

EXAMPLE 1. Replacing z by 1/z in the Maclaurin series expansion
2

e—zn’—l-l- +21+3g+ (2] < o0),

we have the Laurent series representation

1z _ _
€ = —1+ + +.,‘ O<Z<m‘
o' Iz 212 31 0 < |z} < o)

Note that no positive powers of z appear here, the coefficients of the positive
powers being zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 55, that coefficient 1s the number

1
b LD e 1/2 dZs
2mi

where C is any positively oriented simple closed contour around the origin. Since

bl = 1, then,
f el/? dz =2mi.
C

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. ©.
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EXAMPLE 2. The function f(z) =1/(z —i )2 is already in the form of a Laurent
series, where zg = 7. That is,

f@= Y ce-0" ©O<lz—i| <o),

n=—00

where ¢_, = 1 and all of the other coefficients are zero. From formula (5), Sec. 55, for
the coefficients in a Laurent series, we know that

1 daz

Cp = — n=0,41, +2,...),
27i Jo (z —int3 ( )

where C is, for instance, any positively oriented circle |z — | = R about the point
Zo = {. Thus (compare Exercise 10, Sec. 40)

[ dz {0 when n # =2,
C

(z — int3 | 27i whenn=-2.

EXAMPLE 3. The function
—-1 1 1

z—-Diz-2 z—-1 z-2

which has the two singular points z = 1 and z = 2, is analytic in the domains

(D f@)=

¥

Izl <1, 1<|z]<2, and 2 <|z] <o0.

In each of those domains, denoted by Dy, D,, and Ds, respectively, in Fig. 76, f(z) has
series representations in powers of z. They can all be found by recalling from Example
4, Sec. 54, that

1 o0
— =) (<D
-2z n=0

FIGURE 76
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The representation in D, is a Maclaurin series. To find it, we write

1 1 1
(i P g

and observe that, since |z| < 1 and |z/2| < 1in Dy,

@  J@=-Y 4y =@ N (<D,

n=0 n=0 n=0
As for the representation in D,, we write

1 1 1 1

Since |1/z] < 1and |z/2] < 1 when 1 < |z| < 2, it follows that

f(@)= ‘Z“;;“"l“-*-z:(:}znﬂ (1<lz| <2).
n= H =

If we replace the index of summation # in the first of these series by n — 1 and then
interchange the two series, we arrive at an expansion having the same form as the one
in the statement of Laurent’s theorem (Sec. 55):

o0 n 00

() fo=Y i +Y 5 d<li<.

n=0 n=1

Since there is only one such representation for f(z) in the annulus 1 < |z| < 2,
expansion (3) is, in fact, the Laurent series for f(z) there. |

The representation of f(z) in the unbounded domain D is also a Laurent series.
If we put expression (1) in the form

1 1 1 1
z 1-(1/z) z 1-(2/z2)

and observe that |1/z] < 1and |2/z] < 1 when 2 < |z] < oo, we find that

=1 e, L A e T
f(Z) = Z Zn-{—l - Z Zn-{—l - Z Zn-i—l (2 < !Zl < OO)
n=0 n=0 n=—0
That 1s,
@ r0=3""2" Gcpz<oo
zﬂ

n=1
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EXERCISES

1. Find the Laurent series that represents the function

| A
f(Z) = Zz Sll’l(—i)
Z
in the domain 0 < |z| < oo.

(—=D" ]
1+ .
Z (2)‘1 + 1)3 z4”-

2. Derive the Laurent series representation

e 0 1 .
(z+1? e[g(n+2)!+z+1+(z+1)z] O <lz+ 1 <o)

3. Find a representation for the function

b
1+ (1/2)

1
1+ 2

fz)=

1
i
in negative powers of z that is valid when 1 < |z| < o<,

s, Z (— 1)n+1

4. Give two Laurent series expansions in powers of z for the function

N
22(1—2)

and specify the regions in which those expansions are valid.
o0

1 1
AnsZz+ +3 O<lzl<1); —> — (I<lzl<oo).
n=0 < n=3 <
5. Represent the function
, 1
f@)= f+ "

(a) by its Maclaurin series, and state where the representation is valid;
(b) by it Laurent series in the domain 1 < {z| < oo.

o0 00

) 1

Ans. (@) =12 E 2t (zl <1y, (B)Y1+42 E lz—n-.
n=1 n=

6. Show that when 0 < |z — 1] < 2,

o0

z ( ) 1
= —3 — .
(z—-D@E-3) Z nt2 2(z—1

a=0
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7. Write the two Laurent series in powers of z that represent the function

in certain domains, and specify those domains.

o0
ans. (I L 0 <2l < D Z(

n=0

l)n-i-l

ntl (1 < |z] < o0).

8. (a) Let a denote a real number, where —1 < a < 1, and derive the Laurent series
representation

ISQ
:xa

-3

n«—«l

(Ja| < iz| < 00).
Z-—dq

(b) Whrite z = ¢'? in the equation obtained in part (@) and then equate real parts and
imaginary parts on each side of the result to derive the summation formulas

2 a sin @

1—2acosf +a?’

oG
and E a® sin nf =

n=1

oG
" acosf —a
Za cos né =
1 —2acos@ + a?

where —1 < a < 1. (Compare Exercise 4, Sec. 52.)

9. Suppose that a series

Z x[n}z™"

Hom e O

converges to an analytic function X (z) in some annulus R, < |z| < R,. That sum X (z)
is called the z-transform of x[n] (n =0, 1, £2, .. .).* Use expression (5), Sec. 55, for
the coefficients in a Laurent series to show that if the annulus contains the unit circle
|z| = 1, then the inverse z-transform of X (z) can be written

1 [~ .

x[n]= — [ X@Ehe"ds (n=0, £1, £2,..)).

27 J_» ‘

10. (a) Let z be any complex number, and let C denote the unit circle
w=e? (-w<¢<m)

in the w plane. Then use that contour in expression (35), Sec. 55, for the coefficients
in a Laurent series, adapted to such series about the origin in the w plane, to show

*The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.
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that

eXPE (w - i)] = E Jp()w" (0 < |w| <00),

w
N=-=00

where

T J-

J () = 51— [ﬂ exp[—i{n¢ — z sin p)]d¢p (n=0, %1, £2,...).

(b) With the aid of Exercise 6, Sec. 37, regarding certain definite integrals of even and
odd complex-valued functions of a real variable, show that the coefficients in part
(a) can be written™

b4
J,(2) = i / cos{ng — z sin @) dp (n=0, £1, £2, .. .).
7 Jo

11. (@) Let f(z) denote a function which is analytic in some annular domain about the origin

~ that includes the unit circle z = ¢/ (= < ¢ < 7). By taking that circle as the path

of integration in expressions (2) and (3), Sec. 55, for the coefficients a,, and b,, in a
Laurent series in powers of z, show that

& Lo i £ [ renl(a) (5
fo=-—[ fe )d¢+2n;_ﬂf(e )Lw +( =) | 40

——1T _~r

when z is any point in the annular domain.

(b) Write u(8) =Relf (€'?))], and show how it follows from the expansion in part (a)
that

-

1 b1 | o T
u(®) = — f w@)dp+~ 3 f u(9) cos[n(6 — $))do.
2 T/

This is one form of the Fourier series expansion of the real-valued function u() on
the interval — < @ < 7. The restriction on u(#) is more severe than is necessary in
order for it to be represented by a Fourier series.”

57. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and any corollaries
there can easily skip their proofs in order to reach Sec. 61 more quickly.

* These coefficients J,(z) are called Bessel functions of the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Problems,” 6th ed., Chap. 8, 2001.

 For other sufficient conditions, see Secs. 31 and 32 of the book cited in the footnote to Exercise 10.
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We recall from Sec. 52 that a series of complex numbers converges absolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series

o0

(1) Y a,(z — z9)"

n=0

converges when 7 = 71 (2 # 2p), then it is absolutely convergent at each point 7 in the
open disk |z — zg| < Ry, where Ry = |z1 — zp| (Fig. 77). |

y
f/‘/oz ‘\x\\
fl /21
f R, !
\ Zg J
\
\\\ ///
0 ¥  FIGURE 77

We first prove the theorem when zg = 0, and we assume that the series
o0
Y a,i  (21#0)
n=0

converges. The terms a,,z] are thus bounded; that is,
la,2il<M  (n=0,1,2,..)
for some positive constant M (see Sec. 52). If |z| < |z1] and we let p denote the modulus

|z/z1], we can see that

n

< Mp" n=0,1,2,...),

Ianzn{ = Ianz?
21

where p < 1. Now the series whose terms are the real numbers Mp"(n =0, 1, 2,...)
is a geometric series, which converges when p < 1. Hence, by the comparison test for
series of real numbers, the series

> la,z"]

n=0
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converges in the open disk |z| < |z;; and the theorem is proved when z = 0.
When 7 is any nonzero number, we assume that series (1) converges at z = z,
(zq # zp)- If we write w = z — 2, series (1) becomes

o0

(2) Z a,w”";

n=0

and this series converges at w = z; — zo. Consequently, since the theorem is known to
be true when z, = 0, we see that series (2) is absolutely convergent in the open disk
lw| < |z; — zol. Finally, by replacing w by z — 7 in series (2) and this condition of
validity, as well as writing R; = |z — 2o, we arrive at the proof of the theorem as it
is stated.

The theorem tells us that the set of all points inside some circle centered at 2
is a region of convergence for the power series (1), provided it converges at some
point other than z. The greatest circle centered at 2 such that series (1) converges at
each point inside is called the circle of convergence of series (1). The series cannot
converge at any point z, outside that circle, according to the theorem; for if it did, it
would converge everywhere inside the circle centered at zg and passing through z5.
The first circle could not, then, be the circle of convergence.

Our next theorem involves terminology that we must first define. Suppose that
the power series (1) has circle of convergence |z — zol = R, and let §(2) and Sy (z)
represent the sum and partial sums, respectively, of that series:

oo N-—1
S(2)=) az—z0)", Sn@)= Y a,z—z2)"  (z—zl < R).
n=0 n=0
Then write the remainder function
(3) pn(2) = 8(2) — Sy (@) (Iz — zgl < R).

Since the power series converges for any fixed value of z when |z — 73] < R, we
know that the remainder py (z) approaches zero for any such z as N tends to infinity.
According to definition (2), Sec. 51, of the limit of a sequence, this means that,
corresponding to each positive number ¢, there is a positive integer N, such that

(4) lon(2)| <& whenever N > N,.

When the choice of N, depends only on the value of ¢ and is independent of the point
z taken in a specified region within the circle of convergence, the convergence is said
to be uniform in that region
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Theorem 2. If 7y is a point inside the circle of convergence |z — 79l = R of a power
series

(5) Y a,(z— z0)",

=

then that series must be uniformly convergent in the closed disk |z — 7ol < Ry, where
R, =z; — zo| (Fig. 78).

*  FIGURE 78

As in the proof of Theorem 1, we first treat the case in which z = 0. Given that
z, is a point lying inside the circle of convergence of the series

(6) > aud,

n=0

we note that there are points with modulus greater than |z,| for which it converges.
According to Theorem 1, then, the series

oo
(7) > lanz]l
n=0

converges. Letting m and N denote positive integers, where m > N, we can write the
remainders of series (6) and (7) as

n
— 1 n
(8) py(x)= lim % a2
n=N
and
m
S + n
©) oy= lim_ }; 2,211,
n=

respectively.
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Now, in view of Exercise 3, Sec. 52,

lon ()| = mlimoo

'
L)

m
3 a0
n=N

and, when |z| < |z,

m

> e

a=N

21 n m
< Y laglzl" <Y lagllzil’ = Y lan2il.
n=N

n—N n=N

Hence
(10) lon ()| <oy when |z] <lzyl.

Since oy are the remainders of a convergent series, they tend to zero as N tends to
infinity. That is, for each positive number ¢, an integer N, exists such that

(11) oy <& whenever N > N,.

Because of conditions (10) and (11), then, condition (4) holds for all points z in the disk
|z| < |z,); and the value of N, is independent of the choice of z. Hence the convergence
of series (6) is uniform in that disk.

The extension of the proof to the case in which z, is arbitrary is, of course,
accomplished by writing w = 7 — z¢ in series (3). For then the hypothesis of the
theorem is that z; — zy is a point inside the circle of convergence |w| = R of the series

o0

E a,w".

n=0

Since we know that this series converges uniformly in the disk |w| < |21 — 2o, the
conclusion in the statement of the theorem is evident.

58. CONTINUITY OF SUMS OF POWER SERIES

Our next theorem is an important consequence of uniform convergence, discussed in
the previous section.

Theorem. A power series

00

(1) Zan(Z—ZQ)H

n=0

represents a continuous function S(z) at each point inside its circle of convergence
IZ - A.(}‘ = R.
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Another way to statc this theorem is to say that if S(z) denotes the sum of series
(1) within its circle of convergence |z — z¢| = R and if z is a point inside that circle,
then, for each positive number &, there is a positive number § such that

(2) |S(z) — 8(z))| <& whenever |z —z4| <3,

the number § being small enough so that z lies in the domain of definition |z — zg| < R
of S(z). {See definition (4), Sec. 17, of continuity.]

To show this, we let Sy (z) denote the sum of the first N terms of scries (1) and
write the remainder function

pn(2) = 8(z) — Sy (2) (lz — zol < R).

Then, because

$§z) =Sy @) + pn(2) (Iz — zol < R),

one can see that

1S(z) — S| =Sy (=) — Sn(z)) + pn(2) — py (DI

or

(3) 1S(z) — Sz 2 ISy (2) — Sn @] + len (D] + lex(zDI.

If z is any point lying in some closed disk |z — zg| < Ry whose radius Ry is greater
than |2 — zo| but less than the radius R of the circle of convergence of series (1) (see
Fig. 79), the uniform convergence stated in Theorem 2, Sec. 57, ensures that there is
a positive integer N, such that

4) lon(2)] < g whenever N > N,.

In particular, condition (4) holds for each point z in some neighborhood [z — 74| < 6
of z, that is small enough to be contained in the disk |z — zp| < Ry.

FIGURE 79
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Now the partial sum Sy (z) is a polynomial and is, therefore, continuous at z| for
each value of N. In particular, when N = N, + 1, we can choose our § so small that

(5) |[Sn(z) — Sy(zp)l < % whenever |z — z¢] < 8.

By writing N = N, + 1 in inequality (3) and using the fact that statements (4) and (5)
are true when N = N, + |, we now find that

1S(z2) — S(zy)| < % + % + % whenever |z — z¢] < 3.

This is statement (2), and the corollary is now established.
By writing w = 1/(z — zp), one can modify the two theorems in the previous

section and the theorem here so as to apply to series of the type

o

(6) Z _,._,“{)..'}........_

— H
— (Z—120)

If, for instance, series (6) converges at a point z;(z; # z¢), the series

80
> by
n=1

must converge absolutely to a continuous function when

1
lz1 — Zol

(7) jw| <

Thus, since inequality (7) is the same as {7 — 7| > |29 — Zpl, series (6) must converge
absolutely to a continuous function in the domain exterior to the circle |z — zo| = Ry,
where R| = |z — 7p|- Also, we know that if a Laurent series representation

o0

FR =) a,z—2)" +Z

_ n
n=0 Z ZG)

is valid in an annulus R, < |z — zg| < R, then both of the series on the right converge
uniformly in any closed annulus which is concentric to and interior to that region of
validity.

59. IN’TEGRATION AND DIFFERENTIATION OF
POWER SERIES

We have just seen that a power series

o0

(1) S(2) =) a,(z~z9)"

n=0
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represents a continuous function at each point interior to its circle of convergence. In
this section, we prove that the sum §(z) is actually analytic within that circle. Our
proof depends on the following theorem, which is of interest in itself.

Theorem 1. Let C denote any contour interior to the circle of convergence of the
power series (1), and let g(z) be any function that is continuous on C. The series
formed by multiplying each term of the power series by g(z) can be integrated term
by term over C; that is,

(2) [C g(2)S(z)dz = Z a, f(; g(2)(z — zp)" dz.

n=0

To prove this theorem, we note that since both g(z) and the sum S(z) of the power
series are continuous on C, the integral over C of the product

N-1
2(2)SG) =) _ a,8(2)(z — 20)" + &(2)pn (),

n=0

where py(z) is the remainder of the given series after N terms, exists. The terms of
the finite sum here are also continuous on the contour C, and so their integrals over
C exist. Consequently, the integral of the quantity g(z) oy (z) must exist; and we may
write

N-1

O [ 2@50d=Y a [ s@6-n"d+ [ s@ondz.

n=0

Now let M be the maximum value of |g(z)| on C, and let L denote the length of
C. In view of the uniform convergence of the given power series (Sec. 57), we know
that for each positive number ¢ there exists a positive integer N, such that, for all points
zonC,

lon(2)| <& whenever N > N,.

Since N, is independent of z, we find that

< MeL whenever N > N,;

f g()pnN(2) dz
C

that is,

lim f g(@Dpn(z) dz=0.
N—x Jo
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Tt follows, therefore, from equation (3) that

[s@s@dz= jim }: [ s - d

This is the same as equation (2), and Theorem 1 is proved.

If |g(z)| = 1 for each value of z in the open disk bounded by the circle of
convergence of power series (1), the fact that (z — zg)" is entire when n = 0,12,..
ensures that

fg(z)(z-z:o)”dz=[(zmz0)"dzx0 n=0.12,..)
C C

for every closed contour C lying in that domain. According to cquation (2), then,

f S(z)dz=0
C

for every such contour; and, by Morera’s theorem (Sec. 48), the function §(z) i8
analytic throughout the domain. We state this result as a corollary.

Corollary. The sum S(z) of power series (1) is analytic at each point z interior to the
circle of convergence of that series.

This corollary is often helpful in establishing the analyticity of functions and in
evaluating limits.

EXAMPLE 1. To illustrate, let us show that the function defined by the equations
F(2) = { (sinz)/z whenz#0,

when z =0

is entire. Since the Maclaurin series expansion

‘_n—i-l
sin z = ;}(P )" m
represents sin z for every value of z, the series
2n Z’.Z 14
“ Z(w)(2n+l)‘ TR TR

n=0

obtained by dividing each term of that Maclaurin series by z, converges to f(2) when
z # 0. But series (4) clearly converges to f(0) when z = 0. Hence f(z) is represented
by the convergent power series (4) for all z: and f is, therefore, an entire function.
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Note that, since f is continuous at z = 0 and since (sin z)/z = f(z) when z £ 0,

(5) lim 222 — im f(z) = £(0) = 1.

z—=0 7 z—0
This is a result known beforehand because the limit here is the definition of the
derivative of sin z at z = 0.

We observed at the beginning of Sec. 54 that the Taylor series for a function f
about a point zo converges to f(z) at each point 7 interior to the circle centered at z;
and passing through the nearest point z; where f fails to be analytic. In view of the
above corollary, we now know that there is no larger circle about 7 such that at each
point 7 interior to it the Taylor series converges to f(z). For if there were such a circle,
f would be analytic at z;; but f is not analytic at z;.

We now present a companion to Theorem 1.

Theorem 2. The power series (1) can be differentiated term by term. That is, at each
point 7 interior to the circle of convergence of that series,

o0

(6) §'(2) =) na,(z —z)"""

n=l1

To prove this, let z denote any point interior to the circle of convergence of series
(1); and let C be some positively oriented simple closed contour surrounding z and
interior to that circle. Also, define the function

1 1
2ri (s —7)?

) g(s) =

at each point s on C. Since g(s) is continuous on C, Theorem 1 tells us that

t)) [ g(&)S(s)ds = Z ay [ g(s)(s —z9)" ds.
C n=0 C

Now S(s) is analytic inside and on C, and this enables us to write

f 2(5)S(s) ds = L f 36)ds _ oy
C C

2ni Jo s —2)2

with the aid of the integral representation for derivatives in Sec. 48. Furthermore,

1 (.S"'-Z())’2 d
[e06—zrdsi=oe [ S de= Lm0 @ )
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Thus equation (8) reduces to

— d
S’(Z) = Z an'd_(z . Zﬁ)ns

Z
n=0

which is the same as equation (6). This completes the proof.

EXAMPLE 2. In Example 4, Sec. 54, we saw that
1 oC
—=Y (-D'"@-D"  (z-1<D.
——

Differentiation of each side of this equation reveals that

1 oG
—= =) D'm@-D"" (z-1<D,

< n=1

or

2= e+ D - (-1 <D,
=0

Z

60. UNIQUENESS OF SERIES REPRESENTATIONS

The uniqueness of Taylor and Laurent series representations, anticipated in Secs. 54
and 56, respectively, follows readily from Theorem 1 in Sec. 59. We consider first the
uniqueness of Taylor series representations.

Theorem 1. If a series

o
(1) z a,(z — zp)"
=0

converges to f(z) at all points interior to some circle |z — zo| = R, then it is the Taylor
series expansion for f in powers of z — z.

To prove this, we write the series representation

oC

(2) f@Q=) az—2)" (z—2l<R)

n=0
in the hypothesis of the theorem using the index of summation m:

o0

f@ =) anz—z0" (22l <R).

m=0
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Then, by appealing to Theorem 1 in Sec. 59, we may write

(3) f g f(n)dz= Z a,, f g(z2)(z — z9)" dz,
C o o

wherc g(z) is any one of the functions

1 1
2mi (z — zp)"H!

(4) g(z) = n=0,1,2,...)

and C is some circle centered at z and with radius less than R.
In view of the generalized form (5), Sec. 48, of the Cauchy integral formula (see
also the corollary in Sec. 59), we find that

1 [ f@dz M)
C

2mwi Jo (z—z)*t! Al ]

() Lg(Z)f(Z) dz=

and, since (see Exercise 10, Sec. 40)

1 dz 0 whenm #n,
T 2ni c (z —zp)"~ —m+1 |1 whenm=n,

®) [ 2(D)(z — 29" dz
C

it is clear that

(7) Z / g)z—z9)" dz =0,

m=0

Because of equations (5) and (7), equation (3) now reduces to

FP(zo) _

n! o

and this shows that series (2) is, in fact, the Taylor series for f about the point z.
Note how it follows from Theorem 1 that if series (1) converges to zero throughout
some neighborhood of z(, then the coefficients a, must all be zero.
Our second theorem here concerns the uniqueness of Laurent series representa-
tions.

Theorem 2. If a series

(8) }: cn(z —20)" = Z a,(z = z9)" + Z

e n
Mt 1 (z Zo)

converges to f(z) at all points in some annular domain about 7, then it is the Laurent
series expansion for f in powers of z — z for that domain.
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The method of proof here is similar to the one used in proving Theorem 1. The
hypothesis of this theorem tells us that there is an annular domain about z; such that

o0

fFR= Y cuz—120)"

A=—00

for each point z in it. Let g(z) be as defined by equation (4), but now allow n to be
a negative integer too. Also, let C be any circle around the annulus, centered at z,
and taken in the positive sense. Then, using the index of summation m and adapting
Theorem 1 in Sec. 59 to series involving both nonnegative and negative powers of
z — Zp (Exercise 10), write

fcg(z)f(z) dz= ) %Lg(z}(zmzo)mdz,

or

(9) 1 [ f(Z) dZ _ Z Cng(Z)(z - ZO)m dZ.

; — eyl
2ri Je (2 — zp) s

Since equations (6) are also valid when the integers m and » are allowed to be
negative, equation (9) reduces to

I /’ f(z)dz

2rwi Je (2 — Z(})n+1

n’

which is expression (5), Sec. 55, for coefficients in the Laurent series for f in the
annulus.

EXERCISES

1. By differentiating the Maclaurin series representation

I o
— =27 (<D,

obtain the expansions

&0

: Y (n+ D" (zl<D

— 2
(1 2) n=0

and

= Z(rz + D +2)7"  (Jz] < D).
(1 *2)3 n=0
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2,

4’

By substituting 1/(1 — z) for z in the expansion

LS+ (2l <D,

found in Exercise 1, derive the Laurent series representation

1 i (="(n =D
(z— 1"

- = (1< |z—1] < 00).
Z
n=2

(Compare Example 2, Sec. 59.)

Find the Taylor series for the function

1 1 1 1

. 24G-2 2 1+G-2/2

about the point zy = 2. Then, by differentiating that series term by term, show that

1 1w, .. z—-2Y\"
z—z = ; Z(—l) n+1) (Mé"““) (lz = 2| < 2).

n==()

With the aid of series, prove that the function f defined by means of the equations

(¢ - 1)/z whenz#0,
f= { / *
1 when z =0
is entire.
Prove that if
r co8Z —  when z # +7/2,
72 — (r/2)?
=1
e e when z =+ /2,
S 1

then f is an entire function.

In the w plane, integrate the Taylor series expansion (see Example 4, Sec. 54)

1 00
— =) V'w-0"  (w-1l<D
w n=0

along a contour interior to the circle of convergence from w = 1 to w = z to obtain the
representation

o _In%—i
Logz=):(i @—1"  (z-U<D.
n=1
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Use the result in Exercise 6 to show that if

Logz
when z £ 1,
f@o=17-1 s
1 when z = 1,

then f is analytic throughout the domain 0 < |z| < 00, —w < Argz < m.

Prove that if f is analytic at zg and f(z9) = flzg)=---= f (’”)(zﬁ) = 0, then the
function g defined by the equations

z _f:§;m+l when z # z;,
8D=1 sy
f(m + (ljs) when z =z

is analytic at z;.

Suppose that a function f(z) has a power series representation

F@ =) a,z—z)"

n=={(}
inside some circle |z — zg| = R. Use Theorem 2 in Sec. 59, regarding term by term
differentiation of such a series, and mathematical induction to show that

oC

n n 4+ k)!
f( }(Z) = Z = k! ) aiﬁ-{-k(z - z{})k (P’é =0, ls 2,.. *)
k=0 )

when |z — z| < R. Then, by setting z = z;, show that the coefficients a,(n =0, 1,2, .. )
are the coefficients in the Taylor series for f about z. Thus give an alternative proof of
Theorem 1 in Sec. 60.

Consider two series

SiD =) alz—z)" $H@=) i—;,
n=0 — (& —zp)

which converge in some annular domain centered at z,. Let C denote any contour lying
in that annulus, and let g(z) be a function which is continuous on C. Modify the proof
of Theorem 1, Sec. 59, which tells us that

fc g(2)81(9) dz =) ay, /(; g(2)(z — zp)" dz,

n==(}

to prove that

- (2)
f g8 dz =Y b, f B _ g
C n=1 C

(z — zp)"
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Conclude from these results that if
00 o0 o0 b
S5(z) = Z ez —z0)" = Z a,(z — z)" + Z —H—n—'—;,

R=m—0G n=0) n=1 (“‘ - z{))

then
o v}
f g(z2)8(z)dz = Z c, f g(2)(z — zp)" dz.
c . C

11. Show that the function

f2(2) = (z #x1)

2241

is the analytic continuation (Sec. 26) of the function

o0
A@ =YD (zl <D
n=0

into the domain consisting of all points in the z plane except z = x1i.

12. Show that the function f5(z) = 1/z% (z # 0) is the analytic continuation (Sec. 26) of the
function

o0

A@=) a+DE+D"  (z+1<D

pr==()

into the domain consisting of all points in the z plane except z = 0.

61. MULTIPLICATION AND DIVISION OF POWER SERIES

Suppose that each of the power series

o0 o
(1) Y ayz—z)" and Y by(z—zo)"
n=0 n=0

converges within some circle |z — z5| = R. Their sums f(z) and g(z), respectively,
are then analytic functions in the disk |z — z4| < R (Sec. 59), and the product of those
sums has a Taylor series expansion which is valid there:

(2) f@Dg@ =) clz—20"  (lz—z20| <R).

n=0
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According to Theorem 1 in Sec. 60, the series (1) are themselves Taylor series.
Hence the first three coefficients in series (2) are given by the equations

co = f(z0)g(zg) = agby,

¢ = F(zg)g'(z0) + f'(z9)g(20) — agby +arby,

1!

and

7 4 ! 4
¢, = 108 (@) +2f (z(;)’g (zo) + f7(z0)8(zg) _ dobs + arhy + arhy,

The general expression for any coefficient ¢, is easily obtained by referring to Leibniz’s
rule (Exercise 6)

3) [f(@De@]™ =) (Z)f(")(z)g(”_k’(z),
k=0
where
("‘) " k=0.12....n)
k) kln—k)!

for the nth derivative of the product of two differentiable functions. As usual,
FO(z) = f(z) and 0! = 1. Evidently,

"2 k) {n—k)
Oy ¢ (20)
-3 L,
k=0

R
o ab_;
KU -k =

k=

and so expansion (2) can be written
4 f(@)g(@) = agby + (agh| + a1by) (z — 2)
+ (aghy + a1y + azbo)(z — zg)* + - - -

+ (Z akbn-k) (z — Zo)n + - (lz — zg] < R).

k=0

Series (4) is the same as the series obtained by formally multiplying the two series
(1) term by term and collecting the resulting terms in like powers of 7 — z,; it is called
the Cauchy product of the two given series.

EXAMPLE 1. The function ¢°/(1 + z) has a singular point at z = —1, and so its
Maclaurin series representation is valid in the open disk |z| < 1. The first three nonzero
terms are easily found by writing

e . ( 1, 13 ) 2.3
= ——=(l+z+ "+ + - J0—z+2" =27+ .-
14z  1—(~2) 2" 6



SEC. 61 MULTIPLICATION AND DivisioN oF Power Series 217

and multiplying these two series term by term. To be precise, we may multiply each
term in the first series by 1, then each term in that series by —z, etc. The following
systematic approach is suggested, where like powers of z are assembled vertically so
that their coefficients can be readily added:

1, 1
1+z+5z2+—33+---

6
—z— zz—%z3—éz4—
2+ §+%ﬁ+é?+~-
_ A z"'m%fmézﬁm
The desired result is
) Eomte2o P (<D,

Continuing to let f(z) and g(z) denote the sums of series (1), suppose that
g(z) # 0 when |z — zy| < R. Since the quotient f(z)/g(z) is analytic throughout the
disk |z — zg] < R, it has a Taylor series representation

®) % =Y de-2) (22l <B),

n=0

where the coefficients d,, can be found by differentiating f(z)/g(z) successively and
evaluating the derivatives at z = z;5. The results are the same as those found by formally
carrying out the division of the first of series (1) by the second. Since it is usually only
the first few terms that are needed in practice, this method is not difficult.

EXAMPLE 2. As pointed out in Sec. 34, the zeros of the entire function sinh z are
the numbers z =nxi (n =0, £1, £2, . ..). So the quotient

1 |
2sinhz  z2(z +23/31+25/50+ -2

which can be written

1 1 1
(7) . = _3 4 )
z¢sinhz 23 \142%2/3!4+z%/51+ - -

has a Laurent series representation in the punctured disk 0 < |z| < 7. The denominator
of the fraction in parentheses on the right-hand side of equation (7) is a power series
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that converges to (sinh z)/z when z # 0 and to 1 when z = 0. Thus the sum of that
series is not zero anywhere in the disk {z] < 7; and a power series representation of
the fraction can be found by dividing the series into unity as follows:

I, 1 11 4
1 3—12 +[@ g‘;]@ + -

1, 1
4+ =224 =2+ )

3! 5!
1 4 1,
| 1”4
--;Ez - g-zg 4+ ..
— ! 2 1 4 _
—z2 - z
3! (3H2
1 1],
— — — | T+
| (3H% 5!
1 17 4
K
That is,
: =1 1z2+[ 1 ....__1_].,4_‘_
L+22/304+ 245!+~ 30 T L@3Y2 5T ’
or
1 1 5 7 4
s =l—==z"+ ="+ z| < 7).
Hence
1 1 1 1 7
7 T .T 3 Tttt 0 < |z| < 7).

Although we have given only the first three nonzero terms of this Laurent series, any
number of terms can, of course, be found by continuing the division.

EXERCISES

1. Use multiplication of series to show that

| —
(=
&
o

ez
mxz“l“l*}:z—gz +--- O <|z] < D).
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2. By writing csc z = 1/ sin z and then using division, show that

1 1 1 11 5
CSCKME*F%‘EZ-F[W“‘S‘“E]Z + (0 < |z] < 7).

3. Use division to obtain the Laurent series representation

11

1 3
——7 = —7" 4 0 21).
el — 1 rd 2 122 720Z ( *<IZI<: E)

4. Use the expansion

RN S S A 0 <zl <7)
Z2sinhz 22 6 z 360

in Example 2, Sec. 61, and the method illustrated in Example 1, Sec. 56, to show that

f dz  mi
c z%sinh z 3’

when C is the positively oriented unit circle |z] = 1.

5. Follow the steps below, which illustrate an alternative to straightforward division of
series, to obtain representation (8) in Example 2, Sec. 61.

(a) Write

1

=dy+diz+ P +ds? +dgtt + -,
1+ 22/314+ z4/514 - - U 2 3 4

where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

1 1
1= (1+§zz+;z4+*")(de—%dlz+d222+d3z3+d4z4+---).

Perform this multiplication to show that

1 1
(do - D+ d‘lZ + (d2 + 561{3)22 + (d3 + —dl)ZB

3!
t(dg+ Lo+ Lap)t =0
TR T %) N

when |z]| < 7.

(b) By setting the coefficients in the last series in part (a) equal to zero, find the values
of dy, d,, s, d3, and d,. With these values, the first equation in part (a) becomes
equation (8), Sec. 61.

6. Use mathematical induction to verify formula (3), Sec. 61, for the nth derivative of the
product of two differentiable functions.
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7. Let f(z) be an entire function that is represented by a series of the form.
f(Z)$Z+&222+d323+"' (]z] < 00).

(a) By differentiating the composite function g(z) = f[f(2)] successively, find the first
three nonzero terms in the Maclaurin series for g(z) and thus show that

FlIf@l=z+2m7 +2@2 +ap +--- (2] < ).

(b) Obtain the result in part {a) in a formal manner by writing

FIF@D1= F@ + ol f@1 +aslf1P+ -,

replacing f(z) on the right-hand side here by its series representation, and then
collecting terms in like powers of z,

(¢) By applying the result in part (a) to the function f(z) = sin z, show that

. 1
sin(sinz) =2z — -3;~z3 de (Jz| < 00).
8. The Euler numbers are the numbers E, (n =0, 1, 2, . ..) in the Maclaurin series repre-
sentation
1

o0
=Z E—%z” (lz| < m/2).
—

cosh z
Point out why this representation is valid in the indicated disk and why
Ey =0 n=0,1,2,...).
Then show that
Ey=1, E,=-1, E,=5, and Eg=—6l



CHAPTER

6

RESIDUES AND POLES

The Cauchy—Goursat theorem (Sec. 44) states that if a function is analytic at all points
interior to and on a simple closed contour C, then the value of the integral of the
function around that contour is zero. If, however, the function fails to be analytic at a
finite number of points interior to C, there is, as we shall see in this chapter, a specific
number, called a residue, which each of those points contributes to the value of the
integral. We develop here the theory of residues; and, in Chap. 7, we shall illustrate
their use in certain areas of applied mathematics.

62. RESIDUES

Recall (Sec. 23) that a point z; is called a singular point of a function f if f fails to be
analytic at z; but is analytic at some point in every neighborhood of zj. A singular point
zg is said to be isolated if, in addition, there is a deleted neighborhood 0 < |z — zg| < &
of zg throughout which f is analytic.

EXAMPLE 1. The function

z+1
22+

has the three isolated singular points z =0 and 7 = =i.

221



222  RESIDUES AND POLES CHAP. 6

EXAMPLE 2. The origin is a singular point of the principal branch (Sec. 30)
Logz=lnr+i® (r>0,—nt<®<m

of the logarithmic function. It is not, however, an isolated singular point since every
deleted ¢ neighborhood of it contains points on the negative real axis (see Fig. 80) and
the branch is not even defined there.

Y
f//,#--“\\\
———— e wd e
!\ o7 ; 3
% ?
\ /
N rd
FIGURE 80
EXAMPLE 3. The function
1
sin(r/z)

has the singular points z=0and z = 1/n (n = £1, £2, . . .), all lying on the segment
of the real axis from z = —11t0 z = L. Each singular point except z = 0 is isolated. The
singular point z = 0 is not isolated because every deleted ¢ neighborhood of the origin
contains other singular points of the function. More precisely, when a positive number

¥
///’ \\\
/
/ E 5
! \s
e ——— _,,{ _____ e E
3 0 1/m ! X
\ §
\ //
\xx -
FIGURE 81
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¢ is specified and m is any positive integer such thatm > 1/g, the fact that0 < 1/m < ¢
means that the point z = 1/m lies in the deleted ¢ neighborhood 0 < |z| < ¢ (Fig. 81).

When z, is an isolated singular point of a function f, there is a positive number
R, such that f is analytic at each point z for which 0 < [z — z5] < R,. Consequently,
f(z) is represented by a Laurent series

= b b b
1) f@=Y a,z—-z)"+——+ P —
/ Z 0 -2z (z — z0)2 (2 —zo)"

n=0 ~0

(0 < |z — zpl < Ry),

where the coefficients a,, and b, have certain integral representations (Sec. 55). In

particular,
1 z
bﬂz ’_/ f()dz (n-__lﬁza-")

where C is any positively oriented simple closed contour around z and lying in the
punctured disk 0 < |z — 29| < R, (Fig. 82). When n = 1, this expression for b,, can be
written

(2) f F(2)dz =2miby.
C

The complex number 5;, which is the coefficient of 1/(z — zg) in expansion (1), is
called the residue of f at the isolated singular point z5. We shall often use the notation

or simply B when the point z; and the function f are clearly indicated, to denote the
residue b;.

FIGURE 82



224  RESIDUES AND POLES CHAP. 6

Equation (2) provides a powerful method for evaluating certain integrals around
simple closed contours.

EXAMPLE 4. Consider the integral

dz
3 _
) fc z(z — 2)*

where C is the positively oriented circle |z —- 2| = 1 (Fig. 83). Since the integrand is
analytic everywhere in the finite plane except at the points z =0and z =2, ithas a
Laurent series representation that is valid in the punctured disk 0 < |z — 2| < 2, also
shown in Fig. 83. Thus, according to equation (2), the value of integral (3) is 27/ times
the residue of its integrand at z = 2. To determine that residue, we recall (Sec. 54) the
Maclaurin series expansion

1—i§=§0zn (Il < 1
and use it to write
11 1
2z—2% (-2% 2+(z-2)
1 1

T 2z-2% 1m(m3“2)
2

Z( D —art (0<lz-21<2).

o +1

In this Laurent series, which could be written in the form (1), the coefficient of
1/(z — 2) is the desired residue, namely —1/16. Consequently,

dz 1 i
4 —_— =2l -} = ——,
@ fcz(z~-~2)4 ( 16) 8

B s e i ™

FIGURE 83
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EXAMPLE 5. lLetus show that

(5) f exp(lﬁ) dz =0,
C <

where C is the unit circle |z| = 1. Since 1/z% is analytic everywhere except at the origin,
so is the integrand. The isolated singular point z = 0 is interior to C; and, with the aid
of the Maclaurin series (Sec. 54)

2 3

z _ LT A AT
e—1+1!+2§+31+ (1z] < o0),

one can write the Laurent series expansion

1 1 1 1 1 I 1

The residue of the integrand at its isolated singular point z = 0 is, therefore, zero
(b, = 0), and the value of integral (5) is established.

We are reminded in this example that, although the analyticity of a function within
and on a simple closed contour C is a sufficient condition for the value of the integral
around C to be zero, it is not a necessary condition.

63. CAUCHY’S RESIDUE THEOREM

If, except for a finite number of singular points, a function f is analytic inside a simple
closed contour C, those singular points must be isolated (Sec. 62). The following
theorem, which is known as Cauchy’s residue theorem, is a precise statement of the
fact that if £ is also analytic on C and if C is positively oriented, then the value of the
integral of f around C is 27i times the sum of the residues of f at the singular points
inside C.

Theorem. Let C be a simple closed contour, described in the positive sense. If a

function f is analytic inside and on C except for a finite number of singular points
zy k=1,2,...,n) inside C, then

2=z

(D f f(2)dz=2mi Z Res f(z).
¢ k=1

To prove the theorem, let the points z; (k=1,2, ..., n) be centers of positively
oriented circles C; which are interior to C and are so small that no two of them have
points in common (Fig. 84). The circles Cy, together with the simple closed contour C,
form the boundary of a closed region throughout which f is analytic and whose interior
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0 ¥ FIGURE 84

is a multiply connected domain. Hence, according to the extension of the Cauchy-
Goursat theorem to such regtons (Theorem 2, Sec. 46),

dZ“ dz = 0.
fc f) Z,l . f(2)dz

This reduces to equation (1) because (Sec. 62)

f()dz=2mi Res f(2) (k=1,2,...,n),

Ck =2

and the proof is complete,

EXAMPLE. Let us use the theorem to evaluate the integral

57 -2
cz(z—=1)
when C is the circle |z| = 2, described counterclockwise. The integrand has the two

isolated singularities z = 0 and z = 1, both of which are interior to C. We can find the
residues B at z = 0 and B, at z = 1 with the aid of the Maclaurin series

1

=1+z4+22+--  (zl<D.
11—z

We observe first that when 0 < |z] < 1 (Fig. 85),

5z — 2 - 2
-2 _52-2 15(5_:)(_“1_5*“_22_“.);

Ve
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FIGURE 85

and, by identifying the coefficient of 1/z in the product on the right here, we find that
By = 2. Also, since

S5-2 _S@-D+3 |
2(z—1 z—1 14+{(z-1

Zm..

(s )imCmpr oo

when 0 < |z — 1| < 1, it is clear that B, = 3. Thus

z—2 :
/ 5 dZZQJTf(BIJr-Bz):lOJTI.
cz(z—D
In this example, it is actually simpler to write the integrand as the sum of its partial
fractions:
S3z—=2 2 3

- 21 _
2z—=1) z -1

Then, since 2/z is already a Laurent series when 0 < |z} < 1 and since 3/(z — 1) is a
Laurent series when 0 < [z — 1] < 1, it follows that

5z —2 . . .
[ dz =2mi(2) + 27i(3) = 107§,
cz(z—1

64. USING A SINGLE RESIDUE

If the function f in Cauchy’s residue theorem (Sec. 63) is, in addition, analytic at each
point in the finite plane exterior to C, it is sometimes more efficient to evaluate the
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integral of f around C by finding a single residue of a certain related function. We
present the method as a theorem.*

Theorem. Ifafunction f is analytic everywhere in the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C,
then

(1) [ f(zydz=2ni Re [—-l-éwf(-lw)]
C =0 [ Z Z

We begin the derivation of expression (1) by constructing a circle |z| = R; which
is large enough so that the contour C is interior to it (Fig. 86). Then if Cy denotes a
positively oriented circle |z| = Ry, where Ry > R, we know from Laurent’s theorem
(Sec. 55) that

o0
(2) f@= ) e (Ri<lzl <00,
12— 00
where
(3) C, = —--1— M (n=0, £1, £2,...).

27i Je, zn+l

.}‘.'

FIGURE 86

*This result arises in the theory of residues at infinity, which we shall not develop. For some details of
that theory, see, for instance, R. P. Boas, “Invitation to Complex Analysis,” pp. 76-77, 1987.
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By writing n = —1 in expression (3), we find that
4) f(z)dz=2mic_;.
Co

Observe that, since the condition of validity with representation (2) is not of the type
0 < |z| < R,, the coefficient c_; is not the residue of f at the point z = 0, which may
not even be a singular point of f. But, if we replace z by 1/z in representation (2) and
its condition of validity, we see that

1 1 o0 c o0 c 1
— § : n E : n—2 1
z_zf(g) a T (0 <ldl= R )

" 1

A — OG0 Nem—00
()]
it
Then, in view of equations (4) and (5),

f(z)dz =2mi Res [-—-}--f(-}-)]
Co =0 z2" \z

Finally, since f is analytic throughout the closed region bounded by C and Cj, the
principle of deformation of paths (Corollary 2, Sec. 46) yields the desired result (1).

and hence that

1
= f

(5) c_; = Res [
Z

z=0

EXAMPLE. In the example in Sec. 63, we evaluated the integral of
5z —12
Z{z—=1)

around the circle |z| = 2, described counterclockwise, by finding the residues of f(z)
atz=0and z = 1. Since

if(,}.) _5-2 ___5«“22. 1
27 \z z(1—-12) Z 11—z

:(émz)(l+z+z2+'“)

4

flz)=

5
=-+343z4+--- 0 <]zl <« 1),
z
we see that the above theorem can also be used, where the desired residue is 5. More

precisely,

f 2z 2 dz = 2i(5) = 107,
c z(z— D
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where C is the circle in question. This is, of course, the result obtained in the example

in Sec. 63,
EXERCISES
1. Find the residue at z = 0 of the function
1 1 z—S8Inzg cot 2 sinh z
(a) ; b ECOS(—); c) ——; (d) ——; (&) ————.
z+7° ) z (©) z 74 241 - z?)

Ans. (@) 1; (b)) =1/2; (0)0; (d)-—1/45; (e)7/6.

Use Cauchy’s residue theorem (Sec. 63) to evaluate the integral of each of these functions
around the circle |z] = 3 in the positive sense:

1 z+1

); (d)

exp{—2z), exp(—2), 2 1
(@) 2 &) Pt (¢)z e}fzp(Z S

Ans. (@) —2mwi; (b)Y —2mije; (c)mif3; (d)2ni.

Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of each of
these functions around the circle |z] = 2 in the positive sense:
5
v 1 1
a ;o (D) ; ) -
(@ 1-23 1422 N
Ans. (a) =2ni, ((b)0; (c)2m:.

Let C denote the circle |z]| = 1, taken counterclockwise, and follow the steps below to

show that
1 > 1
exp z+—-) dz =2mi —
[c ( z g nl(n + 1)!

(a) By using the Maclaurin series for ¢° and referring to Theorem 1 in Sec. 59, which
justifies the term by term integration that is to be used, write the above integral as

>

1
Z—l—?f " exp(-—) dz.
=0 n.Jc Z

(b) Apply the theorem in Sec. 63 to evaluate the integrals appearing in part (@) to arrive
at the desired result.

Let the degrees of the polynomials

Py=ap+aiz+a®+ - +a" (a, # 0)
and

Q@) =by+biz+b>+ + +b,2" (by #0)

be such that m = n + 2. Use the theorem in Sec. 64 to show that if all of the zeros of
@(z) are interior to a simple closed contour C, then

P(z)
c 9(z)

dz=0.

[Compare Exercise 3(b).]
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65. THE THREE TYPES OF ISOLATED SINGULAR POINTS

We saw in Sec. 62 that the theory of residues is based on the fact that if f has an
isolated singular point zy, then f(z) can be represented by a Laurent series

- b b b
D f@=) alz—2' +——+—20 4+ —"—
,;0 " z—z0 (z— z0)? (z — zp)"

in a punctured disk 0 < |z — zg| < R,. The portion

b b, b,
z—2p Z—2p) (2 — zp)"

+ .

of the series, involving negative powers of z — 2, is called the principal part of f at
Zg- We now use the principal part to identify the isolated singular point zy as one of
three special types. This classification will aid us in the development of residue theory
that appears in following sections.

[f the principal part of f at zy contains at least one nonzero term but the number
of such terms is finite, then there exists a positive integer m such that

by #0 and b, 1 =b,,=---=0.
That 1s, expansion (1) takes the form

2 _|_...+_.......b.ﬁ_._w
~zp (z—2p)? 7 — Zp)™

oQ
F@ =) az—z)"+ -
={} ~
(2) (0 <z — 20l < Ry,
where b, # 0. In this case, the isolated singular point z; is called a pole of order m *
A pole of order m = 1 is usually referred to as a simple pole.
EXAMPLE 1. Observe that the function

22—2743 z(z—=2) +3 3 | | 3
= =+ ——=24+@2~2)+ ——
7—2 7—2 z -2 ( ) z—2

(0 <z — 2] <o0)

has a simple pole (m = 1) at zo = 2. Its residue b there 1s 3.

* Reasons for the termineclogy pole are suggested on p. 70 of the book by R. P. Boas mentioned in the
footnote in Sec. 64.
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EXAMPLE 2. The function

sinhz 1 2 77 7 ) 1 11 z 2z
=—(z+ >+ 4+ =t = m =
4 z4( 315 7 3 . 51 !

has a pole of order m = 3 at z5 = 0, with residue by = 1/6.

There remain two extremes, the case in which all of the coefficients in the
principal part are zero and the one in which an infinite number of them are nonzero.
When all of the b,,’s are zero, so that

oG

(3) f(Z) - Z an(x, - Z[})n =dy + QI(Z — ZO) -+ az(z — 2’.{))2 4.

n=>0

(0 < IZ - z{)i < RE)!

the point zg is known as a removable singular point. Note that the residue at a remov-
able singular point is always zero. If we define, or possibly redefine, f at zy so that
f(zo) = ag. expansion (3) becomes valid throughout the entire disk [z — zy| < R,.
Since a power series always represents an analytic function interior to its circle of
convergence (Sec. 59), it follows that f is analytic at zg when it is assigned the value
ap there. The singularity at z is, therefore, removed.

EXAMPLE 3. The point 75 = 0 is a removable singular point of the function

l—cosz 1 I S A
f(c)__T‘—x-—w——z-l:l—(lmz?—%z—!—g—!—{—'”)]

ZE_Z!“'_E{W.” (0 < |z] < o0).

When the value f(0) = 1/2 is assigned, f becomes entire.

When an infinite number of the coefficients b, in the principal part are nonzero,
Zp is said to be an essential singular point of f. An important result concerning the
behavior of a function near an essential singular point is due to Picard. It states that
in each neighborhood of an essential singular point, a function assumes every finite
value, with one possible exception, an infinite number of times.*

*For a proof of Picard’s theorem, see Sec. 51 in Vol. Ill of the book by Markushevich, cited in
Appendix 1.
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EXAMPLE 4. The function

1 2011 1 1 1
o)=L Lol Ll e
z R Itz 2!

has an essential singular point at zy = 0, where the residue b is unity. For an illustration
of Picard’s theorem, let us show that exp(1/z) assumes the value —1 an infinite number
of times in each neighborhood of the origin. To do this, we recall from the example n
Sec. 28 thatexp z = —1 when z = (2n + Dzi (n =0, &1, =2, .. .). This means that
exp(l/z) = —1 when

. 1 i
T (@Qn+ Dn

= n=0,-=+1,+2,...),
Q2n 4+ Dmi i ( )

and an infinite number of these points clearly lie in any given neighborhood of the
origin. Since exp(1/z) # 0 for any value of z, zero is the exceptional value in Picard’s
theorem.

In the remaining sections of this chapter, we shall develop in greater depth the
theory of the three types of isolated singular points just described. The emphasis will
be on useful and efficient methods for identifying poles and finding the corresponding
residues.

EXERCISES

1. In each case, write the principal part of the function at its isolated singular point and
determine whether that point is a pole, a removable singular point, or an essential singular
point:

@zen(1): @ R LA -
z) 1+2 z z 2-27°

2. Show that the singular point of each of the following functions is a pole. Determine the
order m of that pole and the corresponding residue B.

l—coshz

@) « ’ ) 1 —exp(2z) exp(2z)

T O

Ans.(aym=1,B=—1/2, (bym=3,B=-4/3, (c)m=2, B=2e%

3. Suppose that a function f is analytic at zq, and write g(z) = f(2)/(z — zp). Show that
(a) if f(zg) # 0, then z; is a simple pole of g, with residue f(zg);
(b) if f(zp) = 0, then 2, is a removable singular point of g.

Suggestion: As pointed out in Sec. 53, there is a Taylor series for f(z) about z;
since f is analytic there. Start each part of this exercise by writing out a few terms of
that series.
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4. Write the function

8a’z?
as
16 84372
f@ =t e $@=——.

Point out why ¢ (z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

¢’f(az)/z+ ¢’ (ai) N ¢(ai) i/2 a2 a’i

7z —ai (z—ai)? (z—ai)? z—ai  (z—ai)? (z—ai)?

66. RESIDUES AT POLES

When a function f has an isolated singularity at a point z, the basic method for
identifying z as a pole and finding the residue there is to write the appropriate Laurent
series and to note the coefficient of 1/(z — zg). The following theorem provides an
alternative characterization of poles and another way of finding the corresponding
residues.

Theorem. An isolated singular point zy of a function f is a pole of order m if and
only if f(z) can be written in the form

¢(z)

(z—zo)™

(D f@=

where ¢(2) is analytic and nonzero at zy. Moreover,

(2) iﬂz{i FR)=¢(zp) fm=1
and
(m—1)
(3) Res f(z) = ¢ (zo) if m>2.
=2y (m — 1)!

Observe that expression (2) need not have been written separately since, with the
convention that ¢ (zg) = ¢(zp) and Q! = 1, expression (3) reduces to it when m = 1.
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To prove the theorem, we first assume that f(z) has the form (1) and recall (Sec.
53) that since ¢(z) is analytic at z;, it has a Taylor series representation

" {m-1)
6@ =)+ L =20+ L — g -+ T o !
X4
_{_r; ¢ n(fﬂ) (Z _ z())n

in some neighborhood |z — zg| < & of zg; and from expression (1) it follows that

! ! #” 21 (m—1) — 1
(z — Zg)m (z — Zo)m {(z — Zg)m Z—2p
oo ¢)(n)(zﬂ) I

when 0 < |z — zp| < ¢. This Laurent series representation, together with the fact that
$(z) # 0, reveals that z; is, indeed, a pole of order m of f(z). The coefficient of
1/(z — zp) tells us, of course, that the residue of f(z) at z; is as in the statement of the
theorem.

Suppose, on the other hand, that we know only that z, is a pole of order m of f,
or that f(z) has a Laurent series representation

_N _ oy b by . Orm—1 Om
f@)= 2%(2 20)” + I + (z — z0)? o z—z)" ! 2=z
&y #0)

which is valid in a punctured disk 0 < |z — zy| < R,. The function ¢ (z) defined by
means of the equations

_J@—ze)"f(z) when z # g,
¢(z) = { b, when z = 2

evidently has the power series representation

G(2) = by + b1z — Z0) + - -+ bz — 20)" 2 + by(z — 20)™ !
o0
+ Z a,(z — 70"
n=0

throughout the entire disk |z — zp| < R,. Consequently, ¢ (z) is analytic in that disk
(Sec. 59) and, in particular, at zy. Inasmuch as ¢(zg) = b, # 0, expression (1) is
established; and the proof of the theorem is complete.
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67. EXAMPLES

The following examples serve to illustrate the use of the theorem in the previous
section.

EXAMPLE 1. The function f(z) = (z + 1)/(z% + 9) has an isolated singular point
at z = 3/ and can be written as

1
fR)= @) s

where 7) = .
72— 3i =T

Since ¢ (z) is analytic at z = 3i and ¢ (3i) = (3 — i)/6 # 0, that point is a simple pole
of the function f; and the residue there is By = (3 — i)/6. The point z = —3i is also a
simple pole of f, with residue By = (3 +1)/6.

EXAMPLE 2. If f(z) = (z° + 22)/(z — i), then
$(2)

(z—i

flz)= where ¢(2) = 22 +2z.

)3

The function ¢(7) is entire, and ¢{i) =i # 0. Hence f has a pole of order 3 at z =1.
The residue there s

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

(log z)°
2417

f@)=

where the branch
logz=Inr4i6 (r>0,0<6 < 2m)

of the logarithmic function is to be used. To find the residue of f at z =i, we write

¢(z) (log 7)°

where ) = :
z—1 e Z+1

fl@y=

The function ¢(z) is clearly analytic at z = #; and, since

(1(::g.i)3 _(ni+ ffyr/2)3 _ o’ L0,
2i 21 16

the desired residue is B = ¢ (i) = —m*/16.

(i) =
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While the theorem in Sec. 66 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.

EXAMPLE 4. [If, for instance, the residue of the function

sinh z
4

flz)=

<

is needed at the singularity z = 0, it would be incorrect to write

fo)= &f) where ¢(z) =sinhz
Z
and to attempt an application of formula (3) in Sec. 66 with m = 4. For it is necessary
that ¢(zg) # 0 if that formula is to be used. In this case, the simplest way to find
the residue is to write out a few terms of the Laurent series for f(z), as was done in
Example 2 of Sec, 65. There it was shown that z = 0 is a pole of the third order, with

residue B = 1/6.

In some cases, the series approach can be effectively combined with the theorem
in Sec. 66.

EXAMPLE 5. Since z(¢* — 1) is entire and its zeros are
7=2nmi (n=0,=*1, £2,..),

the point z = 0 is clearly an isolated singular point of the function

]
)= —.
f(z) =D
From the Maclaurin series
2 3
i1, %2 4,3 .
€"1+1s+2§+3§+ (Iz] < o0),
we see that
2 3 2
A N B SR SUTE ST S 25 .
(e 1)—z(11+2!+35+ )mz(1+22+32+ ) (I2] < 00).
Thus
¢(z) 1
(z) = —= where (z) = .
f 72 ¢ 14 7/204+22/3V 4 - -
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Since ¢ (z) is analytic at z = 0 and ¢ (0) = 1 % 0, the point z = 0 is a pole of the second

order; and, according to formula (3) in Sec. 66, the residue is B = ¢'(0). Because
~(1/2'+2z/3'+ -+ )

(1+z/2'422/31 4+ - )2

¢'(2) =

in a neighborhood of the origin, then, B = —1/2.

This residue can also be found by dividing the above series representation for
z(e* — 1) into 1, or by multiplying the Laurent series for 1/(e* — 1) in Exercise 3, Sec.
61, by 1/z.

EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the order
m of each pole, and find the corresponding residue B.

2 3
¢ +2 4 ) exp z
: b : .
(a) — ()(22,-!-1 (6‘)324_;{2

Ans.(aym=1,B=3; (b)ym=3,B=-3/16; (com=1,B==xi/2n.
2. Show that

V4 14
Z + i
a) Res = (lz] > 0,0 <arg z < 27);
()Z=_12+1 7 |z] g )
() Res Lﬁgzozn—f-?lt;
z=i (224 1) 8
P 1

= 72l >0,0<argz < 2m).
S @8/ (Iz g )

3. Find the value of the integral

[ 3342
dz,
c (z—D(z2+9)

taken counterclockwise around the circle (a) |z — 2| = 2; (b) |z]| = 4.
Ans. () mi; (b) 6.

4. Find the value of the integral

| =
c 3z+4)

taken counterclockwise around the circle (@) |zl =2; (b)) |z + 2| = 3.
Ans (a)wi/32; (B)O.

S. Evaluate the integral

/’ cosh iz
IR dr
c 2+ 1)
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where C is the circle |z] = 2, described in the positive sense.

Ans. 4mi.

6. Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of f{(z)
around the positively oriented circle {z| = 3 when

(3z +2)2 2°(1—32) e/
@ 7(2) z2(z = D@2z +5) 7@ (14 2)(1+2z% €16 = 1423

Ans. (@) 9ri; (b)) =3mi. (c¢)2ni.

68. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next section
how zeros can be a source of poles. We need, however, some preliminary results
regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z5. We know from Sec. 48 that
all of the derivatives " (z) (n=1, 2, ...) exist at zy. If f(zg) =0 and if there is a
positive integer m such that £ (z,) # 0 and each derivative of lower order vanishes
at zo, then £ is said to have a zero of order m at zg. Our first theorem here provides a
useful alternative characterization of zeros of order m.

Thevrem 1. A function f that is analytic at a point zy has a zero of order m there if
and only if there is a function g, which is analytic and nonzero at zy, such that

(1) f(@2)=(—z20)"g).

Both parts of the proof that follows use the fact (Sec. 53) that if a function is
analytic at a point zp, then it must have a valid Taylor series representation in powers
of z — zp which is valid throughout a neighborhood |z — zy| < ¢ of that point.

We start the first part of the proof by assuming that expression (1) holds and
noting that, since g(z) is analytic at zg, it has a Taylor series representation

g ( 0) ”( 0)

(z — z9)* +

g(z) = g(zp) + (z —zp) +

in some neighborhood |z — 7| < € of 2. Expression (1) thus takes the form

F Z 4
g (I‘G) (Z _ Zo)m“}“l + 8 ;‘?O) (Z _ z{))?ﬂ‘l"z +

when |z — z5| < &. Since this is actually a Taylor series expansion for f(z), according
to Theorem 1 in Sec. 60, it follows that

(2) FGao) = flzp)=f"Gy="=f"Dp=0
and that
3) F™(z0) = mlg(zg) # 0.

f(2) =gz —z0)" +
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Hence z is a zero of order m of f.

Conversely, if we assume that f has a zero of order m at g, its analyticity at g
and the fact that conditions (2) hold tell us that, in some neighborhood |z — zp| < &,
there 1s a Taylor series

LA o () o
foy=Y L5 gy

R—m n
| f(m) (ZO) f(rn—H) (ZO) f(m~}-2) (ZO) 5
= (z — zo)" + z—20) + z—zg) 4|
(2= 20) [ m! (m + 1)! (2 = 20) (m + 2)! o)
Consequently, f(z) has the form (1), where

| F™zy Dz, Fo2(z) 2

z)= + (2 —2p) + =20+
8(2) m! (m4+ Dt 0) TR )

(lz — zol < &).

The convergence of this last series when |z — 2| < € ensures that g is analytic in that
neighborhood and, in particular, at z; (Sec. 59). Moreover,

F(zg)

m!

g(zp) = # 0.

This completes the proof of the theorem.

EXAMPLE. The entire function f(z) = z(e* — 1) has a zero of order m =2 at the
point zg = 0 since

fO =0 =0 and f"(0)=2%#0.
The function g in expression (1) is, in this case, defined by means of the equations

_[(*—=1/z whenz#0,
8(2) = { 1 when z = 0.

It is analytic at z = 0 and, in fact, entire (see Exercise 4, Sec. 60).
Our next theorem tells us that the zeros of an analytic function are isolated.

Theorem 2. Given a function f and a point zy, sSuppose that

(i) f isanalytic atzy;

(ii) f(zp) =0 but f(2) is not identically equal to zero in any neighborhood of 2.
Then f(z) # 0 throughout some deleted neighborhood 0 < |z — 2] < € of 2.
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To prove this, let f be as stated and observe that not all of the derivatives of
f at z; are zero. For, if they were, all of the coefficients in the Taylor series for f
about z;, would be zero; and that would mean that f(z) is identically equal to zero in
some neighborhood of zg. So it is clear from the definition of zeros of order m at the
beginning of this section that f must have a zero of some order m at zy. According to
Theorem 1, then,

(4) f(@)=(z—z9)"g(2)

where g(z) is analytic and nonzero at z;.

Now g is continuous, in addition to being nonzero, at z; because it is analytic
there. Hence there is some neighborhood |z — zy| < & in which equation (4) holds and
in which g(z) # 0 (see Sec. 17). Consequently, f(z) # 0 in the deleted neighborhood
0 < |z — zgy| < &; and the proof is complete.

QOur final theorem here concerns functions with zeros that are not all isolated. It
was referred to earlier in Sec. 26 and makes an interesting contrast to Theorem 2 just
above.

Theorem 3. Given a function [ and a point 7, suppose that
(i) f is analytic throughout a neighborhood Ny of zg;
(ii) f(zg) =0 and f(z) =0 at each point z of a domain or line segment containing
zg (Fig. 87).
Then f(z) =0 in Ny, that is, f(z) is identically equal to zero throughout Ny.

y
fr’““. -—h&“‘u\
-~ ~
s ~
/s ~
/K —= A
- - N
!/ /z \\ 3\
! ;’ | \
! / f !
; ) / I Ny !
1 / ]
\ 1 % / r
v
'i\ \ /! }f
\ S 7
\ /
\ y
A 4
0 S /// X
T FIGURE 87

We begin the proof with the observation that, under the stated conditions,
f(z) = 0 in some neighborhood N of z,. For, otherwise, there would be a deleted
neighborhood of z; throughout which f(z) # 0, according to Theorem 2 above; and
that would be inconsistent with the condition that f(z) = 0 everywhere in a domain
or on a line segment containing zg. Since f(z) = 0 in the neighborhood N, then, it
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follows that all of the coefficients

£ (zg)

n!

(n=0,1,2,...)

an:

in the Taylor series for f(z) about zg must be zero. Thus f(z) = 0 in the neighborhood
N, since Taylor series also represents f(z) in Ny. This completes the proof.

69. ZEROS AND POLES

The following theorem shows how zeros of order m can create poles of order m.

Theorem 1. Suppose that
(i) two functions p and g are analytic at a point 7;
(ii) p(zg) # 0 and q has a zero of order m at z.

Then the quotient p(z)/q(z) has a pole of order m at 2.

The proof is easy. Let p and g be as in the statement of the theorem. Since g has
a zero of order m at z,, we know from Theorem 2 in Sec. 68 that there is a deleted
neighborhood of zg in which ¢(z) # 0; and so zg is an isolated singular point of the
quotient p(z)/¢(2). Theorem 1 in Sec. 68 tells us, moreover. that

q(z) = (2 — 2p)" 8 (2),
where g is analytic and nonzero at z;); and this enables us to write

p) _ p2)/g@)
q(z) (z—zp)"

(1)

Since p(z)/g(z) is analytic and nonzero at z, it now follows from the theorem in Sec.
66 that 7 1s a pole of order m of p(z)/q(2).

EXAMPLE 1. The two functions
p{z)=1 and g =2z(e*—1)

are entire; and we know from the example in Sec. 68 that g has a zero of order m =2
at the point zy = 0. Hence it follows from Theorem ! here that the quotient

p) _ 1
q(z) z(et—1)

has a pole of order 2 at that point. This was demonstrated in another way in Example 5,
Sec. 67.
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Theorem 1 leads us to another method for identifying simple poles and finding
the corresponding residues. This method is sometimes easier to use than the one in
Sec. 66.

Theorem 2. Let two functions p and g be analytic at a point zy. If
P #£0, q(z) =0, and q'(z9) #0,
then zy is a simple pole of the quotient p(z)/q(z) and

Res pz) _ P(Z(}).
= q(z) q'(z¢)

(2)

To show this, we assume that p and ¢ are as stated and observe that, because of
the conditions on g, the point z; is a zero of order m = 1 of that function. According
to Theorem | in Sec. 68, then,

3) q(z) = (z — 209)g(2)

where g(z) 1s analytic and nonzero at z. Furthermore, Theorem 1 in this section tells
us that z; is a simple pole of p(z)/4(z); and equation (1) in its proof becomes

p(z) p(z)!g(z)‘

q(z) Z— 2

Now p(z)/g(z) is analytic and nonzero at z;, and it follows from the theorem in Sec.
66 that

Res p(z) _ p(Zo)‘
=2 g(z)  g(z¢p)

4)

But g(z¢) = g'(20), as is seen by differentiating each side of equation (3) and setting
z = Z;. Expression (4) thus takes the form (2).

EXAMPLE 2. Consider the function

COSsZ
S@@y=cotz =——r,
Sin Z

which is a quotient of the entire functions p(z) = cos z and ¢(z) = sin z. The singu-
larities of that quotient occur at the zeros of g, or at the points

I=nm (n=0,-+1,+£2, ...
Since

plnm) =(=1)"#0, g@mr)=0, and g'(nw)=(-D"#0,
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each singular point z = nm of f is a simple pole, with residue

g _ P _ (=D
gnm) (="

EXAMPLE 3. The residue of the function

tanh z sinh z

f@)=

72 z2 cosh 7

at the zero z = i /2 of cosh z (see Sec. 34) is readily found by writing

p(z) =sinhz and ¢(z)= 72 coshz.

p(%l-) =sinh(%£) =i sin f.; =i#0
, : N2 , 2
i i i i i1
— =0, 4= ])=|—) sinh| — ) =—~—i #0,
(5)=0 o(3)=(3)m(5)=-%

we find that z = i /2 is a simple pole of f and that the residue there is

B— p(mi/2y 4

oo ——rn

T g(mif2) @

Since

and

EXAMPLE 4. One can find the residue of the function
f(@) =~

<
+4

at the isolated singular point
zo=~2e"* =141
by writing p(z) = z and ¢(z) = z* + 4. Since
P(zo) =20 #0, q(z) =0, and q'(z0) =423 #0,
Jf has a simple pole at zj. The corresponding residue is the number

B_P(Ze}_zt}___ | S
0= ST 3 a2 & 8
Q(ZG) 420 42(} {

Although this residue could also be found by the method of Sec. 66, the computation
would be somewhat more involved.
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There are formulas similar to formula (2) for residues at poles of higher order,
but they are lengthier and, in general, not practical.

EXERCISES

1. Show that the point z = 0 is a simple pole of the function
, 1
flz)=cscz=—
sin z

and that the residue there is unity by appealing to
(@) Theorem 2 in Sec. 69;
(b) the Laurent series for csc z that was found in Exercise 2, Sec. 61.

2. Show that
(a) Res w_z — i,
z=mi 72sinhz T
t t
() Res explzt) + Res explzr) = —2cos iIt.

z=mi sinhz  z=—ni sinhz
3. Show that
{a) Res(zsecz)= («-—-I)”Hzﬁ, where z,, = % +nnr (n=0,=x1,£2,...);
=z

3

(h) §es(tanh z) =1, where z,, = (g‘ + 2’27{)3’ (n=0,%x1,.£2,...).

=
4, Let C denote the positively oriented circle |z| = 2 and evaluate the integral

dz
t dz; b )
(a)[c ez () ¢ sinh 2z
Ans.(a) —4mi; (b) —mi.

5. Let Cy denote the positively oriented boundary of the square whose edges lie along the
lines

' 1
Xﬂ:f:(N-i——l-)T{ and ym:i:(N+w)fr,
2 2
where N is a positive integer. Show that
N

dz 11 (—1D"

=2mi| —+2 ,
/;:N z2sinz [6 ; nln?

Then, using the fact that the value of this integral tends to zero as N tends to infinity
(Exercise 7, Sec. 41), point out how it follows that

1)?1-!—1 3.{2

(- _
Z 120
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6.

Show that

f daz oz
c@-D2+3 2./3’

where C is the positively oriented boundary of the rectangle whose sides lie along the
linesx==22, y=0,and y = 1.

Suggestion: By observing that the four zeros of the polynomial ¢ (z) = (z% — 1)2 + 3
are the square roots of the numbers 14 +/3i, show that the reciprocal 1 /q(z) is analytic
inside and on C except at the points

Zy = V3t and ngm:&i,
V2 V2
Then apply Theorem 2 in Sec. 69.
Consider the function
(2) = 1
1O = o

where g is analytic at zgy, q(z5) = 0, and ¢’ (zy) # 0. Show that z, is a pole of order m =2
of the function f, with residue

B Q”(Zo) ‘
[’ (z0)P

Suggestion: Note that z; is a zero of order m = 1 of the function ¢, so that

q(z) = (2 — 2p)g(2),

where g(z) is analytic and nonzero at z;,. Then write

o (z) | 1
— h = .
Gz e PO=T00

The desired form of the residue By = ¢’(z) can be obtained by showing that

f(z) =

q'(zp) =g(zo) and q"(zp) = 28'(2).
Use the result in Exercise 7 to find the residue at z = 0 of the function
1
(@ f(z)=csc’z; (b)) f@) =

| (z + 2%
Ans. () 0; (b)) —2.

Let p and ¢ denote functions that are analytic at a point z,, where p(zy) # 0 and
¢ (zg) = 0. Show that if the quotient p(z)/g(z) has a pole of order m at z, then z; is
a zero of order m of ¢. (Compare Theorem 1 in Sec. 69.)

Suggestion: Note that the theorem in Sec. 66 enables one to write

piz) _ ¢
q(z)  (z—zg)™

where ¢(z) is analytic and nonzero at z;,. Then solve for g(z).
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10. Recall (Sec. 10) that a point z; is an accumulation point of a set S if each deleted
neighborhood of z; contains at least one point of S. One form of the Bolzano-Weierstrass
theorem can be stated as follows: an infinite set of points lying in a closed bounded region
R has at least one accumulation point in R* Use that theorem and Theorem 2 in Sec.
68 to show that if a function f is analytic in the region R consisting of all points inside
and on a simple closed contour C, except possibly for poles inside C, and if all the zeros
of f in R are interior to C and are of finite order, then those zeros must be finite in
number.

11. Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano-Weierstrass theorem (see Exercise 10) and the fact that poles are
isolated singular points to show that if f is analytic in the region R except for poles
intertor to C, then those poles must be finite in number.

70. BEHAVIOR OF f NEAR ISOLATED SINGULAR POINTS

As already indicated in Sec. 65, the behavior of a function f near an isolated singular
point z varies, depending on whether z;; is a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not be used elsewhere in the
book, the reader who wishes to reach applications of residue theory more quickly may
pass directly to Chap. 7 without disruption.

Theorem 1. If 7, is a pole of a function [, then

(1) lim f(z) = oo.

Z—>Zg

To verify limit (1), we assume that f has a pole of order m at z; and use the
theorem in Sec. 66. It tells us that

where ¢ (z) is analytic and nonzero at zg. Since

m Ii o "
lim —— = lim &~ 20) = ZE??(Z « = 0 =V,
=2 f(z) 2w $(2) Nim ¢ (2) ¢ (zp)

then, limit (1) holds, according to the theorem in Sec. 16 regarding limits that involve
the point at infinity.

The next theorem emphasizes how the behavior of f near a removable singular
point is fundamentally different from the behavior near a pole.

*See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521, 1983.
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Theorem 2. If zy is a removable singular point of a function f, then f is analytic
and bounded in some deleted neighborhood 0 < |z — z| < € of z,.

The proof is easy and is based on the fact that the function f here is analytic
in a disk |z — zp| < R, when f(z,) is properly defined; and f is then continuous in
any closed disk |z — z3] < & where ¢ < R,. Consequently, f is bounded in that disk,
according to Sec. 17; and this means that, in addition to being analytic, f must be
bounded in the deleted neighborhood 0 < |z — zg| < &.

The proof of our final theorem, regarding the behavior of a function near an
essential singular point, relies on the following lemma, which is closely related to
Theorem 2 and is known as Riemann’s theorem.

Lemma. Suppose that a function f is analytic and bounded in some deleted neigh-
borhood 0 < |z — zp| < & of apoint zy. If [ is not analytic at 7y, then it has a removable
singularity there.

To prove this, we assume that f is not analytic at zo. As a consequence, the point
zo must be an isolated singularity of f; and f(z) is represented by a Laurent series

(2) f@)= }:a (z—z20)" + Z

throughout the deleted neighborhood 0 < |z — zg| < &. If C denotes a positively ori-
ented circle |z — z5) = p, where p < ¢ (Fig. 88), we know from Sec. 55 that the
coefficients b, in expansion (2) can be written

(z—1z )M

1 f(z)dz
2ni Jo (z — zp) 7 TE

(3) bnm (nm1§ 2,.5,).

FIGURE 88
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Now the boundedness condition on f tells us that there is a positive constant M such
that | f(z)| < M whenever 0 < |z — 2| < £. Hence it follows from expression (3) that

1 M

v o+l 2rp = Mp" (n=12,...).

lbp| <
Since the coefficients b, are constants and since p can be chosen arbitrarily small, we
may conclude thatb, =0 (n =1, 2, . . .) in the Laurent series (2). This tells us that z;
is a removable singularity of f, and the proof of the lemma is complete.

We know from Sec. 65 that the behavior of a function near an essential singular
point is quite irregular. The theorem below, regarding such behavior, is related to
Picard’s theorem in that earlier section and is usually referred to as the Casorati—
Weierstrass theorem. It states that, in each deleted neighborhood of an essential singular
point, a function assumes values arbitrarily close to any given number.

Theorem 3. Suppose that 7 is an essential singularity of a function f, and let wg be
any complex number. Then, for any positive number &, the inequality

@) 1f() - wol <&

is satisfied at some point 7 in each deleted neighborhood 0 < |z — zp| < 8 of Zy
(Fig. 89).

0 x 0 U  FIGURE 89

The proof is by contradiction. Since zg is an isolated singularity of f, there is a
deleted neighborhood O < |7 — zg| < 8 throughout which f is analytic; and we assume
that condition (4) is not satisfied for any point z there. Thus | f(z) — wy| = ¢ when
0 < |z — zgl < é; and so the function

1
) g(z) = 7@ — w, 0 <z =2zl <0)
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is bounded and analytic in its domain of definition. Hence, according to the above
lemma, z, is a removable singularity of g; and we let g be defined at zg so that it is
analytic there.

If g(zg) # 0, the function f(z), which can be written

1
(6) f(@)=—+wy
g(2)

when ( < |z — 7| < 8, becomes analytic at z; if it is defined there as

flzp) =

4+ Wy.

£(zp)
But this means that z; is a removable singularity of f, not an essential one, and we
have a contradiction.

If g(zg) = 0, the function g must have a zero of some finite order m (Sec. 68) at
zg because g(z) is not identically equal to zero in the neighborhood |z — zy| < . In
view of equation (6), then, f has a pole of order m at zg (see Theorem 1 in Sec. 69).
So, once again, we have a contradiction; and Theorem 3 here is proven.



CHAPTER

7

APPLICATIONS OF RESIDUES

We turn now to some important applications of the theory of residues, which was
developed in the preceding chapter. The applications include evaluation of certain types
of definite and improper integrals occurring in real analysis and applied mathematics.
Considerable attention is also given to a method, based on residues, for locating zeros
of functions and to finding inverse Laplace transforms by summing residues.

71. EVALUATION OF IMPROPER INTEGRALS

In calculus, the improper integral of a continuous function f (x) over the semi-infinite
interval x > 0 is defined by means of the equation

o0 R
(1) [ f(x)dx = lim S(x)dx.
0 R—o0 Jp
When the limit on the right exists, the improper integral is said to converge to that
limit. If f(x) is continuous for all x, its improper integral over the infinite interval
—0 < x < 00 is defined by writing

o0 0 R
(2) f(xYdx = lim fx)dx + Rlim ’ f(x)dx;

—0 Ri—cx —R, 700 Jo

and when both of the limits here exist, integral (2) converges to their sum. Another
value that is assigned to integral (2) is often useful. Namely, the Cauchy principal

251
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value (P.V.) of integral (2) is the number

o0 R
(3) P.V. f ) dx = lim f(x)dx,

provided this single limit exists.
If integral (2) converges, its Cauchy principal value (3) exists; and that value is
the number to which integral (2) converges. This is because

[_Zf(x)dx=/;1f(x)dx+fGRf(x)dx

and the limit as R — oo of each of the integrals on the right exists when integral (2)
converges. It is not, however, always true that integral (2) converges when its Cauchy
principal value exists, as the following example shows.

EXAMPLE. Observe that

oG R xz R
(4) PV. [ xdx= lim xdx = lim [w} = lim 0=0.
—R

—00 R—s00 J_p R-soo | 2 R—c0
On the other hand,
o0 0 Ry
(%) f xdx= lim xdx + lim xdx
—_0 Ry— o0 ~R, Ry— 00 0
. x27° . x27%
= lim | — + lhm | —
R2 R2
=-— lim -1+ lim —%;
Ri—so0 2 Ry— 00

and since these last two limits do not exist, we find that the improper integral (5) fails
to exist.

But suppose that f(x)(—00 < x < 00) is an even function, one where
f(—=x)= fx) for all x.

The symmetry of the graph of y = f(x) with respect to the y axis enables us to write

R | [R
f f(XJdXZ"“/ fx)dx,
0 2 J-R
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and we see that integral (1) converges to one half the Cauchy principal value (3) when
that value exists. Moreover, since integral (1) converges and since

0 R

fx)dx = flx)dx,

—R, 0

integral (2) converges to twice the value of integral (1). We have thus shown that when
f(x)(—o0 < x < 00) is even and the Cauchy principal value (3) exists, both of the
integrals (1) and (2) converge and

(6) P.V./OO f(x) dxzfoo f(x)dx:Z/OOOf(x)dx.

We now describe a method involving residues, to be illustrated in the next
section, that is often used to evaluate ir@qg_e_r_int\e?rals of even rational functions

f(x) = p(x)/q(x), where /f(—x) is equal to f(x){and where p(x) and g(x) are
polynomials with real coefficients and no factors in common. We agree that g (z) has
no real zeros but has at least one/zero above the real axis.)

The method begins with the identification of all of the distinct zeros of the
polynomial ¢g(z) that lie above the real axis. They are, of course, finite in number
(see Sec. 49) and may be labeled z;3, 25, . . ., z,, where n is less than or equal to the

degree of ¢(z). We then integrate the quotient

(7) fo =22

around the positively oriented boundary of the semicircular region shown in Fig. 90.
That simple closed contour consists of the segment of the real axis from z=—R to
z = R and the top half of the circle |z| = R, described counterclockwise and denoted
by Cg. It is understood that the positive number R is large enough that the points
21y 22, - - + » Z,, all lie inside the closed path.

FIGURE 90
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The Cauchy residue theorem in Sec. 63 and the parametric representation z = x
(—R < x < R) of the segment of the real axis just mentioned can be used to write

R n
f fydx + | f(xydz=2mi ) Res f(2).
-R Cgr k=1

I=2r
or
R n
(8) [ f(x)dx =2mi Z Res f(z) — f f()dz.
—R =1 Ok Cy
If

lim [ f(2)dz=0,
Cr

R—»00

it then follows that

o )
9) P.V. f fx)dx=2mi ) Res f(2).
=00 =1k
If f(x) is even, equations (6) tell us, moreover, that
o'e | n
(10) / f(x)dx =2mi ZR&S f()
o k=1 =t
and
00 n
(11) f fx)dx=mi) Res f(2).
0 1 =2

72. EXAMPLE

We turn now to an illustration of the method in Sec. 71 for evaluating improper
integrals.

EXAMPLE. In order to evaluate the integral

o0 2
f al dx,
o x®+1

we start with the observation that the function

2,,,2

8+ 1

f@=

has isolated singularities at the zeros of z& + 1, which are the sixth roots of — 1, and is
analytic everywhere else. The method in Sec. 8 for finding roots of complex numbers
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reveals that the sixth roots of —1 are

ckmexpl}(%-i-%%ﬁ):] k=0,1,2,...,9%),

and it is clear that none of them lies on the real axis. The first three roots,

in/6

co=e"%, =i, and c¢y=¢€""",

lie in the upper half plane (Fig. 91) and the other three lie in the lower one. When
R > 1, the points ¢; (k =0, 1, 2) lie in the interior of the semicircular region bounded
by the segment z = x (—R < x < R) of the real axis and the upper half Cj of the
circle |z| = R from z = R to z = —R. Integrating f (z) counterclockwise around the
boundary of this semicircular region, we see that

R
0 f Frd+ | () de=2mi(Bo+ By + By.
—R R

where B, is the residue of f(z) atc, (k =0, 1, 2).

FIGURE 91

With the aid of Theorem 2 in Sec. 69, we find that the points ¢; are simple poles
of f and that

72 C;% 1
Bk“—“RES = 5=““§ (k..—m(), 1,2)‘
=a %+1 6c; 6c;

Thus
1 1 1 T
2ni(Byg+ B+ B =2ni{ — — — + — | = —;
7By + B+ By) 1(65 6i+6i) 3
and equation (1) can be put in the form

R T
(2) [ fydx=—— fz)dz,
_R 3 Cr

which is valid for all values of R greater than 1.
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Next, we show that the value of the integral on the right in equation (2) tends to
0 as R tends to co. To do this, we observe that when |z| = R,

2% = |z|* = R?
and
I+ 1= —1=R 1.
So, if z is any point on Cj,

12| R?
< M where M, =
12641~ F R~ R6 1

+
%

| f(D)] =

and this means that

(3) f(z)dz

Cr

ngRffR,

7T R being the length of the semicircle Cg. (See Sec. 41.) Since the number

7R3

MptR =
R R6 — 1

is a quotient of polynomials in R and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero as R tends to 00. More
precisely, if we divide both numerator and denominator by RS and write

1t s evident that M7 R tends to zero. Consequently, in view of inequality (3),

lim f()dz=0.
Cr

R 00

It now follows from equation (2) that

R 2
. X T
lim dx = —,
R—00 —R x6+ 1 3

or

o0 2
P,V.f x dxmz.
—oo X0 1 3
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Since the integrand here is even, we know from equations (6) in Sec. 71 and the
statement in italics just prior to them that

¢ x2 T
4 dx = —.
® fo x0+1 *=%

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1. foo dx
o x2+41

Ans. /2.

/w dx
2. A
0 (x24+ 1?2

Ans. /4.

3. fw dx
o x¥4+1

Ans. 7t /(2V2).

4 /00 x2dx
"o 2+ DEE+4)
Ans. /6.

foo % dx

5. .

o (x2+9)(x244)>2
Ans. 7 /200.

Use residues to find the Cauchy principal values of the integrals in Exercises 6 and 7.

/w dx
6. X
oo X2 4 2x 42

. fw xdx
" e 2+ D242 4+2)
Ans. —1/5.

8. Use residues and the contour shown in Fig. 92, where R > 1, to establish the integration
formula

f"o dx _ 2r¢
0 xX3+1 3/3
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Rexp(i27/3)

FIGURE 92

9. Letm and n be integers, where 0 < m < n. Follow the steps below to derive the integration
formula

(a) Show that the zeros of the polynomial z%” + 1 lying above the real axis are
P g

1
ckzexp[sgi;‘mlﬂ k=0,12,...,n—1)
H

and that there are none on that axis.
() With the aid of Theorem 2 in Sec. 69, show that

zEm 1 .
Res S (k=0,1,2,...,n—1),
z=c; 72n + | 2n

where ¢, are the zeros found in part (a) and

2m + 1
o= T,
2n
Then use the summation formula
n—1
1 — 28
F=""% (z#1)
=0 1—z

(see Exercise 10, Sec. 7) to obtain the expression

¥ 4

z=¢; 72" 41 nsino

(¢) Use the final result in part (b) to complete the derivation of the integration formula.

10. The integration formula

x dx T p
= 2 VA _
fe I 12~ sl tIVA+atavA—a
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where a is any real number and A = /@2 + 1, arises in the theory of case-hardening of
steel by means of radio-frequency heating.” Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial
4(2) = (* —a)* +1

are the square roots of the numbers g & i. Then, using the fact that the numbers

1
ZG:E(WMW)

and —zq are the square roots of a + i (Exercise 5, Sec. 9), verify that £z are the
square roots of @ — ¢ and hence that z; and —Z; are the only zeros of ¢(z) in the
upper half plane Im z > 0.

(p)y Using the method derived in Exercise 7, Sec. 69, and keeping in mind that zg =a-+i
for purposes of simplification, show that the point z, in part (a) is a pole of order 2
of the function f(z) = 1/[g(z))* and that the residue B at z, can be written

C q(zg) _a—i(2a*+3)
[¢'(z0)P 1642,

After observing that ¢'(—2) = —¢’(z) and g (—2) = ¢”(2), use the same method to
. show that the point —7 in part (@) is also a pole of order 2 of the function f(z), with

residue
q"(zy) } —
By = = —B.
2 {[q"(zsg)ﬁ :

Then obtain the expression

1 —a + i(2a* +3)
BE“*‘BzmSAzi II’E}[ }

<0

for the sum of these residues.

(¢) Refer to part (a) and show that |g(z)] > (R ~ izol)*if |z| = R, where R > |zg|. Then,
with the aid of the final result in part (£), complete the derivation of the integration
formula.

73. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the form

(1) foo f(x)sinax dx or foo f(x)cosax dx,

* See pp. 359-364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.
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where a denotes a positive constant. As in Sec. 71, we assume that f(x) = p(x)/g(x),
where p(x) and g(x) are polynomials with real coefficients and no factors in common.
Also, ¢(z) has no real zeros. Integrals of type (1) occur in the theory and application
of the Fourier integral .*

The method described in Sec. 71 and used in Sec. 72 cannot be applied directly
here since (see Sec. 33)

2

|sin az]2 = sin® ax + sinh? ay

and
|cos ax|? = cos® ax + sinh? ay.

More precisely, since

: ¢4 — v
sinh ay = :
2
the moduli [sin az| and |cos az| increase like e® as y tends to infinity. The modification
illustrated in the example below is suggested by the fact that

R R R |
f f(x)cosaxdx +i f f(x)sinaxdx = f fx)e'** dx,
_R _R ~R

together with the fact that the modulus

Iefazl — 1€ia(x+iy)l — Ie—ayez'ax] — o

1s bounded in the upper half plane y > 0.

EXAMPLE. Letus show that

> [0 o
—oo (X2 4+ 1)2 e’

Because the integrand is even, it is sufficient to show that the Cauchy principal value
of the integral exists and to find that value.
We introduce the function

) 1=y

and observe that the product f(z)e'* is analytic everywhere on and above the real
axis except at the point z = i. The singularity z =i lies in the interior of the semi-
circular region whose boundary consists of the segment —R < x < R of the real axis

* See the authors’ “Fourier Series and Boundary Value Problems” 6th ed., Chap. 7, 2001.
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and the upper half Cy, of the circle |z| = R (R > 1) from z = R to z = —R. Integration
of f(z)e'* around that boundary yields the equation

R ein ”
4 ——dx =27iBy ~ e’ dz,
(4) LR(x2+l)2 1 CRf()

where
B = Res[f(z)ei3z],
=1

Since

i 9@ %
f(2)e _m(z—z’)z where é(z)_(z—}-f)?’

the point z =i is evidently a pole of order m = 2 of £(z)e’*; and
, 1
B = ‘ﬁ,(l) = T3
ie
By equating the real parts on each side of equation (4), then, we find that

— 2 dx==_—~Re 2)e3 dz.
—R (}Cz -+ 1)2 e3 Chr A

(5) f k- cos3x 2

Finally, we observe that when z 1s a point on Cpg,

1

| f(z)| < Mp where Mp= R_12

and that |/3| = e~ < 1 for such a point. Consequently,

(6) Re | f(p)e*dz| < f)e¥dz| < MpwR.
o Cr
Since the quantity
1 L
MR TR = AR R4 = R3

(RT—12 1 1)’
R (1‘“_2)
R

tends to 0 as R tends to oo and because of inequalities (6), we need only let R tend to
o< in equation (5) to arrive at the desired result (2).
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74. JORDAN’S LEMMA

In the evaluation of integrals of the type treated in Sec. 73, it is sometimes necessary
to use Jordan's lemma,* which is stated here as a theorem.

Theorem. Suppose that
(i) a function f(z) is analytic at all points z in the upper half plane y > 0 that are
exterior to a circle |z| = Ry;
(ii) Cp denotes a semicircle 7 = Re'(0 <0 < ), where R > Ry (Fig. 93);
(ifi) for all points z on Cy, there is a positive constant My such that | f ()| < M R

where
lim Mp=0.
R—oc
Then, for every positive constant a,
(1) lim f(2)é% dz =0.
R—cc Car

FIGURE 93

The proof is based on a result that is known as Jordan’s inequality:
d i T
(2) [ e~ R0 gg < = (R>0).
0 R

To verify this inequality, we first note from the graphs of the functions y = sin 8 and
y =20/ when 0 <8 < 7 /2 (Fig. 94) that sin & > 28/n for all values of 6 in that

* See the first footnote in Sec. 38.
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NIy [ —————m

3'1’\ 8

FIGURE %4

interval. Consequently, if R > 0,

—R s — T
e Rsznéﬁe 2RO/m when 05955;

and so
2 2
fx/ emR sin & 46 S_[n/ e—ZRQ[n' do = L(l . €_R).
0 0 2R
Hence
af2 )
3) f e Rsin0 g o T (g0
0 2R

263

But this is just another form of inequality (2), since the graph of y = sin é is symmetric

with respect to the vertical line 8 = 7 /2 on the interval 0 <6 <.

Turning now to the verification of limit (1), we accept statements ({)—(#ii) in the

theorem and write

T 2 =
f()e* dz = f f(Re') exp(iaRe'®)i Re' db.
Cp 0

Since
|f(Re) <My and |exp(iaRe’®)| < e Ron?
and in view of Jordan’s inequality (2), it follows that

MRJT
a

f(z)eiaz dz
Cr

14
5 MRRf e“"aR sin & d@ <
0
Limit (1) is then evident, since M — 0 as R — o0.

EXAMPLE. Let us find the Cauchy principal value of the integral

f"" xsinx dx
oo X2 +2x 4+2°
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As usual, the existence of the value in question will be established by our actually

finding it.
We write
Z Z
flz)= = —,
Z2+22+2 (2—-zPi -7
where z; = —1 4 i. The point z,, which lies above the X axis, is a simple pole of the

function f(z)e'?, with residue

Zleizi

4) By

21— 7)1

Hence, when R > +/2 and C denotes the upper half of the positively oriented circle
1zl = R,

R ix d .
/ xe X - ZJTIB] — f(z)em dZ,
_RxZ42x+2 Cr

and this means that

R . .
xsinx dx :
5 =ImQ2riB{) —Im 2)et* dz.
(3) ,[Rx2+2x+2 ( 1) CRf()
Now
(6) Im | f()e'dz| <|| f()e?dz|;
Cg Cr
and we note that, when z is a point on Cp,
R

|f ()| < Mr where MR:(RH_\/Q')z

and that |e?| = ¢~ < 1 for such a point. By proceeding as we did in the examples in
Secs, 72 and 73, we cannot conclude that the right-hand side of inequality (6), and
hence the left-hand side, tends to zero as R tends to infinity. For the quantity

7w R? w

(R—22 (1_ Q)Q

MRJTR;

R

does not tend to zero. Limit (1) does, however, provide the desired result.
So it does, indeed, follow from inequality (6) that the left-hand side there tends
to zero as R tends to infinity. Consequently, equation (5), together with expression (4)
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for the residue By, tells us that

7 PV f’“’o x sin x dx
e x2 422+ 2

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1 fm cosx dx
" 24+ aDG2+BY)

-b -
T e el
Ans. — )
a? — b? ( b a )

o0
2.[ €08 4% ix (a > 0).
0 xZ+41

v
Ans. —e 4,
2

o0
3, f B X ix (@ >0.b > 0).
QO

(x2 + b2)?2

T
Ans. — (1 + ab)e 2%,
n 4b3( )

{XJ +
4 f x sin 2x dy.
0o x2+43

Ans. % exp(—2v/3).

 xsinax
5. d > ().
/:m X4+4 X(a )

T, .
Ans.ge 2sina.

oo 3.
6.[ x Shax dx (a > 0).

—oo X444

Ans. me"% cos a.

’ foo xsinx dx
C S G2 D244

g f"’o x2sinx dx
“Jo B2+ DGR2+9)

EXERCISES

=ImQ2riBy) = J—T—(sin 1+ cos 1).
e

(a>b>0).

265
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Use residues to find the Cauchy principal values of the improper integrals in
Exercises 9 through 11.

0 /“’ sin x dx
"o x24+4x 45

e/ A
Ans. —— sin 2.
e

o0
m.f (x+1)cosxdx
coo X2 d4x 45

Ans, i (sin 2 — cos 2).
e

® cosxdx
11. b > (0.
f_oo (x+a)2+b2( =0

12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac-
tion theory:

o0 o0 1 T
j cos(x?) dx = f sin(xz) dx = — | —,.
0 0 2V 2

(a) By integrating the function exp(iz%) around the positively oriented boundary of
the sector 0 < r < R, 0 < § < /4 (Fig. 95) and appealing to the Cauchy—Goursat
theorem, show that

R 2 1 R 2 . 2
[ cos(x) dx = — f e dr — Re[ 't dz
0 V2 Jo Cp

and

R . 2 1 R N_,z i 2
sin(x*) dx = — e~ dr —Im e’ dz,
0 V2 Jo Cp

where Cj is the arc z = Re'? (0 < 0 < n/4).

y
Rexp(in/4)
Cr
0 - R x
FIGURE 95
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(b) Show that the value of the integral along the arc Cp, in part (a) tends to zero as R
tends to infinity by obtaining the inequality

2
[ eizz dz| < § fnf eszsinfi?dé
Cr 0

-2
and then referring to the form (3), Sec. 74, of Jordan’s inequality.
(¢) Use the results in parts (a) and (b), together with the known integration formula*

o0
0 2

to complete the exercise.

75. INDENTED PATHS

In this and the following section, we illustrate the use of indented paths. We begin with
an important limit that will be used in the example in this section.

Theorem. Suppose that
(i} afunction f(z) has a simple pole at a point 7 = xq on the real axis, with a Laurent
series representation in a punctured disk 0 < |z — x| < R, (Fig. 96) and with
residue By,
(ii) C,denotesthe upper half of acircle |z — xpl = p. where p < R, and the clockwise
direction is taken.

Then
(1) lim | f(z)dz=—Bymxi.
-0 C,
b 4

FIGURE %6

Assuming that the conditions in parts (i) and (if) are satisfied, we start the proof
of the theorem by writing the Laurent series in part (7) as

B
f@@)=g@ +—> 0 < |z — xol < Ry),

= Xg

* See the footnote with Exercise 4, Sec. 46.
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where
g)=) a,z—x))"  (1z— x|l < Ry).
n=0
Thus
dz
@ j () dz = f ¢(2) dz + B f .
Cp C, C, i — Xy

Now the function g(z) is continuous when |z — x,| < R,, according to the theo-
rem in Sec. 58. Hence if we choose a number py such that p < py < R, (see Fig. 96), it
must be bounded on the closed disk |z — xy| < pg, according to Sec. 17. That is, there
1s a nonnegative constant M such that

|g(2)] <M whenever |z — x| < pg:

and, since the length L of the path C, is L = mp, it follows that

[ g(z)dz
C

b

<ML=Mnp.

Consequently,

3) lim g(z2)dz=0.

>0 Cp

Inasmuch as the semicircle —C, has parametric representation
z=x9+pe®  (0<6<m),

the second integral on the right in equation (2) has the value

d d T : i
f S —/ ¢ W,j;,oieig d@m—i[ do = —im.
c, 2 X —C, 2— X 0 pe 0

Thus

4) 1im[ <2 _ _in
C

p—0 s X0

Limit (1) now follows by letting p tend to zero on each side of equation (2) and
referring to limits (3) and (4).
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EXAMPLE. Modifying the method used in Secs. 73 and 74, we derive here the
integration formula™

(5) foo Siﬁxdxzi
0 2

X

by integrating ¢'*/z around the simple closed contour shown in Fig. 97. In that
figure, p and R denote positive real numbers, where p < R; and L and L, represent
the intervals p <x < R and —R < x < —p, respectively, on the real axis. While
the semicircle Cp is as in Secs. 73 and 74, the semicircle C,, is introduced here in
order to avoid integrating through the singularity z = 0 of ¢'*/z.

Cr

N

L 0 o L, R x

FIGURE 97

The Cauchy—Goursat theorem tells us that

iz iz iz iz
ffmdz—‘r-/ f—dz+f =€—-dz+j € d7=0,
L, < Cp < Ly < c, <
or

eiz eiz eiz eiz
(6) f Mdz-l—f —dz=— —dz — — dz.
Ly < Ly & C, < Cp <

Moreover, since the legs L, and —L, have parametric representations
(7) z=reé®=r(p<r<R) and z=reé"=—r(p<r<R),

respectively, the left-hand side of equation (6) can be written
eiz ez’z R eir R e—f?’ ‘ R Sill r
[ —dz—f —dsz -—dr—f drmsz dr.
Ly 2 -L % p T p T p T

* This formula arises in the theory of the Fourier integral. See the authors’ “Fourier Series and Boundary
Value Problems,” 6th ed., pp. 206208, 2001, where it is derived in a completely different way.
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Consequently,

R _: iz iz
(8) 2:'[ Smrdr=wf Le-—dz—f ¢ 4z
o r Cp Z Cp Z

Now, from the Laurent series representation
et [ (i) | (2 (2)°
— =11+ + + + e
z 2z [ 1! 2! 3!
I A CE &

2
=-t—=+=z+t=z"+ - 0 <z < 00),
PR TRIE TR A 0=l <oo

it is clear that €'?/z has a simple pole at the origin, with residue unity. So, according
to the theorem at the beginning of this section,

elZ
11mf —dz = —mi.
p—>0 c, 2

Also, since

1

1
2l R

1
Z

when z is a point on Cg, we know from Jordan’s lemma in Sec. 74 that

el?
lim —dz =0.
R—=0 Ca 2

Thus, by letting p tend to 0 in equation (8) and then letting R tend to 0o, we arrive at
the result

w *
, sin r ,
2i f dr =i,
0

r

which is, in fact, formula (5).

76. AN INDENTATION AROUND A BRANCH POINT

The example here involves the same indented path that was used in the example in the
previous section, The indentation is, however, due to a branch point, rather than an
isolated singularity.

EXAMPLE. The integration formula

“  Inx T
1 —e— dx = —(In 2 — 1
() /0 A dx= 22
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can be derived by considering the branch

log z T r
f(Z)=m (]Z]>Qw‘““2“<afgz<7)
of the multiple-valued function (log z)/(z* + 4)*. This branch, whose branch cut
consists of the origin and the negative imaginary axis, is analytic everywhere in the
indicated domain except at the point z = 2i. In order that the isolated singularity 2i
always be inside the closed path, we require that p < 2 < R. See Fig. 98, where the
isolated singularity and the branch point z = 0 are shown and where the same labels
Ly, Ly, C,, and Cg as in Fig. 97 are used. According to Cauchy’s residue theorem,

f(z)dz + f(2)dz+ f(2) dz+f f(z)dz=2mi Res f(2).
L Cx L, C, =2i

That is,

@ [ Fdz+ [ F@)dz=2miRes f(2) - [ f@di— | f@dz.
L c, Ci

L, 7=2i

X
FIGURE 98
Since
Inr - 8 6

f@)= ; z=re"),

f( ) (r26129 + 4)2 ( )
the parametric representations
(3) 1=ré®=r(p<r<R) and z=re"=—r{(p<r<R)

for the legs L; and —L, can be used to write the left-hand side of equation (2) as

R

R .
f(2)dz — f@)dz= In r nr+im ..

L _ar+
L ““LZ 14 (r2 -+ 4)2 L (rz + 4)2
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Also, since

_9@)

(z -2

log z
(z +20)%

the singularity z = 27 of f(z) is a pole of order 2, with residue

f@= where ¢(z) =

)2

1—In2
oy = T |
@' (2i) 64—1—3 =

Equation (2) thus becomes

In , R dr _ ?
f (r? +42dr+m[p (r2 + 4)2 16( 0 )“3_5

(4) —f f()dz — f(@)dz;
c, Cp

and, by equating the real parts on each side here, we find that

(5) 2/RLdrw£(ln2—l)—Re/ f(ydz—Re | f(2)d
AT ‘. z)dz . z)dz.

It remains only to show that

(6) lim Re [ f(z)dz=0 and 1lim Re f()dz=0.
C Cg

=0 p R—oc

For, by letting o and R tend to 0 and oo, respectively, in equation (5), we then arrive

at
oG
2/ = Ena-,
0 (r2+4)? 16

which is the same as equation (1). _
Limits (6) are established as follows. First, we note that if o < 1 and z = pe'? is
a point on C, then

logzl=|lnp+if|<|lnp|+|if|<~Inp+m
and

1244 > ||z]> — 4| =4 — o7

f f()dz| <
Ce‘?

As a consequence,

—1 —
np-I—:erpzﬂrrp plnp;
4 — p2)? (4 — p?)?

Re f F(2)dz| <
Cp
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and, by I’Hospital’s rule, the product p In p in the numerator on the far right here tends
to 0 as p tends to 0. So the first of limits (6) clearly holds. Likewise, by writing

n, IR

mm———lnf_*_nanzﬂR R,}
LT}

Re f(z)dz
CR

= =

f2) dz
Cr

R

and using 1I’Hospital’s rule to show that the quotient (In R)/R tends to O as R tends to
o0, we obtain the second of limits (6).
Note how another integration formula, namely

> d 1
(7) [ mmimmf,___.i -
o (x-+4) 32

follows by equating imaginary, rather than real, parts on each side of equation (4):

(8) yrfR dr —nQ ulm/ f(2)dz —Im f(zydz
, (244?32 c, C '

Formula (7) is then obtained by letting p and R tend to 0 and oo, respectively, since

/ f(z)dz
Cﬁ

77. INTEGRATION ALONG A BRANCH CUT

Cauchy’s residue theorem can be useful in evaluating a real integral when part of the
path of integration of the function f(z) to which the theorem is applied lies along a
branch cut of that function.

< and |lm f(z2)dz

Cr

=

.

Im f(z2)dz
CP

fz)dz
Cr

EXAMPLE. Letx™“, where x > 0 and 0 < a < 1, denote the principal value of the
indicated power of x; that is, x ~¢ is the positive real number exp(—a In x). We shall
evaluate here the improper real integral

o y—a
(1) f dx (0<a<1),
o x+1
which is important in the study of the gamma function.* Note that integral (1) is
improper not only because of its upper limit of integration but also because its integrand
has an infinite discontinuity at x = 0. The integral converges when 0 < a < 1 since the
integrand behaves like x ¢ near x = 0 and like x ™%~ ! as x tends to infinity. We do not,

* See, for example, p. 4 of the book by Lebedev cited in Appendix 1.
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however, need to establish convergence separately; for that will be contained in our
evaluation of the integral.

We begin by letting C, and Cp denote the circles |z] = p and |z| = R, respectively,
where p < 1 < R; and we assign them the orientations shown in Fig. 99. We then
integrate the branch

—d

Z

2 =
2) f (@) 1

(lz] > 0,0 <arg 7 < 2m)

of the multiple-valued function z7¢/(z + 1), with branch cut arg z = 0, around the
simple closed contour indicated in Fig. 99. That contour is traced out by a point moving
from p to R along the top of the branch cut for f(z), next around Cg and back to R,
then along the bottom of the cut to p, and finally around C, back to p.

FIGURE 99

Now & = 0 and § = 27 along the upper and lower “edges,” respectively, of the
cut annulus that is formed. Since
exp(—alogz) exp[—a(lnr +i8)]

z+1 rei? +1

fz)=

where z = ret?, it follows that

exp[—a(lnr +i0)] r™¢
r+1 r+1

f@@)=

on the upper edge, where z = re‘®, and that

exp[—a(lnr +i27)] pagTidan
r+1 41

f2)=

on the lower edge, where z = re'*™. The residue theorem thus suggests that

R ,.—a R ,—a,—i2an
(3) / dr + f(z)dzwf Wwdr-z—f f(z)dz
o Ck o r+l C,

r+1

=2mi Res f(z).

=1
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Our derivation of equation (3) is, of course, only formal since f(z) is not analytic,
or even defined, on the branch cut involved. It is, nevertheless, valid and can be fully
justified by an argument such as the one in Exercise 8.

The residue in equation (3) can be found by noting that the function

$(2) =7 % =exp(—alogz) =expl—a(lnr 4+ i0)] (r>0,0<8 <2m)
is analytic at z = —1 and that
p(—1) =exp[—a(ln 1 +in)]=e %" £0.

This shows that the point z = —1 is a simple pole of the function f(z), defined by
equation (2), and that

Res1 fz) =e197,
z=—

Equation (3) can, therefore, be written as

R _-a ]
4y (11— ¢ ~i2am) [ 4 dr =2mie " — f flo)ydz — f()dz.
p T+ 1 C, Cg

Referring now to definition (2) of f(z), we see that

f f@de| < L amp= 2 pi-
c, l—p 1—p
and
~a 2R 1
f(@ydz| < R R =22
Cs R—1 R—1 Re

Since 0 < a < 1, the values of these two integrals evidently tend to 0 as p and R tend
to 0 and oc, respectively. Hence, if we let p tend to O and then R tend to o in equation
(4), we arrive at the result

—i2a *®
(1 —e ")
o r-+1

o0 rm«a . e—fa;rr e,m;rr 2£
dr = 2i . e =TT — —.
0 r+ 1 1 — e—zZmz elamn plan . p—iam

dr =2mie 97,

or

This is, of course, the samc as

(5) f I N 0<a<l).
0

x4+ 1 sin arm
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EXERCISES
In Exercises 1 through 4, take the indented contour in Fig. 97 (Sec. 75).

1. Derive the integration formula

[  cos{ax) — cos(bx)
0

x2

dxm%(b—a) (@>0,b>0).

Then, with the aid of the trigonometric identity 1 — cos(2x) = 2 sin® x, point out how it

follows that
5 1.2
/ sin“ x dx — T ‘
0 x?2 2

2. Evaluate the improper integral

& 4] xa
f ————dx, where —1l<a<3 and x%=-exp(alnx).
0

Ans. .
4 cos(an/2)

3. Use the function

1/3 1 (1/3) log z ] 3

z/7logz e 0gz T T

7) = = z| >0, —— <argz <« —
7@ 2 +1 2 +1 (” 2 = 2)

to derive this pair of integration formulas:
¢ 3771 2 oo 3

ﬁnxdx_zr, f ﬁd.xmn,
0 x2+1 \/é;

o x24+1 6

4. Use the function

B {log z)2 T 3
1@ =735 (izi >0, 7 <argz < —2—)

o0 2 3 00
(In x) 7 [ In x
dx = —, dx =0.
/; x% 41 3 0o x241

Suggestion: The integration formula obtained in Exercise 1, Sec. 72, is needed here.
5. Use the function

to show that

Zl,e’3 6(1/3) log z

C+a)z+b6)  @+a)e+b)

f@)= (lz] > 0,0 <arg z < 2m)

and a closed contour similar to the one in Fig. 99 (Sec. 77) to show formally that

o 3 3 3
] VX dx:2yr‘\/~—\/5 (a>b=>0).
0 (x+ax+b) V3 oa-b
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6. Show that

oc dx T
fo S22
by integrating an appropriate branch of the multiple-valued function
V2 p(=1/2)logz
21 241
over () the indented path in Fig. 97, Sec. 75; (b) the closed contour in Fig. 99, Sec. 77.

f@)=

7. The beta function is this function of two real variables:

1
B(p,q)m[ zp"l(]—t)q""idf (p>0,q9=>0).
0

Make the substitution ¢ = 1/(x + 1) and use the result obtained in the example in Sec.
77 to show that

T

B{p,1—p)= < p<l).

sin{ pr)
8. Consider the two simple closed contours shown in Fig. 100 and obtained by dividing
into two pieces the annulus formed by the circles C,, and Cg in Fig. 99 (Sec. 77). The
legs L and —L of those contours are directed line segments along any ray arg z = 6,

where 7 < 6y < 37/2. Also, I', and y,, are the indicated portions of C, while I and
yg make up Cp.

Yr

FIGURE 100

(@) Show how it follows from Cauchy’s residue theorem that when the branch

774 i1 3
= >0, —— <ar e
H(2) — (IZI 5 SWBI< 2)

of the multiple-valued function z7¢/(z + 1) is integrated around the closed contour
on the left in Fig. 100,

R .—a
] " _ar+ | AR dz+f f1(z) dz+f fi(z)dz =2xi Res fi(2).
o ¥ “‘1"‘ 1 I"'R I Fﬂ Zm"'l
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(b) Apply the Cauchy-Goursat theorem to the branch

¢ T 5n
= >0, —<argz <« —
J2(z) p— (IZI 5 <argz << )

of z79/(z + 1), integrated around the closed contour on the right in Fig. 100, to show
that

R rmae—iﬁ‘.ai’z
- f ———dr+ | fr(0)dz — f fDdz+ | fr(2)dz=0.
P r+1 Vo L YR

(¢) Point out why, in the last lines in parts (a) and (b), the branches f;(z) and f,(z) of
z7%/(z + 1) can be replaced by the branch
zwa
z+1

Then, by adding corresponding sides of those two lines, derive equation (3), Sec.
77, which was obtained only formally there.

f@= (Jz] > 0,0 < arg z < 2m).

78. DEFINITE INTEGRALS INVOLVING SINES AND COSINES

The method of residues is also useful in evaluating certain definite integrals of the type

2
(1) f F(sin @, cos ) dg.
‘ 0

The fact that 6 varies from 0 to 27 suggests that we consider  as an argument of a
point z on the circle C centered at the origin. Hence we write

(2) z=¢%  (0<0<2nm).
Formally, then,
dz =i do =iz do;

and the relations

| -1 d
3) sinf=""2 cosh=2TL  gp="22
21 2 iz
enable us to transform integral (1) into the contour integral
_ 1 ~1
@) j F(Z 2 2 +z ) @
C 2i 2 4

of a function of z around the circle C in the positive direction. The original integral (1)
is, of course, simply a parametric form of integral (4), in accordance with expression
(2), Sec. 39, When the integrand of integral (4) is a rational function of z, we can
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evaluate that integral by means of Cauchy’s residue theorem once the zeros of the
polynomial in the denominator have been located and provided that none lie on C.

EXAMPLE. Letus show that

21
de 27T
5 = -1 D.
©) ,[g I4+asinfd /1—qg2 (ml<a<l)

This integration formula is clearly valid when a = 0, and we exclude that case in our
derivation. With substitutions (3), the integral takes the form

2/a
6 dz,
© [C’ 22+ Qifa)z—1

where C is the positively oriented circle |z| = 1. The quadratic formula reveals that the
denominator of the integrand here has the pure imaginary zeros

(—1+JT1”&'2‘), (—1—-@).
{1 = {2 = L.

L,

a d

So if f(z) denotes the integrand, then
2/a
(z—z)(z—122)

fl@)=

Note that, because |a| < 1,

14+ 4+/1—a?

|z5| = > 1
lal
Also, since |zz,| = |, it follows that |z;| < 1. Hence there are no singular points on C,
and the only one interior to it is the point z;. The corresponding residue B is found
by writing

2
F@ =2 ghere g =2
T Z1 =2
This shows that z; is a simple pole and that
2/a 1
By = ¢(z) = = :
21— 22  iv1—a?
Consequently,
2/a 2
: dz =27i B = ———;
fc 22+ Qijayz — 1 1= A=

and integration formula (5) follows.
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The method just illustrated applies equally well when the arguments of the sine
and cosine are integral multiples of 8. One can use equation (2) to write, for example,

8529 +£--i26 B (659)2 4 (eit‘))—Z ZE +Z—2

cos 28 =

2 2 2

EXERCISES

Use residues to evaluate the definite integrals in Exercises 1 through 7.

1 ]‘221 dé
“Jo 5+4sing

2
Ans. mﬁ.
3

f” deé
2. e —
-z 1+sin? @

Ans. \/iyr,

fz*”’ cos® 36 do
0o S—4dcos26

Ans. §E .
8

2
4,[ __ 4 (=l<a<1).
g l+acosé

2

\/l—az‘

n
5. f cos 26 df (—1<a<l)
o 1—2acosf <+ qg?

Ans.

2

T2

n
6. [ a9 (a > 1).
0 (a+ cos8)?

Angs an
a3

pid
7.] sin?0de (n=1,2,...).
0

Ans

(2n)!
22n (I‘E 5)2

S, .
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79. ARGUMENT PRINCIPLE

A function f is said to be meromorphic in a domain D if it 1s analytic throughout
D except for poles. Suppose now that f is meromorphic in the domain interior to
a positively oriented simple closed contour C and that it is analytic and nonzero
on C. The image I' of C under the transformation w = f(z) is a closed contour,
not necessarily simple, in the w plane (Fig. 101). As a point z traverses C in the
positive direction, its images w traverses I" in a particular direction that determines
the orientation of I'". Note that, since f has no zeros on C, the contour I does not pass
through the origin in the w plane.

u X J u

FIGURE 101

Let w and wy be points on ', where wy is fixed and ¢ is a value of arg wg. Then
let arg w vary continuously, starting with the value ¢y, as the point w begins at the point
wq and traverses I" once in the direction of orientation assigned to it by the mapping
w = f(z). When w returns to the point wq, where it started, arg w assumes a particular
value of arg wy, which we denote by ¢,. Thus the change in arg w as w describes I"
once in its direction of orientation is ¢ — ¢. This change is, of course, independent
of the point wg chosen to determine it. Since w = f(z), the number ¢; — ¢y 1s, in fact,
the change in argument of f(z) as z describes C once in the positive direction, starting
with a point zg; and we write

Ac arg f(z) = ¢ — ¢o.
The value of A, arg f(z) is evidently an integral multiple of 27, and the integer

1
—Acarg f(2)
27

represents the number of times the point w winds around the origin in the w plane. For
that reason, this integer is sometimes called the winding number of T with respect to
the origin w = 0. It is positive if I' winds around the origin in the counterclockwise
direction and negative if it winds clockwise around that point. The winding number
is always zero when I" does not enclose the origin. The verification of this fact for a
special case is left to the exercises.



282  APPLICATIONS OF RESIDUES CHAP. 7

The winding number can be determined from the number of zeros and poles of
f interior to C. The number of poles is necessarily finite, according to Exercise 11,
Sec. 69. Likewise, with the understanding that f(z) is not identically equal to zero
everywhere ¢lse inside C, it is easily shown (Exercise 4, Sec. 80) that the zeros of f
are finite in number and are all of finite order. Suppose now that f has Z zeros and P
poles in the domain interior to C. We agree that f has m zeros at a point z; if it has a
zero of order m there; and if f has a pole of order m , at zy, that pole is to be counted
m , times. The following theorem, which is known as the argument principle, states
that the winding number is simply the difference Z — P.

Theorem. Suppose that
(1) a function f(z) is meromorphic in the domain interior fo a positively oriented
simple closed contour C;
(ii) f(2) is analytic and nonzero on C;
(iii} counting multiplicities, Z is the number of zeros and P is the number of poles of
f(z) inside C.
Then

1) L Acare fly=2 - P.
27

To prove this, we evaluate the integral of f'(z)/f(z) around C in two different
ways. First, we let z = z(¢) (¢ <t < b) be a parametric representation for C, so that

/ b g/ ’
f'@ 4 _ [ Feoro
¢ f(2) a  Sflz(t)]
Since, under the transformation w = f(z), the image ' of C never passes through

the origin in the w plane, the image of any point z = z(¢) on C can be expressed in
exponential form as w = p(¢) expli¢(#)]. Thus

(2)

(3) flzi)l=p0)e "  (a <t <b);

and, along each of the smooth arcs making up the contour I', it follows that (see
Exercise 5, Sec. 38)

@ flz0)l(r) = %f[z(z)] = d%[p(z)e’w] =0/ (e ?D 1 ip(r)e'* V' (1).

Inasmuch as p'(¢) and ¢’'(¢) are piecewise continuous on the interval @ <t < b, we
can now use expressions (3) and (4) to write integral (2) as follows:

iy, [°p@) _
Cmdzm[d p()dt+zf #di=mnpw] +ig®] .
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But

p(by=p(a) and ¢b)— ¢(a) = Acarg f(2).
Hence
(5) . J;((:)) dz =iAp arg f(z).

Another way to evaluate integral (5) is to use Cauchy’s residue theorem. To be
specific, we observe that the integrand f'(z)/f (z) is analytic inside and on C except
at the points inside C at which the zeros and poles of f occur. If f has a zero of order
myq at zg, then (Sec. 68)

(6) f@)=(z—2p0)™g ),

where g(z) is analytic and nonzero at z,. Hence

F(zg) = mo(z — zg)™ 'g(2) + (2 — 29)™8(2),
or
f@) _ _mo + 8'(2)‘
f(2) z—2zp g

Since g'(z)/g(z) is analytic at z, it has a Taylor series representation about that point;
and so equation (7) tells us that f'(z)/f (z) has a simple pole at z¢, with residue m,.
If, on the other hand, f has a pole of order m, at z,, we know from the theorem in
Sec. 66 that

(8) f@@)y=(z—z20) "r(2),

where ¢ (z) is analytic and nonzero at z,. Because expression (8) has the same form
as expression (6), with the positive integer mg in equation (6) replaced by —m , it is
clear from equation (7) that f'(z)/f(z) has a simple pole at zy, with residue —m,.
Applying the residue theorem, then, we find that

(7)

(@ .
9 L 22 e =2mi(Z — P).
®) c f@) 2 =2mid :

Expression (1) now follows by equating the right-hand sides of equations (5) and (9).

EXAMPLE. The only singularity of the function 1/z7 is a pole of order 2 at the
origin, and there are no zeros in the finite plane. In particular, this function is analytic
and nonzero on the unit circle z = ¢ (0 < 8 < 2m). If we let C denote that positively
oriented circle, our theorem tells us that

1 1
—Aparg| — | = 2.
27 ¢ g(zz)
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That is, the image T of C under the transformation w = 1/z> winds around the origin
w = 0 twice in the clockwise direction. This can be verified directly by noting that "
has the parametric representation w = e%9(0 < 8 < 2n).

80. ROUCHE’S THEOREM

The main result in this section is known as Rouché’s theorem and is a consequence of
the argument principle, just developed in Sec. 79. It can be useful in locating regions
of the complex plane in which a given analytic function has zeros.

Theorem. Suppose that
(i} two functions f(z) and g(2) are analytic inside and on a simple closed contour C;
(ii) | f(D! > |g(2)| at each point on C.
Then f(z) and f(2) + g(2) have the same number of zeros, counting multiplicities,
inside C.

The orientation of C in the statement of the theorem is evidently immaterial.
Thus, in the proof here, we may assume that the orientation is positive. We begin with
the observation that neither the function f(z) nor the sum f(z) 4+ g(z) has a zero on
C, since

f(@)>1g@))=0 and [f(2)+g@)|=[f@)—Ig@)>0

when z ison C.
If Z; and Z ¢, , denote the number of zeros, counting multiplicities, of f(z) and
f () + g(2), respectively, inside C, we know from the theorem in Sec. 79 that

1 1
Zf=§“;$c arg f(z) and Zf+g=gACarg[f(Z)+g(Z)]'

Consequently, since

Acarg[f(2) +g()]= Ac¢ argif(z) [1 4 g&'g‘l]}

f(@)
2(z)
= A A 14 ==,
c arg f(z) + Cafg[ +f(Z):|

it 1s clear that
1
(1) Zf+ngf+~2-;ACargF(z),

where

F(Z)ml'*'w‘

(@)
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But

12 (2)]
| f(2)]

and this means that, under the transformation w = F(z), the image of C lies in the
open disk |w — 1] < 1. That image does not, then, enclose the origin w = 0. Hence
Ac arg F(z) = 0 and, since equation (1) reduces to Z,,, = Z ¢, the theorem here is
proved.

|F(z) — 1| = < 1

EXAMPLE. In order to determine the number of roots of the equation
(2) ' —4547-1=0
inside the circle |z| = 1, write

f)=—42 and g)=z'+z-1

Then observe that | f (z)] = 4|z]° =4 and |g(2)| < |z|” + |z| + 1=3when |z| = 1. The
conditions in Rouché’s theorem are thus satisfied. Consequently, since f(z) has three
zeros, counting multiplicities, inside the circle |z] = 1, so does f(z) + g(z). That is,
equation (2) has three roots there.

EXERCISES

1. Let C denote the unit circle |z| = 1, described in the positive sense. Use the theorem in
Sec. 79 to determine the value of A arg f(z) when

@f@=2 OFfQ=EE+/z  (© f@=02z-1D7/2
Ans. (@) 4m;, (b)) -2m; (c)8m.

2. Let f beafunction which is analytic inside and on a simple closed contour C, and suppose
that f(z) is never zero on C. Let the image of C under the transformation w = f(z)
be the closed contour " shown in Fig. 102. Determine the value of Ap arg f(z) from

FIGURE 102
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that figure; and, with the aid of the theorem in Sec. 79, determine the number of zeros,
counting multiplicities, of f interior to C.

Ans. 6m; 3.

Using the notation in Sec. 79, suppose that I" does not enclose the origin w = 0 and that
there is a ray from that point which does not intersect I". By observing that the absolute
value of A arg f(z) must be less than 27 when a point z makes one cycle around C
and recalling that A arg f(2) is an integral multiple of 2sr, point out why the winding
number of I with respect to the origin w = 0 must be zero.

Suppose that a function f is meromorphic in the domain D interior to a simple closed
contour C on which f is analytic and nonzero, and let Dy denote the domain consisting
of all points in D except for poles. Point out how it follows from the lemma in Sec. 26
and Exercise 10, Sec. 69, that if f(z) is not identically equal to zero in Dy, then the zeros
of f in D are all of finite order and that they are finite in number.

Suggestion: Note that if a point zg in D is a zero of f that is not of finite order, then
there must be a neighborhood of z; throughout which f(z) is identically equal to zero.

Suppose that a function f is analytic inside and on a positively oriented simple closed
contour C and that it has no zeros on C. Show thatif f hasn zeros z;(k=1,2, ..., n)
inside C, where each z; is of multiplicity m,, then

2f'(2) N
dz =2 .
[cf(z) ‘ m,;m"z"

[Compare equation (9), Sec. 79 when P = 0 there.]

Determine the number of zeros, counting multiplicities, of the polynomial
@z° =5+ ~2z; B2t -22+22-22+9
inside the circle |z| = 1.

Ans.(a)4; (b)0.

. Determine the number of zeros, counting multiplicities, of the polynomial

(@) 2% +3z° + 6 B)z7* =223 +922 47— 13 (c)zﬁ+3z3+22+1
inside the circle |z| = 2.

Ans.(@)3; (b)2; (c)5.

Determine the number of roots, counting multiplicities, of the equation
22 —622+24+1=0

in the annulus 1 < |z| < 2.

Ans. 3.

Show that if ¢ 1s a complex number such that |c} > e, then the equation cz” = e* has n
roots, counting multiplicities, inside the circle |z] = 1.
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10.

11.

12.

Write f(z) =z" and g(z) =ay+a;2 + - - - +a,_;2" ! and use Rouché’s theorem to
prove that any polynomial

PR =ay+aiz+ - +a, " ' +a,7" (a, # 0),

where # > 1, has precisely »n zeros, counting multiplicities. Thus give an alternative proof
of the fundamental theorem of algebra (Theorem 2, Sec. 49).

Suggestion: Note that one can let a,, be unity. Then show that [g(z)] < | f(z)] on
the circle |z| = R, where R is sufficiently large and, in particular, larger than

Y+ lagl + lay| + - -+ la, .

Inequalities (5), Sec. 49, ensure that the zeros of a polynomial

PD)=ay+az+- cta, 2" M+ a, " (a, #0)

of degree n > 1 all lie inside some circle |z| = R about the origin. Also, Exercise 4 above
tells us that they are all of finite order and that there is a finite number N of them. Use
expression (9), Sec. 79, and the theorem in Sec. 64 to show that

P'(1
N =Res (—/Z)_,
z=0 z2P(1/7)
where multiplicities of the zeros are to be counted. Then evaluate this residue to show
that N = n. (Compare Exercise 10.)

Let two functions f and g be as in the statement of Rouché’s theorem in Sec. 80, and let
the orientation of the contour C there be positive. Then define the function

1 f'@)+18@
ori Jo f(2) +te(@

and follow the steps below to give another proof of Rouché’s theorem.

P(r) = O=r=<1)

(@) Point out why the denominator in the integrand of the integral defining ® (¢) is never
zero on C. This ensures the existence of the integral.

(b) Lett and t; be any two points in the interval 0 < ¢ < 1 and show that

[t — 1o
2

|P(f) — @) =

f f&—re
¢ (f +18)(f + 108)
Then, after pointing out why
f&—flg | _1f8'—rel
(f +1)(f +100) |~ (1f] = 18D*

at points on C, show that there is a positive constant A, which is independent of ¢
and £, such that

[ P(1) — Pp)| < Alr — fyl.

Conclude from this inequality that ®(¢) is continuous on the interval 0 <t < 1.
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(¢) By referring to equation (9), Sec. 79, state why the value of the function ® is, for each
value of ¢ in the interval 0 < ¢ < 1, an integer representing the number of zeros of
f(2) + tg(z) inside C. Then conclude from the fact that & is continuous, as shown
in part (b), that f(z) and f(z) + g(z) have the same number of zeros, counting
multiplicities, inside C.

81. INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex variable s is analytic throughout the finite s
plane except for a finite number of isolated singularities, Then let L ; denote a vertical
line segment from s =y — iR to s = y + i R, where the constant y is positive and
large enough that the singularities of F all lie to the left of that segment (Fig. 103). A
new function f of the real variable ¢ is defined for positive values of ¢ by means of the
equation

1
() f(t)=— lim f e F(s)ds (r > 0),
2wl R—oc Lg
provided this limit exists. Expression (1) is usually written
i y+ioo
(2) f()=—PV. f e F(s) ds (r>0)
231'5 y—ioc

[compare equation (3), Sec. 71], and such an integral is called a Bromwich integral.

It can be shown that, when fairly general conditions are imposed on the functions
involved, f(t) is the inverse Laplace transform of F (s). That is, if F(s) is the Laplace
transform of f (1), defined by the equation

o0
(3) F(s) = f ff'"srf(f) dt,
0
y
_——eV+iR
Cr/ o
)
N b,
ol |7
]
$2
L
31
ey — iR
FIGURE 103
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then f(¢) is retrieved by means of equation (2), where the choice of the positive
number y is immaterial as long as the singularities of F all lie to the left of Lg.*
Laplace transforms and their inverses are important in solving both ordinary and partial
differential equations.

Residues can often be used to evaluate the limit in expression (1) when the
function F(s) is specified. To see how this is done, we let s, (n =1, 2, ..., N) denote
the singularities of F(s). We then let Ry denote the largest of their moduli and consider
a semicircle Cp with parametric representation

- T 3n
4 =y + Re'? (_.59{..........,)?
) =Y ¢ 2 2

where R > Ry + y. Note that, for each s,
5, =yl < lIsul+v < Ry+y <R.

Hence the singularities all lie in the interior of the semicircular region bounded by Cp
and L g (see Fig. 103), and Cauchy’s residue theorem tells us that

N
(5) f e F(s) ds=23z‘iZR@s[e‘“F(s)]-— / e F(s) ds.
LR n—Il ¥=%n CR

Suppose now that, for all points s on C g, there is a positive constant M g such that
|F(5)| < Mg, where M g tends to zero as R tends to infinity. We may use the parametric
representation (4) for Cp to write

/2 . . .
[ ' F(s)ds = [ exp(yt + Rte'®)F(y + Re®)Rie' d6.
CR ?ffz

Then, since
|exp(yt + Rte!®)| = e'eR 9 and |F(y + Re'®)| < Mg,

we find that

3n/2
< EWMRR[ ethose de.
Ti2

(6)

[ e’ F(s) ds
Cr

* For an extensive treatment of such details regarding Laplace transforms, see R. V. Churchill, “Opera-
tional Mathematics,” 3d ed., 1972, where transforms F(s) with an infinite number of isolated singular
points, or with branch cuts, are also discussed.
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But the substitution ¢ = 6 — (7/2), together with Jordan’s inequality (2), Sec. 74,
reveals that

3n/2 s ) T
/ ethosS de ;f e-—Rt sin ¢ do < —,
/2 0 Rt

Inequality (6) thus becomes

vi
) | oo as| < U
Cr t
and this shows that
(8) lim f e F(s)ds =0.
R—00 Jop

Letting R tend to oo in equation (5), then, we see that the function f(¢), defined by
equation (1), exists and that it can be written

N
) f@&)=) ResleF()] (>0
n=1 =

In many applications of Laplace transforms, such as the solution of partial differ-
ential equations arising in studies of heat conduction and mechanical vibrations, the
function F(s) is analytic for all values of s in the finite plane except for an infinite
set of isolated singular points s,,(n = 1, 2, . . .) that lie to the left of some vertical line
Re s = y. Often the method just described for finding f(¢) can then be modified in
such a way that the finite sum (9) is replaced by an infinite series of residues:

(10) f) =) Resle"F()] (> 0).
n=1| 8

The basic modification is to replace the vertical line segments Ly by vertical line
segments Ly (N=1,2,...)froms =y —ibytos =y + iby. The circular arcs Cpg
are then replaced by contours Cy (N = 1,2, .. .) from y +iby to y — iby such that,
for each N, the sum Ly + Cy is a simple closed contour enclosing the singular points
51s 82, . .., §n. Once it is shown that

(11) lim[ e F(s)ds =0,
Cy

N—=co

expression (2) for f(r) becomes expression (10),

The choice of the contours Cp depends on the nature of the function F(s).
Common choices include circular or parabolic arcs and rectangular paths. Also, the
simple closed contour L -+ Cy need not enclose precisely N singularities. When, for
example, the region between L, + Cy and Ly,__; + Cy 1 contains two singular points



SEC. 82 ExampLEs 291

of F(s), the pair of corresponding residues of e*’ F'(s) are simply grouped together as
a single term in series (10). Since it is often quite tedious to establish limit (11) in any
case, we shall accept it in the examples and rclated exercises below that involve an
infinite number of singularities.* Thus our use of expression (10) will be only formal.

82. EXAMPLES

Calculation of the sums of the residues of ¢*! F(s) in cxpressions (9) and (10), Sec. 81,
is often facilitated by techniques developed in Exercises 12 and 13 of this section. We
preface our cxamples here with a statement of those techniques.

Suppose that F(s) has a pole of order m at a point sy and that its Laurent series
representation in a punctured disk 0 < |s — sp| < R, has principal part

bi bZ bm
e —— b 0.
s—sy (s —sp)? i (s — s)™ (bm 7 0)
Then
(1 Res{e! F(5)] = eSOI[bI + ﬁr 4o ——-bm—tm"i].
§ =54 1! (m — 1!

When the pole sy is of the form sy =« + if (B #0) and F(s) = F(5) at points of
analyticity of F(s) (see Sec. 27), the conjugate 5p = & — i is also a pole of order m.
Moreover,

Res[e* F(s)] + Res[e* F(s)]

§=80 §F=5q

; b b
2 =2 Rele'?’ |:b + 244y T tmwl:l}
® { Y (m — 1)!

when ¢ is real. Note that if s, is a simple pole (m = 1), expressions (1) and (2) become

(3) Res[e’ F(5)] = €™ Res F(s)
5=8 §=5q
and
(4) Res[e’” F(s)] + Res[e® F(s)] = 2% Re[eff” Res F(s)],
S=8n gmg §=5n
respectively.

* An extensive treatment of ways to obtain limit (11) appears in the book by R. V. Churchill that is cited
in the footnote earlier in this section. In fact, the inverse transform to be found in Example 3 in the next
section is fully verified on pp. 220-226 of that book.
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EXAMPLE 1. Let us find the function f(¢) that corresponds to

S

(5) F(S)Zm

(a > 0).

The singularities of F (s) are the conjugate points
sp=ai and Sy=—ai.
Upon writing

__96) __ s
( where ¢@(s) = e ai)z’

we see that ¢ (s) is analytic and nonzero at sy = ai. Hence s is a pole of order m = 2
of F(s). Furthermore, F (s} = F(s) at points where F(s) is analytic. Consequently, 5,
is also a pole of order 2 of F(s); and we know from expression (2) that

(6) Res[e® F(s)] + Res[e® F(s)] = 2 Re[e'¥ (b; + byt)),

=350 =5y
where by and b, are the coefficients in the principal part

b b
[ 2

s—ai (s —ai)?

of F(s) at ai. These coefficients are readily found with the aid of the first two terms
in the Taylor series for ¢(s) about sy = ai:

¢'(ai)

1!

F(s)= —¢(s) = —— [qs(an +

(s — ai)? (s — ai)?
¢(ai) n ¢'(ai) 4.

C (s—ai? s—ai

(Smai)-}—---:]

(0 <|s — ai| <2a).

It is straightforward to show that ¢(ai) = —i/(4a) and ¢'(ai) =0, and we find that
b, =0and b, = —i/(4a). Hence expression (6) becomes

- ] |
Res[e* F(s)] + Res[e” F(s)] =2 Re[e‘a’ (—Lt)] = ——{ sin at.
¥=50 §=5p 4a 2a

We can, then, conclude that

(7 ft) = m}mr sin at (t > 0),
2a

provided that F (s) satisfies the boundedness condition stated in italics in Sec. 81.
To verify that boundedness condition, we let s be any point on the semicircle

‘ i R Y11
s =y + Re'® (—565_),
4 > 2
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where y > 0 and R > a + y; and we note that
sl=ly +Re®| <y +R and Is|=|y +Re®|=|ly —RI=R—y >a.
Since
s+ a* = IsI* —a*| = (R—y)* —a® >0,

it follows that

vy + R
[(R—y)?—a??

_ s _
|F(S)|—m fMR where MRM

The desired boundedness condition is now established, since Mz — O as K — .

EXAMPLE 2. Inorder to find f(f) when

tanh s _ sinh s

F(s)= = ,
(5) 52 s2 cosh s

we note that F(s) has isolated singularities at s = 0 and at the zeros (Sec. 34)
_ ,
sm(;-{—mr)i n=0,xl, £2,...)

of cosh s. We list those singularitics as

59=0 and 5, =7, g:—wl' n=1,2,..)
Then, formally,
o3
(8) ft)= Ris[e“F(s)] + Z { SRes[e“F(s)] + Re_s[e”F(s)]},
S8 =l =8 p §=5,

Division of Maclaurin series yields the Laurent series representation

1 sinhs 1 1 T
F(s)=—- =—— =54 0<|s| <=},
(%) s coshs s 3 ( 51 2)

which tells us that sy = 0 is a simple pole of F(s), with residue unity. Thus

9) Res[e™ F(s)] = Res F(s) = 1,
§=3g 3780
according to expression (3).
The residues of F (s) at the points s, (n = 1, 2, . . .) are readily found by applying
the method of Theorem 2 in Sec. 69 for identifying simple poles and determining the
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residues at such points. To be specific, we write

F(s) = E—(—Q where p(s)=sinhs and ¢(s) = s2 cosh s

q(s)

and observe that
sinh s, = sinh[i(mr - %)] = siﬂ(mr - %) = —icos nr = (—=1)"t1i £0.

Then, since

p(s,) =sinhs, #0, gq(s,) =0, and ¢'(s,) =s>sinhs, #0,

we find that
Res F(s)= P _ 1 _ 4 1 n=12,..).
=8, q'(s,) 52 x2 (2n— 1?2

[Compare Example 3 in Sec. 69.] The identities

sinhs =sinhsy and c¢oshs =coshys

(see Exercise 11, Sec. 34) ensure that F(s) = F(5) at points of analyticity of F(s).
Hence s,, is also a simple pole of F(s), and expression (4) can be used to write

Res [e7 F(s)] + Res [¢" F(s)]

$ =8y § =28,
4 1 .(2n — 1)%:]}
=2 Rel{ — .
e{ 22 (@2n—1)2 eXp[z >
3 1 (2n — Dt
10 = — . =1,2,...).
(10 2 @n—12 T 3 ( )

Finally, by substituting expressions (9) and (10) into equation (8), we arrive at
the desired result:

8 — ( (@n— Dt
11 H=1—— > 0).
(11) f@) QZ;(ZR_DZ > (t > 0)
EXAMPLE 3. We consider here the function
1/2
(12) Fsy="hGs )6 oy <),
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where 5'/2 denotes any branch of this double-valued function. We agree, however, to
use the same branch in the numerator and denominator, so that

_ x5 4 (xsV/2)3 731+ . X +x35/6+ -
3[81/2—}-(5‘1'/2)3/31-}--n] 5+ 852/6 4. ..

when s is not a singular point of F(s). One such singular point is clearly s = 0. With
the additional agreement that the branch cut of s/ does not lic along the negative real
axis, so that sinh(s'/?) is well defined along that axis, the other singular points occur
if 12 = 4+nmi (n=1,2, ...). The points

(13) F(s)

so=0 and s,=—n’n> n=12,..)

thus constitute the set of singular points of F (s). The problem is now to evaluate the
residues in the formal series representation

(14) f (1) =Res[e" F(s)] + Y " Res[e F(s)].
mSg 1 F=5,

Division of the power scries on the far right in expression (13) reveals that s, is
a simple pole of F'(s), with residue x. So expression (3) tells us that

(15) Res[e” F(s)] = x.

F=80
As for the residues of F(s) at the singular points s, = —n’n? (n=1,2,...), we
writc
_ p(s) . 1/2 o 1/2
F(s) = —( ) where  p(s) =sinh(xs7“) and g¢(s)=s sinh(s"/“).
q(s

Appealing to Theorem 2 in Sec. 69, as we did in Example 2, we note that
p(s,) =sinh(xs/?) £0, ¢(s,)=0, and ¢'(s,) = %s;fz cosh(s/?) £ 0;

and this tells us that each s, is a simple pole of F(s), with residue

p(s) _ 2 (=1

sinnrx.

Res F(s) =
S=5n q'(s,) m n

So, in view of expression (3),

(16) Res[e* F(5)] = e’ Res F(s) = 2. D e ginnwx.
5==5, S8y w ¥ {4
Substituting expressions (15) and (16) into equation (14), we arrive at the function
2 o (=)
(17) fO=x+=)" DT 7% G (t > 0).
T n

n=1
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EXERCISES

CHAP. 7

In Exercises 1 through 5, use the method described in Sec. 81 and illustrated in Example
1, Sec. 82, to find the function f(¢) corresponding to the given function F(s).

253
st —4

Ans. f(t) =cosh 2 4 cos +/2t.

1. F(s)=

25 — 2
(s + D2 +25+5)
Ans. f{t) =e (sin 2t +cos 2t — 1).

2. F(s)=

12
s34+ 8

3. F(s) =

Ans. f(t) = e % + &' («/3 sin +/3r — cos /31).

2 _ 2
4. F(s) = _.f_..:_a;._ 0.
F(s)= ERpE (a > 0)

Ans. f(t) =t cos at.
8as?

3. F(s) = ——reee (@ > 0).

(52 + a?)3

Suggestion: Refer to Exercise 4, Sec. 65, for the principal part of F(s) at ai.

Ans. f(t) = (1 4+ a*t?) sinat — at cos at.

In Exercises 6 through 11, use the formal method, involving an infinite series of residues
and illustrated in Examples 2 and 3 in Sec. 82, to find the function f(¢) that corresponds

to the given function F(s).

6. F(s)mM O<x <.

52 cosh s

(— 1)” G (2?’2—1)3!3: cos

Ans. f(t) =x + —Z - >

1

7. F(s)= )
(s) s cosh(s1/?2)

400
Ans. f(t) =14+ —
ns. f (1) +%Z y

= 2n — 1

IV [_ (2n — 1272

(2n — ymt
—

|
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coth(ms/2)
8 F(s)= .
(s) s2 4+ 1
cos 2nt
Ans. f() =2 -2
e 1) 7 Z 4n2 — 1
9, F(s) = sinh(rs /%) O<x<1).

52 sinh(s1/2)

1
(— l)’“’ ol

Ansj%ﬂ-——xu:-D-%xt+—xg§: sin nr.x.
1 1
10. F(s) = — — .
<) s2  ssinhs
n+1

Ans. f(t) = MZ - 1) sin nm?.
smh(xs)

11. F(s) = 0 1),

() s(s% + w?) cosh s O<x<1)

where w > 0 and w # o, = EZn;Wng n=1,2,...).

. . 0. &) 1 . .

sin wx sin wt (— D" sin w,x sin w, ¢

Ans. f(t) = 5 +2§i _ 121 5 n
w? coS w w? — w?

12. Suppose that a function F(s) has a pole of order m at s = s, with a Laurent series

expansion
O
b b bm_1 b
Fis)=Y a,(s —sp)" + — 2 __ 4.4 n i
« go A P (s — oy~ (s = sp)™
(b, 7 0)

in the punctured disk 0 < |s — 5p| < R5, and note that (s — s3)™ F(s) is represented in
that domain by the power series

oG
by A b1 (s = 50) + -+ -+ bals —59)™ 2+ by(s — s)™ T+ D ayls — sp)™
n=0

By collecting the terms that make up the coefficient of (s — so)™ ! in the product (Sec. 61)
of this power series and the Taylor series expansion

Im—ﬁ

m—2 tm_i m-}
m(SmSO) ‘E“(mml)*(é‘—s{}) ‘+‘]

ESt“_“ﬁS{}tl:l+%(S—S{})+"'+

* This is actually the rectified sine function f(¢) = | sin ¢|. See the authors’ “Fourier Series and Boundary
Value Problems,” 6th ed., p. 68, 2001.
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13.

14.

of the entire function e’ = &%/~ gshow that
b b, b
Res[e’ F(5)] = % [b S S R ol —”"rm“‘],
mesle” F(s)] T (m — 2)! (m — 1)!
as stated at the beginning of Sec. 82,

Let the point s =« + i (B # 0) be a pole of order m of a function F(s}, which has a
Laurent series representation

> b b b
F(s) = S—s) F ——  —F b, #0
s) éa,,(e W' e T o e A0

in the punctured disk 0 < |s — 55| < R,. Also, assume that F(s) = F (5) at points s where
F(s) 1s analytic.

(@) With the aid of the result in Exercise 6, Sec. 52, point out how it follows that

ad b, by b, —
FOI=) g,6-5)" +——+—2=+ - +—2— (b, #0)
?;;} Y U5 G- 5 — 5™

when 0 < |5 — 53] < R,. Then replace § by s here to obtain a Laurent series repre-
sentation for F(s) in the punctured disk 0 < |s — 5| < R, and conclude that 55 is a
pole of order m of F(s).

(b} Use results in Exercise 12 and part (a) above to show that

Res|e” F(s)] + Res[e™ F(s)] = 2¢% Re{ei*@g [bl + -,?g-t 44 m&mim_l]l
5=5g s=3g 1! (m — 1!

when ¢ is real, as stated at the beginning of Sec. 82.

Let F(s) be the function in Exercise 13, and write the nonzero coefficient b,, there in
exponential form as b, =r,, exp(if,,). Then use the main result in part (b) of Exercise
13 to show that when 7 is real, the sum of the residues of e F(s) atsy=a + i (B #0)
and sg contains a term of the type

21,

_om  gm=ltt aaa(Br 4 0 ).
D (B )

Note that if o > 0, the product 1™~ 1¢* here tends to oo as ¢ tends to oc. When the
inverse Laplace transform f(z) is found by summing the residues of e* F(s), the term
displayed above is, therefore, an unstable component of f(¢) if « > 0; and it is said to
be of resonance type. If m > 2 and o = 0, the term is also of resonance type.



CHAPTER

3

MAPPING BY ELEMENTARY
FUNCTIONS

The geometric interpretation of a function of a complex variable as a mapping, or
transformation, was introduced in Secs. 12 and 13 (Chap. 2). We saw there how the
nature of such a function can be displayed graphically, to some extent, by the manner
in which it maps certain curves and regions,

In this chapter, we shall see further examples of how various curves and regions
are mapped by elementary analytic functions. Applications of such results to physical
problems are illustrated in Chaps. 10 and 11.

83. LINEAR TRANSFORMATIONS
To study the mapping

(1) w = Az,

where A is a nonzero complex constant and z # 0, we write A and z in exponential
form:

Then
(2) w = (ar)e' @+,

and we see from equation (2) that transformation (1) expands or contracts the radius
vector representing z by the factor @ = | A| and rotates it through an angle o = arg A

299
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about the origin. The image of a given region is, therefore, geometrically similar to
that region.
The mapping

(3) w=z+ B,

where B is any complex constant, is a translation by means of the vector representing
B. That is, if

w=u-+iv, z=x-+iy, and B=b+ib,,
then the image of any point (x, y) in the z plane is the point
(4) (u,v)y=(x+b,y+by)

in the w plane. Since each point in any given region of the z plane is mapped into the
w plane in this manner, the image region is geometrically congruent to the original
one.

The general (nonconstant) linear transformation

(5) w=Az+B (A #0),
which is a composition of the transformations
Z=Az (A#0) and w=Z+4 B,

is evidently an expansion or contraction and a rotation, followed by a translation.

EXAMPLE. The mapping
w=(1+iz+2

transforms the rectangular region shown in the z plane of Fig. 104 into the rectangular

y Y v
1+3i 1+3i
1+2i , .
Br—¢ B
A! A”
L4 4
4 4
0 A X o X 0 2 u

FIGURE 104
w=(14+i)z+2
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region shown in the w plane there. This is seen by writing it as a composition of the
transformations

Z=(1+1i)z and w=2Z+2.

Since 1+ i = +/2 exp(in /4), the first of these transformations is an expansion by the

factor +/2 and a rotation through the angle 7 /4. The second is a translation two units
to the right.

EXERCISES

1. State why the transformation w = iz is a rotation of the z plane through the angle 7/2.
Then find the image of the infinite strip0 < x < L

Ans, Q< v < 1,

2. Show that the transformation w = iz + i maps the half plane x > 0 onto the half plane
v> 1L

3. Find the region onto which the half plane y > 0 is mapped by the transformation
w=(1+i)z

by using (a) polar coordinates; (b) rectangular coordinates. Sketch the region.
Ans.v > u.
4. Find the image of the half plane y > 1 under the transformation w = (1 — i)z.

5. Find the image of the semi-infinite strip x > 0, 0 < y < 2 when w = iz + 1. Sketch the
strip and its image.

Ans.—l<u <1, v<0.

6. Give a geometric description of the transformation w = A(z + B), where A and B are
complex constants and A # 0.

84. THE TRANSFORMATION w = 1/7

The equation

(1) W =
z
establishes a one to one correspondence between the nonzero points of the z and the
w planes. Since zZ = |z|?, the mapping can be described by means of the successive
transformations
1 —

(2) Z=—z, w=2~Z
|z|2
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The first of these transformations is an inversion with respect to the unit circle
|z| = 1. That is, the image of a nonzero point z is the point Z with the properties

1

|Z|=— and argZ =argz.
12| |

Thus the points exterior to the circle |z| = 1are mapped onto the nonzero points interior

to it (Fig. 105), and conversely. Any point on the circle is mapped onto itself. The
second of transformations (2) is simply a reflection in the real axis.

FIGURE 105

If we write transformation (1) as
1
(3 T(z)= - (z #0),

we can define 7 at the origin and at the point at infinity so as to be continuous on the
extended complex plane. To do this, we need only refer to Sec. 16 to see that

(4) lim T(z) =00 since lim L =0
70 z-»{) T(Z)
and
]
5 Iim 7(z) =0 since lim 7T (—«) = (.
T>00 7—0 Z
In order to make 7 continuous on the extended plane, then, we write
» 1
(6) T =00, T(x)=0, and T(z)=-
<

for the remaining values of z. More precisely, equations (6), together with the first of
limits (4) and (5), show that

% lim T(z) = T(z,)
i—*2Zn

for every point z in the extended plane, including zg = 0 and zy = oo. The fact that 7
is continuous everywhere in the extended plane is now a consequence of equation (7)
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(see Sec. 17). Because of this continuity, when the point at infinity is involved in any
discussion of the function 1/z, it is tacitly assumed that T (z) is intended.

85. MAPPINGS BY 1/z

When a point w = u + iv is the image of a nonzero point z = x + iy under the
transformation w = 1/z, writing w = 7/|z|? reveals that

X —Y
1 U= , U= .

Also, since z = 1/w = w/|w|?,

i -V

= —— y = )
142"}"'(}2, “2+v2

(2) X

The following argument, based on these relations between coordinates, shows that the
mapping w = 1/z transforms circles and lines into circles and lines. When A, B, C,
and D are all real numbers satisfying the condition B? + C2 > 4AD, the equation

3) A+ YY)+ Bx+Cy+ D=0

represents an arbitrary circle or line, where A # 0 for a circle and A = 0 for a line.
The need for the condition B2 + C? > 4AD when A # 0 is evident if, by the method
of completing the squares, we rewrite equation (3) as

2
B\ c \ BZ + CZ—4AD
2A 2A 2A

When A = 0, the condition becomes B? + C2 > 0, which means that B and C are not
both zero. Returning to the verification of the statement in italics, we observe that if
x and y satisfy equation (3), we can use relations (2) to substitute for those variables.
After some simplifications, we find that 4 and v satisfy the equation (see also Exercise

14 below)

(4) D+ vH+ Bu—Cv+ A=0,

which also represents a circle or line. Conversely, if # and v satisfy equation (4), it
follows from relations (1) that x and y satisfy equation (3).
It is now clear from equations (3) and (4) that
(1) acircle (A # 0) not passing through the origin (D # 0) in the z plane is trans-
formed into a circle not passing through the origin in the w plane;

(i1) acircle (A # 0) through the origin (D = 0) in the z plane is transformed into a
line that does not pass through the origin in the w plane;
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(i1i) aline (A = 0) not passing through the origin (D 3 0) in the z plane is transformed
into a circle through the origin in the w plane;

(iv) aline (A = 0) through the origin (D = 0) in the z plane is transformed into a line
through the origin in the w plane.

EXAMPLE 1. According to equations (3) and (4), a vertical line x = ¢; (¢; # 0) is
transformed by w = 1/z into the circle —c;(u% + v?) +u =0, or

-2
26‘1 B 2(?1 ,

which is centered on the # axis and tangent to the v axis. The image of a typical point
(¢, y) on the line is, by equations (1),

€1 —Y
(u3 v): ] .
cf%—yz c§+}f2

If ¢; > 0, the circle (5) is evidently to the right of the v axis. As the point (¢, y)
moves up the entire line, its image traverses the circle once in the clockwise direction,
the point at infinity in the extended z plane corresponding to the origin in the w plane.
Forif y < 0, then v > 0; and, as y increases through negative values to 0, we see that
u increases from 0 to 1/c¢y. Then, as y increases through positive values, v is negative
and u decreases to (.

If, on the other hand, ¢| < 0, the circle lies to the left of the v axis. As the point
(c1, y) moves upward, its image still makes one cycle, but in the counterclockwise
direction. See Fig. 106, where the cases ¢; = 1/3 and ¢; = —1/2 are illustrated.

y )
= 2 €y 3 czmm%
PN
’ -1
i 1 01-3“
P J I S czx% '\ ]
i 1 X 1 ;" < ° u
\
——— U PR Y S o ¢, =—-%5 /
o F F “ 2 l zw
\ 5 FIGURE
Nl 106
2 w=1/z.

EXAMPLE 2. A horizontal line y = ¢5 (¢; #0) is mapped by w = 1/z onto the
circle

1 2 1 2
. ) i e
o= ()
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which is centered on the v axis and tangent to the i axis. Two special cases are shown
in Fig. 106, where the corresponding orientations of the lines and circles are also
indicated.

EXAMPLE 3. When w = 1/z, the half plane x > ¢, (¢| > 0) is mapped onto the
disk

1y, 1Y
™) (“_ﬁ")“’ 5(55)

For, according to Example 1, any line x = ¢ (¢ > ¢,) is transformed into the circle

1\2 - 1 \2
©®) (“‘i)“—(%)'

Furthermore, as ¢ increases through all values greater than ¢y, the lines x = ¢ move
to the right and the image circles (8) shrink in size. (See Fig. 107.) Since the lines
x = ¢ pass through all points in the half plane x > ¢, and the circles (8) pass through
all points in the disk (7), the mapping is established.

y 14
F 1
0 X ok 1 /1 u
E/ 2¢,
x=e, x=c FIGURE 107
w=1/z.
EXERCISES

1. In Sec. 85, point out how it follows from the first of equations (2) that when w = 1/z,
the inequality x > ¢, (c; > 0) is satisfied if and only if inequality (7) holds. Thus give an
alternative verification of the mapping established in Example 3 in that section.

2. Show that when ¢; < 0, the image of the half plane x < ¢; under the transformation
w = 1/z is the interior of a circle. What is the image when ¢; =07

3. Show that the image of the half plane v > ¢, under the transformation w = 1/z is the
interior of a circle, provided ¢, > 0. Find the image when ¢, < 0; also findit when ¢, =0,

4. Find the image of the infinite strip 0 < y < 1/(2c) under the transformation w = 1/z.
Sketch the strip and its image.

Ans.u? + W+ o) >¢?, v<.
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5.

6.

10.

11.

12.

13.

14,

Find the image of the quadrant x > 1, y > 0 under the transformation w = 1/z.

1y 1Y
Ans.lu—=) + v’ < (w),v<0.
( 2) AV
Verify the mapping, where w = 1/z, of the regions and parts of the boundaries indicated
in (a) Fig. 4, Appendix 2; () Fig. 5, Appendix 2.
Describe geometrically the transformation w = 1/(z — 1).

Describe geometrically the transformation w = i /z. State why it transforms circles and
lines into circles and lines.

Find the image of the semi-infinite strip x > 0, 0 < y < I when w =i /z. Sketch the strip
and its image.

1\ 1\
Ans.(uww) +v2>(m),u>0,v>0.
2 2

By writing w = p exp(i¢), show that the mapping w = 1/z transforms the hyperbola
x? — y* = | into the lemniscate p® = cos 2¢. (See Exercise 15, Sec. 5.)

Let the circle |z| = 1 have a positive, or counterclockwise, orientation. Determine the
orientation of its image under the transformation w = 1/z.

Show that when a circle is transformed into a circle under the transformation w = 1/g,
the center of the original circle is never mapped onto the center of the image circle.

Using the exponential form z = re? of z, show that the transformation
g P
w=z+ -,
Z

which is the sum of the identity transformation and the transformation discussed in Secs.
84 and 85, maps circles r = ry onto ellipses with parametric representations

U= (r0+i)cosé, vm(ro—l)siné‘ (0<6 <2m)
o fo

and foci at the points w = 2. Then show how it follows that this transformation maps
the entire circle |z| = 1 onto the segment —2 < u < 2 of the # aXis and the domain outside
that circle onto the rest of the w plane.

(a) Write equation (3), Sec. 85, in the form
2AzZ + (B — Ci)z + (B + Ci)z+2D =0,

where z =x +iy.
(b) Show that when w = 1/z, the result in part (@) becomes

2Dww + (B+ChHw+ (B—-Cilw+24A=0.

Then show that if w = u + iv, this equation is the same as equation (4), Sec. 83.
Suggestion; In part (a), use the relations (see Sec. 5)
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86. LINEAR FRACTIONAL TRANSFORMATIONS

The transformation

az+b
Y =
cz+d

(1) (ad — be #0),

where a, b, ¢, and d are complex constants, is called a linear fractional transformation,
or Mobius transformation. Observe that equation (1) can be written in the form

(2) Azw+Bz+ Cw+ D=0 (AD — BC #0);

and, conversely, any equation of type (2) can be put in the form (1). Since this
alternative form is linear in z and linear in w, or bilinear in z and w, another name
for a linear fractional transformation is bilinear transformation.

When ¢ = 0, the condition ad — bc # 0 with equation (1) becomes ad # 0; and
we see that the transformation reduces to a nonconstant linear function. When ¢ # 0,
equation (1) can be written

bc — ad 1
c cz+d

3) w="2 4 (ad — be #0).
¢

So, once again, the condition ad — bc # 0 ensures that we do not have a constant
function. The transformation w = 1/z is evidently a special case of transformation (1)
when ¢ # 0.

Equation (3) reveals that when ¢ # 0, a linear fractional transformation is a
composition of the mappings.

be — ad
Z—citd WLt -8 bc—a
A c c

W (ad — bc £0).

It thus follows that, regardless of whether ¢ is zero or nonzero, any linear fractional
transformation transforms circles and lines into circles and lines because these special
linear fractional transformations do. (See Secs. 83 and 85.)

Solving equation (1) for z, we find that

_ —dw-+b

cuw —da

4) z (ad — bc #0).

When a given point w is the image of some point z under transformation (1), the point
z is retrieved by means of equation (4). If ¢ = 0, so that a and d are both nonzero, each’
point in the w plane is evidently the image of one and only one point in the z plane.:
The same is true if ¢ # 0, except when w = a/c since the denominator in equation
(4) vanishes if w has that value. We can, however, enlarge the domain of definition
of transformation (1) in order to define a linear fractional transformation 7 on the
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extended 7z plane such that the point w = a/c is the image of z = o¢ when ¢ # 0. We
first write

az + b
cZ +

(5 T(z)=

(ad — bc #£0).

We then write
T(oo)=o00 if ¢=0

and

T(c0) =2  and T(—é) —o0 if c#0.
¢ c
In view of Exercise 11, Sec. 17, this makes T continuous on the extended z plane.
It also agrees with the way in which we enlarged the domain of definition of the
transformation w = 1/z in Sec. 84.

When its domain of definition is enlarged in this way, the linear fractional
transformation (5) is a one to one mapping of the extended z plane onto the extended
w plane. Thatis, T (z,) # T (z) whenever z, # z,; and, for each point w in the second
plane, there is a point z in the first one such that 7(z) = w. Hence, associated with
the transformation T, there is an inverse transformation T ™!, which is defined on the
extended w plane as follows:

T Y w)=z ifandonlyif T(z)=w.
From equation (4), we see that

(6) Tlwy = ¥l d—bezo).

cw — a
Evidently, 7! is itself a linear fractional transformation, where
T Hoo)=00 if ¢=0

and

7! (5) oo and T'oo)=-% i cxo.
c C
If T and S are two linear fractional transformations, then so is the composition S[7 (z)].
This can be verified by combining expressions of the type (5). Note that, in particular,
T[T (z)] = z for each point z in the extended plane.

There is always a linear fractional transformation that maps three given distinct
points z;, z,, and z3 onto three specified distinct points wy, w,, and w3, respectively.
Verification of this will appear in Sec. 87, where the image w of a point z under such
a transformation is given implicitly in terms of z. We illustrate here a more direct
approach to finding the desired transformation.
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EXAMPLE 1. Letus find the special case of transformation (1) that maps the points
z71=—1, z=0, and z3=1
onto the points
wy=—i, wy=1 and wy=1i.

Since 1 is the image of 0, expression (1) tells us that 1 = b/d, or d = b. Thus

az+b
W o=

) cz+b

[b(a — ¢) # 0].

Then, since —1 and 1 are transformed into —i and i, respectively, it follows that
ic—ib=—a+b and ic+ib=a+b.

Adding corresponding sides of these equations, we find that ¢ = —ib; and subtraction
reveals that a = ib. Consequently,

ibz+b _ bliz+1)
—ibz+b  b(—iz+ 1)’

Since b is arbitrary and nonzero here, we may assign it the value unity (or cancel it
out) and write

EXAMPLE 2. Suppose that the points
z1=1, z,=0, and z3=-1
are to be mapped onto
wy =i, wy=00, and wy=1.
Since w4 = o0 corresponds to z, = 0, we require that 4 = 0 in expression (1); and so

az+b
=
g

(8) (bc #0).

Because 1 is to be mapped onto i and —1 onto 1, we have the relations
ic=a+b and —c=-—-a-+b;

and it follows that
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Finally, then, if we write ¢ = 2, equation (8) becomes

GC+Dz+0G-1)
wm .
2z

87. AN IMPLICIT FORM

The equation

(w — wy)(wy — ws) _ G-}z —z)
(w—w3)(wy —wy) (z2—23)(23 — 2¢)

(1)

defines (implicitly) a linear fractional transformation that maps distinct points z;, 21,
and z3 in the finite 7 plane onto distinct points w, w,, and w,, respectively, in the finite
w plane.* To verify this, we write equation (1) as

(2) (z—z)(w —w)) (22 — 2P(wy — wy) = (2 — 2w — w3)(zp — 23)(wp — wy).

If z = z;, the right-hand side of equation (2) is zero; and it follows that w = wy.
Similarly, if z = z3, the left-hand side is zero and, consequently, w = ws. If 7 = z,,
we have the linear equation

(w — w)(wy — w3) = (w — wy)(wy — wy),

whose unique solution is w = w,. One can see that the mapping defined by equation
(1) is actually a linear fractional transformation by expanding the products in equation
(2) and writing the result in the form (Sec. 86)

(3) Azw+ Bz+Cw+ D =0.
The condition AD — BC # 0, which is needed with equation (3), is clearly satisfied
since, as just demonstrated, equation (1) does not define a constant function. It is left

to the reader (Exercise 10) to show that equation (1) defines the only linear fractional
transformation mapping the points z;, z», and z3 onto wj, w,, and ws respectively.

EXAMPLE 1. The transformation found in Example 1, Sec. 86, required that

ZlﬁMI, Z2=0, 2321 and wl“—“—i, wz“—“:l, w3~“1“-“-f.

*The two sides of equation (1) are cross ratios, which play an important role in more extensive
developments of linear fractional transformations than in this book. See, for instance, R. P. Boas,
“Invitation to Complex Analysis,” pp. 192-196, 1993 or J. B. Conway, “Functions of One Complex
Variable,” 2d ed., 6th printing, pp. 48-33, 1997.
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Using equation (1) to write

m+aa-nzu+nmmn
w—(1+i) (z—DO+1

and then solving for w in terms of z, we arrive at the transformation

i—z
w = - .
i+

found earlier.

If equation (1) is modified properly, it can also be used when the point at infinity
is one of the prescribed points in either the (extended) z or w plane. Suppose, for
instance, that z; = co. Since any linear fractional transformation is continuous on the
extended plane, we need only replace z; on the right-hand side of equation (1) by 1/z4,
clear fractions, and let z; tend to zero:

im G- VW@ —29) L @z=DEa—z) -2
a=0 z—z3)(z—l/z)) 71 a0 (—z3Mziz2— 1) z-—123

The desired modification of equation (1) is, then,

(w — wy)(wy — ws) _ 22713
(w—wy)(wa—wy)) z—23

Note that this modification is obtained formally by simply deleting the factors involv-
ing z; in equation (1). It is easy to check that the same formal approach applies when
any of the other prescribed points is ©0.

EXAMPLE 2. In Example 2, Sec. 86, the prescribed points were
21=1, 2p=0, z3=—1 and w;=i, wyp=00, wz=1.

In this case, we use the modification

w—w; _ (2~ 22— 23)
w—wy (2—23)(z2—21)

of equation (1), which tells us that

w—i _(z—DO+D
w—1 @+DO-1

Solving here for w, we arrive at the desired transformation:

41 i — 1
w=G+)sz )
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EXERCISES

1.

10.

11.

12,

Find the linear fractional transformation that maps the points z;, =2, 2, =i,23= -2
onto the points wy =1, wy, =i, wy = —1.

Ans.w = 3z +2i)/(iz +6).

Find the linear fractional transformation that maps the points z; = —i, z, =0, z3 =
onto the points wy; = —1, wy =i, w4 = 1. Into what curve is the imaginary axis x =0
transformed?

Find the bilinear transformation that maps the points z; = 00, 2z, =i, 73 = 0 onto the
points wy =0, wy =i, wy = 0.

Ans.w = —1/z.

Find the bilinear transformation that maps distinct points zy, z,, 73 onto the points
w=0, w,=1, ws =00,

(z — z))(z7 — 23)

(z —z3)(z2 — 21)

Show that a composition of two linear fractional transformations is again a linear frac-
tional transformation, as stated in Sec. 86.

Ans. w =

A fixed point of a transformation w = f(z) is a point zg such that f(zy) = z5. Show that
every linear fractional transformation, with the exception of the identity transformation
w = z, has at most two fixed points in the extended plane.

Find the fixed points (see Exercise 6) of the transformation
—1 67 e
@w=""1,  w=2"2
z+1 b4

Ans.(a)z==xi; (b)z=23.

Modify equation (1), Sec. 87, for the case in which both z, and w, are the point at infinity.
Then show that any linear fractional transformation must be of the form w = az (a # 0)
when its fixed points (Exercise 6) are 0 and oc.

Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation,
then the transformation can be written in the form w = z7/(cz + d), where d # 0.

Show that there is only one linear fractional transformation that maps three given distinet
points 7y, 25, and z3 in the extended z plane onto three specified distinct points wy, wy,
and w4 in the extended w plane.

Suggestion: Let T and S be two such linear fractional transformations. Then, after
pointing out why .5"][‘1’(zk)] =z; (k=1, 2, 3), use the results in Exercises 5 and 6 to
show that S~1[T(z)] = z for all z. Thus show that 7(z) = S(z) for all z.

With the aid of equation (1), Sec. 87, prove that if a linear fractional transformation maps
the points of the x axis onto points of the u axis, then the coefficients in the transformation
are all real, except possibly for a common complex factor. The converse statement is
evident.

Let T(z) = (az + b)/(cz + d), where ad — bc #£ 0, be any linear fractional transforma-
tion other than 7'(z) = z. Show that 77! = T if and only if d = —a.
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Suggestion. Write the equation T~Y2)=T(z) as

(@ + d)cz* + (d — a)z — b]=0.

88. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane
Im z > O onto the open disk |w] < 1 and the boundary Im z = 0 onto the boundary
|lw| = 1(Fig. 108).

Keeping in mind that points on the line Im z = 0 are to be transformed into points
on the circle |w| = 1, we start by selecting the points z =10, z = 1, and z = o0 on the
line and determining conditions on a linear fractional transformation |

az +b
w =
cz+d

which are necessary in order for the images of those points to have unit modulus.
We note from equation (1) that if |w| = 1 when z = 0, then |b/d| = 1, that is,

(1) (ad — be # 0)

(2) |b| = |d| # 0.

Now, according to Sec. 86, the image w of the point z = o0 is a finite number, namely
w = a/c, only if ¢ # 0. So the requirement that |w| = 1 when z = o0 means that
la/cl =1, or

(3) ja| = |c] #0;
and the fact that a and ¢ are nonzero enables us to rewrite equation (1) as

w_g,z+(b/a)

4 = .
4 ¢ z+(d/c)
Then, since |a/¢] = 1and
;33 — f{ £0,
a C

FIGURE 108
ias — 20
W=2£e

(Im zy > 0).

oy

2o
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according to relations (2) and (3), equation (4) can be put in the form

@l —Z
(5) w=e "2 (2] = 2| #0),
< — 1
where « is a real constant and z and z; are (nonzero) complex constants.
Next, we impose on transformation (5) the condition that |w| =1 when z = 1.
This tells us that

11— 2z4| = [1— 20l
or
(I =z =2 =1 —ze)(1 — Zp).
But z,z{ = 747 since |z;] = |zg|, and the above relation reduces to
2+ z21=z9+2p;
that is, Re z; = Re z;. It follows that either
Zy=2p Or z1=2Zp,

again since |z;| = |zp]. If z; = zp, transformation (5) becomes the constant function
w = exp(ia); hence z; = Z;.

Transformation (5), with z; = z3, maps the point z, onto the origin w = 0;
and, since points interior to the circle |w| = 1 are to be the images of points above
the real axis in the z plane, we may conclude that Im zy > 0. Any linear fractional
transformation having the mapping property stated in the first paragraph of this section
must, therefore, be of the form
(6) w=e"" 9 (mz, > 0),

=2
where « is real.

It remains to show that, conversely, any linear fractional transformation of the
form (6) has the desired mapping property. This is easily done by taking absolute
values of each side of equation (6) and interpreting the resulting equation,

Z =20
Z-20

H

Jw| =

geometrically. If a point z lies above the real axis, both it and the point z; lie on the
same side of that axis, which is the perpendicular bisector of the line segment joining
zgp and zg. It follows that the distance |z — zg| is less than the distance |z — Zg| (Fig.
108); that is, |w| < 1. Likewise, if z lies below the real axis, the distance |z — zp)|
is greater than the distance |z — Zg|; and so |w| > 1. Finally, if z is on the real axis,
|lw| = 1 because then |z — zy| = |7 — Z|. Since any linear fractional transformation is
a one to one mapping of the extended z plane onto the extended w plane, this shows
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that transformation (6) maps the half plane Im z > 0 onto the disk |w| < 1 and the
boundary of the half plane onto the boundary of the disk.
Our first example here illustrates the use of the result in italics just above.

EXAMPLE 1. The transformation

(7) w=-—"
1 +2z

in Examples 1 in Secs. 86 and 87 can be written

imd — 1

w=e =,
z—1
Hence it has the mapping property described in italics. (See also Fig. 13 in Appendix
2, where corresponding boundary points are indicated.)

Images of the upper half plane Im z > 0 under other types of linear fractional
transformations are often fairly easy to determine by examining the particular trans-
formation in question.

EXAMPLE 2. By writing z = x + iy and w = u + iv, we can readily show that the
transformation
-1

(8) w=3"_

z+1
maps the half plane y > O onto the half plane v > 0 and the x axis onto the u axis. We
first note that when the number 7 is real, so is the number w. Consequently, since the
image of the real axis y = 0 is either a circle or a line, it must be the real axis v = 0.
Furthermore, for any point w in the finite w plane,

(z—-D@E+1 _ 2y
z+DGE+D  lz+12

The numbers y and v thus have the same sign, and this means that points above the
x axis correspond to points above the # axis and points below the x axis correspond
to points below the u axis. Finally, since points on the x axis correspond to points
on the « axis and since a linear fractional transformation is a one to one mapping of
the extended plane onto the extended plane (Sec. 86), the stated mapping property of
transformation (8) is established.

(z #—1).

v=Imw=1Im

Our final example involves a composite function and uses the mapping discussed
in Example 2.

EXAMPLE 3. The transformation

—1
9 w=VLo ,
®) gz+1

&9
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where the principal branch of the logarithmic function is used, is a composition of the
functions

(10) Z=—— and w=LlogZ.
z+1
We know from Example 2 that the first of transformations (10) maps the upper
half plane y > O onto the upper half plane ¥ > 0, where z=x +iyand Z = X +iY.
Furthermore, it is easy to see from Fig. 109 that the second of transformations (10)
maps the half plane Y > 0 onto the strip 0 < v < 7, where w = u + i v. More precisely,
by writing Z = R exp(i®) and

LogZ=InR+i0® (R>0,—m <@ <),

we see that as a point Z = R exp(i Q) (0 < ®; < 7) moves outward from the origin
along the ray © = @y, its image is the point whose rectangular coordinates in the w
plane are (In R, ®p). That image evidently moves to the right along the entire length
of the horizontal line v = ®,,. Since these lines fill the strip 0 < v < 7 as the choice of
©y varies between @j = 0 to @, = 7, the mapping of the half plane ¥ > 0 onto the
strip is, in fact, one to one.

This shows that the composition (9) of the mappings (10) transforms the plane
y > 0 onto the strip 0 < v < 7. Corresponding boundary points are shown in Fig. 19
of Appendix 2.

Y , v
, .
Y |7
{
/
/
¢ Oy
N O ———
/ \@0 T
/
0 X 0 u
FIGURE 109
w =Log z.
EXERCISES
1. Recall from Example 1 in Sec. 88 that the transformation
[~z
w =
I+z

maps the half plane Im z > 0 onto the disk |w| < 1 and the boundary of the half plane
onto the boundary of the disk. Show that a point z = x is mapped onto the point

N I — x2 ny 2x
Y 14 x2°

w
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and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2, by
showing that segments of the x axis are mapped as indicated there.

2. Verify the mapping shown in Fig. 12, Appendix 2, where

z—1
W= ———
z+1

Suggestion: Write the given transformation as a composition of the mappings
i—-Z

Z=iz, W=- .
i+ Z

w=-—-W.

Then refer to the mapping whose verification was completed in Exercise 1.

3. (@) By finding the inverse of the transformation

i—2z
W= -
[+ 2

and appealing to Fig. 13, Appendix 2, whose verification was completed in Exer-
cise 1, show that the transformation

w=1

1+2z

maps the disk |z| < 1 onto the half plane Im w > 0.
(b) Show that the linear fractional transformation

z—2
W =
Z
can be written
Z=z7—1, W:iu, w=iW.
1+ 7

Then, with the aid of the result in part (a), verify that it maps the disk |z — 1] < 1
onto the left half plane Re w < 0.

4. Transformation (6), Sec. 88, maps the point z = oc onto the point w = exp(i«), which
lies on the boundary of the disk |w| < 1. Show that if 0 < & < 27 and the points z = 0
and 7 = 1 are to be mapped onto the points w = 1 and w = exp(ia/2), respectively, then
the transformation can be written

S z +exp(—ia/2)
7 +exp(ic/2)

5. Note that when a = 7/2, the transformation in Exercise 4 becomes

w = iz +exp(in/4)
z+exp(in/4)

Verify that this special case maps points on the x axis as indicated in Fig. 110.
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FIGURE 110
iz + exp{in/4)

z+exp(in/4)

6. Show that if Im z < 0, transformation (6), Sec. 88, maps the lower half plane Im z < 0
onto the unit disk [w] < L.

7. The equation w = log(z — 1) can be written
Z=z-1, w=logZ.

Find a branch of log Z such that the cut z plane consisting of all points except those on
the segment x > 1 of the real axis is mapped by w = log(z — 1) onto the strip() < v < 27
in the w plane.

89. THE TRANSFORMATION w =sinz
Since (Sec. 33)

sin z = sin x cosh y + i cos x sinh y,
the transformation w = sin z can be written
(1) u =sinx coshy, v=cosxsinhy.

One method that 1s often useful in finding images of regions under this transfor-
mation is to examine images of vertical lines x = ¢,. If 0 < ¢; < /2, points on the
line x = ¢ are transformed into points on the curve

(2) u =sincycoshy, v=coscysinhy (—o0 < y < 00),

which is the right-hand branch of the hyperbola

2 2
i [
(3) — 5 =1
sinfe¢;  cos? e

with foci at the points

w= i\/sinz ¢y + cos? ¢ = +1.

The second of equations (2) shows that as a point (¢, y) moves upward along the entire
length of the line, its image moves upward along the entire length of the hyperbola’s
branch. Such a line and its image are shown in Fig. 111, where corresponding points
are labeled. Note that, in particular, there is a one to one mapping of the top half (y > 0)
of the line onto the top half (v > 0) of the hyperbola’s branch. If —7/2 < ¢; <0, the
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y v
F C F c’
E B
x| 0 T X u
2 2
DA FIGURE 111
w = $in z.

line x = ¢ is mapped onto the left-hand branch of the same hyperbola. As before,
corresponding points are indicated in Fig. 111.

The line x = 0, or the y axis, needs to be considered separately. According to
equations (1), the image of each point (0, y) is (0, sinh y). Hence the y axis is mapped
onto the v axis in a one to one manner, the positive y axis corresponding to the positive
v axis. |

We now illustrate how these observations can be used to establish the images of
certain regions.

EXAMPLE 1. Here we show that the transformation w = sin z is a one to one
mapping of the semi-infinite strip —n/2 < x <m/2, y > 0 in the z plane onto the
upper half v > 0 of the w plane.

To do this, we first show that the boundary of the strip is mapped in a one to one
manner onto the real axis in the w plane, as indicated in Fig. 112. The image of the
line segment B A there is found by writing x = 7/2 in equations (1) and restricting y
to be nonnegative. Since u = cosh y and v = 0 when x = m /2, a typical point (;x /2, y)
on B A is mapped onto the point (cosh y, 0) in the w plane; and that image must move
to the right from B’ along the u axis as (7r/2, y) moves upward from B. A point (x, 0)
on the horizontal segment DB has image (sin x, 0), which moves to the right from
D’ to B’ as x increases from x = —7w/2 to x = /2, or as (x, 0) goes from D to B.
Finally, as a point (—m /2, y) on the line segment D E moves upward from D, its image
(— cosh y, 0) moves to the left from D’. ‘

Now each point in the interior —n/2 < x < 7/2, y > 0 of the strip lies on
one of the vertical half lines x =c¢|, y > 0 (—n/2 < ¢; < 7/2) that are shown in

y v
E A
ML
YAl %
D c | IB E_n\ o[ &
P — »
x O T X -1 0] 1 “  FIGURE 112
2 2 w = 8in z.
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Fig. 112. Also, it is important to notice that the images of those half lines are distinct
and constitute the entire half plane v > 0. More precisely, if the upper half L of a line
x =c¢; (0 < ¢y < /2) is thought of as moving to the left toward the positive y axis,
the right-hand branch of the hyperbola containing its image L' is opening up wider
and its vertex (sin ¢y, 0) is tending toward the origin w = 0. Hence L’ tends to become
the positive v axis, which we saw just prior to this example is the image of the positive
y axis. On the other hand, as L approaches the segment BA of the boundary of the
strip, the branch of the hyperbola closes down around the segment B’A’ of the u axis
and its vertex (sin ¢y, 0) tends toward the point w = 1. Similar statements can be made
regarding the half line M and its image M’ in Fig. 112. We may conclude that the
image of each point in the interior of the strip lies in the upper half plane v > 0 and,
furthermore, that each point in the half plane is the image of exactly one point in the
interior of the strip.

This completes our demonstration that the transformation w = sin z is a one to
one mapping of the strip —7 /2 < x < w/2, y > 0 onto the half plane v > 0. The final
result is shown in Fig. 9, Appendix 2. The right-hand half of the strip is evidently
mapped onto the first quadrant of the w plane, as shown in Fig. 10, Appendix 2.

Another convenient way to find the images of certain regions when w = sin z
is to consider the images of horizontal line segments y = ¢, (—7 < x < 1), where
¢y > 0. According to equations (1), the image of such a line segment is the curve with
parametric representation

4) u =sinx coshcy, v =-cosx sinhc, (—m <x <m).

That curve is readily seen to be the ellipse

u’ v?

& + =1,
: cosh’c,  sinh? ¢,

whose foci lie at the points

w = +,/cosh? ¢; — sinh? ¢, = +1.

The image of a point (x, ¢;) moving to the right from point A to point E in Fig. 113
makes one circuit around the ellipse in the clockwise direction. Note that when smaller
values of the positive number ¢, are taken, the ellipse becomes smaller but retains the
same foci (11, 0). In the limiting case ¢, = 0, equations (4) become

u=sinx, v=40 (—~m <x <m);

and we find that the interval —m < x < of the x axis is mapped onto the interval
—1 <u <1 of the u axis. The mapping is not, however, one to one, as it is when
Coh > 0.

The following example relies on these remarks.
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FIGURE 113
W = sin z,

EXAMPLE 2. The rectangular region —7/2 <x <m/2,0 <y < b is mapped by
w = sin z in a one to one manner onto the semi-elliptical region shown in Fig. 114,
where corresponding boundary points are also indicated. For if L is a line segment
y=0p (—7/2 <x <m/2), where 0 < ¢y < b, its image L' is the top half of the ellipse
(5). As c, decreases, L moves downward toward the x axis and the semi-ellipse L’
also moves downward and tends to become the line segment E'F’A’ from w = —1to
w = 1. In fact, when ¢, = 0, equations (4) become

) T T
u=sinx, v=0 —— XK -]
2 2

and this is clearly a one to one mapping of the segment E FA onto E'F’A’. Inasmuch
as any point in the semi-elliptical region in the w plane lies on one and only one of
the semi-ellipses, or on the limiting case E’F’A’, that point is the image of exactly
one point in the rectangular region in the z plane. The desired mapping, which is also
shown in Fig. 11 of Appendix 2, is now established.

¥ )]
D bilC B
L
E| F [4 D /E:
.z 0 r X u
2 2

FIGURE 114
W = 8in 2.

Mappings by various other functions closely related to the sine function are easily
obtained once mappings by the sine function are known.
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EXAMPLE 3. We need only recall the identity (Sec. 33)

i T
COS 7 = sm(z 4 5)

to see that the transformation w = cos z can be written successively as
yig .
Zmz-{—;, w=sin Z.

Hence the cosine transformation is the same as the sine transformation preceded by a
translation to the right through 7 /2 units.

EXAMPLE 4. According to Sec. 34, the transformation w = sinh z can be written
w = —i sin(iz), or

=iz, W=sinZ, w=-—iW,

It is, therefore, a combination of the sine transformation and rotations through right
angles. The transformation w = cosh z is, likewise, essentially a cosine transformation
since cosh z = cos(iz).

EXERCISES

1. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line
x=c¢1(~n/2 < ¢; < 0) in a one to one manner onto the top half (v > 0) of the left-hand
branch of hyperbola (3), Sec. 89, as indicated in Fig. 112 of that section.

2. Show that under the transformation w = sin z, a line x = ¢; (/2 < ¢; < 7) is mapped
onto the right-hand branch of hyperbola (3), Sec. 89. Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto the lower and upper
halves, respectively, of the branch.

3. Vertical half lines were used in Example 1, Sec. 89, to show that the transformation
w = sin z is a one to one mapping of the open region —7/2 < x < /2, y > 0 onto
the half plane v > 0. Verify that result by using, instead, the horizontal line segments
y=¢ (—7/2 <x <m/2), where ¢, > 0.

4. (a) Show that under the transformation w = sin z, the images of the line segments
forming the boundary of the rectangular region 0 < x <7 /2,0 < y < 1 are the line
segments and the arc D'E’ indicated in Fig. 115. The arc D’E’ is a quarter of the
ellipse

u? v?

+ =1,
cosh? 1  sinh? 1

(b) Complete the mapping indicated in Fig. 115 by using images of horizontal line
segments to prove that the transformation w = sin z establishes a one to one cor-
respondence between the interior points of the regions ABDE and A’B'D'E’.
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5. Verify that the interior of a rectangular region —m < x <, a <y < b lying above the x
axis is mapped by w = sin z onto the interior of an elliptical ring which has a cut along
the segment —sinh b < v < —sinh a of the negative real axis, as indicated in Fig. 116.
Note that, while the mapping of the interior of the rectangular region is one to one, the
mapping of its boundary is not.

FIGURE 116

w = §in 7.

6. (a) Show that the equation w = cosh z can be written
Z=iz+ %, w = sin Z.

(b) Use the result in part (a), together with the mapping by sin z shown in Fig. 10,
Appendix 2, to verify that the transformation w = cosh z maps the semi-infinite
strip x = 0, 0 < y < /2 in the z plane onto the first quadrant # > 0, v > 0 of the w
plane. Indicate corresponding parts of the boundaries of the two regions.

7. Observe that the transformation w = cosh z can be expressed as a composition of the
mappings
1 1

Z=¢*, W=Z+—, w==W
z 2

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z, the semi-
infinite strip x < 0, 0 < y < & in the z plane is mapped onto the lower half v < 0 of the
w plane. Indicate corresponding parts of the boundaries.

8. (a) Verify that the equation w = sin z can be written

Zzi(z-f——;g-), W=coshZ, w=-W.
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(5) Usetheresultin part (a) here and the one in Exercise 7 to show that the transformation
w = sin z maps the semi-infinite strip —7 /2 <x < /2, y > 0 onto the half plane
v > (), as shown in Fig. 9, Appendix 2. (This mapping was verified in a different way
in Example 1, Sec. 89.)

90. MAPPINGS BY z> AND BRANCHES OF z/2

In Chap 2 (Sec. 12), we considered some fairly simple mappings under the transfor-
mation w = z2, written in the form

(1) u:xzwyz, vV =2xYy.

We turn now to a less elementary example and then examine related mappings w = z'/2,
where specific branches of the square root function are taken.

EXAMPLE 1. Let us use equations (1) to show that the image of the vertical strip
0<x <1, y=>0,showninFig. 117, is the closed semiparabolic region indicated there.

When 0 < x; < 1, the point (x;, ¥) moves up a vertical half line, labeled L, in Fig.
117, as y increases from y = 0. The image traced out in the uv plane has, according
to equations (1), the parametric representation

(2) u=x;—y% v=2xy (0<y<o0).

Using the second of these equations to substitute for y in the first one, we see that the
image points (u, v) must lie on the parabola

(3) v? = w4x%(u — xlz),

with vertex at (xiz, 0) and focus at the origin. Since v increases with y from v =0,
according to the second of equations (2), we also see that as the point (x;, y) moves
up L; from the x axis, its image moves up the top half L] of the parabola from the
u axis. Furthermore, when a number x, larger than x;, but less than 1, is taken, the
corresponding half line L, has an image L that is a half parabola to the right of L/, as

Y LL, oY
4 A\
O L’
2\\
c L \\ B’ FIGURE 117
T D 1 T
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indicated in Fig. 117. We note, in fact, that the image of the half line B A in that figure
is the top half of the parabola v* = —4(u — 1), labeled B'A’.

The image of the half line C D is found by observing from equations (1) that a
typical point (0, y), where y > 0, on CD is transformed into the point (— yz, 0) in the
uv plane. So, as a point moves up from the origin along C D, its image moves left from
the origin along the u axis. Evidently, then, as the vertical half lines in the xy plane
move to the left, the half parabolas that are their images in the uv plane shrink down
to become the half line C'D’.

It is now clear that the images of all the half lines between and including C D and
B A fill up the closed semiparabolic region bounded by A’B’C’D’. Also, each point in
that region is the image of only one point in the closed strip bounded by ABCD. Hence
we may conclude that the semiparabolic region is the image of the strip and that there
is a one to one correspondence between points in those closed regions. (Compare Fig.
3 in Appendix 2, where the strip has arbitrary width.)

As for mappings by branches of z/2, we recall from Sec. 8 that the values of z'/2
are the two square roots of z when z # 0. According to that section, if polar coordinates
are used and

z=rexp(i®) (r>0,—-7m<®<m),

then
] 2 |
@) M= Jrexp 2T o,
the principal root occurring when £ = 0. In Sec. 31, we saw that z1/2 can also be written

5 zi/zzexp(% log 2:) (z #0).

The principal branch Fy(z) of the double-valued function z!/2 is then obtained by
taking the principal branch of log z and writing (see Sec. 32)

1
Fo(z) = exp(-—i Log z) (z} >0, —mr < Argz < m).

Since
1 1 i®
—logz==(nr+i®)=In/r + —
SLogz=_(lnr +i®) =In 7 + =

when z = r exp(i ©), this becomes

(6) Fy(z) = ﬁexp ? (r>0,—7m<® <m).
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The right-hand side of this equation is, of course, the same as the right-hand side of
equation (4) when £k = 0 and —7 < ® < 7 there. The origin and the ray ® = & form
the branch cut for Fj, and the origin is the branch point.

Images of curves and regions under the transformation w = Fy(z) may be ob-
tained by writing w = p exp(i¢), where p = /r and ¢ = © /2. Arguments are evi-
dently halved by this transformation, and it is understood that w = 0 when 7 = 0.

EXAMPLE 2. It is easy to verify that w = Fj(z) is a one to one mapping of the
quarter disk 0 <7 <2,0 <6 <m/2 onto the sector 0 < p < /2,0 < ¢ < 7 /4 in the
w plane (Fig. 118). To do this, we observe that as a point z = r exp(i0))(0 < 6, < 7/2)
moves outward from the origin along a radius R; of length 2 and with angle of
inclination 6, its image w = /7 exp(if;/2) moves outward from the origin in the
w plane along a radius R] whose length is +/2 and angle of inclination is 01/2. See
Fig. 118, where another radius R, and its image R, are also shown. It is now clear from
the figure that if the region in the z plane is thought of as being swept out by a radius,
starting with D A and ending with DC, then the region in the w plane is swept out by
the corresponding radius, starting with D’A’” and ending with D’C’. This establishes a
one to one correspondence between points in the two regions.

C!
B’
, V2 FIGURE 118
D X D A u w= Fg(Z).

EXAMPLE 3. The transformation w = Fy(sin z) can be written
Z=sinz, w= Fy(Z) (1Z2]| >0, -7 < Arg Z < 7).

As noted at the end of Example 1 in Sec. 89, the first transformation maps the semi-
infinite strip 0 < x <7 /2, y > 0 onto the first quadrant X > 0, Y > 0 in the Z plane.
The second transformation, with the understanding that F(0) = 0, maps that quadrant
onto an octant in the w plane. These successive transformations are illustrated in Fig.
119, where corresponding boundary points are shown.

When —r < ® < 7 and the branch

logz=Inr +i(®+ 2m)
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FIGURE 119
w = Fy(sin 2).

of the logarithmic function is used, equation (5) yields the branch

(N Fl(z):ﬁexpz(®;2x) r>0,—-1T<®<m)
of z1/2, which corresponds to k = 1in equation (4). Since exp(i7) = —1, it follows that

F(z) = — Fy(z). The values £ F;(z) thus represent the totality of values of z/2 at all
points in the domain r > 0, —7 < © < 7. If, by means of expression (6), we extend
the domain of definition of F to include the ray ® = 7 and if we write Fyp(0) =0,
then the values =+ Fy(z) represent the totality of values of z!/2 in the entire z plane.
Other branches of z!/? are obtained by using other branches of log z in expression
(5). A branch where the ray 6 = « is used to form the branch cut is given by the equation

(8) fa(z):\/}—”exp% r>0,0a<0 <a+42mr).

Observe that when & = —m, we have the branch Fj(z) and that when o = &, we have
the branch F(z). Just as in the case of Fj, the domain of definition of f, can be
extended to the entire complex plane by using expression (8) to define f, at the nonzero
points on the branch cut and by writing f,(0) = 0. Such extensions are, however, never
continuous in the entire complex plane. -

Finally, suppose that n is any positive integer, where n > 2. The values of z'/" are
the nth roots of z when z # 0; and, according to Sec. 31, the multiple-valued function
71" can be written

9) /"= exp(l log Z) — Yrexp i(© 4+ 2km)
n

(k=0,1,2,...,n—1),

where r = |z| and ® = Arg z. The case n = 2 has just been considered. In the general
case, each of the n functions

i(©+ 2km)

(10) F.(z) = Yrexp k=0,1,2,....,0—-1

is a branch of z/", defined on the domain r > 0, —7 < © < 7. When w = pe'?, the
transformation w = Fj(z) is a one to one mapping of that domain onto the domain

@k—bm _, @kt
n h

o >0,
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These n branches of z1/" vield the n distinct nth roots of z at any point z in the domain
r >0, —m < ® < ;. The principal branch occurs when k£ = 0, and further branches
of the type (8) are readily constructed.

EXERCISES

1.

5‘

6.

Show, indicating corresponding orientations, that the mapping w = z2 transforms lines
y =¢3 (c; > 0) into parabolas v? = 4c%( u+ C‘%), all with foci at w = 0. (Compare
Example 1, Sec. 90.)

Use the result in Exercise | to show that the transformation w = z° is a one to one mapping
of a strip a < y < b above the x axis onto the closed region between the two parabolas

L2
Z

vV =4a%(u +a?), vi=4b @ +b%).

Point out how it follows from the discussion in Example 1, Sec. 90, that the transfor-
mation w = z2 maps a vertical strip 0 < x < ¢, y > 0 of arbitrary width onto a closed
semiparabolic region, as shown in Fig. 3, Appendix 2.

Modify the discussion in Example 1, Sec. 90, to show that when w = 7%, the image of
the closed triangular region formed by the lines y = £ x and x = 1 is the closed parabolic
region bounded on the left by the segment —2 < v < 2 of the v axis and on the right by
a portion of the parabola v2 = —4(u — 1). Verify the corresponding points on the two
boundaries shown in Fig. 120,

FIGURE 120
w = 77,

By referring to Fig. 10, Appendix 2, show that the transformation w = sin? z maps the

strip 0 < x < /2, y > 0 onto the half plane v > 0. Indicate corresponding parts of the
boundarics.
Suggestion: See also the first paragraph in Example 3, Sec. 12.

Use Fig. 9, Appendix 2, to show that if w = (sin z)/4, where the principal branch of
the fractional power is taken, the semi-infinite strip —7/2 < x < /2, y > 0 is mapped
onto the part of the first quadrant lying between the line v = & and the u axis. Label
corresponding parts of the boundaries.
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According to Example 2, Sec. 88, the linear fractional transformation
7 E
z+1

maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half planes
Y > 0and Y < 0, respectively. Show that, in particular, it maps the segment —1 < x <1
of the x axis onto the segment X < 0 of the X axis. Then show that when the principal
branch of the square root is used, the composite function

o) = Zi/z ] (i:;l)kﬂ
z+1

maps the z plane, except for the segment —1 < x < 1 of the x axis, onto the half plane
u > 0.

Determine the image of the domain r > 0, —7 < © < 7 in the z plane under each of
the transformations w = F,(z) (k =0, 1, 2, 3), where Fj(z) are the four branches of z 174
given by equation (10), Sec. 90, when n = 4. Use these branches to determine the fourth
roots of {.

SQUARE ROOTS OF POLYNOMIALS

now consider some mappings that are compositions of polynomials and square

roots of z.

EXAMPLE 1. Branches of the double-valued function (z — zo)'/? can be obtained
by noting that it is a composition of the translation Z = z — z; with the double-valued
function Z!/2. Each branch of Z'/2 yields a branch of (z — z5)/%. When Z = Re?,
branches of Z!/? are

ZlfQZJEexpfg (R>0,a <6 <a+2m).

Hence if we write

R = |Z"""’Z0|, @EAI'g(Z-“ZO), and €=arg(Z—Z{)),

two branches of (z — zo)!/? are

(1)
and

(2)

GQ(Z)E\/ESXP'{? (R>0,—m<® <)

SG(Z)m\/’I.éexpfg (R>0,0<8 <2m).

The branch of Z/? that was used in writing G(z) is defined at all points in the

Z plane except for the origin and points on the ray Arg Z = x. The transformation
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w = Gy(z) 18, therefore, a one to one mapping of the domain
|z =20l >0, —-m<Arg(z—zp) <m

onto the right half Re w > 0 of the w plane (Fig. 121). The transformation w = gy(z)
maps the domain

lz — 29| >0, O <arg(z —zy) <27

in a one to one manner onto the upper half plane Im w > 0.

FIGURE 121
w = G()(Z).

EXAMPLE 2. For an instructive but less elementary example, we now consider the
double-valued function (z2 — 1)/2. Using established properties of logarithms, we can
write

(z2 — 1)1/’2 = exp B« 1{3g(z{2 — 1)] == Xp [% log(z — 1) + % log(z + 1):|,
or
3) E-D2 =@ -2+ D2 (£ D).

Thus, if f1(z) is a branch of (z — 1)!/2 defined on a domain D, and f£,(z) is a branch
of (z + 1)"/? defined on a domain D,, the product £(z) = f|(z) f,(z) is a branch of
(z2 — 1)/2 defined at all points lying in both D, and Dj.

In order to obtain a specific branch of (z2 — 1)1/2, we use the branch of (z— DI/
and the branch of (z + 1)/ given by equation (2). If we write

ri=lz—1 and 6,=arg(z - 1),

that branch of (z — 1)!/? is

.f}(2)=\/f’_1€‘rxpi§l (r;>0,0<86, <2n).
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The branch of (z + 1)1/2 given by equation (2) is

fg(z)w,/ﬂexpig% (rp > 0,0 <8, < 2m),
where
rp=|z+1] and 6,=arg(z+1).

The product of these two branches is, therefore, the branch f of (z% — DV/? defined
by the equation

(4) f(2) = /T exp M,

where
Fk>0, 0(9,&(2?{ (k:1,2)

As illustrated in Fig. 122, the branch f is defined everywhere in the z plane except on
the ray r, > 0, 8, = 0, which is the portion x > —1 of the x axis.
The branch f of (z2 — 1)'/? given in equation (4) can be extended to a function

(5) F(z) = J/rirp exp ————=— 16+ 6) 92)

where
>0, 0<@,<2n (k=12) and ri+ry>2.

As we shall now see, this function is analytic everywhere in its domain of definition,
which is the entire z plane except for the segment —1 < x < 1 of the x axis.

Since F(z) = f(z) for all z in the domain of definition of F except on the ray
r; > 0, 6; = 0, we need only show that F is analytic on that ray. To do this, we form
the product of the branches of (z — 1)'/* and (z + 1)/ which are given by equation
(1). That is, we consider the function

(0 + 0,)
2 k]

G(z) = JriF exp

FIGURE 122
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where
rn=lz=1, rn=z+1, ©;=Agz-1), O;=Argz+1)
and where
>0, —-nm<O,<nm k=1,2).

Observe that G is analytic in the entire z plane except for the ray r; > 0, ®, ==x.
Now F'(z) = G(z) when the point z lies above or on the ray ry > 0, ©; = 0; for then
6, = O, (k =1, 2). When ¢ lies below thatray, 6, = ®; + 27 (k = 1, 2). Consequently,
exp(i6,/2) = —exp(i©;/2); and this means that

exp 10 +6) ; ) = (exp %) (exp E-gm) = exp l(@lj @2).

So again, F(z) = G(z). Since F (z) and G (z) are the same in a domain containing the
ray r; > 0, ©, = 0 and since G is analytic in that domain, F is analytic there, Hence
F is analytic everywhere except on the line segment P, Py in Fig. 122.

The function F defined by equation (5) cannot itself be extended to a function
which is analytic at points on the line segment P, Py; for the value on the right in
equation (5) jumps from i, /r;r, to numbers near —i /rir, as the point z moves
downward across that line segment. Hence the extension would not even be continuous
there.

The transformation w = F(z) is, as we shall see, a one to one mapping of the
domain D, consisting of all points in the z plane except those on the line segment
P, Py onto the domain D,, consisting of the entire w plane with the exception of the
segment —1 < v < 1 of the v axis (Fig. 123),

Before verifying this, we note that if z =iy (y > 0), then

?'}:?'2}1 and 91+92=3T;

hence the positive y axis is mapped by w = F (z) onto that part of the v axis for which
v > 1. The negative y axis is, moreover, mapped onto that part of the v axis for which
v < —1. Each point in the upper half y > 0 of the domain D, is mapped into the upper
half v > 0 of the w plane, and each point in the lower half y < 0 of the domain D,

v
L1 W
D, i &
i
: 92
0! i
n ¢
“““’ FIGURE 123

w = F(2).
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is mapped into the lower half v < 0 of the w plane. The ray ry > 0, #; = 0 is mapped
onto the positive real axis in the w plane, and the ray r, > 0, 6, = 7 is mapped onto
the negative real axis there.

To show that the transformation w = F(z) is one to one, we observe that if
F(zy) = F(zy), then z% -~ 1= z% — 1. From this, it follows that z; = z5 or z; = —2,.
However, because of the manner in which F maps the upper and lower halves of the
domain D,, as well as the portions of the real axis lying in D,, the case z; = —2z, is
impossible. Thus, if F(z)) = F(z,), then z; = z,; and F is one to one.

We can show that F maps the domain D, onto the domain D,, by finding a
function H mapping D,, into D, with the property that if z = H(w), then w = F(2).
This will show that, for any point w in D,,, there exists a point z in D, such that
F(z) = w; that is, the mapping F is onto. The mapping H will be the inverse of F.

To find H, we first note that if w is a value of (22 — 1)” 2 for a specific z, then
w? = z? — 1; and 7 is, therefore, a value of (w? + 1)1/2 for that w. The function H will
be a branch of the double-valued function

W+ D= -+ (w#+i).

Following our procedure for obtaining the function F(z), we write w — i = p| exp(i¢;)
and w + i = p, expli¢y). (See Fig. 123.) With the restrictions

o > 0, w§£¢k4w (k=1,2) and P+ p2> 2,

we then write

(6) H(w) = /p1pz exp {1+ )

the domain of definition being D,,. The transformation z = H (w) maps points of D,
lying above or below the u axis onto points above or below the x axis, respectively. It
maps the positive # axis into that part of the x axis where x > 1 and the negative u axis
into that part of the negative x axis where x < —1. If z = H(w), then Z2=w?+1
and so w? = z* — 1. Since z is in D, and since F(z) and — F(z) are the two values of
(z> — 1)!/2 for a point in D,, we see that w = F(z) or w = —F(z). But it is evident
from the manner in which ¥ and H map the upper and lower halves of their domains
of definition, including the portions of the real axes lying in those domains, that
w = F(2).

Mappings by branches of double-valued functions

(7) w= (" +Az+ B =[z— 29" ~2]I'* (2 #0),
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where A = —2zgand B = zé = z%, can be treated with the aid of the results found for

the function F in Example 2 and the successive transformations
8) z=2"20 w=Z2-1D"?, w=zW.
2]

EXERCISES

1. Thebranch F of (z2 — 1)!/2in Example 2, Sec. 91, was defined in terms of the coordinates
s 2, 61, ;. Explain geometrically why the conditions r{ > 0, 0 < 8 + 8, < 7 describe
the quadrant x > 0, y > 0 of the z plane. Then show that the transformation w = F(z)
maps that quadrant onto the quadrant u > 0, v > 0 of the w plane.

Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described, note
that 8, 4+ 8, = & at each point on the positive y axis and that 8, + 6, decreases as a point
z moves to the right along aray 6, = ¢ (0 < ¢ < /2).

2. For the transformation w = F (z) of the first quadrant of the z plane onto the first quadrant
of the w plane in Exercise 1, show that

1 1
U= —/rir,+x>—y>—1 and vzmvfrlrzwx2+y2+1,

V2 V2

where

(rir)* = (& + y* + 1)? — 4x?,
and that the image of the portion of the hyperbola x2 — y% = 1in the first quadrant is the
ray v =u (u > 0).

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first
quadrant of the z plane is described by the conditions ry > 0, 0 < 6, + 6, < 7/2. Then
show that the image of D is the octant 0 < v < u. Sketch the domain D and its image.

4. Let F be the branch of (zZ — 1)!/? defined in Example 2, Sec. 91, and let zy = ry exp(i6p)
be a fixed point, where ro > 0 and 0 < 6, < 27. Show that a branch Fy of (z2 — z2)!/?

whose branch cut is the line segment between the points zy and —z can be written
Fy(z) = 2o F(Z), where Z = z/z.

5. Write z — 1 =r;exp(if)) and z + 1 = ry exp(i ®,), where
0<f<2r and —7<B;<m,

to define a branch of the function

@ (2 - DY% () (Z — 1)1/2.
’ z+1

In each case, the branch cut should consist of the tworays 6, =0 and ©, = 7.

6. Using the notation in Sec. 91, show that the function

2 o
wz(_z_l) = [ {10
Z+1 1) 2
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is a branch with the same domain of definition D, and the same branch cut as the function
w = F(z) in that section. Show that this transformation maps D, onto the right half plane
p >0, —m/2 < ¢ < 7 /2, where the point w» = 1 is the image of the point z = cc. Also,
show that the inverse transformation is

(Compare Exercise 7, Sec. 90.)

7. Show that the transformation in Exercise 6 maps the region outside the unit circle |z] =1
in the upper half of the z plane onto the region in the first quadrant of the w plane between
the line v = « and the « axis. Sketch the two regions.

8. Write z =r exp(i®), z — | =r; exp(i®,), and z + 1 = r, exp(i®,), where the values
of al}l three arguments lie between —n and x. Then define a branch of the function
[z(z2 = 1)]"/? whose branch cut consists of the two segments x < —1and 0 < x < 1 of
the x axis.

92. RIEMANN SURFACES

The remaining two sections of this chapter constitute a brief introduction to the concept
of a mapping defined on a Riemann surface, which is a generalization of the complex
plane consisting of more than one sheet. The theory rests on the fact that at each point
on such a surface only one value of a given multiple-valued function is assigned. The
material in these two sections will not be used in the chapters to follow, and the reader
may skip to Chap. 9 without disruption.

Once a Riemann surface is devised for a given function, the function is single-
valued on the surface and the theory of single-valued functions applies there. Complex-
ities arising because the function is multiple-valued are thus relieved by a geometric
device. However, the description of those surfaces and the arrangement of proper con-
nections between the sheets can become quite involved. We limit our attention to fairly
simple examples and begin with a surface for log z. -

EXAMPLE 1. Corresponding to each nonzero number z, the multiple-valued func-
tion

(1) logz=Inr +i6

has infinitely many values. To describe log z as a single-valued function, we replace the
z plane, with the origin deleted, by a surface on which a new point is located whenever
the argument of the number z is increased or decreased by 27, or an integral multiple
of 2.

We treat the z plane, with the origin deleted, as a thin sheet R, which is cut along
the positive half of the real axis. On that sheet, let 6 range from 0 to 2. Let a second
sheet R be cut in the same way and placed in front of the sheet Ry. The lower edge of
the slitin Ry is then joined to the upper edge of the slitin R|. On R, the angle 6 ranges
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from 2 to 477; so, when z is represented by a point on Ry, the imaginary component
of log 7 ranges from 2 to 4.

A sheet R, is then cut in the same way and placed in front of R,. The lower edge
of the slit in R is joined to the upper edge of the slit in this new sheet, and similarly

for sheets R3, Ry, . .. . Asheet R_; on which 0 varies from 0 to —27 is cut and placed
behind Ry, with the lower edge of its slit connected to the upper edge of the slit in Ry;
the sheets R_,, R_3, . .. are constructed in like manner. The coordinates r and 4 of a

point on any sheet can be considered as polar coordinates of the projection of the point
onto the original z plane, the angular coordinate 8 being restricted to a definite range
of 27 radians on each sheet.

Consider any continuous curve on this connected surface of infinitely many
sheets. As a point z describes that curve, the values of log z vary continuously since 8, in
addition to r, varies continuously; and log z now assumes just one value corresponding
to each point on the curve. For example, as the point makes a complete cycle around
the origin on the sheet Ry over the path indicated in Fig. 124, the angle changes from
0 to 2. As it moves across the ray @ = 2z, the point passes to the sheet R; of the
surface. As the point completes a cycle in R, the angle 8 varies from 2x to 4 and,
as it crosses the ray 6 = 47, the point passes to the sheet R,.

FIGURE 124

The surface described here is a Riemann surface for log z. It is a connected surface
of infinitely many sheets, arranged so that log z is a single-valued function of points
on 1t.

The transformation w = log z maps the whole Riemann surface in a one to one
manner onto the entire w plane. The image of the sheet Ry is the strip 0 < v < 27 (see
Example 3, Sec. 88). As a point z moves onto the sheet R; over the arc shown in Fig.
125, its image w moves upward across the line v = 27, as indicated in that figure.

y 134
R,
2mi 1
o, /x %
T~ ’“:“" /R(] 0 i
I FIGURE 125
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Note that log z, defined on the sheet R}, represents the analytic continuation (Sec.
26) of the single-valued analytic function

f()=Inr+i6 (0 <6 <27)

upward across the positive real axis. In this sense, log z is not only a single-valued
function of all points z on the Riemann surface but also an analytic function at all
points there.

The sheets could, of course, be cut along the negative real axis, or along any other
ray from the origin, and properly joined along the slits to form other Riemann surfaces
for log z.

EXAMPLE 2. Corresponding to each point in the z plane other than the origin, the
square root function

2) 22 = frelfr2

has two values. A Riemann surface for zV/? is obtained by replacing the z plane with
a surface made up of two sheets Ry and R, each cut along the positive real axis and
with R; placed in front of Ry. The lower edge of the slit in Ry is joined to the upper
edge of the slit in Ry, and the lower edge of the slit in R, is joined to the upper edge
of the slit in Ry.

As a point z starts from the upper edge of the slitin R, and describes a continuous
circuit around the origin in the counterclockwise direction (Fig. 126), the angle 6
increases from 0 to 27. The point then passes from the sheet R, to the sheet R, where
8 increases from 27 to 4. As the point moves still further, it passes back to the sheet
Ry, where the values of @ can vary from 4x to 6z or from 0 to 27, a choice that does
not affect the value of z!/2, etc. Note that the value of z1/? at a point where the circuit
passes from the sheet Ry to the sheet R, is different from the value of z!/ 2 at a point
where the circuit passes from the sheet R, to the sheet Ry,.

We have thus constructed a Riemann surface on which z'/? is single-valued for
each nonzero z. In that construction, the edges of the sheets Ry and Ry are joined in
pairs in such a way that the resulting surface is closed and connected. The points where
two of the edges are joined are distinct from the points where the other two edges are
joined. Thus it is physically impossible to build a model of that Riemann surface. In

FIGURE 126
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visualizing a Riemann surface, it is important to understand how we are to proceed
when we arrive at an edge of a slit.

The origin is a special point on this Riemann surface. It is common to both sheets,
and a curve around the origin on the surface must wind around it twice in order to be
a closed curve. A point of this kind on a Riemann surface is called a branch point.

The image of the sheet Ry under the transformation w = z'/? is the upper half
of the w plane since the argument of w is §/2 on Ry, where 0 < 6/2 < &r. Likewise,
the image of the sheet R is the lower half of the w plane. As defined on either sheet,
the function is the analytic continuation, across the cut, of the function defined on the
other sheet. In this respect, the single-valued function z'/2 of points on the Riemann
surface is analytic at all points except the origin.

EXERCISES

1. Describe the Riemann surface for log z obtained by cutting the z plane along the negative
real axis. Compare this Riemann surface with the one obtained in Example 1, Sec. 92.

2. Determine the image under the transformation w = log z of the sheet R,,, where n is an
arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 92.

3. Verify that, under the transformation w = z/2, the sheet R, of the Riemann surface for
z'/2 given in Example 2, Sec. 92, is mapped onto the lower half of the w plane.

4. Describe the curve, on a Riemann surface for z1/2, whose image is the entire circle [w| = 1
under the transformation w = z1/2.

5. Let C denote the positively oriented circle |z — 2| = 1 on the Riemann surface described
in Example 2, Sec. 92, for z'/2, where the upper half of that circle lies on the sheet R,
and the lower half on R{. Note that, for each point z on C, one can write

V2 = \/ret??  where 4nm§~<9<:4x+%.

State why it follows that

] ?dz=0.
C

Generalize this result to fit the case of the other simple closed curves that cross from one
sheet to another without enclosing the branch points. Generalize to other functions, thus
extending the Cauchy-Goursat theorem to integrals of multiple-valued functions.

93. SURFACES FOR RELATED FUNCTIONS

We consider here Riemann surfaces for two composite functions involving simple
polynomials and the square root function.
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EXAMPLE 1. Let us describe a Riemann surface for the double-valued function

i(G1+6a) 62)
2

where z — 1 =r| exp(if)) and z + 1 =r, exp(i6;). A branch of this function, with the
line segment P; P, between the branch points z = 1 as a branch cut (Fig. 127), was
described in Example 2, Sec. 91. That branch is as written above, with the restrictions
re>0,0<6, <27 (k=1,2) and r{ 4+ rp > 2. The branch is not defined on the
segment P P.

) f@) =@ — D= frimexp ———=

FIGURE 127

A Riemann surface for the double-valued function (1) must consist of two sheets
of Ry and R). Let both sheets be cut along the segment Py Py. The lower edge of the
slit in Ry is then joined to the upper edge of the slit in Ry, and the lower edge in R) is
joined to the upper edge in Ry.

On the sheet Ry, let the angles ¢, and 6, range from 0 to 2. If a point on the
sheet R, describes a simple closed curve that encloses the segment P P, once in the
counterclockwise direction, then both 8; and 8, change by the amount 27 upon the
return of the point to its original position. The change in (6; + &,)/2 is also 27, and
the value of f is unchanged. If a point starting on the sheet R, describes a path that
passes twice around just the branch point z = 1, it crosses from the sheet Ry onto the
sheet R, and then back onto the sheet R before it returns to its original position. In this
case, the value of §, changes by the amount 477, while the value of ¢, does not change
at all. Similarly, for a circuit twice around the point z = —1, the value of 8, changes
by 47, while the value of 8, remains unchanged. Again, the change in (6; + 6,)/2 is
27r; and the value of f is unchanged. Thus, on the sheet R, the range of the angles ¢,
and 6, may be extended by changing both 8; and 6, by the same integral multiple of
27 or by changing just one of the angles by a multiple of 4. In either case, the total
change in both angles is an even integral multiple of 2.

To obtain the range of values for 6, and 6, on the sheet R}, we note that if a point
starts on the sheet R, and describes a path around just one of the branch points once, it
crosses onto the sheet R; and does not return to the sheet Ry. In this case, the value of
one of the angles is changed by 27, while the value of the other remains unchanged.
Hence on the sheet R, one angle can range from 27 to 47, while the other ranges from
0 to 27r. Their sum then ranges from 27 to 477, and the value of (6; + 6,)/2, which is
the argument of f(z), ranges from 77 to 2. Again, the range of the angles is extended



‘340 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

by changing the value of just one of the angles by an integral multiple of 47 or by
changing the value of both angles by the same integral multiple of 2.

The double-valued function (1) may now be considered as a single-valued
function of the points on the Riemann surface just constructed. The transformation
w = f(z) maps each of the sheets used in the construction of that surface onto the
entire w plane.

EXAMPLE 2. Consider the double-valued function

10 +6,+6y)
2

(Fig. 128). The points z = 0, 41 are branch points of this function. We note that if the
point z describes a circuit that includes all three of those points, the argument of f(z)
changes by the angle 37 and the value of the function thus changes. Consequently, a
branch cut must run from one of those branch points to the point at infinity in order to
describe a single-valued branch of f. Hence the point at infinity is also a branch point,
as one can show by noting that the function f(1/z) has a branch pointat z = 0.

Let two sheets be cut along the line segment I, from z = —1to z =0 and along
the part L of the real axis to the right of the point z = 1. We specify that each of the
three angles 6, 8, and 9, may range from 0 to 27 on the sheet Ry and from 27 to
47 on the sheet R;. We also specify that the angles corresponding to a point on either
sheet may be changed by integral multiples of 27 in such a way that the sum of the
three angles changes by an integral multiple of 47r. The value of the function f is,
therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining the
lower edges in Ry, of the slits along L, and L, to the upper edges in R, of the shits
along L, and L,, respectively. The lower edges in R, of the slits along L and L, are
then joined to the upper edges in Ry of the slits along L, and L, respectively. It is
readily verified with the aid of Fig. 128 that one branch of the function is represented
by its values at points on R and the other branch at points on R;.

(2) f(2) =[2(z* = D1/* = Jfrrirpexp

FIGURE 128

EXERCISES

1. Describe a Riemann surface for the triple-valued function w = (z — 1)!/?, and point out
which third of the w plane represents the image of each sheet of that surface.
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2. Corresponding to each point on the Riemann surface described in Example 2, Sec. 93,
for the function w = f(z) in that example, there is just one value of w. Show that,
corresponding to each value of w, there are, in general, three points on the surface.

3. Describe a Riemann surface for the multiple-valued function

(z—1\"?
f(Z)m( Z ) '

4. Note that the Riemann surface described in Example 1, Sec. 93, for (z2 — 1)!/?isalso a
Riemann surface for the function

g(z) =z + (=D

Let f; denote the branch of (z2 — 1)/ defined on the sheet Ry, and show that the branches
go and g, of g on the two sheets are given by the equations

20@) = —— =2+ fy(2).
£1(2)

5. In Exercise 4, the branch f; of (zZ — 1)!/Z can be described by means of the equation

folz) = /riry (exp %) (exp ?fg)

2

where 4, and 6, range from O to 2x and
z—l=rexp(it)), z+1=r;exp(if,).

Note that 2z = r| exp(i8,) + r, exp(i#,). and show that the branch g, of the function
g(z) =z + (22 — V2 can be written in the form

X N2
1 iG io
go(z) = 3 (ﬁ/rl exp ~—21 + J/ryexp _—22) .

Find g,(z)go(z), and note that r; + r, > 2 and cos[(8; — 6,)/2] > 0 for all z, to prove that
|£0(z)| = 1. Then show that the transformation w =z + (z2 — D2 maps the sheet Ry of
the Riemann surface onto the region |w| > 1, the sheet R onto the region |w] < 1, and the
branch cut between the points 7 = 4-1onto the circle |w| = 1. Note that the transformation
used here is an inverse of the transformation

i)
) w/’






CHAPTER

9

CONFORMAL MAPPING

In this chapter, we introduce and develop the concept of a conformal mapping, with em-
phasis on connections between such mappings and harmonic functions. Applications
to physical problems will follow in the next chapter.

94. PRESERVATION OF ANGLES
Let C be a smooth arc (Sec. 38), represented by the equation

z=z(t) (a=<r<bh),
and let f(z) be a function defined at all points z on C. The equation
w=flz(©)] (a<t<bh)

is a parametric representation of the image I of C under the transformation w = £(z).

Suppose that C passes through a point zo = z(fy) (@ < 1y < b) at which f is
analytic and that f/(zq) # 0. According to the chain rule given in Exercise 5, Sec.
38, if w(t) = f[z(z)], then

(D w'(te) = flz(t0))' (t0);

and this means that (see Sec. 7)

(2) arg w'(fy) = arg f'[z(to)] + arg z'(z) .

343
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Statement (2) is useful in relating the directions of C and I' at the points 7, and
wq = f(zq), respectively.

To be specific, let ¥ denote a value of arg f(zy), and let 8, be the angle of
inclination of a directed line tangent to C at zq (Fig. 129). According to Sec. 38, 4 is
a value of arg 7'(1y); and it follows from statement (2) that the quantity

$o = ¥y + G

is a value of arg w'(fy) and is, therefore, the angle of inclination of a directed line
tangent to I' at the point wy = f(zg). Hence the angle of inclination of the directed
line at wy differs from the angle of inclination of the directed line at zj by the angle
of rotation

(3) Yo = arg f(zp).

FIGURE 129
dp = ¥y + 6.

U

Now let C; and (' be two smooth arcs passing through z,, and let 6, and 6, be
angles of inclination of directed lines tangent to Cy and C,, respectively, at z,. We
know from the preceding paragraph that the quantities

=vo+06, and ¢;=vy+6;

are angles of inclination of directed lines tangent to the image curves I'; and T,
respectively, at the point wy = f(zg). Thus ¢ — ¢; =6, — 9; that is, the angle ¢, — ¢,
from I'; to Iy 1s the same in magnitude and sense as the angle 6, — 9, from C; to Cs.
Those angles are denoted by « in Fig. 130.

Because of this angle-preserving property, a transformation w = f(z) is said to
be conformal at a point zq if f is analytic there and f’(zg) # 0. Such a transformation

Wy

o x o “  FIGURE 130
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is actually conformal at each point in a neighborhood of z,. For f must be analytic in
a neighborhood of zq (Sec. 23); and, since ' is continuous at z; (Sec. 48), it follows
from Theorem 2 in Sec. 17 that there is also a neighborhood of that point throughout
which f'(z) # 0.

A transformation w = f(z), defined on a domain D, is referred to as a conformal
transformation, or conformal mapping, when it is conformal at each point in D. That
is, the mapping is conformal in D if f is analytic in D and its derivative f’ has no
zeros there. Each of the elementary functions studied in Chap. 3 can be used to define
a transformation that is conformal in some domain.

EXAMPLE 1. The mapping w = e° is conformal throughout the entire z plane since
(%) = €* % 0 for each z. Consider any two lines x = ¢; and y = ¢, in the z plane, the
first directed upward and the second directed to the right. According to Sec. 13, their
images under the mapping w = e* are a positively oriented circle centered at the origin
and a ray from the origin, respectively. As illustrated in Fig. 20 (Sec. 13), the angle
between the lines at their point of intersection is a right angle in the negative direction,
and the same is true of the angle between the circle and the ray at the corresponding
point in the w plane. The conformality of the mapping w = €* is also illustrated in
Figs. 7 and 8 of Appendix 2.

EXAMPLE 2. Consider two smooth arcs which are level curves u(x, y) = c; and
v(x, y) = ¢, of the real and imaginary components, respectively, of a function

[ =ulx,y) +ivix,y),

and suppose that they intersect at a point z, where f is analytic and f’(zq) # 0. The
transformation w = f(z) is conformal at z; and maps these arcs into the lines u = ¢
and v = ¢y, which are orthogonal at the point wy = f(zp). According to our theory,
then, the arcs must be orthogonal at zg. This has already been verified and illustrated
in Exercises 7 through 11 of Sec. 25.

A mapping that preserves the magnitude of the angle between two smooth arcs
but not necessarily the sense is called an isogonal mapping.

EXAMPLE 3. The transformation w = 7, which 1s a reflection in the real axis,
is isogonal but not conformal. If it is followed by a conformal transformation, the
resulting transformation w = f(7) is also isogonal but not conformal.

Suppose that f is not a constant function and is analytic at a point zy. If, in
addition, f'(zg) = 0, then zq is called a critical point of the transformation w = f(z).

EXAMPLE 4. The point z = 0 is a critical point of the transformation

w=1+zz,
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which is a composition of the mappings
Zmzz and w=1+Z.

A ray 6 =« from the point z = 0 is evidently mapped onto the ray from the point
w = 1 whose angle of inclination is 2. Moreover, the angle between any two rays
drawn from the critical point z = 0 is doubled by the transformation.

More generally, it can be shown that if zj 1s a critical point of a transformation
w = f(z), there is an integer m(m > 2) such that the angle between any two smooth
arcs passing through z; is multiplied by m under that transformation. The integer m is
the smallest positive integer such that £%)(z,) s£ 0. Verification of these facts is left
to the exercises.

95. SCALE FACTORS

Another property of a transformation w = f(z) that is conformal at a point z, is
obtained by considering the modulus of f'(zy). From the definition of derivative and a
property of limits involving moduli that was derived in Exercise 7, Sec. 17, we know
that

=z —2zg =0 |z -z
Now |z — zg| 1s the length of a line segment joining zg and z, and | f (z) — f(zg)| is the

length of the line segment joining the points f(zy) and f(z) in the w plane. Evidently,
then, if z is near the point z;, the ratio

|f(2) — f(zp)

1z — zg

of the two lengths is approximately the number | f'(z,)|. Note that | f/(z()| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation arg f/(z) (Sec. 94) and the scale factor | f'(2)|
vary, in general, from point to point, it follows from the continuity of f’ that their
values are approximately arg f'(zg) and | f/(z)| at points z near z. Hence the image
of a small region in a neighborhood of z; conforms to the original region in the sense
that it has approximately the same shape. A large region may, however, be transformed
into a region that bears no resemblance to the original one.

EXAMPLE. When f(z) = z°, the transformation

w=f(z) =x>— y>+i2xy
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is conformal at the point z = 1 + i, where the half lines
y=x{x>0) and x=1(x>0)

intersect. We denote those half lines by C; and C,, with positive sense upward, and
observe that the angle from Cy to C, is 7 /4 at their point of intersection (Fig. 131).
Since the image of a point z = (x, y) is a point in the w plane whose rectangular
coordinates are

umx2~y2 and v=2xy,
the half line C, is transformed into the curve I'; with parametric representation
(2) u=0, v=2x? (0 <x < o0).

Thus Iy is the upper half v > 0 of the v axis. The half line C; 18 transformed into the
curve I' represented by the equations

(3) u=1-—y>, v=2y (0 <y < 00).

Hence I, is the upper half of the parabola v> = —4(u — 1). Note that, in each case,
the positive sense of the image curve is upward.

y vi I,
C I
j 2 . c, [, i
i 2i
L+i
T T
N2 Cs 2 15 FIGURE 131
O 1 X 0 1 o=z

If # and v are the variables in representation (3) for the image curve ['5, then

dv _dv/dy 2 2
du dujdy =2y v
In particular, dv/du = —1 when v = 2. Consequently, the angle from the image curve

I'; to the image curve I'; at the point w = f(1+ i) = 2i is 7 /4, as required by the
conformality of the mapping at z = 1+ i. As anticipated, the angle of rotation 7 /4 at
the point z = 1+ i is a value of

arg[ £'(1+ )] = arg[2(1 + i)] = % +2nmr (n=0,+1,%2,..)).
The scale factor at that point is the number

|+ )] =121+ )] =2v2.
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To illustrate how the angle of rotation and the scale factor can change from point
to point, we note that they are 0 and 2, respectively, at the point z = 1 since f'(1) =2.
See Fig. 131, where the curves C, and I'; are the ones just discussed and where the
nonnegative x axis Cj is transformed into the nonnegative « axis I's.

96. LOCAL INVERSES

A transformation w = f(z) thatis conformal at a point zq has a local inverse there. That
is, if wg = f(z¢), then there exists a unique transformation z = g(w), which is defined
and analytic in a neighborhood N of wy. such that g(wg) =z and flg(w)l=w for
all points w in N. The derivative of g(w) is, moreover,

1
(1) g'(w) = :
f(2)
We note from expression (1) that the transformation z = g(w} 1s itself conformal at
Wy.

Assuming that w = f(z) is, in fact, conformal at zq, let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calculus.* As
noted in Sec. 94, the conformality of the transformation w = f(z) at z, implies that
there is some neighborhood of z;, throughout which f is analytic. Hence if we write

z=x+1iy, zg=xg+iyy, and [f(z2)=u(x,y)+iv(x,y),

we know that there is a neighborhood of the point (xq, yp) throughout which the
functions #(x, y) and v(x, y) along with their partial derivatives of all orders, are
continuous {see Sec. 48).

Now the pair of equations

(2) u=u(x,y), v=vx,y)

represents a transformation from the neighborhood just mentioned into the »v plane.
Moreover, the determinant

U, u
T =ugvy — vy
vx i-’}g

x=y ¥’

which is known as the Jacobian of the transformation, is nonzero at the point (xq, ¥o)-
For, in view of the Cauchy-Riemann equations u, = v, and u,, = —v,, one can write
J as

J =) + () =1 @I

*The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R.
Mann, “Advanced Calculus,” 3d ed., pp. 241-247, 1983,
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and f'(zg) # 0 since the transformation w = f(z) is conformal at z;. The above con-
tinuity conditions on the functions u#(x, y) and v(x, y) and their derivatives, together
with this condition on the Jacobian, are sufficient to ensure the existence of a local
inverse of transformation (2) at (xg, yg). That is, if

3) ug=u(xg, yo) and vy=1v(xg, yo)s

then there is a unique continuous transformation

(4) x=x(u,v), y=yu,v),

defined on a neighborhood N of the point (i, vg) and mapping that point onio (xg, ¥g),
such that equations (2) hold when equations (4) hold. Also, in addition to being
continuous, the functions (4) have continuous first-order partial derivatives satisfying
the equations

1 1 1 1
(5) Xu=“j!)y, xzf:m}"“ya yu:";vm yv=;“x

throughout N.
If we write w = u + iv and wy = ug + ivg, as well as

(6) gw) =x(u,v) +iyu, v,

the transformation z = g(w) is evidently the local inverse of the original transformation
w = f(z) at zo. Transformations (2) and (4) can be written

w+iv=u(x,y)+ivix,y) and x +iy=x(u,v)+iy(u,v),
and these last two equations are the same as
w=f(z) and z=g(w),
where g has the desired properties. Equations (5) can be used to show that g is analytic

in N. Details are left to the exercises, where expression (1) for g’(w) is also derived.

EXAMPLE. We saw in Example 1, Sec. 94, that if f(z) = ¢, the transformation
w = f(z) is conformal everywhere in the z plane and, in particular, at the point
zg = 2ni. The image of this choice of z; is the point wg = 1. When points in the w
plane are expressed in the form w = p exp(i¢), the local inverse at z, can be obtained
by writing g(w) = log w, where log w denotes the branch

logw=Inp+i¢p (p>0,m <6 <3m)

of the logarithmic function, restricted to any neighborhood of w, that does not contain
the origin. Observe that

g(l) =1In 1+ i27 = 2mi
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and that, when w 1s in the neighborhood,

flg(w)] =exp(log w) = w.

Also,

11
w  expz

g'(w) = d log w =

dw

in accordance with equation (1).

Note that, if the point zq = 0 is chosen, one can use the principal branch

Logw=Inp+i¢ (p>0,—m<¢p<m)

of the logarithmic function to define g. In this case, g(1) = 0.

EXERCISES

1.

Determine the angle of rotation at the point z = 2 + i when the transformation is w = z2,

and illustrate it for some particular curve. Show that the scale factor of the transformation
at that point is 2+/5.

What angle of rotation is produced by the transformation w = 1/z at the point
(@z=1 (byz=1i?
Ans. (a) r; (D)0.

Show that under the transformation w = 1/z, the images of the lines y =x — 1 and
y =0 are the circle u? + v? — u — v =0 and the line v = 0, respectively. Sketch all four
curves, determine corresponding directions along them, and verify the conformality of
the mapping at the point z = L.

Show that the angle of rotation at a nonzero point z, = ry €xp(ifp) under the transforma-
tionw=7z"(n=1,2,...)is (n — 1)6,. Determine the scale factor of the transformation
at that point.

Ans. nrg“”i.

. Show that the transformation w == sin z is conformal at all points except

Z“—“§+nzr (n=0,+1,42,..).

Note that this is in agreement with the mapping of directed line segments shown in Figs.
9, 10, and 11 of Appendix 2.

. Find the local inverse of the transformation w = z° at the point

@zg=2; ((Bzo=-2; {(c)zp=—i.
Ans. @ w'? = /pe'?? (p>0, -7 <¢ <7);
() wl/? = \/11?)}95‘35/’2 (p>0,2r < < 4m).

. In Sec. 96, it was pointed out that the components x (i, v) and y(u, v) of the inverse

function g(w) defined by equation (6) are continuous and have continuous first-order
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partial derivatives in the neighborhood N. Use equations (5), Sec. 96, to show that the
Cauchy-Riemann equations x, = y,, x, = —¥, hold in N. Then conclude that g(w) 1s
analytic in that neighborhood.

8. Show that if z = g(w) is the local inverse of a conformal transformation w = f(z) ata
point z;, then

1
f'(z)

at points w in the neighborhood N where g is analytic (Exercise 7).
Suggestion: Start with the fact that f[g(w)] = w, and apply the chain rule for
differentiating composite functions.

g (w) =

9. Let C be a smooth arc lying in a domain D throughout which a transformation w = f(z)
is conformal, and let I" denote the image of C under that transformation. Show that I is
also a smooth arc.

10. Suppose that a function f is analytic at z and that

Fey=r"@==f"Vep=0, ™) #£0

for some positive integer m(m > 1), Also, write wy = f(zg).

(a) Use the Taylor series for f about the point z; to show that there is a neighborhood
of zg in which the difference f(z) — wq can be written

[1+g(2)]1.

(m)
I

where g(z) is continuous at z and g(zg) = 0.

() LetI" be the image of a smooth arc C under the transformation w = f(z), as shown
in Fig. 129 (Sec. 94), and note that the angles of inclination 8, and ¢ in that figure
are limits of arg(z — z) and arg[ f (z) — wgl, respectively, as z approaches z; along
the arc C. Then use the result in part (a) to show that 8 and ¢ are related by the
equation

do = mby + arg £ (zg).

(c) Let o denote the angle between two smooth arcs C; and C, passing through zj,
as shown on the left in Fig. 130 (Sec. 94). Show how it follows from the relation
obtained in part (b) that the corresponding angle between the image curves I'; and
", at the point wy = f(zy) is ma. (Note that the transformation is conformal at z
when m = 1 and that z 1s a critical point when m > 2.)

97. HARMONIC CONJUGATES

We saw 1n Sec. 25 that if a function

f@=ulx,y)+ivix,y)
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is analytic in a domain D, then the real-valued functions u and v are harmonic in that
domain. That is, they have continuous partial derivatives of the first and second order
in D and satisfy Laplace’s equation there:

(1) oy +tyy =0, Vyy + Dy = 0.

We had seen earlier that the first-order partial derivatives of # and v satisfy the Cauchy-
Riemann equations

(2) Uy =Vy, Uy, = —Uy

and, as pointed out in Sec. 25, v is called a harmonic conjugate of u.

Suppose now that «(x, y) is any given harmonic function defined on a simply
connected (Sec. 46) domain D. In this section, we show that u(x, y) always has a
harmonic conjugate v(x, y) in D by deriving an expression for v(x, y).

To accomplish this, we first recall some important facts about line integrals in
advanced calculus.* Suppose that P(x, y) and Q(x, y) have continuous first-order
partial derivatives in a simply connected domain D of the xy plane, and let (xq, ¥o)
and (x, y) be any two points in D. If P, = Q, everywhere in D, then the line integral

f P(s,t)Yds + Q(s,t)dt
C

from {xg, yo) to (x, y) is independent of the contour C that is taken as long as the
contour lies entirely in D, Furthermore, when the point (xg, o) is kept fixed and (x, y)
is allowed to vary throughout D, the integral represents a single-valued function

{x,y)
(3) F(x,y) 2[ P(s,t)yds + Q(s, ) dt
(xﬂ.*yﬂ)

of x and y whose first-order partial derivatives are given by the equations
(4) F.(x,v)= P(x,y), F},(x, ¥y = Q(x, y).

Note that the value of F is changed by an additive constant when a different point
(xq, ¥o) is taken.

Returning to the given harmonic function u(x, y), observe how it follows from
Laplace’s equation u,, + u,, = 0 that

(—'“y)y = (ux)x

everywhere in D. Also, the second-order partial derivatives of u are continuous in D;
and this means that the first-order partial derivatives of —u, and u, are continuous

* See, for example, W. Kaplan, “Advanced Mathematics for Engineers,” pp. 546350, 1992.
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there. Thus, if (xq, yo) is a fixed point in D, the function

{(x,¥)
(5) v(x, y) = [ —u, (s, t)ds +ug(s, 1) dt
(

Xg. ¥o)

is well defined for all (x, ¥) in D; and, according to equations (4),

(6) v, ¥) = —uy(x, ), vy(x, ) =ty (x, ¥).

These are the Cauchy-Riemann equations. Since the first-order partial derivatives of
u are continuous, it is evident from equations (6) that those derivatives of v are also
continuous. Hence (Sec. 21) u(x, y) + iv(x, y) is an analytic function in D; and v is,
therefore, a harmonic conjugate of u.

The function v defined by equation (5) is, of course, not the only harmonic
conjugate of u. The function v(x, y) + ¢, where ¢ is any real constant, is also a
harmonic conjugate of u. [Recall Exercise 2, Sec. 25.]

EXAMPLE. Considerthe function«(x, y) = xy, which is harmonic throughout the
entire xy plane. According to equation (5), the function

(x.y)
v(x,y)=f —sds+tdt
0,0

is a harmonic conjugate of u(x, ¥). The integral here is readily evaluated by inspection.
It can also be evaluated by integrating first along the horizontal path from the point
(0, 0) to the point (x, 0) and then along the vertical path from (x, 0) to the point (x, y).
The result is

1 2 1 2
U x’ = ——X ..l_..... .
(2 7) 2 2y

and the corresponding analytic function is

F@=xy— f,;;(x2 _) = —;-'z?.

98. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The problem of finding a function that is harmonic in a specified domain and satisfies
prescribed conditions on the boundary of the domain is prominent in applied mathe-
matics. If the values of the function are prescribed along the boundary, the problem
is known as a boundary value problem of the first kind, or a Dirichlet problem. If the
values of the normal derivative of the function are prescribed on the boundary, the
boundary value problem is one of the second kind, or a Neumann problem. Modifica-
tions and combinations of those types of boundary conditions also arise.

The domains most frequently encountered in the applications are simply con-
nected; and, since a function that is harmonic in a simply connected domain always
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has a harmonic conjugate (Sec. 97), solutions of boundary value problems for such
domains are the real or imaginary parts of analytic functions.

EXAMPLE 1. In Example 1, Sec. 25, we saw that the function
T(x,y)=e 7 sinx

satisfies a certain Dirichlet problem for the strip 0 < x < 7, y > 0 and noted that it
represents a solution of a temperature problem. The function 7' (x, y), which is actually
harmonic throughout the xy plane, is evidently the real part of the entire function

—ie*=—=e Vsinx —ie Y cosx.

It is also the imaginary part of the entire function ¢%.

Sometimes a solution of a given boundary value problem can be discovered by
identifying it as the real or imaginary part of an analytic function. But the success of
that procedure depends on the simplicity of the problem and on one’s familiarity with
the real and imaginary parts of a variety of analytic functions. The following theorem
is an important aid.

Theorem. Suppose that an analytic function

(1) w= f(2)=ulx,y)+ivix,y)

maps a domain D, in the z plane onto a domain D,, in the w plane. If h(u, v) is a
harmonic function defined on D,,, then the function

(2) H(x,y)=hlu(x,y), v(x, y)]

is harmonic in D,.

We first prove the theorem for the case in which the domain D,, is simply
~ connected. According to Sec. 97, that property of D,, ensures that the given harmonic
function A (u, v) has a harmonic conjugate g(u, v). Hence the function

(3) O(w)=nh(u,v) +iglu,v)

is analytic in D,. Since the function f(z) is analytic in D,, the composite function
®[ f(z)]1is also analytic in D,. Consequently, the real part h[u(x, y), v(x, y)] of this
composition is harmonic in D, '

If D, is not simply connected, we observe that each point wg in D, has a
neighborhood |w — wy| < € lying entirely in D,,. Since that neighborhood is simply
connected, a function of the type (3) is analytic in it. Furthermore, since f is continuous
ata point z,in D, whose image is wy, there is aneighborhood |z — z| < § whose image
is contained in the neighborhood |w — wyl < £. Hence it follows that the composition
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®[ f(z)] is analytic in the neighborhood |z — zy3| < 4, and we may conclude that
hlu(x, y), v(x, y)]is harmonic there. Finally, since wy was arbitrarily chosen in D,
and since each point in D, is mapped onto such a point under the transformation
w = f(z), the function ~{u(x, y), v(x, y)] must be harmonic throughout D,.

The proof of the theorem for the general case in which D, is not necessarily
simply connected can also be accomplished directly by means of the chain rule for
partial derivatives. The computations are, however, somewhat involved (see Exercise
8, Sec. 99).

EXAMPLE 2. The function (4, v) = e~ ¥ sin u is harmonic in the domain D,, con-
sisting of all points in the upper half plane v > 0 (see Example 1). If the transformation
is w = z°, thenu(x, y) = x> — y* and v(x, y) = 2xy; moreover, the domain D, in the
z plane consisting of the points in the first quadrant x > 0, y > 0 is mapped onto the
domain D,,, as shown in Example 3, Sec. 12. Hence the function

H(x,y)= e Y sin(x2 — yz)

is harmonic in D,.

EXAMPLE 3. Consider the function 2(u, v) = Im w = v, which is harmonic in
the horizontal strip -7 /2 < v < /2. We know from Example 3, Sec. 88, that the
transformation w = Log z maps the right half plane x > 0 onto that strip. Hence, by
writing

Logz =In/x?+ y?> 4+ arctan 2
x

where —m /2 < arctan t < /2, we find that the function

H{x, y) = arctan Y

X

is harmonic in the half plane x > ().

99. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal derivative have prescribed values along
the boundary of a domain in which it is harmonic are the most common, although not
the only, important types of boundary conditions. In this section, we show that certain
of these conditions remain unaltered under the change of variables associated with a
conformal transformation. These results will be used in Chap. 10 to solve boundary
value problems. The basic technique there is to transform a given boundary value
problem in the xy plane into a simpler one in the uv plane and then to use the theorems
of this and the preceding section to write the solution of the original problem in terms
of the solution obtained for the simpler one.
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Theorem. Suppose that a transformation

(D w = f(2) =ulx, y)+iv(x,y)

is conformal on a smooth arc C, and let " be the image of C under that transformation.
If, along ', a function h(u, v) satisfies either of the conditions
h
(2) h=hy or d—-:-:O,
dn
where hy is a real constant and dh/dn denotes derivatives normal to T, then, along
C, the function

(3) Hx,y) = hlu(x, y}, v(x, )]
satisfies the corresponding condition

| dH
4 H=h — =0,
4) 0 or N

where dH /dN denotes derivatives normal to C.

To show that the condition /2 = hg on I" implies that H = kg on C, we note from
equation (3) that the value of H at any point (x, y) on C is the same as the value of
h at the image (u, v) of (x, y) under transformation (1). Since the image point (i, v)
lies on I' and since 4 = hy along that curve, it follows that H = h along C.

Suppose, on the other hand, that dh/dn = 0 on I". From calculus, we know that

(5) _alg = (grad k) - n,
dn

where grad h denotes the gradient of 4 at a point (u, v) on I" and n is a unit vector
normal to I" at (u, v). Since dh/dn = 0 at (u, v}, equation (5) tells us that grad % is
orthogonal to m at (u, v). That is, grad & is tangent to I there (Fig. 132). But gradients
are orthogonal to level curves; and, because grad & is tangent to I', we see that I is
orthogonal to a level curve k(u, v) = ¢ passing through (u, v).

Y v
C
H(x,y)=c¢ n
grad A
N
(x,y) wy) T
grad H h(u,v)=c
0 X 0 “  FIGURE 132
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Now, according to equation (3), the level curve H(x, y) = ¢ in the z plane can
be written

hluCx, y), vix, ¥)1=c¢;

and so it is evidently transformed into the level curve A(u, v) = ¢ under transformation
(1). Furtherimore, since C is transformed into I" and I" is orthogonal to the level curve
h(u, v) = c, as demonstrated in the preceding paragraph, it follows from the confor-
mality of transformation (1) on C that C is orthogonal to the level curve H(x, y) =c¢
at the point (x, y) corresponding to (u, v). Because gradients are orthogonal to level
curves, this means that grad H is tangent to C at (x, y) (see Fig. 132). Consequently,
if N denotes a unit vector normal to C at (x, y), grad H is orthogonal to N. That is,

(6) (grad H) - N =0.

Finally, since

dH
= = (grad H) -N,
IN (g )

we may conclude from equation (6) that d H/d N = (0 at points on C.
In this discussion, we have tacitly assumed that grad # # 0. If grad 2 =0, it
follows from the identity

lgrad H(x, y)| = |grad h(u, v)|| f'(2)],

derived in Exercise 10(a) below, that grad H = 0; hence di /dn and the corresponding
normal derivative d H /dN are both zero. We also assumed that
(1) grad k and grad H always exist;
(i1) the level curve H (x, y) = c¢ is smooth when grad 2 £ 0 at («, v).
Condition (i1) ensures that angles between arcs are preserved by transformation
(1) when it is conformal. In all of our applications, both conditions (i) and (ii) will be
satisfied.

EXAMPLE. Consider, for instance, the function A(u, v) = v + 2. The transforma-
tion

w=iz>= —2xy + i(x% — }’2)

is conformal when z % 0. It maps the half line y =x (x > 0) onto the negative u
axis, where # = 2, and the positive x axis onto the positive v axis, where the normal
derivative 2, is 0 (Fig. 133). According to the above theorem, the function

H(x,y)£x2~y2+2

must satisfy the condition H = 2 along the half line y = x (x > 0) and H, = 0 along
the positive x axis, as one can verify directly.
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by v

B| H,=0 Cx A" k=2 [B" ¥ gGUREI133

A boundary condition that is not of one of the two types mentioned in the theorem
may be transformed into a condition that is substantially different from the original
one (see Exercise 6). New boundary conditions for the transformed problem can be
obtained for a particular transformation in any case. It is interesting to note that, under
a conformal transformation, the ratio of a directional derivative of H along a smooth
arc C in the z plane to the directional derivative of / along the image curve I" at the
corresponding point in the w plane is | f'(z)|; usually, this ratio is not constant along
a given arc. (See Exercise 10.) |

EXERCISES

1. Use expression (5), Sec. 97, to find a harmonic conjugate of the harmonic function
ulx,y)=x"— 3,xy2. Write the resulting analytic function in terms of the complex
variable z.

2. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results in
Secs. 97 and 48, show that its partial derivatives of all orders are continuous throughout
that domain.

3. The transformation w = exp z maps the horizontal strip 0 < y < 7 onto the upper half
plane v > 0, as shown in Fig. 6 of Appendix 2; and the function

h(u, v) = Re(w?) = u* — v?

is harmonic in that half plane. With the aid of the theorem in Sec. 98, show that the
function H(x, y) = e cos 2y is harmonic in the strip. Verify this result directly.

4. Under the transformation w = exp z, the image of the segment 0 < y < 7 of the y axis
is the semicircle u? + v? = 1, v > 0. Also, the function

1
h(u,v)zRe(2—-w+~—):2—u+

w u2+v2

is harmonic everywhere in the w plane except for the origin; and it assumes the value
h = 2 on the semicircle. Write an explicit expression for the function H(x, y) defined
in the theorem of Sec. 99. Then illustrate the theorem by showing directly that H =2
along the segment 0 < y < 7 of the y axis.
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S.

The transformation w = z> maps the positive x and y axes and the origin in the z plane

onto the u axis in the w plane. Consider the harmonic function
h(u, v) =Re(e ™) =¢e¥cos v,

and observe that its normal derivative h, along the u axis is zero. Then illustrate the
theorem in Sec. 99 when f(z) = z° by showing directly that the normal derivative of the
function H (x, y) defined in that theorem is zero along both positive axes in the z plane.
(Note that the transformation w = z? is not conformal at the origin.)

Replace the function A(u, v) in Exercise 5 by the harmonic function
h(u,v) =Re(—2iw + e ¥)=2v+e Hcosv.

Then show that h, = 2 along the « axis but that H, = 4x along the positive x axis and
H, = 4y along the positive y axis. This illustrates how a condition of the type

dh
— = h 0
o 0F

is not necessarily transformed into a condition of the type d H/d N = hy,.

Show that if a function H(x, y) is a solution of a Neumann problem (Sec. 98), then
H(x, y)+ A, where A is any real constant, is also a solution of that problem.

Suppose that an analytic function w = f(z) = u(x, y) +iv(x, y) maps a domain D, in
the z plane onto a domain D, in the w plane; and let a function A (u, v), with continuous
partial derivatives of the first and second order, be defined on D,,. Use the chain rule for
partial derivatives to show that if H (x, y) = h[u(x, y), v(x, y)], then

Hyo(x, ¥) + Hyy(x, y) = [hy, (u, v) + Ry, )L F @)

Conclude that the function H(x, y} is harmonic in D, when Ak(u, v) is harmonic in
D,,. This is an alternative proof of the theorem in Sec.98, even when the domain D, is
multiply connected.

Suggestion: In the simplifications, it is important to note that since f is analytic,
the Cauchy-Riemann equations u, = vy, u, = —v, hold and that the functions u and v
both satisfy Laplace’s equation. Also, the continuity conditions on the derivatives of 4
ensure that h,,, = h,,,.

Let p(u, v) be a function that has continuous partial derivatives of the first and second
order and satisfies Poisson’s equation |

puu(us v) + pvv(“, v) = ®(u, v)

in a domain D, of the w plane, where ® is a prescribed function. Show how it follows
from the identity obtained in Exercise 8 that if an analytic function

w = f(z) =ulx, y) +ivlx, y)
maps a domain D, onto the domain D, then the function

P(x,y)=plu(x, y), v(x, y)]
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- satisfies the Poisson equation

Poe(x, ¥) + Py (x, y) = ®lulx, y), vix, WIIF @)
in D,.

10. Suppose that w = f(z) = u(x, y) + iv(x, y) is a conformal mapping of a smooth arc C
onto a smooth arc I' in the w plane. Let the function #(u, v) be defined on I, and write

Hx, y) =nhlu(x, y), v(x, )}

(a) From calculus, we know that the x and y components of grad H are the partial
derivatives H, and H,, respectively; likewise, grad h has components h, and h,,.
By applying the chain rule for partial derivatives and using the Cauchy-Riemann
equations, show that if (v, y) is a point on C and (u, v) is its image on I, then

lgrad H (x, y)| = |grad h(u, v)]| f'(2)I.

(b) Show that the angle from the arc C to grad H at a point (x, y) on C is equal to the
angle from I' to grad h at the image (u, v) of the point (x, v).

(c) Let s and o denote distance along the arcs C and I, respectively; and let t and <
denote unit tangent vectors at a point {(x, y) on C and its image (u, v), inthe direction
of increasing distance. With the aid of the results in parts (a) and (&) and using the
fact that

gﬁ:(gradfi)-t and gﬁ»z(gradh)-t,
ds do

show that the directional derivative along the arc I' is transformed as follows:

dH dh
Eg‘m}‘;”(z)l-



CHAPTER

10

APPLICATIONS OF
CONFORMAL MAPPING

We now use conformal mapping to solve a number of physical problems involving
Laplace’s equation in two independent variables. Problems in heat conduction, elec-
trostatic potential, and fluid flow will be treated. Since these problems are intended to
illustrate methods, they will be kept on a fairly elementary level.

100. STEADY TEMPERATURES

In the theory of heat conduction, the flux across a surface within a solid body at a point
on that surface is the quantity of heat flowing in a specified direction normal to the
surface per unit time per unit area at the point. Flux is, therefore, measured in such
units as calories per second per square centimeter. It is denoted here by @, and it varies
with the normal derivative of the temperature 7 at the point on the surface:
(1) <I>=-K£ (K > 0).
dN

Relation (1) is known as Fourier’s law and the constant K is called the thermal
conductivity of the material of the solid, which is assumed to be homogeneous.*

The points in the solid are assigned rectangular coordinates in three-dimensional
space, and we restrict our attention to those cases in which the temperature 7' varies

*The law is named for the French mathematical physicist Joseph Fourier (1768-1830). A translation of
his book, cited in Appendix 1, is a classic in the theory of heat conduction.

361
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with only the x and y coordinates. Since T does not vary with the coordinate along
the axis perpendicular to the xy plane, the flow of heat is, then, two-dimensional and
parallel to that plane. We agree, moreover, that the flow is in a steady state; that is, T
does not vary with time.

It is assumed that no thermal energy is created or destroyed within the solid.
That is, no heat sources or sinks are present there. Also, the temperature function
T (x, y) and its partial derivatives of the first and second order are continuous at each
point interior to the solid. This statement and expression (1) for the flux of heat are
postulates in the mathematical theory of heat conduction, postulates that also apply at
points within a solid containing a continuous distribution of sources or sinks.

Consider now an element of volume that is interior to the solid and that has the
shape of a rectangular prism of unit height perpendicular to the xy plane, with base
Ax by Ay in that plane (Fig. 134). The time rate of flow of heat toward the right across
the left-hand face is —K T,(x, y) Ay: and, toward the right across the right-hand face,
it is —KT,.(x + Ax, y)Ay. Subtracting the first rate from the second, we obtain the
net rate of heat loss from the element through those two faces. This resultant rate can
be written

T ,Y) — C,
_K[ L+ A% y) ~ T, y)} Ay,
Ax
or
(2) —KTxx(x» _}J)A,XA}?

if Ax is very small. Expression (2) is, of course, an approximation whose accuracy
increases as Ax and Ay are made smaller.

\x-‘/ X
FIGURE 134

In like manner, the resultant rate of heat loss through the other faces perpendicular
to the xy plane is found to be

(3) *KT},y(x, yIAXAYy.

Heat enters or leaves the element only through these four faces, and the temperaturés
within the element are steady. Hence the sum of expressions (2) and (3) is zero; that
18,

(4) rr,r(xs Y) + Ty}f(xs }") =0.
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The temperature function thus satisfies Laplace’s equation at each interior point of the
solid.

In view of equation (4) and the continuity of the temperature function and its
partial derivatives, T is a harmonic function of x and y in the domain representing the
interior of the solid body.

The surfaces T'(x, y) = ¢y, where ¢; is any real constant, are the isotherms within
the solid. They can also be considered as curves in the xy plane; then T (x, ¥) can be
interpreted as the temperature at a point (x, y) in a thin sheet of material in that plane,
with the faces of the sheet thermally insulated. The tsotherms are the level curves of
the function T'.

The gradient of T is perpendicular to the isotherm at each point, and the maximum
flux at a point is in the direction of the gradient there. If 7' (x, y) denotes temperatures in
athin sheet and if S is a harmonic conjugate of the function 7', thena curve S(x, y) = ¢,
has the gradient of T as a tangent vector at each point where the analytic function
T{x,y)+iS{x, y)is conformal. The curves S(x, y) = ¢, are called lines of flow.

If the normal derivative d T /d N is zero along any part of the boundary of the sheet,
then the flux of heat across that part is zero. That is, the part is thermally insulated and
is, therefore, a line of flow.

The function T may also denote the concentration of a substance that is diffusing
through a solid. In that case, K is the diffusion constant. The above discussion and the
derivation of equation (4) apply as well to steady-state diffusion.

101. STEADY TEMPERATURES IN A HALF PLANE

Let us find an expression for the steady temperatures T (x, y) in a thin semi-infinite
plate y > 0 whose faces are insulated and whose edge y == 0 1s kept at temperature
zero except for the segment —1 < x < 1, where it is kept at temperature unity (Fig,
135). The function T (x, y) is to be bounded; this condition is natural if we consider
the given plate as the limiting case of the plate 0 < y < y; whose upper edge is kept
at a fixed temperature as y is increased. In fact, it would be physically reasonable to
stipulate that T'(x, y) approach zero as y tends to infinity.
The boundary value problem to be solved can be written

(D Too(x,y) + Tyy(x, y) =0 (—o0 <x <00,y >0),

A T=0 B T=1 C T=0 D=x
FIGURE 135
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1 when|x| <1,
0 when|x| > 1;

(2) T'ix,0)= {

also, |T(x, ¥)| < M where M is some positive constant. This is a Dirichlet problem
for the upper half of the xy plane. Our method of solution will be to obtain a new
Dirichlet problem for a region in the uv plane. That region will be the image of the
half plane under a transformation w = f(z) that is analytic in the domain y > 0 and
that is conformal along the boundary y = 0 except at the points (%1, 0), where it is
undefined. It will be a simple matter to discover a bounded harmonic function satisfying
the new problem. The two theorems in Chap. 9 will then be applied to transform the
solution of the problem in the uv plane into a solution of the original problem in the xy
plane. Specifically, a harmonic function of 4 and v will be transformed into a harmonic
function of x and y, and the boundary conditions in the uv plane will be preserved on
corresponding portions of the boundary in the xy plane. There should be no confusion
if we use the same symbol T to denote the different temperature functions in the two
planes.
Let us write

z— 1=ryexp(if) and z+ l=r;exp(ify),

where 0 < 6, < m (k = 1, 2). The transformation

3) w=log it =1n"l i —6,) (3>0,—%{9E—92<37”)

z+ 1 rs rs

is defined on the upper half plane y > 0, except for the two points z = +1, since
0 <6; — 6, < in the region. (See Fig. 135.) Now the value of the logarithm is the
principal value when 0 < 8, — 6, <, and we recall from Example 3 in Sec. 88 that
the upper half plane y > 0 is then mapped onto the horizontal strip O < v < 7 in the
w plane. As already noted in that example, the mapping is shown with corresponding
boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure which suggested
transformation (3) here. The segment of the x axis between z = —1 and z = 1, where
8, — 6, = 7, is mapped onto the upper edge of the strip; and the rest of the x axis, where
6 — 6, = 0, is mapped onto the lower edge. The required analyticity and conformality
conditions are evidently satisfied by transformation (3).

A bounded harmonic function of u and v that is zero on the edge v = 0 of the
strip and unity on the edge v = 7 is clearly

(4) T =—uv,
T

it is harmonic since it is the imaginary part of the entire function (1/7)w. Changing
to x and y coordinates by means of the equation

7z —1 7—1
5 omn s am(21),
z+1 & z+1
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we find that

_ 2 2 .
v:arg[(z DW)}:M [.x 4y 1+32y],
z+ D@+ D (x + 12 4 y?

or

(w)
v = arctan ;
x24+y2—1

The range of the arctangent function here is from O to & since

z—1
arg| —— | =86, -8
g(z—H) b

and 0 < 6, — 6, < . Expression (4) now takes the form

1 2
(6) T =— arctan( J ) (0 <arctan t < 7).
T x24y2 -1

Since the function (4) is harmonic in the strip 0 < v < 7 and since transformation
(3) is analytic in the half plane y > 0, we may apply the theorem in Sec. 98 to conclude
that the function (6) is harmonic in that half plane. The boundary conditions for the
two harmonic functions are the same on corresponding parts of the boundaries because
they are of the type h = k), treated in the theorem of Sec. 99. The bounded function (6)
is, therefore, the desired solution of the original problem. One can, of course, verify
directly that the function (6) satisfies Laplace’s equation and has the values tending to
those indicated on the left in Fig. 135 as the point (x, y) approaches the x axis from
above.

The isotherms 7' (x, y) = ¢ (0 < ¢y < 1) are arcs of the circles

x2 4+ (y — cot 3{01)2 = csc? ey,
passing through the points (x1, 0) and with centers on the y axis.
Finally, we note that since the product of a harmonic function by a constant is
also harmonic, the function

T;
T=20 arctan( 2y ) (0 <arctant <m)
T x2 4+ yr —1

represents steady temperatures in the given half plane when the temperature 7 = 1
along the segment —1 < x < 1 of the x axis is replaced by any constant temperature
T =T,.

102. A RELATED PROBLEM

Consider a semi-infinite slab in the three-dimensional space bounded by the planes
x ==£x/2 and y = 0 when the first two surfaces are kept at temperature zero and the
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T=0 T=0
B| 1C
T T= T X
2 r=1 2

FIGURE 136

third at temperature unity. We wish to find a formula for the temperature T'(x, y) at
any interior point of the slab. The problem is also that of finding temperatures in a thin
plate having the form of a semi-infinite strip —7r/2 < x < /2, y > 0 when the faces
of the plate are perfectly insulated (Fig. 136).

The boundary value problem here is

(1) Tex(x, ¥) + Tyy(x, y) =0 (.......‘.’?5 <x<Zy> 0),
T T
2 _r _r(E —
(2) T( 233’) T(z,y) 0 (y >0),
4 4
(3) T(x,0)=1 (~w£~<x<wé~),

where T (x, v) is bounded.
In view of Example 1 in Sec. 89, as well as Fig. 9 of Appendix 2, the mapping

4) w=sinz

transforms this boundary value problem into the one posed in Sec. 101 (Fig. 135).
Hence, according to solution (6) in that section,

1 ‘22;
5 I = — arctan 0 <arctant < 71m).
) T a(u2+v2ml) O =arctant <)

The change of variables indicated in equation (4) can be written
u =sinx coshy, v=cosxsinhy;

and the harmonic function (5) becomes

1 2 cos x sinh y
I' = — arctan| — 5 — :
s sin” x cosh” y 4 cos? x sinh* y — 1
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Since the denominator here reduces to sinh® y — cos? x, the quotient can be put in the
form

2 sinh 2 inh
' c;)sx sinhy (cos x/ sn"z v) — tan 2a,
sinh“ y — cos2x 1 — (cos x/ sinh y)?
where tan o = cos x/ sinh y. Hence T = (2/m)«; that is
2 COS X T
(6) T = — arctan| — O <arctant < — |.
T sinh y 2

This arctangent function has the range 0 to 7r/2 since its argument is nonnegative.

Since sin z is entire and the function (5) is harmonic in the half plane v > 0, the
function (6) is harmonic in the strip —7/2 <x < 7 /2, y > 0. Also, the function (5)
satisfies the boundary condition 7 = 1 when |u| < 1and v = 0, as well as the condition
T =0 when |u| > 1and v = 0. The function (6) thus satisfies boundary conditions (2)
and (3). Moreover, |T (x, y)| < 1 throughout the strip. Expression (6) is, therefore, the
temperature formula that is sought.

The 1sotherms T (x, y) = ¢; (0 < ¢; < 1) are the portions of the surfaces

n .
COS X = tan(—zﬁ) sinh y

within the slab, each surface passing through the points (£ /2, 0) in the xy plane. If
K is the thermal conductivity, the flux of heat into the slab through the surface lying
in the plane y =0 is

_KT,(x.0)= % 613<x<3).
T COS X 2

The flux outward through the surface lying in the plane x = 7 /2 is

K
—Kn(fﬁ):mimm (y > 0).
2 7 sinh y

The boundary value problem posed in this section can also be solved by the
method of separation of variables. That method is more direct, but it gives the solution
in the form of an infinite series.*

* A similar problem is treated in the authors’ “Fourier Series and Boundary Value Problems,” 6th ed.,
Problem 7, p. 142, 2001. Also, a short discussion of the uniqueness of solutions to boundary value
problems can be found in Chap. 10 of that book.
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103. TEMPERATURES IN A QUADRANT

Let us find the steady temperatures in a thin plate having the form of a quadrant if a
segment at the end of one edge is insulated, if the rest of that edge is kept at a fixed
temperature, and if the second edge is kept at another fixed temperature. The surfaces
are insulated, and so the problem is two-dimensional.

The temperature scale and the unit of length can be chosen so that the boundary
value problem for the temperature function 7 becomes

(D Tixlx, )+ Ty, (x, y) =0 (x>0,y>0),

2) Ty(x,0) =0 when0<x <1,
T(x,)=1 whenx > 1,

(3) r0,y)=0 (y>0),

where T (x, y) is bounded in the quadrant. The plate and its boundary conditions
are shown on the left in Fig. 137. Conditions (2) prescribe the values of the normal
derivative of the function T over a part of a boundary line and the values of the function
itself over the rest of that line. The separation of variables method mentioned at the end
of Sec. 102 is not adapted to such problems with different types of conditions along
the same boundary line.

As indicated in Fig. 10 of Appendix 2, the transformation

4) 7 =sin w

is a one to one mapping of the semi-infinite strip 0 <u <n /2, v > 0 onto the quadrant
x >0, y > 0. Observe now that the existence of an inverse is ensured by the fact
that the given transformation is both one to one and onto. Since transformation (4) is
conformal throughout the strip except at the point w = 7 /2, the inverse transformation
must be conformal throughout the quadrant except at the point z = 1. That inverse
transformation maps the segment 0 < x < 1 of the x axis onto the base of the strip and
the rest of the boundary onto the sides of the strip as shown in Fig. 137.

Since the inverse of transformation (4) is conformal in the quadrant, except when
z = 1, the solution to the given problem can be obtained by finding a function that is

y v
D D’ \—o""\ A’
=0 T=0 T=1
A B
T=1 x o
2 FIGURE 137
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harmonic in the strip and satisfies the boundary conditions shown on the right in Fig.
137. Observe that these boundary conditions are of the types & = hg and dh/dn =0
in the theorem of Sec, 99,

The required temperature function T for the new boundary value problem is
clearly
(5) T = gu,

vig

the function (2/m )u being the real part of the entire function (2/7 )w. We must now
express T in terms of x and y.

To obtain « in terms of x and y, we first note that, according to equation (4),

(6) x =sinucoshv, y=cosusinhuv.

When 0 < 1 < /2, both sin u and cos u are nonzero; and, consequently,

2 2

X y
7 — = 1.
) sinfu  coslu

Now it is convenient to observe that, for each fixed u, hyperbola (7) has foci at the
points

Z=:I:\/Siﬁ2u+(:0$2u=:tl

and that the length of the transverse axis, which is the line segment joining the two
vertices, is 2 sin &. Thus the absolute value of the difference of the distances between
the foci and a point (x, y) lying on the part of the hyperbola in the first quadrant is

Va+D24+y2 - /(x — D2+ y2=2sinu.

It follows directly from equations (6) that this relation also holds when u = 0 or
u = /2. In view of equation (5), then, the required temperature function is

JeE+ D2y —J(x — 1)2+y2}

(8) T = 3 arcsinli

v 2

where, since 0 < u < 7 /2, the arcsine function has the range 0 to 7 /2.

If we wish to verify that this function satisfies boundary conditions (2), we must
remember that +/(x — 1)2 denotes x — 1 when x > 1 and 1 — x when 0 < x < 1, the
square roots being positive. Note, too, that the temperature at any point along the
insulated part of the lower edge of the plate is

T(x,())mgarcsinx 0 <x<1).
vig

It can be seen from equation (5) that the isotherms T(x, y) =¢; (0 <c; < 1)
are the parts of the confocal hyperbolas (7), where u = ¢(/2, which lie in the first
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quadrant. Since the function (2/7)v is a harmonic conjugate of the function (5), the
lines of flow are quarters of the confocal ellipses obtained by holding v constant in
equations (6).

EXERCISES

1.

In the problem of the semi-infinite plate shown on the left in Fig. 135 (Sec. 101), obtain
a harmonic conjugate of the temperature function T (x, y) from equation (5}, Sec. 101,
and find the lines of flow of heat. Show that those lines of flow consist of the upper half
of the y axis and the upper halves of certain circles on either side of that axis, the centers
of the circles lying on the segment AB or C D of the x axis.

Show that if the function T in Sec. 101 is not required to be bounded, the harmonic
function (4) in that section can be replaced by the harmonic function

1 1
T ;Im(mw -+ A cosh w) = —v -+ Asinh u sin v,
7T yig

where A is an ari:}:itrary real constant. Conclude that the solution of the Dirichlet problem
for the strip in the uv plane (Fig. 135) would not, then, be unique.

Suppose that the condition that T be bounded is omitted from the problem for temper-
atures in the semi-infinite slab of Sec. 102 (Fig. 136). Show that an infinite number of
solutions are then possible by noting the effect of adding to the solution found there the
imaginary part of the function A sin z, where A is an arbitrary real constant.

Use the function Log z to find an expression for the bounded steady temperatures in a
plate having the form of a quadrant x > 0, y > 0 (Fig. 138) if its faces are perfectly insu-
lated and its edges have temperatures T (x, 0) =0 and 7'(0, y) = 1. Find the isotherms
and lines of flow, and draw some of them.

2
Ans. T =— — arctan(z).
7T X

=0 ¥ FIGURE 138

. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge if

its boundary planes § = 0 and 8 = 6; (0 < r < rg) are kept at constant temperatures zero
and T;, respectively, and if its surface r = ry (0 < 8 < 6) is perfectly insulated (Fig.
139).

Ans. T = & arctan(-y-).
9() X
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FIGURE 139

6. Find the bounded steady temperatures 7 (x, y) in the semi-infinite solid y > 0if T =0
on the part x < —1 (y = 0) of the boundary, if 7 = 1 on the part x > 1 (y =0), and if
the strip —1 < x < 1 (y = 0) of the boundary is insulated (Fig. 140).

[ﬁx + D2+ —Vx - D2+ yz]

1 1 X
Ans, T = — 4+ — arcsin
i 4

(—-m/2 <arcsint <m/2).

2

0 .
T=0 "WEET=1 % FIGURE 140

7. Find the bounded steady temperatures in the solid x > 0, y > 0 when the boundary
surfaces are kept at fixed temperatures except for insulated strips of equal width at the

corner, as shown in Fig. 141.
Suggestion: This problem can be transformed into the one in Exercise 6.

[\/ T— 7+ D2+ Qa)? = VeI =y = )2+ (2xy>2]
2

1
Ans. T = — + i arcsin
2 T

(—m/2 <arctant < /2).

¥ FIGURE 141

8. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 142):

He (x,y)+ Hylx, y) =0 O<x<m/2,y>0),
H{x,0)=0 0<x<mn/2),
HO,y=1, H@#=/2,y)=0 (y>0),
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Suggestion: This problem can be transformed into the one in Exercise 4.

Ans. H = ....2..,. arctan(taﬂh y).
b o tan x

FIGURE 142

9. Derive an expression for temperatures 7 (r, #) in a semicircular plate r < 1,0 <6 <x
with insulated faces if 7 = 1 along the radial edge # =0 (0 <r < 1) and T =0 on the
rest of the boundary.

Suggestion: This problem can be transformed into the one in Exercise 8.

Ans. T = E arctan(l -7 cot 9)
b4 14~ 2

10, Solve the boundary value problem for the plate x > 0, y > 0 in the z plane when the
faces are insulated and the boundary conditions are those indicated in Fig. 143.
Suggestion: Use the mapping

to transform this problem into the one posed in Sec. 103 (Fig. 137).

X FIGURE 143

11. The portions x < 0 (y =0) and x < 0 (y = 7r) of the edges of an infinite horizontal plate
0 <y <& are thermally insulated, as are the faces of the plate. Also, the conditions
T(x,0)=1and T(x, m) = 0 are maintained when x > 0 (Fig. 144). Find the steady
temperatures in the plate.

Suggestion: 'This problem can be transformed into the one in Exercise 6.

12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region
enclosed by an ellipse with foci (1, 0). The temperature on the elliptical part of its
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*  FIGURE 144

boundary is 7 = 1. The temperature along the segment —1 < x < lofthe x axisis T =0,
and the rest of the boundary along the x axis is insulated. With the aid of Fig. 11 in
Appendix 2, find the lines of flow of heat.

13. According to Sec. 50 and Exercise 7 of that section, if f(z) = u(x, y) +iv(x, v) is
continuous on a closed bounded region R and analytic and not constant in the interior of
R, then the function u(x, y) reaches its maximum and minimum values on the boundary
of R, and never in the interior, By interpreting u#(x, y) as a steady temperature, state a
physical reason why that property of maximum and minimum values should hold true.

104. ELECTROSTATIC POTENTIAL

In an electrostatic force field, the field intensity at a point is a vector representing the
force exerted on a unit positive charge placed at that point. The electrostatic porential
is a scalar function of the space coordinates such that, at each point, its directional
derivative in any direction is the negative of the component of the field intensity in that
direction.

For two stationary charged particles, the magnitude of the force of attraction or
repulsion exerted by one particle on the other is directly proportional to the product
of the charges and inversely proportional to the square of the distance between those
particles. From this inverse-square law, it can be shown that the potential at a point
due to a single particle in space is inversely proportional to the distance between the
point and the particle. In any region free of charges, the potential due to a distribution
of charges outside that region can be shown to satisfy Laplace’s equation for three-
dimensional space.

If conditions are such that the potential V is the same in all planes parallel to
the xy plane, then in regions free of charges V is a harmonic function of just the two
variables x and y:

Ver(x, ¥) + Vyy(x, y) =0.

The field intensity vector at each point is parallel to the xy plane, with x and y
components —V, (x, y) and —V,(x, y), respectively. That vector is, therefore, the
negative of the gradient of V (x, y).

A surface along which V(x, y) is constant is an equipotential surface. The
tangential component of the field intensity vector at a point on a conducting surface is
zero in the static case since charges are free to move on such a surface. Hence V (x, y)
is constant along the surface of a conductor, and that surface is an equipotential.
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If U is a harmonic conjugate of V, the curves U (x, y) = ¢, in the xy plane are
called flux lines. When such a curve intersects an equipotential curve V(x, y) = ¢ at
a point where the derivative of the analytic function V (x, y) + iU (x, y) is not zero,
the two curves are orthogonal at that point and the field intensity is tangent to the flux
line there.

Boundary value problems for the potential V are the same mathematical problems
as those for steady temperatures 7'; and, as in the case of steady temperatures, the
methods of complex variables are limited to two-dimensional problems. The problem
posed in Sec. 102 (see Fig. 136), for instance, can be interpreted as that of finding the
two-dimensional electrostatic potential in the empty space

/4 i
—— <x<—,y>0
2 2

bounded by the conducting planes x = +x/2 and y = 0, insulated at their intersections,
when the first two surfaces are kept at potential zero and the third at potential unity.

‘The potential in the steady flow of electricity in a plane conducting sheet is also
a harmonic function at points free from sources and sinks. Gravitational potential is a
further example of a harmonic function in physics.

105. POTENTIAL IN A CYLINDRICAL SPACE

A long hollow circular cylinder is made out of a thin sheet of conducting material,
and the cylinder is split lengthwise to form two equal parts. Those parts are separated
by slender strips of insulating material and are used as electrodes, one of which is
grounded at potential zero and the other kept at a different fixed potential. We take the
coordinate axes and units of length and potential difference as indicated on the left in
Fig. 145. We then interpret the electrostatic potential V (x, y) over any cross section of
the enclosed space that is distant from the ends of the cylinder as a harmonic function
inside the circle x + y% = 1in the xy plane. Note that V = 0 on the upper half of the
circle and that V = 1 on the lower half.

V=1 FIGURE 145

A linear fractional transformation that maps the upper half plane onto the interior
of the unit circle centered at the origin, the positive real axis onto the upper half of the
circle, and the negative real axis onto the lower half of the circle is verified in Exercise
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I, Sec. 88. The result is given in Fig. 13 of Appendix 2; interchanging 7 and w there,
we find that the inverse of the transformation
I —w
(1) I=
I+ w
gives us a new problem for V in a half plane, indicated on the right in Fig. 145.
Now the imaginary part of the function

1 1 '
) “logw=—lnpt—¢ (p>0,0<¢p<n)

4 b1 4
is a bounded function of # and v that assumes the required constant values on the two
parts ¢ = O and ¢ = r of the u axis. Hence the desired harmonic function for the half
plane is

1 v
(3) V=— arctan(—),
b4 u
where the values of the arctangent function range from 0 to .
The inverse of transformation (1) is

11—z

4) w=1Ii ,
1+ 2z

from which u and v can be expressed in terms of x and y. Equation (3) then becomes

1 1—x7 — y?
)] V=— arctaﬁ( ad Y ) (0 <arctant < m).
T 2y

The function (5} is the potential function for the space enclosed by the cylindrical
electrodes since it is harmonic inside the circle and assumes the required values on the
semicircles. If we wish to verify this solution, we must note that

1ing arctant =0 and limarctant=r.
1 — +—0
=0 t<0

- The equipotential curves V (x, y) = ¢; (0 < ¢; < 1) in the circular region are arcs
of the circles

]
x%+ (y + tan zrc,)z = sec” ey,

with each circle passing through the points (%1, 0). Also, the segment of the x axis
between those points is the equipotential V (x, y) = 1/2. A harmonic conjugate U of
V is —(1/m)In p, or the imaginary part of the function —(i /7)Log w. In view of
equation (4), U may be written

U=—iln

T

11—z

1+z|
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From this equation, it can be seen that the flux lines U (x, v) = ¢, are arcs of circles
with centers on the x axis. The segment of the y axis between the electrodes is also a
flux line.

EXERCISES

1.

The harmonic function (3) of Sec. 105 is bounded in the half plane v > 0 and satisfies
the boundary conditions indicated on the right in Fig. 145. Show that if the imaginary
part of Ae", where A is any real constant, is added to that function, then the resulting
function satisfies all of the requirements except for the boundedness condition.

Show that transformation (4) of Sec. 105 maps the upper half of the circular region shown
on the left in Fig. 145 onto the first quadrant of the w plane and the diameter C E onto the
positive v axis. Then find the electrostatic potential V in the space enclosed by the half
cylinder x2 + y% = 1, y > 0 and the plane y = 0 when V = 0 on the cylindrical surface
and V = 1 on the planar surface (Fig. 146).

2.2
Ans.V:—%arctaﬁ(l a Y )

T 2y

3.

-1 V=1 1 %' FIGURE 146

Find the electrostatic potential V (r, 6) in the space 0 < r < 1, 0 < 8 < /4, bounded by
the half planes # = 0 and @ = 7 /4 and the portion 0 < 8 < m/4 of the cylindrical surface
r = 1, when V = 1 on the planar surfaces and V = 0 on the cylindrical one. (See Exercise
2.) Verify that the function obtained satisfies the boundary conditions.

Note that all branches of log z have the same real component, which is harmonic
everywhere except at the origin. Then write an expression for the electrostatic potential
V(x, y) in the space between two coaxial conducting cylindrical surfaces x% + y% = 1
and x% + y2 = rg (ro # 1) when V =0 on the first surface and V = 1 on the second.

In(x? + y?)
21In o ‘

Ans. V =

Find the bounded electrostatic potential V (x, y) in the space y > 0 bounded by an infinite
conducting plane y = 0 one strip (—a < x < a, y = 0) of which is insulated from the
rest of the plane and kept at potential V = 1, while V = 0 on the rest (Fig. 147). Verify
that the function obtained satisfies the boundary conditions.

2ay
x2 + yz — 2

1
Ans. V = — arctan(
T

) (0 < arctan t < 7).
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—d

V=0 V=1 V=0 X FIGURE 147

(SR~

6. Derive an expression for the electrostatic potential in the semi-infinite space indicated in
Fig. 148, bounded by two half planes and a half cylinder, when V = 1 on the cylindrical
surface and V = 0 on the planar surfaces. Draw some of the equipotential curves in the

xy plane.
Ans. V = 12— arctan( 2y )
T xZ 4 y2—1
y

*  FIGURE 148

7. Find the potential V in the space between the planes y =0 and y =7 when V =0 on
the parts of those planes where x > 0 and V = [ on the parts where x < 0 (Fig. 149).
Check the result with the boundary conditions.

[ .
Ans. V = — arc:tan( s:m Y ) (0 <arctant < m).
T sinh x

V=1 V=0 *  FIGURE 149

8. Derive an expression for the electrostatic potential V in the space interior to a long
cylinder r = 1 when V = 0 on the first quadrant (r = 1, 0 < 8 < 7 /2) of the cylindrical
surface and V = 1 on the rest (r = 1, /2 < 8 < 2mr) of that surface. (See Exercise 5,
Sec. 88, and Fig. 110 there.) Show that V = 3/4 on the axis of the cylinder. Check the
result with the boundary conditions.

9. Using Fig. 20 of Appendix 2, find a temperature function 7 (x, y) that is harmonic in the
shaded domain of the xy plane shown there and assumes the values T = () along the arc
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ABC and T = 1 along the line segment DEF. Verify that the function obtained satisfies
the required boundary conditions. (See Exercise 2.)

10. The Dirichlet problem
Vo (x, v)+ V},},(x,y):() O<x<a,0<y<b),
Vix,00=0, V(,b)=1 0<x<a),
Vi0,y)=V@ »=0 (0<y<b)

for V(x, y) in a rectangle can be solved by the method of separation of variables.* The
solution is

o0 .
V= i Z sinh(mmy/a) in mmx (m=2n—1).

i m sinh(mnb/a) a

By accepting this result and adapting it to a problem in the uv plane, find the potential
V{r,08)inthespace l < r < ry, 0 <8 < when V = 1on the part of the boundary where
6 = m and V = 0 on the rest of the boundary. (See Fig. 150.)

vt i s.inh(ané) sin(a, Inr) [an _(@n- 1)::]'
S sinh{a,,77) 2n — 1 In ry
¥ v
rio—Y=1
V=0 V=0
FIGURE 150
V=0 1lnr, “

wmlogz(r >0, —% <8 < %E)

11. With the aid of the solution of the Dirichlet problem for the rectangle
0<x<a,0<y<bh
that was used in Exercise 10, find the potential V (r, 8) for the space
l<«r<r,0<fB<nm

when V = 1 on the part r = ry, 0 < 6 < 7 of its boundary and V = 0 on the rest (Fig.
151).

1o o]
4 m __ .—m -
Ans.v==3" (’”m rmm) SO =20 — 1).

n=1

* See the authors’ “Fourier Series and Boundary Value Problems,” 6th ed., pp. 135-137 and 185-187,
2001.
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FIGURE 151

106. TWO-DIMENSIONAL FLUID FLOW

Harmonic functions play an important role in hydrodynamics and aerodynamics.
Again, we consider only the two-dimensional steady-state type of problem. That is,
the motion of the fluid is assumed to be the same in all planes parallel to the xy plane,
the velocity being parallel to that plane and independent of time. It is, then, sufficient
to consider the motion of a sheet of fluid in the xy plane.

We let the vector representing the complex number

V=p+iq

denote the velocity of a particle of the fluid at any point (x, y); hence the x and y
components of the velocity vector are p(x, y) and g(x, y), respectively. At points
interior to a region of flow in which no sources or sinks of the fluid occur, the
real-valued functions p(x, y) and g(x, y) and their first-order partial derivatives are
assumed to be continuous.

The circulation of the fluid along any contour C is defined as the line integral
with respect to arc length o of the tangential component Vr(x, y) of the velocity
vector along C:

(1) f Vr(x, y)do.
C

The ratio of the circulation along C to the length of C is, therefore, a mean speed of
the fluid along that contour. It is shown in advanced calculus that such an integral can
be written*

@) fcvr(x,y) do'mfcp(x,w dx + q(x, ) dy.

When C is a positively oriented simple closed contour lying in a simply connected
domain of flow containing no sources or sinks, Green’s theorem (see Sec. 44) enables

* Properties of line integrals in advanced calculus that are used in this and the following section are to
be found in, for instance, W. Kaplan, “Advanced Mathematics for Engineers,” Chap. 10, 1992,
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us to write
fcp(x? ydx +q(x, y)dy = f[g[qx(x? y) — pylx, y)1dA,

where R is the closed region consisting of points interior to and on C. Thus

3 [C Vr(x, y) do = f fR (4, (x, ¥) = p, (x, )] dA

for such a contour

A physical interpretation of the integrand on the right in expression (3) for the
circulation along the simple closed contour C is readily given. We let C denote a circle
of radius » which is centered at a point (x4, yo) and taken counterclockwise. The mean
speed along C is then found by dividing the circulation by the circumference 2xr,
and the corresponding mean angular speed of the fluid about the center of the circle i1s
obtained by dividing that mean speed by r:

)
Trl

1, |
fLE[qx(x,y)—py(x,y)]dA-

Now this is also an expression for the mean value of the function

1
(4) (L)()C, y)m"z"[cbc(xa y)mpy(xa y)]

over the circular region R bounded by C. Its limit as r tends to zero is the value of
w at the point (xg, yg). Hence the function w(x, y), called the rotation of the fluid,
represents the limiting angular speed of a circular element of the fluid as the circle
shrinks to its center (x, y), the point at which w is evaluated.

If w(x,y)=0 at each point in some simply connected domain, the flow is
irrotational in that domain. We consider only irrotational flows here, and we also
assume that the fluid is incompressible and free from viscosity. Under our assumption
of steady irrotational flow of fluids with uniform density p, it can be shown that the
fluid pressure P(x, y) satisfies the following special case of Bernoulli’s equation:

£ + %]Vl2 = constant.

P

Note that the pressure is greatest where the speed | V| is least.

Let D be a simply connected domain in which the flow is irrotational. According
toequation (4), p, = g, throughout D. This relation between partial derivatives implies
that the line integral |

f p(s,t)yds +q(s,t)dt
c
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along a contour C lying entirely in D and joining any two points (xy, yg) and (x, )
in D is actually independent of path. Thus, if (xy, yg) is fixed, the function

(x,¥)
(5) ¢(x,y)m/ p(s,tyds +q(s,t) dt
(xg.¥0)

is well defined on D; and, by taking partial derivatives on each side of this equation,
we find that

(6) ¢ (X, Y)=px,y), ¢, y)=qx,y).

From equations (6), we see that the velocity vector V = p + iq is the gradient of
¢; and the directional derivative of ¢ in any dn‘ecnon represents the component of the
velocity of flow in that direction.

The function ¢(x, y) is called the velocity potential. From equation (5), it is
evident that ¢ (x, y) changes by an additive constant when the reference point (xg, vg)
18 changed. The level curves ¢(x, y) = ¢; are called equipotentials. Because it is the
gradient of ¢ (x, y), the velocity vector V is normal to an equipotential at any point
where V is not the zero vector.

Just as in the case of the flow of heat, the condition that the incompressible fluid
enter or leave an element of volume only by flowing through the boundary of that
element requires that ¢ (x, y) must satisfy Laplace’s equation

Qf’xx(xa .Y) +¢yy(xs ¥) =0

in a domain where the fluid is free from sources or sinks. In view of equations (6)
and the continuity of the functions p and g and their first-order partial derivatives, it
follows that the partial derivatives of the first and second order of ¢ are continuous in
such a domain. Hence the velocity potential ¢ is a harmonic function in that domain.

107. THE STREAM FUNCTION

According to Sec. 106, the velocity vector

¢y V=px,y)+iqx,y)
for a simply connected domain in which the flow is irrotational can be written
(2) V=¢,(x, y)+ig,(x,y)=grad ¢(x, y),

where ¢ is the velocity potential. When the velocity vector is not the zero vector, it
is normal to an equipotential passing through the point (x, ). If, moreover, ¥ (x, v)
denotes a harmonic conjugate of ¢ (x, y) (see Sec. 97), the velocity vector is tangent to
acurve ¥ (x, y) = ¢;. The curves ¥ (x, y) = ¢, are called the streamlines of the flow,
and the function  is the stream function. In particular, a boundary across which fluid
cannot flow is a streamline.
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The analytic function

F(z)=¢(x, y) +iy(x, y)

is called the complex potential of the flow. Note that
F'(z2) = ¢, (x, ) + iy, (x, ),
or, in view of the Cauchy-Riemann equations,
F'(2) = ¢, (x, y) —id,(x, y).
Expression (2) for the velocity thus becomes
(3) V =F'(2).
The speed, or magnitude of the velocity, is obtained by writing
V] =1F'(2)].

According to equation (5), Sec. 97, if ¢ is harmonic in a simply connected domain
D, a harmonic conjugate of ¢ there can be written

(x,y)
wix, v) = / —¢, (s, 1) ds + ¢,(s, 1) dt,

(xg.¥0)

where the integration is independent of path. With the aid of equations (6), Sec. 106,
we can, therefore, write

@ Y(x, y) = fc (s, 1) ds + p(s, 1) d,

where C is any contour in D from (xg, ) to (x, ¥).

Now it is shown in advanced calculus that the right-hand side of equation (4)
represents the integral with respect to arc length o along C of the normal component
Vy(x, ¥) of the vector whose x and y components are p(x, y) and g(x, y), respec-
tively. So expression (4) can be written

(5) v (x, y) =/(; Vy(s, ) do.

Physically, then, ¥ (x, y) represents the time rate of flow of the fluid across C'. More
precisely, ¥ (x, y) denotes the rate of flow, by volume, across a surface of unit height
standing perpendicular to the xy plane on the curve C.

EXAMPLE. When the complex potential is the function
(6) F(z) = Az,
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where A is a positive real constant,

(7) $(x,y)=Ax and ¢(x,y)=Ay.

The streamlines ¥r(x, y) = ¢, are the honzontal lines y = ¢,/ A, and the velocity at
any point is

V=F{)=A.

Here a point (x;, yp) at which ¥ (x, y) = 0 is any point on the x axis. If the point
(Xg, ¥o) 18 taken as the origin, then v (x, y) is the rate of flow across any contour drawn
from the origin to the point (x, y) (Fig. 152). The flow is uniform and to the right. It
can be interpreted as the uniform flow in the upper half plane bounded by the x axis,
which is a streamline, or as the uniform flow between two parallel lines y = y; and

y=Mn

|
|
(x,}’) i E——
|
|

0 X FIGURE 152

The stream function ¥ characterizes a definite flow in a region. The question of
whether just one such function exists corresponding to a given region, except possibly
for a constant factor or an additive constant, is not examined here. In some of the
examples to follow, where the velocity is uniform far from the obstruction, or in Chap.
11, where sources and sinks are involved, the physical situation indicates that the flow
is uniquely determined by the conditions given in the problem.

A harmonic function 1s not always uniquely determined, even up to a constant
factor, by stmply prescribing its values on the boundary of a region. In this example,
the function ¥ (x, ¥) = Ay is harmonic in the half plane y > 0 and has zero values
on the boundary. The function ¥;(x, y) = Be” sin y also satisfies those conditions.
However, the streamline ¢, (x, ¥) = 0 consists not only of the line v = 0 but also of
thelines y =nm(n =1, 2, ...). Here the function F,(z) = Be? is the complex potential
for the flow in the strip between the lines y = 0 and y = &, both lines making up the
streamline ¥ (x, y) = 0; if B > 0, the fluid flows to the right along the lower line and
to the left along the upper one.

108. FLOWS AROUND A CORNER
AND AROUND A CYLINDER
In analyzing a flow in the xy, or z, plane, itis often simpler to consider a corresponding

flow in the uv, or w, plane. Then, if ¢ is a velocity potential and v+ a stream function
for the flow in the uv plane, results in Secs. 98 and 99 can be applied to these harmonic



384 AppLicATIONS OF CONFORMAL MAPPING CHAP. 10

functions. That is, when the domain of flow D, in the uv plane is the image of a domain
D, under a transformation

iy = f{Z) ﬂli(x, y) *{-iv(x, }’)a

where f is analytic, the functions

Pplux, y), v(x, )] and yrlulx, y), vix, y)

are harmonic in D,. These new functions may be interpreted as velocity potential and
stream function in the xy plane. A streamline or natural boundary ¥ (i, v) = ¢, in the
uv plane corresponds to a streamline or natural boundary ¥ [u(x, y), v(x, ¥y)]=c, in
the xy plane.

In using this technique, it is often most efficient to first write the complex potential
function for the region in the w plane and then obtain from that the velocity potential
and stream function for the corresponding region in the xy plane. More precisely, if
the potential function in the uv plane is

F(w)=¢w, v)+iy(u,v),

then the composite function

FLf@]=¢lulx, y), vix, )]+ iv[ulx, y), v(x, ¥)]

is the desired complex potential in the xy plane.
In order to avoid an excess of notation, we use the same symbols F, ¢, and y for
the complex potential, etc., in both the xy and the uv planes.

EXAMPLE 1. Consider a flow in the first quadrant x > 0, y > O that comes in
downward parallel to the y axis butis forced to turn a corner near the origin, as shown in
Fig. 153. To determine the flow, we recall (Example 3, Sec. 12) that the transformation

wﬁzzxxz—yz-i-ilxy
maps the first quadrant onto the upper half of the uv plane and the boundary of the
quadrant onto the entire u axis.
From the example in Sec. 107, we know that the complex potential for a uniform
flow to the right in the upper half of the w plane is F = Aw, where A is a positive real

—

0 X  FIGURE 153
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constant. The potential in the quadrant is, therefore,

(1 F=Az=A@x? = %) +i2Axy;
and it follows that the stream function for the flow there is
(2) W =2Axy.

This stream function is, of course, harmonic in the first quadrant, and it vanishes on
the boundary.
The streamlines are branches of the rectangular hyperbolas

2Axy = (.
According to equation (3), Sec. 107, the velocity of the fluid is
V =247 =2A(x — iy).

Observe that the speed

V| =2Ax2 + y2

of a particle is directly proportional to its distance from the origin. The value of the
stream function (2) at a point (x, y) can be interpreted as the rate of flow across a line
segment extending from the origin to that point.

EXAMPLE 2. Let a long circular cylinder of unit radius be placed in a large body
of fluid flowing with a uniform velocity, the axis of the cylinder being perpendicular
to the direction of flow. To determine the steady flow around the cylinder, we represent
the cylinder by the circle x? 4+ y? = 1 and let the flow distant from it be parallel to the
x axis and to the right (Fig. 154). Symmetry shows that points on the x axis exterior
to the circle may be treated as boundary points, and so we need to consider only the
upper part of the figure as the region of flow.

The boundary of this region of flow, consisting of the upper semicircle and the
parts of the x axis exterior to the circle, is mapped onto the entire u axis by the
transformation

8] =

w=2z-+

Yi

| e

| 1%
AN
- e ali -

v
T FIGURE 154
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The region itself is mapped onto the upper half plane v > 0, as indicated in Fig. 17,
Appendix 2. The complex potential for the corresponding uniform flow in that half
plane is F = Aw, where A is a positive real constant. Hence the complex potential for
the region exterior to the circle and above the x axis is

(3) FmA(z-i-l).

Z

The velocity

4 VmA(l—_iz)
Z

approaches A as |z| increases. Thus the flow is nearly uniform and parallel] to the x
axis at points distant from the circle, as one would expect. From expression (4), we
see that V(Z) = V (z); hence that expression also represents velocities of flow in the
lower region, the lower semicircle being a streamline.

According to equation (3), the stream function for the given problem is, in polar
coordinates,

(5) W=A(r-~}~) sin 6.

r

1
A(?‘— —) SiH@ICZ
¥

are symmetric to the y axis and have asymptotes paralle] to the x axis. Note that when
¢y = 0, the streamline consists of the circle r = 1 and the parts of the x axis exterior
to the circle.

The streamlines

EXERCISES

1. State why the components of velocity can be obtained from the stream function by means
of the equations

px.y)=v,(x,y), qx,y)=-9¥(x,y).

2, At an interior point of a region of flow and under the conditions that we have assumed,
the fluid pressure cannot be less than the pressure at all other points in a neighborhood
of that point. Justify this statement with the aid of statements in Secs. 106, 107, and 50,

3. For the flow around a corner described in Example 1, Sec. 108, at what point of the region
x 2 0, y > 018 the fluid pressure greatest?

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2, Sec.
108, is 2A| sin 8| and also that the fluid pressure on the cylinder is greatest at the points
z == 1 and least at the points z = 41,



SEC, 108 Exercises 387

5. Write the complex potential for the flow around a cylinder r = r; when the velocity V
at a point z approaches a real constant A as the point recedes from the cylinder.

6. Obtain the stream function
v = Ar? sin 40

for a flow in the angular region r > 0, 0 < 6 < /4 (Fig. 155), and sketch a few of the
streamlines in the interior of that region.

X FIGURE 155

7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite region
-n/2 <x <n/2, y >0 (Fig. 156). Write the equations of the streamlines.

Y

\

Qb
s

FIGURE 156

8. Show that if the velocity potential is ¢ = Alnr (A > 0) for flow in the region r > ry,
then the streamlines are the half lines 8 = ¢ (r > rg) and the rate of flow outward through
each complete circle about the origin is 2 A, corresponding to a source of that strength
at the origin.

9. Obtain the complex potential

1
FﬂA(Zz‘f’ “'2“)
Z

for a flow in the region r > 1, 0 <8 < 7 /2. Write expressions for V and . Note how
the speed | V| varies along the boundary of the region, and verify that ¥ (x, ) = 0 on the
boundary.

10. Suppose that the flow at an infinite distance from the cylinder of unit radius in Example
2, Sec. 108, is uniform in a direction making an angle o with the x axis; that is,

lim V=A% (A >0).

Jz]—r o
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11.

12,

13.

14,

Find the complex potential.

. 1 .
Ans. F = A(ze"“ 4 = em).
Z

Write
2—2=ryexp(ify), z+2=ryexp(it),
and
= \/?l?iexp(i ! -{2_ 92),
where

0<8, <27 and 06, <2m.

The function (z2 — 4)1/2 is then single-valued and analytic everywhere except on the
branch cut consisting of the segment of the x axis joining the points z = 2. We know,
moreover, from Exercise 13, Sec. 85, that the transformation

I=w+ —
w
maps the circle |w] = 1 onto the line segment from z = —2 to z = 2 and that it maps the
domain outside the circle onto the rest of the z plane. Use all of the observations above
to show that the inverse transformation, where |w| > 1 for every point not on the branch
cut, can be written

. AN
1 1 i0 6
w = wzw[z + (2 - »H? = Z("/” exp -SE + /1> €xXp i..é..%) :

The transformation and this inverse establish a one to one correspondence between points
in the two domains.

With the aid of the results found in Exercises 10 and 11, derive the expression
F=Afzcosa —i(z? — 4% sina]

for the complex potential of the steady flow around a long plate whose width is 4 and
whose cross section is the line segment joining the two points z = £2 in Fig. 157,
assuming that the velocity of the fluid at an infinite distance from the plate is A exp(iw).
The branch of (z2 — 4)1/2 that is used is the one described in Exercise 11, and A > 0.

Show that if sin « 7 0 in Exercise 12, then the speed of the fluid along the line segment
joining the points z = £ 2 is infinite at the ends and is equal to A| cos «| at the midpoint.

For the sake of simplicity, suppose that 0 < o < /2 in Exercise 12. Then show that the
velocity of the fluid along the upper side of the line segment representing the plate in
Fig. 157 is zero at the point x = 2 cos « and that the velocity along the lower side of the
segment is zero at the point x = —2 cos a.
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FIGURE 157

A circle with its center at a point xy (0 < xg < 1) on the x axis and passing through the
0 0 P g g
point 7 = —1 is subjected to the transformation

1
w=1z+ —.
Z

Individual nonzero points z can be mapped geometrically by adding the vectors

. 1 1
z=re" and - =-e7,
Z r
Indicate by mapping some points that the image of the circle is a profile of the type shown
in Fig. 158 and that points exterior to the circle map onto points exterior to the profile,
This is a special case of the profile of a Joukowski airfoil. (See also Exercises 16 and 17
below.)

(a) Show that the mapping of the circle in Exercise 15 is conformal except at the point
z=~1
(b) Let the complex numbers

. Az .
t= lim — and 7= lim —vo
Az—0 |Az] Aw->0 |Aw|
represent unit vectors tangent to a smooth directed arc at z = —1 and that arc’s image,
respectively, under the transformation w = z + (1/z). Show that T = —t2 and hence

that the Joukowski profile in Fig. 158 has a cusp at the point w = —2, the angle
between the tangents at the cusp being zero.

FIGURE 158
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17.

18(

Find the complex potential for the flow around the airfoil in Exercise 15 whenthe velocity
V of the fluid at an infinite distance from the origin is a real constant A. Recall that the
inverse of the transformation

1
w=z+ -
2

used in Exercise 15 is given, with z and w interchanged, in Exercise 11.

Note that under the transformation w = e* + z, both halves, where x > 0 and x <0, of
the line y = & are mapped onto the halfline v = n(u < —1). Similarly, the line y = —m is
mapped onto the half line v = —m (¥ < —1); and the strip —7 < y < 7 is mapped onto the
w plane. Also, note that the change of directions, arg(dw/dz), under this transformation
approaches zero as x tends to —oo. Show that the streamlines of a fluid flowing through
the open channel formed by the half lines in the w plane (Fig. 159) are the images of the
lines y = ¢, in the strip. These streamlines also represent the equipotential curves of the
electrostatic field near the edge of a parallel-plate capacitor.

FIGURE 159
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11

THE SCHWARZ-CHRISTOFFEL
TRANSFORMATION

In this chapter, we construct a transformation, known as the Schwarz—Christoffel
transformation, which maps the x axis and the upper half of the z plane onto a given
simple closed polygon and its interior in the w plane. Applications are made to the
solution of problems in fluid flow and electrostatic potential theory.

109. MAPPING THE REAL AXIS ONTO A POLYGON

We represent the unit vector which is tangent to a smooth arc C at a point z by the
complex number ¢, and we let the number t denote the unit vector tangent to the image
I of C at the corresponding point wy under a transformation w = f(z). We assume
that f is analytic at z, and that f/(zy) # 0. According to Sec. 94,

(1) arg T = arg f'(zo) +argt.

In particular, if C 1s a segment of the x axis with positive sense to the right, then ¢ = 1
and arg f = 0 at each point z5 = x on C. In that case, equation (1) becomes

(2) arg T = arg f'(x).

If /() has a constant argument along that segment, it follows that arg r is constant.
Hence the image I" of C is also a segment of a straight line.

Let us now construct a transformation w = f(z) that maps the whole x axis onto
a polygon of » sides, where x, x5, .. ., x,_}, and o0 are the points on that axis whose

391
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images are to be the vertices of the polygon and where

x;<x2<~-<xn_1,

The vertices are the points w;=flx;)(U=12,...,n—1)and w, = f(00). The
function f should be such that arg f'(z) jumps from one constant value to another at
the points z = x; as the point z traces out the x axis (Fig. 160).

L ye}

FIGURE 160

If the function f is chosen such that
() flRy=A—x) MMz —x)™ (2 = x,_ ),

where A is a complex constant and each k; is a real constant, then the argument of
f'(z) changes in the prescribed manner as z describes the real axis; for the argument
of the derivative (3) can be written

(4) arg f'(z) = arg A — ky arg(z — x;)
—kyarg(z —xp) — -+ — k,_yarg(z — Xp—1)-

When z = x and x < x;,
arg(z — xp) =arg(z — xp) = - - =arg(z — x,_) = 7.

When x; < x < x,, the argument arg(z — x,) is 0 and each of the other arguments is
7. According to equation (4), then, arg f'(z) increases abruptly by the angle k7 as
z moves to the right through the point z = x. It again jumps in value, by the amount
ko7, as z passes through the point x,, etc.

In view of equation (2), the unit vector 7 is constant in direction as z moves from
x;_1 to x;; the point w thus moves in that fixed direction along a straight line. The
direction of T changes abruptly, by the angle & 7, at the image point w; of x;, as
shown in Fig. 160. Those angles k ;7 are the exterior angles of the polygon described
by the point w.

The exterior angles can be limited to angles between —x and 7, in which case
—1 < k; < 1. We assume that the sides of the polygon never cross one another and

that the polygon is given a positive, or counterclockwise, orientation. The sum of the
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exterior angles of a closed polygon is, then, 2r; and the exterior angle at the vertex
w,,, which is the image of the point z = 0o, can be written

koo =2m —(ky+ka+-- -+ k,_pr.
Thus the numbers & ; must necessarily satisfy the conditions
5 k+k+-+k,_1+k, =2, —l<k; <1 (j=12,...,n).
Note that k,, = 0 if
(6) ki+ky+- k=2

This means that the direction of 7 does not change at the point w,. So w, is not a
vertex, and the polygon has n — 1 sides.

The existence of a mapping function f whose derivative is given by equation (3)
will be established in the next section.

110. SCHWARZ-CHRISTOFFEL TRANSFORMATION

In our expression (Sec. 109)
(D f@=AG—x)™ @ —x) ™ @ = 2y )T

for the derivative of a function that is to map the x axis onto a polygon, let the factors

(z —x j)"kf represent branches of power functions with branch cuts extending below
that axis. To be specific, write

k. k. . 3

where ¢; = arg(z —x;)and j = 1,2, ..., n — 1. Then f'(z) is analytic everywhere
in the half plane y > O except at the n — 1 branch points x ;.
If zy 1s a point in that region of analyticity, denoted here by R, then the function

3) F(z) = f £(s) ds
ey

is single-valued and analytic throughout the same region, where the path of integration
from z; to z is any contour lying within R. Moreover, F'(z) = f/(2) (see Sec. 42).
To define the function F at the point z = x so that it is continuous there, we note
that (z — x;)~*! is the only factor in expression (1) that is not analytic at x,. Hence, if
¢ (z) denotes the product of the rest of the factors in that expression, ¢ (z) is analytic at
x; and is represented throughout an open disk |z — x;| < Ry by its Taylor series about
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X1. SO we can write

R =Gz—x) "¢

— (Z - xi)”kl [fb(}:;) -+ ¢ ifi) (Z — X}) + @ 2(‘261) (Z — x1)2 + .- .]’
or
(4) F@=oG)@—x) ™+ @ —x) ™ y9@)

where v is analytic and, therefore, continuous throughout the entire open disk. Since
I — k; > 0, the last term on the right in equation (4) thus represents a continuous
function of z throughout the upper half of the disk, where Im z > 0, if we assign it
the value zero at z = x,. It follows that the integral

Z
/ (s — x) 71y (s) ds
Zy

of that last term along a contour from Z; to z, where Z; and the contour lie in the half
disk, is a continuous function of 7 at z = x;. The integral

z 1
(s —x) Mds=

RN B PR S SRR C ¢
2, 1_k1[(2 X1) (1 x1) ]

along the same path also represents a continuous function of z at x; if we define the
value of the integral there as its limit as z approaches x in the half disk. The integral
of the function (4) along the stated path from Z; to z is, then, continuous at z = x{; and
the same is true of integral (3) since it can be written as an integral along a contour in
R from z to Z, plus the integral from Z; to z.

The above argument applies at each of the n — 1 points x; to make F continuous
throughout the region y > Q.

From equation (1), we can show that, for a sufficiently large positive number R,
a positive constant M exists such that if Im z > 0, then

M
|Z |2-kn

whenever lz] > R.

&) f'@)] <

Since 2 — k,, > 1, this order property of the integrand in equation (3) ensures the
existence of the limit of the integral there as z tends to infinity; that is, a number
W, exists such that

(6) lim F(z) =W, (Imz = 0).
200

Details of the argument are left to Exercises 1 and 2.
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Our mapping function, whose derivative is given by equation (1), can be written
f(z) = F(2) + B, where B is a complex constant. The resulting transformation,

Z
M w=4A f (s —x) M —x) o (s = x,_ )N ds + B,

Zp

is the Schwarz—Christoffel transformation, named in honor of the two German math-
ematicians H. A. Schwarz (1843—-1921) and E. B. Christoffel (1829-1900) who dis-
covered it independently.

Transformation (7) is continuous throughout the half plane y > 0 and is con-
formal there except for the points x ;. We have assumed that the numbers k; satisfy
conditions (5), Sec. 109. In addition, we suppose that the constants x ; and k; are such
that the sides of the polygon do not cross, so that the polygon is a simple closed con-
tour. Then, according to Sec. 109, as the point z describes the x axis in the positive
direction, its image w describes the polygon P in the positive sense; and there is a
one to one correspondence between points on that axis and points on P. According to
condition (6), the image w,, of the point z = oo exists and w,, = W, + B.

If z is an interior point of the upper half plane y > 0 and x; is any point on the
x axis other than one of the x, then the angle from the vector ¢ at x; up to the line
segment joining xg and 2 is positive and less than & (Fig. 160). At the image wy of xy,
the corresponding angle from the vector 7 to the image of the line segment joining x;,
and z has that same value. Thus the images of interior points in the half plane lie to the
left of the sides of the polygon, taken counterclockwise. A proof that the transformation
establishes a one to one correspondence between the interior points of the half plane
and the points within the polygon is left to the reader (Exercise 3).

Given a specific polygon P, let us examine the number of constants in the
Schwarz-Christoffel transformation that must be determined in order to map the x
axis onto P. For this purpose, we may write 7o =0, A =1, and B = 0 and simply
require that the x axis be mapped onto some polygon P’ similar to P. The size and
position of P’ can then be adjusted to match those of P by introducing the appropriate
constants A and B.

The numbers k; are all determined from the exterior angles at the vertices of P.
The n — 1 constants x; remain to be chosen. The image of the x axis is some polygon
P’ that has the same angles as P. But if P’ is to be similar to P, then n — 2 connected
sides must have a common ratio to the corresponding sides of P; this condition is
expressed by means of n — 3 equations in the n — 1real unknowns x ;. Thus mwo of the
numbers x ;, or two relations between them, can be chosen arbitrarily, provided those
n — 3 equations in the remaining n — 3 unknowns have real-valued solutions.

When a finite point z = x,, on the x axis, instead of the point at infinity, represents
the point whose image is the vertex w,,, it follows from Sec. 109 that the Schwarz—
Christoffel transformation takes the form

Z
(8) w=A [ (s — xl)_kl(s — Xz)_kz cee s — xn)_kﬂ ds + B,
<0
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where k; + ky + -+ - + k, = 2. The exponents k; are determined from the exterior
angles of the polygon. But, in this case, there are n real constants x; that must satisfy
the n — 3 equations noted above. Thus three of the numbers x ;, or three conditions on
those n numbers, can be chosen arbitrarily in transformation (8) of the x axis onto a
given polygon.

EXERCISES

1‘

Obtain inequality (5), Sec. 110.

Suggestion: Let R be larger than any of the numbers |x;/(j =1, 2, . co,n—1).
Note that if R is sufficiently large, the inequalities |z]/2 < |z — x;| < 2|z| hold for each
x; when |z| > R. Then use equation (1), Sec. 110, along with conditions (5), Sec. 109.

Use condition (5), Sec. 110, and sufficient conditions for the existence of improper
integrals of real-valued functions to show that F(x) has some limit W, as x tends to
infinity, where F(z) is defined by equation (3) in that section. Also, show that the integral
of f’(z) over each arc of a semicircle |z] = R (Im z > 0) approaches 0 as R tends to 0.
Then deduce that

lim F(z) =W, (Im z > 0),

Z O
as stated in equation (6) of Sec. 110.

According to Sec. 79, the expression

/
Y f 8@ ;.
2ri Jo g(2)
can be used to determine the number () of zeros of a function g interior to a positively
oriented simple closed contour C when g(z) # 0 on C and when C lies in a simply
connected domain D throughout which g is analytic and g’(z) is never zero. In that
expression, write g(z} = f(z) — wy, where f(z) is the Schwarz—Christoffel mapping
function (7), Sec. 110, and the point wy is either interior to or exterior to the polygon P
that is the image of the x axis; thus f(z) # wy. Let the contour C consist of the upper
half of a circle |z| = R and a segment —R < x < R of the x axis that contains alln — 1
points x;, except that a small segment about each point x; is replaced by the upper halt

of a circle [z — x;| = p; with that segment as its diameter. Then the number of points z
interior to C such that f(z) = wy is

N L[ _J® dz

“Toxi Je f(2) — wy

Note that f(z) — wq approaches the nonzero point W,, — wy, when |z] = R and R tends
to 0o, and recall the order property (5), Sec. 110, for | f/(z)|. Let the p j tend to zero, and
prove that the number of points in the upper half of the z plane at which f(z) = wy is

R e

2mi R—o0 J_p f{x) —wy
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Deduce that since

R ?
f duw -:11m[ SO
pw—wy R-oooJ_p flx)—wp

N = 11if wy is interior to P and that N = 0 if wy is exterior to P. Thus show that the
mapping of the half plane Im z > 0 onto the interior of P is one to one.

111, TRIANGLES AND RECTANGLES

The Schwarz-Christoffel transformation is written in terms of the points x; and not in
terms of their images, the vertices of the polygon. No more than three of those points
¢an be chosen arbitrarily; so, when the given polygon has more than three sides, some
of the points x ; must be determined in order to make the given polygon, or any polygon
similar to it, be the image of the x axis. The selection of conditions for the determination
of those constants, conditions that are convenient to use, often requires ingenuity.

Another limitation in using the transformation is due to the integration that is

involved. Often the integral cannot be evaluated in terms of a finite number of elemen-
tary functions. In such cases, the solution of problems by means of the transformation
can become quite involved.

If the polygon is a triangle with vertices at the points wy, w,, and w5 (Fig. 161),

the transformation can be written

ey

Z
w=A f (s — xl)“k‘(s — xg)“kz(s — x3)wk3 ds + B,
Z

0

where k; + ky + ky = 2. In terms of the interior angles 6,

1
ki=1——06; i=1,2,3).
j — Y (J )

Here we have taken all three points x; as finite points on the x axis. Arbitrary values
can be assigned to each of them. The complex constants A and B, which are associated
with the size and position of the triangle, can be determined so that the upper half plane
is mapped onto the given triangular region.

Wy FIGURE 161
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If we take the vertex w5 as the image of the point at infinity, the transformation
becomes

Z
(2) w= A [ (S — xl)—kl(s — Xz)mkg ds ~}- B,
20

where arbitrary real values can be assigned to x; and x,.

The integrals in equations (1) and (2) do not represent elementary functions unless
the triangle is degenerate with one or two of its vertices at infinity. The integral in
equation (2) becomes an elliptic integral when the triangle is equilateral or when it is
a right triangle with one of its angles equal to either /3 or 7 /4.

EXAMPLE 1. For an equilateral triangle, k; = k) = k3 = 2/3. It is convenient to
write x; = —1, x; = 1, and x5 = 00 and to use equation (2), where 73 =1, A = 1, and
B = 0. The transformation then becomes

Z
(3) w “““_“““‘[ (s + D723 — D723 ds.
I

The image of the point z = 1 is clearly w = 0; that is, w, = 0. If z = —1 in this
integral, one can write s = x, where —1 < x < 1. Then

x+1>0 and arg(x+1)=0,

while
x—1=1-—x and arg(x—1)=m.
Hence
| 5 2
(4) w=f (x -+ 1)“2/3(1—35)_ /3 exp(ww;w) dx
1

o) [ 28
“UP\ T ) o A=

With the substitution x = 4/, the last integral here reduces to a special case of the one
used in defining the beta function (Exercise 7, Sec. 77). Let b denote its value, which
18 positive:

1 1
2dx —1/2 —2/3 (1 1)
5 b= = 720 -n"dr=8B(=, - }.
©) [e (1—x2)2/3 f(} ( ) 2 3

The vertex w; is, therefore, the point (Fig. 162)

(6) wy = b exp i;—i
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The vertex w4 1s on the positive u axis because

> 2/3 2/3 © dx
Wy = x+ D~ — 1) dx =[ :
= [ e 0Py R STCTE

But the value of wj 1s also represented by integral (3) when 7 tends to infinity along
the negative x axis; that is,

-1 .
Wy = (Ix + 1||x = 1p~23 exp(—%)dx
1

"—'00 .
+f (Jx + 1||x — 1])"‘“’“"2*f3 exp(—-i;fi)dx.

—1

In view of the first of expressions (4) for w;, then,

. G
wy = wy + exp(—?) [ (x + 1|fx — 1D~ 3dx
-1

= h ex §i+ex (mﬁ)/w dx
AT WY ) AR NCRCY: L

i i
w3 = b exp 3 + Wy exp(—?).

or

Solving for w3, we find that
(7) wy=b.

We have thus verified that the image of the x axis is the equilateral triangle of side b
shown in Fig. 162. We can see also that

b i
w=—exp— when z=0.

2 P 3

y Vg,
b

T

ﬁ i \ 3 b
Xy X2 * Wy wy ¥ FIGURE 162

When the polygon is a rectangle, each k; = 1/2. If we choose +1 and +a as the
points x ; whose images are the vertices and write

(8) g =GC+a)y e+ )2z - 1)z —a)"V?,
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where 0 < arg(z — x i) < m, the Schwarz—Christoffel transformation becomes

Z
9) W= — f ¢(s) ds.
0

except for a transformation W = Aw + B to adjust the size and position of the
rectangle. Integral (9) is a constant times the elliptic integral

Z
f (1= 59201 — k2%~ V2 g5 (k = 1),
0

a

but the form (8) of the integrand indicates more clearly the appropriate branches of the
power functions involved.

EXAMPLE 2. Let us locate the vertices of the rectangle when a > 1. As shown in
Fig. 163, x; = —a, x, = —1, x3= 1, and x4 = a. All four vertices can be described in
terms of two positive numbers b and ¢ that depend on the value of ¢ in the following
manner:

1 1 dx
(10 [ 1soras= [ o
a a dx
11 = dx = .
(11) c fl ()] dx f] s

If —1 « x <0, then
arg(x +a)=arg(x+ 1) =0 and arg{x — 1) = arg(x —a) = m;

hence

. 2
glx) = [eXp(—%i)} |2 (x)| = —|g(x)].

If —a < x < —1, then

. 3
glx) = [eXP(—%)] g (x)| =i|g(x)].

e g -1 -
w| = — f gx)dx =~ f g{x)dx — [ glx)dx
0 0 —1

~1 —a
me Ig(x)ldx—i[ lg(x)| dx=—-b+ic.

1

Thus
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It is left to the exercises to show that
(12) me—b, w3mb, w4mb+ic.

The position and dimensions of the rectangle are shown in Fig. 163.

'
ic
1 Wy i Wy
/—il | \ —bI | Ib
X xn 0 xnox W) 0 w; “  FIGURE 163

112. DEGENERATE POLYGONS

We now apply the Schwarz—Christoffel transformation to some degenerate polygons
for which the integrals represent elementary functions. For purposes of illustration,
the examples here result in transformations that we have already seen in Chap. 8.

EXAMPLE 1. Let us map the half plane y > 0 onto the semi-infinite strip
i b4
——<u<-—, v=>0

We consider the strip as the limiting form of a triangle with vertices wy, w5, and w,
(Fig. 164) as the imaginary part of w; tends to infinity.

X X2 wz‘/ wz:\
T R

FIGURE 164

The limiting values of the exterior angles are

klﬂ' = k7T m% and k3ft’ =7.

We choose the points x; = —1, x5 = 1, and x5 = 00 as the points whose images are the
vertices. Then the derivative of the mapping function can be written
dw

— =Ak+ D2z -1V = A1~ H
z
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Hence w = A’ sin~! z + B. If we write A’ = 1/a and B = b/a, it follows that
z =sin(aw — b).

This transformation from the w to the z plane satisfies the conditions z = —1 when
w=—m/2andz =1when w =n/2if a = l and b = 0. The resulting transformation is

Z =sin w,

which we verified in Sec. 89 as one that maps the strip onto the half plane.

EXAMPLE 2. Consider the strip 0 < v < 7 as the limiting form of a rhombus with
vertices at the points w; = i, w,, w3 = 0, and w, as the points w, and w, are moved
infinitely far to the left and right, respectively (Fig. 165). In the limit, the exterior
angles become

k=0, kn=nrn, kr=0, kr=m.

We leave x; to be determined and choose the values x5 = 0, x3 = 1, and x, = oc. The
derivative of the Schwarz—Christoffel mapping function then becomes

dw _ A
— =A—x)%7 7@ -0 ==
dz 4
thus
w=ALogz+ B.
Y v
wim’
Wy ™~~~ T Wy
1 T g
ST W *  FIGURE 165

Now B = 0 because w = 0 when z = 1. The constant A must be real because the
point w lies on the real axis when z = x and x > 0. The point w = x{ is the image of
the point z = x|, where x is a negative number; consequently,

mi=ALogx; = Aln|xy + Ami.

By identifying real and imaginary parts here, we see that |x;] = 1 and A = 1. Hence
the transformation becomes

w = Log z;

also, x; = —1. We already know from Example 3 in Sec. 88 that this transformation
maps the half plane onto the strip.
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The procedure used in these two examples is not rigorous because limiting values

of angles and coordinates were not introduced in an orderly way. Limiting values were
used whenever it secemed expedient to do so. But, if we verify the mapping obtained,
it is not essential that we justify the steps in our derivation of the mapping function.
The formal method used here is shorter and less tedious than rigorous methods.

EXERCISES
1. In transformation (1), Sec. 111, write B = zo =0 and
Aﬁexpi;i, le“"*l, Xzz(}, }:321,
3 1 3
ky=—, ky = —, ky= -
174 279 T4

to map the x axis onto an isosceles right triangle. Show that the vertices of that triangle
are the points

wy = bi, wy =0, and w3 =b,

where b is the positive constant

1
b= f (1-— xz)"3/4x“1/2 dx.
0

2=8(4.5)
4 4

Obtain expressions (12) in Sec. 111 for the rest of the vertices of the rectangle shown in
Fig. 163.

Also, show that

where B is the beta function.

Show that when 0 < a < 1in equations (8) and (9), Sec. 111, the vertices of the rectangle
are those shown in Fig. 163, where b and ¢ now have values

& 1
b=f lg(x)| dx, cm/ lg(x)] dx.
0 a
Show that the special case
Z F
wzt‘f (s + D)7V2(s — V272 g
0

of the Schwarz--Christoffel transformation (7), Sec. 110, maps the x axis onto the sguare
with vertices

wl"‘-—""'bf, %02=0, w3=b, w4=b+:b,
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where the (positive) number b is given in terms of the beta function:

b= Lp(l 3.).
2 \4 2
Use the Schwarz—Christoffel transformation to arrive at the transformation

w=2z" OD<m<l),

which maps the half plane y > 0 onto the wedge |w| > 0, 0 < arg w < mx and transforms
the point z = 1 into the point w = 1. Consider the wedge as the limiting case of the
triangular region shown in Fig. 166 as the angle « there tends to 0.

v
//
e
//
o N
1 “  FIGURE 166
6. Refer to Fig. 26, Appendix 2. As the point z moves to the right along the negative real

axis, its image point w is to move to the right along the entire u axis. As z describes
the segment 0 < x < 1 of the real axis, its image point w is to move to the left along
the half line v = mi (u > 1); and, as z moves to the right along that part of the positive
real axis where x > 1, its image point w is to move to the right along the same half line
v=ui (u > 1). Note the changes in direction of the motion of w at the images of the
points z = 0 and z = 1. These changes suggest that the derivative of a mapping function
should be

f@=AC-0""z-D,
where A is some constant; thus obtain formally the mapping function,
w=mi+z - Logz,

which can be verified as one that maps the half plane Re z > 0 as indicated in the figure.

As the point z moves to the right along that part of the negative real axis where x < —1,
its image point is to move to the right along the negative real axis in the w plane. As
Z moves on the real axis to the right along the segment —1 < x < () and then along the
segment () < x < 1, its image point w is to move in the direction of increasing v along
the segment 0 < v < 1 of the v axis and then in the direction of decreasing v along the
same segment. Finally, as z moves to the right along that part of the positive real axis
where x > 1, its image point is to move to the right along the positive real axis in the
w plane. Note the changes in direction of the motion of w at the images of the points
z=—1,z=0,and z = 1. A mapping function whose derivative is

=4+ D" E-0lEz-1n""2



SEC,

112 Exercises 405

where A is some constant, is thus indicated. Obtain formally the mapping function
w=+z*-1,
where 0 < arg \/22——1 < 77. By considering the successive mappings
Z=z, W=Z-1, and w=+W,

verify that the resulting transformation maps the right half plane Re z > 0 onto the upper
half plane Im w > 0, with a cut along the segment 0 < v < 1 of the v axis.

8. The inverse of the linear fractional transformation

Z = E — =

I+2Z
maps the unit disk |Z| < 1 conformally, except at the point Z = —1, onto the half plane
Im z > 0. (See Fig. 13, Appendix 2.) Let Z; be points on the circle |Z| = 1 whose
images are the points z =x; (j = 1, 2, . . ., n) that are used in the Schwarz—Christoffel
transformation (8), Sec. 110. Show formally, without determining the branches of the
power functions, that

S —NZ-zyRE -z 2 -2

where A’ is a constant. Thus show that the transformation
Z
w=A’ f (S—Zpy s —-2zy™*.. . (§-Z)*"dS+B
0

maps the interior of the circle |Z| = 1 onto the interior of a polygon, the vertices of the
polygon being the images of the points Z; on the circle.

In the integral of Exercise 8, let the numbers Z j (j=1,2,...,n)bethenthroots of unity.

Write w = exp(2ni/n)and Z, =1, Z, =, ..., Z, = "~ L. Let each of the numbers
ki (j =1,2,...,n) have the value 2/n. The integral in Exercise 8 then becomes

Z
Y ds
wmAfﬁ (Snml)zfﬂ+B

Show that when A’ = 1and B = 0, this transformation maps the interior of the unit circle
| Z| = 1 onto the interior of a regular polygon of n sides and that the center of the polygon
is the point w = 0.

Suggestion: The image of each of the points Z; (j =1, 2, ..., n) is a vertex of
some polygon with an exterior angle of 277 /n at that vertex. Write

" _[‘ ds
Fdo (-

where the path of the integration is along the positive real axis from Z =0to Z = 1 and
the principal value of the nth root of (S” — 1)? is to be taken. Then show that the images
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,,,,,

Thus verify that the polygon is regular and is centered at w = (.

of the points Z, = w, ..., Z, = "~ ! are the points ww, " lw,, respectively.

113. FLUID FLOW IN A CHANNEL THROUGH A SLIT

We now present a further example of the idealized steady flow treated in Chap. 10, an
example that will help show how sources and sinks can be accounted for in problems
of fluid flow. In this and the following two sections, the problems are posed in the uv
plane, rather than the xy plane. That allows us to refer directly to earlier results in this
chapter without interchanging the planes.

Consider the two-dimensional steady flow of fluid between two parallel planes
v =0 and v = m when the fluid is entering through a narrow slit along the line in the
first plane that is perpendicular to the #v plane at the origin (Fig. 167). Let the rate of
flow of fluid into the channel through the slit be Q units of volume per unit time for
each unit of depth of the channel, where the depth is measured perpendicular to the
uv plane. The rate of flow out at either end is, then, Q/2.

y 1%
1]
0 x; 1 X X u, O u u
FIGURE 167

The transformation w = Log z is a one to one mapping of the upper half y > 0 of
the z plane onto the strip 0 < v < 7 in the w plane (see Example 2 in Sec. 112). The
inverse transformation
(1) 7 = ew — euez’v
maps the strip onto the half plane (see Example 3, Sec. 13). Under transformation (1),
the image of the u axis is the positive half of the x axis, and the image of thelinev =7
is the negative half of the x axis. Hence the boundary of the strip is transformed into
the boundary of the half plane.

The image of the point w = 0 is the point z = 1. The image of a point w = uj,
where ug > 0, is a point z = x;, where x > 1. The rate of flow of fluid across a curve
joining the point w = u, to a point (1, v) within the strip is a stream function ¥ (u, v)
for the flow (Sec. 107). If u, is a negative real number, then the rate of flow into the
channel through the slit can be written

Yuy, 0)= Q.

Now, under a conformal transformation, the function v is transformed into a function
of x and y that represents the stream function for the flow in the corresponding region
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of the z plane; that is, the rate of flow is the same across corresponding curves in the
two planes. As in Chap. 10, the same symbol ¢ is used to represent the different stream
functions in the two planes. Since the image of the point w = 1 is a point 7 = x;, where
0 < xq < 1, the rate of flow across any curve connecting the points z = xy and z = x;
and lying in the upper half of the z plane is also equal to (. Hence there is a source at
the point z = 1 equal to the source at w = (.

The above argument applies in general to show that under a conformal transfor-
mation, a source or sink at a given point corresponds to an equal source or sink at the
image of that point.

As Re w tends to —oo, the image of w approaches the point z = 0. A sink of
strength Q/2 at the latter point corresponds to the sink infinitely far to the left in the
strip. To apply the above argument in this case, we consider the rate of flow across a
curve connecting the boundary lines v = 0 and v = & of the left-hand part of the strip
and the rate of flow across the image of that curve in the z plane.

The sink at the right-hand end of the strip is transformed into a sink at infinity in
the z plane.

The stream function ¥ for the flow in the upper half of the z plane in this case
must be a function whose values are constant along each of the three parts of the x
axis. Moreover, its value must increase by Q as the point z moves around the point
z = | from the position z = X, to the position z = x;, and its value must decrease by
(/2 as z moves about the origin in the corresponding manner. We see that the function

1
v="2 [Arg(z -1 -2 A z]
i g 2
satisfies those requirements. Furthermore, this function is harmonic in the half plane

Im z > O because it is the imaginary component of the function

1 -~
F = Q [ch(z — 1) — - Log z] = Q Lc::ag(:f:I”2 — 713,
T 2 /4
The function F is a complex potential function for the flow in the upper half of the
z plane. Since z = ¥, a complex potential function F (w) for the flow in the channel is

Q

Flw) = ; ch(gm/z _ e—~wf2).

By dropping an additive constant, one can write

2) Fw) =2 Log (sinh 33).
T 2

We have used the same symbol F to denote three distinct functions, once in the z plane
and twice in the w plane.
The velocity vector F/(w) is given by the equation

3) v=2 coth %
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From this, it can be seen that

Q

lim V=—7,
|| =00 2r

Also, the point w = i is a stagnation point; that is, the velocity is zero there. Hence
the fluid pressure along the wall v = m of the channel is greatest at points opposite
the slit.

The stream function ¢ (&, v) for the channel is the imaginary component of the
function F(w) given by equation (2). The streamlines ¥ (#, v) = ¢, are, therefore, the
curves

L% Arg(sinh E) = Cy.
T 2

This equation reduces to
v U
(4) tan — = ¢ tanh —,
2 2

where ¢ 1s any real constant. Some of these streamlines are indicated in Fig. 167.

114. FLOW IN A CHANNEL WITH AN OFFSET

To further illustrate the use of the Schwarz—Christoffel transformation, let us find the
complex potential for the flow of a fluid in a channel with an abrupt change in its
breadth (Fig. 168). We take our unit of length such that the breadth of the wide part of
the channel is 7 units; then hm, where 0 < & < 1, represents the breadth of the narrow
part. Let the real constant V;y denote the velocity of the fluid far from the offset in the
wide part; that is,

Jm_ v =V,

where the complex variable V represents the velocity vector. The rate of flow per unit
depth through the channel, or the strength of the source on the left and of the sink on
the right, is then

(1) Q — J‘TVQ{.
(Y
Y _zil ]m wy
"“\\\‘\ /((f,«-’ 'hx
— ™ Wa s

v, el

Bl “ -]
Xy .XI'Z .?Cl3 x Wy U

FIGURE 168
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The cross section of the channel can be considered as the limiting case of the
quadrilateral with the vertices wy, w,, ws, and w, shown in Fig. 168 as the first and
last of these vertices are moved infinitely far to the left and to the right, respectively.
In the limit, the exterior angles become

I3 I3
kit =, kom = —, kot = ——, kit =,
1 2 5 3 > 4

As before, we proceed formally, using limiting values whenever it is convenient to do
so. If we write x; = 0, x5 = 1, x4, = 00 and leave x, to be determined, where 0 < x, < 1,
the derivative of the mapping function becomes

@ B A = x) V2 = D2,
dz
To simplify the determination of the constants A and x, here, we proceed at once
to the complex potential of the flow. The source of the flow in the channel infinitely
far to the left corresponds to an equal source at z = 0 (Sec. 113). The entire boundary
of the cross section of the channel is the image of the x axis. In view of equation (1),
then, the function

(3) F=VyLogz=Vylnr +iV,0

is the potential for the flow in the upper half of the z plane, with the required source
at the origin. Here the stream function is ¢ = V8. It increases in value from 0 to
Vo over each semicircle z = Re'?(0 < 6 <), where R > 0, as 6 varies from 0 to 7.
[Compare equation (5), Sec. 107, and Exercise 8, Sec. 108.]

The complex conjugate of the velocity V in the w plane can be written

Cdw  dzdw’

Thus, by referring to equations (2) and (3), we can see that

S A 1/2
4) V(‘“)‘A(zwl) .

At the limiting position of the point wy, which corresponds to z = 0, the velocity
is the real constant Vj,. It therefore follows from equation (4) that
V,
VO = -9 X9,
A
At the limiting position of wy, which corresponds to z = oo, let the real number V,
denote the velocity. Now it seems plausible that as a vertical line segment spanning
the narrow part of the channel is moved infinitely far to the right, V approaches V, at
each point on that segment. We could establish this conjecture as a fact by first finding
w as the function of z from equation (2); but, to shorten our discussion, we assume
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that this is true, Then, since the flow is steady,
Th V4 =T VO = Q ,

or V, = V,/h. Letting z tend to infinity in equation (4), we find that

Yo_ W
h A
Thus
(5) A=h, x,=h
and
— Vy (z-h2\"?
(6) V(w)-..—....—hg(zml) .

From equation (6), we know that the magnitude |V| of the velocity becomes
infinite at the corner wy of the offset since it is the image of the point z = 1. Also,
the corner w, is a stagnation point, a point where ¥V = 0. Along the boundary of the
channel, the fluid pressure is, therefore, greatest at w, and least at ws.

To write the relation between the potential and the variable w, we must integrate
equation (2), which can now be written

,d_w_é.(z—l)m
dz 7z \z—h2) =

By substituting a new variable s, where

(7)

2
z—h
m52,

z -1

one can show that equation (7) reduces to
dw | I
— =2h — .
ds (1««52 h2m32>

1+s h+s
— Log :
15 h—s

Hence

(8) w=hLog

The constant of integration here is zero because when z = A2, the quantity s is zero
and so, therefore, is w.
In terms of s, the potential F of equation (3) becomes
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consequently,
2 _ eXp(F/ Vo) — h?
exp(F/Vp) — 1

By substituting s from this equation into equation (8), we obtain an implicit relation
that defines the potential F as a function of w.

(9)

115. ELECTROSTATIC POTENTIAL ABOUT AN EDGE
OF A CONDUCTING PLATE

Two parallel conducting plates of infinite extent are kept at the electrostatic potential
V =0, and a parallel semi-infinite plate, placed midway between them, is kept at the
potential V = 1. The coordinate system and the unit of length are chosen so that
the plates lie in the planes v =0, v =m, and v = 7 /2 (Fig. 169). Let us determine
the potential function V (u, v) in the region between those plates.

V=0 i L}
==
”_M.-v""‘/f
wwwwwww 4'//

= gi u;z.m/} V:].

—1 1 Tl T
T 1 T X T o
Xy Xy X V=0 Wy

FIGURE 169

The cross section of that region in the uv plane has the limiting form of the
quadrilateral bounded by the dashed lines in Fig. 169 as the points w; and w; move
out to the right and w, to the left. In applying the Schwarz—Christoffel transformation
here, we let the point x,, corresponding to the vertex wy, be the point at infinity. We
choose the points x; = —1, x3 = 1 and leave x, to be determined. The limiting values
of the exterior angles of the quadrilateral are

kyw =, kamm = —m, kam = kg =1,
Thus
dw -1 -1 (Z“)Cz) A (1+XQ 1““)(32)
dz ( > 2 ) 72 -1 2 \z+1 z—1

and so the transformation of the upper half of the z plane into the divided strip in the
w plane has the form

(D w:g-[(l-l-xz) Log(z+ 1) 4+ (1 — xy) Log(z — D1+ B.

Let A, A, and By, B, denote the real and imaginary parts of the constants A and
B. When z = x, the point w lies on the boundary of the divided strip; and, according



412 Tue ScHWARZ-CHRISTOFFEL TRANSFORMATION CHAP. 11

to equation (1),

A+

@) u+fv=ww2‘w§-%{<1+xg>ﬂn %+ 1|+ i arg(x + D]

+(1—xp)[ln |x — 1| +i arg(x — D]} + B, + iBy.

To determine the constants here, we first note that the limiting position of the
line segment joining the points w; and w; is the # axis. That segment is the image of
the part of the x axis to the left of the point x; = —1; this is because the line segment
joining w3 and w, is the image of the part of the x axis to the right of x; =1, and
the other two sides of the quadrilateral are the images of the remaining two segments
of the x axis. Hence when v = 0 and « tends to infinity through positive values, the
corresponding point x approaches the point 7 = —1 from the left. Thus

arg(x + 1) =, arg(x — ) =m,

and In |x + 1| tends to —o0. Also, since —1 < x5 < 1, the real part of the quantity inside
the braces in equation (2) tends to —oo. Since v = 0, it readily follows that A, = 0;
for, otherwise, the imaginary part on the right would become infinite. By equating
imaginary parts on the two sides, we now see that

A
0= -~2-—1[(1 + X)) + (1 — x)7] + Bs.

Hence
(3) —}’!'Al = 32, Az = (.

The limiting position of the line segment joining the points w, and w, is the half
line v = /2 (1 > 0). Points on that half line are images of the points z = x, where
—1 < x < x,; consequently,

arg(x + 1) =0, arglx — ) =m.

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at the
relation
4 A 1
4 — = — (1 —xy)r + B,.
4) i) (1—-x;) 2

Finally, the limiting positions of the points on the line segment joining ws to wy
are the points # + wi, which are the images of the points x when x > 1. By identifying,
for those points, the imaginary parts in equation (2), we find that

= B2.
Then, in view of equations (3) and (4),

A1=“‘“1, XQﬂg.
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Thus x = 0 is the point whose image is the vertex w = 7{/2; and, upon substituting
these values into equation (2) and identifying real parts, we see that B; = 0.
Transformation (1) now becomes

1 _
(5) w= mg[Log(z + 1) + Log(z — D]+ i,
or
(6) =1+,

Under this transformation, the required harmonic function V(u, v) becomes a
harmonic function of x and y in the half plane y > 0; and the boundary conditions
indicated in Fig. 170 are satisfied. Note that x, = 0 now. The harmonic function in that
half plane which assumes those values on the boundary is the imaginary component
of the analytic function

nggz_mlmllnﬂ_;_i(gl_gz)’

7w z+1 n ra 7w
where #; and 8, range from 0 to 7. Writing the tangents of these angles as functions
of x and y and simplifying, we find that

2y
x24y2 -1

(7) tan 7tV = tan(f; — 6) =

V=0 -1 V=1 1 V=0¥ FIGURE170

Equation (6) furnishes expressions for x? + yZ and x2 — y? in terms of # and
v. Then, from equation (7), we find that the relation between the potential V and the
coordinates # and v can be written

(8) tanwV = 1 e~ — 52,
s

where

§= 1+ \/1+2e—2“ cos 2v + e~ M,

EXERCISES

1. Use the Schwarz—Christoffel transformation to obtain formally the mapping function
given with Fig. 22, Appendix 2.
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2. Explain why the solution of the problem of flow in a channel with a semi-infinite
rectangular obstruction (Fig. 171) is included in the solution of the problem treated in
Sec. 114,

FIGURE 171

3. Refer to Fig. 29, Appendix 2. As the point z moves to the right along the negative part
of the real axis where x < —1, its image point w is to move to the right along the half
line v = h (u < 0). As the point z moves to the right along the segment -1 < x < 1 of the
X axis, its image point w is to move in the direction of decreasing v along the segment
0 < v < h of the v axis. Finally, as z moves to the right along the positive part of the real
axis where x > 1, its image point w is to move to the right along the positive real axis.
Note the changes in the direction of motion of w at the images of the points z = —1 and
z = 1. These changes indicate that the derivative of a mapping function might be

, . 1/2
@:A(**l) ,
dz z—1

where A is some constant. Thus obtain formally the transformation given with the figure.
Verify that the transformation, written in the form

h H > :
w = ;{(z + )3 — /2 + Loglz + (z + D2z = DI

where 0 < arg(z £+ 1) < =, maps the boundary in the manner indicated in the figure.

4. Tet T{u, v) denote the bounded steady-state temperatures in the shaded region of the
w plane in Fig. 29, Appendix 2, with the boundary conditions T {u, #) = | when u < ()
and T = 0 on the rest (B’C’D’) of the boundary. Using the parameter « (0 < a < 7/2),
show that the image of each point z = i tan « on the positive y axis is the point

h Y 4
w= — [In(tan:x+seca) _H(E +seca‘)]
T

(see Exercise 3) and that the temperature at that point w is

T(a,v)“:.g- (O<cr<-x——).

i1 2

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in

the bed of a deep stream represented by the shaded region of the w plane in Fig. 29,

Appendix 2, where the fluid velocity V approaches a real constant Vj as |w| tends to

infinity in that region. The transformation that maps the upper half of the z plane onto
that region is noted in Exercise 3. Use the chain rule

dF _dF dz
dw dz dw
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to show that
Vw) = Volz — D2z + )12,

and, in terms of the points z = x whose images are the points along the bed of the stream,
show that

V] =1Vl

x——1§
.x+1'

Note that the speed increases from |V;| along A’B’ until |V'| = o at B', then diminishes
to zero at C’, and increases toward | V| from C’ to D’; note, too, that the speed is | Vp] at
the point

between B’ and C’.






CHAPTER

12

INTEGRAL FORMULAS
OF THE POISSON TYPE

In this chapter, we develop a theory that enables us to obtain solutions to a variety of
boundary value problems where those solutions are expressed in terms of definite or
improper integrals. Many of the integrals occurring are then readily evaluated.

116. POISSON INTEGRAL FORMULA

Let C, denote a positively oriented circle, centered at the origin, and suppose that a
function f is analytic inside and on C. The Cauchy integral formula (Sec. 47)

- i
(1) f@=— [ LL

2ni Jo, S—2

expresses the value of f at any point z interior to C in terms of the values of f at points
s on Cy. In this section, we shall obtain from formula (1) a corresponding formula for
the real part of the function f; and, in Sec. 117, we shall use that result to solve the
Dirichlet problem (Sec. 98) for the disk bounded by C,.

We let ry denote the radius of Cy and write z = r exp(if), where 0 <r <y
(Fig. 172). The inverse of the nonzero point z with respect to the circle is the point zl
lying on the same ray from the origin as z and satisfying the condition |z;|z| = rG,
thus, if s is a point on Cy,

55

2 2
¥ ¥
@) 7y =L exp(if) = 2 = —
r < Z

417
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Since z; is exterior to the circle Cy, it follows from the Cauchy-Goursat theorem that
the value of the integral in equation (1) is zero when z is replaced by z, in the integrand.
Hence

f(Z}=-“}" ( Lo ! )f(s)ds;
Co \$ 1

2 -7 $—-2z

and, using the parametric representation s = rg exp(i¢) (0 < ¢ < 2m) for (), we can
write

1 23’!‘
f(z)=-——f ( R )f(s)d¢,
2 Jo §—2 s — 24

where, for convenience, we retain the s to denote ry exp(i¢).
In view of the last of expressions (2) for z,, the factor inside the parentheses here
can be written

s 1 $ z ?‘3“?‘2

s

- — = + ———— :
s—z 1-G/7) s—-z 5-% |s—z|?

(3)

An alternative form of the Cauchy integral formula (1) is, therefore,

rg—r* [ f("oew)d

4 i@mﬂ
@) e A

when 0 < r < ry. This form is also valid when r = 0; in that case, it reduces directly to

1 2?!' .
FO) = f Froe'®) do,
2 Jo

which is just the parametric form of equation (1) with z = 0.
The quantity [s — z| is the distance between the points s and z, and the law of
cosines can be used to write (see Fig. 172)

(5) |s — zl?' = rg — 2ryr cos(¢p — 8) + 2,

s 4
/ Z
¢ 9

y
Gy
!/fg |

FIGURE 172
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Hence, if u is the real part of the analytic function f, it follows from formula (4) that

(r§ — r*yu(ry, 9)
ré — 2ror cos(¢p — 8) +r?

1 2n
(6) u(r,0)=— f
0

27

do (r <ry).

This is the Poisson integral formula for the harmonic function u# in the open disk
bounded by the circle r = ry,.

Formula (6) defines a linear integral transformation of u(r,, ¢) into u(r, 6). The
kernel of the transformation is, except for the factor 1/(2x), the real-valued function

2 2
?‘0'—7‘

7 P o Fy —0)= *
) ro. 74 = 0) rg—Zrﬂrcos(qbwG)—i—rz

which is known as the Poisson kernel. In view of equation (5), we can also write

72 2
(8) P(rg.7 ¢ —8) = 22—
ls — z|?

and, since r < ry, it is clear that P is a positive function. Moreover, since /(s — 7)
and its complex conjugate z/(s — z) have the same real parts, we find from the second
of equations (3) that

9) P(rg,r,qb—é)):Re( 2 4t )xRe(S+z).

§F — 2 §F— 2 §F— <

Thus P(ry, r, ¢ — 6) is a harmonic function of  and 4 interior to C,, for each fixed s
on Cy. From equation (7), we see that P(ry, r, ¢ — 8) is an even periodic function of
¢ — 6, with period 2m; and its value is 1 when r = 0.

The Poisson integral formula (6) can now be written

1 2
10w 0=5 [ P e—tut 0 do ¢ <n)
When f(z) =u(r, 8) = 1, equation (10) shows that P has the property
1 2
(11) S P(ro,r,¢ —0)dep =1 (r <ry).
2w Jo

We have assumed that f is analytic not only interior to C, but also on Cj itself
and that u is, therefore, harmonic in a domain which includes all points on that circle.
In particular, « is continuous on Cy. The conditions will now be relaxed.

117. DIRICHLET PROBLEM FOR A DISK

Let F be a piecewise continuous function of 6 on the interval 0 < 8 < 2. The Poisson
integral transform of F is defined in terms of the Poisson kemel P(ry, r, ¢ — &),
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introduced in Sec. 116, by means of the equation

1 2T
(1) U(r,9)2—[ Plro,r. ¢ —0)F(9)d¢  (r <ry).
2 Jo
In this section, we shall prove that the function U (r, 8) is harmonic inside the

circle r = ry and

2) lim U(r,6) = F ()

r<r0

for each fixed 6 at which F is continuous. Thus U is a solution of the Dirichlet problem

for the disk r < ry in the sense that U (r, 8) approaches the boundary value F(6) as
the point (7, §) approaches (ry, 8) along a radius, except at the finite number of points
(ry, 0) where discontinuities of F may occur.

EXAMPLE. Before proving the above statement, let us apply it to find the potential
V(r, 8) inside a long hollow circular cylinder of unit radius, split lengthwise into two
equal parts, when V =1 on one of the parts and V = 0 on the other. This problem
was solved by conformal mapping in Sec. 105; and we recall how it was interpreted
there as a Dirichlet problem for the disk r < 1, where V = 0 on the upper half of the
boundary r = 1 and V = 1 on the lower half. (See Fig. 173.)

V=1 FIGURE 173

In equation (1), write V for U, ry=1, and F(¢) =0 when 0 < ¢ < 7 and
F(¢) =1whenm < ¢ < 27 to obtain

2
(3) V(r,9)~“--}—[ P(l,r,¢ —6)do,
2T

w
where
1—r2
1472 —=2rcos(¢p — 6)

P(Lr,¢—0) =
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An antiderivative of P(1, r, ¢) is

(4) [ P, r, ) d¢m2arctan(1+r tan %),

1—r

the integrand here being the derivative with respect to ¥ of the function on the right,
So it follows from expression (3) that

1 2w — 6 1 — 6
::rV(r,Q)marctan( +rta:n 7 )—arctan( _‘_rtan;rr )

1—7r 2 l—r 2

After simplifying the expression for tan[z V (r, §)] obtained from this last equation
(see Exercise 3, Sec. 118), we find that

2
()] V(r,@)ziarctan(l ‘r ) (0 <arctant <),
T 2rsin @

where the stated restriction on the values of the arctangent function is physically
evident. When expressed in rectangular coordinates, the solution here is the same as
solution (5) in Sec. 105.

We turn now to the proof that the function U defined in equation (1) satisfies the
Dirichlet problem for the disk r < ry, as asserted just prior to this example. First of
all, U is harmonic inside the circle r = r;, because P is a harmonic function of r and
9 there. More precisely, since F is piecewise continuous, integral (1) can be written
as the sum of a finite number of definite integrals each of which has an integrand that
is continuous in r, 8, and ¢. The partial derivatives of those integrands with respect
to r and @ are also continuous. Since the order of integration and differentiation with
respect to r and € can, then, be interchanged and since P satisfies Laplace’s equation

r?P.,. +rP. + Pyy=0

in the polar coordinates r and 8 (Exercise 5, Sec. 25), it follows that U satisfies that
equation too.

In order to verify limit (2), we need to show that if F is continuous at ¢, there
corresponds to each positive number & a positive number 6 such that

(6) \{U(r,8)— F@)| <& whenever 0<rg—r <38.

We start by referring to property (11), Sec. 116, of the Poisson kernel and writing

1 2n
U(T,G)MF(Q)“M“S;/O P(rg,r, ¢ —6)[F(¢) — F(@)]d¢.

For convenience, we let F be extended periodically, with period 27, so that the
integrand here is periodic in ¢ with that same period. Also, we may assume that
0 < r < rg because of the nature of the limit to be established.
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Next, we observe that, since F is continuous at 8, there is a small positive number
o such that

) |F(¢) — F(8)] < -g- whenever lp — 8| < «.
Evidently,

(8) Ulr,0) — F(0) = 1i(r) + I,(r),

where

4+
)= - f P(ro, r, & — 0)[F($) — F(8)] do,
27 e

4 4
0—a+2mr

1
L(r)=— P(ro,r, ¢ —6)[F(¢9) — F(0)1do.
T Jo+a

The fact that P is a positive function (Sec. 116), together with the first of
inequalities (7) just above and property (11), Sec. 116, of that function, enables us
to write

1 04
1)) < 5 fa P(ro, 7, & — 8) [F(¢) — F(6)| dg

e [ €
< e Proa,r, o —8)Ydop = —.
4%_[0 (rg,r.¢p—06)de¢ 5

As for the integral 1,(r), one can see from Fig. 172 in Sec. 116 that the denominator
|s — z|? in expression (8) for P(ry, r, ¢ — 0) in that section has a (positive) minimum
value m as the argument ¢ of s varies over the closed interval

+a<¢p<6—a+2n.

So, if M denotes an upper bound of the piecewise continuous function |F(¢) — F ()|
on the interval 0 < ¢ < 2, it follows that

2 2
re —rayM
|I(f‘)lﬁ(0 ) 23‘&'<2Mr0(r —r)<2Mr05=§..
2 0
Tm m m 2
whenever ry — r < 8, where
me

9 5= ,
( ) 4MTG

Finally, the results in the two preceding paragraphs tell us that

lU(r, 8) — F®)| < |L(r)| + |L(r)] < % + g —c
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whenever ry — r < 8, where § is the positive number defined by equation (9). That is,
statement (6) holds when that choice of 8 is made.
According to expression (1), the value of U atr =0 1is

1 2

2 o F(¢) de.

Thus the value of a harmonic function at the center of the circle r = ry is the average
of the boundary values on the circle.

It is left to the exercises to prove that P and U can be represented by series
involving the elementary harmonic functions r" cos n8 and r” sin n6 as follows:

(10) Plrg,r, ¢ —0) = 1+2Z (f) cosn(g — 6) (r <ry)
0

n=Il

and
I > /rY

(11) U(r,08) = —ay+ Z (m«) (a, cos né + b, sin n@) (r <rg),
2 — o

where

2 2n
(12)  a,= if F($) cosng dp, b, = 1[ F () sin ne de.
T Jo T Jo

118. RELATED BOUNDARY VALUE PROBLEMS

Details of proofs of results given below are left to the exercises. The function F rep-
resenting boundary values on the circle r = rg is assumed to be piecewise continuous.

Suppose that F (2w — §) = — F(6). The Poisson integral formula (1) of Sec. 117
then becomes

() U(r,8) = é ]{; [P(ro,7,¢ —0) — P(rg, r. ¢ +0)1F (¢) do.

This function U has zero values on the horizontal radii 8 = 0 and 8 = 7 of the circle,
as one would expect when U is interpreted as a steady temperature. Formula (1) thus
solves the Dirichlet problem for the semicircular region r <ry, 0 <8 <, where
U = 0 on the diameter AB shown in Fig. 174 and

(2) }gg Ur,8)=F(8) 0<0<m)

r<rg

for each fixed 6 at which F is continuous.
If F2n — 6) = F(#), then

1 n
® Vo= fﬂ LP(ro, 7, 6 — )+ Plrg, 1y & + O)IF (@) do;
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and Uy(r, ) =0 when 8 = 0 or 8 = &, Hence formula (3) furnishes a function U that
is harmonic in the semicircular region r < ry, 0 <8 < 7w and satisfies condition (2)
as well as the condition that its normal derivative be zero on the diameter AB shown
in Fig, 174.

*  FIGURE 174

The analytic function z = r{/Z maps the circle |Z| = ry in the Z plane onto the
circle [z| = ry in the z plane, and it maps the exterior of the first circle onto the interior
of the second. Writing z = r exp(i6) and Z = R exp(iy), we note that r = ré/R and
8 = 2 — 4. The harmonic function U (r, 8) represented by formula (1), Sec. 117, 1s,
then, transformed into the function

U(iﬁ 2t — w) — L[ o = 1 F(¢)do
R’ - [

2 Jo ri—2rgRcos(¢ + ¥) + R?

which is harmonic in the domain R > ry. Now, in general, if u(r, 8) is harmonic, then
soisu(r, —8) (see Exercise 11). Hence the function H(R, ¥) = U(rg/R, ¥ —2m),0or

i 2
(4) H(Rsiﬁ):—z—?;fg P(ro, R, ¢ =) F(¢)dp (R >ryp),

is also harmonic. For each fixed ¥ at which F(y) is continuous, we find from
condition (2), Sec. 117, that

(3) lim H(R, yr) = F(¥).

R—ry
R>rg

Thus formula (4) solves the Dirichlet problem for the region exterior to the circle
R =rq in the Z plane (Fig. 175). We note from expression (8), Sec. 116, that the

H=F(y}) FIGURE 175
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Poisson kernel P(rg, R, ¢ — i) 1s negative when R > rg. Also,

1 ZJT
(6) - P(rog. R, —¢)dop=—-1  (R>rp)
T J0
and
1 2
(7) lim H(R,tﬁ)mwj F(p)do.
R—»00 27 Jo
EXERCISES

1. Use the Poisson integral formula (1), Sec. 117, to derive the expression

1-—}62—}’2

- DX+ -D2-1

Vix,y)= -;— arctan[ } (0 < arctan t < )

for the electrostatic potential interior to a cylinder x + y2 =1 when V = 1 on the first
quadrant (x > 0, y > 0) of the cylindrical surface and V = 0 on the rest of that surface.
Also, point out why 1 — V is the solution to Exercise 8, Sec. 103.

2. Let T denote the steady temperatures in a disk » < 1, with insulated faces, when T =1
on the arc 0 < 8 < 26y (0 < 0y < 7/2) of the edge r =1 and T =0 on the rest of the
edge. Use the Poisson integral formula to show that

(1—x% — ¥y
(x — D2+ (y — y)2 — ¥2

Tx,y)= i arctan[ :l (0 < arctan ¢t < 7r),
vi4

where yy = tan 6. Verify that this function T satisfies the boundary conditions.
3. With the aid of the trigonometric identities

tan ¢ — tan 8

tan{a — = s
e =) = T e tan B

tan o + cot o = — s
sin 2o

show how solution (5) in the example in Sec. 117 is obtained from the expression for
7 V{r, 6) just prior to that solution.

4. Let I denote this finite unit impulse function (Fig. 176):

_[1/h when6y <6 <6y+h,
I(h,@mf}g)—{o when0 <8 <fyorby+h <6 <2,

where & is a positive number and 0 < 6; < 63 + h < 27. Note that

fy+h
f I(h, 0 — 6y) d6 = 1.
&,

0
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I(h,0 - 6,)
1
H“ I |
I |
I |
I i
| |
I ]
I |
S e ®
ol 6 Both 2r ¢  FIGURE 176

With the aid of a mean value theorem for definite integrals, show that

27 ) By+h
f P(ro,r,¢ —6)I(h, ¢ —6y) do = P(ry, r,cma)f Ith, ¢ — 6y do¢,
0 6y

where 8, < ¢ < §; + h, and hence that

2
£il'% P(?‘(},?‘,¢m6)1(h,¢'—90) dquP(rg,r,Qng) (t‘{rg).
a0

Thus the Poisson kernel P (ry, r, 8 — 8) is the limit, as # approaches O through positive
values, of the harmonic function inside the circle r = ry whose boundary values are
represented by the impulse function 27 I(h, 8 — 6;).

5. Show that the expression in Exercise 8(b), Sec. 56, for the sum of a certain cosine series
can be written

1—a?
1 —2acos 8 +a2

o0
1+22a”cos no =

n=1

(—l<a<1).

Then show that the Poisson kernel has the series representation (10), Sec. 117.

6. Show that the series in representation (10), Sec. 117, for the Poisson kernel converges
uniformly with respect to ¢. Then obtain from formula (1) of that section the series
representation (11) for U (r, ) there.*

7. Use expressions (11) and (12) in Sec. 117 to find the steady temperatures T(r, ) in a
solid cylinder r < ry of infinite length if T'(ry, 8) = A cos 6. Show that no heat flows
across the plane y = 0.

Ans. T = ﬁi—r cos f = éx.

o o

* This result is obtained when ry = 1 by the method of separation of variables in the authors’ “Fourier
Series and Boundary Value Problems,” 6th ed., Sec. 48, 2001.
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8. Obtain the special case
1 T
@ HR )= | (PGo. R6+ ) = Plro, R, & = WIF@) d:
1 b 4
(by H(R,¢) = o [ [P(rg, R. ¢+ V) + Plrg, R, ¢ — ) IF(¢) dop
0
of formula (4), Sec. 118, for the harmonic function H in the unbounded region R > ry,
0 <y < &, shown in Fig. 177, if that function satisfies the boundary condition
lim HR, ¢)=F(y)  O<y <m)
RM’é}
on the semicircle and (@) it is zero on the rays BA and D E; (b) its normal derivative is
zero on the rays BA and DE.
Y
H=F(y)
C .
/ (R, ¥)
Iy
A B D E X  FIGURE 177
9. Give the details needed in establishing formula (1) in Sec. 118 as a solution of the
Dirichlet problem stated there for the region shown in Fig. 174.

10. Give the details needed in establishing formula (3) in Sec. 118 as a solution of the
boundary value problem stated there.

11. Obtainformula (4), Sec. 118, as a solution of the Dirichlet problem for the region exterior
to a circle (Fig. 175). To show that u(r, — @) is harmonic when u(r, €) is harmonic, use
the polar form

rzu,,(r, B) +ru, (r,0) +ugy(r,d) =0
of Laplace’s equation.

12. State why equation (6), Sec. 118, is valid.

13. Establish limit (7), Sec. 118.

119. SCHWARZ INTEGRAL FORMULA

Let f be an analytic function of z throughout the half plane Im z > 0 such that, for
some positive constants ¢ and M, f satisfies the order property

(D

22 f(D)] <M (Im z > 0).

For a fixed point z above the real axis, let Cx denote the upper half of a positively
oriented circle of radius R centered at the origin, where R > |z| (Fig. 178). Then,
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*  FIGURE 178

according to the Cauchy integral formula,

R
(2) f(z) = 1 f(s)ds n 1 f() df‘

2ni Je, §—2 2ri J_gp t—2

We find that the first of these integrals approaches 0 as R tends to oo since, in
view of condition (1),

f f(s)ds M ™
Ck $—2

TR = )
RA(R — |z]) Re(1—|z|/R)

<

Thus

3) fy=— [ L4

270 Jono t— 2

(Im z > 0).

Condition (1) also ensures that the improper integral here converges.* The number
to which it converges is the same as its Cauchy principal value (see Sec. 71), and
representation (3) is a Cauchy integral formula for the half plane Im 7 > 0.

When the point z lies below the real axis, the right-hand side of equation (2) is
zero; hence integral (3) is zero for such a point. Thus, when z is above the real axis,
we have the following formula, where c is an arbitrary complex constant:

1 o« 1
@) fly=— CMM~+-£x)fGMﬁ (im z > 0)
2l J—so \I—2 t—7
In the two cases ¢ = —1 and ¢ = 1, this reduces, respectively, to
| t
(s) fo== [ XD a0
T Jox |t —2]

*See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., Chap. 22, 1983.
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and

(6) f(z)m—if (’”x)ff)dz (y > 0).
wiJooc |t —2|

If f(z) =u(x,y)+iv(x,y), it follows from formulas (5) and (6) that the har-
monic functions # and v are represented in the half plane y > 0 in terms of the boundary
values of u by the formulas

7 u(x,y)ﬂ;}lﬂ*/ yu(t’o)dz=lf .0 0 (50

oo |t —z]? T Jooo (t —x)% + y?
and
1 % (x —ulz, 0)
8 , V)= — dt 0).
(8) v(x, y) E[_w RTINS (v > 0)

Formula (7) is known as the Schwarz integral formula, or the Poisson integral
formula for the half plane. In the next section, we shall relax the conditions for the
validity of formulas (7) and (8).

120. DIRICHLET PROBLEM FOR A HALF PLANE

Let F denote a real-valued function of x that is bounded for all x and continuous except
for at most a finite number of finite jumps. When y > € and |x| < 1/, where ¢ is any
positive constant, the integral

©  F@)dt
I y) = f_oo t —x)? + y?

converges uniformly with respect to x and y, as do the integrals of the partial derivatives
of the integrand with respect to x and y. Each of these integrals is the sum of a finite
number of improper or definite integrals over intervals where F is continuous; hence
the integrand of each component integral is a continuous function of z, x, and y when
y > ¢. Consequently, each partial derivative of I(x, y) is represented by the integral
of the corresponding derivative of the integrand whenever y > 0.

We write U (x, y) = yI(x, y)/n. Thus U is the Schwarz integral transform of F,
suggested by the second of expressions (7), Sec. 119:

_ L[ yF@)
(1) U(x,y)wﬁﬁw PRRCI dt (y > 0).

Except for the factor 1/, the kernel here is y/|t — z|?. It is the imaginary component
of the function 1/(¢ — z), which is analytic in z when y > 0. It follows that the kernel
is harmonic, and so it satisfies Laplace’s equation in x and y. Because the order of
differentiation and integration can be interchanged, the function (1) then satisfies that
equation. Consequently, U is harmonic when y > 0.
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To prove that
(2) lim U(x, y) = F(x)
y—-+
y>0

for each fixed x at which F is continuous, we substitute = x + y tan t in formula (1)
and write

: /2
3 U(x,y)=m-1+~[ F(x+ytant)dr (y > 0).
T J—nr/2

Then, if
Gux,y,1)=F(x+ytant) — F(x)

and « is some small positive constant,

n/2
@) UG y) - F(x)]= f G(x, v. 7) dr = [1(y) + ) + L),

-2
where

(—n/2)+a (n/2)—«
Ii(}")zf G(xa y, T) dro 12(}})=\/- G(X, ya T) dts
—n/2 (—m/2)+a

n/2
I;(y) zf G(x, vy, 1)dr.
(/2~a

If M denotes an upper bound for |F(x)|, then |G(x, y, T)| <2M. For a given
positive number g, we select & so that 6Ma < ¢; and this means that

L) < 2Me < é";- and  |I(y)] <2Ma < g

P

We next show that, corresponding to g, there is a positive number & such that

| ,(y)| < -g whenever O<y<é.

To do this, we observe that, since F is continuous at x, there is a positive number y
such that

|G(x, y, T} < f— whenever O<yltant| < y.
T

Now the maximum value of |tan 7| as T ranges from (—m/2) +a to (7/2) — o is
tan[(m/2) — a] = cot a. Hence, if we write § = y tan «, it follows that

L) < 5?---(7{ —20) < -‘% whenever 0 <y <.
T
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We have thus shown that

1HOI+H LW+ [13(y)] <& whenever 0 <y <.

Condition (2) now follows from this result and equation (4).

Formula (1) therefore solves the Dirichlet problem for the half plane y > 0, with
the boundary condition (2). It is evident from the form (3) of expression (1) that
|U (x, y)| < M in the half plane, where M is an upper bound of |F(x)|; that is, U
is bounded. We note that U (x, y) = F when F(x) = F;, where F is a constant.

According to formula (8) of Sec. 119, under certain conditions of F the function

1L [® x=nF®)
5) Vix,y)= f_m =2ty

T

is a harmonic conjugate of the function U given by formula (1). Actually, formula (5)
furnishes a harmonic conjugate of U if F is everywhere continuous, except for at most
a finite number of finite jumps, and if F satisfies an order property

dt (y>0)

|x°F{x)| <M (a > 0).

For, under those conditions, we find that U and V satisfy the Cauchy-Riemann
equations when y > 0.

Special cases of formula (1) when F is an odd or an even function are left to the
exercises.

EXERCISES
1. Obtain as a special case of formula (1), Sec. 120, the expression
Uix y)—xfm[ 1 — ! ]F(z)dt (x>0,y>0)
T omdo Le-x)r+yr (4 x)r+y? ’

for a bounded function U that is harmonic in the first quadrant and satisfies the boundary
conditions

U@, y)=0 (y>0),
lim U(x, y)=F(x)  (x>0,x#x)),

y=0

where F is bounded for all positive x and continuous except for at most a finite number
of finite jumps at the points x; (j = 1,2, ..., n).

2. Let T(x, y) denote the bounded steady temperatures in a plate x > 0, y > 0, with
insulated faces, when

lim T'(x, y)= F(x) (x > 0),
}T"""")*

¥>0

lim T'(x, y)= F2(y) (y > 0)

x>0
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T=Fyy

T=F{® * FIGURE 179

(Fig. 179). Here Fj and F, are bounded and continuous except for at most a finite number
of finite jumps. Write x 4 iy = z and show with the aid of the expression obtained in
Exercise 1 that

T(x,y)=Tix, y)+ TH(x, y) (x>0,y>0),

where

T\(x )-—ifw( 1 1 )F(z)dt
Wer=2l \i=?  rrar)

Ty (x )—1[00( L )F(r)d:
2EVT Sy \lit—zP it +z?)? '

3. Obtain as a special case of formula (1), Sec. 120, the expression

y 1 1
Ui yy= 2 F(t)d 0,y >0
(x, ¥) ﬁ[{} [(t-x)2+y3+(t+x)2+y2] (Hdt (x>0,y>0)

for a bounded function U that is harmonic in the first quadrant and satisfies the boundary
conditions
Ux(oa }’)mﬂ (}’>0),
liirg Ux, y) = F(x) (x >0,x#x;),
¥
y={

where F is bounded for all positive x and continuous except possibly for finite jumps at
a finite number of points x =x; (j =1,2,...,n).

4, Interchange the x and y axes in Sec. 120 to write the solution

_ 1 o0 xF ()
U(x’y)mﬁf_m(fmy)z—t—xgdt (x> 0)

of the Dirichlet problem for the half plane x > 0. Then write

1 when—-l<y<l,

F(y)m{() when |y| > 1,

and obtain these expressions for U/ and its harmonic conjugate —V':

— 2 12
U(I,}’)“_“i(afctany-{_lmarctan.}.}_._l)’ V(X,y)ﬂ I lnx +(}"+‘ ) ’
" g * 2m 22+ (y = 1
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where —7r /2 < arctan t < /2. Also, show that
1 .
Vix,y)+iU(x,y)= ;[ Log(z + i) — Log(z — )],

where z = x + iy.

121. NEUMANN PROBLEMS

Asin Sec. 116 and Fig. 172, we write s = rgexp(i¢) and z = r exp(i9), where r < ry,.
When s is fixed, the function

(1)  Qrg.r, ¢ — )= —2rylnls — z| = —rg In[ry — 2ryr cos(¢p — ) +r*]

is harmonic interior to the circle |z| = ry because it is the real component of
—2rglog(z — s), where the branch cut of log(z — s) is an outward ray from the point s.
If, moreover, r # 0,

2) Q,(rg, 7, — ) = —22 [

r

2r* — 2rgr cos(p — 0)
rs — 2ror cos(¢p — 6) +r?

=~’§~[P(rg,r,¢w9>-1],

where P is the Poisson kernel (7) of Sec. 116.

These observations suggest that the function () may be used to write an integral
representation for a harmonic function U whose normal derivative U, on the circle
r = ry assumes prescribed values G(0).

If G is piecewise continuous and U, is an arbitrary constant, the function

1 2m
3) Ulr,0)= 2 I Qrg,r, ¢ —0)G(@)dp+ Uy  (r<ry)

is harmonic because the integrand is a harmonic function of r and 8. If the mean value
of G over the circle |z| = ry is zero, or

2
@) f G(¢) d =0,

{

then, in view of equation (2),

2
U,(r,8) = — f 0[P (rg, 7y & — 8) — 11G (o) do
2n Jo r

ro 1 e
=0, P(rg,r, ¢ —6)G() do.
r 2w Jo
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Now, according to equations (1) and (2) of Sec. 117,

2x
lim — [ PG r. ¢ —6)G($) dp = G(6).
T 2w Jo
Hence
5) lim U, (r, 6) = G(®)

i"ﬁil’o

for each value of 8 at which G is continuous.
When G is piecewise continuous and satisfies condition (4), the formula

25
6 Ur,0)= —2"—0 f In[rg — 2ryr cos(¢ — 8) + r’1G(@) d¢ + Uy (r <rg),
T Jo

therefore, solves the Neumann problem for the region interior to the circle r = ry,
where G (9) is the normal derivative of the harmonic function U (r, 8) at the boundary
in the sense of condition (5). Note how it follows from equations (4) and (6) that, since
In r§ is constant, Uj is the value of U at the center r = 0 of the circle r = ry,.

The values U (r, 8) may represent steady temperatures in a disk r < ry with insu-
lated faces. In that case, condition (5) states that the flux of heat into the disk through its
edge is proportional to G (6). Condition (4) is the natural physical requirement that the
total rate of flow of heat into the disk be zero, since temperatures do not vary with time.

A corresponding formula for a harmonic function H in the region exterior to the
circle r = ry can be written in terms of Q as

2
7 HR,¥) = —% 000 R O-NCW o+ Hy  (R> ),

where Hj is a constant. As before, we assume that G is piecewise continuous and that
condition (4) holds. Then

Hy= lim H(R, V)
R 00
and

(®) lim Hp(R, ¥) = G(¥)

R>r0

for each  at which G is continuous. Verification of formula (7), as well as special

cases of formula (3) that apply to semicircular regions, is left to the exercises.
Turning now to a half plane, we let G(x) be continuous for all real x, except

possibly for a finite number of finite jumps, and let it satisfy an order property

9 X4Gx) <M (a>1)
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when —o¢ < x < o0o. For each fixed real number ¢, the function Log |z — ¢| is harmonic
in the half plane Im z > 0. Consequently, the function

oG
(10) U(x,y)-—-:lf In|z —t|G(t) dt 4 Uy
T

-0

— 5}; f In[(t — x)2 + Y 1G() dt + Uy (v > 0),

where U, is a real constant, is harmonic in that half plane.
Formula (10) was written with the Schwarz integral transform (1), Sec. 120, in
mind; for it follows from formula (10) that

| I e yG (1)
11 ,¥) = — 0).

In view of equations (1) and (2) of Sec. 120, then,

(12) lim U, (x, y) = G(x)
¥-2»0

y=0

at each point x where G is continuous.
Integral formula (10) evidently solves the Neumann problem for the half plane
y > 0, with boundary condition (12). But we have not presented conditions on G that
are sufficient to ensure that the harmonic function U is bounded as |z| increases.
When G is an odd function, formula (10) can be written

B L o0 (f _ x)Z + yZ]
(13) U(x,y)_zn /0 1n[(t+x)2+y2 G(r) dt (x >0,y>0).

This represents a function that is harmonic in the first quadrant x > 0, y > 0 and
satisfies the boundary conditions

(14) Uvo,y=0 (>0,

(15) Egé Uy(.x, y) = G(x) (x > 0).
y=0

EXERCISES

1. Establish formula (7), Sec. 121, as a solution of the Neumann problem for the region
exterior to a circle r = r,, using earlier resuits found in that section.

2. Obtain as a special case of formula (3), Sec. 121, the expression

UGr,6) = é; fg [Q(ro v & — 8) — Qlrgs v ¢+ OIG (@) deb
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for a function U that is harmonic in the semicircular regionr < ry, 0 < @ < 7 and satisfies
the boundary conditions

Uir,0)=U@r,m)=0 (r < ry),
}3310 U(r,0)=G(@O) 0<8 <m

Fry

for each @ at which G 1s continuous.

3. Obtain as a special case of formula (3), Sec. 121, the expression

l T
UG, 0= ]0 [Q(ror 7y & — B) + Qlro, 1 & +6)G(®) do + U

forafunction U that is harmonic in the semicircular regionr < ry, 0 < 8 < 7 and satisfies
the boundary conditions

U@(F,O)zU@(?',H)ZO (?{rg),
lim U,(r,8) =G(9) 0 <8 <m)

)‘—)J"Q
F<r

for each @ at which G is continuous, provided that

fo G(¢) dg =0.

4. Let T(x, y) denote the steady temperatures in a plate x > 0, y > 0. The faces of the plate
are insulated, and T = 0 on the edge x = 0. The flux of heat (Sec. 100) into the plate
along the segment 0 < x < 1 of the edge y =0 is a constant A, and the rest of that edge
is insulated. Use formula (13), Sec. 121, to show that the flux out of the plate along the

edge x =0 is
A ln(l-}- ~1—2)
4 y
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FIGURE 3
w = z%;
A’B’ on parabola v?

FIGURE 4
w=1/z.
FIGURE §
w=1/z.
¥ v
C B A X F° E'D|C'B® A u FIGURE 6

W = expz.
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= —4c2(u — ¢2).
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FIGURE 7
w = exp z.

FIGURE 8
w = exXp Z.

FIGURE 10

w = 8in z.

FIGURE 11
w=sinz; BCDonline y =5 (b > 0),

2 2
B'C'D’ on ellipse —=1

+ =
cosh’b  sinh? b



444  TaBLE OF TRANSFORMATIONS OF REGIONS

FIGURE 12
z =1

W= —.
z-41

FIGURE 13

i—z
w = - .
i+z

FIGURE 14
_i-a I+x1x2+\/(l—xf)(l-x%)
= sa= s
az — 1 X+ x
L= xpp + /(1= x)(1 - x3)
Ry= (@>1land Ry > Iwhen — 1 <x; <xy<1).

Xy = X2
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FIGURE 15
r—a  ltamt Jed-DeE - D
W= y = ’
az — 1 X+ x;
XXy — I—\/(x%— 2 — 1)
Ry= (xy <a<xjand 0 < Ry < 1 when 1 < x, < xy).
X=X

FIGURE 16

1
w=7z+ -.
2

E D B AX

FIGURE 17

1
W=7+ —.

FIGURE 18

1
w=z+ —; B'C’'D’ on ellipse + = 1.
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A B C D EX D E’|A” B u
FIGURE 19
w = Log ——:z=—coth —

z+1

FIGURE 20
z—1
w = Lo ;
gz+1

ABC oncircle x* + (y + cot h)> =csc? h (0 < h < 7).

FIGURE 21
w = Log et i; centers of circles at z = coth ¢, radii: csch ¢, (n = 1, 2).
z p—
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FIGURE 22

w=rhIln

hh +1In2(1—h) +im — h Log(z + 1) — (1 — k) Log(z — 1); x; = 2h — 1.

FIGURE 23

2/ 1+ cosz

FIGURE 24

et +1
et —1

wxcothéw
2

FIGURE 25

B 1 u ( 2)2 1—cosz
w=1]tan — = e
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w= Log(coth g)
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A B|C D E x A’ B" u

FIGURE 26
w=mni+z—Logz.

A B C|D E x D’

FIGURE 27

12
w=2(z + DY? + Log (z+ 1 L

(z+DV2+1

FIGURE 28

i 1+ iht 141 z—1
- Log 0

h 1—iht - f 7+ h?

W =
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FIGURE 29

w= 212 = )2 + cosh1 7).+
n

w"—“cosh'l(zz"hm I)M 1 cosh_i[(h-l-l)z_%].

(h— 1)z

* See Exercise 3, Sec. 115.
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Absolute convergence, 179, 201-202
Absolute value, 8-9
Accumulation point, 31
Acrodynamics, 379
Analytic continuation, 81-82, 84-85
Analytic function(s), 70-72

compositions of, 71

derivatives of, 158-162

products of, 71

quotients of, 71, 242243

sums of, 71

zeros of, 239-242, 246-247, 282-288
Angle:

of inclination, 119, 344

of rotation, 344
Antiderivative, 113, 135-138, 150
Arc, 117

differentiable, 119

simple, 117

smooth, 120
Argument, 15
Argument principle, 281-284

Bernoulli’s equation, 380
Bessel function, 200n.

Beta function, 277, 398
Bibliography, 437-439
Bilinear transformation, 307
Binomial formula, 7
Boas, R. P, Ir., 167n.
Bolzano-Weierstrass theorem, 247
Boundary conditions, 353
transformations of, 355-358
Boundary point, 30
Boundary value problem, 353-354, 417
Bounded:
function, 53, 248
set, 31
Branch cut, 93, 325~334, 338-340
integration along, 273-275
Branch of function, 93
principal, 93, 98, 325
Branch point, 93-94
at infinity, 340
Bromwich integral, 288

Casorati—Weierstrass theorem, 249

Cauchy, A. L., 62

Cauchy—Goursat theorem, 142-144
converse of, 162
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Cauchy—Goursat theorem (continued)
extensions of, 149-151
proof of, 144-149
Cauchy integral formula, 157158
for haif plane, 428
Cauchy principal value, 251253
Cauchy product, 216
Cauchy-Riemann equations, 60-63
in complex form, 70
in polar form, 65-68
necessity of, 62
sufficiency of, 63-65
Cauchy’s inequality, 165
Cauchy’s residue theorem, 225
Chebyshev polynomials, 22n.
Christoffel, E. B., 395
Circle of convergence, 202
Circulation of fluid, 379
Closed contour, 135, 149
simple, 120, 142, 151
Closed curve, simple, 117
Closed set, 30
Closure of set, 30
Complex conjugate, 11
Complex exponents, 97-99
Complex form of Cauchy-Riemann
equations, 70
Complex number(s), 1
algebraic properties of, 3-7
argument of, 15
conjugate of, 11
exponential form of, 15-17
imaginary part of, 1
modulus of, 8-11
polar form of, 15
powers of, 20, 96-99
real part of, 1
roots of, 22-24, 96
Complex plane, 1
extended, 48, 302, 308
regions in, 29-31
Complex potential, 382
Complex variable, functions of, 33-35
Composition of functions, 51, 58, 71
Conductivity, thermal, 361

Conformal mapping, 343-358
applications of, 361-386
properties of, 343-350

Conformal transformation, 343-350
angle of rotation of, 344
local inverse of, 348
scale factor of, 346

Conjugate:
complex, 11
harmonic, 77, 351-353

Connected open set, 30

Continuity, 51-53

Continuous function, 51

Contour, 116-120
closed, 135, 149
indented, 267
simple closed, 120, 142, 151

Contour integral, 122-124

Contraction, 299, 346

Convergence of improper integral, 251-253

Convergence of sequence, 175-177
Convergence of series, 178-180
absolute, 179, 201-202
circle of, 202
uniform, 202
Coordinates:
polar, 15, 34, 39, 65-68
rectangular, 1 |
Critical point, 345
Cross ratios, 310n.
Curve:
Jordan, 117
level, 79-80
simple closed, 117

Definite integrals, 113-116, 278-280
Deformation of paths, principle of, 152
Deleted neighborhood, 30
De Moivre’s formula, 20
Derivative, 54-57

directional, 71, 356-357

existence of, 60—67
Differentiable arc, 119
Differentiable function, 54
Differentiation formulas, 57-59



Diffusion, 363
Directional derivative, 71, 356-357
Dirichlet problem, 353
for disk, 419423
for half plane, 364, 429-431, 432
for quadrant, 431
for rectangle, 378
for region exterior to circle, 424
for semicircular region, 423
for semi—infinite strip, 366367
Disk, punctured, 30, 192, 217, 223
Division of power series, 217-218
Domain(s), 30
of definition of function, 33
intersection of, 81
multiply connected, 149151
simply connected, 149-150, 352
union of, 82

Electrostatic potential, 373-374
in cylinder, 374-376
in half space, 376-377
between planes, 377
between plates, 390, 411
Elements of function, 82
Elliptic integral, 398
Entire function, 70, 165-166
Equipotentials, 373, 381
Essential singular point, 232
behavior near, 232, 249-250
Euler numbers, 220
Euler’s formula, 16
Even function, 116, 252-253
Expansion, 299, 346
Exponential form of complex numbers,
15-17
Exponential function, 87-89, 99
inverse of, 349--350
mapping by, 4042
Extended complex plane, 48, 302,
308
Exterior point, 30

Field intensity, 373
Fixed point, 312

InDEx 453

Fluid:
circulation of, 379
incompressible, 380
pressure of, 380
rotation of, 380
velocity of, 379
Fluid flow:
around airfoil, 390
in angular region, 387
in channel, 406411
circulation of, 379
complex potential of, 382
around corner, 383-385
around cylinder, 385-386
irrotational, 380
around plate, 388
in quadrant, 384-385
in semi-infinite strip, 387
over step, 414415
Flux of heat, 361
Flux lines, 374
Formula:
bintomial, 7
Cauchy integral, 157-158
de Moivre’s, 20
Euler’s, 16
Poisson integral, 417435
quadratic, 29
Schwarz integral, 427429
(See also specific formulas, for example:
Differentiation formulas)
Fourier, Joseph, 361n.
Fourier integral, 260, 269n.
Fourier series, 200
Fourier’s law, 361
Fresnel integrals, 266
Function(s):
analytic (See Analytic function)
antiderivative of, 113, 135-138
Bessel, 2007.
beta, 277, 398
bounded, 53, 248
~branch of, 93
principal, 93, 98, 325
composition of, 51, 58, 71
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Function(s): (continued)
continuous, 51
derivatives of, 54-57
differentiable, 54
domain of definition of, 33
elements of, 82
entire, 70, 165166
even, 116, 252-253

exponential (See Exponential function)

gamma, 273
harmonic (See Harmonic function)
holomorphic, 70n.

hyperbolic (See Hyperbolic functions)

impulse, 425-426
inverse, 308
limit of, 43-48
involving point at infinity, 48-51
local inverse of, 348

logarithmic (See Logarithmic function)

meromorphic, 281-282

multiple-valued, 35, 335

odd, 116

piecewise continuous, 113, 122

principal part of, 231

range of, 36

rational, 34, 253

real-valued, 34, 111, 113, 120,
131

regular, 70n.

stream, 381-383

trigonometric (See Trigonometric
functions)

value of, 33

zeros of (See Zeros of functions)

Fundamental theorem:
of algebra, 166
of calculus, 113, 135

Gamma function, 273

Gauss’s mean value theorem, 168
Geometric series, 187

Goursat, E., 144

Gradient, 71-72, 356357, 360
Green’s theorem, 143, 379

Harmonic function, 75-78, 381
conjugate of, 77, 351-353
maximum and minimum values of,

171-172, 373
in quadrant, 435
in semicircular region, 423-424, 436
transformations of, 353-355

Holomorphic function, 70n.

Hydrodynamics, 379

Hyperbolic functions, 105-106
inverses of, 109-110
zeros of, 106

Image of point, 36

inverse, 36
Imaginary axis, 1
Improper real integrals, 251-275
Impulse function, 425-426
Incompressible fluid, 380
Independence of path, 127, 135
Indented paths, 267-270
Inequality:

Cauchy’s, 165

Jordan’s, 262

triangle, 10, 14
Infinity:

point at, 48-49

residues at, 228
Integral(s):

Bromwich, 288

Cauchy principal value of, 251-253

contour, 122-124

definite, 113116, 278-280

elliptic, 398

Fourier, 260, 269n.

Fresnel, 266

improper real, 251-275

line, 122, 352

modulus of, 114, 130-133
Integral transformation, 419
Interior point, 30
Intersection of domains, 81
Inverse:

function, 308

image of point, 36



Laplace transform, 288-291
local, 348
point, 302, 417
z-transform, 199
Inversion, 302
Irrotational flow, 380
Isogonal mapping, 345
Isolated singular point, 221
Isolated zeros, 240
Isotherms, 363

Jacobian, 348

Jordan, C., 117

Jordan curve, 117

Jordan curve theorem, 120
Jordan’s inequality, 262
Jordan’s lemma, 262-265
Joukowski airfoil, 389

Lagrange’s trigonometric identity, 22
Laplace transform, 288

inverse, 288-291
Laplace’s equation, 75, 79, 362-363, 381
Laurent series, 190-195
Laurent’s theorem, 190
Legendre polynomials, 116m., 164n.
Level curves, 79-80
Limit(s):

of function, 4346

involving point at infinity, 48-51

of sequence, 175

theorems on, 46-48
Line integral, 122, 352
Linear combination, 74
Linear fractional transformation, 307-311
Linear transformation, 299-301
Lines of flow, 363
Liouville’s theorem, 165-166
Local inverse, 348
Logarithmic function, 90-96

branch of, 93

mapping by, 316, 318

principal branch of, 93

principal value of, 92

Riemann surface for, 335-337

INnpEx 455

Maclaurin series, 183
Mapping, 36
conformal (See Conformal
transformation)
by exponential function, 40-42
isogonal, 345
by logarithmic function, 316, 318
one to one (See One to one mapping)
of real axis onto polygon, 391-393
by trigonometric functions, 318-322
(See also Transformation)
Maximum and minimum values, 130,
167-171, 373
Maximum modulus principle, 169
Meromorphic function, 281282
Modulus, 811
of integral, 114, 130~133
Morera, E., 162
Morera’s theorem, 162
Multiple-valued function, 35, 335
Multiplication of power series, 215-217
Multiply connected domain, 149-151

Neighborhood, 29-30

deleted, 30

of point at infinity, 49
Nested intervals, 156
Nested squares, 146, 156
Neumann problem, 353

for disk, 434

for half plane, 435

for region exterior to circle, 434

for semicircular region, 436
Number:

complex, 1

winding, 281

Odd function, 116

One to one mapping, 3740, 301, 308, 315,
318-321, 325-326, 332, 336

Open set, 30

Partial sum of series, 178
Picard’s theorem, 232, 249
Piecewise continuous function, 113, 122
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Point at infinity, 4849
limits involving, 48-51
neighborhood of, 49
Poisson integral formula, 417-435
for disk, 419
for half plane, 429
Poisson integral transform, 419-420
Poisson kemnel, 419
Poisson’s equation, 359
Polar coordinates, 15, 34, 39, 65-68
Polar form:
of Cauchy-Riemann equations, 65-68
of complex numbers, 13
Pole(s):
number of, 247, 282
order of, 231, 234, 239, 242, 246, 282
residues at, 234-235, 243
simple, 231, 243, 267
Polynomial(s):
Chebyshev, 22n.
Legendre, 116n., 164n.
zeros of, 166, 172, 286-287
Potential:
complex, 382

electrostatic (See Electrostatic potential)

velocity, 381
Power series, 180
Cauchy product of, 216
convergence of, 200-204
differentiation of, 209
division of, 217-218
integration of, 207
multiplication of, 215-217
uniqueness of, 210
Powers of complex numbers, 20, 96-99
Pressure of fluid, 380
Principal branch of function, 93, 98, 325
Principal part of function, 231
Principal value:
of argument, 15
Cauchy, 251-253
of logarithm, 92
of powers, 98
Principle:
argument, 281-284

of deformation of paths, 152
maximum modulus, 167-171
reflection, 8284

Product, Cauchy, 216

Punctured disk, 30, 192, 217, 223

Pure imaginary number, 1

Quadratic formula, 29

Radio-frequency heating, 259
Range of function, 36
Rational function, 34, 253
Real axis, 1
Real-valued function, 34, 111, 113, 120,
131
Rectangular coordinates:
Cauchy-Riemann equations in, 62
complex number in, 8
Reflection, 11, 36, 82, 302
Reflection principle, 82-84
Regions in complex plane, 29-31
Regular function, 70n.
Remainder of series, 179-180
Removable singular point, 232, 248
Residue theorems, 225, 228
Residues, 221-225
applications of, 251-295
at infinity, 228n.
at poles, 234-233, 243
Resonance, 298
Riemann, G. F. B., 62
Riemann sphere, 49
Riemann surfaces, 335-340
Riemann’s theorem, 248
Roots of complex numbers, 22-24, 96
Rotation, 36, 299-301
angle of, 344
of fluid, 380
Rouché’s theorem, 284, 287

Scale factor, 346
Schwarz, H. A., 395
Schwarz—Christoffel transformation,
391-413
onto degenerate polygon, 401403



onto rectangle, 400-401
onto triangle, 397-399
Schwarz integral formula, 427-429
Schwarz integral transform, 429
Separation of variables, method of, 367,
378
Sequence, 175-177
limit of, 175
Series, 175-220
Fourier, 200
geometric, 187
Laurent, 190--195
Maclaurin, 183
partial sum of, 178
power (See Power series)
remainder of, 179-180
sum of, 178
Taylor, 182-185
(See also Convergence of series)
Simple arc, 117
Simple closed contour, 120, 142, 151
positively oriented, 142
Simple closed curve, 117
Simple pole, 231, 243, 267
Simply connected domain, 149-150, 352
Singular point, 70
essential, 232, 249250
isolated, 221
removable, 232, 248
(See also Branch point; Pole)
Sink, 407, 408
Smooth arc, 120
Source, 407, 408
Stagnation point, 408
Stereographic projection, 49
Stream function, 381-383
Streamlines, 381
Successive transformations, 300, 307,
315-318, 322-324, 333-334
Sum of series, 178

Table of transformations, 441449
Taylor series, 182—185
Taylor’s theorem, 182

InpEx 457

Temperatures, steady, 361-363

in cylindrical wedge, 370-371

in half plane, 363-365

in infinite strip, 364, 372-373

in quadrant, 368-370

in semicircular plate, 372

in semi-elliptical plate, 373

in semi-infinite strip, 365-367
Thermal conductivity, 361
Transform:

Laplace, 288

inverse, 288-291

Poisson integral, 419420

Schwarz integral, 429

z-transform, 199
Transformation(s):

bilinear, 307

of boundary conditions, 355-358

conformal, 343-350

critical point of, 345

of harmonic functions, 353-355

integral, 419

linear, 299-301

linear fractional, 307-311

Schwarz—Christoffel, 391-413

successive, 300, 307, 315-318, 322-324,

333-334

table of, 441449

(See also Mapping)
Translation, 35, 300
Triangle ineguality, 10, 14
Trigonometric functions, 100-103

identities for, 101102

inverses of, 108-109

mapping by, 318-322

zeros of, 102
Two-dimensional fluid flow, 379-381

Unbounded set, 31
Uniform convergence, 202
Union of domains, 82
Unity, roots of, 25-26
Unstable component, 298
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Value, absolute, 8-9
of function, 33

Vector field, 43

Vectors, 8-9

Velocity of fluid, 379

Velocity potential, 381

Viscosity, 380

Winding number, 281

Zeros of functions, 102, 166
isolated, 240
number of, 282, 284-288
order of, 239, 242
z-transform, 199
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