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PREFACE 

This book is a revision of the sixth edition, published in 1996. That edition has served, 
just as the earlier ones did, as a textbook for a one-term introductory course in the 
theory and application of functions of a complex variable. This edition preserves the 
basic content and style of the earlier editions, the first two of which were written by 
the late Ruel V. Churchill alone. 

In this edition, the main changes appear in the first nine chapters, which make up 
the core of a one-term course. The remaining three chapters are devoted to physical 
applications, from which a selection can be made, and are intended mainly for self­
study or reference. 

Among major improvements, there are thirty new figures; and many of the old 
ones have been redrawn. Certain sections have been divided up in order to emphasize 
specific topics, and a number of new sections have been devoted exclusively to exam­
ples. Sections that can be skipped or postponed without disruption are more clearly 
identified in order to make more time for material that is absolutely essential in a first 
course, or for selected applications later on. Throughout the book, exercise sets occur 
more often than in earlier editions. As a result, the number of exercises in any given 
set is generally smaller, thus making it more convenient for an instructor in assigning 
homework. 

As for other improvements in this edition, we mention that the introductory 
material on mappings in Chap. 2 has been simplified and now includes mapping 
properties of the exponential function. There has been some rearrangement of material 
in Chap. 3 on elementary functions, in order to make the flow of topics more natural. 
Specifically, the sections on logarithms now directly fo11ow the one on the exponential 

XV 
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function; and the sections on trigonometric and hyberbolic functions are now closer 
to the ones on their inverses. Encouraged by comments from users of the book in the 
past several years, we have brought some important material out of the exercises and 
into the text. Examples of this are the treatment of isolated zeros of analytic functions 
in Chap. 6 and the discussion of integration along indented paths in Chap. 7. 

The first objective of the book is to develop those parts of the theory which 
are prominent in applications of the subject. The second objective is to furnish an 
introduction to applications of residues and conformal mapping. Special emphasis 
is given to the use of conformal mapping in solving boundary value problems that 
arise in studies of heat conduction, electrostatic potential, and fluid flow. Hence the 
book may be considered as a companion volume to the authors' "Fourier Series and 
Boundary Value Problems" and Ruel V. Churchill's "Operational Mathematics," where 
other classical methods for solving boundary value problems in partial differential 
equations are developed. The latter book also contains further applications of residues 
in connection with Laplace transforms. 

This book has been used for many years in a three-hour course given each term at 
The University of Michigan. The classes have consisted mainly of seniors and graduate 
students majoring in mathematics, engineering, or one of the physical sciences. Before 
taking the course, the students have completed at least a three-term calculus sequence, 
a first course in ordinary differential equations, and sometimes a term of advanced 
calculus. In order to accommodate as wide a range of readers as possible, there are 
footnotes referring to texts that give proofs and discussions of the more delicate results 
from calculus that are occasionally needed. Some of the material in the book need not 
be covered in lectures and can be left for students to read on their own. If mapping 
by elementary functions and applications of conformal mapping are desired earlier 
in the course, one can skip to Chapters 8, 9, and 10 immediately after Chapter 3 on 
elementary functions. 

Most of the basic results are stated as theorems or corollaries, followed by 
examples and exercises illustrating those results. A bibliography of other books, 
many of which are more advanced, is provided in Appendix I. A table of conformal 
transformations useful in applications appears in Appendix 2. 

In the preparation of this edition, continual interest and support has been provided 
by a number of people, many of whom are family, colleagues, and students. They 
include Jacqueline R. Brown, Ronald P. Morash, Margret H. Hoft, Sandra M. Weber, 
Joyce A. Moss, as well as Robert E. Ross and Michelle D. Munn of the editorial staff 
at McGraw-Hill Higher Education. 

James Ward Brown 
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CHAPTER 

1 
COMPLEX NUMBERS 

In this chapter, we survey the algebraic and geometric structure of the complex number 
system. We assume various corresponding properties of real numbers to be known. 

1. SUMS AND PRODUCTS 

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to 
be interpreted as points in the complex plane, with rectangular coordinates x and y, 
just as real numbers x are thought of as points on the real line. When real numbers 
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex 
numbers includes the real numbers as a subset. Complex numbers of the form (0, y) 
correspond to points on the y axis and are called pure imaginary numbers. The y axis 
is, then, referred to as the imaginary axis. 

It is customary to denote a complex number (x, y) by z, so that 

(1) z=(x,y). 

The real numbers x and y are, moreover, known as the real and imaginary parts of z, 
respectively; and we write 

(2) Re z = x, Im z = y. 

Two complex numbers z1 = (x1, y1) and z2 = (x2 , y2) are equal whenever they have 
the same real parts and the same imaginary parts. Thus the statement z1 = z2 means 
that z1 and z2 correspond to the same point in the complex, or z, plane. 

1 



2 COMPLEX NUMBERS CHAP. I 

The sum z1 + z2 and the product z 1z2 of two complex numbers z1 = (x1, y1) and 
Zz = (xz, yz) are defined as follows: 

(3) 

(4) 
(xi> Yt) + (xz, Yz) = (xt + xz, Yt + Y2), 

(xl, Yt)(Xz, Yz) = (xtXz- YtYz, YtXz + XtYz). 

Note that the operations defined by equations (3) and (4) become the usual operations 
of addition and multiplication when restricted to the real numbers: 

(xl> 0) + (x2, 0) = (x1 + xz, 0), 

(x1, O)(x2, 0) = (x1xz, 0). 

The complex number system is, therefore, a natural extension of the real number 
system. 

Any complex number z = (x, y) can be written z = (x, 0) + (0, y ), and it is easy 
to see that (0, l)(y, 0) = (0, y). Hence 

z = (x, 0) + (0, l)(y, 0); 

and, if we think of a real number as either x or (x, 0) and let i denote the imaginary 
number (0, 1) (see Fig. 1), it is clear that* 

(5) z=x+iy. 

Also, with the convention z2 = zz, z3 = zz2, etc., we find that 

i 2 = (0, 1)(0, l) = ( -1, 0), 

or 

(6) ·2 1 l =- . 

y 

•z=(x,y) 

i""' (0, 1) 

0 x=(x,O) X 
FIGURE 1 

In view of expression (5), definitions (3) and (4) become 

(7) (xl + iy1) + (xz + iyz) = (xl + xz) + i(Yt + Yz), 

(8) (xi+ iy1)(x2 + iyz) = (x1x2- YtYz) + i (y1x2 + XJYz). 

* In electrical engineering, the letter j is used instead of i. 
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Observe that the right-hand sides of these equations can be obtained by formally 

manipulating the terms on the left as if they involved only real numbers and by 

replacing i 2 by -1 when it occurs. 

2. BASIC ALGEBRAIC PROPERTIES 

Various properties of addition and multiplication of complex numbers are the same as 

for real numbers. We list here the more basic of these algebraic properties and verify 

some of them. Most of the others are verified in the exercises. 

The commutative laws 

(1) 

and the associative laws 

(2) 

follow easily from the definitions in Sec. 1 of addition and multiplication of complex 

numbers and the fact that real numbers obey these laws. For example, if z1 =(xi> y1) 

and z 2 = (x2, y2), then 

Zt + Z2 = (xl +x2, Y1 + Y2) = (x2 + Xt. Y2 + Yt) = Z2 + Zt· 

Verification of the rest of the above laws, as well as the distributive law 

(3) 

is similar. 
According to the commutative law for multiplication, iy = yi. Hence one can 

write z = x + yi instead of z = x + iy. Also, because of the associative laws, a sum 

z1 + z2 + z3 or a product z 1z2z3 is well defined without parentheses, as is the case with 

real numbers. 
The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real 

numbers carry over to the entire complex number system. That is, 

(4) z + 0 = z and z · 1 = z 

for every complex number z. Furthermore, 0 and 1 are the only complex numbers with 

such properties (see Exercise 9). 

There is associated with each complex number z = (x, y) an additive inverse 

(5) -z = (-x, -y), 

satisfying the equation z + ( -z) = 0. Moreover, there is only one additive inverse 

for any given z, since the equation (x, y) + (u, v) = (0, 0) implies that u = -x and 

v = -y. Expression (5) can also be written -z = -x - iy without ambiguity since 



4 COMPLEX NUMBERS CHAP. I 

(Exercise 8) -(iy) = ( -i)y = i(-y). Additive inverses are used to define subtraction: 

(6) 

(7) Zt- Zz = (Xt- Xz, Yl- Yz) = (Xt- Xz) + i(Yt- Yz). 

For any nonzero complex number z = (x, y), there is a number c 1 such that 
zz-1 = 1. This multiplicative inverse is less obvious than the additive one. To find it, 
we seek real numbers u and v, expressed in terms of x and y, such that 

(x, y)(u, v) = (1, 0). 

According to equation (4), Sec. 1, which defines the product of two complex numbers, 
u and v must satisfy the pair 

xu - yv = 1, yu + xv = 0 

of linear simultaneous equations; and simple computation yields the unique solution 

X 
u- -~---=-

- x2 + y2' 
V= -y 

x2 + y2 

So the multiplicative inverse of z = (x, y) is 

(8) -1 ( X -y ) 
z = x2 + y2' x2 + y2 

(z¥=0). 

The inverse z-1 is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0; and 
this is not permitted in expression (8). 

EXERCISES 

1. Verify that 

(a) ( v'2- i) - i (1- ,J2i) = -2i; (b) (2, -3)(-2, 1) = (-1, 8); 

(c) (3, 1)(3, -1) (~. 1~) = (2, 1). 

2. Show that 

(a) Re(iz) =- Im z; (b) Im(iz) = Re z. 

3. Show that (I+ z)2 = 1 + 2z + z2• 

4. Verify that each of the two numbers z = 1 ± i satisfies the equation z2 - 2z + 2 = 0. 

5. Prove that multiplication is commutative, as stated in the second of equations (1 ), Sec. 2. 

6. Verify 

(a) the associative law for addition, stated in the first of equations (2), Sec. 2; 

(b) the distributive law (3), Sec. 2. 
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7. Use the associative law for addition and the distributive law to show that 

8. By writing i = (0, 1) andy= (y, 0), show that -(iy) = ( --i)y = i (-y). 

9. (a) Write (x, y} + (u, v) = (x, y) and point out how it follows that the complex number 
0 = (0, 0) is unique as an additive identity. 

(b) Likewise, write (x, y)(u, v) = (x, y) and showthatthenumber 1 = (1, 0) is a unique 
multiplicative identity. 

10. Solve the equation z2 + z + l = 0 for z = (x, y) by writing 

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0) 

and then solving a pair of simultaneous equations in x and y. 

Suggestion: Use the fact that no real number x satisfies the given equation to show 
that y ::/= 0. 

Ansz = (- ~, ±-;) 
3. FURTHER PROPERTIES 

In this section, we mention a number of other algebraic properties of addition and 
multiplication of complex numbers that follow from the ones already described in 
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply 
to real numbers, the reader can easily pass to Sec. 4 without serious disruption. 

We begin with the observation that the existence of multiplicative inverses enables 
us to show that if a product z 1 z2 is zero, then so is at least one of the factors z 1 and 

z2. For suppose that z1z2 = 0 and z1 f= 0. The inverse z 11 exists; and, according to the 
definition of multiplication, any complex number times zero is zero. Hence 

That is, if z1z2 = 0, either z1 = 0 or z2 = 0; or possibly both z1 and z2 equal zero. 
Another way to state this result is that if two complex numbers z1 and z2 are nonzero, 
then so is their product z1z2. 

Division by a nonzero complex number is defined as follows: 

"' q -1 - = ZtZ, 
zz -

(1) (zz I= 0). 

If z1 = (xb y 1) and z2 = (x2, y2), equation (1) here and expression (8) in Sec. 2 tell us 
that 



6 COMPLEX NUMBERS CHAP. I 

That is, 

(2) (zz :/= 0). 

Although expression (2) is not easy to remember, it can be obtained by writing (see 
Exercise 7) 

(3) 
Z1 (XI+ iy1)(x2- iy2) 

Z2 - (xz + iy2)(x2 - iyz)' 

multiplying out the products in the numerator and denominator on the right, and then 
using the property 

(4) 

The motivation for starting with equation (3) appears in Sec. 5. 
There are some expected identities, involving quotients, that follow from the 

relation 

(5) 1 -1 
--" - .(.2 
Z2 

(Z2 f= 0), 

which is equation (1) when z1 = 1. Relation (5) enables us, for example, to write 
equation (1) in the form 

(6) (Z2 f= 0). 

Also, by observing that (see Exercise 3) 

(Zl f= 0, Z2 f= 0), 

and hence that (z 1z2)-1 = zi1z2 1
, one can use relation (5) to show that 

(7) (Zl f= 0, Z2 f= 0). 

Another useful identity, to be derived in the exercises, is 

(8) (z3 f= 0, Z4 f= 0). 
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EXAMPLE. Computations such as the following are now justified: 

1 1 5+i 5+i 

, (2- 3i)(l + i) 5- i 5 + i (5- i)(5 + i) 
5+i 5 i 5 1. 

26 = 26 + 26 = 26 + 26 l • 

Finally, we note that the binomial formula involving real numbers remains valid 
with complex numbers. That is, if z1 and z2 are any two complex numbers, 

(9) (n=1,2, ... ) 

where 

(~) - k!(nn~ k)! 
(k = 0, 1, 2, ... , n) 

and where it is agreed that 0! = 1. The proof, by mathematical induction, is left as an 
exerctse. 

EXERCISES 

1. Reduce each of these quantities to a real number: 

( ) 1 + 2i 2 - i (b) 5i 
a 3- 4i + 5i ; (1 - i)(2- i)(3- i); 

(c)(l-i)4 . 

Ans. (a) -2/5; (b) -1/2; (c) -4. 

2. Show that 

(a) (-l)z = -z; 
1 

(b) - = z (z :f: 0). 
Ijz 

3. Use the associative and commutative laws for multiplication to show that 

4. Prove that if z 1z2z3 = 0, then at least one of the three factors is zero. 
Suggestion: Write (z 1z2)z3 = 0 and use a similar result (Sec. 3) involving two 

factors. 

5. Derive expression (2), Sec. 3, for the quotient z II z2 by the method described just after 
it. 

6. With the aid of relations (6) and (7) in Sec. 3, derive identity (8) there. 

7. Use identity (8) in Sec. 3 to derive the cancellation law: 

(Z2 :f: 0, Z :f: 0). 
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8. Use mathematical induction to verify the binomial formula (9) in Sec. 3. More precisely, 

note first that the formula is true when n = 1. Then, assuming that it is valid when n = m 

where m denotes any positive integer, show that it must hold when n = m + l. 

4. MODULI 

It is natural to associate any nonzero complex number z = x + iy with the directed line 

segment, or vector, from the origin to the point (x, y) that represents z (Sec. 1) in the 

complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the 

numbers z = x + iy and -2 + i are displayed graphically as both points and radius 

vectors. 

(-2. 1) 
• 

VI 

J (x, y) 
• 

-2 0 X 
FIGURE2 

According to the definition of the sum of two complex numbers z 1 = x 1 + (v1 

and z2 = x2 + iy2, the number z1 + z2 corresponds to the point (x 1 + x2, y 1 + y2). It 

also corresponds to a vector with those coordinates as its components. Hence z1 + z2 

may be obtained vectorially as shown in Fig. 3. The difference z1 - z2 = z1 + ( -z2) 

corresponds to the sum of the vectors for z1 and -z2 (Fig. 4). 

y 

0 X FIGURE3 

Although the product of two complex numbers z1 and z2 is itself a complex 

number represented by a vector, that vector lies in the same plane as the vectors for z 1 

and z2. Evidently, then, this product is neither the scalar nor the vector product used 

in ordinary vector analysis. 
The vector interpretation of complex numbers is especially helpful in extending 

the concept of absolute values of real numbers to the complex plane. The modulus, 

or absolute value. of a complex number z = x + i y is defined as the nonnegative real 
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y 

0 X 

FIGURE4 

number )x2 + y2 and is denoted by lzl; that is, 

(l) lzl = )x2 + y2• 

Geometrically, the number lzl is the distance between the point (x, y) and the origin, 

or the length of the vector representing z. It reduces to the usual absolute value in the 

real number system when y = 0. Note that, while the inequality z1 < z2 is meaningless 

unless both z 1 and z2 are real, the statement lz11 < lz21 means that the point z1 is closer 

to the origin than the point z2 is. 

EXAMPLE 1. Since 1- 3 + 2i I = J13 and 11 + 4i I = v17, the point -3 + 2i is 

closer to the origin than l + 4i is. 

The distance between two points z 1 = x 1 + i YI and z2 = x2 + i Y2 is I z 1 - z2l· This 

is clear from Fig. 4, since lz1 - z21 is the length of the vector representing z1 - z2; and, 

by translating the radius vector z1 - z2, one can interpret z1 - z2 as the directed line 

segment from the point (x2 , y2) to the point (xl> y1). Alternatively, it follows from the 

expression 

and definition (1) that 

The complex numbers z corresponding to the points lying on the circle with center 

zo and radius R thus satisfy the equation lz - zo I = R, and conversely. We refer to this 

set of points simply as the circle lz - zol = R. 

EXAMPLE 2. The equation lz- 1 + 3il = 2 represents the circle whose center is 

zo = (1, -3) and whose radius is R = 2. 

It alsofollowsfromdefinition (1) that the real numbers lzl, Re z =x, andlm z = y 

are related by the equation 

(2) 
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Thus 

(3) Re z <IRe zl < lzl and Im z <lim zl < lzl. 

We turn now to the triangle inequality, which provides an upper bound for the 

modulus of the sum of two complex numbers z 1 and z2: 

(4) 

This important inequality is geometrically evident in Fig. 3, since it is merely a 

statement that the length of one side of a triangle is less than or equal to the sum 

of the lengths of the other two sides. We can also see from Fig. 3 that inequality ( 4) 

is actually an equality when 0, Zt> and z2 are collinear. Another, strictly algebraic, 

derivation is given in Exercise 16, Sec. 5. 
An immediate consequence of the triangle inequality is the fact that 

(5) 

To derive inequality (5), we write 

which means that 

(6) 

This is inequality (5) when lz11 > lz2 j. If lz11 < iz2 1, we need only interchange z1 and 

z2 in inequality (6) to get 

which is the desired result. Inequality (5) tells us, of course, that the length of one side 

of a triangle is greater than or equal to the difference of the lengths of the other two 

sides. 
Because 1- z21 = lz2 1, one can replace z2 by -z2 in inequalities (4) and (5) to 

summarize these results in a particularly useful form: 

(7) 

(8) 

lz1 ± zzl < lz11 + lzzl, 

lz1 ± zzl >liz II- lzzll· 

EXAMPLE 3. If a point z lies on the unit circle lzl = 1 about the origin, then 

lz-21<izl+2=3 

and 

lz- 21 >liz!- 21 = 1. 
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The triangle inequality ( 4) can be generalized by means of mathematical induc­

tion to sums involving any finite number of terms: 

(9) lzt + Zz + · · · + Znl < lztl + lzzl + · · · + lznl (n=2,3, ... ). 

To give details of the induction proof here, we note that when n = 2, inequality (9) is 

just inequality (4). Furthermore, if inequality (9) is assumed to be valid when n = m, 

it must also hold when n = m + 1 since, by inequality ( 4 ), 

I(Zt + Zz + · · · + Zm) + Zm+!l < lz1 + Zz + · · · + Zml + lzm+tl 

< (lzii + lzzl + · · · + lzml) + lzm+d· 

EXERCISES 

1. Locate the numbers z1 + z2 and z1 - z2 vectorially when 
2 . h h 

(a) ZJ = 2i, Zz = 
3

- 1; (b) Zt = (-.y3, 1), Zz = (y3, 0); 

(c) Zt = (-3, 1), Zz = (1, 4); (d) ZJ =x1 + iyb Z2 = X1 - i_y1. 

2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and lzl. 

3. Verify that .J21z1 > IRe zl +lim zl. 
Suggestion: Reduce this inequality to (lx I - 1Yi)2 > 0. 

4. In each case, sketch the set of points determined by the given condition: 

(a)lz-l+il=l; (b)lz+il<3; (c)lz-4il>4. 

5. Using the fact that lz1 - z2 1 is the distance between two points z1 andz2, give a geometric 

argument that 

(a) lz- 4il + lz + 4il = 10 represents an ellipse whose foci are (0, ±4); 

(b) lz- 11 = lz + i I represents the line through the origin whose slope is -1. 

5. COMPLEX CONJUGATES 

The complex conjugate, or simply the conjugate, of a complex number z = x + iy is 

defined as the complex number x - iy and is denoted by z; that is, 

(1) z=x-iy. 

The number z is represented by the point (x, - y), which is the reflection in the real 

axis of the point (x, y) representing z (Fig. 5). Note that 

-
z = z and lzl = lzl 

for all z. 
If z 1 = x1 + iy1 and z2 = x2 + iy2, then 
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y 

(x, y) 

0 X 

FIGURES 

So the conjugate of the sum is the sum of the conjugates: 

(2) 

In like manner, it is easy to show that 

(3) 

(4) 

and 

(5) (;~) = ;~ (zz f. 0). 

CHAP. I 

The sum z + z of a complex number z = x + iy and its conjugate z = x - iy is 

the real number 2x, and the difference z- z is the pure imaginary number 2iy. Hence 

(6) 
z+z 

Rez = , 
2 

-z-z 
lm z =- . 

2i 

An important identity relating the conjugate of a complex number z = x + iy to 

its modulus is 

(7) -.7- 17'12 ---- - - ' 

where each side is equal to x 2 + y 2 . It suggests the method for determining a quotient 

zJiz2 that begins with expression (3), Sec. 3. That method is, of course, based on 

multiplying both the numerator and the denominator of zdz2 by z2, so that the 

denominator becomes the real number lz2 i2 . 

EXAMPLE 1. As an illustration, 

-1 + 3i = ( -1 + 3i)(2 + i) = -5 + 5i = -5 + 5i = -1 + i. 
2- i (2 - i)(2 + i) 12- i 12 5 

See also the example near the end of Sec. 3. 
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Identity (7) is especially useful in obtaining properties of moduli from properties 
of conjugates noted above. We mention that 

(8) 

and 

Z1 lz1l =-
Zz lzzl 

(1} 

Property (8) can be established by writing 

and recalling that a modulus is never negative. Property (9) can be verified in a similar 
way. 

EXAMPLE 2. Property (8) tells us that lz21 = lzl 2 and lz31 = lz! 3• Hence if z is a 
point inside the circle centered at the origin with radius 2, so that lzl < 2, it follows 
from the generalized form (9) of the triangle inequality in Sec. 4 that 

!z3 + 3z2
- 2z + 11 ~ lzl 3 + 31zl 2 + 21zl + 1 < 25. 

EXERCISES 

1. Use properties of conjugates and moduli established in Sec. 5 to show that 

(a) z + 3i = z - 3i ; 

(c) (2 + i)2 = 3- 4i; 

(b) iz = -iz; 

(d) 1(2z + 5)(J2- i)l = .J312z +51. 
2. Sketch the set of points determined by the condition 

(a) Re(z- i) = 2; (b) i2z- il = 4. 

3. Verify properties (3) and (4) of conjugates in Sec. 5. 

4. Use property (4) of conjugates in Sec. 5 to show that 

(a) Z1Z2Z3 = Zl Zz Z3; (b) z4 = z4
• 

5. Verify property (9) of moduli in Sec. 5. 

6. Use results in Sec. 5 to show that when z2 and z3 are nonzero, 

7. Use established properties of moduli to show that when lz31 ::/= lz4 1, 
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8. Show that 

when lzl < 1. 

9. It is shown in Sec. 3 that if z 1z2 = 0, then at least one of the numbers z 1 and z2 must be 
zero. Give an alternative proof based on the corresponding result for real numbers and 
using identity (8), Sec. 5. 

10. By factoring z4 - 4z2 + 3 into two quadratic factors and then using inequality (8), Sec. 4, 
show that if z lies on the circle lzl = 2, then 

11. Prove that 

1 1 
<­

z4- 4z2 + 3 - 3 

(a) z is real if and only if z = z; 

(b) z is either real or pure imaginary if and only if z2 = z2. 

12. Use mathematical induction to show that when n = 2, 3, ... , 

(a) Z1 + Z2 + · · · + Zn = Z1 + Z2 + · · · + Zn; (b) ZJZ2 · · · Zn = ZJ Z2 · · · Zw 

13. Let a0 , a!> a2, ... , an (n > 1) denote real numbers, and let z be any complex number. 
With the aid of the results in Exercise 12, show that 

2 n - -2 -n 
ao + a1z + a2z + · · · + anz = ao + a 1z + azz + · · · + anz . 

14. Show that the equation jz - zol = R of a circle, centered at z0 with radius R, can be 
written 

lzl2
- 2 Re(zzo) + iz012 = R2

. 

15. Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x 2 
- y 2 = I 

can be written 

16. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4) 

(a) Show that 

'l --

lz, + zzl"" = (z1 + zz)(Zi + z2) = z,Z] + (z,zz + z,zz) + zzzz. 

(b) Point out why 

Z1Z2 + Z1Z2 = 2 Re(z,zz) < 21zdlz21· 

(c) Use the results in parts (a) and (b) to obtain the inequality 

lzt + z2i
2 

< Clztl + lz2l)
2
, 

and note hQw the triangle inequality follows. 
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6. EXPONENTIAL FORM 

Let rand B be polar coordinates of the point (x, y) that corresponds to a nonzero 
complex number z = x + i y. Since x = r cos () and y = r sin (), the number z can be 
written in polar form as 

(1) z = r(cos () + i sin()). 

If z = 0, the coordinate () is undefined; and so it is always understood that z =f:. 0 
whenever arg z is discussed. 

In complex analysis, the real number r is not allowed to be negative and is the 
length of the radius vector for z; that is, r = I z j. The real number() represents the angle, 
measured in radians, that z makes with the positive real axis when z is interpreted as 
a radius vector (Fig. 6). As in calculus, () has an infinite number of possible values, 
including negative ones, that differ by integral multiples of 2n. Those values can be 
determined from the equation tan () = y I x, where the quadrant containing the point 
corresponding to z must be specified. Each value of(} is called an argument of z, and 
the set of all such values is denoted by arg z. The principal value of arg z, denoted by 
Arg z. is that unique value E> such that -n < E> < n. Note that 

(2) arg z = Arg z + 2mr (n = 0, ±I. ±2, ... ). 

Also, when z is a negative real number, Arg z has value 7T, not -n. 

y 

z =x + iy 

X 

FIGURE6 

EXAMPLE 1. The complex number -1 - i, which lies in the third quadrant, has 
principal argument -3n j4. That is, 

Arg(-1- i) =-
3n. 
4 

It must be emphasized that, because of the restriction -n < e < n of the principal 
argument e, it is not true that Arg( -1- i) = 5n j4. 

According to equation (2), 

arg(-1- i) =-
3

7T + 2nn 
4 

(n = 0, ±1, ±2, ... ). 
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Note that the term Arg z on the right-hand side of equation (2) can be replaced by any 
particular value of arg z and that one can write, for instance, 

(3) 

arg(-1- i) = S;r + 2nn 
4 

(n = 0, ±1, ±2, ... ). 

The symbol ei8 , or exp(iO), is defined by means of Euler's formula as 

i 8 =cos 0 + i sin 0, 

where 0 is to be measured in radians. It enables us to write the polar form (1) more 
compactly in exponential form as 

(4) 

The choice of the symbol ei8 will be fully motivated later on in Sec. 28. Its use in Sec. 
7 will, however, suggest that it is a natural choice. 

EXAMPLE 2. The number -1 - i in Example 1 has exponential form 

(5) 

With the agreement that e-ie = ei(-B), this can also be written -1- i = J2e-i3Ir/4 . 

Expression (5) is, of course, only one of an infinite number of possibilities for the 
exponential form of -1 - i: 

(6) -1 - i = h exp [i (- 3
; + 2mr) J (n. = 0, ± 1, J:2, ... ). 

Note how expression (4) with r = 1 tells us that the numbers eie lie on the circle 
centered at the origin with radius unity, as shown in Fig. 7. Values of ei8 are, then, 
immediate from that figure, without reference to Euler's formula. It is, for instance, 

v • 

X 

FIGURE7 
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geometrically obvious that 

ei"=-1, e-irr/2=-i, and e-i4rr=l. 

Note, too, that the equation 

(7) 

is a parametric representation of the circle lzl = R, centered at the origin with radius 

R. As the parameter(} increases from (} = 0 to () = 2n, the point z starts from the 

positive real axis and traverses the circle once in the counterclockwise direction. More 

generally, the circle lz- zol = R, whose center is zo and whose radius is R, has the 

parametric representation 

(8) z = zo + Reifi (0 < (} < 2n). 

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle 

lz - zol = R once in the counterclockwise direction corresponds to the sum of the 

fixed vector zo and a vector of length R whose angle of inclination (} varies from 8 = 0 
toe= 2n. 

y 

0 X FIGURES 

7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL FORM 

Simple trigonometry tells us that ew has the familiar additive property of the exponen­

tial function in calculus: 

ei81ei82 =(cos 81 + i sin 01)(cos 02 + i sin 82) 

= (cos 01 cos 8z - sin 81 sin 8z) + i (sin 01 cos Oz + cos 81 sin 02) 

= cos(01 + 82) + i sin(81 + 02) = ei(B,+Bz). 

Thus, if z1 = r 1ei8t and z2 = r2eifh, the product z1z2 has exponential form 

(1) 
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Moreover, 

(2) 
z I rl eifhe-ith 

Zz = rz . eiR2e-ifl2 

CHAP. I 

Because 1 = leiO, it follows from expression (2) that the inverse of any nonzero 
complex number z =rei() is 

(3) 
-1 1 1 -ie z =- = -e 

z r 

Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual 
algebraic rules for real numbers and ex. 

Expression (1) yields an important identity involving arguments: 

(4) 

It is to be interpreted as saying that if values of two of these three (multiple-valued) 

arguments are specified, then there is a value of the third such that the equation holds. 
We start the verification of statement (4) by letting 81 and 82 denote any values 

of arg z1 and arg z2, respectively. Expression (1) then tells us that e1 + fh is a value of 
arg(z1z2). (See Fig. 9.) If, on the other hand, values of arg(z 1z2) andarg z1 are specified, 
those values correspond to particular choices of n and n 1 in the expressions 

(n = 0, ±1, ±2, ... ) 

and 

(n 1 = 0, ±1, ±2, ... ). 

Since 

FIGURE9 
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equation (4) is evidently satisfied when the value 

is chosen. Verification when values of arg(z 1z2) and arg z2 are specified follows by 
symmetry. 

Statement (4) is sometimes valid when arg is replaced everywhere by Arg (see 
Exercise 7). But, as the following example illustrates, that is not always the case. 

EXAMPLE 1. When z1 = -1 and z2 = i, 

j( 3Jr 
Arg z1 + Arg zz = rr +- =-. 

2 2 

If, however, we take the values of arg z 1 and arg z2 just used and select the value 

j( 3Jr 
Arg(z 1zz) + 2n = -- + 2rr =-

2 2 

of arg(z 1z2), we find that equation (4) is satisfied. 

Statement (4) tells us that 

( z 1 ) -1) ( -1) arg Zz = arg(ztz2 = arg z1 + arg z2 , 

and we can see from expression (3) that 

(5) 

Hence 

(6) arg(;~) = arg z1 - arg z2 . 

Statement (5) is, of course, to be interpreted as saying that the set of all values on the 
left-hand side is the same as the set of all values on the right-hand side. Statement (6) 
is, then, to be interpreted in the same way that statement ( 4) is. 

EXAMPLE 2. In order to find the principal argument Arg z when 

-2 
z= ' 

1+ J3i 
observe that 

arg z = arg( -2) - arg(l + .J3i). 
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Since 

Arg( -2) = rr and Arg(l + .J3i) = ::, 
3 

CHAP. I 

one value of arg z is 2n /3; and, because 2rr /3 is between -n and n, we find that 

Arg z = 2rr j3. 

Another important result that can be obtained formally by applying rules for real 
numbers to z = reie is 

(7) (n = 0, ±1, ±2, ... ). 

It is easily verified for positive values of n by mathematical induction. To be specific, 
we first note that it becomes z = reie when n = 1. Next, we assume that it is valid 
when n = m, where m is any positive integer. In view of expression ( 1) for the product 

of two nonzero complex numbers in exponential form, it is then valid for n = m + 1: 

Expression (7) is thus verified when n is a positive integer. It also holds when n = 0, 
with the convention that z0 = 1. If n = -1, -2, ... , on the other hand, we define zn 
in terms of the multiplicative inverse of z by writing 

~n _ (.,-l)m 
<(. - ,"'- where m = -n = 1, 2, .... 

Then, since expression (7) is valid for positive integral powers, it follows from the 
exponential form (3) of z- 1 that 

zn = [: ei( -t')) Jm = c~) m eim(-tJ) = (:) -n ei(-n)(-fJ) = rneine 

(n = -1, -2, ... ). 

Expression (7) is now established for all integral powers. 
Observe that if r = 1, expression (7) becomes 

(8) (n = 0, ±1. ±2, ... ). 

When written in the form 

(9) (cos e + i sin e)n =cos ne + i sin ne (n = 0, ±1, ±2, ... ), 

this is known as de Moivre'sfomzula. 
Expression (7) can be useful in finding powers of complex numbers even when 

they are given in rectangular form and the result is desired in that form. 



SEC. 7 EXERCISES 21 

EXAMPLE 3. In order to put (J3 + i)7 in rectangular form, one need only write 

(J3 + i)7 = (2ei7r/6)7 = 27ei7Ir/6 = (26eiir{(2eiir/6)\= _ 64(.J3 + i). 

EXERCISES 

1. Find the principal argument Arg z when 

(a)z= l (b)z=(J3-i)6. 
-2-2i 

Ans. (a) -3rrf4; (b) rr. 

2. Show that (a) leiBI = 1; (b) eifJ = e-iB. 

3. Use mathematical induction to show that 

(n = 2, 3, ... ) . 

4. Using the fact that the modulus lei8 - 11 is the distance between the points ei0 and 1 (see 
Sec. 4), give a geometric argument to find a value of e in the interval 0 < e < 2rr that 

satisfies the equation lei8 - 11 = 2. 
Ans. rr. 

5. Use de Moivre's formula (Sec. 7) to derive the following trigonometric identities: 

(a) cos 3B = cos3 e- 3 cos e sin2 (); (b) sin 3B = 3 cos2 ()sine- sin3 e. 
6. By writing the individual factors on the left in exponential form, performing the needed 

operations, and finally changing back to rectangular coordinates, show that 

(a) i(l- v'3i)(y'3 + i} = 2(1 + v'3i); (b) 5i/(2 + i) = 1 + 2i; 

(c) (-1 + i)7 = -8(1 + i); (d) (l + J3i)-10 = z-11(-1 + y'ji). 

7. Show that ifRe z1 > 0 andRe z2 > 0, then 

where Arg(z 1z2) denotes the principal value of arg(z1z2), etc. 

8. Let z be a nonzero complex number and n a negative integer (n = -1, -2, ... ). Also, 

write z = rei0 and m = -n = 1, 2, .... Using the expressions 

verify that (zm)- 1 = (z-tyn and hence that the definition zn = (z-t)m in Sec. 7 could 

have been written alternatively as zn = (zm)- 1• 

9. Prove that two nonzero complex numbers z1 and z2 have the same moduli if and only if 
there are complex numbers c1 and c2 such that z 1 = c1c2 and z2 = c1c2. 

Suggestion: Note that 

( . e1 + e,., ) (. el - e?) < ) exp t 
2 

L exp t 
2 

- = exp ie1 
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and [see Exercise 2(b)J 

10. Establish the identity 

') 1- zn+l 
1 + z + c + ... + zn = ---

1- z 

and then use it to derive Lagrange's trigonometric identity: 

CHAP. I 

(z i= 1) 

1 +cos() +cos 2() + · · ·+cos n() = ~ + _si_n_[(:...Z_n_+--.:..I)_e.:....;2...::J 
2 2 sin(B /2) 

(0 < () < 2rr). 

Suggestion: As for the first identity, write S = 1 + z + z2 + · · · + zn and consider 

the differenceS - zS. To derive the second identity,. write z = eiB in the first one. 

11. (a) Use the binomial formula (Sec. 3) and de Moivre's formula (Sec. 7) to write 

cos n(J + i sin n(J = t (n) cosn-k O(i sin (J)k 

k=O k 

Then define the integer m by means of the equations 

{ 
n/2 if n is even, 

m = (n- 1)/2 if n is odd 

(n = I, 2, ... ) . 

and use the above sum to obtain the expression [compare Exercise 5(a)] 

cos nO = t ( n) ( -l)k cosn-Zk () sin2k () 
k=O 2k 

(n = l, 2, ... ). 

(b) Write x =cos() and suppose that 0 < e < rr, in which case -1 < x < I. Point out 

how it follows from the final result in part (a) that each of the functions 

(n = 0, 1, 2, ... ) 

is a polynomial of degree n in the variable x .* 

8. ROOTS OF COMPLEX NUMBERS 

Consider now a point z = rei0 , lying on a circle centered at the origin with radius r (Fig. 

10). As() is increased, z moves around the circle in the counterclockwise direction. In 

particular, when () is increased by 2rr, we arrive at the original point; and the same is 

*These polynomials are called Chebyshev polynomials and are prominent in approximation theory. 
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Y' 

X 

FIGURE 10 

true when() is decreased by 2rr. It is, therefore, evident from Fig. 10 that two nonzero 

complex numbers 

are equal if and only if 

r 1 = r2 and 81 = 82 + 2k:rr, 

where k is some integer (k = 0, ±1, ±2, ... ). 
This observation, together with the expression zn = rneine in Sec. 7 for integral 

powers of complex numbers z = reiB, is useful in finding the nth roots of any nonzero 

complex number zo = r0eiBo, where n has one of the values n = 2, 3, .... The method 

starts with the fact that an nth root of zo is a nonzero number z = reie such that zn = z0, 

or 

According to the statement in italics just above, then, 

rn = r0 and nO = 00 + 2k:rr, 

where k is any integer (k = 0, ±1, ±2, ... ). So r = .vrr<J, where this radical denotes 

the unique positive nth root of the positive real number r0 , and 

8 = 00 + 2k:rr = 80 + 2k:rr (k = 0, ±1, ±2, ... ). 
n n n 

Consequently, the complex numbers 

[·(e0 2krr)J z = .zy'rQ exp z --;; + --;;- (k = 0, ±1, ±2, ... ) 

are the nth roots of z0 . We are able to see immediately from this exponential form of 

the roots that they all lie on the circle lz I = .vtri) about the origin and are equally spaced 

every 2rr In radians, starting with argument 80 / n. Evidently, then, all of the distinct 
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roots are obtained when k = 0, 1, 2, ... , n - 1, and no further roots arise with other 
values of k. We let ck (k = 0, 1, 2, ... , n - 1) denote these distinct roots and write 

(1) ck =Fa exp[i ( ~; + 
2~n) J (k = 0, 1, 2, ... , n - 1). 

(See Fig. 11.) 

X 

FIGURE 11 

The number ~ is the length of each of the radius vectors representing the n 
roots. The first root c0 has argument 00 /n; and the two roots when n = 2 lie at the 
opposite ends of a diameter of the circle I z I = yrro, the second root being -c0. When 
n > 3, the roots lie at the vertices of a regular polygon of n sides inscribed in that circle. 

We shall let z~n denotethe set of nth roots of z0 . If, in particular, zo is a positive 

real number r0 , the symbol r~/n denotes the entire set of roots; and the symbol yrrQ in 

expression ( 1) is reserved for the one positive root. When the value of 80 that is used in 
expression ( 1) is the principal value of arg zo ( -n < 80 < n ), the number c0 is referred 
to 'as the principal root. Thus when zo is a positive real number r0 , its principal root is 

V'Yo· 
Finally, a convenient way to remember expression ( 1) is to write z0 in its most 

general exponential form (compare Example 2 in Sec. 6) 

(2) (k = 0, ±1, ±2, ... ) 

and to formally apply laws offractional exponents involving real numbers, keeping in 
mind that there are precisely n roots: 

ljn _ [ i(11o+2br)JI/n _ n!v': [i(8o+2kn)] z0 - r0 e - ...; r 0 exp 
n 

= Fo exp[i ( ~; + 
2~n) J (k = 0, 1, 2, ... , n- 1). 

The examples in the next section serve to illustrate this method for finding roots of 
complex numbers. 
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9. EXAMPLES 

In each of the examples here, we start with expression (2), Sec. 8, and proceed in the 

manner described at the end of that section. 

EXAMPLE 1. In order to determine the nth roots of unity, we write 

1 = 1 exp[i(O + 2kn)] (k =0, ±1, ±2 ... ) 

and find that 

(.1) tl/n nr.l [·(0 2kn)] (·2kn) = v 1 exp l - + -- = exp z-- (k = 0, 1, 2, ... , n - 1). 
n n n 

When n = 2, these roots are, of course, ± 1. When n > 3, the regular polygon at whose 

vertices the roots lie is inscribed in the unit circle I z I = 1, with one vertex corresponding 

to the principal root z = 1 (k = 0). 
If we write 

(2) (. 2n) w11 = exp z --;; , 

it follows from property (8), Sec. 7, of ei8 that 

k (· 2kn) W11 = exp z--;;- (k = 0, 1, 2, ... , n- 1). 

Hence the distinct nth roots of unity just found are simply 

., 

• 

See Fig. 12, where the cases n = 3, 4, and 6 are illustrated. Note that w~ = 1. Finally, 

y 

IX ' ' ' 

FIGURE12 

' ' ' ', 

y 

' 

' ', 
' ' 

// 
/ 

/ 
/ 

' ' ' ' 
/ 

" 1 X / 

/ 
/ 

y 

I 
I 

I 
I 

I 1 X 
I 



26 COMPLEX NUMBERS CHAP. I 

it is worthwhile observing that if c is any particular nth root of a nonzero complex 
number z0, the set of nth roots can be put in the form 

This is because multiplication of any nonzero complex number by wn increases the 
argument of that number by 2rr jn, while leaving its modulus unchanged. 

EXAMPLE 2. Let us find all values of ( -8i)113, or the three cube roots of -8i. One 
need only write 

(k = 0, ±1, ±2, ... ) 

to see that the desired roots are 

(3) ck = 2 exp[i (- ~ + 
2~Jr) J (k = 0, 1, 2). 

They lie at the vertices of an equilateral triangle, inscribed in the circle I z I = 2, and 
are equally spaced around that circle every 2rr /3 radians, starting with the principal 
root (Fig. 13) 

c0 = 2 exp[i (-~)] = 2(cos ~ - i sin~)= v'3- i. 

Without any further calculations, it is then evident that c1 = 2i; and, since c2 is 
symmetric to c0 with respect to the imaginary axis, we know that c2 = -v'3 - i. 

These roots can, of course, be written 

co, cow3, c0wi where w3 = exp(i 
2
;). 

(See the remarks at the end of Example 1.) 

)' 

2 X 

FIGURE 13 
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EXAMPLE 3. The two values ck (k = 0, 1) of (y'j + i) 112, which are the square 

roots of ,J3 + i, are found by writing 

J3 + i = 2 exp[i (: + 2krr) J (k = 0, ±1, ±2, ... ) 

and (see Fig. 14) 

(4) (k = 0, 1). 

y 

{'i X 

FIGURE 14 

Euler's formula (Sec. 6) tells us that 

c0 = .J2 exp(i !!._) = v'2 (cos!!._ + i sin!!._), 
12 12 12 

and the trigonometric identities 

(5) 2 (a) 1 +cos a 
cos - = ' 

2 2 
. 2 (a) 1- cos a sm - =---

2 2 

enable us to write 

cos2 !!._ = I (1 + cos rr) = I (1 + ,Jj) = 2 
+ ,J3 

12 2 6 2 2 4 ' 

sin2 !!._ = I (t -cos n) = !_ (1 -~) = 2 
- ,J3. 

12 2 6 2 2 4 
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Consequently, 

Since c 1 = -c0, the two square roots of v'3 + i are, then, 

EXERCISES 

1. Find the square roots of (a) 2i; (b) 1 - ../3i and express them in rectangular coordinates. 

Ans. (a) ±(1 + i); (b)±~~ i. 
2. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of 

certain squares, and point out which is the principal root: 

(a) ( -16) 114; (b) ( -8- 8../3i) 1/ 4. 

Ans. (a) ±VIO + i), ±VI(l- i); (b) ±(../3- i), ±(1 + ../3i). 
3. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of 

certain regular polygons, and identify the principal root: 

(a) (-l)lf3; (b) gl/6. 

r;:; 1 + J3i 1 - J3i 
Ans. (b) ±vL., ± VI , ± VI . 

4. According to Example 1 in Sec. 9, the three cube roots of a nonzero complex number zo 
can be written c0, cow3, c0w~, where c0 is the principal cube root of zo and 

_ (.2rr) _ -1+../3i w3 - exp 1- - . 
3 2 

Show that if z0 = -4J2 + 4VIi, then c0 = VIO + i) and the other two cube roots are, 

in rectangular form, the numbers 

5. (a) Let a denote any fixed real number and show that the two square roots of a + i are 

where A= Ja2 + 1 and a= Arg(a + i). 
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(b) With the aid of the trigonometric identities (5) in Example 3 of Sec. 9, show that the 

square roots obtained in part (a) can be written 

[Note that this becomes the final result in Example 3, Sec. 9, when a= ./3.] 

6. Find the four roots of the equation z4 + 4 = 0 and use them to factor z4 + 4 into quadratic 

factors with real coefficients. 

Ans. (z2 + 2z + 2)(z2 - 2z + 2). 

7. Show that if cis any nth root of unity other than unity itself, then 

1 + c + c2 + · · · + cn-l = 0. 

Suggestion: Use the first identity in Exercise 10, Sec. 7. 

8. (a) Prove that the usual formula solves the quadratic equation 

") 

az~ +bz +c =0 (a f. 0) 

when the coefficients a, b, and care complex numbers. Specifically, by completing 

the square on the left-hand side, derive the quadratic formula 

-b + (b2 - 4ac)lf2 
Z= 

2a 

where both square roots are to be considered when b2 - 4ac =I= 0, 

(b) Use the result in part (a) to find the roots of the equation z2 + 2z + (1- i) = 0. 

Ans.(b)(-1+ ~)+ ~· (-1- ~)- ~· 
9. Let z = rei0 be any nonzero complex number and n a negative integer (n = -1, -2, ... ). 

Then define zl!n by means of the equation zlln = (z- 1) 1/m, where m = -n. By showing 

that them values of (zlfm)- 1 and (z- 1) 1/m are the same, verify that zl!n = (z11m)-1. 

(Compare Exercise 8, Sec. 7.) 

10. REGIONS IN THE COMPLEX PLANE 

In this section, we are concerned with sets of complex numbers, or points in the z plane, 

and their closeness to one another. Our basic tool is the concept of an s neighborhood 

(1) lz- zol < s 

of a given point z0. It consists of all points z lying inside but not on a circle centered at 
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zo and with a specified positive radius e (Fig. 15). When the value of e is understood or 

is immaterial in the discussion, the set (1) is often referred to as just a neighborhood. 

Occasionally, it is convenient to speak of a deleted neighborhood 

(2) 0 < lz- zol < s, 

consisting of all points z in an e neighborhood of zo except for the point z0 itself. 

A point zo is said to be an interior point of a set S whenever there is some 

neighborhood of zo that contains only points of S; it is called an exterior point of 

S when there exists a neighborhood of it containing no points of S. If z0 is neither of 

these, it is a boundary point of S. A boundary point is, therefore, a point all of whose 

neighborhoods contain points in S and points not in S. The totality of all boundary 

points is called the boundary of S. The circle lzl = 1, for instance, is the boundary of 

each of the sets 

(3) lzl < 1 and lzl < 1. 

A set is open if it contains none of its boundary points. It is left as an exercise 

to show that a set is open if and only if each of its points is an interior point. A set is 

closed if it contains all of its boundary points; and the closure of a set S is the closed 

set consisting of all points in S together with the boundary of S. Note that the first of 

the sets (3) is open and that the second is its closure. 
Some sets are, of course, neither open nor closed. For a set to be not open, 

there must be a boundary point that is contained in the set; and if a set is not closed, 

there exists a boundary point not contained in the set. Observe that the punctured disk 

0 < lzl < 1 is neither open nor closed. The set of all complex numbers is, on the other 

hand, both open and closed since it has no boundary points. 

An open set S is connected if each pair of points z1 and z2 in it can be joined 

by a polygonal line, consisting of a finite number of line segments joined end to end, 

that lies entirely in S. The open set lzl < 1 is connected. The annulus 1 < lzl < 2 is, 

of course, open and it is also connected (see Fig. 16). An open set that is connected 

is called a domain. Note that any neighborhood is a domain. A domain together with 

some, none, or all of its boundary points is referred to as a region. 
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FIGURE 16 

A setS is bounded if every point of S lies inside some circle lzl = R; otherwise, 
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z > 0 
is unbounded. 

A point zo is said to be an accumulation point of a set S if each deleted neigh­
borhood of z0 contains at least one point of S. It follows that if a set S is closed, then 
it contains each of its accumulation points. For if an accumulation point z0 were not 
inS, it would be a boundary point of S; but this contradicts the fact that a closed set 
contains all of its boundary points. It is left as an exercise to show that the converse 
is, in fact, true. Thus, a set is closed if and only if it contains all of its accumulation 
points. 

Evidently, a point z0 is not an accumulation point of a set S whenever there exists 
some deleted neighborhood of zo that does not contain points of S. Note that the origin 
is the only accumulation point of the set Zn = i In (n = 1, 2, ... ) . 

EXERCISES 
1. Sketch the following sets and determine which are domains: 

(a) lz- 2 + i I < 1; (b) !2z + 31 > 4; 

(c) Im z > 1; 

(e) 0 < arg z -:;: Tl /4 (z f 0); 

Ans. (b), (c) are domains. 

(d) Imz = 1; 

if) !z- 41 > lzl. 

2. Which sets in Exercise 1 are neither open nor closed? 

Ans. (e). 

3. Which sets in Exercise 1 are bounded? 

Ans. (a). 

4. In each case, sketch the closure of the set: 

(a) -n < arg z < Tl (z f 0); (b) IRe zl < lzl; 

(c) Re(;) -:;: ~; (d) Re(z2
) > 0. 
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5. LetS be the open set consisting of all points z such that Jzl < 1 or Jz- 21 < 1. State why 

S is not connected. 

6. Show that a set S is open if and only if each point in S is an interior point. 

7. Determine the accumulation points of each of the following sets: 

(a) Zn =in (n = 1, 2, ... ); (b) Zn =in jn (n = 1, 2, ... ); 
n-1 

(c) 0 < arg z < rr /2 (z f. 0); (d) Zn = (-ItO+ i) (n = 1, 2, ... ). 
n 

Ans. (a) None; (b) 0; (d) ±(1 + i). 
8. Prove that if a set contains each of its accumulation points, then it must be a closed set. 

9. Show that any point zo of a domain is an accumulation point of that domain. 

10. Prove that a finite set of points ZJ. z2, ..• , Zn cannot have any accumulation points. 



CHAPTER 

2 
ANALYTIC FUNCTIONS 

We now consider functions of a complex variable and develop a theory of differenti­
ation for them. The main goal of the chapter is to introduce analytic functions, which 
play a central role in complex analysis. 

11. FUNCTIONS OF A COMPLEX VARIABLE 
Let S be a set of complex numbers. A function f defined on S is a rule that assigns to 
each z in S a complex number w. The number w is called the value of f at z and is 
denoted by j(z); that is, w = j(z). The setS is called the domain ofdefinition of f.* 

It must be emphasized that both a domain of definition and a rule are needed in 
order for a function to be well defined. When the domain of definition is not mentioned, 
we agree that the largest possible set is to be taken. Also, it is not always convenient 
to use notation that distinguishes between a given function and its values. 

EXAMPLE 1. Iff is defined on the set z f::. 0 by means of the equation w = 1/ z, it 
may be referred to only as the function w = 1/ z, or simply the function 1/ z. 

Suppose that w = u + i vis the value of a function f at z = x + iy, so that 

u+iv=f(x+iy). 

*Although the domain of definition is often a domain as defined in Sec. I 0, it need not be. 

33 



34 ANALYTIC FUNCTIONS CHAP. 2 

Each of the real numbers u and v depends on the real variables x and y, and it follows 
that f(z) can be expressed in terms of a pair of real-valued functions of the real 
variables x and y: 

(1) f(z) = u(x, y) + iv(x, y). 

If the polar coordinates r and e, instead of x and y, are used, then 

u + iv = f(rei 8 ), 

where w = u + iv and z = rei8 . In that case, we may write 

(2) /(z) = u(r, 8) + iv(r, e). 

EXAMPLE 2. If /(z) = z2, then 

f(x + iy) = (x + iy)2 = x 2
- i + i2xy. 

Hence 

u(x, y) = x 2 - y2 and v(x, y) = 2xy. 

When polar coordinates are used, 

f(rei 8 ) = (rei8) 2 = r2eiZe = r 2 cos 28 + ir2 sin 28. 

Consequently, 

u(r,8)=r2 cos2e and v(r,8)=r2 sin28. 

If, in either of equations (1) and (2), the function v always has value zero, then 
the value off is always real. That is, f is a real-valued function of a complex variable. 

EXAMPLE 3. A real-valued function that is used to illustrate some important 
concepts later in this chapter is 

f(z) = lzl2 = x2 + l + iO. 

If n is zero or a positive integer and if a0, ab a2, .•. , an are complex constants, 
where an i= 0, the function 

P(z) = ao a1z + a2z2 + · · · + anzn 

is a polynomial of degree n. Note that the sum here has a finite number of terms and that 
the domain of definition is the entire z plane. Quotients P (z) j Q(z) of polynomials are 
called rational/unctions and are defined at each point z where Q(z) i= 0. Polynomials 
and rational functions constitute elementary, but important, classes of functions of a 
complex variable. 
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A generalization of the concept of function is a rule that assigns more than one 
value to a point z in the domain of definition. These multiple-valued functions occur 
in the theory of functions of a complex variable, just as they do in the case of real 
variables. When multiple-valued functions are studied, usually just one of the possible 
values assigned to each point is taken, in a systematic manner, and a (single-valued) 
function is constructed from the multiple-valued function. 

EXAMPLE 4. Let z denote any nonzero complex number. We know from Sec. 8 
that z 112 has the two values 

( e) z 1/Z = ±JT exp i "2 , 

where r = !zi and 8( -rr < 8 < rr) is the principal value of arg z. But, if we choose 
only the positive value of ±JT and write 

(3) (r > 0, -j( < e < rr), 

the (single-valued) function (3) is well defined on the set of nonzero numbers in the z 
plane. Since zero is the only square root of zero, we also write f (0) = 0. The function 
f is then well defined on the entire plane. 

EXERCISES 

1. For each of the functions below, describe the domain of definition that is understood: 

(a) f(z) = 
2 

1 
; (b) /(z) = Arg(~); 

z + 1 z 
z 1 

(c)f(z)= _; (d)f(z)= 
2

. 
z + z 1-lzl 

Ans. (a) z :f: ±i; (c) Re z ;f 0. 

2. Write the function f(z) = z3 + z + 1 in the form f(z) = u(x, y) + iv(x, y). 

Ans. (x 3 - 3xy2 + x + 1) + i(3x2y- y3 + y). 

3. Suppose that f(z) = x 2 - y 2 - 2y + i(2x- 2xy), where z = x + iy. Use the expres­
sions (see Sec. 5) 

z+z 
x=--

2 
and 

z-z 
y ::::: 2i 

to write f(z) in terms of z. and simplify the result. 

A -2 2' ns.z + tz. 

4. Write the function 

f
' ·. 1 
\Z) = Z +­

z 
(z ;f 0) 
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in the form f(z) = u(r' (J) + i v(r' e). 

Ans. (r + :) cos e + i (r - ; ) sin e. 

12. MAPPINGS 

Properties of a real-valued function of a real variable are often exhibited by the graph 
of the function. But when w = f(z), where z and ware complex, no such convenient 
graphical representation of the function f is available because each of the numbers 
z and w is located in a plane rather than on a line. One can, however, display some 
information about the function by indicating pairs of corresponding points z = (x, y) 
and w = (u, v). To do this, it is generally simpler to draw the z and w planes separately. 

When a function f is thought of in this way, it is often referred to as a mapping, 
or transformation. The image of a point z in the domain of definition S is the point 
w = f (z), and the set of images of all points in a set T that is contained in S is called 
the image of T. The image of the entire domain of definition S is called the range of 
f. The inverse image of a point w is the set of all points z in the domain of definition 
of f that have w as their image. The inverse image of a point may contain just one 
point, many points, or none at all. The last case occurs, of course, when w is not in the 
range of f. 

Terms such as translation, rotation, and reflection are used to convey dominant 
geometric characteristics of certain mappings. In such cases, it is sometimes convenient 
to consider the z and w planes to be the same. For example, the mapping 

w = z + 1 = (x + 1) + iy, 

where z = x + iy, can be thought of as a translation of each point z one unit to the 
right. Since i = eirr:/2, the mapping 

where z = reie, rotates the radius vector for each nonzero point z through a right angle 
about the origin in the counterclockwise direction; and the mapping 

- . 
W = Z =X -ly 

transforms each point z = x + iy into its reflection in the real axis. 
More information is usually exhibited by sketching images of curves and regions 

than by simply indicating images of individual points. In the following examples, we 
illustrate this with the transformation w = z2• 

We begin by finding the images of some curves in the z plane. 
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EXAMPLE 1. According to Example 2 in Sec. 11, the mapping w = z2 can be 
thought of as the transformation 

(1) 

from the xy plane to the uv plane. This form of the mapping is especially useful in 
finding the images of certain hyperbolas. 

It is easy to show, for instance, that each branch of a hyperbola 

(2) (c1 > 0) 

is mapped in a one to one manner onto the vertical line u = c1. We start by noting 
from the first of equations (1) that u = c1 when (x, y) is a point lying on either branch. 
When, in particular, it lies on the right-hand branch, the second of equations ( 1) tells 

us that v = 2yJy2 + c1• Thus the image of the right-hand branch can be expressed 
parametrically as 

U = CJ, V = 2yJ y2 + Ct (-oo < y < oo); 

and it is evident that the image of a point (x, y) on that branch moves upward along the 
entire line as (x, y) traces out the branch in the upward direction (Fig. 17). Likewise, 

since the pair of equations 

(-oo < y < oo) 

furnishes a parametric representation for the image of the left-hand branch of the 
hyperbola, the image of a point going downward along the entire left-hand branch 
is seen to move up the entire line u = c1. 

On the other hand, each branch of a hyperbola 

(3) 

is transformed into the line v = c2, as indicated in Fig. 17. To verify this, we note from 
the second of equations ( 1) that v = c2 when (x, y) is a point on either branch. Suppose 
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FIGURE 17 
w =z2. 
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that it lies on the branch lying in the first quadrant. Then, since y = c2j(2x), the first 
of equations (1) reveals that the branch's image has parametric representation 

(0 < x < oo). 

Observe that 

lim u = -oo and lim u = oo. 
X-+00 

Since u depends continuously on x, then, it is clear that as (x, y) travels down the entire 
upper branch of hyperbola (3), its image moves to the right along the entire horizontal 
line v = c2. Inasmuch as the image of the lower branch has parametric representation 

(-00 < y < 0) 

and since 

lim u = -oo and lim u = oo, 
y-+-oo y~O 

y<O 

it follows that the image of a point moving upward along the entire lower branch also 
travels to the right along the entire line v = c2 (see Fig. 17). 

We shall now use Example 1 to find the image of a certain region. 

EXAMPLE 2. The domain x > 0, y > 0, xy < 1 consists of all points lying on the 
upper branches of hyperbolas from the family 2xy = c, where 0 < c < 2 (Fig. 18). We 
know from Example 1 that as a point travels downward along the entirety of one of 
these branches, its image under the transformation w = z2 moves to the right along 
the entire line v = c. Since, for all values of c between 0 and 2, the branches fill out 

y 

A 

B 

D 
D' 

E 

c X A' 

v 

2i E' 

FIGURE 18 
B' C' u w=z2

. 
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the domain x > 0, y > 0, xy < 1, that domain is mapped onto the horizontal strip 
0 < v < 2. 

In view of equations (1), the image of a point (0, y) in the z plane is (-y2, 0). 
Hence as (0, y) travels downward to the origin along the y axis, its image moves to the 
right along the negative u axis and reaches the origin in the w plane. Then, since the 
image of a point (x, 0) is (x2, 0), that image moves to the right from the origin along 
the u axis as (x, 0) moves to the right from the origin along the x axis. The image 
of the upper branch of the hyperbola xy = 1 is, of course, the horizontal line v = 2. 
Evidently, then, the closed region x > 0, y > 0, xy < 1 is mapped onto the closed strip 
0 < v < 2, as indicated in Fig. 18. 

Our last example here illustrates how polar coordinates can be useful in analyzing 
certain mappings. 

EXAMPLE 3. The mapping w = z2 becomes 

when z = rew. Hence if w = peit/1, we have pei¢1 = r2ei2e; and the statement in italics 
near the beginning of Sec. 8 tells us that 

p = r2 and ¢ = 2(} + 2kn, 

where k has one of the values k = 0, ± 1, ±2, .... Evidently, then, the image of any 
nonzero point z is found by squaring the modulus of z and doubling a value of arg z. 

Observe that points z = r0ew on a circle r = r0 are transformed into points 
w = rJei2e on the circle p = rJ. As a point on the first circle moves counterclockwise 
from the positive real axis to the positive imaginary axis, its image on the second 
circle moves counterclockwise from the positive real axis to the negative real axis (see 
Fig. 19). So, as all possible positive values of r0 are chosen, the corresponding arcs 
in the z and w planes fill out the first quadrant and the upper half plane, respectively. 
The transformation w = z2 is, then, a one to one mapping of the first quadrant r > 0, 
0 < e < j( !2 in the z plane onto the upper half p > 0, 0 < ¢ < j( of the w plane, as 
indicated in Fig. 19. The point z = 0 is, of course, mapped onto the point w = 0. 

The transformation w = z2 also maps the upper half planer > 0, 0 < e < n onto 
the entire w plane. However, in this case, the transformation is not one to one since 

v 

FIGURE 19 
w =z2

• 
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both the positive and negative real axes in the z plane are mapped onto the positive 
real axis in the w plane. 

When n is a positive integer greater than 2, various mapping properties of the 
transformation w = zn, or pei¢> = rneine, are similar to those of w = z2• Such a 
transformation maps the entire z plane onto the entire w plane, where each nonzero 
point in the w plane is the image of n distinct points in the z plane. The circle r = r0 
is mapped onto the circle p = r0; and the sector r < r0 , 0 < e < 2n /n is mapped onto 
the disk p < r0, but not in a one to one manner. 

13. MAPPINGS BY THE EXPONENTIAL FUNCTION 

In Chap. 3 we shall introduce and develop properties of a number of elementary func­
tions which do not involve polynomials. That chapter will start with the exponential 
function 

(1) (z=x+iy), 

the two factors ex and eiY being well defined at this time (see Sec. 6). Note that 
definition (1), which can also be written 

is suggested by the familiar property 

of the exponential function in calculus. 
The object of this section is to use the function ez to provide the reader with 

additional examples of mappings that continue to be reasonably simple. We begin by 
examining the images of vertical and horizontal lines. 

EXAMPLE 1. The transformation 

(2) 

can be written pei¢> = exeiY, where z = x + iy and w = peiif>. Thus p =ex and 
<P = y + 2mr, where n is some integer (see Sec. 8); and transformation (2) can be 
expressed in the form 

(3) 

The image of a typical point z = (ci> y) on a vertical line x = c1 has polar 
coordinates p = exp c1 and <P =yin thew plane. That image moves counterclockwise 
around the circle shown in Fig. 20 as z moves up the line. The image of the line is 
evidently the entire circle; and each point on the circle is the image of an infinite 
number of points, spaced 2n units apart, along the line. 
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FIGURE20 
w = expz. 

A horizontal line y = c2 is mapped in a one to one manner onto the ray cp = c2. To 
see that this is so, we note that the image of a point z = (x, c2) has polar coordinates 
p =ex and¢= c2. Evidently, then, as that point z moves along the entire line from 
left to right, its image moves outward along the entire ray ¢ = c2, as indicated in 
Fig. 20. 

Vertical and horizontal line segments are mapped onto portions of circles and rays, 
respectively, and images of various regions are readily obtained from observations 
made in Example 1. This is illustrated in the following example. 

EXAMPLE 2. Let us show that the transformation w = ez maps the rectangular 
region a< x < b, c < y < d onto the region ea < p < eb, c <¢<d. The two regions 
and corresponding parts of their boundaries are indicated in Fig. 21. The vertical line 
segment AD is mapped onto the arc p = ea, c < ¢ < d, which is labeled A' D'. The 
images of vertical line segments to the right of AD and joining the horizontal parts 
of the boundary are larger arcs; eventually, the image of the line segment BC is the 
arc p = eb, c < ¢ < d, labeled B'C'. The mapping is one to one if d- c < 2rr. In 
particular, if c = 0 and d = rr, then 0 < ¢ < rr; and the rectangular region is mapped 
onto half of a circular ring, as shown in Fig. 8, Appendix 2. 
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w=expz. 
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Our final example here uses the images of horizontal lines to find the image of a 
horizontal strip. 

EXAMPLE 3. When w = e2
, the image of the infinite strip 0 < y < 7r is the upper 

half v > 0 of the w plane (Fig. 22). This is seen by recalling from Example 1 how 
a horizontal line y = c is transformed into a ray <P = c from the origin. As the real 
number c increases from c = 0 to c = 7r, the y intercepts of the lines increase from 
0 to n and the angles of inclination of the rays increase from <P = 0 to <P = n. This 
mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on the 
boundaries of the two regions are indicated. 

y 

Cl ----------- ----.------

FIGURE22 
w=expz. 

EXERCISES 
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1. By referring to Example 1 in Sec. 12, find a domain in the z plane whose image under 
the transformation w = z2 is the square domain in the w plane bounded by the lines 
u = 1, u = 2, v = 1, and v = 2. (See Fig. 2, Appendix 2.) 

2. Find and sketch, showing corresponding orientations, the images of the hyperbolas 

x2 
- i = c1 (c1 < 0) and 2xy = c2 (cz < 0) 

under the transformation w = z2. 

3. Sketch the region onto which the sector r < 1, 0 < () < n /4 is mapped by the transfor­
mation (a) w = z2; (b) w = z3; (c) w = z4. 

4. Show that the lines ay = x (a f 0) are mapped onto the spirals p = exp(a¢) under the 
transformation w = exp z, where w = p exp(i¢). 

5. By considering the images of horizontal line segments, verify that the image of the 
rectangular region a < x < b, c < y < d under the transformation w = exp z is the region 
ea < p < eb, c < ¢ < d, as shown in Fig. 21 (Sec. 13). 

6. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where 
the transformation is w = exp z. 

7. Find the image of the semi-infinite strip x > 0, 0 < y < n under the transformation 
w = exp z, and label corresponding portions of the boundaries. 
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8. One interpretation of a function w = f (z) = u (x, y) + i v(x, y) is that of a vector field in 
the domain of definition off. The function assigns a vector w, with components u (x, y) 

and v(x, y ), to each point z at which it is defined. Indicate graphically the vector fields 

represented by (a) w = iz; (b) w = z/lzl. 

14. LIMITS 

Let a function f be defined at all points z in some deleted neighborhood (Sec. 10) of 

z0 . The statement that the limit off (z) as z approaches z0 is a number w0, or that 

(1) lim f(z) = wo. 
z-+zo 

means that the point w = f{z) can be made arbitrarily close to w0 if we choose the 

point z close enough to z0 but distinct from: it. We now express the definition of limit 

in a precise and usable form. 
Statement (1) means that, for each positive number£, there is a positive number 

8 such that 

(2) lf(z)- w01 < £ whenever 0 < lz- z01 < 8. 

Geometrically, this definition says that, for each £ neighborhood I w - w0 ! < £ of w0, 

there is a deleted 8 neighborhood 0 < lz - z0 1 < 8 of z0 such that every point z in it 

has an image w lying in the£ neighborhood (Fig. 23). Note that even though all points 

in the deleted neighborhood 0 < lz- zol < 8 are to be considered, their images need 

not fill up the entire neighborhood lw- w01 <£.Iff has the constant value w0 , for 

instance, the image of z is always the center of that neighborhood. Note, too, that once 

a 8 has been found, it can be replaced by any smaller positive number, such as 8J2. 
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It is easy to show that when a limit of a function f (z) exists at a point z0 , it is 

unique .. To do this, we suppose that 

lim f(z) = w0 and lim f(z) = w1• 
Z~Zo Z-+Zo 

Then, for any positive number£, there are positive numbers 80 and 81 such that 

!f(z)- wo! < £ whenever 0 < \z- z0 1 < 80 
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and 

1/(z)- wtl < 8 whenever 0 < lz- zol < 81. 

So if 0 < lz - zol < 8, where 8 denotes the smaller of the two numbers 8o and 81o we 
find that 

lwi- wol = 1[/(z)- wo]- [f(z)- Wt]l < 1/(z)- wol + 1/(z)- wtl < 8 + 8 = 28. 

But lw1 - w01 is a nonnegative constant, and 8 can be chosen arbitrarily small. Hence 

Definition (2) requires that f be defined at all points in some deleted neighbor­
hood of z0 . Such a deleted neighborhood, of course, always exists when z0 is an interior 
point of a region on which f is defined. We can extend the definition oflimit to the case 
in which zo is a boundary point of the region by agreeing that the first of inequalities 
(2) need be satisfied by only those points z that lie in both the region and the deleted 
neighborhood. 

EXAMPLE 1. Let us show that if f(z) = iz/2 in the open disk lzl < 1, then 

(3) lim f(z) = !.., 
z-,rl 2 

the point 1 being on the boundary of the domain of definition off. Observe that when 
z is in the region lzl < 1, 

• 
l 

f(z)--
2 

iz i 

2 2 
lz - 11 

2 

Hence, for any such z and any positive number 8 (see Fig. 24), 

y 
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l 
f(z)-- < 8 whenever 0 < lz- 11 < 28. 
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Thus condition (2) is satisfied by points in the region lzl < 1 when 8 is equal to 2£ or 
any smaller positive number. 

If z0 is an interior point of the domain of definition of f, and limit ( 1) is to 
exist, the first of inequalities (2) must hold for all points in the deleted neighborhood 
0 < lz- zo! < 8. Thus the symbol z ~ z0 implies that z is allowed to approach z0 
in an arbitrary manner, not just from some particular direction. The next example 
emphasizes this. 

EXAMPLE 2. If 

(4) 

the limit 

(5) 

f(z) = ~, 
z 

lim f(z) 
z~o 

does not exist. For, if it did exist, it could be found by letting the point z = (x, y) 
approach the origin in any manner. But when z = (x, 0) is a nonzero point on the real 
axis (Fig. 25), 

f(z)=x+iO=l; 
X- iO 

and when z = (0, y) is a nonzero point on the imaginary axis, 

f(z)= O+iy =-1. 
0- iy 

Thus, by letting z approach the origin along the real axis, we would find that the desired 
limit is l. An approach along the imaginary axis would, on the other hand, yield the 
limit -1. Since a limit is unique, we must conclude that limit (5) does not exist. 

y 

z = (0, y) 

(0, 0) z = (x, 0) X 

FIGURE25 
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While definition (2) provides a means of testing whether a given point w0 is a 
limit, it does not directly provide a method for determining that limit. Theorems on 
limits, presented in the next section, will enable us to actually find many limits. 

15. THEOREMS ON LIMITS 

We can expedite our treatment of limits by establishing a connection between limits 
of functions of a complex variable and limits of real-valued functions of two real 
variables. Since limits of the latter type are studied in calculus, we use their definition 
and properties freely. 

Theorem 1. Suppose that 

f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0 , and w0 = u0 + iv0 . 

Then 

(1) lim f(z) = wo 
z-+ zo 

if and only if 

(2) lim u(x, y) = u0 and lim v(x, y) = v0 . 
(x,y)-+(xo.Yo) (x,y)-+(xo.Yo) 

To prove the theorem, we first assume that limits (2) hold and obtain limit (1). 
Limits (2) tell us that, for each positive number 8, there exist positive numbers 81 and 
82 such that 

(3) 

and 

(4) 

lu - u01 < 
8 

whenever 0 < J (x - x0 )2 + (y - y0) 2 < 81 
2 

lv- v01 < 
8 

whenever 0 < J<x- x0) 2 + (y- y0) 2 < 8z. 
2 

Let 8 denote the smaller of the two numbers 81 and 82. Since 

l(u + iv) (u0 + iv0)1 = l(u- u0) + i(v- v0)1 < iu- u0 1 + lv- vol 

and 

J(x- xo)2 + (y- Yo) 2 = l(x- xo) + i(y- Yo) I= l(x + iy)- (xo + iyo)L 

it follows from statements (3) and (4) that 

i(u + iv)- (u0 + iv0)1 < 
8 + 8 = 8 
2 2 
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whenever 

0 < l(x + iy)- (x0 + iyo)l < 8. 

That is, limit ( 1) holds. 
Let us now start with the assumption that limit (1) holds. With that assumption, 

we know that, for each positive numbers, there is a positive number o such that 

(5) 

whenever 

(6) 

But 

and 

l(u + iv)- (uo + ivo)l < £ 

0 < l(x + iy)- (x0 + iy0)1 < o. 

ju- u0 1 < l(u- u0) + i(v- v0 )1 = j(u + iv)- (uo + iv0 )j, 

lv- v01 < l(u- u0) + i(v- vo)l = j(u + iv)- (uo + iv0)j, 

l(x + iy)- (xo + iyo)l = J(x- xo) + i(y- Yo) I= J<x- xo) 2 + (y- Yo?· 

Hence it follows from inequalities (5) and (6) that 

lu- u0 1 < £ and jv- v0 j < £ 

whenever 

0 < J (x - xo)2 + (y - Yo)2 < o. 

This establishes limits (2), and the proof of the theorem is complete. 

Theorem 2. Suppose that 

(7) 

Then 

(8) 

(9) 

and, if W 0 =f:. 0, 

(10) 

lim f(z) = w0 and lim F(z) = W0 . 
z~zo z~zo 

lim [f(z) + F(z)] = wo + Wo. 
Z~Zo 

lim [f(z)F(z)] = w0 W0; 
z~zo 

lim f(z) Wo 
z~zo F(z) W0 
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This important theorem can be proved directly by using the definition of the limit 

of a function of a complex variable. But, with the aid of Theorem 1, it follows almost 

immediately from theorems on limits of real-valued functions of two real variables. 

To verify property (9), for example, we write 

f(z) = u(x, y) + iv(x, y), F(z) = U(x, y) + iV(x, y), 

z0 =x0 +iy0 , w0 =u0 +iv0 • W0 =U0 +iV0• 

Then, according to hypotheses (7) and Theorem 1. the limits a..<.; (x, y) approaches 

(x0 , y0) of the functions u, v, U, and V exist and have the values u0 , v0 , U0, and V0, 

respectively. So the real and imaginary components of the product 

f(z)F(z) = (uU- vV) + i(vU + uV) 

have the limits u0U0 - v0 V0 and v0U0 + u0 V0 , respectively, as (x, y) approaches 

(x0 , y0). Hence, by Theorem 1 again, f(z)F(z) has the limit 

(u0U0 - v0 V0) + i (v0U0 + u0 Vo) 

as z approaches z0: and this is equal to w0 W0 . Property (9) is thus established. 

Corresponding verifications of properties (8) and ( 1 0) can be given. 

It is easy to see from definition (2), Sec.14, of limit that 

lim c = c and lim z = z0 , 
z-+zo z-+zo 

where zo and c are any complex numbers; and, by property (9) and mathematical 

induction, it follows that 

I. n n 
1m z = z0 

Z~Zu 

(n=l,2, ... ). 

So, in view of properties (8) and (9), the limit of a polynomial 

P(z) = ao + a1z + a2z
2 + · · · + anZ

11 

as z approaches a point z0 is the value of the polynomial at that point: 

(11) lim P(z) = P(zo). 
z-+zo 

16. LIMITS INVOLVING THE POINT AT INFINITY 

It is sometimes convenient to include with the complex plane the point at infinity, 

denoted by oo, and to use limits involving it. The complex plane together with this 

point is called the extended complex plane. To visualize the point at infinity, one can 

think of the complex plane as passing through the equator of a unit sphere centered at 

the point z = 0 (Fig. 26). To each point z in the plane there corresponds exactly one 

point P on the surface of the sphere. The point P is determined by the intersection of 

the line through the point z and the north pole N of the sphere with that surface. In 
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like manner, to each point P on the surface of the sphere, other than the north pole N, 
there corresponds exactly one point z in the plane. By letting the point N of the sphere 
correspond to the point at infinity, we obtain a one to one correspondence between the 
points of the sphere and the points of the extended complex plane. The sphere is known 
as the Riemann sphere, and the correspondence is called a stereographic projection. 

Observe that the exterior of the unit circle centered at the origin in the complex 
plane corresponds to the upper hemisphere with the equator and the point N deleted. 
Moreover, for each small positive numbers, those points in the complex plane exterior 
to the circle lzl = 1/e correspond to points on the sphere close toN. We thus call the 
set lzl > 1/s an s neighborhood, or neighborhood, of oo. 

Let us agree that, in referring to a point z, we mean a point in the finite plane. 
Hereafter, when the point at infinity is to be considered, it will be specifically men­
tioned. 

A meaning is now readily given to the statement 

lim /(z) = wo 
z~zo 

when either zo or w0 , or possibly each of these numbers, is replaced by the point 
at infinity. In the definition of limit in Sec. 14, we simply replace the appropriate 
neighborhoods of z0 and w0 by neighborhoods of oo. The proof of the following 
theorem illustrates how this is done. 

Theorem. If zo and w0 are points in the z and w planes, respectively, then 

(1) lim f (z) = oo if and only if 
Z~Zo 

1 
lim =0 
z~zo f(z) 

and 

(2) lim f(z) = w0 if and only if lim f (~) = w0 . 
z~oo z-+0 z 

Moreover, 

(3) lim /(z) = oo if and only if 
z~oo 

1 
lim = 0. 
z~o /(1/z) 
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We start the proof by noting that the first of limits ( 1) means that, for each positive 

number 8, there is a positive number 6 such that 

(4) 
1 

1/(z)l > - whenever 0 < lz- zol < 8. 
8 

That is, the point w = f (z) lies in the 8 neighborhood I w I > 1/8 of oo whenever z lies 

in the deleted neighborhood 0 < lz- zol < 6 of z0. Since statement (4) can be written 

1 
-- - 0 < 8 whenever 0 < lz - zol < o, 
/(z) 

the second of limits ( 1) follows. 
The first of limits (2) means that, for each positive number 8, a positive number 

8 exists such that 

(5) 
1 

1/(z)- wol < s whenever lzl > -. 
8 

Replacing z by 1/z in statement (5) and then writing the res::tlt as 

t(~)- wo < 8 whenever 0 < lz- 0! < 6, 

we arrive at the second of limits (2). 
Finally, the first of limits (3) is to be interpreted as saying that, for each positive 

number 8, there is a positive number 8 such that 

(6) 
. I 

1/(z)l > -
8 

whenever 
1 

lzl > -. 
8 

When z is replaced by 1/ z, this statement can be put in the form 

1 
----0 < 8 whenever 0 < lz- OJ< 8; 
f(l/z) 

and this gives us the second of limits (3). 

EXAMPLES. Observe that 

1
. iz + 3 
1m = oo smce l. z + 1 0 

1m = 
z-+-1 z + 1 

and 

1
. 2z + i 

2 1m = smce 
z-+oo Z + 1 

z-+-1 iz + 3 

1
. (2/z)+i 

1
. 2+iz 

2 1m = tm = . 
z-+0 (1/ z) + 1 z-+0 1 + z 



SEC. 17 CONTINUITY 51 

Furthermore, 

]. 2z3 - 1 
1m = oo smce 

z-+oo z2 + 1 
lim (1/z2) + 1 =lim z + z3 = 0. 
z-+0 (2/ z3) - 1 z-+O 2 - z3 

17. CONTINUITY 

A function f is continuous at a point z0 if all three of the following conditions are 
satisfied: 

(1) 

(2) 

(3) 

lim f(z) exists, 
z-+zo 

f (z0) exists, 

lim f(z) = f(zo). 
Z-+Zo 

Observe that statement (3) actually contains statements ( 1) and (2), since the existence 
of the quantity on each side of the equation there is implicit. Statement (3) says that, 
for each positive number £, there is a positive number o such that 

(4) lf(z)- f(zo)l < c: whenever lz- zol < 8. 

A function of a complex variable is said to be continuous in a region R if it is 
continuous at each point in R. 

If two functions are continuous at a point, their sum and product are also continu­
ous at that point; their quotient is continuous at any such point where the denominator 
is not zero. These observations are direct consequences of Theorem 2, Sec. 15. Note, 
too, that a polynomial is continuous in the entire plane because of limit (11), Sec. 15. 

We tum now to two expected properties of continuous functions whose verifica­
tions are not so immediate. Our proofs depend on definition ( 4 ), and we present the 
results as theorems. 

Theorem 1. A composition of continuous functions is itself continuous. 

A precise statement of this theorem is contained in the proof to follow. We let 
w = f (z) be a function that is defined for all z in a neighborhood lz - zol < 8 of a 
point zo, and we let W = g( w) be a function whose domain of definition contains the 
image (Sec. 12) of that neighborhood under f. The composition W = g[f(z)] is, then, 
defined for all z in the neighborhood I z - zo I < 8. Suppose now that f is continuous at 
zo and that g is continuous at the point f (z0) in the w plane. In view of the continuity 
of gat f(z0), there is, for each positive number c:, a positive number y such that 

ig[f(z)]- g[f(zo)]l < s whenever lf(z) f(zo)l < y. 
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(See Fig. 27.) But the continuity off at zo ensures that the neighborhood lz- zol < 8 
can be made small enough that the second of these inequalities holds. The continuity 
of the composition g[f(z)] is, therefore, established. 

Theorem 2. If a function f (z) is continuous and nonzero at a point z0 , then f (z) =!= 0 
throughout some neighborhood of that point. 

Assuming that f (z) is, in fact, continuous and nonzero at z0, we can prove 

Theorem 2 by assigning the positive value lf(zo)l/2 to the numbers in statement 
(4). This tells us that there is a positive number 8 such that 

lf(z)- f(z0)1 < lf(zo)l whenever lz- zol < 6. 
2 

So if there is a point z in the neighborhood lz - zol < 8 at which f(z) = 0, we have 
the contradiction 

and the theorem is proved. 

lf(zo)l < lf(zo)l; 
2 

The continuity of a function 

(5) f(z) = u(x, y) + iv(x, y) 

is closely related to the continuity of its component functions u(x, y) and v(x, y). 

We note, for instance, how it follows from Theorem 1 in Sec. 15 that the function 
(5) is continuous at a point z0 = (x0 , Yo) if and only if its component functions are 
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continuous there. To illustrate the use of this statement, suppose that the function (5) is 
continuous in a region R that is both closed and bounded (see Sec. 10). The function 

J[u(x, y)] 2 + [v(x, y)]2 

is then continuous in R and thus reaches a maximum value somewhere in that region.* 
That is, f is bounded on Rand 1/(z)l reaches a maximum value somewhere in R. 
More precisely, there exists a nonnegative real number M such that 

(6) 1/(z)l < M for all z in R, 

where equality holds for at least one such z. 

EXERCISES 

1. Use definition (2), Sec. 14, of limit to prove that 
-2 

(a) lim Re z = Re z0; (b) lim z = z0; (c) lim z = 0. 
z-+zo z-+zo z-->0 z 

2. Let a, b, and c denote complex constants. Then use definition (2), Sec. 14, of limit to 
show that 

(a) lim (az +b)= az0 + b; (b) lim (z2 +c)= z2 + c; 
z-+zo z-->zo 0 

(c) lim [x + i(2x + y)] = 1 + i (z = x + iy). 
z-->1-i 

3. Let n be a positive integer and let P (z) and Q(z) be polynomials, where Q(z0) # 0. Use 
Theorem 2 in Sec. 15 and limits appearing in that section to find 

(a)lim 1 (zo#O); (b)limiz
3

-
1; (c)limP(z). 

z-+zozn z-+i z + i z-->zo Q(z) 

Ans. (a) l/z3: (b) 0; (c) P(z0)/Q(z0). 

4. Use mathematical induction and property (9), Sec. 15, of limits to show that 

when n is a positive integer (n = 1, 2, ... ) . 

5. Show that the limit of the function 

/(z) = ( ~ r 
as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and z = (x, x) 
approach the origin. [Note that it is not sufficient to simply consider points z = (x, 0) 
and z = (0, y), as it was in Example 2, Sec. 14.1 

*See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 125-126 and p. 529, 
1983. 
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6. Prove statement (8) in Theorem 2 of Sec. 15 using 

(a) Theorem 1 in Sec. 15 and properties of limits of real-valued functions of two real 
variables; 

(b) definition (2), Sec. 14, oflimit. 

7. Use definition (2), Sec. 14, of limit to prove that 

if lim j(z) = w0 , then lim lf(z)l = lwol· 
z-+zo z-+zo 

Suggestion: Observe how inequality (8), Sec. 4, enables one to write 

llf(z)l- lwoll < lf(z)- wol· 

8. Write llz = z- z0 and show that 

lim j(z) = w0 if and only if lim j(zo + Az) = w0 . 
z-+zo ll.z---+0 

9. Show that 

lim j(z)g(z) = 0 if lim j(z) = 0 
z-+zo z-+zo 

and if there exists a positive number M such that jg(z) I < M for all z in some neighbor­
hood of z0. 

10. Use the theorem in Sec. 16 to show that 

4z2 1 .,.2 + 1 
(a) lim - = 4; (b) lim 

3 
= oo; (c) lim " = oo. 

z-+oo (z - 1)2 · z-+ 1 (z - l) z-+oo z - 1 

11. With the aid of the theorem in Sec. 16, show that when 

T(z)=az+b 
cz +d 

(a) lim T(z) = oo if c = 0; 
Z---+00 

(ad- be =I= 0), 

(b) lim T(z) =a and lim T(z) = oo if c =I= 0. 
z-+ao c z-+ -dfc 

12. State why limits involving the point at infinity arc unique. 

13. Show that a set S is unbounded (Sec. 1 0) if and only if every neighborhood of the point 
at infinity contains at least one point in S. 

18. DERIVATIVES 

Let f be a function whose domain of definition contains a neighborhood of a point z0. 

The derivative off at z0, written f' (z0), is defined by the equation 

(1) !
'( ) _ 1. f(z)- f(zo) z0 - 1m , 

z-+zo z- Zo 

provided this limit exists. The function f is said to be differentiable at zo when its 
derivative at z0 exists. 
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By expressing the variable z in definition (1) in terms of the new complex variable 

~z = z- zo. 

we can write that definition as 

(2} !
'( ) _ 1. f(zo + ~z)- j(zo) z0 - 1m . 

~z-+0 ~z 

Note that, because f is defined throughout a neighborhood of z0, the number 

f(zo + ~z) 
is always defined for I ~z I sufficiently small (Fig. 28). 

y 

0 X FIGURE28 

When taking form (2) of the definition of derivative, we often drop the subscript 
on zo and introduce the number 

~w = j(z + ~z)- f(z), 

which denotes the change in the value of f corresponding to a change ~z in the point 
at which f is evaluated. Then, if we write dwjdz for f'(z), equation (2) becomes 

dw = lim ~w. 
dz ~z-+0 ~z 

(3) 

EXAMPLE 1. Suppose that j(z) = z2. At any point z, 

I. ~w I' (z + ~z)2 - z2 1' (2 ) 2 1m - = 1m = 1m z + ~z = z, 
b.z-+0 ~z b.z-+0 ~z b.z-+0 

since 2z + ~z is a polynomial in ~z. Hence dwjdz = 2z, or f'(z) = 2z. 

EXAMPLE 2. Consider now the function j(z) = lzl 2. Here 

~w lz + ~zl 2 - lzl 2 (z + ~z)(Z + ~z)- zz _ '"'A ~z - = = Z + oZ + z--. 
~z ~z ~z ~z 
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(0, !l.y) 
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If the limit of b. w 1 b.z exists, it may be found by letting the point b.z = (b.x, b.y) 

approach the origin in the b.z plane in any manner. In particular, when b.z approaches 

the origin horizontally through the points ( b.x, 0) on the real axis (Fig. 29), 

In that case, 

b.z = b.x + iO = b.x- iO = b.x + iO = b.z. 

b.w -
- = z + b.z +z. 
D.z 

Hence, if the limit of b.wl b.z exists, its value must be z + z. However, when b.z 

approaches the origin vertically through the points (0, b.y) on the imaginary axis, so 

that 

we find that 

b.z = 0 + i b.y = -(0 + i b.y) = -b.z, 

b.w -- =z + b.z -z. 
b.z 

Hence the limit must be z- z if it exists. Since limits are unique (Sec. 14), it follows 

that 

Z + Z = Z- Z, 

or z = 0, if dw I dz is to exist. 
To show that dwldz does, in fact, exist at z = 0, we need only observe that our 

expression for b.w I Az reduces to b.z when z = 0. We conclude, therefore, thatdw ldz 

exists only at z = 0, its value there being 0. 

Example 2 shows that a function can be differentiable at a certain point but 

nowhere else in any neighborhood of that point. Since the real and imaginary parts 

of f(z) = lzl 2 are 

(4) U (X , y) = X 
2 + i and V (X , y) = 0, 
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respectively, it also shows that the real and imaginary components of a function of a 
complex variable can have continuous partial derivatives of all orders at a point and 
yet the function may not be differentiable there. 

The function f(z) = lzi 2 is continuous at each point in the plane since its com­
ponents (4) are continuous at each point. So the continuity of a function at a point 
does not imply the existence of a derivative there. It is, however, true that the existence 
of the derivative of a function at a point implies the continuity of the function at that 
point. To see this, we assume that f' (zo) exists and write 

lim [f(z)- f(zo)] = lim f(z)- f(zo) lim (z- z0) = !' (z0) · 0 = 0, 
z___,.zo z-+zo z - zo z-+zo 

from which it follows that 

lim f(z) = f(zo). 
7.-i-'Zo 

This is the statement of continuity of f at zo (Sec. 17). 
Geometric interpretations of derivatives of functions of a complex variable are 

not as immediate as they are for derivatives of functions of a real variable. We defer 
the development of such interpretations until Chap. 9. 

19. DIFFERENTIATION FORMULAS 

The definition of derivative in Sec. 18 is identical in form to that of the derivative of a 
real-valued function of a real variable. In fact, the basic differentiation formulas given 
below can be derived from that definition by essentially the same steps as the ones used 
in calculus. In these formulas, the derivative of a function f at a point z is denoted by 
either 

d 
-f(z) or f'(z), 
dz 

depending on which notation is more convenient. 
Let c be a complex constant and let f be a function whose derivative exists at a 

point z. It is easy to show that 

(1) 
d 
-c=O. 
dz · 

Also, if n is a positive integer, 

(2) 

d 
- .. - 1. dz - :}cf(z)] = cf'(z). 

d -_.,n = nzn 1 
<. • • 

dz 

This formula remains valid when n is a negative integer, provided that z # 0. 
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If the derivatives of two functions f and F exist at a point z, then 

(3) :
2

[J(z) + F(z)]= j'(z) + F'(z), 

(4) 
d I / 

dz [f(z)F(z)] = j(z)F (z) + f (z)F(z); 

and, when F(z) # 0, 

(5) 
!!_ [ f(z) J = F(z)j'(z)- j(z)F'(z). 

dz F(z) [F(z)l 2 

Let us derive formula (4). To do this, we write the following expression for the 

change in the product w = j(z)F(z): 

~w = f(z + ~z)F(z + ~z)- j(z)F(z) 

= J(z)[F(z + ~z)- F(z)l + [j(z + ~z)- f(z)]F(z + ~z). 

Thus 

~w = f(z) F(z + ~z)- F(z) + j(z + ~z)- f(z) F(z + ~z); 
~z Az ~z 

and, letting ~z tend to zero, we arrive at the desired formula for the derivative of 

f(z)F(z). Here we have used the fact that F is continuous at the point z, since F'(z) 

exists; thus F(z + ~z) tends to F(z) as ~z tends to zero (see Exercise 8, Sec. 17). 

There is also a chain rule for differentiating composite functions. Suppose that f 
has a derivative at zo and that g has a derivative at the point f(z 0). Then the function 

F(z) = g[f(z)] has a derivative at z0, and 

(6) F' (zo) = g'[f (zo)]f' (zo) · 

If we write w = f(z) and W = g(w), so that W = F(z), the chain rule becomes 

dW dW dw 
-=--
dz dw dz 

EXAMPLE. To find the derivative of (2z2 + i)5, write w = 2z2 + i and W = w5. 

Then 

To start the proof of formula (6), choose a specific point zo at which f'(z0) 

exists. Write w0 = f(zo) and also assume that g'(w0) exists. There is, then, some 

e neighborhood !w- w0 i < e of w0 such that, for all points win that neighborhood, 
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we can define a function cf> which has the values cf> ( w0 ) = 0 and 

(7) "'( _) g(w)- g(w0) '( ) 
-v w = - g w0 when w f= wo. 

w -w0 

Note that, in view of the definition of derivative, 

(8) lim <l>(w) = 0. 
U.!-+Wo 

Hence <I> is continuous at w0. 

Now expression (7) can be put in the form 

(9) g(w)- g(wo) = [g'(wo) + <l>(w)](w- wo) (lw- w0 1 < c:), 

which is valid even when w = w0; and, since f' (zo) exists and f is, therefore, 
continuous at z0 , we can choose a positive number 8 such that the point f(z) lies in 

theE neighborhood !w- wol < E of w0 if z lies in the 8 neighborhood lz- zol < 8 of 
z0. Thus it is legitimate to replace the variable win equation (9) by f(z) when z is any 

point in the neighborhood lz - zol < 8. With that substitution, and with w0 = f(z0), 

equation (9) becomes 

(lO) g[f(z)]- g[f(zo)] = {g'[f(zo)] + <P[f(z)]} f(z)- J(zo) 

z-~ z-zo 

(0 < lz - z01 < 8), 

where we must stipulate that z f= zo so that we are not dividing by zero. As already 
noted, f is continuous at z0 and <I> is continuous at the point w0 = f(z0 ). Thus the 
composition <l>[f(z)] is continuous at z0 ; and, since <l>(w0) = 0, 

lim <l>[f(z)] = 0. 
z-+zo 

So equation (10) becomes equation (6) in the limit as z approaches z0. 

EXERCISES 

1. Use results in Sec. 19 to find f'(z) when 

(a) j(z) = 3z2 - 2z + 4; (b) f(z) = (1- 4z2) 3 ; 

z - 1 - (1 + z2)4 
(c)f(z)= (z:f-1/2); (d)f(z)= 

2 
(zf:O). 

2z + 1 z 
2. Using results in Sec. 19, show that 

(a) a polynomial 

of degree n (n > 1) is differentiable everywhere, with derivative 

P' (z) =a] + 2a2Z + ... + nanzn-l; 
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(b) the coefficients in the polynomial P(z) in part (a) can be written 

a0 = P(O), 
P'(O) 

al = 
1! 

P''(O) 
az= 2! ' 

. . . ' 

3. Apply definition (3), Sec. 18, of derivative to give a direct proof that 

I 1 f (z) = -­
z2 

1 
when /(z) =- (z i= 0). 

z 

4. Suppose that /(z0) = g(z0) = 0 and that f'(z0) and g'(z0) exist, where g'(z0) i= 0. Use 

definition ( 1), Sec. 18, of derivative to show that 

lim /(z) = /'(zo). 
z-..zn g(z) g'(zo} 

5. Derive formula (3), Sec. 19, for the derivative ofthe sum of two functions. 

6. Derive expression (2), Sec. 19, for the derivative of zn when n is a positive integer by 

using 

(a) mathematical induction and formula (4), Sec. 19, for the derivative of the product of 

two functions; 

(b) definition (3), Sec. 18, of derivative and the "binomial formula (Sec .3). 

7. Prove that expression (2), Sec. 19, for the derivative of zn remains valid when n is a 

negative integer (n = -1, -2, ... ) , provided that z i= 0. 
Suggestion: Write m = -n and use the formula for the derivative of a quotient of 

two functions. 

8. Use the method in Example 2, Sec. 18, to show that f'(z) does not exist at any point z 
when 

(a) f(z) = z; (b) f(z) = Re z; (c) /(z) = Im z. 

9. Let f denote the function whose values are 

{ 

-2 

f(z) = ; when z i= 0, 

when ~-o <.- . 

Show that if z = 0, then 6. w j 6.z = 1 at each nonzero point on the real and imaginary 

axes in the 6.z, or 6.x 6.y, plane. Then show that 6. w j6.z = -1 at each nonzero point 

( 6.x, 6.x) on the line 6. y = Ll.x in that plane. Conclude from these observations that 

f' (0) does not exist. (Note that, to obtain this result, it is not sufficient to consider only 

horizontal and vertical approaches to the origin in the 6.z plane.) 

20. CAUCHY-RIEMANN EQUATIONS 

In this section, we obtain a pair of equations that the first-order partial derivatives of 

the component functions u and v of a function 

(1) /(z) = u(x, y) + iv(x, y) 
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must satisfy at a point z0 = (x0 , y0) when the derivative off exists there. We also 
show how to express f' (z0) in terms of those partial derivatives. 

We start by writing z0 = x0 + i y0 , ~z = ~x + i ~ y, and 

~w = f(zo + ~z)- f(zo) 

= [u(x0 + ~x, Yo+ ~y)- u(x0 , y0)] + i[v(x0 + ~x, Yo+ ~y)- v(x0 , y0)]. 

Assuming that the derivative 

(2) ! ' ) 1. ~w (zo = 1m -
t..z_,.o ~z 

exists, we know from Theorem 1 in Sec. 15 that 

(3) f'(zo) = lim Re ~w + i lim Im ~w. 
(h.x, t..y)-4(0,0) ~z (t..x, t..y)-4(0,0) ~z 

Now it is important to keep in mind that expression (3) is valid as (~x. ~y) 
tends to (0, 0) in any manner that we may choose. In particular, we let (~x. ~y) tend 
to (0, 0) horizontally through the points (~x, 0), as indicated in Fig. 29 (Sec. 18). 
Inasmuch as ~Y = 0, the quotient ~wj ~z becomes 

~w u(x0 + 6.x, Yo)- u(xo, Yo) . v(xo + 6.x, Yo)- v(xo, Yo) 
-= +l . 
~z ~X ~X 

Thus 

R 
~w _ 

1
. u(x0 + ~x, Yo)- u(x0 , y0) _ ( ) 

lim e - - 1m - u x xo, Yo 
(h.x, L'>.y)_,. (0,0) ~Z L'>.x--J>O ~x 

and 

I 
~w _ 

1
. v(x0 + ~x. Yo)- v(x0 , y0 ) _ ( ) 

lim m - - 1m - vx x0 , Yo 
(t..x,t..y)-4(0,0) ~z h.x--J>O ~x 

where ux(x0 , y0) and vx(xo, Yo) denote the first-order partial derivatives with respect 
to x of the functions u and v, respectively, at (x0 , y0). Substitution of these limits into 
expression (3) tells us that 

(4) 

We might have let ~z tend to zero vertically through the points (0, ~y). In that 
case, ~x = 0 and 

~w u(xo, Yo+ ~y)- u(xo, Yo) . v(xo, Yo+ ~y)- v(xo, Yo) - = + l _ _::_.:...::._ _ __;_ __ ___.:;:__:....:::.... 

~z i6.y i~y 

v(xo, Yo+ ~y)- v(xo, Yo) . u(xo, Yo+ ~y)- u(xo, Yo) 
= -l . 

~y ~y 
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Evidently, then, 

R 
6.w 

1
. v(xo, Yo+ 6.y)- v(xo, Yo) ( . ) 

lim e - = 1m = Vv xo. Yo 
(t...x, t..y)--+(O,O) 6.z t..y ...... o 6.y ~ 

and 

I 6.w -- 1' u(xo, Yo+ 6.y) - u(xo, Yo) - ( ) 
lim m Az - 1m - -uy x 0 , Yo . 

(t..x,t..y)-+(0,0) u t..y--+0 6.y 

Hence it follows from expression (3) that 

(5) 

where the partial derivatives of u and v are, this time, with respect to y. Note that 

equation (5) can also be written in the form 

Equations (4) and (5) not only give !' (z0) in terms of partial derivatives of the 

component functions u and v, but they also provide necessary conditions for the 

existence of f'(z0). For, on equating the real and imaginary parts on the right-hand 

sides of these equations, we see that the existence of f' (zo) requires that 

. 
Equations (6) are the Cauchy-Riemann equations, so named in honor of the French 

mathematician A. L. Cauchy (1789-1857), who discovered and used them, and in 

honor of the German mathematician G. F. B. Riemann (1826-1866), who made them 

fundamental in his development of the theory of functions of a complex variable. 

We summarize the above results as follows. 

Theorem. Suppose that 

f(z) = u(x, y) + iv(x, y) 

and that !' (z) exists at a point z0 = x0 + i y0. Then the first-order partial derivatives 

ofu and v must exist at (x0, y0 ), and they must satisfy the Cauchy-Riemann equations 

(7) 

there. Also, J'(zo) can be written 

(8) 

where these partial derivatives are to be evaluated at (x0 , y0). 
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EXAMPLE 1. In Example 1, Sec. 18, we showed that the function 

f(z) = z2 = x2
- i + i2xy 

is differentiable everywhere and that f' (z) = 2z. To verify that the Cauchy-Riemann 
equations are satisfied everywhere, we note that 

u(x, y) = x 2
- i and v(x, y) = 2xy. 

Thus 

Moreover, according to equation (8), 

J'(z) = 2x + i2y = 2(x + iy) = 2z. 

Since the Cauchy-Riemann equations are necessary conditions for the existence 
of the derivative of. a function f at a point z0 , they can often be used to locate points 
at which f does not have a derivative. 

EXAMPLE 2. When f(z) = lzl2
, we have 

u(x, y) = x 2 + i and v(x, y) = 0. 

If the Cauchy-Riemann equations are to hold at a point (x,- y), it follows that 2x = 0 
and 2y = 0, or that x = y = 0. Consequently, f' (z) does not exist at any nonzero point, 
as we already know from Example 2 in Sec. 18. Note that the above theorem does not 
ensure the existence of f' (0). The theorem in the next section will, however, do this. 

21. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY 

Satisfaction of the Cauchy-Riemann equations at a point zo = (x0, y0) is not sufficient 
to ensure the existence of the derivative of a function f (z) at that point. (See Exercise 6, 
Sec. 22.) But, with certain continuity conditions, we have the following useful theorem. 

Theorem. Let the function 

f(z) = u(x, y) + il!(x, y) 

be defined throughout some s neighborhood of a point zo = x0 + i y0, and suppose 
that the first-order partial derivatives of the functions u and v with respect to x andy 
exist everywhere in that neighborhood. If those partial derivatives are continuous at 
(xo, Yo) and satisfy the Cauchy-Riemann equations 

at (x0 , Yo). then f' ( z0) exists. 
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To start the proof, we write ~z = ~x + i ~y. where 0 < l~zl <e., and 

~w = f(zo + ~z)- f(zo). 

Thus 

(1) ~w = ~u + i~v. 

where 

~u = u(x0 + ~x. Yo+ ~y)- u(xo, Yo) 

and 

~v = v(x0 + ~x. Yo+ ~y)- v(x0 , Yo). 

The assumption that the first-order partial derivatives of u and v are continuous at the 

point (x0 , y0) enables us to write* 

and 

where e.1 and s2 tend to 0 as (~x, ~y) approaches (0, 0) in the ~z plane. Substitution 

of expressions (2) and (3) into equation (1) now tells us that 

(4) ~w = ux(x0 , y0)~x + uy(x0 , y0)~y + e. 1 J(~x)2 + (~y)2 

+ i[vx(xo, Yo)~x + vy(xo, Yo)~y + e.zJ(~x)2 + (~y)2J. 

Assuming that the Cauchy-Riemann equations are satisfied at (x0, y0), we can 

replace uy(x0 , y0) by -vx(xo. y0) and vy(xo, y0) by ux(x0 , y0) in equation (4) and 

then divide through by ~z to get 

(5) 

*See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 150-151 and 197-

198, 1983. 



SEC.22 POLAR COORDINATES 65 

But J(.6.x)2 + (.6.y)2 = [8z[, and so 

JC.6.x)2 + (.6.y)2 
=1. 

Also, e1 + i e2 tends to 0 as ( .6.x, .6. y) approaches (0, 0). So the last term on the right 
in equation (5) tends to 0 as the variable .6.z = .6.x + i .6.y tends to 0. This means that 
the limit of the left-hand side of equation (5) exists and that 

(6) 

where the right-hand side is to be evaluated at (x0 , y0). 

EXAMPLE 1. Consider the exponential function 

(z = x + iy), 

some of whose mapping properties were discussed in Sec. 13. In view of Euler's 
formula (Sec. 6), this function can, of course, be written 

J(z) =ex cosy+ iex sin y, 

where y is to be taken in radians when cos y and sin y are evaluated. Then 

u(x,y)=excosy and v(x,y)=exsiny. 

Since ux = vy and uy = -vx everywhere and since these derivatives are everywhere 
continuous, the conditions in the theorem are satisfied at all points in the complex 
plane. Thus f' (z) exists everywhere, and 

f'(z) = ux + ivx =ex cosy+ iex sin y. 

Note that f'(z) = j(z). 

EXAMPLE 2. It also follows from the theorem in this section that the function 
f(z) = lzl2, whose components are 

u(x, y) = x 2 + i and v(x, y) = 0, 

has a derivative at z = 0. In fact, f'(O) = 0 + iO = 0 (compare Example 2, Sec. 18). We 
saw in Example 2, Sec. 20, that this function cannot have a derivative at any nonzero 
point since the Cauchy-Riemann equations are not satisfied at such points. 

22. POLAR COORDINATES 

Assuming that zo ::f:. 0, we shall in this section use the coordinate transformation 

(1) x = r cos () , y = r sin () 
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to restate the theorem in Sec. 21 in polar coordinates. 
Depending on whether we write 

z=x+iy or z=reie (z f. 0) 

when w = f(z), the real and imaginary parts of w = u + iv are expressed in terms of 
either the variables x and y orr and(). Suppose that the first-order partial derivatives 
of u and v with respect to x and y exist everywhere in some neighborhood of a given 
nonzero point zo and are continuous at that point. The first-order partial derivatives 
with respect to r and () also have these properties, and the chain rule for differentiating 
real-valued functions of two real variables can be used to write them in terms of the 
ones with respect to x and y. More precisely, since 

au au ox au oy 
-=--+--, 
ar ox or oy or 

one can write 

au au ox au oy 
-=--+--
8() ax 8() 8y ae' 

(2) Ur = ux cos() + uy sin(), Ue = -ux r sin() + uy r cos(). 

Likewise, 

(3) Vr = Vx cos() + Vy sin(), Ve = -vx r sin() + Vy r cos(). 

If the partial derivatives with respect to x andy also satisfy the Cauchy-Riemann 
equations 

(4) 

at z0, equations (3) become 

(5) vr = -uy cos()+ ux sin(), Ve = uy r sin()+ ux r cos() 

at that point. It is then clear from equations (2) and (5) that 

(6) 

at the point zo. 
If, on the other hand, equations (6) are known to hold at z0, it is straightforward 

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore, 
an alternative form of the Cauchy-Riemann equations (4). 

We can now restate the theorem in Sec. 21 using polar coordinates. 

Theorem. Let the function 

f(z) = u(r, ()) + iv(r, ()) 

be defined throughout some e. neighborhood of a nonzero point zo = r0 exp(i00), and 
suppose that thefirst-orderpartial derivatives of the functions u and v with respect tor 
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and() exist everywhere in that neighborhood. If those partial derivatives are continuous 
at (r0 , 00) and satisfy the polar form 

ru, = v9, ue = -rv, 

ofthe Cauchy-Riemann equations at (r0, 00), then f'(z0) exists. 

(7) 

The derivative f'(z0) here can be written (see Exercise 8) 

f'(zo) = e-16 (u, + iv,), 

where the right-hand side is to be evaluated at (r0 , 00). 

EXAMPLE 1. Consider the function 

(8) f ( ) 1 1 1 iii 1 ( () . . ()) z = - = -. = -e = - cos - 1 sm 
z re1e r r 

(z ~ 0). 

Since 

( ())
- cos() 

u r, ---
sin() 

and v(r,O)=- , 
r r 

the conditions in the above theorem are satisfied at every nonzero point z = re1e in the 
plane. In particular, the Cauchy-Riemann equations 

cos () d sin () 
ru, = - = Ve an ue = - = -rv, 

r r 

are satisfied. Hence the derivative of f exists when z ~ 0; and, according to expres­
sion (7), 

! '( ) -W ( cos() . sin()) -ie e-ie 1 1 z = e - + t = -e = - = --
r2 r2 r2 (rei6)2 22 · 

EXAMPLE 2. The theorem can be used to show that, when ex is a fixed real number, 
the function 

(9) (r > 0, ex < () <ex+ 2rr) 

has a derivative everywhere in its domain of definition. Here 

Inasmuch as 

() 
u(r, ()) = ,lfi cos -

3 

,lfi () 
ru, = 3 cos 3 = Ve 

and v(r, ()) = ,lfi sin (). 
3 

and 
~ . () 

u6 = - 3 sm 
3 

= -rv, 
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and since the other conditions in the theorem are satisfied, the derivative f' (z) exists 
at each point where f(z) is defined. Furthermore, expression (7) tells us that 

! '( ) -ie [ 1 () . 1 . ()] z = e 
2 

cos - + l 
2 

sm - , 
3(~) 3 3(~) 3 

or 

1 

3 [f(z)] 
2. 

Note that when a specific point z is taken in the domain of definition of f, the 
value f (z) is one value of z 113 (see Sec. 11 ). Hence this last expression for f' (z) can 
be put in the form 

when that value is taken. Derivatives of such power functions will be elaborated on in 
Chap. 3 (Sec. 32). 

EXERCISES 

1. Use the theorem in Sec. 20 to show that f'(z) does not exist at any point if 

(a) /(z) = z; (b) /(z) = Z- z; (c) j(z) = 2x + ixy2; (d) j(z) = exe-iY. 

2. Use the theorem in Sec. 21 to show that f' (z) and its derivative f" {z) exist everywhere, 
and find f" (z) when 
(a) f(z) = iz + 2; (b) f(z) = e-xe-iY; 

(c) f(z) = z 3; (d) f(z) = cosx cosh y- i sin x sinh y. 

Ans. (b) f"(z) = f(z); (d) f"(z) =- f(z). 

3. From results obtained in Sees. 20 and 21, determine where f' (z) exists and find its value 
when 

(a) f(z) = ljz; (b) f(z) = x 2 + iy2; (c) f(z) = z Im z. 

Ans. (a) f'(z) = -1/z2 (z ~ 0); (b) f'(x + ix) = 2x; (c) f'(O) = 0. 

4. Use the theorem in Sec. 22 to show that each of these functions is differentiable in the 
indicated domain of definition, and then use expression (7) in that section to find f'(z): 

(a) f(z) = ljz4 (z ~ 0); 

(b) /(z) = ..fiei812 (r > 0, a<()< a+ 2n); 

(c) f(z) = e-8cos(ln r) + ie-8sin(ln r) (r > 0, 0 < () < 2n). 

Ans. (b) f'(z) = 
1 

(c) f'(z) = i f(z). 
2f(z) z 
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5. Show that when f (z) = x 3 + i (1 - y )3, it is legitimate to write 

f'(z) = ux + ivx = 3x2 

only when z = i. 

EXERCISES 69 

6. Let u and v denote the real and imaginary components of the function f defined by the 
equations 

{ 

-2 

f(z) ~ ~ when z :j::. 0, 

when z = 0. 

Verify that the Cauchy-Riemann equations ux = vy and uy = -vx are satisfied at the 
origin z = (0, 0). [Compare Exercise 9, Sec. 19, where it is shown that f'(O) nevertheless 
fails to exist.] 

7. Solve equations (2), Sec. 22, for ux and uy to show that 

sin 0 
U x = Ur COS 0 - Ue , 

r 

. cos 0 
uy = ur sm 0 + u0 -­

r 

Then use these equations and similar ones for Vx and vy to show that, in Sec. 22, equations 
(4) are satisfied at a point zo if equations (6) are satisfied there. Thus complete the 
verification that equations ( 6), Sec. 22, are the Cauchy-Riemann equations in polar form. 

8. Let a function f(z) = u + iv be differentiable at a nonzero point z0 = r0 exp(i!10). Use 
the expressions for ux and vx found in Exercise 7, together with the polar form (6), Sec. 
22, of the Cauchy-Riemann equations, to rewrite the expression 

in Sec. 21 as 

! '( ) -ie( . ) zo = e Ur + 1 Vr , 

where u, and vr are to be evaluated at (r0 , 80). 

9. (a) With the aid of the polar form ( 6), Sec. 22, of the Cauchy-Riemann equations, derive 
the alternative form 

f'(zo) = -i (uo + ivo) 
zo 

of the expression for f' (z0) found in Exercise 8. 
(b) Use the expression for f'(z0 ) in part (a) to show that the derivative of the function 

f(z) = ljz (z :j::. 0) in Example 1, Sec. 22, is f'(z) = -ljz2 . 

10. (a) Recall (Sec. 5) that if z = x + iy, then 

z+z 
X=--

2 

-z z 
and y = 

2
i . 
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By formally applying the chain rule in calculus to a function F(x, y) of two real 
variables, derive the expression 

oF oF ax oF oy 1 (oF . a F) 
az: = ax az: + ay ai = 2 ax + 1 ay : 

(b) Define the operator 

a 1(a .a) 
az: = 2 ax + 1 ay ' 

suggested by part (a), to show that if the first-order partial derivatives of the real 
and imaginary parts of a function f ( z) = u (x, y) + i v (x, y) satisfy the Cauchy­
Riemann equations, then 

~i = ~ [(ux- Vy) + i(vx + Uy)] = 0. 

Thus derive the complex form ajjaz = 0 of the Cauchy-Riemann equations. 

23. ANALYTIC FUNCTIONS 

We are now ready to introduce the concept of an analytic function. A function f of the 
complex variable z is analytic in an open set if it has a derivative at each point in that 
set.* If we should speak of a function f that is analytic in a set S which is not open, 
it is to be understood that f is analytic in an open set containing S. In particular, f is 

analytic at a point zo if it is analytic throughout some neighborhood of z0. 

We note, for instance, that the function f(z) = 1/z is analytic at each nonzero 
point in the finite plane. But the function f(z) = lzl2 is not analytic at any point since 

its derivative exists only at z = 0 and not throughout any neighborhood. (See Example 
2, Sec. 18.) 

An entire function is a function that is analytic at each point in the entire finite 
plane. Since the derivative of a polynomial exists everywhere, it follows that every 
polynomial is an entire function. 

If a function f fails to be analytic at a point zo but is analytic at some point 
in every neighborhood of z0, then z0 is called a singular point, or singularity, of f. 
The point z = 0 is evidently a singular point of the function f (z) = 1/ z. The function 
f(z) = lzl2, on the other hand, has no singular points since it is nowhere analytic. 

A necessary, but by no means sufficient, condition for a function f to be analytic 

in a domain Dis clearly the continuity off throughout D. Satisfaction of the Cauchy­
Riemann equations is also necessary, but not sufficient. Sufficient conditions for 
analyticity in D are provided by the theorems in Sees. 21 and 22. 

Other useful sufficient conditions are obtained from the differentiation formulas 
in Sec. 19. The derivatives of the sum and product of two functions exist wherever the 

*The terms regular and holomorphic are also used in the literature to denote analyticity. 
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functions themselves have derivatives. Thus, if two functions are analytic in a domain 
D, their sum and their product are both analytic in D. Similarly, their quotient is 
analytic in D provided the function in the denominator does not vanish at any point in 
D. In particular, the quotient P(z)/ Q(z) of two polynomials is analytic in any domain 
throughout which Q(z) ::j=. 0. 

From the chain rule for the derivative of a composite function, we find that 
a composition of two analytic functions is analytic. More precisely, suppose that a 
function f(z) is analytic in a domain D and that the image (Sec. 12) of D under the 
transformation w = f(z) is contained in the domain of definition of a function g(w). 
Then the composition g[f(z)] is analytic in D, with derivative 

d 
dzg[f(z)] = g'[f(z)]f(z). 

The following theorem is especially useful, in addition to being expected. 

Theorem. If f' (z) = 0 everywhere in a domain D, then f (z) must be constant 
throughout D. 

We start the proof by writing f(z) = u(x, y) + iv(x, y). Assuming that f'(z) = 0 
in D, we note that ux + ivx = 0; and, in view of the Cauchy-Riemann equations, 
vy - iuy = 0. Consequently, 

at each point in D. 
Next, we show that u(x, y) is constant along any line segment L extending from 

a point P to a point P' and lying entirely in D. We lets denote the distance along L 
from the point P and let U denote the unit vector along L in the direction of increasing 
s (see Fig. 30). We know from calculus that the directional derivative dujds can be 
written as the dot product 

(1) 

y 

0 

du - = (grad u) · U, 
ds 

---------

X FIGURE30 
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where grad u is the gradient vector 

(2) grad u = u xi + u y j. 

Because ux and uy are zero everywhere in D, then, grad u is the zero vector at all 
points on L. Hence it fo1lows from equation ( 1) that the derivative d u j ds is zero along 
L; and this means that u is constant on L. 

Finally, since there is always a finite number of such line segments, joined end 
to end, connecting any two points P and Q in D (Sec. 1 0), the values of u at P and 
Q must be the same. We may conclude, then, that there is a real constant a such that 
u (x, y) = a throughout D. Similarly, v(x, y) = b; and we find that f (z) = a + bi at 
each point in D. 

24. EXAMPLES 

As pointed out in Sec. 23, it is often possible to determine where a given function is 
analytic by simply recalling various differentiation formulas in Sec. 19. 

EXAMPLE 1. The quotient 

f(z) = z3 +4 
. (z2 - 3)(z2 + 1) 

is evidently analytic throughout the z plane except for the singular points z = ±.J3 
and z = ± i. The analyticity is due to the existence of familiar differentiation formulas, 
which need be applied only if the expression for j'(z) is wanted. 

When a function is given in terms of its component functions u(x, y) and v(x, y ), 

its analyticity can be demonstrated by direct application of the Cauchy-Riemann 
equations. 

EXAMPLE 2. When 

f (z) = cosh x cosy + i sinh x sin y, 

the component functions are 

u(x, y) =cosh x cosy and v(x, y) =sinh x sin y. 

Because 

ux =sinh x cosy= Vy and uy =-cosh x sin y = -vx 

everywhere, it is clear from the theorem in Sec. 21 that f is entire. 
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Finally, we illustrate how the theorems in the last four sections, in particular the 
one in Sec. 23, can be used to obtain some important properties of analytic functions. 

EXAMPLE 3. Suppose that a function 

f(z) = u(x, y) + iv(x, y) 

and its conjugate 

f(z) = u(x, y)- iv(x, y) 

are both analytic in a given domain D. It is easy to show that f (z) must be constant 
throughout D. 

To do this, we write f(z) as 

f(z) = U(x, y) + iV(x, y), 

where 

(1) U(x, y) = u(x, y) and V(x, y) = -v(x, y). 

Because of the analyticity of J(z), the Cauchy-Riemann equations 

(2) 

hold in D, according to the theorem in Sec. 20. Also, the analyticity off (z) in D tells 
us that 

Ux = Vy, Uy = -Vx-

In view of relations ( 1 ), these last two equations can be written 

(3) 

By adding corresponding sides of the first of equations (2) and (3), we find that 
ux = 0 in D. Similarly, subtraction involving corresponding sides of the second of 
equations (2) and (3) reveals that vx = 0. According to expression (8) in Sec. 20, then, 

J'(z) = ux + ivx = 0 + iO = 0; 

and it follows from the theorem in Sec. 23 that f (z) is constant throughout D. 

EXERCISES 

1. Apply the theorem in Sec. 21 to verify that each of these functions is entire; 
(a) f(z) = 3x + y + i (3y - x); (b) f(z) =sin x cosh y + i cos x sinh y; 

(c) f(z) = e-Y sin x - ie-Y cos x; (d) f(z) = (z 2 - 2)e-xe-iY. 
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2. With the aid of the theorem in Sec. 20, show that each of these functions is nowhere 
analytic: 

(a) j(z) = xy + iy; (b) f(z) = 2xy + i (x2 - y 2); (c) f(z) = eYeix. 

3. State why a composition of two entire functions is entire. Also, state why any linear 
combination cif1(z) + c2 fz(z) of two entire functions, where c1 and c2 are complex 
constants, is entire. 

4. In each case, determine the singular points of the function and state why the function is 
analytic everywhere except at those points: 

a - 2z + 1 . b z - z3 + i . c z - z2 + 1 
( ) f(z)- z(z2 + 1)' ( ) f( ) - z2 - 3z + 2' ( ) f( ) - (z + 2)(z2 + 2z + 2) 

Ans.(a)z=O,±i; (b)z=l,2; (c)z=-2,-l±i. 

5. According to Exercise 4(b), Sec. 22, the function 

(r > 0, -Jr < e < li) 

is analytic in its domain of definition, with derivative 

t 1 
g (z) = 2g(z) 

Show that the composite function G(z) = g(2z - 2 + i) is analytic in the half plane 
x > 1, with derivative 

I 1 
G(z)=----

g(2z- 2 + i) 

Suggestion: Observe that Re(2z - 2 + i) > 0 when x > 1. 

6. Use results in Sec. 22 to verify that the function 

g(z) =In r + ie 

is analytic in the indicated domain of definition, with derivative g' (z) = 1/ z. Then show 
that the composite function G(z) = g(z2 + 1) is analytic in the quadrant x > 0, y > 0, 
with derivative 

G'(z) = 2z 
z2 + 1 

Suggestion: Observe that lm(z2 + 1) > 0 when x > 0, y > 0. 

7. Let a function f(z) be analytic in a domain D. Prove that f(z) must be constant 
throughout D if 

(a) f(z) is real-valued for all z in D; (b) lf(z)l is constant throughout D. 

Suggestion: Use the Cauchy-Riemann equations and the theorem in Sec. 23 to 
prove part (a). To prove part (b), observe that 

c2 
f(z) = - if lf(z)l = c (c ::j:. 0); 

f(z) 

then use the main result in Example 3, Sec. 24. 
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25. HARMONIC FUNCTIONS 

A real-valued function H of two real variables x andy is said to be harmonic in a given 
domain of the xy plane if, throughout that domain, it has continuous partial derivatives 
of the first and second order and satisfies the partial differential equation 

(1) Hxx(x, y) + Hyy(x, y) = 0, 

known as Laplace's equation. 
Harmonic functions play an important role in applied mathematics. For example, 

the temperatures T(x, y) in thin plates lying in the xy plane are often harmonic. A 
function V (x, y) is harmonic when it denotes an electrostatic potential that varies 
only with x and y in the interior of a region of three-dimensional space that is free of 
charges. 

EXAMPLE 1. It is easy to verify that the function T (x, y) = e-Y sin x is harmonic 
in any domain of the xy plane and, in particular, in the semi-infinite vertical strip 
0 < x < n, y > 0. It also assumes the values on the edges of the strip that are indicated 
in Fig. 31. More precisely, it satisfies all of the conditions 

Txx(X, y) + Tyy(x, y) = 0, 

T(O, y) = 0, T(n, y) = 0, 

T(x,O)=sinx, lim T(x,y)=O, 
y-+oo 

which describe steady temperatures T (x, y) in a thin homogeneous plate in the xy 
plane that has no heat sources or sinks and is insulated except for the stated conditions 
along the edges. 

y 

0 T=sinx n x 
FIGURE31 

The use of the theory of functions of a complex variable in discovering solutions, 
such as the one in Example 1, of temperature and other problems is described in 
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considerable detail later on in Chap. 10 and in parts of chapters following it.* That 
theory is based on the theorem below, which provides a source of harmonic functions. 

Theorem 1. lfafunction f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then 
its component functions u and v are harmonic in D. 

To show this, we need a result that is to be proved in Chap. 4 (Sec. 48). Namely, 
if a function of a complex variable is analytic at a point, then its real and imaginary 
components have continuous partial derivatives of all orders at that point. 

Assuming that f is analytic in D, we start with the observation that the first­
order partial derivatives of its component functions must satisfy the Cauchy-Riemann 
equations throughout D: 

(2) 

Differentiating both sides of these equations with respect to x, we have 

(3) 

Likewise, differentiation with respect to y yields 

(4) 

Now, by a theorem in advanced calculus,t the continuity of the partial derivatives of 
u and v ensures that uyx = Uxy and vyx = Vxy· It then follows from equations (3) and 
(4) that 

Uxx + Uyy = 0 and Vxx + Vyy = 0. 

That is, u and v are harmonic in D. 

EXAMPLE 2. The function J(z) = e-y sin x- ie-Y cos x is entire, as is shown 
in Exercise 1 (c), Sec. 24. Hence its real part, which is the temperature function 
T (x, y) = e-Y sin x in Example 1, must be harmonic in every domain of the xy plane. 

EXAMPLE 3. Since the function f (z) = i I z2 is analytic whenever z ::j:. 0 and since 

l i z2 i"z2 rz? 2xy + i(x2 - y2
) 

z2 = z2 . zz = (zz)2 - lzl4 - (x2 + y2)2 

*Another important method is developed in the authors' "Fourier Series and Boundary Value Problems," 
6th ed., 2001. 

t See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 199-201, 1983. 



SEC. 25 HARMONIC FUNCTIONS 77 

the two functions 

2xy 
u(x, y) = 2 2 2 

(x + y) 
and 

x2 _ y2 
v(x' y) = 2 2 2 

(x + y) 

are harmonic throughout any domain in the xy plane that does not contain the origin. 

If two given functions u and v are harmonic in a domain D and their first-order 
partial derivatives satisfy the Cauchy-Riemann equations (2) throughout D, vis said 
to be a harmonic conjugate of u. The meaning of the word conjugate here is, of course, 
different from that in Sec. 5, where z is defined. 

Theorem 2. Afunction f(z) = u(x, y) + iv(x, y) is analytic in a domain D if and 
only if v is a harmonic conjugate of u. 

The proof is easy. If v is a harmonic conjugate of u in D, the theorem in Sec. 
21 tells us that f is analytic in D. Conversely, iff is analytic in D, we know from 
Theorem 1 above that u and v are harmonic in D; and, in view of the theorem in Sec. 
20, the Cauchy-Riemann equations are satisfied. 

The following example shows that if v is a harmonic conjugate of u in some 
domain, it is not, in general, true that u is a harmonic conjugate of v there. (See also 
Exercises 3 and 4.) 

EXAMPLE 4. Suppose that 

u(x, y) = x2 -l and v(x, y) = 2xy. 

Since these are the real and imaginary components, respectively, of the entire function 
f(z) = z2, we know that vis a harmonic conjugate of u throughout the plane. But u 
cannot be a harmonic conjugate of v since, as verified in Exercise 2(b), Sec. 24, the 
function 2xy + i (x2 - y2) is not analytic anywhere. 

In Chap. 9 (Sec. 97) we shall show that a function u which is harmonic in a 
domain of a certain type always has a harmonic conjugate. Thus, in such domains, 
every harmonic function is the real part of an analytic function. It is also true that a 
harmonic conjugate, when it exists, is unique except for an additive constant. 

EXAMPLE 5. We now illustrate one method of obtaining a harmonic conjugate of 
a given harmonic function. The function 

(5) 
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is readily seen to be harmonic throughout the entire xy plane. Since a harmonic 
conjugate v(x, y) is related to u (x, y) by means of the Cauchy-Riemann equations 

(6) 

the first of these equations tells us that 

vy(x, y) = -6xy. 

Holding x fixed and integrating each side here with respect toy, we find that 

(7) v(x, y) = -3xl + ¢(x), 

where ¢ is, at present, an arbitrary function of x. Using the second of equations (6), 
we have 

3l- 3x2 = 3l- ¢'(x), 

or¢' (x) = 3x2. Thus ¢ (x) = x 3 + C, where C is an arbitrary real number. According 
to equation (7), then, the function 

(8) v(x, y) = -3xl + x 3 + C 

is a harmonic conjugate of u (x, y). 
The corresponding analytic function is 

(9) 

The form f(z) = i (z3 +C) of this function is easily verified and is suggested by noting 
that when y = 0, expression (9) becomes f (x) = i (x 3 + C). 

EXERCISES 

1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y) 
when 

(a) u(x, y) = 2x(l- y); (b) u(x, y) = 2x- x 3 + 3xy2; 

(c) u(x, y) =sinh x sin y; (d) u(x, y) = yj(x 2 + y 2). 

Ans. (a) v(x, y) = x 2 - y2 + 2y; (b) v(x, y) = 2y- 3x2y + y3; 

(c) v(x, y) =-cosh x cosy; (d) v(x, y) = xj(x 2 + y2). 
2. Show that if v and V are harmonic conjugates of u in a domain D, then v(x, y) and 

V (x, y) can differ at most by an additive constant. 

3. Suppose that, in a domain D, a function vis a harmonic conjugate of u and also that u 
is a harmonic conjugate of v. Show how it follows that both u(x, y) and v(x, y) must be 
constant throughout D. 

4. Use Theorem 2 in Sec. 25 to show that, in a domain D, v is a harmonic conjugate of u 
if and only if -u is a harmonic conjugate of v. (Compare the result obtained in Exer­
cise 3.) 
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Suggestion: Observe that the function f(z) = u(x, y) + iv(x, y) is analytic in D 
if and only if -ij(z) is analytic there. 

5. Let the function .f(z) = u(r, 0) + iv(r, 0) be analytic in a domain D that does not 
include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 22) 
and assuming continuity of partial derivatives, show that, throughout D, the function 
u(r, 0) satisfies the partial differential equation 

r 2urr(r, 0) + rur(r, 0) + uee(r, 0) = 0, 

which is the polar form of Laplace's equation. Show that the same is true of the function 
v(r, 0). 

6. Verify that the function u(r, 0) = ln r is harmonic in the domain r > 0, 0 < 0 < 27( by 
showing that it satisfies the polar form of Laplace's equation, obtained in Exercise 5. Then 
use the technique in Example 5, Sec. 25, but involving the Cauchy-Riemann equations 
in polar form (Sec. 22), to derive the harmonic conjugate v(r, 0) = fJ. (Compare Exercise 
6, Sec. 24.) 

7. Let the function .f(z) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the 
families of level curves u(x, y) = c1 and v(x, y) = c2, where c1 and c2 are arbitrary 
real constants. Prove that these families are orthogonal. More precisely, show that if 
z0 = (x0 , y0) is a point in D which is common to two particular curves u(x, y) = c1 
and v (x, y) = c2 and if f 1 (zo) -I 0, then the lines tangent to those curves at (x0 , y0) are 
perpendicular. 

Suggestion: Note how it follows from the equations u (x, y) = c1 and v (x, y) = c2 
that 

au + au dy = 0 and 
ax ay dx 

8. Show that when f(z) = z2, the level curves u(x, y) = c1 and v(x, y) = c2 of the compo­
nent functions are the hyperbolas indicated in Fig. 32. Note the orthogonality of the two 

y 

---- X 

FIGURE32 
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families, described in Exercise 7. Observe that the curves u(x, y) = 0 and v(x, y) = 0 
intersect at the origin but are not, however, orthogonal to each other. Why is this fact in 
agreement with the result in Exercise 7? 

9. Sketch the families oflevel curves of the component functions u and v when f(z) = 1/z. 
and note the orthogonality described in Exercise 7. 

10. Do Exercise 9 using polar coordinates. 

11. Sketch the families oflevel curves of the component functions u and v when 

z-l 
f(z) = , 

z+l 

and note how the result in Exercise 7 is illustrated here. 

26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS 

We conclude this chapter with two sections dealing with how the values of an analytic 
function in a domain D are affected by its values in a subdomain or on a line segment 
lying in D. While these sections are of considerable theoretical interest, they are not 
central to our development of analytic functions in later chapters. The reader may pass 
directly to Chap. 3 at this time and refer back when necessary. 

Lemma. Suppose that 
(i) a function f is analytic throughout a domain D; 
(ii) f(z) = 0 at each point z of a domain or line segment contained in D. 
Then f(z) = 0 in D; that is, f(z) is identically equal to zero throughout D. 

To prove this lemma, we let f be as stated in its hypothesis and let zo be any 
point of the subdomain or line segment at each point of which f (z) = 0. Since D is a 
connected open set (Sec. 10), there is a polygonal line L, consisting of a finite number 
of line segments joined end to end and lying entirely in D, that extends from zo to any 
other point P in D. We let d be the shortest distance from points on L to the boundary 
of D, unless D is the entire plane; in that case, d may be any positive number. We then 
form a finite sequence of points 

along L, where the point Zn coincides with P (Fig. 33) and where each point is 
sufficiently close to the adjacent ones that 

(k=l,2, ... ,n). 
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Finally, we construct a finite sequence of neighborhoods 

where each neighborhood Nk is centered at zk and has radius d. Note that these 
neighborhoods are all contained in D and that the center Zk of any neighborhood Nk 

(k = 1, 2, ... , n) lies in the preceding neighborhood Nk-l· 

At this point, we need to use a result that is proved later on in Chap. 6. Namely, 
Theorem 3 in Sec. 68 tells us that since f is analytic in the domain No and since 
f(z) = 0 in a domain or on a line segment containing z0 , then f(z) = 0 in N0 . But 
the point z1 lies in the domain N0. Hence a second application of the same theorem 
reveals that f(z) = 0 in N1; and, by continuing in this manner, we arrive at the fact 
that f(z) = 0 in Nn- Since Nn is centered at the point P and since P was arbitrarily 
selected in D, we may conclude that f(z) = 0 in D. This completes the proof of the 
lemma. 

Suppose now that two functions f and g are analytic in the same domain D and 
that f(z) = g(z) at each point z of some domain or line segment contained in D. The 
difference 

h(z) = f(z) - g(z) 

is also analytic in D, andh(z) = 0 throughout the subdomain or along the line segment. 
According to the above lemma, then, h(z) = 0 throughout D; that is, f(z) = g(z) at 
each point z in D. We thus arrive at the following important theorem. 

Theorem. A function that is analytic in a domain D is uniquely determined over D 
by its values in a domain, or along a line segment, contained in D. 

This theorem is useful in studying the question of extending the domain of 
definition of an analytic function. More precisely, given two domains D 1 and D2, 

consider the intersection D1 n D2, consisting of all points that lie in both D1 and D2. 

If D1 and D2 have points in common (see Fig. 34) and a function ft is analytic in D1, 

there may exist a function fz, which is analytic in D2, such that fz(z) = j 1 (z) for each 
z in the intersection D1 n D2. If so, we call fz an analytic continuation of !J into the 
second domain D2. 

Whenever that analytic continuation exists, it is unique, according to the theorem 
just proved. That is, not more than one function can be analytic in D2 and assume the 
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FIGURE34 

value ft (z) at each point z of the domain D1 n D2 interior to D2. However, if there is 
an analytic continuation h of h from D2 into a domain D3 which intersects Db as 
indicated in Fig. 34, it is not necessarily true that f3(z) = / 1 (z) for each z in D1 n D3• 

Exercise 2, Sec. 27, illustrates this. 
If fz is the analytic continuation of / 1 from a domain D 1 into a domain D2, then 

the function F defined by the equations 

F(z) = { ft(Z) when z ~s ~n Dt, 
h(z) when z ISm D2 

is analytic in the union D1 U D2 , which is the domain consisting of all points that lie 
in either D 1 or D2• The function F is the analytic continuation into D 1 U D2 of either 
ft or fz; and f 1 and h are called elements of F. 

27. REFLECTION PRINCIPLE 

The theorem in this section concerns the fact that some analytic functions possess the 
property that f(z) = fCi) for all points z in certain domains, while others do not. We 
note, for example, that z + 1 and z2 have that property when D is the entire finite plane; 
but the same is not true of z + i and i z2• The theorem, which is known as the reflection 
principle, provides a way of predicting when /(z) = f[i). 

Theorem. Suppose that a function f is analytic in some domain D which contains 
a segment of the x axis and whose lower half is the reflection of the upper half with 
respect to that axis. Then 

(1) f(z) = f(J) 

for each point z in the domain if and only iff (x) is real for each point x on the segment. 

We start the proof by assuming that f(x) is real at each point x on the segment. 
Once we show that the function 

(2) F(z) = f(J) 
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is analytic in D, we shaH use it to obtain equation (1). To establish the analyticity of 
F(z), we write 

j(z) = u(x, y) iv(x, y), F(z) = U(x, y) + iV(x, y) 

and observe how it follows from equation (2) that, since 

(3) f(Z) = u(x, -y)- iv(x, -y), 

the components of F(z) and f(z) are related by the equations 

(4) U(x, y) = u(x, t) and V(x, y) = -v(x, t), 

where t = -y. Now, because j(x +it) is an analytic function of x +it, the first­
order partial derivatives of the functions u (x, t) and v (x, t) are continuous throughout 
D and satisfy the Cauchy-Riemann equations* 

(5) 

Furthermore, in view of equations (4), 

and it follows from these and the first of equations (5) that Ux = VY" Similarly, 

and the second of equations (5) tells us that U y = - Vx- Inasmuch as the first-order 
partial derivatives of U(x, y) and V(x, y) are now shown to satisfy the Cauchy­
Riemann equations and since those derivatives are continuous, we find that the function 
F(z) is analytic in D. Moreover, since f (x) is real on the segment of the real axis lying 
in D, v(x, 0) = 0 on that segment; and, in view of equations (4), this means that 

F(x) = U(x, 0) iV(x, 0) = u(x, 0)- iv(x, 0) = u(x, 0). 

That is, 

(6) F(z) = f(z) 

at each point on the segment. We now refer to the theorem in Sec. 26, which tells us 
that an analytic function defined on a domain Dis uniquely determined by its values 
along any line segment lying in D. Thus equation (6) actually holds throughout D. 

*See the paragraph immediately following Theorem 1 in Sec. 25. 
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Because of definition (2) of the function F(z), then, 

(7) f(Z) = f(z); 

and this is the same as equation (1). 
To prove the converse of the theorem, we assume that equation (1) holds and note 

that, in view of expression (3), the form (7) of equation (1) can be written 

u(x, -y)- iv(x, -y) = u(x, y) + iv(x, y). 

In particular, if (x, 0) is a point on the segment of the real axis that lies in D, 

u(x, 0)- iv(x, 0) = u(x, 0) + iv(x, 0); 

and, by equating imaginary parts here, we see that v(x, 0) = 0. Hence f(x) is real on 

the segment of the real axis lying in D. 

EXAMPLES. Just prior to the statement of the theorem, we noted that 

z + 1 = z + 1 and z2 = z2 

for all z in the finite plane. The theorem tells us, of course, that this is true, since x + 1 

and x 2 are real when x is real. We also noted that z + i and i z2 do not have the reflection 

property throughout the plane, and we now know that this is because x + i and ix2 are 
not real when x is real. 

EXERCISES 

1. Use the theorem in Sec. 26 to show that if f(z) is analytic and not constant throughout 
a domain D, then it cannot be constant throughout any neighborhood lying in D. 

Suggestion: Suppose that f (z) does have a constant value w0 throughout some 
neighborhood in D. 

2. Starting with the function 

and referring to Exercise 4(b), Sec. 22, point out why 

(r > 0, ~ < e < 2rr) 

is an analytic continuation of fi across the negative real axis into the lower half plane. 
Then show that the function 

(r > 0, rr < e < 
5
;) 

is an analytic continuation of fz across the positive real axis into the first quadrant but 
that hCz) = - ! 1 (z) there. 
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3. State why the function 

f4(Z) = ..;rei0/2 (r > 0, -j( < e < j() 

is the analytic continuation of the function f 1 (z) in Exercise 2 across the positive real 
axis into the lower half plane. 

4. We know from Example 1, Sec. 21, that the function 

J(z) = exeiy 

has a derivative everywhere in the finite plane. Point out how it follows from the reflection 
principle (Sec. 27) that 

f(z) = !Ci) 

for each z. Then verify this directly. 

5. Show that if the condition that f (x) is real in the reflection principle (Sec. 27) is replaced 
by the condition that f(x) is pure imaginary, then equation (1) in the statement of the 
principle is changed to 

--
f(z) =- !Ci). 





CHAPTER 

3 
ELEMENTARY FUNCTIONS 

We consider here various elementary functions studied in calculus and define corre­
sponding functions of a complex variable. To be specific, we define analytic functions 
of a complex variable z that reduce to the elementary functions in calculus when 
z = x + iO. We start by defining the complex exponential function and then use it 
to develop the others. 

28. THE EXPONENTIAL FUNCTION 

As anticipated earlier (Sec. 13), we define here the exponential function ez by writing 

(1) (z=x+iy), 

where Euler's formula (see Sec. 6) 

(2) eiy =cosy+ i sin y 

is used and y is to be taken in radians. We see from this definition that ez reduces to 
the usual exponential function in calculus when y = 0; and, following the convention 
used in calculus, we often write exp z for e'-. 

Note that since the positive nth root ::(e of e is assigned to ex when x = 1/n 
(n = 2, 3, ... ), expression (1) tells us that the complex exponential function ez is also 
::(e when z = ljn (n = 2, 3, ... ). This is an exception to the convention (Sec. 8) that 
would ordinarily require us to interpret e1fn as the set of nth roots of e. 

87 
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According to definition (1), ex eiy = ex+iy; and, as already pointed out in Sec. 13, 
the definition is suggested by the additive property 

of e-'' in calculus. That property's extension, 

(3) 

to complex analysis is easy to prove. To do this, we write 

Then 

But x 1 and x2 are both real, and we know from Sec. 7 that 

Hence 

and, since 

(xl + x2) + i(Yl + Y2) = (xl + iyt) + (x2 + iy2) = Zt + Z2, 

the right-hand side of this last equation becomes ez1+z2. Property (3) is now established. 
Observe how property (3) enables us to write ez1-z2ez2 = ez', or 

(4) 

From this and the fact that e0 = 1, it follows that ljeZ = e-z. 
There are a number of other important properties of ez that are expected. Accord­

ing to Example 1 in Sec. 21, for instance, 

d • z 
-e'"=e 
dz 

(5) 

everywhere in the z plane. Note that the differentiability of ez for all z tells us that 
ez is entire (Sec. 23). It is also true that 

(6) ez ::j:. 0 for any complex number z. 

This is evident upon writing definition (1) in the form 

ez = pei<P where p = ex and </J = y, 
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which tells us that 

(7) lezl =ex and arg(e2
) = y + 2mr (n = 0, ±1, ±2, ... ). 

Statement (6) then follows from the observation that 1ez1 is always positive. 

Some properties of ez are, however, not expected. For example, since 

we find that ez is periodic, with a pure imaginary period 2rr i: 

(8) 

The following example illustrates another property of ez that ex does not have. 

Namely, while ex is never negative, there are values of ez that are. 

EXAMPLE. There are values of z, for instance, such that 

(9) ez = -1. 

To find them, we write equation (9) as exeiY = leirr. Then, in view of the statement 

in italics at the beginning of Sec. 8 regarding the equality of two nonzero complex 

numbers in exponential form, 

ex=l and y=rr+2nrr(n=0,±1,±2, ... ). 

Thus x = 0, and we find that 

(10) z = (2n + l)ni (n = 0, ±1, ±2, ... ). 

EXERCISES 

1. Show that 

(a) exp(2 ± 3ni) = -e2; (
'2+ni) 1re 

(b) exp 
4 

= y 
2 

(1 + i); 

(c) exp(z + ni) =- exp z. 

2. State why the function 2z2 - 3 - zez + e-z is entire. 

3. Use the Cauchy-Riemann equations and the theorem in Sec. 20 to show that the function 
f(z) = exp z is not analytic anywhere. 

4. Show in two ways that the function exp(z2) is entire. What is its derivative? 

.4ns. 2z exp(z2). 

5. Write lexp(2z + i)l and lexp(iz2)1 in terms of x andy. Then show that 

lexp(2z + i) + exp(iz2)1 < e2x + e-2xY. 

6. Show that lexp(z2 )1 < exp(lzl2). 
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7. Prove that Jexp(-2z) I < 1 if and only if Re z > 0. 

8. Find all values of z such that 

(a) ez = -2; (b) ez = 1 + J3i; (c) exp(2z- 1) =I. 

Ans. (a) z = 1n 2 + (2n + l)ni (n = 0, ±1, ±2, ... ); 

(b) z = ln 2 + (2n + ~)ni (n = 0, ±1, ±2, ... ); 

(c) z = ~ + nni (n = 0, ±1, ±2, ... ). 

9. Show that exp(iz) = exp(iz) if and only if z = nn (n = 0, ±I, ±2, ... ). (Compare 
Exercise 4, Sec. 27 .) 

10. (a) Show that if ez is real, then Im z = n:rr (n = 0, ±1, ±2, ... ). 

(b) If e2 is pure imaginary, what restriction is placed on z? 

11. Describe the behavior of e 2 =ex eiY as (a) x tends to -oo; (b) y tends to oo. 

12. Write Re(e 11z) in terms of x andy. Why is this function harmonic in every domain that 
does not contain the origin? 

13. Let the function f (z) = u (x, y) + i v (x, y) be analytic in some domain D. State why the 
functions 

U(x, y) = eu(x,y) cos u(x, y), V(x, y) = eu(x,y) sin u(x, y) 

are harmonic in D and why V(x, y) is, in fact, a harmonic conjugate of U(x, y). 

14. Establish the identity 

(n = 0, ±1, ±2, ... ) 

in the following way. 

(a) Use mathematical induction to show that it is valid when n = 0, 1, 2, .... 

(b) Verify it for negative integers n by first recalling from Sec. 7 that 

(m = -n = I, 2, ... ) 

when z =I= 0 and writing (ez)n = (1/ e2 )m. Then use the result in part (a), together 
with the property 1/ e2 = e-z (Sec. 28) of the exponential function. 

29. THE LOGARITHMIC FUNCTION 

Our motivation for the definition of the logarithmic function is based on solving the 

equation 

(1) 

for w, where z is any nonzero complex number. To do this, we note that when z and 

ware written z = rei 8 (-:rr < 8 < :rr) and w = u + iv, equation (1) becomes 
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Then, in view of the statement in italics in Sec. 8 regarding the equality of two complex 
numbers expressed in exponential form, 

eu = r and v = e + 2mr 

where n is any integer. Since the equation eu = r is the same as u = In r, it follows 
that equation ( 1) is satisfied if and only if w has one of the values 

w = In r + i ( 8 + 2mr) (n = 0, ±1, ±2, ... ). 

Thus, if we write 

(2) log z = In r + i ( 8 + 2mr) (n = 0, ±1, ±2, ... ), 

we have the simple relation 

(3) elogz = Z (z:f:O), 

which serves to motivate expression (2) as the definition of the (multiple-valued) 
logarithmic function of a nonzero complex variable z = rei 8 . 

EXAMPLE 1. If z = -1 - ../3i, then r = 2 and 8 = - 2rr j3. Hence 

log( -1- vJi) = )n 2 + i (-
2
; + 2nn) =In 2 + 2 ( n - ~) n i 

(n = 0, ±1, ±2, ... ). 

It should be emphasized that it is not true that the left-hand side of equation (3) 
with the ord~r of the exponential and logarithmic functions reversed reduces to just z. 
More precisely, since expression (2) can be written 

log z =In lzl + i arg z 

and since (Sec. 28) 

lezl =ex and arg(ez) = y + 2mr (n = 0, ±1, ±2, ... ) 

when z = x + iy, we know that 

log(e2
) =In le2

1 + i arg(e2
) = ln(ex) + i(y + 2nrr) = (x + iy) + 2nni 

(n = 0, ±1, ±2, ... ). 

That is, 

(4) 1og(e2
) = z + 2nni (n = 0, ±1, ±2, ... ). 
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The principal value of log z is the value obtained from equation (2) when n = 0 

there and is denoted by Log z. Thus 

(5) Log z = In r + i 8. 

Note that Log z is well defined and single-valued when z ¥= 0 and that 

(6) log z =Log z + 2mri (n = 0, ±1, ±2, ... ). 

It reduces to the usual logarithm in calculus when z is a positive real number z = r. To 

see this, one need only write z = reiO, in which case equation (5) becomes Log z =In r. 
That is, Log r =In r. 

EXAMPLE 2. From expression (2), we find that 

log 1 =In 1 + i(O + 2mr) = 2mri 

As anticipated, Log 1 = 0. 

(n = 0, ±1, ±2, ... ). 

Our final example here reminds us that, although we were unable to find loga­

rithms of negative real numbers in calculus, we can now do so. 

EXAMPLE 3. Observe that 

log( -1) =In l + i (n + 2nn) = (2n + l)rri 

and that Log( -1) = ni. 

(n = 0, ±1, ±2, ... ) 

30. BRANCHES AND DERIVATIVES OF LOGARITHMS 

If z = reie is a nonzero complex number, the argument() has any one of the values 

() = 0) + 2nn (n = 0, ±1, ±2, ... ), where 8 = Arg z. Hence the definition 

log z =In r + i(B + 2nn) (n = 0, ±1, ±2, ... ) 

of the multiple-valued logarithmic function in Sec. 29 can be written 

(1) log z = ln r + i(). 

If we let a denote any real number and restrict the value of() in expression (1) so 

that a < () < a + 2n , the function 

(2) logz=lnr+i(} (r > 0, a < () <a+ 2rr), 

with components 

(3) u(r,e)=lnr and v(r,())=e, 
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FIGURE35 

is single-valued and continuous in the stated domain (Fig. 35). Note that if the function 

(2) were to be defined on the ray 8 =a, it would not be continuous there. For, if z is 

a point on that ray, there are points arbitrarily close to z at which the values of v are 

near a and also points such that the values of v are near a + 2rr. 
The function (2) is not only continuous but also analytic in the domain r > 0, 

a < () < a + 2rr since the first-order partial derivatives of u and v are continuous 

there and satisfy the polar form (Sec. 22) 

of the Cauchy-Riemann equations. Furthermore, according to Sec. 22, 

that is, 

(4) 

In particular, 

(5) 

d 1 -iec . ) -ie ( 1 ·o) t - og z = e llr + l Vr = e - + l = -.-fl ; 
dz r r~ 

d 1 
-logz =-
dz z 

d 1 
-Logz= 
dz z 

(I z I > 0, a < arg z < a + 2rr). 

(lzl > 0, -rr < Arg z < rr). 

A branch of a multiple-valued function f is any single-valued function F that is 

analytic in some domain at each point z of which the value F (z) is one of the values 

f(z). The requirement of analyticity, of course, prevents F from taking on a random 

selection of the values of f. Observe that, for each fixed a, the single-valued function 

(2) is a branch of the multiple-valued function ( l ). The function 

(6) Log z = In r + i 8 (r > 0, -rr < 8 < rr) 

is called the principal branch. 
A branch cut is a portion of a line or curve that is introduced in order to define a 

branch F of a multiple-valued function f. Points on the branch cut for Fare singular 

points (Sec. 23) ofF, and any point that is common to all branch cuts off is called a 
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branch point. The origin and the ray (} =a make up the branch cut for the branch (2) 
of the logarithmic function. The branch cut for the principal branch (6) consists of the 
origin and the ray E> = Jr. The origin is evidently a branch point for branches of the 
multiple-valued logarithmic function. 

EXERCISES 

1. Show that 

(a) Log(-ei) = 1- rr i; 
2 

(b) Log(l - i) = ~ In 2- rr i. 
2 4 

2. Verify that when n = 0, ±I, ±2, ... , 

(a) loge= 1 + 2nrri; (b) log i = ( 2n + ~) 1ri; 

(c) log(-1 + .J3i) =In 2 + 2 ( n + ~) 1ri. 

3. Show that 

(a) Log(l + i)2 = 2 Log(l + i); (b) Log( -1 + i) 2 :f:; 2 Log( -1 + i). 

4. Show that 

(a) log(i 2
) = 2log i when log z = ln r + ifJ (r > 0, : < () < 

9
:} 

(b) log(i 2) :f:; 21og i when log z =In r + iO (r > 0, 
3
: < () < 

1 :iT). 
5. Show that 

(a) the set of values oflog(i 112) is (n + !)1ri (n = 0, ±1, ±2, ... ) and that the same is 
true of (1/2) log i; 

(b) the set of values of log(i2) is not the same as the set of values of 2log i. 

6. Given that the branch log z =In r + i () (r > 0, a < e < a + 2rr) of the logarithmic func­
tion is analytic at each point z in the stated domain, obtain its derivative by differentiating 
each side of the identity exp(log z) = z (Sec. 29) and using the chain rule. 

7. Find all roots of the equation log z = irr /2. 

Ans. z =i. 

8. Suppose that the point z = x + iy lies in the horizontal strip a < y <a+ 2rr. Show that 
when the branch log z = In r + iO (r > 0, a < e < a + 27r) of the logarithmic function 
is used, log(eZ) = z. 

9. Show that 

(a) the function Log(z - i) is analytic everywhere except on the half line y = 1 (x < 0); 
(b) the function 

Log(z +4) 

z2 +i 

is analytic everywhere except at the points ± ( 1 - i) ;../2 and on the portion x :::; -4 
of the real axis. 
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10. Show in two ways that the function ln(x2 + y2) is harmonic in every domain that does 
not contain the origin. 

11. Show that 

1 
Re[log(z- 1)] =- ln[(x- 1)2 + y2] 

2 
(Z f- 1). 

Why must this function satisfy Laplace's equation when z i- 1? 

31. SOME IDENTITIES INVOLVING LOGARITHMS 

As suggested by relations (3) and (4) in. Sec. 29, as well as Exercises 3, 4, and 5 with 
Sec. 30, some identities involving logarithms in calculus carry over to complex analysis 
and others do not. In this section, we derive a few that do carry over, sometimes with 
qualifications as to how they are to be interpreted. A reader who wishes to pass to Sec. 
32 can simply refer to results here when needed. 

If z1 and z2 denote any two nonzero complex numbers, it is straightforward to 
show that 

(l) 

This statement, involving a multiple-valued function, is to be interpreted in the same 
way that the statement 

(2) arg(ztzz) = arg Zt + arg Zz 

was in Sec. 7. That is, if values of two of the three logarithms are specified, then there 
is a value of the third logarithm such that equation ( 1) holds. 

The proof of statement (1) can be based on statement (2) in the following way. 
Since lz 1z2 1 = lztllz2 1 and since these moduli are all positive real numbers, we know 
from experience with logarithms of such numbers in calculus that 

So it follows from this and equation (2) that 

(3) In lztzzl + i arg(ztZz) = (In lztl + i arg Zt) + (In lzzl + i arg zz). 

Finally, because of the way in which equations (1) and (2) are to be interpreted, 
equation (3) is the same as equation ( 1 ). 

EXAMPLE. To illustrate statement (1), write z1 = z2 = -1 and note that z1z2 = 1. 
If the values log z 1 = 1i i and log z2 = -n i are specified, equation ( 1) is evidently 
satisfied when the value log(z 1z2) = 0 is chosen. 

Observe that, for the same numbers z1 and z2, 

Log(ztzz) = 0 and Log z1 +Log z2 = 2ni. 

Thus statement (1) is not, in general, valid when log is replaced everywhere by Log. 
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(4) 

Verification of the statement 

log(~ 1 ) =log z1 -log z2, 
~2 

CHAP. 3 

which is to be interpreted in the same way as statement (1), is left to the exercises. 
We include here two other properties of log z that will be of special interest in 

Sec. 32. If z is a nonzero complex number, then 

(5) (n = 0 ± 1, ±2, ... ) 

for any value of log z that is taken. When n = 1, this reduces, of course, to relation (3), 
Sec. 29. Equation (5) is readily verified by writing z = re18 and noting that each side 
becomes rneine. 

It is also true that when z =I= 0, 

(6) z11n = exp(~ log z) (n = 1, 2, ... ). 

That is, the term on the right here has n distinct values, and those values are the nth 
roots of z. To prove this, we write z = r exp(iE>), where E> is the principal value of 
arg z. Then, in view of definition (2), Sec. 29, of log z, 

( 
1 ) [ 1 i (E> + 2kJT)] exp - log z = exp - In r + , 
n n 11 

where k = 0, ±1. ±2, .... Thus 

(7) exp(~ log z) = ~ exp[i ( ~ + 
2:rr) J (k = 0, ±1, ±2, ... ). 

Because exp(i2krrj11) has distinct values only when k = 0, 1, ... , 11- 1, the right­
hand side of equation (7) has only n values. That right-hand side is, in fact, an 
expression for the nth roots of z (Sec. 8), and so it can be written zl!n. This establishes 
property (6), which is actually valid when n is a negative integer too (see Exercise 5). 

EXERCISES 

1. Show that if Re z 1 > 0 andRe z2 > 0, then 

Log(ZJZ2) =Log Zt +Log Z2· 

2. Show that, for any two nonzero complex numbers z1 and z2, 

Log(ZtZ2) =Log z1 +Log z2 + 2Nrri 

where N has one of the values 0, ±1. (Compare Exercise 1.) 

3. Verify expression (4), Sec. 31, for log(zifz2) by 

(a) using the fact that arg(ztfz2) = arg z1 - arg z2 (Sec. 7); 
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(b) showing that log(l/z) =-log z (z f. 0), in the sense that log(1/z) and -log z have 
the same set of values, and then referring to expression (1), Sec. 31, for log(z 1z2). 

4. By choosing specific nonzero values of z 1 and z2, show that expression ( 4). Sec. 31, for 
log(z 1jz2) is not always valid when log is replaced by Log. 

5. Show that property (6), Sec. 31, also holds when n is a negative integer. Do this by writing 
z 1/n = (z lfm) -I (m = -n ), where n has any one of the negative values n = -1, -2, ... 
(see Exercise 9, Sec. 9), and using the fact that the property is already known to be valid 
for positive integers. 

6. Let z denote any nonzero complex number, written z = reiE> (-n < e < n), and let n 
denote any fixed positive integer (n = 1, 2, ... ). Show that all of the values of log(zlfn) 
are given by the equation 

I ( lfn) 1 1 . e + 2(pn + k)n og z =- n r + l , 
n n 

where p = 0, ±1, ±2, ... and k = 0, 1, 2, ... , n- 1. Then, after writing 

1 I . 8 + 2qn - log z = - In r + 1 __ ..::._ 

n n n 

where q = 0, ± 1, ±2, ... , show that the set of values oflog(z 1ln) is the same as the set 
of values of (1/n) log z. Thus show that log(z 11n) = (ljn) log z, where, corresponding 
to a value oflog(z 11n) taken on the left, the appropriate value oflog z is to be selected on 
the right, and conversely. fThe result in Exercise 5(a), Sec. 30, is a special case of this 
one.] 

Suggestion: Use the fact that the remainder upon dividing an integer by a positive 
integer n is always an integer between 0 and n - 1, inclusive; that is, when a positive 
integer n is specified, any integer q can be written q = pn + k, where pis an integer and 
k has one of the values k = 0, 1, 2, ... , n- 1. 

32. COMPLEX EXPONENTS 

When z =!= 0 and the exponent c is any complex number, the function zc is defined by 
means of the equation 

(1) 

where Jog z denotes the multiple-valued logarithmic function. Equation (1) provides 
a consistent definition of zc in the sense that it is already known to be valid (see Sec. 
31) when c = n (n = 0, ±1, ±2, ... ) and c = 1/n (n = ±1, ±2, ... ). Definition (1) 
is, in fact, suggested by those particular choices of c. 

EXAMPLE 1. Powers of z are. in general. multiple-valued, as illustrated by writing 

i-2
i = exp( -2i log i) 
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and then 

log i = ln 1 + i ( ~ + 2nn) = i ( 2n + ~ }-r 
This shows that 

(n = 0, ±1, ±2, ... ). 

(2) i-2i = exp[(4n + l)n] (n = 0, ±1, ±2, ... ). 

Note that these values of ;-2i are all real numbers. 
Since the exponential function has the property 1/ e2 = e-z, one can see that 

-
1 = 1 = exp(-c log z) = z-c 

zc exp(c log z) 

and, in particular, that 1/ i 2; = ;-Zi. According to expression (2), then, 

(3) 
1 

·2i = exp[(4n + l)n] 
l 

(n = 0, ±1, ±2, ... ). 

If z = rei8 and a is any real number, the branch 

log z = In r + i () (r > 0, a < () < a + 2n) 

of the logarithmic function is single-valued and analytic in the indicated domain (Sec. 

30). When that branch is used, it follows that the function zc = exp(c log z) is single­

valued and analytic in the same domain. The derivative of such a branch of zc is found 

by first using the chain rule to write 

d d c 
-zc = - exp(c log z) = - exp(c log z) 
dz dz z 

and then recalling (Sec. 29) the identity z = exp(log z). That yields the result 

d c exp(clog z) [( 1. 1 ] 
-z = c = c exp c - ) og z , 
dz exp(log z) · 

or 

(4) (lzl > 0, a < arg z <a+ 2n). 

The principal value of zc occurs when log z is replaced by Log z in definition (1): 

(5) 

Equation (5) also serves to define the principal branch of the function zc on the domain 

lzl > 0, -n < Argz < n. 



SEC.32 

EXAMPLE 2. The principal value of ( -i )i is 

That is, 

(6) 

expli Log( -i)] = exp[i (In 1- i ~) J = exp ~. 

P.V. ( -i)i = exp rr:. 
2 

EXAMPLE 3. The principal branch of z213 can be written 
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(2 ) (" 2 ·) 3~ ( "8.) exp 
3 

Logz =exp ,; lnr+ 
3

iE-) =V"r2 exp i~3 . 

Thus 

(7) 
3r;. 28 3r;. 28 

P.V. z213 = v r"' cos-+ iv r2 sin-. 
3 3 

This function is analytic in the domain r > 0, -rr: < 8 < rr:, as one can see directly 

from the theorem in Sec. 22. 

According to definition (1), the exponentialfunction with base c, where cis any 

nonzero complex constant, is written 

(8) 

Note that although ez is, in general, multiple-valued according to definition (8), the 

usual interpretation of e2 occurs when the principal value of the logarithm is taken. 

For the principal value of log e is unity. 
When a value of log cis specified, cz is an entire function of z. In fact, 

d cz = !!:_ez Jog c = ez Jog clog c; 
dz dz 

and this shows that 

(9) 
d ~ -
-c'· = c" log c. 
dz 

EXERCISES 

1. Show that when n = 0, ±1, ±2, ... , 

(a) (l + i)i = exp(-: + 2mr) expG In 2 ); (b) (-1) 1/Jr = eC2n+!)i. 

2. Find the principal value of 

(a)ii; (b)[~<-1-J3i)f1Ti; <c)(l-i)4i. 

Ans. (a) exp( -1r /2); (b)- exp(21T2); (c) e1f[cos(2ln 2) + i sin(2ln 2)]. 
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3. Use definition (1 ), Sec. 32, of zc to show that ( -1 + ../3i)312 = ± 2.J2. 
4. Show that the result in Exercise 3 could have been obtained by writing 

(a) ( -1 + v'3i)312 = (( -1 + ../3i) 112]3 and first finding the square roots of -1 + v'3i; 

(b) ( -1 + ylji)3/2 = (( -1 + ylji) 3]112 and first cubing -1 + J3i. 
5. Show that the principal nth root of a nonzero complex number z0 , defined in Sec. 8, is 

the same as the principal value of z1~1 n, defined in Sec. 32. 

6. Show that if z :f 0 and a is a real number, then lzal = exp(a In lzl) = lzla, where the 

principal value of lzla is to be taken. 

7. Let c =a+ bi be a fixed complex number, where c :f 0, ±1, ±2, ... , and note that ic 
is multiple-valued. What restriction must be placed on the constant c so that the values 

of WI are all the same? 

Ans. c is reaL 

8. Let c, d, and z denote complex numbers, where z :f 0. Prove that if all of the powers 

involved are principal values, then 

(a) 1/zc = z-c; (b) (zc)n =zen (n = 1, 2, ... ); 

9. Assuming that f' (z) exists, state the formula for the derivative of cf\z). 

33. TRIGONOMETRIC FUNCTIONS 

Euler's formula (Sec. 6) tells us that 

eix =cos x + i sin x and e-ix =cos x - i sin x 

for every real number x, and it follows from these equations that 

That is, 

eix- e-ix = 2i sin x 

eix _ e-ix 
smx=----

2i 

. . 
and e1x + e -zx = 2 cos x. 

and 
eix + e-ix 

COSX=----
2 

It is, therefore, natural to define the sine and cosine functions of a complex variable z 
as follows: 

(1) 
eiz _ e-iz 

smz=----, 
2i 

eiz + e-iz 
cosz= ----

2 

These functions are entire since they are linear combinations (Exercise 3, Sec. 24) 

of the entire functions eiz and e-iz. Knowing the derivatives of those exponential 

functions, we find from equations (1) that 

(2) 
d . 

- sm z = cosz, 
dz 

d . 
- cos z = - sm z. 
dz . 
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It is easy to see from definitions ( 1) that 

(3) sin( -z) =-sin z and cos( -z} =cos z; 

and a variety of other identities from trigonometry are valid with complex variables. 

EXAMPLE. In order to show that 

(4) 

using definitions ( l) and properties of the exponential function, we first write 

Multiplication then reduces the right-hand side here to 

ei(zt+zz) _ e-i(zt+zz) ei(zt-zz) _ e-i(zt-Z2) 

---------------+---------------
2i 2i 

or 

and identity ( 4) is established. 

(5) 

(6) 

Identity ( 4) leads to the identities (see Exercises 3 and 4) 

sin(z 1 + 22) =sin z1 cos z2 +cos z1 sin z2 , 

and from these it follows that 

(7) ? 2 sin- z + cos z = 1, 

(8) sin 2z = 2 sin z cos z, cos 2z = cos2 z- sin2 z, 

(9) sin(z + ~) =cos z, sin(z- ~)=-cos z. 

When y is any real number, one can use definitions (l) and the hyperbolic 
functions 

v -v e· - e · 
sinh v = and 

~ 2 

from calculus to write 

y + -y e e 
cosh v=---. 2 

(10) sin(iy) = i sinh y and cos(iy) =cosh y. 
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The real and imaginary parts of sin z and cos z are then readily displayed by writing 
z1 = x and z2 = iy in identities (5) and (6): 

(11) 

(12) 

sin z = sin x cosh y + i cos x sinh y, 

cos z = cos x cosh y - i sin x sinh y, 

where z = x + iy. 
A number of important properties of sin z and cos z follow immediately from 

expressions (11) and (12). The periodic character of these functions, for example, is 
evident: 

(13) 

(14) 

sin(z + 2rr) =sin z, sin(z + rr) =-sin z, 

cos(z + 2rr) =cos z. cos(z + rr) =-cos z. 

Also (see Exercise 9) 

(15) 

(16) 

lsin zl2 = sin2 x + sinh2 y, 

Ieos zl2 = cos2 x + sinh2 y. 

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two 
equations that sin z and cos z are not bounded on the complex plane, whereas the 
absolute values of sin x and cos x are less than or equal to unity for all values of x. 
(See the definition of boundedness at the end of Sec. 17 .) 

A zero of a given function f (z) is a number zo such that f (z0) = 0. Since sin z 
becomes the usual sine function in calculus when z is real, we know that the real 
numbers z = nrr (n = 0, ± l, ±2, ... ) are all zeros of sin z. To show that there are no 

other zeros. we assume that sin z = 0 and note how it follows from equation (15) that 

sin2 x + sinh2 y = 0. 

Thus 

sin x = 0 and sinh y = 0. 

Evidently, then, x = nrr (n = 0, ± 1, ±2, ... ) and y = 0; that is, 

(17) sin z = 0 if and only if z = nrr (n = 0, ±1, ±2, ... ). 

Since 

cos z = - sin ( z - ~ ) , 

according to the second of identities (9), 

(18) cos z = 0 if and only if z = rr + nrr (n = 0, ±1, ±2, ... ). 
2 

So, as was the case with sin z, the zeros of cos z are all real. 
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The other four trigonometric functions are defined in terms of the sine and cosine 
functions by the usual relations: 

(19) 

(20) 

smz 
tanz = -­

cos z 
1 

secz = --, 
cosz 

cosz 
cot z = . , 

Slll Z 

1 
cscz = -.­

smz 

Observe that the quotients tan z and sec z are analytic everywhere except at the 
singularities (Sec. 23) 

T( 

z =- + nrr 
2 

(n = 0, ±1, ±2, ... ), 

which are the zeros of cos z. Likewise, cot z and esc z have singularities at the zeros 
of sin z, namely 

z =nrr (n = 0, ±1, ±2, ... ). 

By differentiating the right-hand sides of equations (19) and (20), we obtain the 
expected differentiation formulas 

(21) 

(22) 

d 2 
-tanz=sec z, 
dz 
d 
- sec z = sec z tan z. dz · 

d 2 
- cot z = - esc z, 
dz 
d 
- esc z = - esc z cot z. 
dz 

The periodicity of each of the trigonometric functions defined by equations (19) and 
(20) follows readily from equations (13) and (14). For example, 

(23) tan(z + rr) =tan z. 

Mapping properties of the transformation w = sin z are especially important in 
the applications later on. A reader who wishes at this time to learn some of those 
properties is sufficiently prepared to read Sec. 89 (Chap. 8), where they are discussed. 

EXERCISES 

1. Give details in the derivation of expressions (2), Sec. 33, for the derivatives of sin z and 
cos z. 

2. Show that Euler's formula (Sec. 6) continues to hold when() is replaced by z: 

eiz =cos z + i sin z. 

Suggestion: To verify this, start with the right-hand side. 

3. In Sec. 33, interchange z1 and z2 in equation (4) and then add corresponding sides of the 
resulting equation and equation (4) to derive expression (5) for sin(z1 + z2). 
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4. According to equation (5) in Sec. 33, 

sin(z + z2) =sin z cos z2 +cos z sin z2 . 

By differentiating each side here with respect to z and then setting z = z 1• derive expres­
sion (6) for cos(z 1 + z2 ) in that section. 

5. Verify identity (7) in Sec. 33 using 

(a) identity (6) and relations (3) in that section; 

(b) the lemma in Sec. 26 and the fact that the entire function 

f(z) = sin2 z + cos2 z- 1 

has zero values along the x axis. 

6. Show how each of the trigonometric identities (8) and (9) in Sec. 33 follows from one 
of the identities (5) and (6) in that section. 

7. Use identity (7) in Sec. 33 to show that 

(a) 1 + tan2 z = sec2 z; (b) 1 + cot2 z = csc2 z. 

8. Establish differentiation formulas (21) and (22) in Sec. 33. 

9. In Sec. 33, use expressions (11) and (12) to derive expressions (15) and (16) for !sin zl 2 
') 

and Ieos zl~. 
Suggestion: Recall the identities sin2 x + cos2 x = 1 and cosh2 y - sinh2 y = 1. 

10. Point out how it follows from expressions (15) and (16) in Sec. 33 for I sin z 12 and Ieos z 12 

that 

(a) I sin zl > !sin xl; (b) Ieos zl > Ieos xi. 

11. With the aid of expressions (15) and (16) in Sec. 33 for !sin zl 2 and Ieos zi 2, show that 

(a) !sinh yl <!sin zl <cosh y; (b) !sinh yl <!cos z! <cosh y. 

12. (a) Use definitions (1), Sec. 33, of sin z and cos z to show that 

(b) With the aid of the identity obtained in part (a), show that if cos z 1 =cos z2, then at 
least one of the numbers z 1 + z2 and z 1 - z2 is an integral multiple of 2rr. 

13. Use the Cauchy-Riemann equations and the theorem in Sec. 20 to show that neither sin z 
nor cos z is an analytic function of z anywhere. 

14. Use the reflection principle (Sec. 27) to show that, for all z, 
(a) sin z =sin z; (b) cos z =cos z. 

15. With the aid of expressions (11) and (12) in Sec. 33, give direct verifications of the 
relations obtained in Exercise 14. 
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16. Show that 

(a) cos(i z) = cos(iZ) 

(b) sin(iz) = sin(iz) 

for all z; 

if and only if z = nrri (n = 0, ±I, ±2, ... ). 

17. Find all roots of the equation sin z =cosh 4 by equating the real parts and the imaginary 
parts of sin z and cosh 4. 

Ans. ( ~ + 2nrr) ± 4i (n = 0, ±1, ±2, ... ). 

18. Find all roots of the equation cos z = 2. 

Ans. 2mr + i cosh- 1 2, or 2mr ± i ln(2 + J3) (n = 0, ±1, ±2, ... ). 

34. HYPERBOLIC FUNCTIONS 

The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as 
they are with a real variable; that is, 

(1) 
ez- e-z 

sinh z = , 
2 

ez + e-z 
coshz=---

2 

Since ez and e-z are entire, it follows from definitions (1) that sinh z and cosh z are 

entire. Furthermore, 

(2) d "nh - SI z = cosh z, 
dz 

d h . - cos z = smh z. 
dz 

Because of the way in which the exponential function appears in definitions (1) 
and in the definitions (Sec. 33) 

eiz _ e-iz 
smz= ----, 

2i 
cosz = 

2 

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those 
trigonometric functions: 

(3) 

(4) 

-i sinh(iz) =sin z, cosh(iz) =cos z, 

-i sin(iz) =sinh z, cos(iz) =cosh z. 

Some of the most frequently used identities involving hyperbolic sine and cosine 

functions are 

(5) 

(6) 

(7) 

(8) 

sinh( -z) =-sinh z, cosh( -z) =cosh z, 

cosh2 z- sinh2 z = 1, 

sinh(z1 + z2) =sinh z1 cosh z2 +cosh z1 sinh zz, 

cosh(zt + z2) =cosh z 1 cosh z2 +sinh Zt sinh Z2 
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and 

(9) 

(10) 

(11) 

(12) 

sinh z =sinh x cosy+ i cosh x sin y, 

cosh z =cosh x cosy+ i sinh x sin y, 

lsinh zl 2 = sinh2 x + sin2 y, 

lcosh zl 2 = sinh2 x + cos2 y, 

CHAP. 3 

where z = x + i y. While these identities follow directly from definitions ( 1 ). they 

are often more easily obtained from related trigonometric identities, with the aid of 

relations (3) and (4). 

EXAMPLE. To illustrate the method of proof just suggested, let us verify identity 

(11). According to the first of relations (4), lsinh zl2 = lsin(iz)l2 . That is, 

(13) 

where z = x + iy. But from equation (15), Sec. 33, we know that 

lsin(x + iy)l 2 = sin2 x + sinh2 y; 

and this enables us to write equation ( 13) in the desired form ( 11 ). 

In view of the periodicity of sin z and cos z, it follows immediately from relations 

( 4) that sinh z and cosh z are periodic with period 2rr i. Relations ( 4) also reveal that 

(14 . ) sinh z = 0 if and only if z = mr:i (n = 0, ±1, ±2, ... ) 

and 

(15) cosh z = 0 if and only if z = ( ~ + nrr} (n = 0, ±1, ±2, ... ). 

( 16) 

The hyperbolic tangent of z is defined by the equation 

h 
sinh z 

tan z= -­
cosh z 

and is analytic in every domain in which cosh z =I= 0. The functions coth z. sech z, and 

csch z are the reciprocals oftanh z, cosh z, and sinh z, respectively. It is straightforward 

to verify the following differentiation formulas, which are the same as those established 

in calculus for the corresponding functions of a real variable: 

(17) 

(18) 

d ., 
-tanh z = sech~ z, 
dz 
d 

- sech z =- sech z tanh z, 
dz 

d 2 
- coth z = - csch z, 
dz 
d 

- csch z =- csch z coth z. 
dz 
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EXERCISES 

1. Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 34. 

2. Prove that sinh 2z = 2 sinh z cosh z by starting with 

(a) definitions (1), Sec. 34, of sinh z and cosh z; 
(b) the identity sin 2z = 2 sin z cos z (Sec. 33) and using relations (3) in Sec. 34. 

3. Show how identities (6) and (8) in Sec. 34 follow from identities (7) and (6), respectively, 
in Sec. 33. 

4. Write sinh z = sinh(x + iy) and cosh z = cosh(x + iy), and then show how expressions 
(9) and (1 0) in Sec. 34 follow from identities (7) and (8), respectively, in that section. 

5. Verify expression (12), Sec. 34, for !cosh zl 2
. 

6. Show that lsinh x! < !cosh zl <cosh x by using 

(a) identity (12), Sec. 34; 

(b) the inequalities I sinh yl.:::.; Ieos zl <cosh y, obtained in Exercise ll(b), Sec. 33. 

7. Show that 

(a) sinh(z + 1r i) =-sinh z; 

(c) tanh(z + 1ri) =tanh z. 
(b) cosh(z + 1ri) =-cosh z; 

8. Give details showing that the zeros of sinh z and cosh z are as in statements (14) and (15) 
in Sec. 34. 

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic 
tangent function. 

10. Derive differentiation formulas ( 17), Sec. 34. 

11. Use the reflection principle (Sec. 27) to show that, for all z, 
(a) sinh z =sinh z; (b) cosh z =cosh z. 

12. Use the results in Exercise 11 to show that tanh z =tanh z at points where cosh z i= 0. 

13. By accepting that the stated identity is valid when z is replaced by the real variable x and 

using the lemma in Sec. 26, verify that 

(a) cosh2 z- sinh2 z = 1; (b) sinh z +cosh z = ez. 

[Compare Exercise 5(b), Sec. 33.] 

14. Why is the function sinh(ez) entire? Write its real part as a function of x andy, and state 

why that function must be harmonic everywhere. 

15. By using one of the identities (9) and (10) in Sec. 34 and then proceeding as in Exercise 
17, Sec. 33, find all roots of the equation 

1 
(a) sinh z = i; (b) cosh z = -. 

2 

Ans. (a) (2n + ~) 1ri (n = 0, ±1, ±2, ... ); 

(b) (2n ± i) 1ri (n = 0, ±1, ±2, ... ). 
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16. Find all roots of the equation cosh z = -2. (Compare this exercise with Exercise 18, 
Sec. 33.) 

Ans. ± ln(2 + J3) + (2n + l)1ri (n = 0, ±1, ±2, ... ). 

35. INVERSE TRIGONOMETRIC AND 
HYPERBOLIC FUNCTIONS 

Inverses of the trigonometric and hyperbolic functions can be described in terms of 
logarithms. 

In order to define the inverse sine function sin-1 z, we write 

w = sin-1 z when z =sin w. 

That is, w = sin -l z when 

iw -iw e -e 
z=----

2i 

If we put this equation in the form 

(eiw) 2 - 2iz(eiw)- 1 = 0, 

which is quadratic in eiw, and solve for eiw [see Exercise 8(a), Sec. 9], we find that 

(1) 

where (1 - z2) 112 is, of course, a double-valued function of z. Taking logarithms of 
each side of equation ( 1) and recalling that w = sin -l z, we arrive at the expression 

(2) 

The following example illustrates the fact that sin- 1 z is a multiple-valued function, 
with infinitely many values at each point z. 

EXAMPLE. Expression (2) tells us that 

sin- 1
( -i) = -i log(1 ±h). 

But 

log(l +h)= ln(l + Jl) + 2n7ri (n = 0, ±1, ±2, ... ) 

and 

log(! h) =In( h - 1) + (2n + l)1r i (n = 0, ±1, ±2, ... ). 
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Since 

1 
ln(h- 1) =In ./2 = -ln(1 +h), 

1+ 2 

then, the numbers 

(-l)n ln(l +h)+ mri (n = 0, ±1, ±2, ... ) 

constitute the set of values of log( I ± ./2). Thus, in rectangular form, 

(n = 0, ±1, ±2, ... ). 

One can apply the technique used to derive expression (2) for sin - 1 z to show that 
n I 

(3) cos-1 z = -i,Iog[z + i(1- z2)
112] 

! 

I 

and that 

(4) 
-1 i i+z 

tan z =-log . 
2 i-z 

The functions cos-1 z and tan- 1 z are also multiple-valued. When specific branches of 

the square root and logarithmic functions are used, all three inverse functions become 
single-valued and analytic because they are then compositions of analytic functions. 

The derivatives of these three functions are readily obtained from the above 

expressions. The derivatives of the first two depend on the values chosen for the square 
roots: 

(5) d . -1 1 
-sm z=----
dz (1- z2)1/2' 

d -l -1 
-cos z = . 
dz (1- z2)1/2 

(6) 

The derivative of the last one, 

(7) !!:_ tan-1 z = 1 
, 

dz 1 + z2 

does not, however, depend on the manner in which the function is made single-valued. 

Inverse hyperbolic functions can be treated in a corresponding manner. It turns 

out that 

(8) 

(9) 

sinh-1 z = log[z + (z2 + 1) 112], 

cosh- 1 z = log(z + (z2
- 1) 112

], 
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and 

I 1 + ~ 
tanh- 1 z =-log "" 

2 1- z 
(10) 

Finally, we remark that common alternative notation for all of these inverse 

functions is arcsin z, etc. 

EXERCISES 

1. Find all the values of 

(a)tan- 1(2i): (b)tan- 1(l+i); {c)cosh- 1(-1); (d)tanh- 10. 

. ( I) i Ans. (a) n + 
2 

rr + 
2 

In 3 (n =0, ±1, ±2 .... ); 

(d) nrri (11 = 0. ±l. ±2, ... ). 

2. Solve the equation sin z = 2 for z by 

(a) equating real parts and imaginary parts in that equation; 

(b) using expression (2), Sec. 35, for sin- 1 z. 

Ans. ( 2n + l) rr ± i ln(2 + J3) (n = 0, ±1, ±2, ... ). 

3. Solve the equation cos z = ,fi for z. 

4. Derive formula (5), Sec. 35, for £he derivative of sin- 1 z. 

5. Derive expression (4), Sec. 35. for tan- 1 z. 

6. Derive formula (7), Sec. 35, for the derivative of tan -I z. 
7. Derive expression (9), Sec. 35, for cosh -I z. 



CHAPTER 

4 
INTEGRALS 

Integrals are extremely important in the study of functions of a complex variable. The 
theory of integration, to be developed in this chapter, is noted for its mathematical 
elegance. The theorems are generally concise and powerful, and most of the proofs 
are simple. 

36. DERIVATIVES OF FUNCTIONS w(t) 

In order to introduce integrals off (z) in a fairly simple way, we need to first consider 
derivatives of complex-valued functions w of a real variable t. We write 

(1) w(t) = u(t) + iv(t), 

where the functions u and v are real-valued functions oft. The derivative w'(t), or 
d[w(t)]/dt, of the function (1) at a point tis defined as 

(2) w'(t) = u'(t) + iv'(t), 

provided each of the derivatives u' and v' exists at t. 
From definition (2), it follows that, for every complex constant z0 = x0 + iy0, 

~[z0w(t)] = [(x0 + iy0)(u + iv)]' = [(x0u- y0v) + i(y0u + x0v)]' 
dt 

= (xou- Yov)' + i(you + xov)' = (xou'- YoV') + i(you' + xov'). 

111 
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But 

( I I) • ( I I·) ( • ) ( I • ') I(. ) x0u -y0v +t y0u +x0v = x0 +ty0 u +lv =z0w t, 

and so 

(3) 
d I 
-[zow(t)] = z0w (t). 
dt 

Another expected rule that we shall often use is 

(4) d ezot - ""oezot 
dt - "' ' 

where z0 = x0 + iy0. To verify this, we write 

and refer to definition (2) to see that 

!!:_ ezot = ( exot cos Yot>' + i ( exot sin Yot) 1 • 

dt 

CHAP. 4 

Familiar rules from calculus and some simple algebra then lead us to the expression 

:t ezot = (xo + iy0)(exot cos Yot + iexor sin Yot), 

or 

d ezot = (x + iv ). exot ei.vot. 
dt . 0 -0 

This is, of course, the same as equation (4). 
Various other rules learned in calculus, such as the ones for differentiating sums 

and products, apply just as they do for real-valued functions of t. As was the case 
with property (3) and formula (4), verifications may be based on corresponding rules 
in calculus. It should be pointed out, however, that not every rule for derivatives in 
calculus carries over to functions of type ( 1 ). The following example illustrates this. 

EXAMPLE. Suppose that w(t) is continuous on an interval a < t ~ b; that is, its 
component functions u(t) and v(t) are continuous there. Even if w'(t) exists when 
a < t < b, the mean value theorem for derivatives no longer applies. To be precise, it 
is not necessarily true that there is a number c in the interval a < t < b such that 

'( .) w(b)- w(a) w c = . 
b-a 

To see this, consider the function w(t) = eit on the interval 0 < t < 2n. When that 
function is used, lw'(t)l = !ieitl = 1; and this means that the derivative w1(t) is never 
zero, while w(2n) - w(O) = 0. 
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37. DEFINITE INTEGRALS OF FUNCTIONS w(t) 

When w(t) is a complex-valued function of a real variable t and is written 

(1) w(t) = u(t) + iv(t), 

where u and v are real-valued, the definite integral of w(t) over an interval a < t < b 
is defined as 

(2) 1b w(t) dt = 1b u(t) dt + i 1b v(t) dt 

when the individual integrals on the right exist. Thus 

(3) Re lb w(t) dt = 1b Re[w(t)] dt and Im lb w(t) dt = lb Im[w(t)] dt. 

EXAMPLE 1. For an illustration of definition (2), 

(1 + it)2 dt = (1- t
2

) dt + i 2t dt = - + i. lo l lol ~o· 2 
0 0 0 3 

Improper integrals of w(t) over unbounded intervals are defined in a similar way. 
The existence of the integrals of u and v in definition (2) is ensured if those 

functions are piecewise continuous on the interval a < t < b. Such a function is 
continuous everywhere in the stated interval except possibly for a finite number of 
points where, although discontinuous, it has one-sided limits. Of course, only the right­
hand limit is required at a; and only the left-hand limit is required at b. When both u 
and v are piecewise continuous, the function w is said to have that property. 

Anticipated rules for integrating a complex constant times a function w(t), for 
integrating sums of such functions, and for interchanging limits of integration are all 
valid. Those rules, as well as the property 

lb w(t) dt = 1c w(t) dt + [b w(t) dt, 

are easy to verify by recalling corresponding results in calculus. 
The fundamental theorem of calculus, involving antiderivatives, can, moreover, 

be extended so as to apply to integrals of the type (2). To be specific, suppose that the 
functions 

w(t) = u(t) + iv(t) and W(t) = U(t) + iV(t) 
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are continuous on the interval a < t <b. If W'(t) = w(t) when a < t < b, then 
U'(t) = u(t) and V'(t) = v(t). Hence, in view of definition (2), 

f w(t) dt = U(t{ + iV(t)J: 

= [U(b) + iV(b)]- [U(a) + iV(a)]. 

That is, 

(4) 1b w(t) dt = W(b) W(a) = W(t)J:. 

EXAMPLE 2. Since (eit)' = ieit (see Sec. 36), 

r:n:/4 ]:rr/4 
Jo eit dt = -ieit o = -iei:n:/4 + i 

We finish here with an important property of moduli of integrals. Namely, 

(5) 1b w(t) dt < 1b lw(t)i dt (a< b). 

This inequality clearly holds when the value of the integral on the left is zero, in 
particular when a= b. Thus, in the verification, we may assume that its value is a 
nonzero complex number. If r0 is the modulus and 80 is an argument of that constant, 
then 

Solving for r0, we write 

(6) ro = ib e-it1ow dt. 

Now the left-hand side of this equation is a real number, and so the right-hand side is 
too. Thus, using the fact that the real part of a real number is the number itself and 
referring to the first of properties (3), we see that the right-hand side of equation (6) 
can be rewritten in the following way: 
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Equation (6) then takes the form 

(7) r0 = 1b Re(e -itlow) dt. 

But 

and so, according to equation (7), 

ro < 1b I w I dt. 

Because r0 is, in fact, the left-hand side of inequality (5) when the value of the integral 
there is nonzero, the verification is now complete. 

With only minor modifications, the above discussion yields inequalities such as 

(8) 100 

w(t) dt < 100 

lw(t)l dt, 

provided both improper integrals exist. 

EXERCISES 
1. Use the corresponding rules in calculus to establish the following rules when 

w(t) = u(t) + iv(t) 

is a complex-valued function of a real variable t and w'(t) exists: 

(a) !!_w( -t) = -w'( -t), where w'( -t) denotes the derivative of w(t) with respect to 
dt 
t, evaluated at -t; 

(b) !!._[w(t)f = 2w(t)w'(t). 
dt 

2. Evaluate the following integrals: 

(a) 12 (~- iy dt; (b) forr/6 ei2t dt; 

1 . -J3 i 
Ans. (a)--- t ln4· (b)-+-· 

2 ' 4 4' 
3. Show that if m and n are integers, 

(c) fooo e-zt dt (Re z > 0). 

1 
(c)-. 

z 

[
2
rr eime e -ine d() = { 0 when m ¥= n, 

fo 2n when m = n. 

4. According to definition (2), Sec. 37, of integrals of complex-valued functions of a real 
variable, 
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Evaluate the two integrals on the right here by evaluating the single integral on the left 
and then using the real and imaginary parts of the value found. 

Ans. -(1 + err)/2, (1 + err)/2. 

5. Let w(t) be a continuous complex-valued function oft defined on an interval a < t <b. 
By considering the special case w(t) = eit on the interval 0 < t < 2rr, show that it is not 
always true that there is a number c in the interval a < t < b such that 

1b w(t) dt = w(c)(b- a). 

Thus show that the mean value theorem for definite integrals in calculus does not apply 
to such functions. (Compare the example in Sec. 36.) 

6. Let w(t) = u(t) + iv(t) denote a continuous complex-valued function defined on an 
interval -a < t < a. 

(a) Suppose that w(t) is even; that is, w( -t) = w(t) foreachpointt in the given interval. 
Show that 

fa w(t)dt=2 ra w(t)dt. 
-a Jo 

(b) Show that if w(t) is an odd function, one where w(-t) = -w(t) for each point tin 
the interval, then 

i: w(t) dt = 0. 

Suggestion: In each part of this exercise, use the corresponding property of 
integrals of real-valued functions oft, which is graphically evident. 

7. Apply inequality (5), Sec. 37, to show that for all values of x in the interval -1 < x < 1, 
the functions* 

(n = 0, 1, 2, ... ) 

satisfy the inequality IPn(x)l < 1. 

38. CONTOURS 

Integrals of complex-valued functions of a complex variable are defined on curves in 
the complex plane, rather than on just intervals of the real line. Classes of curves that 
are adequate for the study of such integrals are introduced in this section. 

*These functions are actually polynomials in x. They are known as Legendre polynomials and are 
important in applied mathematics. See, for example, Chap. 4 of the book by Lebedev that is listed 
in Appendix 1. 
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A set of points z = (x, y) in the complex plane is said to be an arc if 

(1) x = x(t), y = y(t) (a<t<b), 

where x(t) and y(t) are continuous functions of the real parameter t. This definition 
establishes a continuous mapping of the interval a < t < b into the xy, or z, plane; and 
the image points are ordered according to increasing values of t. It is convenient to 
describe the points of C by means of the equation 

(2) z = z(t) (a<t<b), 

where 

(3) z(t) = x(t) + iy(t). 

The arc Cis a simple arc, or a Jordan arc,* if it does not cross itself; that is, Cis 
simple if z(t1) f. z(t2 ) when t1 f. t2 • When the arc Cis simple except for the fact that 
z(b) = z(a), we say that Cis a simple closed curve, or a Jordan curve. 

The geometric nature of a particular arc often suggests different notation for the 
parameter t in equation (2). This is, in fact, the case in the examples below. 

EXAMPLE 1. The polygonal line (Sec. 10) defined by means of the equations 

(4) z _ { x + i x when 0 < x < 1, 
- x + i when 1 < x < 2 

and consisting of a line segment from 0 to 1 + i followed by one from 1 + i to 2 + i 
(Fig. 36) is a simple arc. 

y 
1 +i 2+i 

1 

0 1 2 X 
FIGURE36 

EXAMPLE 2. The unit circle 

(5) 

*Named for C. Jordan (1838-1922), pronouncedjor-don'. 
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about the origin is a simple closed curve, oriented in the counterclockwise direction. 
So is the circle 

(6) (O<e<2n), 

centered at the point zo and with radius R (see Sec. 6). 

The same set of points can make up different arcs. 

EXAMPLE 3. The arc 

(7) 

is not the same as the arc described by equation (5). The set of points is the same, but 
now the circle is traversed in the clockwise direction. 

EXAMPLE 4. The points on the arc 

(8) 

are the same as those making up the arcs (5) and (7). The arc here differs, however, from 
each of those arcs since the circle is traversed twice in the counterclockwise direction. 

The parametric representation used for any given arc C is, of course, not unique. 
It is, in fact, possible to change the interval over which the parameter ranges to any 
other interval. To be specific, suppose that 

(9) t = ¢(r) (a< r < {3), 

where ¢ is a real-valued function mapping an interval a: < r < f3 onto the interval 
a< t <bin representation (2). (See Fig. 37.) We assume that¢ is continuous with a 
continuous derivative. We also assume that ¢' ( r) > 0 for each r; this ensures that t 
increases with r. Representation (2) is then transformed by equation (9) into 

(10) 

t 

b 

a --

0 

z = Z(r) (a:<r<{J), 

FIGURE37 
t = ¢(r) 
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where 

(11) Z(r) = z[¢(r)]. 

This is illustrated in Exercise 3, where a specific function 4> ( r) is found. 
Suppose now that the components x'(t) and y'(t) of the derivative (Sec. 36) 

(12) z' (t) = x' (t) + iy' (t) 

of the function (3), used to represent C, are continuous on the entire interval a < t < b. 
The arc is then called a differentiable arc, and the real-valued function 

lz'(t)l = J[x'(t)]2 + [y'(t)]2 

is integrable over the interval a < t <b. In fact, according to the definition of arc length 
in calculus, the length of C is the number 

(13) L = 1b lz'(t)l dt. 

The value of L is invariant under certain changes in the representation for C that 
is used, as one would expect. More precisely, with the change of variable indicated in 
equation (9), expression (13) takes the form [see Exercise l(b)] 

L = £13 
lz'[¢(r)]l¢'(r) dr. 

So, if representation ( 10) is used for C, the derivative (Exercise 4) 

(14) Z'(r) = z'[¢(r)]¢'(r) 

enables us to write expression (13) as 

Thus the same length of C would be obtained if representation (10) were to be used. 
If equation (2) represents a differentiable arc and if z' (t) f. 0 anywhere in the 

interval a < t < b, then the unit tangent vector 

T = z'(t) 

lz'(t) I 

is well defined for all t in that open interval, with angle of inclination arg z'(t). 
Also, when T turns, it does so continuously as the parameter t varies over the entire 
interval a < t <b. This expression forT is the one learned in calculus when z(t) is 
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interpreted as a radius vector. Such an arc is said to be smooth. In referring to a smooth 
arc z = z(t)(a < t <b), then, we agree that the derivative z'(t) is continuous on the 
closed interval a < t <band nonzero on the open interval a < t <b. 

A contour, or piecewise smooth arc, is an arc consisting of a finite number of 
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(t) is 
continuous, whereas its derivative z' (t) is piecewise continuous. The polygonal line 
(4) is, for example, a contour. When only the initial and final values of z(t) are the 
same, a contour Cis called a simple closed contour. Examples are the circles (5) and 
(6), as well as the boundary of a triangle or a rectangle taken in a specific direction. 
The length of a contour or a simple closed contour is the sum of the lengths of the 
smooth arcs that make up the contour. 

The points on any simple closed curve or simple closed contour Care boundary 
points of two distinct domains, one of which is the interior of C and is bounded. The 
other, which is the exterior of C, is unbounded. It will be convenient to accept this 
statement, known as the Jordan curve theorem, as geometrically evident; the proof is 
not easy.* 

EXERCISES 

1. Show that if w(t) = u(t) + iv(t) is continuous on an interval a< t < b, then 

1-a lb 
(a) w(-t) dt = w(r) dr; 

-b a 

l
b 1fJ . 

(b) a w(t) dt = a w[</>(r)]</>1(r) dr, where ¢('r) is the function in equation (9), 

Sec. 38. 
Suggestion: These identities can be obtained by noting that they are valid for 

real-valued functions oft. 

2. Let C denote the right-hand half of the circle lz I = 2, in the counterclockwise direction, 
and note that two parametric representations for C are 

z = z(O) = 2ei0 
( - rt: < e < rt:) 

2- - 2 

and 

z = z (y) = J 4 - y2 + i y (-2<y<2). 

*See pp. 115-116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in 
Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol. 
1 of the work by Hille, also cited in Appendix 1. 



SEC.38 EXERCISES 121 

Verify that Z(y) = z[I/J(y)], where 

4> (y) = arctan y 
)4- y2 

(-~ <arctant<~). 
Also, show that this function cp has a positive derivative, as required in the conditions 
following equation (9), Sec. 38. 

3. Derive the equation of the line through the points (a, a) and ({3, b) in the r t plane, shown 
in Fig. 37. Then use it to find the linear function 4> ( r) which can be used in equation (9), 
Sec. 38, to transform representation (2) in that section into representation (10) there. 

b- a af3- ba 
Ans. ¢(-r) = r + . 

f3-a {3-a 

4. Verify expression (14), Sec. 38, for the derivative of Z(r) = z[¢(-r)]. 
Suggestion: Write Z(r) = x[¢(-r)] + iy[¢(-r)] and apply the chain rule for real­

valued functions of a real variable. 

5. Suppose that a function j(z) is analytic at a point z0 = z(t0) lying on a smooth arc 
z = z(t) (a< t <b). Show that if w(t) = f[z(t)], then 

w'(t) = f'[z(t)]z'(t) 

whent = t0. 

Suggestion: Write j(z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t), so that 

w(t) = u[x(t), y(t)] + iv[x(t), y(t)]. 

Then apply the chain rule in calculus for functions of two real variables to write 

w' = (uxx' + Uyy') + i(vxx' + vyy
1
), 

and use the Cauchy-Riemann equations. 

6. Let y(x) be a real-valued function defined on the interval 0 < x < l by means of the 
equations 

(a) Show that the equation 

z = x + iy(x) 

when 0 < x < 1, 

whenx =0. 

(0 <X< 1) 

represents an arc C that intersects the real axis at the points z = 1/ n (n = 1, 2, ... ) 
and z = 0, as shown in Fig. 38. 

(b) Verify that the arc C in part (a) is, in fact, a smooth arc. 
Suggestion: To establish the continuity of y(x) at x = 0, observe that 
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y 

0 

when x > 0. A similar remark applies in finding y'(O) and showing that y'(x) is 
continuous at x = 0. 

1 X 

FIGURE38 

39. CONTOUR INTEGRALS 

We tum now to integrals of complex~valued functions f of the complex variable z. 
Such an integral is defined in terms of the values f(z) along a given contour C, 
extending from a point z = z1 to a point z = z2 in the complex plane. It is, therefore, 
a line integral; and its value depends, in general, on the contour C as well as on the 
function f. It is written 

fc f(z) dz or 1z
2 

f(z) dz, 
"I 

the latter notation often being used when the value of the integral is independent of 
the choice of the contour taken between two fixed end points. While the integral may 
be defined directly as the limit of a sum, we choose to define it in terms of a definite 
integral of the type introduced in Sec. 37. 

Suppose that the equation 

(1) z = z(t) (a< t <b) 

represents a contour C, extending from a point z1 = z(a) to a point z2 = z(b). Let the 
function f(z) be piecewise continuous on C; that is, f[z(t)] is piecewise continuous 
on the interval a < t < b. We define the line integral, or contour integral, off along 
C as follows: 

(2) fc f(z) dz = lb f[z(t)]z'(t) dt. 

Note that, since C is a contour, z' (t) is also piecewise continuous on the interval 
a < t < b; and so the existence of integral (2) is ensured. 

The value of a contour integral is invariant under a change in the representation of 
its contour when the change is of the type (11), Sec. 38. This can be seen by following 
the same general procedure that was used in Sec. 38 to show the invariance of arc 
length. 
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It follows immediately from definition (2) and properties of integrals of complex­
valued functions w(t) mentioned in Sec. 37 that 

(3) L zo/(z) dz = zo L f(z) dz, 

for any complex constant z0, and 

(4) fc [f(z) + g(z)] dz = fc f(z) dz + L g(z) dz. 

Associated with the contour C used in integral (2) is the contour - C, consisting of 
the same set of points but with the order reversed so that the new contour extends from 
the point z2 to the point z1 (Fig. 39). The contour -C has parametric representation 

z=z(-t) (-b < t <-a); 

and so, in view of Exercise 1 (a), Sec. 3 7, 

f(z)dz= f[z(-t)]-z(-t)dt=- f[z(-t)]z'(-t)dt, 1 1-a d 1-a 
-C -b dt -b 

where z'( -t) denotes the derivative of z(t) with respect tot, evaluated at -t. Making 
the substitution r =-tin this last integral and referring to Exercise l(a), Sec. 38, we 
obtain the expression 

1 f(z)dz=- fb f[z(r)z'(r)dr, 
-C Ja 

which is the same as 

(5) 1 f(z) dz =- f f(z) dz. 
-c lc 

y 

0 x FIGURE39 

Consider now a path C, with representation (1 ), that consists of a contour C 1 from 
z1 to z2 followed by a c~mtour C2 from z2 to z3, the initial point of C2 being the final 
point of C1 (Fig. 40). There is a value c oft, where a < c < b, such that z(c) = z2• 
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0 X 
FIGURE40 
C=C1+Cz 

Consequently, C 1 is represented by 

z = z(t) (a< t <c) 

and C2 is represented by 

z = z(t) (c<t<b). 

Also, by a rule for integrals of functions w(t) that was noted in Sec. 37, 

1b f[z(t)]z'(t) dt = 1c f[z(t)]z'(t) dt + lb f(z(t)]z'(t) dt. 
a . a c 

Evidently, then, 

(6) r f(z) dz = r f(z) dz + r f(z) dz. lc lc1 lc2 

CHAP. 4 

Sometimes the contour C is called the sum of its legs C 1 and C2 and is denoted by 
C1 + C2. The sum of two contours C1 and -C2 is well defined when C1 and C2 have 
the same final points, and it is written C1 - C2. 

Definite integrals in calculus can be interpreted as areas, and they have other in­
terpretations as well. Except in special cases, no corresponding helpful interpretation, 
geometric or physical, is available for integrals in the complex plane. 

40. EXAMPLES 

The purpose of this section is to provide examples of the definition in Sec. 39 of 
contour integrals and to illustrate various properties that were mentioned there. We 
defer development of the concept of antiderivatives of the integrands f (z) in contour 
integrals until Sec. 42. 

EXAMPLE 1. Let us find the value of the integral 

(I) I= fc zdz 
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2i 

0 

-2i 

X 

FIGURE41 

when Cis the right-hand half 
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(
- 7r < () < 7r ) 

2- - 2 

of the circle lzl = 2, from z = -2i to z = 2i (Fig. 41). According to definition (2), 
Sec. 39, 

and, since 

this means that 

I= 1rc/Z 2e-i6 2iei6 d() = 4i lrc/2 
d() = 4rri. 

-rr/2 -rr/2 

Note that when a point z is on the circle lzl = 2, it follows that zz = 4, or z = 4/z. 
Hence the result I= 4rri can also be written 

(2) { dz = rri. 
lc z 

EXAMPLE 2. In this example, we first let C 1 denote the contour OAB shown in Fig. 
42 and evaluate the integral 

(3) { f(z) dz = { f(z) dz + { f(z) dz, 
lc1 loA jAB 

where 

f(z) = y -x- i3x2 (z = x + iy). 

The leg OA may be represented parametrically as z = 0 + iy (0 < y < 1); and since 
x = 0 at points on that leg, the values of f there vary with the parameter y according 
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, .. A ____ B_, 1 + i 

c1 

0 X FIGURE42 

to the equation f(z) = y (0 < y < 1). Consequently, 

f f(z) dz = t yi dy = i t y dy = !_, 
loA lo lo 2 

On the leg AB, z = x + i (0 < x < 1); and so 

{ f(z) dz = f\I 
jAB lo x- i3x2) · 1 dx = t (1- x) dx- 3i t x 2 dx =I- i. 

lo lo 2 

In view of equation (3), we now see that 

(4) 1 l- i 
f(z) dz = . 

c1 2 

If c2 denotes the segment OB of the line y = X' with parametric representation 
Z =X + ix (0 < X < 1), 

(5) f f(z) dz = t -i3x2(l + i) dx = 3(1- i) t x2 dx = 1- i. 
~ k k 

Evidently, then, the integrals of J(z) along the two paths C1 and C2 have different 
values even though those paths have the same initial and the same final points. 

Observe how it follows that the integral of f (z) over the simple closed contour 
OABO, or C 1 C2, has the nonzero value 

1 1 -l+i 
/(z) dz- f(z) dz = . 

c1 c2 2 

EXAMPI..~E 3. We begin here by letting C denote an arbitrary smooth arc 

z = z(t) (a<t<b) 

from a fixed point z1 to a fixed point z2 (Fig. 43). In order to evaluate the integral 

I= L z dz = 1b z(t)z'(t) dt, 
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0 X FIGURE43 

we note that, according to Exercise l(b), Sec. 37, 

Thus 

!!:_ [z(t)]z = z(t)z'(t). 
dt 2 

I= [z(t)]z]b 

2 a 

[z(b)] 2 - [z(a)] 2 

2 
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But z(b) = z2 and z(a) = z1; and so I = (z~ - zi)/2. Inasmuch as the value of I 

depends only on the end points of C, and is otherwise independent of the arc that 

is taken, we may write 

(6) 1z2 zi- z? 
z dz = . 

Zt 2 

(Compare Example 2, where the value of an integral from one fixed point to another 

depended on the path that was taken.) 
Expression (6) is also valid when C is a contour that is not necessarily smooth 

since a contour consists of a finite number of smooth arcs Ck (k = I, 2, ... , n ), joined 

end to end. More precisely, suppose that each C k extends from zk to Zk+ 1. Then 

(7) 

n n 2 2 

1 "" 1 "" zk+ l - zk z dz = L...t z dz = L...t 
c k=l c* k=I 2 

z1 being the initial point of C and Zn+I its final point. 
It follows from expression (7) that the integral of the function f(z) = z around 

each closed contour in the plane has value zero. (Once again, compare Example 2, 

where the value of the integral of a given function around a certain closed path was not 
zero.) The question of predicting when an integral around a closed contour has value 

zero will be discussed in Sees. 42, 44, and 46. 

EXAMPLE 4. Let C denote the semicircular path 
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-3 0 3 X FIGURE44 

from the point z = 3 to the point z = -3 (Fig. 44). Although the branch (Sec. 30) 

(8) (r > 0, 0 < (:) < 2n) 

of the multiple-valued function z112 is not defined at the initial point z = 3ofthe contour 
C, the integral 

(9) I= L zl12 dz 

of that branch nevertheless exists. For the integrand is piecewise continuous on C. To 
see that this is so, we observe that when z(B) = 3ei8 , the right-hand limits of the real 
and imaginary components of the function 

/[z(B)] = J3ei012 = J3 cos e + i J3 sin e 
2 2 

at(:)= 0 are J3 and 0, respectively. Hence f[z(e)] is continuous on the closed interval 
0 < (} < n when its value at (:) = 0 is defined as J3. Consequently, 

I= fon J3ei8123iei8 de= 3J3i fo1T ei3fJ12 dB; 

and 

Finally, then, 

I= -2J3(1 + i). 

EXERCISES 

For the functions f and contours C in Exercises I through 6, use parametric 
representations for C, or legs of C, to evaluate 

L f(z) dz. 
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1. f(z) = (z + 2)/z and Cis 

(a) the semicircle z = 2e10 (0 < e < 7r ); 

(b) the semicircle z = 2ei9 (rr < e < 2rr); 

(c) the circle z = 2e18 (0 < e < 2rr). 

Ans. (a) -4 + 2rri; (b) 4 + 2rri; (c) 4rri. 

2. f(z) = z- 1 and Cis the arc from z = 0 to z = 2 consisting of 

(a) the semicircle z = 1 + ew (rr < e < 2rr); 

(b) the segment 0 < x < 2 of the real axis. 

Ans.(a)O; (b)O. 
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3. /(z) = rr exp(rrZ) and Cis the boundary of the square with vertices at the points 0, 1, 
1 + i, and i, the orientation of C being in the counterclockwise direction. 

Ans. 4(err - 1). 

4. f(z) is defined by the equations 

/(z) = { !Y when y < 0, 
when y > 0, 

and Cis the arc from z = -1- ito z = 1 + i along the curve y = x 3. 

Ans. 2 + 3i. 

5. f(z) = 1 and Cis an arbitrary contour from any fixed point z 1 to any fixed point z2 in 
the plane. 

Ans. z2- Zl· 

6. f(z) is the branch 

z-l+i = exp[( -1 + i) log z] (lzl > 0, 0 < argz < 2rr) 

of the indicated power function, and C is the positively oriented unit circle I z I = 1. 

Ans.i(l e-2rr). 

7. With the aid of the result in Exercise 3, Sec. 37, evaluate the integral 

i zm-zn dz, 

where m and n are integers and Cis the unit circle lzl = 1, taken counterclockwise. 

8. Evaluate the integral I in Example 1, Sec. 40, using this representation for C: 

(-2<y<2). 

(See Exercise 2, Sec. 38.) 

9. Let C and C0 denote the circles 

z = Re10 (0 < (J < 2rr) and z = z0 + Reie (0 < 8 < 2rr), 
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respectively. Use these parametric representations to show that 

[ f(z) dz = [ f(z- zo) dz lc leo 
when f is piecewise continuous on C. 

10. Let C0 denote the circle lz - zol = R, taken counterclockwise. Use the parametric 
representation z = z0 + Rew( -rr < (J < rr) for C0 to derive the following integration 
formulas: 

(a) i dz = 2Jri; 
C 7- "'o o- "' 

(b) [ (z- z0)n- 1 dz = 0 (n = ±1, ±2, ... ). leo 
11. Use the parametric representation in Exercise 10 for the oriented circle C0 there to show 

that 

[ ( )a-1 d . 2Ra . ( .) z - zo z = 1 ··- sm an , 
c0 a 

where a is any real number other than zero and where the principal branch of the integrand 
and the principal value of Ra are taken. [Note how this generalizes Exercise lO(b).] 

12. (a) Suppose that a function f(z) is continuous on a smooth arc C, which has a parametric 
representation z = z(t) (a < t < b); that is, f[z(t)] is continuous on the interval 
a < t <b. Show that if </>(r)(a < r < {J) is the function described in Sec. 38, then 

1b f[z(t)]z'(t) dt = i/3 f[Z('r)]Z'(r) dr, 

where Z(r) = z[¢(r)]. 

(b) Point out how it follows that the identity obtained in part (a) remains valid when C 
is any contour, not necessarily a smooth one, and f(z) is piecewise continuous on 
C. Thus show that the value of the integral of f(z) along Cis the same when the 
representation z = Z(r) (a< r < {J) is used, instead of the original one. 

Suggestion: In part (a), use the result in Exercise l(b), Sec. 38, and then refer 
to expression (14) in that section. 

41. UPPER BOUNDS FOR MODULI 
OF CONTOUR INTEGRALS 

When C denotes a contour z = z(t)(a < t <b), we know from definition (2), Sec. 39, 
and inequality (5) in Sec. 37 that 

[ J(z) dz = 1b f[z(t)]z'(t) dt < 1b jf[z(t)]IJz'(t)j dt. 

So, for any nonnegative constant M such that the values off on C satisfy the inequality 
//(z)/ < M, 

[ f(z) dz < M 1b /z'(t)/ dt. 
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Since the integral on the right here represents the length L of the contour (see Sec. 38), 

it follows that the modulus of the value of the integral of f along C does not exceed 

ML: 

(1) fc f(z) dz < ML. 

This is, of course, a strict inequality when the values of f on C are such that 

1/(z)l < M. 
Note that since all of the paths of integration to be considered here are contours 

and the integrands are piecewise continuous functions defined on those contours, a 

number M such as the one appearing in inequality ( 1) will always exist. This is 

because the real-valued function If [ z ( t) 11 is continuous on the closed bounded interval 

a < t < b when f is continuous on C; and such a function always reaches a maximum 

value M on that interval.* Hence 1/(z)l has a maximum value on C when f is 

continuous on it. It now follows immediately that the same is true when f is piecewise 

continuous on C. 

EXAMPLE 1. Let C be the arc of the circle I z I = 2 from z = 2 to z = 2i that lies in 

the first quadrant (Fig. 45). Inequality (1) can be used to show that 

(2) 1 z +4 dz < 6n. 
c z3 - 1 - 7 

This is done by noting first that if z is a point on C, so that I z I = 2, then 

lz+41 < lzl +4=6 

and 

lz3
- 11 > llzl3

- 11 = 7. 

y 

2i 

0 2 X FIGURE45 

*See, for instance A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 86-90, 1983. 
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Thus, when z lies on C, 

z+4 
z3 - 1 

CHAP. 4 

lz +41 6 
- < -. 

lz3 - 11 - 7 

Writing M = 6/7 and observing that L = n is the length of C, we may now use 
inequality ( 1) to obtain inequality (2). 

EXAMPLE 2. Here C R is the semicircular path 

and z 112 denotes the branch 

r >0 -- < e <-( n 3n) 
' 2 2 

of the square root function. (See Fig. 46.) Without actually finding the value of the 
integral, one can easily show that 

(3) 
. [ 2 112 

hm 
2 

dz = 0. 
R~oo CR Z + 1 

For, when lzl = R > 1, 

and 

Consequently, at points on C R• 

y 

-R 01 
I 
I 

R X 

z 1/2 
<M 

z2 + 1 - R 

FIGURE46 

where 
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Since the length of C R is the number L = n R, it follows from inequality (1) that 

But 

M L= nR~. 1jR
2 = n/~ 

R R2 - 1 1/ R2 1 - (1/ R2)' 

and it is clear that the term on the far right here tends to zero as R tends to infinity. 

Limit (3) is, therefore, established. 

EXERCISES 

1. Without evaluating the integral, show that 

{ dz < n 
lc z2 - 1 - 3 

when C is the same arc as the one in Example 1, Sec. 41. 

2. Let C denote the line segment from z = i to z = 1. By observing that, of all the points 
on that line segment, the midpoint is the closest to the origin, show that 

{ dz <4h 
lc z4 -

without evaluating the integral. 

3. Show that if C is the boundary of the triangle with vertices at the points 0, 3i, and -4, 
oriented in the counterclockwise direction (see Fig. 47), then 

L (eZ - z) dz < 60. 

y 

3i 

X FIGURE47 



134 INTEGRALS CHAP. 4 

4. Let C R denote the upper half of the circle lzl = R (R > 2), taken in the counterclockwise 
direction. Show that 

1 2z2
- 1 d rrR(2R2 + 1) z < . 

cR z4 + 5z2 + 4 - (R2 - 1)(R2- 4) 

Then, by dividing the numerator and denominator on the right here by R4, show that the 
value of the integral tends to zero as R tends to infinity. 

5. Let C R be the circle lzl = R (R > 1), described in the counterclockwise direction. Show 
that 

and then use I' Hospital's rule to show that the value of this integral tends to zero as R 
tends to infinity. 

6. Let C P denote the circle lzl = p (0 < p < 1), oriented in the counterclockwise direction, 
and suppose that f(z) is analytic in the disk lzl < 1. Show that if z- 1/ 2 represents any 
particular branch of that power of z, then there is a nonnegative constant M, independent 
of p, such that 

Thus show that the value of the integral here approaches 0 as p tends to 0. 
Suggestion: Note that since f(z) is analytic, and therefore continuous, throughout 

the disk lzl < 1, it is bounded there (Sec. 17). 

7. Let C N denote the boundary of the square formed by the lines 

where N is a positive integer, and let the orientation of C N be counterclockwise. 

(a) With the aid of the inequalities 

I sin zl > I sin xi and lsin zl > I sinh yl, 

obtained in Exercises lO(a) and ll(a) of Sec. 33, show that I sin zl > lon the vertical 
sides of the square and that I sin zl > sinh(rr /2) on the horizontal sides. Thus show 
that there is a positive constant A, independent of N, such that I sin zl >A for all 
points z lying on the contour C N. 

(b) Using the final result in part (a), show that 

{ dz 16 

leN z2 sin z < (2N + l)rr A 

and hence that the value of this integral tends to zero as N tends to infinity. 
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42. ANTIDERIVATIVES 

Although the value of a contour integral of a function f(z) from a fixed point z1 to a 
fixed point z2 depends, in general, on the path that is taken, there are certain functions 
whose integrals from z1 to z2 have values that are independent of path. (Compare 
Examples 2 and 3 in Sec. 40.) The examples just cited also illustrate the fact that 
the values of integrals around closed paths are sometimes, but not always, zero. The 
theorem below is useful in determining when integration is independent of path and, 
moreover, when an integral around a closed path has value zero. 

In proving the theorem, we shall discover an extension of the fundamental theo­
rem of calculus that simplifies the evaluation of many contour integrals. That extension 
involves the concept of an antiderivative of a continuous function f in a domain D, 
or a function F such that F'(z) = f(z) for all z in D. Note that an antiderivative is, of 
necessity, an analytic function. Note, too, that an antiderivative of a given function f 
is unique except for an additive complex constant. This is because the derivative of the 
difference F(z) - G(z) of any two such antiderivatives F(z) and G(z) is zero~ and, 
according to the theorem in Sec. 23, an analytic function is constant in a domain D 
when its derivative is zero throughout D. 

Theorem. Suppose that a function f(z) is continuous on a domain D. If any one of 
the following statements is true, then so are the others: 

(i) f(z) has an antiderivative F(z) in D; 
(ii) the integrals of f(z) along contours lying entirely in D and extending from any 

fixed point z1 to any fixed point z2 all have the same value; 
(iii) the integrals of f(z) around closed contours lying entirely in D all have value 

zero. 

It should be emphasized that the theorem does not claim that any of these 
statements is true for a given function f and a given domain D. It says only that 
all of them are true or that none of them is true. To prove the theorem, it is sufficient 
to show that statement (i) implies statement (ii), that statement (ii) implies statement 
(iii), and finally that statement (iii) implies statement (i). 

Let us assume that statement (i) is true. If a contour C from z1 to z2, lying in D, is 
just a smooth arc, with parametric representation z = z(t)(a < t <b), we know from 
Exercise 5, Sec. 38, that 

d 
- F[z(t)] = F'[z(t)]z'(t) = f[z(t)]z'(t) 
dt 

(a < t <b). 

Because the fundamental theorem of calculus can be extended so as to apply to 
complex-valued functions of a real variable (Sec. 37), it follows that. 

b ]b i f(z) dz = 1 f[z(t)]z'(t) dt = F[z(t)] a= F[z(b)]- F[z(a)]. 
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Since z(b) = z2 and z(a) = z1, the value of this contour integral is, then, 

F(zz)- F(zt); 

and that value is evidently independent of the contour C as long as C extends from z 1 
to z2 and lies entirely in D. That is, 

(1) z ]~ 1
1

2 

/(z) dz = F(z2)- F(z1) = F(z) . 
ZJ 

when Cis smooth. Expression (1) is also valid when Cis any contour, not necessarily 
a smooth one, that lies in D. For, if C consists of a finite number of smooth arcs 
Ck (k = 1, 2, ... , n), each Ck extending from a point Zk to a point Zk+h then 

n n r J(z) dz =I: [ /(z) dz = L (F(Zk+I)- F(zk)] = F(Zn+l)- F(zl). lc k=l lck k=l 

(Compare Example 3, Sec. 40.) The fact that statement (ii) follows from statement (i) 
is now established. 

To see that statement (ii) implies statement (iii), we let z 1 and z2 denote any two 
points on a closed contour C lying in D and form two paths, each with initial point 
z1 and final point z2, such that C = C1 - C2 (Fig. 48). Assuming that statement (ii) is 
true, one can write 

(2) 1 f(z) dz = [ J(z) dz, 
c, Jc2 

or 

(3) [ f(z)dz+j f(z)dz=O. 
Jc1 -C2 

That is, the integral off (z) around the closed contour C = C 1 - C2 has value zero. 

y 

0 ' / 

..... __ _ 
X FIGURE48 

It remains to show that statement (iii) implies statement (i). We do this by 
assuming that statement (iii) is true, establishing the validity of statement (ii), and 
then arriving at statement (i). To see that statement (ii) is true, we let C 1 and C2 denote 
any two contours, lying in D, from a point z1 to a point z2 and observe that, in view of 
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statement (iii), equation (3) holds (see Fig. 48). Thus equation (2) holds. Integration 

is, therefore, independent of path in D; and we can define the function 

F(z)- (" f(s) ds 
lzo 

on D. The proof of the theorem is complete once we show that F' (z) = f (z) every­

where in D. We do this by letting z + !lz be any point, distinct from z, lying in some 

neighborhood of z that is small enough to be contained in D. Then 

[z+~z [z [z+~z 
F(z + L'.z)- F(z) = f(s) ds- f(s) ds = f(s) ds, 

~o zo z 

where the path of integration from z to z + L'.z may be selected as a line segment (Fig. 

49). Since 

r+~z 
lz ds = Llz 

(see Exercise 5, Sec. 40), we can write 

1 [z+~z 
f(z) =- f(z) ds; 

Llz z 

and it follows that 

F(z + Llz)- F(z) - f(z) = _1 f"+~z [j(s)- f(z)] ds. 

!lz Llzh 

y ----------/ ... 
/ ' 

/ ' / ' / \ -/ s z + ilz 1 / 
/ I 

I 
I 

I 
/ 

/ 
I D / 

I / 
/ 

I / 

----~~---~-
X FIGURE49 

But f is continuous at the point z. Hence, for each positive number 8, a positive number 

8 exists such that 

lf(s)- f(z)l < 8 whenever Is- zl < 8. 

Consequently, if the point z + Llz is close enough to z so that I Llz I < 8, then 
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that is, 

lim F(z + .:lz)- F(z) = f(z), 
~z-o LlZ 

or F'(z) = /(z). 

43. EXAMPLES 
The following examples illustrate the theorem in Sec. 42 and, in particular, the use of 
the extension (1) of the fundamental theorem of calculus in that section. 

EXAMPLE 1. The continuous function f (z) = z2 has an antiderivative F (z) = z3 /3 
throughout the plane. Hence 

f z2 dz=~ =!(l+i)3 =
2
(-l+i) 

l+i 3] l+i 

lo 3 
0 

3 3 

for every contour from z = 0 to z = 1 + i. 

EXAMPLE 2. The function f(z) = 1/z2, which is continuous everywhere except 
at the origin, has an antiderivative F (z) = -1/ z in the domain lz I > 0, consisting of 
the entire plane with the origin deleted. Consequently, 

1 dz =O 
c z2 

when Cis the positively oriented circle (Fig. 50) 

(1) (-n<O<JT) 

about the origin. 
Note that the integral of the function f(z) = 1/z around the same circle cannot 

be evaluated in a similar way. For, although the derivative of any branch F (z) of log z 

y 

2i 

---- Ol 

X 

-2i 

FIGURE 50 
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is ljz (Sec. 30), F(z) is not differentiable, or even defined, along its branch cut In 
particular, if a ray f) =a from the origin is used to form the branch cut, F' (z) fails to 
exist at the point where that ray intersects the circle C (see Fig. 50). So C does not 
lie in a domain throughout which F' (z) = 1/ z, and we cannot make direct use of an 
antiderivative. Example 3, just below, illustrates how a combination of two different 
antiderivatives can be used to evaluate f(z) = 1/z around C. 

EXAMPLE 3. Let C 1 denote the right half 

(2) (_n < e < n) 
2- - 2 

of the circle C in Example 2. The principal branch 

Log z = In r + i 8 (r > 0, -n < e < n) 

of the logarithmic function serves as an antiderivative of the function 1/ z in the 
evaluation of the integral of 1/ z along C 1 (Fig. 51): 

1 d !2i d ]2i ~ = . ~ = Log z = Log(2i) - Log(-2i) 
c, z -21 z -2i 

= (In 2 + i ~ ) - (tn 2 - i ~ ) = n i. 

This integral was evaluated in another way in Example 1, Sec. 40, where representation 
(2) for the semicircle was used. 

y 

2i 

X 

-2i 

FIGURE 51 

Next, let C2 denote the left half 

(3) (
TC 3n) -<{}<-
2- - 2 

of the same circle C and consider the branch 

log z = In r + if) (r > 0, 0 < f) < 2n) 
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y 

2i 

-2i 

FIGURE 52 

of the logarithmic function (Fig. 52). One can write 

[ 
d 1-2i d- J-2i ~ = ~=log z = log(-2i) -log(2i) 

c2 Z 2i Z 2i 

= (ln2+i
3
;)- (ln2+i~) =ni. 

The value of the integral of 1f z around the entire circle C = C 1 + C2 is thus 
obtained: 

1 dz 1 dz 1 dz . . 2 . - = - + - = nl + nz = nt. 
c z c1 z c2 z 

EXAMPLE 4. Let us use an antiderivative to evaluate the integral 

(4) f z1!2 dz, 
lc, 

where the integrand is the branch 

(5) 

of the square root function and where C1 is any contour from z = -3 to z = 3 that, 
except for its end points, lies above the x axis (Fig. 53). Although the integrand is 
piecewise continuous on Cl> and the integral therefore exists, the branch (5) of z112 is 

y 

-----
-3 X 

FIGURE 53 
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not defined on the ray e = 0, in particular at the point z = 3. But another branch, 

r > 0 -- <0 <-
( 

1l' 3Jr) 
, 2 2 , 

is defined and continuous everywhere on C1. The values of j 1(z) at all points on c1 
except z = 3 coincide with those of our integrand (5); so the integrand can be replaced 
by ! 1 (z). Since an antiderivative of ! 1 (z) is the function 

we can now write 

(Compare Example 4 in Sec. 40.) 
The integral 

(6) 

r > 0 -- < () <-
( 

1r 3rr) 
, 2 2 ' 

of the function (5) over any contour C2 that extends from z = -3 to z = 3 below the 
real axis can be evaluated in a similar way. In this case, we can replace the integrand 
by the branch 

( 
1l' 5Jr) 

r > 0, 2 < () < 2 ' 

whose values coincide with those of the integrand at z = -3 and at all points on C2 
below the real axis. This enables us to use an antiderivative of h(z) to evaluate integral 
(6). Details are left to the exercises. 

EXERCISES 

1. Use an antiderivative to show that, for every contour C extending from a point z1 to a 
point Z2, 

{ zn dz = 1 (zn+l - zn+l) 
Jc n + 1 2 1 (n =0, 1, 2, ... ). 

2. By finding an antiderivative, evaluate each of these integrals, where the path is any 
contour between the indicated limits of integration: 

(a) [i/Z errz dz; (b) forr+Zi cos(~) dz; (c) 13 
(z- 2)3 dz. 

Ans. (a) (1 + i)j:rr; (b) e +(If e); (c) 0. 



142 INTEGRALS 

3. Use the theorem in Sec. 42 to show that 

{ (z - zot- 1 dz = 0 
lc0 

CHAP. 4 

(n = ±1, ±2, ... ) 

when C0 is any closed contour which does not pass through the point z0. l Compare 
Exercise lO(b), Sec. 40.] 

4. Find an antiderivative F2(z) of the branch h(z) of z112 in Example 4, Sec. 43, to show 

that integral (6) there has value 2J3( -1 + i). Note that the value of the integral of the 

function (5) around the closed contour C2 - C 1 in that example is, therefore, -4J3. 

5. Show that 

! 1 i d 1 +e-rr (1 ") z z= -z, 
-1 2 

where zi denotes the principal branch 

zi = exp(i Log z) (lzl > 0, -n < Arg z < n) 

and where the path of integration is any contour from z = -1 to z = 1 that, except for its 
end points, lies above the real axis. 

Suggestion: Use an anti derivative of the branch 

zi = exp(i log z) ( 
n 3n) 

lzl > 0,-2 <argz < 2 

of the same power function. 

44. CAUCHY-GOURSAT THEOREM 

In Sec. 42, we saw that when a continuous function f has an antiderivative in a domain 

D, the integral off (z) around any given closed contour C lying entirely in D has value 

zero. In tl1is section, we present a theorem giving other conditions on a function f, 

which ensure that the value of the integral of f(z) around a simple closed contour 

(Sec. 38) is zero. The theorem is central to the theory of functions of a complex variable; 

and some extensions of it, involving certain special types of domains, will be given in 

Sec. 46. 
We let C denote a simple closed contour z = z(t) (a < t <b), described in the 

positive sense (counterclockwise), and we assume that f is analytic at each point 

interior to and on C. According to Sec. 39, 

(1) L f(z) dz = 1b f[z(t)]z'(t) dt; 

and if 

f(z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t), 
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the integrand f[z(t)]z'(t) in expression (1) is the product ofthe functions 

u[x(t), y(t)] + iv[x(t), y(t)], x'(t) + iy'(t) 

of the real variable t. Thus 

(2) [ f(z) dz = 1\ux'- vy') dt + i 1b (vx' + uy') dt. 

In terms of line integrals of real-valued functions of two real variables, then, 

(3) [ f(z) dz = [ u dx- v dy + i [ v dx + u dy. 

Observe that expression (3) can be obtained formally by replacing f (z) and dz on the 
left with the binomials 

u+iv and dx+idy, 

respectively, and expanding their product. Expression (3) is, of course, also valid when 
C is any contour, not necessarily a simple closed one, and f[z(t)] is only piecewise 
continuous on it. 

We next recall a result from calculus that enables us to express the line integrals 
on the right in equation (3) as double integrals. Suppose that two real-valued functions 
P (x, y) and Q (x, y), together with their first -order partial derivatives, are continuous 
throughout the closed region R consisting of all points interior to and on the simple 
closed contour C. According to Green's theorem, 

Now f is continuous in R, since it is analytic there. Hence the functions u and 
v are also continuous in R. Likewise, if the derivative f' off is continuous in R, so 
are the first-order partial derivatives of u and v. Green's theorem then enables us to 
rewrite equation (3) as 

(4) [ f(z) dz = J l ( -vx- uy) dA i J l (ux- vy) dA. 

But, in view of the Cauchy-Riemann equations 

the integrands of these two double integrals are zero throughout R. So, when f is 
analytic in R and f' is continuous there, 

(5) [ f(z) dz = 0. 

This result was obtained by Cauchy in the early part of the nineteenth century. 
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Note that, once it has been established that the value of this integral is zero, the 
orientation of C is immaterial. That is, statement (5) is also true if C is taken in the 
clockwise direction, since then 

1 f(z) dz =- J f(z) dz = 0. 
C -C 

EXAMPLE. If C is any simple closed contour, in either direction, then 

L exp(z3
) dz = 0. 

This is because the function f (z) = exp(z3) is analytic everywhere and its derivative 
f' (z) = 3z2 exp(z3) is continuous everywhere. 

Goursat* was the first to prove that the condition of continuity on f' can be 
omitted. Its removal is important and will allow us to show, for example, that the 
derivative f' of an analytic function f is analytic without having to assume the 
continuity off', which fo1lows as a consequence. We now state the revised form of 
Cauchy's result, known as the Cauchy-Goursat theorem. 

Theorem. If a function f is analytic at all points interior to and on a simple closed 
contour C, then 

l f(z) dz = 0. 

The proof is presented in the next section, where, to be specific, we assume that 
C is positively oriented. The reader who wishes to accept this theorem without proof 
may pass directly to Sec. 46. 

45. PROOF OF THE THEOREM 
We preface the proof of the Cauchy-Goursat theorem with a lemma. We start by 
forming subsets of the region R which consists of the points on a positively oriented 
simple closed contour C together with the points interior to C. To do this, we draw 
equally spaced lines parallel to the real and imaginary axes such that the distance 
between adjacent vertical lines is the same as that between adjacent horizontal lines. 
We thus form a finite number of closed square subregions, where each point of R lies 
in at least one such subregion and each subregion contains points of R. We refer to 
these square subregions simply as squares, always keeping in mind that by a square we 

*E. Goursat ( 1858-1936), pronounced gour-sah'. 
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mean a boundary together with the points interior to it. If a particular square contains 
points that are not in R, we remove those points and call what remains a panial square. 
We thus cover the region R with a finite number of squares and partial squares (Fig. 
54), and our proof of the folJowing lemma starts with this covering. 

y 
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Lemma. Let f be analytic throughout a closed region R consisting of the points 
interior to a positively oriented simple closed contour C together with the points on C 
itself For any positive numbers, the region R can be covered with a finite number of 
squares and partial squares, indexed by j = 1, 2, ... , n, such that in each one there 
is a fixed point z j for which the inequality 

(1) <e 

is satisfied by all other points in that square or panial square. 

To start the proof, we consider the possibility that, in the covering constructed 
just prior to the statement of the lemma, there is some square or partial square in 
which no point z j exists such that inequality ( 1) holds for all other points z in it. If 
that subregion is a square, we construct four smaller squares by drawing line segments 
joining the midpoints of its opposite sides (Fig. 54). If the subregion is a partial square, 
we treat the whole square in the same manner and then let the portions that lie outside 
R be discarded. If, in any one of these smaller subregions, no point z j exists such that 
inequality (1) holds for all other point-; z in it, we construct still smaller squares and 
partial squares, etc. When this is done to each of the original subregions that requires 
it, it turns out that, after a finite number of steps, the region R can be covered with a 
finite number of squares and partial squares such that the lemma is true. 



146 INTEGRALS CHAP. 4 

To verify this, we suppose that the needed points z j do not exist after subdividing 
one of the original subregions a finite number of times and reach a contradiction. We 
let a0 denote that subregion if it is a square; if it is a partial square, we let a0 denote 
the entire square of which it is a part. After we subdivide a0 , at least one of the four 
smaller squares, denoted by a 1, must contain points of R but no appropriate point 
Zj· We then subdivide a 1 and continue in this manner. It may be that after a square 
ak-l (k = 1, 2, ... ) has been subdivided, more than one of the four smaller squares 
constructed from \t can be chosen. To make a specific choice, we take ak to be the one 
lowest and then furthest to the left. 

In view of the manner in which the nested infinite sequence 

(2) 

of squares is constructed, it is easily shown (Exercise 9, Sec. 46) that there is a point zo 
common to each ak; also, each of these squares contains points Rother than possibly 
z0 . Recall how the sizes of the squares in the sequence are decreasing, and note that 
any 8 neighborhood lz - zol < 8 of zo contains such squares when their diagonals have 
lengths less than o. Every 8 neighborhood lz- zol < 8 therefore contains points of R 
distinct from z0 , and this means that zo is an accumulation point of R. Since the region 
R is a closed set, it follows that zo is a point in R. (See Sec. 10.) 

Now the function f is analytic throughout R and, in particular, at z0 . Conse­
quently, f' (zo) exists, According to the definition of derivative (Sec. 18), there is, for 
each positive numbers, a 8 neighborhood lz - zol < 8 such that the inequality 

J(z)- f(zo) j'( .) - zo < s 
'z- zo 

is satisfied by all points distinct from zo in that neighborhood. But the neighborhood 
lz- zol < o contains a square aK when the integer K is large enough that the length of 
a diagonal of that square is less than 8 (Fig. 55). Consequently, zo serves as the point z j 
in inequality ( 1) for the subregion consisting of the square a K or a part of a K. Contrary 
to the way in which the sequence (2) was formed, then, it is not necessary to subdivide 
a K. We thus arrive at a contradiction, and the proof of the lemma is complete. 

}'! 

0 X FIGURE 55 



SEC.45 PROOF OF THE THEOREM 147 

Continuing with a function f which is analytic throughout a region R consisting 
of a positively oriented simple closed contour C and points interior to it, we are now 
ready to prove the Cauchy-Goursat theorem, namely that 

(3) fc f(z) dz = 0. 

Given an arbitrary positive number c:, we consider the covering of R in the 
statement of the lemma. Let us define on the j th square or partial square the following 
function, where Zj is the fixed point in that subregion for which inequa1ity (1) holds: 

(4) 
/(z)- f(z 1) f'( -------'- - z j) 

Z- Zj 
when z =!= Zj, 

0 when z = z1. 

According to inequality ( l ), 

(5) 

at all points z in the subregion on which 8 j(z) is defined. Also, the function 8 /z) is 
continuous throughout the subregion since f (z) is continuous there and 

Next, let c1 (j = 1, 2, ... , n) denote the positively oriented boundaries of the 
above squares or partial squares covering R. In view of definition (4), the value off 
at a point z on any particular C J can be written 

and this means that 

(6) r f(z) dz 
lcj 

= [/(Zj)- Zjf'(zj)] 1 dz + J'(z;) ( Z dz + 1 (z- Zj)oj(Z) dz. 
c lc. c 1 J 1 

But 

fc. dz = 0 and 
j 

1 zdz = 0 
cj 

since the functions 1 and z possess antiderivatives everywhere in the finite plane. So 
equation (6) reduces to 

(7) r f(z)dz= r (z-zj)8/z)dz 
lcj lcj 

(J = 1, 2, ... , n). 
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The sum of all n integrals on the left in equations (7) can be written 

n 

L 1 f(z)dz= 1 f(z)dz 
J=l cj c 

since the two integrals along the common boundary of every pair of adjacent subregions 
cancel each other, the integral being taken in one sense along that line segment in one 
subregion and in the opposite sense in the other (Fig. 56). Only the integrals along the 
arcs that are parts of C remain. Thus, in view of equations (7), 

and so 

(8) 
n 

[ f(z)dz <L [ (z-zJ)DJ(z)dz. lc ._1 lc,. 
j- . 

y 

-----
s 

0 X 

FIGURE 56 

Let us now use property (1), Sec. 41 to find an upper bound for each absolute 
value on the right in inequality (8). To do this, we first recall that each C j coincides 
either entirely or partially with the boundary of a square. In either case, we lets J denote 
the length of a side of the square. Since, in the jth integral, both the variable z and the 
point z j lie in that square, 

lz- ZJI < J2sj· 

In view of inequality (5), then, we know that each integrand on the right in inequality 
(8) satisfies the condition 

(9) 
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As for the length of the path C i, it is 4s i if C j is the boundary of a square. In that case, 
we let A i denote the area of the square and observe that 

(10) 

If Cj is the boundary of a partial square, its length does not exceed 4si + L i• where 
L i is the length of that part of C i which is also a part of C. Again letting A j denote 
the area of the full square, we find that 

where S is the length of a side of some square that encloses the entire contour C as 
well as all of the squares originally used in covering R (Fig. 56). Note that the sum of 
all the A i 's does not exceed S2

• 

If L denotes the length of C, it now follows from inequalities (8), ( 1 0), and ( 11) 
that 

L f(z) dz < (4J2S2 + J2SL)s. 

Since the value of the positive numbers is arbitrary, we can choose it so that the right­
hand side of this last inequality is as small as we please. The left-hand side, which 
is independent of s, must therefore be equal to zero; and statement (3) fol1ows. This 
completes the proof of the Cauchy-Goursat theorem. 

46. SIMPLY AND MULTIPLY CONNECTED DOMAINS 

A simply connected domain Dis a domain such that every simple closed contour within 
it encloses only points of D. The set of points interior to a simple closed contour is an 
example. The annular domain between two concentric circles is, however, not simply 
connected. A domain that is not simply connected is said to be multiply connected. 

The Cauchy-Goursat theorem can be extended in the following way, involving a 
simply connected domain. 

Theorem 1. ff a function f is analytic throughout a simply connected domain D, 
then 

(1) L f(z) dz = 0 

for every closed contour C lying in D. 
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y 

0 X FIGURE 57 

The proof is easy if C is a simple closed contour or if it is a closed contour that 
intersects itself a finite number of times. For, if Cis simple and lies in D, the function f 
is analytic at each point interior to and on C; and the Cauchy-Goursat theorem ensures 
that equation ( 1) holds. Furthermore, if C is closed but intersects itself a finite number 
of times, it consists of a finite number of simple closed contours. This is illustrated 
in Fig. 57, where the simple closed contours Ck (k = 1, 2, 3, 4) make up C. Since the 
value of the integral around each C k is zero, according to the Cauchy-Goursat theorem, 
it follows that 

4 

[ f(z) dz = L [ f(z) dz = 0. 
lc k=l lck 

Subtleties arise if the closed contour has an infinite number of self-intersection 
points. One method that can sometimes be used to show that the theorem still applies 
is illustrated in Exercise 5 below.* 

Corollary 1. A function f that is analytic throughout a simply connected domain D 
must have an antiderivative everywhere in D. 

This corollary follows immediately from Theorem l because of the theorem in 
Sec. 42, which tells us that a continuous function f always has an antiderivative in a 
given domain when equation ( l) holds for each closed contour C in that domain. Note 
that, since the finite plane is simply connected, Corollary 1 tells us that entire functions 
always possess antiderivatives. 

The Cauchy-Goursat theorem can also be extended in a way that involves inte­
grals along the boundary of a multiply connected domain. The following theorem is 
such an extension. 

*For a proof of the theorem involving more general paths of finite length, see, for example, Sees. 63-65 

in Vol. I of the book by Markushevich, cited in Appendix I. 
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Theorem 2. Suppose that 
(i) Cis a simple closed contour, described in the counterclockwise direction; 

(ii) Ck (k = 1, 2, ... , n) are simple closed contours interior to C, all described in 
the clockwise direction, that are disjoint and whose interiors have no points in 
common (Fig. 58). 

If a function f is analytic on all of these contours and throughout the multiply 
connected domain consisting of all points inside C and exterior to each Ck, then 

(2) 

n 

{ f(z) dz + L { f(z) dz = 0. 
lc k=l lck 

y 

0 X FIGURE 58 

Note that, in equation (2), the direction of each path of integration is such that 
the multiply connected domain lies to the left of that path. 

To prove the theorem, we introduce a polygonal path L 1> consisting of a finite 
number of line segments joined end to end, to connect the outer contour C to the inner 
contour C 1. We introduce another polygonal path L2 which connects C 1 to C2; and we 
continue in this manner, with Ln+l connecting Cn to C. As indicated by the single­
barbed arrows in Fig. 58, two simple closed contours r 1 and r 2 can be formed, each 
consisting of polygonal paths L k or - L k and pieces of C and C k and each described 
in such a direction that the points enclosed by them lie to the left. The Cauchy­
Goursat theorem can now be applied to f on r 1 and r 2, and the sum of the values 
of the integrals over those contours is found to be zero. Since the integrals in opposite 
directions along each path Lk cancel, only the integrals along C and Ck remain; and 
we arrive at statement (2). 

The following corollary is an especially important consequence of Theorem 2. 

Corollary 2. Let C1 and C2 denote positively oriented simple closed contours, where 
C2 is interior to C 1 (Fig. 59). If a function f is analytic in the closed region consisting 
of those contours and all points between them, then 

(3) { f(z) dz = { f(z) dz. 
lc, lc2 
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y 

c,2..1-------

0 X FIGURE 59 

For a verification, we use Theorem 2 to write 

[ f(z)dz+j f(z)dz=O; 
lc1 -c2 

and we note that this is just a different form of equation (3). 
Corollary 2 is known as the principle of deformation of paths since it tells us that 

if C1 is continuously deformed into C2, always passing through points at which f is 
analytic, then the value of the integral off over C 1 never changes. 

EXAMPLE. When C is any positively oriented simple closed contour surrounding 
the origin, Corollary 2 can be used to show that 

f dz = 2ni. 
lc z 

To accomplish this, we need only construct a positively oriented circle C0 with center 
at the origin and radius so small that C0 lies entirely inside C (Fig. 60). Since [Exercise 
lO(a), Sec. 40] 

y 

X 

FIGURE60 
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1 dz 
2 

. - = 7Cl 
c0 z 

and since 1/ z is analytic everywhere except at z = 0, the desired result follows. 

Note that the radius of C0 could equally well have been so large that C lies entirely 

inside C0. 

EXERCISES 

1. Apply the Cauchy-Goursat theorem to show that 

[ f(z) dz = 0 

when the contour Cis the circle lzl = 1, in either direction, and when 

z2 1 
(a) f(z) = ; (b) f(z) = ze-z; (c) f(z) = ; 

z- 3 z2 + 2z + 2 

(d) f(z)- sech z; (e) f(z) =tan z; (f) f(z) = Log(z + 2). 

2. Let C 1 denote the positively oriented circle lzl = 4 and C2 the positively oriented bound­
ary of the square whose sides lie along the lines x = ±1, y = ±1 (Fig. 61). With the aid 
of Corollary 2 in Sec. 46, point out why 

when 
1 

(a) j(z) = 3z2 + 1; 

y 

1 

f f(z) dz = f f(z) dz 
1c1 1c2 

b) f(z - z + 2 · 
( ) - sin(z/2) ' 

4 X 

(c) f(z) = _z_ 
1- ez 

FIGURE61 
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3. If C0 denotes a positively oriented circle lz - zol = R, then 

1 (z- zo)n-l dz = { ~ . 
C ~nl 

0 

when n = ± 1, ±2, ... , 
when n = 0, 

according to Exercise 10, Sec. 40. Use that result and Corollary 2 in Sec. 46 to show 

that if C is the boundary of the rectangle 0 < x < 3, 0 < y < 2, described in the positive 

sense, then 

[ (.~- 2- nn-1 d~ = { 0 Jc '" · '" 2rri 
when n = ±1, ±2, ... , 
when n = 0. 

4. Use the method described below to derive the integration formula 

1
00 

2 .jii 2 
e-x cos 2bx dx = -e-b 

0 2 
(b > 0). 

(a) Show that the sum of the integrals of exp( -z2) along the lower and upper horizontal 

legs of the rectangular path in Fig. 62 can be written 

-a+bi 

-a 

r 2 2 r 2 
2 Jo e-x dx- 2eb Jo e-x cos 2bx dx 

and that the sum of the integrals along the vertical legs on the right and left can be 

written 

Thus, with the aid of the Cauchy-Goursat theorem, show that 

la 2 21a 2 2 2 lob 2 e-x cos 2bx dx = e-b e-x dx + e-<a +b l eY sin 2ay dy . 
• 0 0 0 

y 

a +bi 

0 a X 
FIGURE62 
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(b) By accepting the fact that* 

and observing that 

roo 2 .jii 
Jo e-x dx = 2 

[b 2 [b 2 

Jo eY sin 2ay dy < lo eY dy, 

obtain the desired integration formula by letting a tend to infinity in the equation at 
the end of part (a). 

5. According to Exercise 6, Sec. 38, the path C 1 from the origin to the point z = 1 along 
the graph of the function defined by means of the equations 

y 

when 0 < x < 1, 

whenx = 0 

is a smooth arc that intersects the real axis an infinite number of times. Let C2 denote 
the line segment along the real axis from z = 1 back to the origin, and let C3 denote 
any smooth arc from the origin to z = 1 that does not intersect itself and has only its end 
points in common with the arcs C 1 and C2 (Fig. 63). Apply the Cauchy-Goursat theorem 
to show that if a function f is entire, then 

1 f(z) dz = 1 f(z) dz and 
Ct c3 1 f(z) dz = -1 f(z) dz. 

Cz c3 

1 X 

FIGURE63 

*The usual way to evaluate this integral is by writing its square as 

roo 2 roo 2 roo roo 2 2 

Jo e-x dx Jo e-Y dy = Jo Jo e-(x +y ) dx dy 

and then evaluating the iterated integral by changing to polar coordinates. Details are given in, for 
example, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 680-681, 1983. 
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Conclude that, even though the closed contour C = C1 + C2 intersects itself an infinite 
number of times, 

[ f(z)dz=O. 
Jc 

6. Let C denote the positively oriented boundary of the half disk 0 < r < 1, 0 < (} .::; rr, and 
let f (z) be a continuous function defined on that half disk by writing f (0) = 0 and using 
the branch 

r > 0 -- <8 <-( rr 3rr) 
' 2 2 

of the multiple-valued function z 112• Show that 

fc /(z) dz = 0 

by evaluating separately the integrals of f(z) over the semicircle and the two radii which 
make up C. Why does the Cauchy-Goursat theorem not apply here? 

7. Show that if Cis a positively oriented simple closed contour, then the area of the region 
enclosed by C can be written 

__!_ fzdz. 
2i lc 

Suggestion: Note that expression (4), Sec. 44, can be used here even though the 
function /(z) = z is not analytic anywhere (see Exercise l(a), Sec. 22). 

8. Nested Intervals. An infinite sequence of closed intervals an < x < bn (n = 0, 1, 2, ... } 
is formed in the following way. The interval a 1 < x < b1 is either the left-hand or right­
hand half of the first interval ao ::: x < b0, and the interval a2 < x < b2 is then one of the 
two halves of a 1 < x < b1, etc. Prove that there is a point x0 which belongs to every one 
of the closed intervals an < x ::; bn. 

Suggestion: Note that the left-hand end points an represent a bounded nondecreas­
ing sequence of numbers, since ao <an <an+ I < bo; hence they have a limit A as n 
tends to infinity. Show that the end points bn also have a limit B. Then show that A= B, 
and write x0 =A= B. 

9. Nested Squares. A square u0 : a0 < x < b0 , c0 < y < d0 is divided into four equal squares 
by line segments parallel to the coordinate axes. One of those four smaller squares 
u 1 : a 1 < x < b 1, c 1 < y < d 1 is selected according to some rule. It, in tum, is divided 
into four equal squares one of which, called u2, is selected, etc. (see Sec. 45). Prove 
that there is a point (x0 , Yo) which belongs to each of the closed regions of the infinite 
sequence u0, u 1, o-2, •..• 

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed 
intervals an< X< bn and en < y < dn (n = 0, 1, 2, ... }. . 
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47. CAUCHY INTEGRAL FORMULA 

Another fundamental result will now be established. 

Theorem. Let f be analytic everywhere inside and on a simple closed contour C, 
taken in the positive sense. If z0 is any point interior to C, then 

(1) f(zo) = _1_. r f(z) dz 
2m lc z -zo 

Formula (1) is called the Cauchy integral formula. It tells us that if a function f 
is to be analytic within and on a simple closed contour C, then the values off interior 
to C are completely determined by the values of f on C. 

When the Cauchy integral formula is written 

i f(z) dz _ 2 'f( ) - m z0 , 
c z -zo 

(2) 

it can be used to evaluate certain integrals along simple closed contours. 

EXAMPLE. Let C be the positively oriented circle lzl = 2. Since the function 

z 
f(z) = 9 2 -z 

is analytic within and on C and since the point zo = -i is interior to C, formula (2) 
tells us that 

( Z dz ( zj (9 - z
2

) d 2 . ( -i) TC 

lc (9-z2)(z+i) = lc z....,(-i) z= m 10 =5· 

We begin the proof of the theorem by letting C P denote a positively oriented circle 
lz zol = p, where p is small enough that C Pis interior to C (see Fig. 64). Since the 
function f(z)/(z- z0) is analytic between and on the contours C and CP, it follows 

y 

Cp 

@ 
0 X FIGURE64 
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from the principle of deformation of paths (Corollary 2, Sec. 46) that 

{ f(z) dz = { f(z) dz. 

J c z - zo J c p z - zo 

This enables us to wtite 

(3) { f(z) dz _ f(zo) 1 dz = 1 f(z)- f(z0) dz. 
J c z - zo c p z - z0 c p z - z0 

But [see Exercise lO(a), Sec. 40] 

1 dz 
2 

. 
-- = 7l'l; 

CP Z- Zo 

and so equation (3) becomes 

(4) { f(z) dz - 2nif(zo) = 1 f(z)- f(zo) dz. 
J c z - zo c p z - zo 

Now the fact that f is analytic, and therefore continuous, at zo ensures that, 
corresponding to each positive number E, however small, there is a positive number 8 
such that 

(5) 1/(z)- f(zo)l < e whenever lz- zol < 8. 

Let the radius p of the circle C P be smaller than the number 8 in the second of these 
inequalities. Since lz - zo I = p when z is on C P' it follows that the first of inequalities 
(5) holds when z is such a point; and inequality (1), Sec. 41, giving upper bounds for 
the moduli of contour integrals, tells us that 

1 J(z)- f(zo) d z 
CP Z- Zo 

In view of equation (4), then, 

E 
<- 2np = 2ne. 

p 

f J(z) dz - 2nif(z
0

) < 2ne. 
lc z- zo 

Since the left-hand side of this inequality is a nonnegative constant that is less than an 
arbitrarily small positive number, it must equal to zero. Hence equation (2) is valid, 
and the theorem is proved. 

48. DERIVATIVES OF ANALYTIC FUNCTIONS 

It follows from the Cauchy integral formula (Sec. 47) that if a function is analytic at a 
point, then its derivatives of all orders exist at that point and are themselves analytic 
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there. To prove this, we start with a lemma that extends the Cauchy integral formula 
so as to apply to derivatives of the first and second order. 

Lemma. Suppose that a function f is analytic everywhere inside and on a simple 
closed contour C, taken in the positive sense. lfz is any point interior to C, then 

(1) J'(z) = _1_1 f(s) ds and f"(z) = _!_ { f(s) ds. 
2ni c (s- z)2 ni Jc (s- z)3 

Note that expressions (1) can be obtainedfonnally, or without rigorous verifica­
tion, by differentiating with respect to z under the integral sign in the Cauchy integral 
formula 

(2) f(z) = _1_.1 f(s) ds, 
2m c s- z 

where z is interior to C and s denotes points on C. 
To verify the first of expressions (1), we let d denote the smallest distance from 

z to points on C and use formula (2) to write 

f(z + ~z)- f(z) = _1_1 ( 1 _ 1 ) f(s) ds 

~z 2ni c s- z- ~z s- z ~z 

1 1 f(s) ds 
= 2ni c (s - z- ~z)(s- z)' 

where 0 < l~zl < d (see Fig. 65). Evidently, then, 

(3) 
f(z + ~z)- f(z) 1 1 f(s) ds 1 1 ~zf(s) ds 

~z - 2ni c (s- z)2 = 2ni c (s- z- ~z)(s- z)2 • 

y 

s 

0 X FIGURE65 
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Next, we let M denote the maximum value of lf(s)l on C and observe that, since 
Is- zl > d and l~zl < d, 

Is- z- ~zl = l(s- z)- ~zl >lis- zl -l~zll > d -l~zl > 0. 

Thus 

1 ~zf(s) ds < l~ziM L, 
c (s- z- ~z)(s- z)2 - (d- l~zl)d2 

where L is the length of C. Upon letting ~z tend to zero, we find from this inequality 
that the right-hand side of equation (3) also tends to zero. Consequently, 

lim f(z + ~z)- f(z) _ _ 1_1 f(s) ds = O· 
tlz-+0 ~z 2ni c (s - z)2 ' 

and the desired expression for f' (z) is established. 
The same technique can be used to verify the expression for f" (z) in the statement 

of the lemma. The details, which are outlined in Exercise 9, are left to the reader. 

Theorem 1. If a function is analytic at a point, then its derivatives of all orders exist 
at that point. Those derivatives are, moreover, all analytic there. 

To prove this remarkable theorem, we assume that a function f is analytic at a 
point z0 . There must, then, be a neighborhood lz- zol < 8 of zo throughout which f is 
analytic (see Sec. 23). Consequently, there is a positively oriented circle C0, centered 
at zo and with radius 8/2, such that f is analytic inside and on C0 (Fig. 66). According 
to the above lemma, 

f"(z) = ~ 1 f(s) ds 
Jrl c0 (s - z)3 

at each point z interior to C0, and the existence of .f" (z) throughout the neighborhood 
lz :.._ zol < e/2 means that .f' is analytic at z0. One can apply the same argument to the 

y 

0 X FIGURE66 
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analytic function f' to conclude that its derivative f" is analytic, etc. Theorem 1 is 
now established. 

As a consequence, when a function 

f(z) = u(x, y) + iv(x, y) 

is analytic at a point z = (x, y), the differentiability off' ensures the continuity of f' 
there (Sec. 18). Then, since 

f'(z) = Ux + ivx = Vy- iuy, 

we may conclude that the first -order partial derivatives of u and v are continuous at 
that point. Furthermore, since f" is analytic and continuous at z and since 

f "( ) . . z = Uxx + lVxx = Vyx- IUyx• 

etc., we arrive at a corollary that was anticipated in Sec. 25, where harmonic functions 
were introduced. 

Corollary. If a function f(z) = u(x, y) + iv(x, y) is defined and analytic at a point 

z = (x, y) then the component functions u and v have continuous partial derivatives 

of all orders at that point. 

(4) 

One can use mathematical induction to generalize formulas ( 1) to 

f(n)(z) = ~ r f(s) ds 
2:rri Jc (s- z)n+I 

(n=1,2, ... ). 

The verification is considerably more involved than for just n = 1 and n = 2, and we 
refer the interested reader to other texts for it.* Note that, with the agreement that 

f(O)(z) = f(z) and 0! = 1, 

expression (4) is also valid when n = 0, in which case it becomes the Cauchy integral 
formula (2). 

(5) 

When written in the form 

1 f(z) dz = 2:rri f(n)(zo) 
c (z- zo)n+l n! 

(n = 0, 1, 2, ... ), 

expression (4) can be useful in evaluating certain integrals when f is analytic inside 
and on a simple closed contour C, taken in the positive sense, and zo is any point 
interior to C. It has already been illustrated in Sec. 47 when n = 0. 

*See, for example, pp. 299-301 in Vol. I of the book by Markushevich, cited in Appendix 1. 
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EXAMPLE 1. If Cis the positively oriented unit circle lzl = 1 and 

/(z) = exp(2z), 

then 

r exp(2z) dz = r f(z) dz = 2ni f/1!(0) = 8:rri. 
lc z4 lc (z- 0)3+1 3! 3 

EXAMPLE 2. Let z0 be any point interior to a positively oriented simple closed 
contour C. When /(z) = 1, expression (5) shows that 

and 

1 dz = 2:rri 
c z zo 

r dz -0 
lc (z- zo)n+l -

(n=l,2, ... ). 

(Compare Exercise 10, Sec. 40.) 

We conclude this section with a theorem due to E. Morera ( 1856-1909). The proof 
here depends on the fact that the derivative of an analytic function is itself analytic, as 
stated in Theorem 1. 

Theorem 2. Let f be continuous on a domain D. If 

(6) £ f(z) dz =0 

for every closed contour C lying in D, then f is analytic throughout D. 

In particular, when D is simply connected, we have for the class of continuous 
functions on D a converse of Theorem 1 in Sec. 46, which is the extension of the 
Cauchy-Goursat theorem involving such domains. 

To prove the theorem here, we observe that when its hypothesis is satisfied, the 
theorem in Sec. 42 ensures that f has an antiderivative in D; that is, there exists an 
analytic function F such that F' (z) = f (z) at each point in D. Since f is the derivative 
ofF, it then follows from Theorem 1 above that f is analytic in D. 

EXERCISES 

1. Let C denote the positively oriented boundary of the square whose sides lie along the 
lines x = ± 2 and y = ± 2. Evaluate each of these integrals: 

(a) { e-z dz . (b) { cos z dz· (c) { z dz . 
lcz-(rt:i/2)' lcz(z2 +8) ' lc2z+1' 
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(d) r cos: z dz; 
lc z 

EXERCISES 163 

i tan(z/2) 
(e) 

2 
dz ( -2 < x0 < 2). 

c (z- xa) 

Ans. (a) 2Jr; (b) Jrij4; (c) -Jri/2; (d) 0; (e) iJr sec2(xo/2). 

2. Find the value of the integral of g(z) around the circle lz- i I = 2 in the positive sense 
when 

1 
(a) g(z) = ; 

z2 +4 

1 
(b) g(z) = 2 2. 

(z + 4) 

Ans. (a) ,.. /2; (b) Jr/16. 

3. Let C be the circle lzl = 3, described in the positive sense. Show that if 

2 
g(w) = r 2z - z- 2dz 

lc z- w 
(lwl "I 3), 

then g(2) = 8Jri. What is the value of g(w) when lwl > 3? 

4. Let C be any simple closed contour, described in the positive sense in the z plane, and 
write 

i z3 + 2z 
g(w) = 

3 
dz. 

c (z- w) 

Show that g(w) = 67riw when w is inside C and that g(w) = 0 when w is outside C. 

5. Show that if f is analytic within and on a simple closed contour C and z0 is not on C, 
then 

r f'(z) dz = r f(z) dz . 
lc z-zo lc(z-zo)2 

6. Let f denote a function that is continuous on a simple closed contour C. Following a 
procedure used in Sec. 48, prove that the function 

g(z) = _1_. r f(s) ds 
2Jrt lc s- z 

is analytic at each point z interior to C and that 

at such a point. 

g'(z)=-1- r f(s)ds 
2Jri lc (s- z)2 

7. Let C be the unit circle z = ei0 ( -Jr < e < 7r). First show that, for any real constant a, 

r eaz d z = 27r i . 
lc z 

Then write this integral in terms of e to derive the integration formula 

!orr ea cosO cos(a sin e) de= 7r. 
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8. (a) With the aid of the binomial formula (Sec. 3), show that, for each value of n, the 
function 

(n = 0, I, 2, ... ) 

is a polynomial of degree n .* 
(b) Let C denote any positively oriented simple closed contour surrounding a fixed 

point z. With the aid of the integral representation (4), Sec. 48, for the nth derivative 
of an analytic function, show that the polynomials in part (a) can be expressed in the 
form 

(ll = 0, 1, 2, ... ). 

(c) Point out how the integrand in the representation for Pn(Z) in part (b) can be written 
(s + l)n j(s - 1) if z = I. Then apply the Cauchy integral formula to show that 

(n = 0, 1, 2, ... ). 

Similarly, show that 

(n = 0, I, 2, ... ) . 

9. Follow the steps below to verify the expression 

in the lemma in Sec. 48. 

f"(z) = _1 1 f(s) ds 
n:i c(s-z)3 

(a) Use the expression for f'(z) in the lemma to show that 

f'(z + Llz)- f'(z) __ l 1 f(s) ds =_I_ [ 3(s- z)Llz- 2(Llz)2 f(s) ds. 

Llz rri c (s - z)3 2rri Jc (s- z- Llz)2(s- z)3 

(b) Let D and d denote the largest and smallest distances, respectively, from z to points 
on C. Also, let M be the maximum value of If (s) I on C and L the length of C. With 
the aid of the triangle inequality and by referring to the derivation of the expression 
for f'(z) in the lemma, show that when 0 < ILlzl < d, the value of the integral on 
the right-hand side in part (a) is bounded from above by 

(3DILlzl + 2JLlzi 2)M L 

(d-1Llzl)2d3 · 

(c) Use the results in parts (a) and (b) to obtain the desired expression for f"(z). 

*These are the Legendre polynomials which appear in Exercise 7. Sec. 37. when z = x. See the footnote 
to that exercise. 
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49. LIOUVILLE'S THEOREM AND THE FUNDAMENTAL 
THEOREM OF ALGEBRA 

This section is devoted to two important theorems that follow from the extension of 
the Cauchy integral formula in Sec. 48. 

Lemma. Suppose that a function f is analytic inside and on a positively oriented 
circle C R• centered at z0 and with radius R (Fig. 67). If M R denotes the maximum 
value oflf(z)l on CR. then 

(l) f(n)(Zo) < n';R (n=l,2, ... ). 

y 
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Inequality (1) is called Cauchy's inequality and is an immediate consequence of 
the expression 

f(n)(zo) = ~ 1 j(z) dz 
2rd cR (z - z0)n+l 

(n = 1, 2, ... ), 

which is a slightly different form of equation (5), Sec. 48. We need only apply 
inequality ( 1 ), Sec. 41, which gives upper bounds for the moduli of the values of 
contour integrals, to see that 

f (n)( ) n! MR 2 R zo <-. :rr 
- 2n Rn+! 

(n=1,2, ... ), 

where M R is as in the statement of the lemma. This inequality is, of course, the same 
as inequality (1) in the lemma. 

The lemma can be used to show that no entire function except a constant is 
bounded in the complex plane. Our first theorem here, which is known as Liouville's 
theorem, states this result in a somewhat different way. 

Theorem 1. Iff is entire and bounded in the complex plane, then f (z) is constant 
throughout the plane. 
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To start the proof, we assume that f is as stated in the theorem and note that, 
since f is entire, Cauchy's inequality (1) with n = 1 holds for any choices of zo and 
R: 

(2) 

Moreover, the boundedness condition in the statement of the theorem tells us that a 
nonnegative constant M exists such that If (z) I < M for all z; and, because the constant 
M R in inequality (2) is always less than or equal toM, it follows that 

(3) lf'(zo)l < ~ • 
where zo is any fixed point in the plane and R is arbitrarily large. Now the number M 
in inequality (3) is independent of the value of R that is taken. Hence that inequality 
can hold for arbitrarily large values of R only iff' (zo) = 0. Since the choice of zo was 
arbitrary, this means that f'(z) = 0 everywhere in the complex plane. Consequently, 
f is a constant function, according to the theorem in Sec. 23. 

The following theorem, known as the fundamental theorem of algebra, follows 
readily from Liouville's theorem. 

Theorem 2. Any polynomial 

P(z) = ao + a1z + azz2 + · · · + anzn 

of degree n (n > 1) has at least one zero. That is, there exists at least one point zo such 
that P(z0) = 0. 

The proof here is by contradiction. Suppose that P(z) is not zero for any value 
of z. Then the reciprocal 

1 
f(z) = P(z) 

is clearly entire, and it is also bounded in the complex plane. 
To show that it is bounded, we first write 

(4) w = ao + a1 + az + ... + an-1, 
zn zn-1 zn-2 z 

so that P(z) =(an+ w)zn. We then observe that a sufficiently large positive number 
R can be found such that the modulus of each of the quotients in expression (4) is less 
than the number lanl/(2n) when lzl > R. The generalized triangle inequality, applied 
ton complex numbers, thus shows that lwl < lanl/2 for such values ofz. Consequently, 
when lzl > R, 
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and this enables us to write 

(5) IP(z)l =ian+ wllznl > la;llzln > la;l Rn whenever lzl > R. 

Evidently, then, 

1 2 
1/(z)l- < whenever lzl > R. 

- IP(z)l laniRn 

So f is bounded in the region exterior to the disk lzl < R. But f is continuous in that 

closed disk, and this means that f is bounded there too. Hence f is bounded in the 

entire plane. 
It now follows from Liouville's theorem that f(z), and consequently P(z), is 

constant. But P(z) is not constant, and we have reached a contradiction.* 

The fundamental theorem tells us that any polynomial P(z) of degree n (n > 1) 

can be expressed as a product of linear factors: 

(6) P(z) = c(z- z1)(z- zz) · · · (z- zn), 

where c and Zk (k = 1, 2, ... , n) are complex constants. More precisely, the theorem 

ensures that P(z) has a zero z1• Then, according to Exercise 10, Sec. 50, 

where Q1(z) is a polynomial of degree n- 1. The same argument, applied to Q1(z), 

reveals that there is a number z2 such that 

where Q2(z) is a polynomial of degree n - 2. Continuing in this way, we arrive at 

expression (6). Some of the constants Zk in expression (6) may, of course, appear more 

than once, and it is clear that P(z) can have no more than n distinct zeros. 

50. MAXIMUM MODULUS PRINCIPLE 

In this section, we derive an important result involving maximum values of the moduli 

of analytic functions. We begin with a needed lemma. 

Lemma. Suppose that lf(z)l < lf(z0)1 at each point z in some neighborhood 

I z - z0 I < s in which f is analytic. Then f (z) has the constant value f (z0) throughout 

that neighborhood. 

"'For an interesting proof of the fundamental theorem using the Cauchy-Goursat theorem, see R. P. 

Boas, Jr., Amer. Math. Monthly, Vol. 71, No.2, p. 180, 1964. 
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To prove this, we assume that f satisfies the stated conditions and let z 1 be any 
point other than zo in the given neighborhood. We then let p be the distance between 
z1 and z0• If C P denotes the positively oriented circle lz- zol = p, centered at zo and 
passing through z1 (Fig. 68), the Cauchy integral formula tells us that 

(1) f(zo) = _1_.J f(z) dz; 
2ro cP z- zo 

and the parametric representation 

z = z0 + peie 

for C P enables us to write equation (1) as 

(2) f(zo) = -
1 f

2

1f f(zo + pei9) dB. 
2n lo 

We note from expression (2) that when a function is analytic within and on a given 
circle, its value at the center is the arithmetic mean of its values on the circle. This 
result is called Gauss's mean value theorem. 

From equation (2), we obtain the inequality 

(3) 1 121f 1/(zo)l <- lf(zo + pei8 )1 dB. 
2n o 

On the other hand, since 

(4) 

we find that 

f21f f21f 
lo lf(zo +pew) I d() < lo lf(zo)l d() = 2nlf(z0)1. 

Thus 

(5) 1 121f lf(zo)l > - lf(zo + peiB)I d(). 
2n o 
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It is now evident from inequalities (3) and (5) that 

1 1217" lf(zo)l =- lf(zo + pei8 )1 d(), 
2Jr 0 

or 

{21i 
lo [lf(zo)l - lf(zo + pei9 )1] d() = 0. 

The integrand in this last integral is continuous in the variable 0; and, in view of 

condition ( 4 ), it is greater than or equal to zero on the entire interval 0 < () < 2n. 
Because the value of the integra] is zero, then, the integrand must be identically equal 

to zero. That is, 

(6) lf(zo + pei9 )1 = lf(zo)l (0 < () < 2n). 

This shows that lf(z)l = lf(z0)1 for all points z on the circle lz- zol = p. 

Finally, since z1 is any point in the deleted neighborhood 0 < lz- zol < s, we 

see that the equation lf(z)l = lf(zo)l is, in fact, satisfied by all points z lying on any 

circle lz- zol = p, where 0 < p < s. Consequently, lf(z)l = lf(zo)l everywhere in 
the neighborhood lz- zul <e. But we know from Exercise 7(b), Sec. 24, that when the 

modulus of an analytic function is constant in a domain, the function itself is constant 

there. Thus f(z) = f(z0) for each point z in the neighborhood, and the proof of the 

lemma is complete. 
This lemma can be used to prove the following theorem, which is known as the 

maximum modulus principle. 

Theorem. If a function f is analytic and not constant in a given domain D, then 

lf(z)l has no maximum value in D. That is, there is no point zo in the domain such 

that If (z) I < If (zo) I for all points z in it. 

Given that f is analytic in D, we shall prove the theorem by assuming that lf(z)l 
does have a maximum value at some point zo in D and then showing that f (z) must 

be constant throughout D. 
The general approach here is similar to that taken in the proof of the lemma in 

Sec. 26. We draw a polygonal line L lying in D and extending from zo to any other 

point P in D. Also, d represents the shortest distance from points on L to the boundary 

of D. When Dis the entire plane, d may have any positive value. Next, we observe 

that there is a finite sequence of points 

along L such that Zn coincides with the point P and 

(k= 1, 2, ... ,n). 
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On forming a finite sequence of neighborhoods (Fig. 69) 

where each Nk has center Zk and radius d, we see that f is analytic in each of these 
neighborhoods, which are all contained in D, and that the center of each neighborhood 
Nk (k = 1, 2, ... , n) lies in the neighborhood Nk-I· 

Since If (z) I was assumed to have a maximum value in D at z0 , it also has a 
maximum value in N0 at that point. Hence, according to the preceding lemma, j(z) 
has the constant value f(zo) throughout N0. In particular, f(z 1) = j(z0). This means 
that 1/(z)l < 1/(z1)1 for each point z in N1; and the lemma can be applied again, this 
time telling us that 

f(z) = f(zl) = f(zo) 

when z is in N1. Since z2 is in Nh then, j(z2) = j(zo). Hence 1/(z)l < l/(z2)1 when 
z is in N 2; and the lemma is once again applicable, showing that 

when z is in N2 . Continuing in this manner, we eventually reach the neighborhood Nn 
and arrive at the fact that f(zn) = /(zo). 

Recalling that Zn coincides with the point P, which is any point other than z0 in 
D, we may conclude that j(z) = f(zo) for every point z in D. Inasmuch as j(z) has 
now been shown to be constant throughout D, the theorem is proved. 

If a function f that is analytic at each point in the interior of a closed bounded 
region R is also continuous throughout R, then the modulus 1/(z)l has a maximum 
value somewhere in R (Sec. 17). That is, there exists a nonnegative constant M such 
that 1/(z)l < M for all points z in R, and equality holds for at least one such point. 
Iff is a constant function, then 1/(z)l = M for all z in R. If, however, /(z) is not 
constant, then, according to the maximum modulus principle, 1/(z)l ::j:. M for any 
point z in the interior of R. We thus arrive at an important corollary of the maximum 
modulus principle. 
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Corollary. Suppose that a function f is continuous on a closed bounded region R 
and that it is analytic and not constant in the interior of R. Then the maximum value 
oflf(z)l in R, which is always reached, occurs somewhere on the boundary of Rand 
never in the interior. 

EXAMPLE. Let R denote the rectangular region 0 < x < rr, 0 < y < 1. The corol­
lary tells us that the modulus of the entire function f (z) = sin z has a maximum value 
in R that occurs somewhere on the boundary, and not in the interior, of R. This can be 
verified directly by writing (see Sec. 33) 

lf(z)l = Jsin2 x + sinh2 y 

and noting that, in R, the term sin2 xis greatest when x = rr /2 and that the increasing 
function sinh2 y is greatest when y = 1. Thus the maximum value of lf(z)l in R occurs 
at the boundary point z = (rr /2, 1) and at no other point in R (Fig. 70). 

y 

~~------~------~ 
(n'/2,1) 

0 X FIGURE70 

When the function fin the corollary is written f(z) = u(x, y) + iv(x, y), the 
component function u (x, y) also has a maximum value in R which is assumed on 
the boundary of R and never in the interior, where it is harmonic (Sec. 25). For the 
composite function g(z) = exp[f(z)l is continuous in Rand analytic and not constant 
in the interior. Consequently, its modulus lg(z)l = exp[u(x, y)], which is continuous 
in R, must assume its maximum value in Ron the boundary. Because of the increasing 
nature of the exponential function, it follows that the maximum value of u (x, y) also 
occurs on the boundary. 

Properties of minimum values of If (z) I and u (x, y) are treated in the exercises. 

EXERCISES 

1. Let f be an entire function such that 1/(z)l < Aizl for all z, where A is a fixed positive 
number. Show that f(z) = a1z, where a1 is a complex constant. 

Suggestion: Use Cauchy's inequality (Sec. 49) to show that the second derivative 
f'' (z) is zero everywhere in the plane. Note that the constant M R in Cauchy's inequality 
is less than or equal to A(izol + R). 
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2. Suppose that f (Z) is entire and that the harmonic function u (x, y) = Re[f (z)] has an 
upper bound u0 ; that is, u (x, y) < u0 for all points (x, y) in the xy plane. Show that 
u (x, y) must be constant throughout the plane. 

Suggestion: Apply Liouville's theorem (Sec. 49) to the function g(z) = exp[j(z)]. 

3. Show that, for R sufficiently large, the polynomial P(z) in Theorem 2, Sec. 49, satisfies 
the inequality 

IP(z)l < 21anllzln whenever lzl > R. 

[Compare the first of inequalities (5), Sec. 49.] 
Suggestion: Observe that there is a positive number R such that the modulus of 

each quotient in expression (4), Sec. 49, is less than lanlfn when lzl > R. 

4. Let a function f be continuous in a closed bounded region R, and let it be analytic and 
not constant throughout the interior of R. Assuming that f(z) :f:. 0 anywhere in R, prove 
that lf(z)l has a minimum value min R which occurs on the boundary of Rand never 
in the interior. Do this by applying the corresponding result for maximum values (Sec. 
50) to the function g(z) = 1/ f(z). 

5. Use the function f(z) = z to show that in Exercise 4 the condition f(z) :f:. 0 anywhere 
in R is necessary in order to obtain the result of that exercise. That is, show that 1 f (Z) I 
can reach its minimum value at an interior point when that minimum value is zero. 

6. Consider the function f(z) = (z + 1)2 and the closed triangular region R with vertices 
at the points z = 0, z = 2, and z = i. Find points in R where lf(z)l has its maximum and 
minimum values, thus illustrating results in Sec. 50 and Exercise 4. 

Suggestion: Interpret If (z) I as the square of the distance between z and -1. 

Ans. z = 2, z = 0. 

7. Let f(z) = u(x, y) + i v(x, y) be a function that is continuous on a closed bounded region 
R and analytic and not constant throughout the interior of R. Prove that the component 
function u (x, y) has a minimum value in R which occurs on the boundary of R and never 
in the interior. (See Exercise 4.) 

8. Let f be the function f(z) = ez and R the rectangular region 0 < x < 1, 0 < y < 1r. 
Illustrate results in Sec. 50 and Exercise 7 by finding points in R where the component 
function u(x, y) = Re[f(z)] reaches its maximum and minimum values. 

Ans. z = I, z = 1 + rri. 
9. Let the function f(z) = u(x, y) + iv(x, y) be continuous on a closed bounded region 

R, and suppose that it is analytic and not constant in the interior of R. Show that the 
component function v (x, y) has maximum and minimum values in R which are reached 
on the boundary of R and never in the interior, where it is harmonic. 

Suggestion: Apply results in Sec. 50 and Exercise 7 to the function g(z) = -if(z). 

10. Let z0 be a zero of the polynomial 
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of degree n (n > 1). Show in the following way that 

P(z) = (z- z0)Q(z}, 

where Q(z) is a polynomial of degree n- 1. 

(a) Verify that 

i- z~ = (z- zo)(zk-1 + zk-2z0 + · · · + zz~-2 + z~- 1) 

(b) Use the factorization in part (a) to show that 

P(z)- P(z0) = (z- z0)Q(z), 
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(k=2,3, ... ). 

where Q(z) is a polynomial of degree n - 1, and deduce the desired result from this. 





CHAPTER 

5 
SERIES 

This chapter is devoted mainly to series representations of analytic functions. We 

present theorems that guarantee the existence of such representations, and we develop 

some facility in manipulating series. 

51. CONVERGENCE OF SEQUENCES 

An infinite sequence 

(1) 

of complex numbers has a limit z if, for each positive number 8, there exists a positive 

integer n0 such that 

(2) lzn- zl < 8 whenever n > n0 . 

Geometrically, this means that, for sufficiently large values of n, the points Zn lie in 

any givens neighborhood of z (Fig. 71). Since we can chooses as small as we please, 

it follows that the points Zn become arbitrarily close to z as their subscripts increase. 

Note that the value of n0 that is needed will, in general, depend on the value of s. 
The sequence (1) can have at most one limit. That is, a limit z is unique if it exists 

(Exercise 5, Sec. 52). When that limit exists, the sequence is said to converge to z; and 

we write 

(3) lim Zn = z. 
n-+oo 

If the sequence has no limit, it diverges. 

175 
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Theorem. Suppose that Zn = Xn + iyn (n = 1, 2, ... ) and z = x + iy. Then 

(4) 

if and only if 

(5) 

lim Zn = z 
n~oo 

lim Xn = x and lim Yn = y. 
n~oo n~oo 

CHAP. 5 

To prove this theorem, we first assume that conditions (5) hold and obtain 

condition (4) from it. According to conditions (5), there exist, for each positive number 

s, positive integers n 1 and n2 such that 

s 
lxn- xi< 

2 
whenever n > n 1 

and 

s 
IYn - yl < 

2 
whenever n > n2 . 

Hence, if n0 is the larger of the two integers n 1 and n 2, 

s 
lx -xi<- and I! ,.., .. 

s 
IYn- Yi < 

2 
whenever n > n0• 

Since 

i(xn + iyn)- (x + iy)l = i(xn- x) + i(Yn- Y)l < lxn- xl + IYn- y!, 

then, 

s s 
lzn- zl < 

2 
+ 

2 
= s whenever n > n0• 

Condition (4) thus holds. 
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Conversely, if we start with condition ( 4 ), we know that, for each positive number 
s, there exists a positive integer n0 such that 

\(Xn + iyn)- (x + iy)\ < s whenever n >no. 

But 

and 

lYn- yj < \(Xn- x) + i(yn- y)j = j(xn + iyn)- (x + iy)\; 

and this means that 

\xn- xl < s and IYn- y\ < s whenever n >no. 

That is, conditions (5) are satisfied. 
Note how the theorem enables us to write 

lim (Xn + iy11 ) = lim Xn + i lim Yn 
n-+oo n-+00 n-+00 

whenever we know that both limits on the right exist or that the one on the left exists. 

EXAMPLE. The sequence 

1 . 
Zn =- + l 

n3 
(n = 1, 2, ... ) 

converges to i since 

By writing 

1. ( 1 ·) 1· 1 . I' 1 0 . 1 . 1m - 3 + z = 1m - 3 + z 1m = + z · = z • 
n-+oo n n-+oo n n-+oo 

. 1 
\Zn -l\ = 3• 

n 

one can also use definition (2) to obtain this result. More precisely, for each positive 
number e, 

whenever 
1 

n > 3r;;. 
~s 



178 SERIES 

52. CONVERGENCE OF SERIES 

An infinite series 
00 

(1) L Zn = Z 1 + Z2 + · · · + Zn + · · · 
n=l 

of complex numbers converges to the sum S if the sequence 

N 

(2) SN = L Zn = Zt + Z2 + · · · + ZN 

n=l 

of partial sums converges to S; we then write 

00 

LZn = S. 
n=l 

(N = 1, 2, ... ) 

CHAP. 5 

Note that, since a sequence can have at most one limit, a series can have at most one 

sum. When a series does not converge, we say that it diverges. 

Theorem. Suppose that Zn = Xn + iyn (n = 1, 2, ... ) and S = X + i Y. Then 

(3) 

if and only if 
00 00 

(4) LXn=X and LYn = Y. 
n=l n=l 

This theorem tells us, of course, that one can write 

00 00 00 

L)xn + iyn) = L Xn + i L Yn 
n=l n=I n=l 

whenever it is known that the two series on the right converge or that the one on the 

left does. 
To prove the theorem, we first write the partial sums (2) as 

(5) 

where 

N 

XN= Lxn and 
n=l 

N 

YN=LYn· 
n=l 
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Now statement (3) is true if and only if 

(6) 

and, in view of relation (5) and the theorem on sequences in Sec. 51, limit (6) holds if 

and only if 

(7) lim X N = X and lim Y N = Y. 
N~oo N~oo 

Limits (7) therefore imply statement (3), and conversely. Since X N and Y N are the 

partial sums ofthe series (4), the theorem here is proved. 

By recalling from calculus that the nth term of a convergent series of real numbers 

approaches zero as n tends to infinity, we can see immediately from the theorems in 

this and the previous section that the same is true of a convergent series of complex 

numbers. That is, a necessary conditionfor the convergence of series (1) is that 

(8) lim Zn = 0. 
n~oo 

The terms of a convergent series of complex numbers are, therefore, bounded. To be 

specific, there exists a positive constant M such that I Zn I < M for each positive integer 

n. (See Exercise 9.) 
For another important property of series of complex numbers, we assume that 

series (1) is absolutely convergent. That is, when Zn = Xn + iyn, the series 

00 00 

L lznl = L Jx; + Y; 
n=l n=l 

of real numbers J x; + y; converges. Since 

lxnl < Jx~ + Y~ and IYnl < jx?; + y'j;, 

we know from the comparison test in calculus that the two series 

00 

LIYnl 
n=l 

must converge. Moreover, since the absolute convergence of a series of real numbers 

implies the convergence ofthe series itself, it follows that there are real numbers X and 

Y to which series ( 4) converge. According to the theorem in this section, then, series 

( 1) converges. Consequently, absolute convergence of a series of complex numbers 

implies convergence of that series. 
In establishing the fact that the sum of a series is a given number S, it is often 

convenient to define the remainder PN after N terms: 

(9) 
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Thus S = SN + PN; and, since ISN- Sl = lPN- 01, we see that a series converges 
to a number S if and only if the sequence of remainders tends to zero. We shall make 
considerable use of this observation in our treatment of power series. They are series 
of the form 

00 

L an(Z- zo)n = ao + a1(z- Zo) + az(z- Zo)2 + · · · + an(Z- zo)n + · · ·, 
n=O 

where zo and the coefficients an are complex constants and z may be any point in a 
stated region containing z0. In such series, involving a variable z, we shall denote sums, 
partial sums, and remainders by S(z), SN(Z), and PN(z), respectively. 

EXAMPLE. With the aid of remainders, it is easy to verify that 

00 

(10) "zn -- 1 h ~ w enever lzl < 1. 
1-z n=O 

We need only recall the identity (Exercise 10, Sec. 7) 

? 1- zn+1 
1 + z + z- + · · · + zn = ---

1-z 

to write the partial sums 

N-1 

(z =I= 1) 

SN(Z) = L zn = 1 + z + z2 + · · · + zN-l (z =1= 1) 

n=O 

as 

If 

1 
S(z) = , 

1-z 

then, 

(z =1= 1). 

Thus 

and it is clear from this that the remainders PN(z) tend to zero when lzl < 1 but not 
when lzl > 1. Summation formula (10) is, therefore, established. 
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EXERCISES 

1. Show in two ways that the sequence 

. (-l)n 
Zn = -2 +I 2 n 

(n = 1, 2, ... ) 

converges to -2. 

2. Let rn denote the moduli and en the principal values of the arguments of the complex 

numbers Zn in Exercise 1. Show that the sequence rn (n = 1, 2, ... ) converges but that 

the sequence en (n = 1, 2, ... ) does not. 

3. Show that 

if lim Zn = z, then lim lznl = lzl. 
n--+ oo n--+ oo 

4. Write z = rei9
, where 0 < r < 1, in the summation formula that was derived in the 

example in Sec. 52. Then, with the aid of the theorem in Sec. 52, show that 

oo e 2 
"'"" n () r cos - r 
L..t r cos n = -------=-
n=l 1- 2r cos e + r2 

and 
~ n • e r sin() 
L..t r sm n = --------::-
n=l 1 - 2r cos(} + r2 

when 0 < r < 1. (Note that these formulas are also valid when r = 0.) 

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing 

to the corresponding result for a sequence of real numbers. 

6. Show that 

00 00 

if L Zn = S, then L Zn = S. 
n=l n=l 

7. Let c denote any complex number and show that 

00 00 

if LZn=S, then LCZn=cS. 
n=l n=l 

8. By recalling the corresponding result for series of real numbers and referring to the 

theorem in Sec. 52, show that 

if 
00 

LZn =Sand 
n=l 

00 

then L (Zn + Wn) = S + T. 
n=l 

9. Let a sequence Zn (n = 1, 2, ... ) converge to a number z. Show that there exists a positive 

number M such that the inequality lznl < M holds for all n. Do this in each of the ways 

indicated below. 

(a) Note that there is a positive integer n0 such that 

lznl = lz + (Zn- z)l < lzl + 1 

whenever n > no. 



182 SERIES CHAP. 5 

(b) Write z, = Xn + iyn and recall from the theory of sequences of real numbers that 

the convergence of Xn and Yn (n = 1, 2, ... ) implies that lxnl < M1 and IYnl < M2 
(n = 1, 2, ... ) for some positive numbers M1 and M2. 

53. TAYLOR SERIES 

We turn now to Taylor's theorem, which is one of the most important results of the 

chapter. 

Theorem. Suppose that a function f is analytic throughout a disk lz- zol < R0 , 

centered at zo and with radius R0 (Fig. 72). Then f (z) has the power series represen­

tation 
00 

(1) /(z) = L an(Z- zot (lz - zol < Ro), 

n=O 

where 

(2) 
f(n)(zo) 

an = .;;_______...;;;_ 
n! 

(n = 0, 1, 2, ... ) . 

That is, series (1) converges to f(z) when z lies in the stated open disk. 

y· 

.... ------
;' ' 

/ ' 
/1' • ' 

/ z /,\ 

\ Zo ! 
\ I 
\ I 
\ I 

0 ' / ' / ..... / 

"""----~ 

X 

FIGURE72 

This is the expansion of f (z) into a Taylor series about the point z0. It is the 

familiar Taylor series from calculus, adapted to functions of a complex variable. With 

the agreement that 

t<O)(zo) = f(zo) and 0! = 1, 

series ( 1) can, of course, be written 

!' (zo) !" (zo) " 
(3) f(z) = J(zo) + 

11 
(z- zo) + 

2
, (z- zo)- + · · · (lz- zol < Ro). 
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Any function which is analytic at a point zo must have a Taylor series about z0• 

For, iff is analytic at z0, it is analytic throughout some neighborhood lz- zol < s of 
that point (Sec. 23); and s may serve as the value of R0 in the statement of Taylor's 
theorem. Also, iff is entire, R0 can be chosen arbitrarily large; and the condition of 
validity becomes lz- zol < oo. The series then converges to j(z) at each point z in 
the finite plane. 

(4) 

We first prove the theorem when zo = 0, in which case series (l) becomes 

oo J(n)(Q) 
f(z) = L 

1 
zn 

0 
n. 

n= 

(lzl < Ro) 

and is called a Maclaurin series. The proof when z0 is arbitrary will follow as an 
immediate consequence. 

To begin the derivation of representation (4), we write lzl =rand let C0 denote 
any positively oriented circle lzl = r0 , where r < r0 < R0 (see Fig. 73). Since f is 
analytic inside and on the circle C0 and since the point z is interior to C0, the Cauchy 
integral formula applies: 

(5) 

y 

j(z) = _1 __ 1 f(s) ds 
2m c0 s- z 

FIGURE73 

Now the factor I/ (s - z) in the integrand here can be put in the form 

(6) 
1 1 1 

--=-· ' 
1- (z/s) s-z s 

and we know from the example in Sec. 52 that 

N-1 N 
1 = 'Lzn+_z_ 

1- Z n=O 1- Z 
(7) 
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when z is any complex number other than unity. Replacing z by zjs in expression (7), 

then, we can rewrite equation (6) as 

(8) 
1 N-l 1 1 

___ '\" ,.n + ,.N ___ ,.... 

s- z - ~ sn+I"' '" (s- z)sN · 
n=O 

Multiplying through this equation by f (s) and then integrating each side with respect 

to s around C0, we find that 

N-1 

1 f(s)ds _ L 1 f(s)ds n N 1 f(s)ds -'------ z +z . 
c s - z c sn+l c (s - z)sN 

o n=O o o 

In view of expression (5) and the fact (Sec. 48) that 

_1_1 f(s) ds _ /(n)(O) 

2ni c
0 

sn+I n! 
(n = 0, 1, 2, ... ), 

this reduces, after we multiply through by 1j(2ni), to 

(9) 

where 

(10) 

N-l /(n)(O) 
/(z) = L I zn + Pn(Z), 

n= 0 
n. 

PN(Z) = ZN 1 f(s) ds . 
2ni c0 (s - z)sN 

Representation (4) now follows once it is shown that 

(11) lim PN (z) = 0. 
N-+oo 

To accomplish this, we recall that lz I = r and that Co has radius r0, where r0 > r. Then, 

if s is a point on C0, we can see that 

Is- zl >lis I- lzll = ro- r. 

Consequently, if M denotes the maximum value of 1/(s)l on C0, 

rN M Mr0 (r)N 
iPN(z)i < - · N 2nro = -

2n (ro- r)r0 r0 - r r0 

Inasmuch as (r I r0) < 1, limit ( 11) clearly holds. 
To verify the theorem when the disk of radius R0 is centered at an arbitrary point 

z0, we suppose that f is analytic when lz - zol < R0 and note that the composite 

function f(z + z0) must be analytic when l(z + z0)- zol < R0. This last inequality 

is, of course, just lzl < R0 ; and, if we write g(z) = f(z + z0), the analyticity of gin 
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the disk lzl < R0 ensures the existence of a Maclaurin series representation: 

oo (n)(O) 
() '\'g n 

g z = ~ z 
n=O n! 

(lzl < Ro). 

That is, 

oo /(n)( ) 
/( + ) '\' Zo n 

z zo =~ 1 
z (lzl < Ro). 

n= 0 
n. 

After replacing z by z - zo in this equation and its condition of validity, we have the 

desired Taylor series expansion ( 1 ). 

54. EXAMPLES 

When it is known that f is analytic everywhere inside a circle centered at z0, conver­

gence of its Taylor series about zo to f (z) for each point z within that circle is ensured; 

no test for the convergence of the series is required. In fact, according to Taylor's theo­

rem, the series converges to f (z) within the circle about z0 whose radius is the distance 

from zo to the nearest point z1 where f fails to be analytic. In Sec. 59, we shall find 

that this is actually the largest circle centered at z0 such that the series converges to 

f (z) for all z interior to it. 
Also, in Sec. 60, we shall see that if there are constants an (n = 0, 1, 2 ... ) such 

that 
00 

f(z) = L an(Z- Zo)n 

n=O 

for all points z interior to some circle centered at z0, then the power series here must 

be the Taylor series for f about z0, regardless of how those constants arise. This 

observation often allows us to find the coefficients an in Taylor series in more efficient 

ways than by appealing directly to the formula an= f(n)(zo)/nl in Taylor's theorem. 

In the following examples, we use the formula in Taylor's theorem to find the 

Maclaurin series expansions of some fairly simple functions, and we emphasize the 

use of those expansions in finding other representations. In our examples, we shall 

freely use expected properties of convergent series, such as those verified in Exercises 

7 and 8, Sec. 52. 

EXAMPLE 1. Since the function f(z) = ez is entire, it has a Maclaurin series 

representation which is valid for all z. Here f(n)(z) = ez~ and, because f(n)(O) = 1, it 

follows that 

(1) (lzl < oo). 
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Note that if z = x + iO, expansion (1) becomes 

oo n 
X ""'X 

e = L...- 11! 
n=O 

(-oo < x < oo). 

CHAP. 5 

The entire function z2e3z also has a Maclaurin series expansion. The simplest 
way to obtain it is to replace z by 3z on each side of equation (1) and then multiply 
through the resulting equation by z2: 

(lzl < oo). 

Finally, if we replace 11 by n - 2 here, we have 

oo 3n-2 
,.,.2e3z _ L ,.,.n 
.(, - " 

(11- 2)! 
n=2 

(lzl < oo) . 

EXAMPLE 2. One can use expansion (1) and the definition (Sec. 33) 

eiz _ e-iz 
smz= ----

2i 

to find the Maclaurin series for the entire function f (z) = sin z. To give the details, 
we refer to expansion (1) and write 

(izl < oo). 

But 1 - ( -l)n = 0 when n is even, and so we can replace 11 by 2n + 1 in this last series: 

1 00 i2n+lz2n+l 
sinz =- L [t- (-1)2n+l] ---

2i n=O (2n + 1)! 
(izl < oo). 

Inasmuch as 

this reduces to 

(2) 
00 z2n+l 

sinz= L(-l)n __ _ 
n=O (2n + 1)! 

(izl < oo). 
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Term by term differentiation will be justified in Sec. 59. Using that procedure 
here, we differentiate each side of equation (2) and write 

~ . (-l)n d 2n+1 ~. l)n 2n + 1 2n 
cosz = L....J -z = L....J(- z . 

n=O (2n + 1)! dz n=O _ (2n + 1)! 

That is, 

(3) 
00 2n 

COSZ = L:<-l)n_Z_ 
n=O (2n)! 

(izl < oo). 

EXAMPLE 3. Because sinh z = -i sin(iz) (Sec. 34), we need only replace z by iz 
on each side of equation (2) and multiply through the result by -i to see that 

4) ( . 

00 .,2n+ I 
sinh z = L -"'-­

n=O (2n + 1)! 
(lzl < oo). 

Likewise, since cosh z = cos(iz), it follows from expansion (3) that 

00 2n 
coshz= L_z_ 

n=O (2n)! 
(5) (lzl < oo). 

Observe that the Taylor series for cosh z about the point zo = - 2rr i, for example, 
is obtained by replacing the variable z by z + 2ni on each side of equation (5) and 
then recalling that cosh(z + 2ni) =cosh z for all z: 

00 (z+2rri) 2n 
cosh z = L -'----'----

n=O (2n)! 
(lzl < oo). 

EXAMPLE 4. Another Maclaurin series representation is 

(6) (!zl < 1). 

The derivatives of the function f(z) = 1/(1- z), which fails to be analytic at z = 1, 
are 

' (n) Z - n. 
f ( ) - (1- z)n+1 

(n = 0, 1, 2, ... ); 

and, in particular, f(n)(O) = n!. Note that expansion (6) gives us the sum of an infinite 
geometric series, where z is the common ratio of adjacent terms: 

1 
1 + z + z2 + z3 + · · · = --

1-z 
(lzl < 1). 
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This is, of course, the summation formula that was found in another way in the example 
in Sec. 52. 

If we substitute -z for z in equation (6) and its condition of validity, and note 
that lzl < 1 when I- zl < 1. we see that 

oc 

1 = L:<-l)nzn 
1 + z n=O 

(lzl < 1). 

If, on the other hand, we replace the variable z in equation (6) by 1- z, we have 
the Taylor series representation 

(\z- 11 < 1). 

This condition of validity follows from the one associated with expansion (6) since 
11- zl < 1 is the same as lz - 11 < 1. 

EXAMPLE 5. For our final example, let us expand the function 

f(z) = 1 + 2z
2 = ..!_ . 2(1 + z2

) - 1 = ..!_ ( 2 _ 1 ) 
z3 + z5 z3 1 + z2 z3 1 + z2 

into a series involving powers of z. We cannot find a Maclaurin series for f(z) since 
it is not analytic at z = 0. But we do know from expansion (6) that 

1 1 2 4 6 8 -----:-= -z +z -z +z -··· 
1 +z2 

Clz\ < 1). 

Hence, when 0 < lzl < 1, 

f(z) = ..!_(2- 1 + z2 - z4 + z6
- z8 + · · ·) = ..!_ + l_ z + z3 - z5 + · · ·. 

z3 z3 z 

We call such terms as 1/ z3 and 1/ z negative powers of z since they can be written z-3 

and z-1, respectively. The theory of expansions involving negative powers of z - zo 
will be discussed in the next section. 

EXERCISES* 

1. Obtain the Maclaurin series representation 

00 4n+l 
z cosh(z2) :t:. L _z -

n=O (2n)! 
(lzl < oo). 

*In these and subsequent exercises on series expansions, it is recommended that the reader use, when 

possible, representations (1) through (6) in Sec. 54. 
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2. Obtain the Taylor series 

Z ~ (z -l)n 
e =e~ 

n=O n! 
(lz- 11 < oo) 

for the function f(z) = ez by 

(a) using t<nl(l) (n = 0, 1, 2, ... ); (b) writing ez = ez-1e. 

3. Find the Maclaurin series expansion of the function 

z z 1 
f (z) = z4 + 9 = 9 · 1 + (z4 /9) · 

A ~ (-l)n 4n+l { ;;:;3 
ns. ~ 32n+2 z lzl < v .J). 

n=O 

4. Show that if /(z) =sin z, then 

(n = 0, 1, 2, ... ) . 

Thus give an alternative derivation of the Maclaurin series (2) for sin z in Sec. 54. 

5. Rederive the Maclaurin series (3) in Sec. 54 for the function f(z) =cos z by 

(a) using the definition 

eiz + e-iz 
cosz=---

2 

in Sec. 33 and appealing to the Maclaurin series (1) for ez in Sec. 54; 

(b) showing that 

(n = 0, 1, 2, ... ) . 

6. Write the Maclaurin series representation of the function /(z) = sin(z2), and point out 

how it follows that 

(n=0,1,2, ... ). 

7. Derive the Taylor series representation 

1 oo (z- i)n 

1- Z = L (1- i)n+l 
n=O 

(lz- il < J2). 

Suggestion: Start by writing 

1 1 1 1 
---------
1- z (1- i) - (z - i) 1- i 1- (z- i)/(1- i) 
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8. With the aid of the identity (see Sec. 33) 

expand cos z into a Tay1or series about the point z0 = rr /2. 

9. Use the identity sinh(z + rri) = -sinh z. verified in Exercise 7(a), Sec. 34, and the fact 

that sinh z is periodic with period 2rr i to find the Tay1or series for sinh z about the point 

zo = rrL 

oo (z- rri)1n+1 
Ans.-""' (lz- rri! < oo). f;:o (2n + 1)! 

10. What is the largest circle within which the Maclaurin series for the function tanh z 
converges to tanh z? Write the first two nonzero terms of that series. 

11. Show that when z :f. 0, 

ez 1 1 1 z z2 

(a) - = - + - + - + - + - + ... ; 
z2 z2 z 2! 3! 4! 

sin(z2) 1 z2 z6 z10 

(b) = - - - + - - - + .... 
z4 z2 3! 5! 7! 

12. Derive the expansions 

sinh z 1 00 z2n+l 
(a) -- +""' (0 < lzl < oo); 

z2 - z f;:o (2n + 3)1 

(1) 00 1 1 
(b) z3 cosh - = z + z3 + L · 

2 1 z 2 n=l (2n + 2)! z n-
(0 < lzl < oo). 

13. Show that when 0 < lzl < 4, 

55. LAURENT SERIES 

If a function f fails to be analytic at a point z0, we cannot apply Taylor's theorem 

at that point. It is often possible, however, to find a series representation for f(z) 

involving both positive and negative powers of z - z0. (See Example 5, Sec. 54, and 

also Exercises 11, 12, and 13 for that section.) We now present the theory of such 
representations, and we begin with Laurent's theorem. 

Theorem. Suppose that a function f is analytic throughout an annular domain 

R1 < iz - zol < R2, centered at zo, and let C denote any positively oriented simple 
closed contour around zo and lying in that domain (Fig. 7 4 ). Then, at each point in 
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the domain, f(z) has the series representation 

(1) 

where 

(2) 

and 

(3) 

y 

I 
I 

I 
I 
I 
I 
I 
I 
\ 
\ 
\ 

1 1 f(z) dz 
an= 2rri c (z- z0)n+ 1 

bn = _1_·1 f(z) dz 
21Tl c (z- Zo)-n+l 

I 
/ 

I 
\ 
I 
I 
I 
I 
I 

I 
I 

X 
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(n = 0, 1, 2, ... ) 

(n = 0, 1, 2, ... ) . 

FIGURE 74 

Expansion ( 1) is often written 

(4) 

where 

(5) 

00 

f(z) = L cn(Z- Zo)n 
n==-oo 

1 1 f(z) dz 
Cn = 2rri C (z- zo)n+l 

(n = 0, ±1, ±2, ... ). 

In either of the forms (1) or ( 4), it is called a Laurent series. 
Observe that the integrand in expression (3) can be written f (z) (z - zot-1. Thus 

it is clear that when f is actually analytic throughout the disk lz Zol < R2, this 

integrand is too. Hence all of the coefficients bn are zero; and, because (Sec. 48) 

_1_1 f(z) dz = J<n)(zo) 

2rri c (z- z0)n+l nl 
(n = 0, 1, 2, ... ), 
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expansion (1) reduces to a Taylor series about z0. 

If, however, f fails to be analytic at zo but is otherwise analytic in the disk 
lz - zol < R2, the radius R1 can be chosen arbitrarily small. Representation (1) is 
then valid in the punctured disk 0 < lz- z01 < R2. Similarly, iff is analytic at each 
point in the finite plane exterior to the circle I z - zo I = R 1, the condition of validity is 

R1 < lz- zol < oo. Observe that iff is analytic everywhere in the finite plane except 
at z0, series (1) is valid at each point of analyticity, or when 0 < lz - z0 1 < oo. 

We shall prove Laurent's theorem first when zo = 0, in which case the annulus is 
centered at the origin. The verification of the theorem when zo is arbitrary will follow 
readily. 

We start the proof by forming a closed annular region r 1 < lzl < r2 that is con­
tained in the domain R1 < lzl < R2 and whose interior contains both the point z and 
the contour C (Fig. 75). We let C 1 and C2 denote the circles lzl = rt and lzl = r2, re­
spectively, and we assign those two circles a positive orientation. Observe that f is 
analytic on C1 and C2, as well as in the annular domain between them. 

Next, we construct a positively oriented circle y with center at z and small enough 
to be completely contained in theinterioroftheannularregionr1 < lzl < r 2, as shown in 
Fig. 75. It then follows from the extension ofthe Cauchy-Goursat theorem to integrals 
of analytic functions around the oriented boundaries of multiply connected domains 
(Theorem 2, Sec. 46) that 

{ f(s) ~s _ { f(s) ds -1 f(s) ds = O. 
lc2 s- 4 lc1 s- z y s- z 

y 

FIGURE75 
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But, according to the Cauchy integral formula, the value of the third integral here is 

2nif(z). Hence 

(6) /(z) = _1_. { f(s) ds + _1_. { f(s) ds 

2nz lc2 s - z 2nz 1c1 z- s 

Now the factor 1/(s- z) in the first of these integrals is the same as in expression 

(5), Sec. 53, where Taylor's theorem was proved; and we shall need here the expansion 

(7) 
1 N- 1 1 1 

-- = '""' zn + ZN ' 
s - z ~ sn+l (s - z)sN 

n=O 

which was used in that earlier section. As for the factor 1/ (z - s) in the second integral, 

an interchange of s and z in equation (7) reveals that 

1 N- 1 1 1 1 SN 

z- s = L s-n . zn+l + zN . z- s. 
n=O 

If we replace the index of summation n here by n - 1, this expansion takes the form 

(8) 
1 N 1 1 1 SN 

z- s = L s-n+l . zn + zN . z- s, 
n=l 

which is to be used in what follows. 
Multiplying through equations (7) and (8) by f(s)/(2rri) and then integrating 

each side of the resulting equations with respect to s around C2 and Cl> respectively, 

we find from expression (6) that 

N-1 N b 

/(z) = L anzn + PN(z) + L z: + uN(z), 
n=O n=l 

(9) 

where the numbers an (n = 0, 1, 2, ... , N - 1) and bn (n = 1, 2, ... , N) are given 

by the equations 

(10) an= _1_·1 f(s) ds 
2 Sn+l ' nz c2 

and where 

PN(z) = ZN. { f(s) ds ' 
2rrL lc2 (s- z)sN 

( ) 
_ 1 1 sN f(s) ds 

UN Z -
2nizN c1 z- s 

As N tends to oo, expression (9) evidently takes the proper form of a Laurent 

series in the domain R1 < lzl < R2, provided that 

(11) lim PN(z) = 0 and lim uN(Z) = 0. 
N--+oo N--+oo 
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These limits are readily established by a method already used in the proof of Taylor's 
theorem in Sec. 53. We write lzl = r, so that r1 < r < r2, and let M denote the 
maximum value of lf(s)l on C1 and C2. We also note that if sis a point on C2, then 
Is- zl > r2 - r; and if sis on C1o lz- sl > r- r 1• This enables us to write 

Since (r I r 2) < 1 and (rtf r) < 1, it is now clear that both PN(z) and aN(Z) have the 
desired property. 

Finally, we need only recall Corollary 2 in Sec. 46 to see that the contours used in 
integrals (10) may be replaced by the contour C. This completes the proof of Laurent's 
theorem when zo = 0 since, if z is used instead of s as the variable of integration, 
expressions (10) for the coefficients an and bn are the same as expressions (2) and (3) 
when zo = 0 there. 

To extend the proof to the general case in which z0 is an arbitrary point in the 
finite plane, we let f be a function satisfying the conditions in the theorem; and, just 
as we did in the proof of Taylor's theorem, we write g(z) = f(z + z0). Since f(z) is 
analytic in the annulus R1 < !z- zol < R2, the function f(z + zo) is analytic when 
R1 < l(z + z0)- zol < R2. That is, g is analytic in the annulus R1 < lzl < R2, which is 
centered at the origin. Now the simple closed contour C in the statement of the theorem 
has some parametric representation z = z(t) (a < t <b), where 

(12) 

for all t in the interval a < t < b. Hence if r denotes the path 

(13) z = z(t)- zo 

r is not only a simple closed contour but, in view of inequalities (12), it lies in the 
domain R1 < lzl < R2• Consequently, g(z) has a Laurent series representation 

(14) 

where 

(15) 

(16) bn = _I_ { g(z) dz 
2Jri Jr z-n-;-I 

(n = 0, 1, 2, ... ) , 

(n = 1, 2, ... ) . 

Representation (1) is obtained if we write f(z + z0) instead of g(z) in equation 
(14) and then replace z by z - zo in the resulting equation, as well as in the condition of 
validity R1 < lzl < R2. Expression (15) for the coefficients an is, moreover, the same 
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as expression (2) since 

r g(z) dz = 1b J[z(t)]z'(t) dt = r f(z) dz . 

Jr zn+l a [z(t) - zo]n+l Jc (z- zo)n+l 

Similarly, the coefficients bn in expression (16) are the same as those in expres­

sion (3). 

56. EXAMPLES 

The coefficients in a Laurent series are generally found by means other than by 

appealing directly to their integral representations. This is illustrated in the examples 

below, where it is always assumed that, when the annular domain is specified, a Laurent 

series for a given function in unique. As was the case with Taylor series, we defer the 

proof of such uniqueness until Sec. 60. 

EXAMPLE 1. Replacing z by 1/ z in the Maclaurin series expansion 

00 zn z z2 z3 
ez = L - = 1 + - + - + - + ... 

n=O n! 1! 2! 3! 
(lzl < oo), 

we have the Laurent series representation 

00 
1 1 1 1 

ellz = L = 1 + - + - +- + ... 
n!zn l!z 2!z2 3!z3 

n=O 

(0 < lzl < oo}. 

Note that no positive powers of z appear here, the coefficients of the positive 

powers being zero. Note, too, that the coefficient of 1/z is unity; and, according to 

Laurent's theorem in Sec. 55, that coefficient is the number 

b1 = - 1
-. r elfz dz, 

21fl lc 

where C is any positively oriented simple closed contour around the origin. Since 

b1 = 1, then, 

L elfz dz = 2ni. 

This method of evaluating certain integrals around simple closed contours will be 

developed in considerable detail in Chap. 6. 
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EXAMPLE 2. The function f(z) = 1/(z- i)2 is already in the form of a Laurent 

series, where zo = i. That is, 

00 

f(z) = L Cn(Z- i)n (0 < lz- il < oo), 
n=-oo 

where c_2 = 1 and all of the other coefficients are zero. From formula (5), Sec. 55, for 

the coefficients in a Laurent series, we know that 

1 [ dz 
en= 2TCi Jc (z- i)n+3 (n = 0, ±1, ±2, ... ), 

where C is, for instance, any positively oriented circle lz - i I = R about the point 

zo = i. Thus (compare Exercise 10, Sec. 40) 

[ dz { 0 
lc (z- i)n+3 - 2TCi 

whenn :f= -2, 
when n = -2. 

EXAMPLE 3. The function 

(1) 
-1 

f (z) = -(z_1_) (,_,-.., -2-) 
1 1 

' z-2 z- 1 

which has the two singular points z = 1 and z = 2, is analytic in the domains 

lzl < 1, 1 < lzl < 2, and 2 < lzl < oo. 

In each of those domains, denoted by D1, D2, and D3, respectively, in Fig. 76, f (z) has 

series representations in powers of z. They can all be found by reca11ing from Example 

4, Sec. 54, that 

(lzl < 1). 
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The representation in D1 is a Maclaurin series. To find it, we write 

1 1 1 
f(z)=- +-·---

1 - z 2 1 - (z/2) 

and observe that, since lzl < 1 and lz/21 < 1 in D 1, 

(2) 
oo oo n oo 

f(z) =- L zn + L 2~+1 = L(2-n-l- 1)zn 
n=O n=O n=O 

(lzl < 1). 

As for the representation in D2, we write 

1 1 1 1 
f(z) = - · + - · . 

z 1- (1/z) 2 1- (z/2) 

Since 11/zl < 1 and lz/21 < 1 when 1 < lzl < 2, it follows that 

(1 < lzl < 2). 

If we replace the index of summation n in the first of these series by n - 1 and then 

interchange the two series, we arrive at an expansion having the same form as the one 

in the statement of Laurent's theorem (Sec. 55): 

(3) (1 < lzl < 2). 

Since there is only one such representation for f(z) in the annulus 1 < lzl < 2, 
expansion (3) is, in fact, the Laurent series for f (z) there. 

The representation of f(z) in the unbounded domain D3 is also a Laurent series. 

If we put expression (1) in the form 

1 1 1 1 
f(z) = ~ . 1- 0/z) - ~ . 1- (2/z) 

and observe that 11/zl < 1 and 12/zl < 1 when 2 < lzl < oo, we find that 

(2 < lzl < oo). 

That is, 

(4) f(z) = ~ 1- 2n-1 
~ zn 
n=1 

(2 < lzl < oo). 
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EXERCISES 

1. Find the Laurent series that represents the function 

f(z) = z
2 sin(z~) 

in the domain 0 < lzl < oo. 

oo ( -l)n 1 
Ans. 1 + "' · -. 

L... (2n + l)! z4n 
n=l 

2. Derive the Laurent series representation 

e4 1 [ ~ (Z + l)n 1 1 ] 
---=- L... + +--­
(z+1)2 e n=0 (n+2)! z+1 (z+1)2 

(O<Iz+ll<oo). 

3. Find a representation for the function 

1 1 1 
j(z) = l + z z l + (1/z) 

in negative powers of z that is valid when 1 < lzl < oo. 

oo (-l)n+l 
Ans."' . L... .,n 

n=l " 

4. Give two Laurent series expansions in powers of z for the function 

1 
/(z) = z2(l- z)' 

and specify the regions in which those expansions are valid. 

00 
l 1 

Ans. L zn +- + 2 (0 < lzl < I); 

00 

-"' _!._ (1 < lzl < oo). 
L... zn 
n=3 n=O Z z 

5. Represent the function 

/ ') z+l 
(Z =--
. z-1 

(a) by its Maclaurin series, and state where the representation is valid; 

(b) by it Laurent series in the domain I < lzl < oo. 
oo oo I 

Ans.(a)-l-2Lzn (lzl<lY; (b)I+2L-· zn 
n=l n=l 

6. Show that when 0 < lz - 11 < 2, 

z __ 
3 
£: (z- l)" 

(z - l)(z - 3) - n=O 2n+2 

l 

2(z- 1) 
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7. Write the two Laurent series in powers of z that represent the function 

1 
/(z) = z(l + z2) 

in certain domains, and specify those domains. 

00 1 
Ans. L(-1)n+lz2n+l +- (0 < lzl < 1); 

n=O Z 

oo (-l)n+l 
"' (1 < lzl < oo). ~ z2n+I 
n=l 

8. (a) Let a denote a real number, where -1 <a < 1, and derive the Laurent series 
representation 

(Ia I < lzl < oo). 

(b) Write z = eiO in the equation obtained in part (a) and then equate real parts and 
imaginary parts on each side of the result to derive the summation formulas 

00 () 2 "'n () acos -a 
~a cos n = -------=-
n=I 1 - 2a cos() + a 2 

and 
00 • () "n· () asm ~a smn = , 

n=I 1- 2a cos()+ a 2 

where -1 <a < 1. (Compare Exercise 4, Sec. 52.) 

9. Suppose that a series 

00 

L x[n]z-n 
n=-oo 

converges to an analytic function X(z) in some annulus R1 < lzl < R2• That sum X(z) 
is called the z-transform of x[n 1 (n = 0, ±1, ±2, ... ).*Use expression (5), Sec. 55, for 
the coefficients in a Laurent series to show that if the annulus contains the unit circle 
lzl = 1, then the inverse z-transform of X(z) can be written 

x[n]=- X(e1 )em dB 1 JT( ·e · e 
21l" -T( (n =0, ±1, ±2, ... ). 

10. (a) Let z be any complex number, and let C denote the unit circle 

w =it/J 

in the w plane. Then use that contour in expression (5), Sec. 55, for the coefficients 
in a Laurent series, adapted to such series about the origin in the w plane, to show 

*The z-transfonn arises in studies of discrete-time linear systems. See, for instance, the book by 
Oppenheim, Schafer, and Buck that is listed in Appendix 1. 



200 SERIES CHAP. 5 

that 

(0 < lwl < oo). 

where 

ln(Z)=-1 frr exp[-i(n<J>-zsin4>)]d4> 
2Jr -7r 

(n = 0, ±1, ±2, ... ). 

(b) With the aid of Exercise 6, Sec. 37, regarding certain definite integrals of even and 

odd complex-valued functions of a real variable, show that the coefficients in part 

(a) can be written* 

1 !orr ln(Z) = - cos(n4>- z sin 4>) d4> 
1r 0 

(n =0, ±1, ±2, ... ). 

11. (a) Let f (z) denote a function which is analytic in some annular domain about the origin 

that includes the unit circle z = eilf> ( -Jr < 4> < 1r ). By taking that circle as the path 

of integration in expressions (2) and (3), Sec. 55, for the coefficients an and bn in a 

Laurent series in powers of z, show that 

j(z) = _1 !Jr f(eiif>) d4> + _1 t frr f(ei!/J) ~( ~t/J)n + (e~if>)n] d4> 
21f -rr 21r n=l -rr L' e ~ 

when z is any point in the annular domain. 

(b) Write u(B) = Re[f(ei0 )], and show how it follows from the expansion in part (a) 

that 

1 11C 1 00 17[ 
u(B) =- u(4>) d4> +- L u(4>) cos[n(B- 4>)]d4>. 

21f -rr 1r n=l -rr 

This is one form of the Fourier series expansion of the real-valued function u(e) on 

the interval-Jr < e < 1r. The restriction on u(e) is more severe than is necessary in 

order for it to be represented by a Fourier series.t 

57. ABSOLUTE AND UNIFORM CONVERGENCE 

OF POWER SERIES 

This section and the three following it are devoted mainly to various properties of 

power series. A reader who wishes to simply accept the theorems and any corollaries 

there can easily skip their proofs in order to reach Sec. 61 more quickly. 

*These coefficients ln(Z) are called Bessel functions of the first kind. They play a prominent role in 

certain areas of applied mathematics. See, for example, the authors' "Fourier Series and Boundary 

Value Problems," 6th ed., Chap. 8, 2001. 

t For other sufficient conditions, see Sees. 31 and 32 of the book cited in the footnote to Exercise 10. 
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We recall from Sec. 52 that a series of complex numbers converges absolutely 

if the series of absolute values of those numbers converges. The following theorem 

concerns the absolute convergence of power series. 

Theorem I. If a power series 

(1) 

converges when z = z 1 (z 1 f= z0), then it is absolutely convergent at each point z in the 

open disk iz- zol < R1, where Rt = lzt- zol (Fig. 77). 
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We first prove the theorem when zo = 0, and we assume that the series 

converges. The terms anz~ are thus bounded; that is, 

(n = 0, 1, 2, ... ) 

forsomepositiveconstant M (see Sec. 52). If lzl < lz11 and we let p denote the modulus 

lz/z11, we can see that 

n z 
lanzn! = ianz71 < Mpn 

Z1 
(n = 0, 1, 2, ... ), 

where p < 1. Now the series whose terms are the real numbers Mpn(n = 0, 1, 2, ... ) 

is a geometric series, which converges when p < 1. Hence, by the comparison test for 

series of real numbers, the series 
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converges in the open disk lzl < lz11; and the theorem is proved when z0 = 0. 

When z0 is any nonzero number, we assume that series ( 1) converges at z = z 1 

(z 1 i= z0). If we write w = z - z0, series ( 1) becomes 

(2) 
00 

Lanwn; 
n=O 

and this series converges at w = z1 - z0. Consequently, since the theorem is known to 

be true when zo = 0, we see that series (2) is absolutely convergent in the open disk 

lwl < lz1 - z0 l. Finally, by replacing w by z- zo in series (2) and this condition of 

validity, as well as writing R1 = lz1 - z0 1, we arrive at the proof of the theorem as it 

is stated. 
The theorem tells us that the set of all points inside some circle centered at z0 

is a region of convergence for the power series (1 ), provided it converges at some 

point other than z0. The greatest circle centered at zo such that series (1) converges at 

each point inside is called the circle of convergence of series (1). The series cannot 

converge at any point z2 outside that circle, according to the theorem; for if it did, it 

would converge everywhere inside the circle centered at zo and passing through z2 • 

The first circle could not, then, be the circle of convergence. 

Our next theorem involves terminology that we must first define. Suppose that 

the power series (1) has circle of convergence lz- zoi = R, and let S(z) and SN(z) 

represent the sum and partial sums, respectively, of that series: 

00 N-1 

S(z) = L an(Z- z0)n, SN(Z) = L an(Z- zot (lz- zol < R). 

n.=O n=-0 

Then write the remainder function 

(3) (lz- zol < R). 

Since the power series converges for any fixed value of z when lz- zol < R, we 

know that the remainder PN(Z) approaches zero for any such z as N tendc; to infinity. 

According to definition (2), Sec. 51, of the limit of a sequence, this means that, 

corresponding to each positive number e, there is a positive integer N8 such that 

(4) IPN(z)l < e whenever N > Ne. 

When the choice of Ne depends only on the value of e and is independent of the point 

z taken in a specified region within the circle of convergence. the convergence is said 

to be uniform in that region 
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Theorem 2. If z1 is a point inside the circle of convergence lz - zol = R of a power . 
serzes 

00 

(5) L an(Z- zo)n, 
n=O 

then that series must be uniformly convergent in the closed disk lz- zol < R1, where 

R1 = lzt- zol (Fig. 78). 
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As in the proof of Theorem 1, we first treat the case in which zo = 0. Given that 

z 1 is a point lying inside the circle of convergence of the series 

(6) 

we note that there are points with modulus greater than lz 11 for which it converges. 

According to Theorem 1, then, the series 

(7) 

converges. Letting m and N denote positive integers, where m > N, we can write the 
remainders of series ( 6) and (7) as 

(8) 

and 

(9) 

respectively. 

m 

PN(Z) = lim "' anzn 
m-+oo L...J 

n=N 

m 

aN= lim "' lanz~l, 
m-+oo L...J 

n=N 
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Now, in view of Exercise 3, Sec. 52, 

m 

IPN(Z)i = lim ""anzn ; 
m->oo l..-J 

n=N 

and, when lzl < lzd, 
m m m m 

I: anzn < I: lanllzln < I: lanllz.ln = I: lanz~l· 
n=N n=N n=N n=N 

Hence 

(10) IPN(z)l < CfN when lzl < lzif. 

CHAP. 5 

Since aN are the remainders of a convergent series, they tend to zero as N tends to 

infinity. That is, for each positive number e, an integer N 6 exists such that 

(11) aN < e whenever N > Ne. 

Because of conditions (10) and (11), then, condition (4) holds for all points z in the disk 

lzl < lztf; and the value of Ne is independent of the choice of z. Hence the convergence 

of series (6) is uniform in that disk. 
The extension of the proof to the case in which zo is arbitrary is, of course, 

accomplished by writing w = z - z0 in series (5). For then the hypothesis of the 

theorem is that z1 - z0 is a point inside the circle of convergence lwl = R of the series 

Since we know that this series converges uniformly in the disk fwl < lz1 - z0 1, the 

conclusion in the statement of the theorem is evident. 

58. CONTINUITY OF SUMS OF POWER SERIES 

Our next theorem is an important consequence of uniform convergence, discussed in 

the previous section. 

Theorem. A power series 

00 

(1) L an(Z- zo)n 
n=O 

represents a continuous function S(z) at each point inside its circle of convergence 

lz- zol = R. 
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Another way to state this theorem is to say that if S(z) denotes the sum of series 

(1) within its circle of convergence I z - zo I = R and if z 1 is a point inside that circle, 
then, for each positive number s, there is a positive number 8 such that 

(2) IS(z)- S(z1)1 < 8 whenever lz- z11 < 8, 

the number 8 being small enough so that z lies in the domain of definition lz - zol < R 
of S(z). [See definition (4), Sec. 17, of continuity.] 

To show this, we let SN(Z) denote the sum of the first N terms of series (1) and 
write the remainder function 

(lz- zol < R). 

Then, because 

(lz- zol < R), 

one can see that 

or 

If z is any point lying in some closed disk lz- zol < R0 whose radius R0 is greater 
than iz1 - zol but less than the radius R of the circle of convergence of series (1) (see 
Fig. 79), the uniform convergence stated in Theorem 2, Sec. 57, ensures that there is 

a positive integer Ne such that 

8 
IPN(z)l <- whenever N > Ne. 

3 
(4) 

In particular, condition (4) holds for each point z in some neighborhood lz- z11 < 8 
of z1 that is small enough to be contained in the disk lz- zol < R0 . 

y 

I 

0 X 

----- FIGURE79 
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Now the partial sum SN(Z) is a polynomial and is, therefore, continuous at z1 for 
each value of N. In particular, when N = Ne + 1, we can choose our 8 so small that 

(5) 
s 

)SN(Z)- SN(z1)J <- whenever )z- z1) < 8. 
3 

By writing N = Ne + 1 in inequality (3) and using the fact that statements (4) and (5) 

are true when N = Ne + 1, we now find that 

s s s 
)S(z)- S(z1)1 <- +- +- whenever lz- ztl < 8. 

3 3 3 

This is statement (2), and the corollary is now established. 
By writing w = 1/(z- z0), one can modify the two theorems in the previous 

section and the theorem here so as to apply to series of the type 

00 b 

I: (z-nzo)n. 
n=l 

(6) 

If, for instance, series (6) converges at a point z1 (z 1 t= z0), the series 

00 

must converge absolutely to a continuous function when 

1 
lwl< · 

lzt- zol 
(7) 

Thus, since inequality (7) is the same as lz- zol > lz1 - zol. series (6) must converge 
absolutely to a continuous function in the domain exterior to the circle lz- z01 = R1, 

where R1 = iz1 - z0 ). Also, we know that if a Laurent series representation 

00 00 b 
/(z) = L a11(Z- Zo)n + L n 

n=O n=l (z - Zo)n 

is valid in an annulus R 1 < lz - z0 ).< R2 , then both of the series on the right converge 
uniformly in any closed annulus which is concentric to and interior to that region of 

validity. 

59. INTEGRATION AND DIFFERENTIATION OF 
POWER SERIES 

We have just seen that a power series 

00 

(1) S(z) = L an(Z - zot 
n=O 
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represents a continuous function at each point interior to its circle of convergence. In 
this section, we prove that the sum S(z) is actually analytic within that circle. Our 
proof depends on the following theorem, which is of interest in itself. 

Theorem I. Let C denote any contour interior to the circle of convergence of the 
power series (1), and let g(z) be any function that is continuous on C. The series 
formed by multiplying each term of the power series by g(z) can be integrated term 
by term over C; that is, 

(2) 
00 1 g(z)S(z) dz = L an 1 g(z)(z - zo)n dz. 

C n=O C 

To prove this theorem, we note that since both g(z) and the sum S(z) of the power 
series are continuous on C, the integral over C of the product 

N-l 

g(z)S(z) = L an g(z)(z- Zo)n + g(z)PN(Z), 
n=O 

where PN(z) is the remainder of the given series after N terms, exists. The terms of 
the finite sum here are also continuous on the contour C, and so their integrals over 
C exist. Consequently, the integral of the quantity g(z)PN(z) must exist; and we may 
write 

N-1 

(3) r g(z)S(z) dz = L an r g(z)(z- zo)n dz + r g(z)PN(Z) dz. 
Jc n=O Jc Jc 

Now let M be the maximum value of lg(z)l on C, and let L denote the length of 
C. In view of the uniform convergence of the given power series (Sec. 57), we know 
that for each positive numbers there exists a positive integer N8 such that, for all points 
z on C, 

IPN(z)l < s whenever N > N8 • 

Since N8 is independent of z, we find that 

fc g(z)PN(Z) dz <MeL whenever N > N8 ; 

that is, 

lim { g(z)PN(Z) dz = 0. 
N-+oo lc 
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It follows, therefore, from equation (3) that 

N-1 

1 g(z)S(z) dz = lim L an 1 g(z)(z- zot dz. 
C N-+oo C 

n=O 

This is the same as equation (2), and Theorem 1 is proved. 

If lg(z) I = 1 for each value of z in the open disk bounded by the circle of 

convergence of power series ( 1 ), the fact that (z - zo)n is entire when n = 0, 1, 2, ... 

ensures that 

L g(z)(z - zo)n dz = L (z - z0)n dz = 0 (n = 0, 1, 2, ... ) 

for every closed contour C lying in that domain. According to equation (2), then, 

L S(z)dz =0 

for every such contour; and, by Morera's theorem (Sec. 48), the function S(z) is 

analytic throughout the domain. We state this result as a corollary. 

Corollary. The sum S (z) of power series ( 1) is analytic at each point z interior to the 

circle of convergence of that series. 

This corollary is often helpful in establishing the analyticity of functions and in 

evaluating limits. 

EXAMPLE 1. To illustrate, let us show that the function defined by the equations 

f(z)= { (sinz)/z whenz f.O, 
1 whenz =0 

is entire. Since the Maclaurin series expansion 

00 
7 2n+l 

sinz = L(-l)n-"" __ 
n=O (2n + 1)! 

represents sin z for every value of z, the series 

00 z2n z2 ,.4 

L(-1)11 = 1-- + ::.._- · · · 
n=O (2n + 1)! 3! 5! 

(4) 

obtained by dividing each term of that Maclaurin series by z, converges to f(z) when 

z :f= 0. But series (4) clearly converges to f(O) when z = 0. Hence f(z) is represented 

by the convergent power series (4) for all z: and f is, therefore, an entire function. 
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Note that, since f is continuous at z = 0 and since (sin z)/z = f(z) when z =F 0, 

(5) lim sin z =lim f(z) = f(O) = 1. 
z-+0 z z-+0 

This is a result known beforehand because the limit here is the definition of the 
derivative of sin z at z = 0. 

We observed at the beginning of Sec. 54 that the Taylor series for a function f 
about a point zo converges to f(z) at each point z interior to the circle centered at zo 
and passing through the nearest point z1 where f fails to be analytic. In view of the 
above corollary, we now know that there is no larger circle about zo such that at each 
point z interior to it the Taylor series converges to f (z). For if there were such a circle, 
f would be analytic at z1; but f is not analytic at z1. 

We now present a companion to Theorem 1. 

Theorem 2. The power series (1) can be differentiated term by term. That is, at each 
point z interior to the circle of convergence of that series, 

(6) 

00 

S'(z) = L nan(Z- zo)n-l. 

n=l 

To prove this, let z denote any point interior to the circle of convergence of series 
(1); and let C be some positively oriented simple closed contour surrounding z and 
interior to that circle. Also, define the function 

(7) 
1 1 

g(s) = -2 .. ( )2 :rrz s -z 

at each points on C. Since g(s) is continuous on C, Theorem 1 tells us that 

(8) 
00 

( g(s)S(s) ds = L an ( g(s)(s- Zo)n ds. 
~ n=O ~ 

Now S(s) is analytic inside and on C, and this enables us to write 

( g(s)S(s) ds = ~ f S(s) ds = S'(z) 
lc 2:rn lc (s- z)2 

with the aid of the integral representation for derivatives in Sec. 48. Furthermore, 

1 n d 1 1 (s - Zo)n d d n g(s)(s- zo) s = -. s = -(z- zo) 
c 2:rn c (s - z)2 dz 

(n = 0, 1, 2, ... ). 
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Thus equation (8) reduces to 

which is the same as equation (6). This completes the proof. 

EXAMPLE 2. In Example 4, Sec. 54, we saw that 

00 

1 "'\' n n 
-=~(-1) (z-1) 
z n=O 

(lz- 11 < 1). 

Differentiation of each side of this equation reveals that 

00 

1 L n n-1 -- = (-1) n(z- 1) 
z2 

n=l 

(lz- II< 1), 

or 

(iz- 11 < 1). 

60. UNIQUENESS OF SERIES REPRESENTATIONS 

The uniqueness of Taylor and Laurent series representations, anticipated in Sees. 54 

and 56, respectively, follows readily from Theorem 1 in Sec. 59. We consider first the 

uniqueness of Taylor series representations. 

Theorem I. If a series 

00 

(1) L an(Z- zo)n 

n=O 

converges to f (z) at all points interior to some circle lz - zol = R, then it is the Taylor 

series expansion for f in powers of z - z0. 

To prove this, we write the series representation 

00 

(2) /(z) = L an(Z- zot (lz- z0 1 < R) 

n=O 

in the hypothesis of the theorem using the index of summation m: 

00 

f(z) = L arn(Z- zo)rn (lz- zol < R). 
m=O 
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Then, by appealing to Theorem 1 in Sec. 59, we may write 

(3) 
00 

[ g(z)f(z) dz =Lam [ g(z)(z- zo)m dz, 
C m=O C 

where g(z) is any one of the functions 

(4) 
1 1 

g(z) = - . ---. 
2:rri (z-zo)n+I 

(n = 0, 1, 2, ... ) 

and C is some circle centered at zo and with radius less than R. 
In view of the generalized form (5), Sec. 48, of the Cauchy integral formula (see 

also the corollary in Sec. 59), we find that 

(5) { g(z)f(z) dz = _1_ { f(z) dz = f(n)(zo); 
lc 2:rri lc (z- z0)n+l n! 

and, since (see Exercise 10, Sec. 40) 

(6) z z-z dz=- = 
[ 

m 1 [ dz { 0 
c g( .)( o) 2:rri c (z- zo)n-m+l 1 

it is clear that 

(7) 

Because of equations (5) and (7), equation (3) now reduces to 

when m =I= n, 
whenm =n, 

and this shows that series (2) is, in fact, the Taylor series for f about the point z0. 

Note how it follows from Theorem 1 that if series ( 1) converges to zero throughout 
some neighborhood of z0, then the coefficients an must all be zero. 

Our second theorem here concerns the uniqueness of Laurent series representa­
tions. 

Theorem 2. If a series 

(8) 

converges to f (z) at all points in some annular domain about z0 , then it is the Laurent 
series expansion for f in powers of z - z0 for that domain. 
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The method of proof here is similar to the one used in proving Theorem 1. The 
hypothesis of this theorem tells us that there is an annular domain about zo such that 

00 

J(z) = L Cn(Z- Zo)n 

n=-oo 

for each point z in it. Let g(z) be as defined by equation (4), but now allow n to be 
a negative integer too. Also, let C be any circle around the annulus, centered at z0 
and taken in the positive sense. Then, using the index of summation m and adapting 
Theorem 1 in Sec. 59 to series involving both nonnegative and negative powers of 
z - z0 (Exercise 10), write 

00 1 g(z)J(z) dz = L em 1 g(z)(z- zo)m dz, 
C m=-oo C 

or 

(9) 
00 

1 1 J(z)dz "" 1 m -
2 

. ( )n+l = ~ em g(z)(z - zo) dz. 
1r l C Z - Zo m=-oo C 

Since equations (6) are also valid when the integers m and n are allowed to be 
negative, equation (9) reduces to 

1 r f(z)dz 
2ni Jc (z- z0)n+I =en, 

which is expression (5), Sec. 55, for coefficients in the Laurent series for f in the 
annulus. 

EXERCISES 

1. By differentiating the Maclaurin series representation 

(lzl < 1), 

obtain the expansions 

1 00 

---.,.2 = L(n + l)zn 
(1- z) n=O 

(lzl < 1) 

and 

2 00 

---.,.
3 

= L (n + l)(n + 2)zn 
(1- z) n=O 

(lzl < 1). 
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2. By substituting 1/(1- z) for z in the expansion 

1 00 

---::- = ~)n + l)zn 
(1- z)2 n=O 

(lzl < 1), 

found in Exercise 1, derive the Laurent series representation 

(1 < lz- 11 < oo). 

(Compare Example 2, Sec. 59.) 

3. Find the Taylor series for the function 

1 1 1 1 
-= =-·-----
z 2 + (z - 2) 2 1 + (z - 2) /2 

about the point zo = 2. Then, by differentiating that series term by term, show that 

(lz- 21 < 2). 

4. With the aid of series, prove that the function f defined by means of the equations 

is entire. 

5. Prove that if 

{ 
(ez - 1)/z when z i= 0, 

J(z) = 
1 when z=O 

cosz 
when z i= ±n-/2, 

J(z) = 
when z = ±n-/2, 

then f is an entire function. 

6. In thew plane, integrate the Taylor series expansion (see Example 4, Sec. 54) 

(lw- 11 < 1) 

along a contour interior to the circle of convergence from w = 1 to w = z to obtain the 

representation 

oo ( 1 n+l 
Log z = L - ) (z - l)n 

n 
n=l 

(iz- 11 < 1). 
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7. Use the result in Exercise 6 to show that if 

{ 

Logz 

f(z) = :- 1 
when z :f. 1, 

when z = 1, 

then f is analytic throughout the domain 0 < lzl < oo, -rr < Arg z < rr. 

8. Prove that if f is analytic at z0 and f(z0 ) = f'(z0) = · · · = f(m)(z0 ) = 0, then the 
function g defined by the equations 

g(z) = 

is analytic at z0. 

/(z) 
(z- Zo)m+l 

f(m+O(zo) 

(m + 1)! 

when z :f. z0, 

when z = z0 

9. Suppose that a function f (z) has a power series representation 

00 

f(z) = L an(Z- Zo)n 

n=O 

inside some circle lz- zol = R. Use Theorem 2 in Sec. 59, regarding term by term 
differentiation of such a series, and mathematical induction to show that 

f (n)() _ ~ (n +k)! ( )k z - £..... an+k z - Zo 
k=O k! 

(n = 0, 1, 2, ... ) 

when lz- zol < R. Then, bysettingz = z0, showthatthecoefficientsan(n = 0, 1, 2, ... ) 
are the coefficients in the Taylor series for f about z0• Thus give an alternative proof of 
Theorem 1 in Sec. 60. 

10. Consider two series 

00 

S1(z) = L an(Z- z0)n, 
n=O 

which converge in some annular domain centered at z0 . Let C denote any contour lying 
in that annulus, and let g(z) be a function which is continuous on C. Modify the proof 
of Theorem 1, Sec. 59, which tells us that 

00 1 g(z)S!(Z) dz = L an 1 g(z)(z- z0)n dz, 
C n=O C 

to prove that 

1 ~ 1 g(z) g(z)S2(z) dz = £..... bn dz. 
c c (z- Zo)n 

n=1 
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Conclude from these results that if 

then 

00 1 g(z)S(z) dz = L en 1 g(z)(z- zo)n dz. 
C n=-oo C 

11. Show that the function 

l 
fz(z) = z2 + 1 (z f: ± i) 

is the analytic continuation (Sec. 26) of the function 

00 

ft(z) = L( -l)nz2n (lzl < l) 
n=O 

into the domain consisting of all points in the z plane except z = ± i. 

12. Show that the function f2(z) = 1/z2 (z f: 0) is the analytic continuation (Sec. 26) of the 
function 

00 

fl(Z) = L(n + l)(z + l)n (lz + 11 < 1) 
n=O 

into the domain consisting of all points in the z plane except z = 0. 

61. MULTIPLICATION AND DIVISION OF POWER SERIES 

Suppose that each of the power series 

(1) 
00 

L an (z - Zo)n and 
n=O 

converges within some circle lz- z01 = R. Their sums /(z) and g(z), respectively, 
are then analytic functions in the disk iz - z0 I < R (Sec. 59), and the product of those 
sums has a Taylor series expansion which is valid there: 

00 

(2) f(z)g(z) = L Cn(Z- zo)n (lz- zol < R). 
n=O 
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According to Theorem 1 in Sec. 60, the series (1) are themselves Taylor series. 
Hence the first three coefficients in series (2) are given by the equations 

co= f(zo)g(zo) = aobo, 

f(zo)g'(zo) + f'(zo)g(zo) b b 
CJ = = ao 1 + a1 O• 

1! 

and 

_ f(z 0)g"(z0) + 2f'(zo)g'(zo) + f"(zo)g(zo) _ b + b + b 
c2 - - ao 2 at 1 a2 o· 2! 

The general expression for any coefficient cn is easily obtained by referring to Leibniz 's 
rule (Exercise 6) 

(3) [f(z)g(z)](n) = t (n)t<k)(z)g(n-k)(z), 
k=O k 

where 

(:) - kl(nn~ k)l (k=0,1,2, ... ,n), 

for the nth derivative of the product of two differentiable functions. As usual, 
j<0)(z) = f(z) and 01 = 1. Evidently, 

c = ~ f(k)(zo) . g<n-k)(zo) =~a b . 
n L k' ( _ k)l L k n-b 

k=O ' n . k=O 

and so expansion (2) can be written 

(4) f(z)g(z) = a0bo + (a0b1 + a1b0)(z- zo) 

+ (a0b2 + a1b1 + a2b0 )(z - z0)
2 + · · · 

+ (t akbn-k) (z - zo)n + · · · (lz - zol < R). 
k=O 

Series ( 4) is the same as the series obtained by formally multiplying the two series 
(1) term by term and collecting the resulting terms in Jike powers of z - z0 ; it is called 
the Cauchy product of the two given series. 

EXAMPLE 1. The function ez I (1 + z) has a singular point at z = -1, and so its 
Maclaurin series representation is valid in the open disk lz I < 1. The first three nonzero 
terms are easily found by writing 

ez z 1 ( 12 13 ) 2 3 -- = e = 1 + z + -z + -z + .. · (1- z + z - z + .. ·) 
1 + z l- ( -z) 2 6 
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and multiplying these two series term by term. To be precise, we may multiply each 
term in the first series by 1, then each term in that series by -z, etc. The following 
systematic approach is suggested, where like powers of z are assembled vertically so 
that their coefficients can be readily added: 

1+z+Izz+Iz3+··· 
2 6 

2 1 3 1 4 z - -z - -z - · · · 
2 6 

-z-

The desired result is 

(5) (lzl < 1). 

Continuing to let f(z) and g(z) denote the sums of series (1), suppose that 
g(z) ::/= 0 when lz- zol < R. Since the quotient f(z)/g(z) is analytic throughout the 
disk lz - zol < R, it has a Taylor series representation 

00 

f(z) = ~ d ( _ )n 
(z) ~ n Z Zo 

g n=O 
(6) (lz - zol < R), 

where the coefficients dn can be found by differentiating f(z)/ g(z) successively and 
evaluating the derivatives at z = z0• The results are the same as those found by formally 
carrying out the division of the first of series ( 1) by the second. Since it is usually only 
the first few terms that are needed in practice, this method is not difficult. 

EXAMPLE 2. As pointed out in Sec. 34, the zeros of the entire function sinh z are 
the numbers z = nrri (n = 0, ±1, ±2, ... ). So the quotient 

1 1 

z2 sinh z- z2(z + z3j3! + z5j5! + · · ·)' 
which can be written 

(7) 
z2 si~h z = z

13 
( 1 + z2 f3! +

1 

z4 f5! + ... ) ' 
has a Laurent series representation in the punctured disk 0 < lz I < rr. The denominator 
of the fraction in parentheses on the right-hand side of equation (7) is a power series 



218 SERIES CHAP. 5 

that converges to (sinh z)/z when z f:. 0 and to 1 when z = 0. Thus the sum of that 
series is not zero anywhere in the disk I z I < n; and a power series representation of 
the fraction can be found by dividing the series into unity as follows: 

That is, 

or 

(8) 

Hence 

(9) 

1 - _!_ z2 + [ 1 - ..!..] z4 + ... 
3! (3!)2 5! 

1 2 1 4 
1 + -z + -z + · · · 

3! 5! 
1 

1 2 - -z 
3! 
1 2 - -z 
3! 

1 4 -z + ... 
5! 
1 4 

--'7 - ... 

(3!)2 .. 

[ 1 - !J z4 + ... 
(3!)2 5! 

[ 
l - ..!.] z4 + ... 

(3!)2 5! 

-----=--1----.,.-___ = 1 - ~ z2 + _7_z4 + ... 
l+z2j3!+z4j5!+... 6 360 

(lzl < n). 

I 1 1 1 7 
---=--- = - - - . - + -z + ... 
z2 sinh z z3 6 z 360 

(0 < )z) < n). 

Although we have given only the first three nonzero terms of this Laurent series, any 
number of terms can, of course, be found by continuing the division. 

EXERCISES 

1. Use multiplication of series to show that 

ez = ~ + 1 - ~ z - 5 z2 + ... 
z(z2 + 1) z 2 6 

(0 < lzl < l). 
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2. By writing esc z = 1/ sin z and then using division, show that 

1 1 [ 1 1] 3 
esc z = ~ + 31 z + (3 !)2 - 5 ! z + · · · (0 < lzl < rr). 

3. Use division to obtain the Laurent series representation 

1 1 1 1 1 3 -- = - - - + -z- -z + · · · 
ez - 1 z 2 12 720 

(0 < lzl < 2rr). 

4. Use the expansion 

1 1 1 1 7 -=--- = - - - . - + -z + ... 
z2 sinh z z3 6 z 360 

(0 < lzl < rr) 

in Example 2, Sec. 61, and the method illustrated in Example 1, Sec. 56, to show that 

r dz rri 
lc z2 sinh z = -3, 

when Cis the positively oriented unit circle lzl = 1. 

5. Follow the steps below, which illustrate an alternative to straightforward division of 
series, to obtain representation (8) in Example 2, Sec. 61. 

(a) Write 

where the coefficients in the power series on the right are to be determined by 
multiplying the two series in the equation 

( 
lz 14 ) 2 3 4 

1 = 1 + -z + -z + · · · (do+ d1z + dzz + d3z + d4z + · · ·). 
3! 5! 

Perform this multiplication to show that 

( 
1 1 ) 4 + d4 + -d2 + -d0 z + .. · = 0 
3! 5! 

when lzl < rr. 
(b) By setting the coefficients in the last series in part (a) equal to zero, find the values 

of do, d1, d2 , d3, and d4• With these values, the first equation in part (a) becomes 
equation (8), Sec. 61. 

6. Use mathematical induction to verify formula (3), Sec. 61, for the nth derivative of the 
product of two differentiable functions. 



220 SERIES CHAP. 5 

7. Let f(z) be an entire function that is represented by a series of the form. 

2 3 f (z) = z + a2z + a3z + · · · (lzl < oo). 

(a) By differentiating the composite function g(z) = f[/(z)] successively, find the first 

three nonzero terms in the Maclaurin series for g(z) and thus show that 

f[f(z)] = z + 2a2i + 2(a~ + a3)z3 + · · · 

(b) Obtain the result in part (a) in aformal manner by writing 

(lzl < oo). 

replacing f(z) on the right-hand side here by its series representation, and then 

collecting tenns in like powers of z. 
(c) By applying the result in part (a) to the function f(z) =sin z, show that 

. ( . ) 1 3 sm sm z = z - - z + · · · 
3 

(lzl < oo). 

8. The Euler numbers are the numbers En (n = 0, 1, 2, ... ) in the Maclaurin series repre­

sentation 
00 

1 LEn n --- -z 
cosh z n=O n! 

(lzl < rr/2). 

Point out why this representation is valid in the indicated disk and why 

(n = 0, 1, 2, ... ) . 

Then show that 

Eo = 1, E2 = -1, E4 = 5, and E6 = -61. 



CHAPTER 

6 
RESIDUES AND POLES 

The Cauchy-Goursat theorem (Sec. 44) states that if a function is analytic at all points 
interior to and on a simple closed contour C, then the value of the integral of the 
function around that contour is zero. If, however, the function fails to be analytic at a 
finite number of points interior to C, there is, as we shall see in this chapter, a specific 
number, called a residue, which each of those points contributes to the value of the 
integral. We develop here the theory of residues; and, in Chap. 7, we shall illustrate 
their use in certain areas of applied mathematics. 

62. RESIDUES 

Recall (Sec. 23) that a point z0 is called a singular point of a function f iff fails to be 
analytic at zo but is analytic at some point in every neighborhood of z0. A singular point 
zo is said to be isolated if, in addition, there is a deleted neighborhood 0 < lz- zol < s 
of zo throughout which f is analytic. 

EXAMPLE 1. The function 

has the three isolated singular points z = 0 and z = ±i. 

221 
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EXAMPLE 2. The origin is a singular point of the principal branch (Sec. 30) 

Log z = In r + i 8 (r > 0, -TC < 8 < TC) 

of the logarithmic function. It is not, however, an isolated singular point since every 
deleted s neighborhood of it contains points on the negative real axis (see Fig. 80) and 
the branch is not even defined there. 

I 
I 

I 

y 

-- - ...... / .... 
/ ' 

/ ' 
£ 

----~-----~----~----
1 0 
I 
\ 
\ 

' ' ' - -~ 

/ 
/ 

I 
I 

I 
/ 

X 

EXAMPLE 3. The function 

FIGURE SO 

1 

sin(rc/z) 

has the singular points z = 0 and z = 1jn (n = ±1, ±2, ... ), all lying on the segment , 
of the real axis from z = -1 to z = 1. Each singular point except z = 0 is isolated. The 
singular point z = 0 is not isolated because every deleted s neighborhood of the origin 
contains other singular points of the function. More precisely, when a positive number 
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s is specified and m is any positive integer such that m > 1/ s, the fact that 0 < 1/ m < s 
means that the point z = ljm lies in the deleted e neighborhood 0 < lzl < s (Fig. 81). 

When zo is an isolated singular point of a function f, there is a positive number 
R2 such that f is analytic at each point z for which 0 < iz- z0 ! < R2. Consequently, 
f(z) is represented by a Laurent series 

00 

(1) ~ I! bl b2 bl! 
j(z) = L.J an(Z - Zo) + + + ... + . + ... 

n=O z - Zo (z - zo)2 (z - zo)n 

(0 < lz - zol < R2), 

where the coefficients an and bn have certain integral representations (Sec. 55). In 
patticular, 

bn = _1_ { j(z) dz 
2rri Jc (z- z0)-n+I 

(n=1,2, ... ) 

where C is any positively oriented simple dosed contour around z0 and lying in the 
punctured disk 0 < lz - zol < R2 (Fig. 82). When n = 1, this expression for bn can be 
written 

(2) L j(z) dz = 2rrib 1• 

The complex number bh which is the coefficient of l/(z- zo) in expansion (1), is 
called the residue off at the isolated singular point z0. We shall often use the notation 

Res f(z), 
z=zo 

or simply B when the point zo and the function fare clearly indicated, to denote the 
residue b1• 
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Equation (2) provides a powerful method for evaluating certain integrals around 
simple closed contours. 

EXAMPLE 4. Consider the integral 

(3) L z(z ~ 2)4 ' 

where C is the positively oriented circle lz - 21 = 1 (Fig. 83). Since the integrand is 
analytic everywhere in the finite plane except at the points z = 0 and z = 2, it has a 
Laurent series representation that is valid in the punctured disk 0 < lz- 21 < 2, also 
shown in Fig. 83. Thus, according to equation (2), the value of integral (3) is 2n i times 
the residue of its integrand at z = 2. To determine that residue, we recall (Sec. 54) the 
Maclaurin series expansion 

00 

1 =I>n 
1-z 

n=O 

(lzl < 1) 

and use it to write 

1 1 1 

z(z - 2)4 (z - 2)4 2 + (z - 2) 

1 1 

2(z- 2)4 

(0 < lz - 21 < 2). 

In this Laurent series, which could be written in the form (1 ), the coefficient of 
1/(z- 2) is the desired residue, namely -1/16. Consequently, 

(4) L z(z ~ 2)4 =2ni( -1~) =- ~i. 
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EXAMPLE 5. Let us show that 

(5) L exp(
2
;) dz = 0, 

where Cis the unit circle lz I = 1. Since 1/ z2 is analytic everywhere except at the origin, 

so is the integrand. The isolated singular point z = 0 is interior to C; and, with the aid 

of the Maclaurin series (Sec. 54) 

z z z2 z3 
e =1+-+-+-+··· 

1! 2! 3! 

one can write the Laurent series expansion 

(lzl < oo), 

(0 < lzl < oo). 

The residue of the integrand at its isolated singular point z - 0 is, therefore, zero 

(b 1 = 0), and the value of integral (5) is established. 

We are reminded in this example that, although the analyticity of a function within 

and on a simple closed contour C is a sufficient condition for the value of the integral 

around C to be zero, it is not a necessary condition. 

63. CAUCHY'S RESIDUE THEOREM 

If, except for afinite number of singular points, a function f is analytic inside a simple 

closed contour C, those singular points must be isolated (Sec. 62). The following 

theorem, which is known as Cauchy's residue theorem, is a precise statement of the 

fact that iff is also analytic on C and if Cis positively oriented, then the value of the 

integral of f around C is 2Jr i times the sum of the residues of f at the singular points 

inside C. 

Theorem. Let C be a simple closed contour, described in the positive sense. If a 

function f is analytic inside and on C except for a finite number of singular points 

Zk (k = 1, 2, ... , n) inside C, then 

(1) 

n 

r f(z) dz = 2ni L Res f(z). 
Jc z=zk 

k=l 

To prove the theorem, let the points Zk (k = 1, 2, ... , n) be centers of positively 

oriented circles Ck which are interior to C and are so small that no two of them have 

points in common (Fig. 84 ). The circles C k• together with the simple closed contour C, 

form the boundary of a closed region throughout which f is analytic and whose interior 
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y 

0 X FIGURE84 

is a multiply connected domain. Hence, according to the extension of the Cauchy­

Goursat theorem to such regions (Theorem 2, Sec. 46), 

n 

{ f(z)dz- L:j f(z)dz=O. 
lc k=I ck 

This reduces to equation ( 1) because (Sec. 62) 

fck f(z) dz = 2rri ~~~ j(z) (k = 1, 2, ... , n), 

and the proof is complete. 

EXAMPLE. Let us use the theorem to evaluate the integral 

{ 5z- 2 d~ 
lc z(z- 1) ~ 

when Cis the circle lzl = 2, described counterclockwise. The integrand has the two 

isolated singularities z = 0 and z = 1, both of which are interior to C. We can find the 

residues B 1 at z = 0 and B2 at z = 1 with the aid of the Maclaurin series 

-
1
- = 1 + z + z2 + · · · 

1-z 

We observe first that when 0 < lzl < 1 (Fig. 85), 

(lzl < 1). 

_5_z_2_ = 5z - 2 . -1 = (s _ 2) ( _ 1 _ z _ 22 _ .. ·); 

z(z - 1) z 1 - z z 
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and, by identifying the coefficient of Ij z in the product on the right here, we find that 
B1 = 2. Also, since 

5z- 2 

z(z - 1) 

5(z- 1) + 3 1 
z 1 1 + (z- 1) 

= (s + 
2 

3 

1
)[1- (z- 1) + (z- 1)2

- .. ·] 

when 0 < lz- 11 < I, it is clear that B2 = 3. Thus 

1 Sz -
2 

d z = 2rr i ( B 1 + B2) = lOrr i. 
c z(z- 1) 

In this example, it is actually simpler to write the integrand as the sum of its partial 
fractions: 

5z- 2 2 3 ---=-+ . 
z(z- l) z z- 1 

Then, since 2/z is already a Laurent series when 0 < lzl < 1 and since 3/(z - 1) is a 
Laurent series when 0 < lz II < 1, it follows that 

1 
-- ,., 

-'::!~-"' dz = 2rri(2) + 2rri(3) = IOrri. 
c ,,("'- 1) 

64. USING A SINGLE RESIDUE 

If the function fin Cauchy's residue theorem (Sec. 63) is, in addition, analytic at each 
point in the finite plane exterior to C, it is sometimes more efficient to evaluate the 
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integral of f around C by finding a single residue of a certain related function. We 
present the method as a theorem.* 

Theorem. If a function f is analytic everywhere in the finite plane except for a finite 
number of singular points interior to a positively oriented simple closed contour C, 

then 

(1) i f(z) dz = 2ni ~e~ [z; f(~) J. 
We begin the derivation of expression (1) by constructing a circle lzl = R 1 which 

is large enough so that the contour C is interior to it (Fig. 86). Then if C0 denotes a 

positively oriented circle lzl = R0 , where R0 > Rt> we know from Laurent's theorem 
(Sec. 55) that 

(2) 

where 

(3) 

I 
I 
\ 
\ 

' ' ' ' .... 

00 

f(z) = L 
11=-00 

C 
,.n 

11"' 

1 { f(z)dz 
Cn = 2ni lc

0 
zn+l 

y 

.... __ 
--

Rll Ro 
I 

/ 
/ 

/ 

~"' 

I 
I 

(R1 < lzl < oc), 

(n = 0, ±1, ±2, ... ). 

X 

FIGURE86 

*This result arises in the theory of residues at infinity, which we shall not develop. For some details of 
that theory, see, for instance, R. P. Boas, "Invitation to Complex Analysis," pp. 76--77, 1987. 



SEC.64 USING A SINGLE RESIDUE 229 

By writing n = -1 in expression (3), we find that 

(4) r f(z) dz = 2nic_1• 
le0 

Observe that, since the condition of validity with representation (2) is not of the type 
0 < lzl < R2, the coefficient c_1 is not the residue off at the point z = 0, which may 
not even be a singular point off. But, if we replace z by 1/ z in representation (2) and 
its condition of validity, we see that 

]_f(~) _ ~ Cn _ ~ Cn-2 
z2 z - n!:::oo zn+2 - n!:::oo zn 

and hence that 

(5) c_l =Res [ 
1
2 t(~)]. z=O Z Z 

Then, in view of equations (4) and (5), 

{ f(z) dz = 2:rri Res [ 
1
2 
t(~)]. le0 z=O z z 

Finally, since f is analytic throughout the closed region bounded by C and C0, the 
principle of deformation of paths (Corollary 2, Sec. 46) yields the desired result (1). 

EXAMPLE. In the example in Sec. 63, we evaluated the integral of 

f(z) = 5z- 2 
z(z- 1) 

around the circle lzl = 2, described counterclockwise, by finding the residues of f(z) 
at z = 0 and z = 1. Since 

5- 2z 5- 2z 1 

z(l- z) z 1- z 

= (:- 2 )(I+ z + z2 + .. ·) 

5 = - + 3 + 3z + · · · (0 < lzl < 1), 
z 

we see that the above theorem can also be used, where the desired residue is 5. More 
precisely, 

1 5z-2 
--- dz = 2ni (5) = lOni, 

e z(z- 1) 
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where C is the circle in question. This is, of course, the result obtained in the example 
in Sec. 63. 

EXERCISES 

1. Find the residue at z = 0 of the function 

1 ( 1) z- sin z (a) 
2

; (b) z cos - ; (c) ; 
z + z z z 

Ans.(a)l; (b)-1/2; (c)O; (d)-1/45; 

(d) cot z. 
' 4 • z 

(e) 7/6. 

2. Use Cauchy's residue theorem (Sec. 63) to evaluate the integral of each of these functions 
around the circle /z/ = 3 in the positive sense: 

() exp(-z). (b) exp(-z). () 2 (!)· a 
2 

, 
2 

, c z exp , 
z (z- 1) z 

(d) z + l . 
z2 - 2z 

Ans. (a) -2rri; (b) -2rrije; (c) rrij3; (d) 2rri. 

3. Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of each of 
these functions around the circle /zl = 2 in the positive sense: 

z5 1 . 1 
(a) 

3
; (b) 

2
; (c)-. 

1-z 1+z z 
Ans. (a) -2rri; (b) 0; (c) 2rri. 

4. Let C denote the circle /z/ = l, taken counterclockwise, and follow the steps below to 
show that 

f exp(z + !) dz = 2rri ~ 1 
.. Jc z ~n!(n+l)! 

(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 59, which 
justifies the term by term integration that is to be used, write the above integral as 

f ~ { z" exp(!) dz. 
n=O n. lc z 

(b) Apply the theorem in Sec. 63 to evaluate the integrals appearing in part (a) to arrive 
at the desired result 

5. Let the degrees of the polynomials 

P . 2 n 
(z) = ao + atz + a2z + · · · + anz 

and 

be such that m > n + 2. Use the theorem in Sec. 64 to show that if all of the zeros of 
Q(z) are interior to a simple closed contour C, then 

[Compare Exercise 3(b).] 

f P(z) dz = 0. 
lc Q(z) 
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65. THE THREE TYPES OF ISOLATED SINGULAR POINTS 

We saw in Sec. 62 that the theory of residues is based on the fact that if f has an 
isolated singular point z0, then f(z) can be represented by a Laurent series 

(1) 

in a punctured disk 0 < lz- zol < R2. The portion 

of the series, involving negative powers of z - z0, is called the principal part of f at 
z0. We now use the principal part to identify the isolated singular point zo as one of 
three special types. This classification will aid us in the development of residue theory 
that appears in following sections. 

If the principal part off at zo contains at least one nonzero term but the number 
of such terms is finite, then there exists a positive integer m such that 

bm f= 0 and bm+ 1 = bm+2 = · · · = 0. 

That is, expansion (1) takes the form 

where b111 =I= 0. In this case, the isolated singular point zo is called a pole of order m.* 
A pole of order m = 1 is usually referred to as a simple pole. 

EXAMPLE 1. Observe that the function 

, 
z"' - 2z + 3 z(z - 2) + 3 3 

2 
-

----= =z+ = +(z 
z-2 z-2 z 2 

2 3 
J+z-2 

(0 < lz- 21 < oo) 

has a simple pole (m = I) at z0 = 2. Its residue b1 there is 3. 

• Reasons for the terminology pole are suggested on p. 70 of the book by R. P. Boas mentioned in the 
footnote in Sec. 64. 
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EXAMPLE 2. The function 

sinh z = _.!._ (z + z3 
+ z

5
_ + z 

7 
+ .. ·) = _.!._ + _!_ . I + _£ + z

3 
+ ... 

z4 z4 3! 5! 7! z3 3! z 5! 7! 

(0 < lzl < oo) 

has a pole of order m = 3 at zo = 0, with residue b 1 = l/6. 

There remain two extremes, the case in which all of the coefficients in the 
principal part are zero and the one in which an infinite number of them are nonzero. 

When all of the bn 's are zero, so that 

00 

(3) f(z) = L an(Z- zo>" = ao + ai(Z- Zo) + az(z- Zo)2 + ... 
n=O 

(0 < lz - zol < Rz), 

the point zo is known as a removable singular point. Note that the residue at a remov­
able singular point is always zero. If we define, or possibly redefine, f at zo so that 
f(z0) = a0, expansion (3) becomes valid throughout the entire disk lz - zol < R2. 

Since a power series always represents an analytic function interior to its circle of 
convergence (Sec. 59), it follows that f is analytic at z0 when it is assigned the value 

a0 there. The singularity at zo is, therefore, removed. 

EXAMPLE 3. The point zo = 0 is a removable singular point of the function 

1- cos z 1 [ (· z
2 

z
4 

z
6 

)] f(z) = =- 1- 1--+-- -. + ... 
· z2 z2 2! 4! 6! 

1 z2 z4 

=---+--··· 
2! 4! 6! 

(0 < lzl < oo). 

When the value f(O) = 1/2 is assigned, f becomes entire. 

When an infinite number of the coefficients bn in the principal part are nonzero, 
zo is said to be an essential singular point of f. An important result concerning the 
behavior of a function near an essential singular point is due to Picard. It states that 
in each neighborhood of an essential singular point, a function assumes every finite 
value, with one possible exception, an infinite number of times.* 

*For a proof of Picard's theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in 
Appendix 1. 
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EXAMPLE 4. The function 

exp(I) = f -1 
. _l = 1 + _!_ . I + _!_ . __!_ 

Z n=On! zn 1! Z 2! z2 
(0 < izl < oo) 

has an essential singular point at zo = 0, where the residue b 1 is unity. For an illustration 

of Picard's theorem, let us show that exp(l/z) assumes the value -1 an infinite number 

of times in each neighborhood of the origin. To do this, we recall from the example in 

Sec. 28 that exp z = -1 when z = (2n + l)ni (n = 0, ±1, ±2, ... ). This means that 

exp(1/z) = -1 when 

1 l l 
z= ·-=-----

(2n 1)ni t (2n + 1)n 
(n = 0, ±1, ±2, ... ), 

and an infinite number of these points clearly lie in any given neighborhood of the 

origin. Since exp(l/z) i= 0 for any value of z, zero is the exceptional value in Picard's 

theorem. 

In the remaining sections of this chapter, we shall develop in greater depth the 

theory of the three types of isolated singular points just described. The emphasis will 

be on useful and efficient methods for identifying poles and finding the corresponding 

residues. 

EXERCISES 
1. In each case, write the principal part of the function at its isolated singular point and 

determine whether that point is a pole, a removable singular point, or an essential singular 
point: 

(a) z exp(~} 
2 

(b) z ; 
I+ z 

(c) sm z; 
z 

(d) cos z; 
z 

1 
(e) (2- z)3. 

2. Show that the singular point of each of the following functions is a pole. Determine the 
order m of that pole and the corresponding residue B. 

(a) 1 - ~~sh z; (b) 1 - ex:c2z); (c) exp(2z) . 
" z (z - 1)2 

Ans. (a) m =I, B = -1/2; (b) m = 3, B = -4/3; (c) m = 2, B = 2e2. 

3. Suppose that a function f is analytic at zo, and write g(z) = f(z)/(z- zo). Show that 

(a) if f(zo) i= 0, then zo is a simple pole of g, with residue f(z0); 

(b) if f(z0 )- 0, then z0 is a removable singular point of g. 

Suggestion: As pointed out in Sec. 53, there is a Taylor series for f(z) about z0 

since f is analytic there. Start each part of this exercise by writing out a few terms of 
that series. 
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4. Write the function 

as 

f(z) = </>(z) 
(z- ai)3 

CHAP. 6 

(a> 0) 

8a3z2 
where </>(z) = 

3 . 
(z + ai) 

Point out why <P (z) has a Taylor series representation about z = ai, and then use it to 
show that the principal part of f at that point is 

<P"(ai)/2 <P'(ai) <f>(ai) ---+ +--'--'--..:......,. 
z - ai (z - ai) 2 (z - ai)3 

66. RESIDUES AT POLES 

ij2 

z- az 

aj2 

(z- ai)2 (z- ai)3 • 

When a function f has an isolated singularity at a point z0 , the basic method for 
identifying zo as a pole and finding the residue there is to write the appropriate Laurent 
series and to note the coefficient of 1/(z - z0). The following theorem provides an 
alternative characterization of poles and another way of finding the corresponding 
residues. 

Theorem. An isolated singular point zo of a function f is a pole of order m if and 
only if f(z) can be written in the form 

(1) f(z) = ¢(z) , 
(z- zo)m 

where ¢(z) is analytic and nonzero at z0 . Moreover, 

(2) Res f(z) = ¢(zo) if m = 1 
z=zo 

and 

(3) Res f(z) = 
¢(m-l)(zo) 

if m > 2. 
(m- 1)! z=zo 

Observe that expression (2) need not have been written separately since, with the 
convention that ¢(0)(z0) = ¢(z0) and 0! = 1, expression (3) reduces to it when m = 1. 
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To prove the theorem, we first assume that f(z) has the form (1) and recall (Sec. 

53) that since ¢(z) is analytic at z0, it has a Taylor series representation 

¢(z) = ¢(zo) + ¢'(zo) (z- zo) + ¢"(zo) (z 
1! 2! 

.+.(m-1)( ) 
)2+ +'f/ Zo ( )m-1 zo · · · z- zo 

(m- 1)! 

oo .+.(n)( ) 

+ L '{J 
20 

(z - zot 
n=m n! 

in some neighborhood lz- zol < 8 of z0; and from expression (1) it follows that 

(4) f(z) = ¢(zo) ¢'(zo)/l! + ¢"(zo)/2! + ... + ¢<m-J)(z0)j(m- 1)! 

(z- Zo)m (z- zo)m-1 (z- zo)m-2 z- zo 

oo .+.(n) ( ) 
+ '"' 'fJ 

20 
(z - zot-m 

~ n! 
n=m 

when 0 < lz - zol < 8. This Laurent series representation, together with the fact that 

¢(z0) =/:= 0, reveals that zo is, indeed, a pole of order m of f(z). The coefficient of 

1 j ( z - z0) tells us, of course, that the residue of f ( z) at zo is as in the statement of the 

theorem. 
Suppose, on the other hand, that we know only that zo is a pole of order m of f, 

or that f (z) has a Laurent series representation 

which is valid in a punctured disk 0 < lz- zol < R2. The function ¢(z) defined by 

means of the equations 

¢(z) = { b:- zo)m f(z) 

evidently has the power series representation 

00 

+ L an (z - Zo)m+n 

n=O 

when z =/:= z0 , 

when z = zo 

throughout the entire disk lz- zol < R2. Consequently, ¢(z) is analytic in that disk 

(Sec. 59) and, in particular, at z0• Inasmuch as ¢(z0) = bm =/:= 0, expression (1) is 

established; and the proof of the theorem is complete. 
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67. EXAMPLES 

The following examples serve to illustrate the use of the theorem in the previous 
section. 

EXAMPLE 1. The function f(z) = (z + 1)/(z2 + 9) has an isolated singular point 
at z = 3i and can be written as 

f(z) = ¢(z) 
z - 3i 

z+l 
where ¢(z) = . 

z +3i 

Since ¢(z) is analytic at z = 3i and ¢(3i) = (3- i)/6 f= 0, that point is a simple pole 
of the function f; and the residue there is B1 = (3- i)/6. The point z = -3i is also a 
simple pole off, with residue B2 = (3 + i)/6. 

EXAMPLE 2. If f(z) = (z3 + 2z)/(z- i)3, then 

f(z) = ¢(z) where ,P(z) = z3 + 2z. 
(z - i)3 

The function ¢(z) is entire, and ¢(i) = i i= 0. Hence f has a pole of order 3 at z = i. 
The residue there is 

B = ¢"(i) = 3i. 
2! 

The theorem can, of course, be used when branches of multiple-valued functions 
are involved. 

EXAMPLE 3. Suppose that 

where the branch 

log z = In r + i () (r > 0, 0 < () < 2n) 

of the logarithmic function is to be used. To find the residue off at z = i, we write 

f(z) = ¢(z~ (log z)3 
where ¢(z) = . 

z + i z -l 

The function ¢(z) is clearly analytic at z = i; and, since 

~(i)= (logi)
3 = (lnl+in/2)

3 
=-n

3 
-"O 

'fJ · 2i 2i 16 r ' 

the desired residue is B = ¢(i) = -n3 /16. 
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While the theorem in Sec. 66 can be extremely useful, the identification of an 

isolated singular point as a pole of a certain order is sometimes done most efficiently 

by appealing directly to a Laurent series. 

EXAMPLE 4. If, for instance, the residue of the function 

f(z) =sinh z 
z4 

is needed at the singularity z = 0, it would be incorrect to write 

j(z) = ,P(z) where ,P(z) =sinh z 
z4 

and to attempt an application of formula (3) in Sec. 66 with m = 4. For it is necessary 
that ¢(z0) i= 0 if that formula is to be used. In this case, the simplest way to find 

the residue is to write out a few terms of the Laurent series for f(z), as was done in 
Example 2 of Sec. 65. There it was shown that z = 0 is a pole of the third order, with 

residue B = 1j6. 

In some cases, the series approach can be effectively combined with the theorem 
in Sec. 66. 

EXAMPLE 5. Since z(ez- 1) is entire and its zeros are 

z = 2mri (n = 0, ±1, ±2, ... ), 

the point z = 0 is clearly an isolated singular point of the function 

From the Maclaurin series 

1 
f(z) = z(ez - 1) 

z z2 z3 

e2 = 1 + - + - + - + .. · 
1! 2! 3! 

we see that 

( 
z z2 z3 

z(e2 
- 1) = z - + - + -

ll 2! 3! 

Thus 

(lzl < oo), 

f(z) = ¢(z) 
z2 

where 
1 

¢(z)=---~---
1+z/2!+z2/3!+··· 

(lzl < oo). 
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Since ¢(z) is analytic at z = 0 and ¢(0) = 1 =I= 0, the point z = 0 is a pole of the second 

order; and, according to formula (3) in Sec. 66, the residue is B = ¢'(0). Because 

-(1/2' + 27!3' + .. ·) ¢'(z) = . .,. . 
O+z/2!+z2/3!+ · · ·) 2 

in a neighborhood of the origin, then, B = -1/2. 
This residue can also be found by dividing the above series representation for 

z(e"- 1) into 1, or by multiplying the Laurent series for lj(ez- 1) in Exercise 3, Sec. 
61, by 1/z. 

EXERCISES 

1. In each case, show that any singular point of the function is a pole. Determine the order 
m of each pole, and find the corresponding residue B. 

(a) z
2 
+ 2; (b) ( z )

3
; (c) exp z . 

z - 1 2z + 1 z2 + ;rr2 

Ans. (a) m = 1, B = 3; (b) m = 3, B = -3/16; (c) m = I, B = ± i f2rr. 

2. Show that 
z114 l+i 

(a) Res = (lzl > 0, 0 < arg z < 2:rr); 
z=-1 z + 1 ,.J2 

(b) Res Log z = 7r + 2i; 
z=i (z2 + 1)2 8 

1/2 z 
(c) Res---:---

z=i (z2 + 1)2 

1- i 

s,Ji. 
3. Find the value of the integral 

(lzl > 0, 0 < arg z < 2rr). 

r 3z3 + 2 d 
Jc (z - l)(z2 + 9) z, 

taken counterclockwise around the circle (a) iz- 21 = 2; (b) lzl = 4. 

Ans. (a) :rri; (b) 6rri. 

4. Find the value of the integral 
~ 

i z3(:: 4)' 

taken counterclockwise around the circle (a) lzl = 2; (b) lz + 21 = 3. 

Ans.(a)ni/32; (b)O. 

5. Evaluate the integral 

1 cosh nz d 

c z(z2 + 1) z 
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where Cis the circle lzl = 2, described in the positive sense. 

Ans. 4JTi. 

6. Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of f(z) 
around the positively oriented circle lzl = 3 when 

(a) f(z) (3z + 2)2 ; (b) f(z) = z3(1- 3z) ; 
z(z - 1)(2z + 5) (1 + z)(l + 2z4) 

Ans. (a) 9JT i; (b) -3JT i; (c) 2JT i. 

68. ZEROS OF ANALYTIC FUNCTIONS 

Zeros and poles of functions are closely related. In fact, we shall see in the next section 
how zeros can be a source of poles. We need, however, some preliminary results 
regarding zeros of analytic functions. 

Suppose that a function f is analytic at a point z0 . We know from Sec. 48 that 
all of the derivatives f(n)(z) (n = 1, 2, ... ) exist at z0. If /(z0) = 0 and if there is a 

positive integer m such that f(m) (zo) ;f. 0 and each derivative of lower order vanishes 
at z0, then f is said to have a zero of order m at z0. Our first theorem here provides a 
useful alternative characterization of zeros of order m. 

Theorem 1. A function f that is analytic at a point zo has a zero of order m there if 
and only if there is a function g, which is analytic and nonzero at z0 , such that 

(1) f(z) = (z- zo)mg(z). 

Both parts of the proof that follows use the fact (Sec. 53) that if a function is 
analytic at a point z0, then it must have a valid Taylor series representation in powers 
of z- zo which is valid throughout a neighborhood lz- zol < e of that point. 

We start the first part of the proof by assuming that expression (1) holds and 
noting that, since g(z) is analytic at z0, it has a Taylor series representation 

g' (zo) g" (zo) 2 
g(z) = g(zo) + (z - zo) + (z - zo) + · · · 

1! 2! 

in some neighborhood lz- zol < e of z0. Expression (1) thus takes the form 

g'(z ) 
/(z) = g(zo)(z- zo)m + 0 (z- z0)m+l 

1! 
g" (zo) (z _ zo)m+2 + ... 

2! 

when lz- zol <e. Since this is actually a Taylor series expansion for f(z), according 
to Theorem 1 in Sec. 60, it follows that 

(2) /(zo) = /'(zo) = f"(zo) = · · · = /(m-l)(z0) = 0 

and that 

(3) 
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Hence z0 is a zero of order m of f. 
Conversely, if we assume that f has a zero of order m at z0, its analyticity at z0 

and the fact that conditions (2) hold tell us that, in some neighborhood lz - zol < s, 
there is a Taylor series 

oo J(n)( ) 
!(. ) '"""""' Zo ( _ )n z = ~ , .z- <-o 

n. n=m 

m [f(m)(zo) J<m+ll(zo) J<m+2)(zo) 2 ] 
= (z - zo) + . ····· (z - zo) + (z - zo) + · · · . 

m! (m + 1)! (m + 2)! 

Consequently, f(z) has the form (1), where 

J<m)(zo) J<m+l)(zo) . J<m+2)(zo) 2 
g(z) = + (z - zo) + (z - zo) + · · · 

m! (m+l)! · (m+2)! 

(lz- zol <e). 

The convergence of this last series when lz - zol < e ensures that g is analytic in that 
neighborhood and, in particular, at zo (Sec. 59). Moreover, 

f (m)( ) 
g(zo) = zo i= 0. 

m! 

This completes the proof of the theorem. 

EXAMPLE. The entire function j(z) = z(ez- 1) has a zero of order m = 2 at the 
point zo = 0 since 

j(O) = j'(O) = 0 and J''(O) = 2 i= 0. 

The function g in expression ( 1) is, in this case, defined by means of the equations 

g(z) = { (ez- 1)/z when z i= 0, 
1 when z = 0. 

It is analytic at z = 0 and, in fact, entire (see Exercise 4, Sec. 60). 

Our next theorem tells us that the zeros of an analytic function are isolated. 

Theorem 2. Given a function f and a point z0 , suppose that 
( i) f is analytic at z0 ; 

(ii) j(z0) = 0 but f(z) is not identically equal to zero in any neighborhood ojz0• 

Then j(z) i= 0 throughout some deleted neighborhood 0 < lz- zol < s ofzo. 
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To prove this, let f be as stated and observe that not all of the derivatives of 
f at zo are zero. For, if they were, all of the coefficients in the Taylor series for f 
about zo would be zero; and that would mean that f (z) is identically equal to zero in 
some neighborhood of z0. So it is clear from the definition of zeros of order m at the 
beginning of this section that f must have a zero of some order m at z0 • According to 
Theorem 1, then, 

(4) 

where g(z) is analytic and nonzero at z0 . 

Now g is continuous, in addition to being nonzero, at zo because it is analytic 
there. Hence there is some neighborhood lz- zol < c: in which equation (4) holds and 
in which g(z) f=. 0 (see Sec. 17). Consequently, f(z) f=. 0 in the deleted neighborhood 
0 < lz - z01 < c:; and the proof is complete. 

Our final theorem here concerns functions with zeros that are not all isolated. It 
was referred to earlier in Sec. 26 and makes an interesting contrast to Theorem 2 just 
above. 

Theorem 3. Given a function f and a point z0 , suppose that 
(i) f is analytic throughout a neighborhood N0 ofz0 ; 

(ii) J(z0 ) = 0 and J(z) = 0 at each point z of a domain or line segment containing 
zo (Fig. 87). 

Then f(z) = 0 in N0; that is, f(z) is identically equal to zero throughout N0 . 
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We begin the proof with the observation that, under the stated conditions, 
f (z) = 0 in some neighborhood N of z0 . For, otherwise, there would be a deleted 
neighborhood of z0 throughout which f (z) f=. 0, according to Theorem 2 above; and 
that would be inconsistent with the condition that f (z) = 0 everywhere in a domain 
or on a line segment containing z0. Since f (z) = 0 in the neighborhood N, then, it 
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follows that all of the coefficients 

(n=0,1,2, ... ) 

in the Taylor series for f (z) about z0 must be zero. Thus f (z) = 0 in the neighborhood 

N0, since Taylor series also represents f(z) in N0. This completes the proof. 

69. ZEROS AND POLES 

The following theorem shows how zeros of order m can create poles of order m. 

Theorem 1. Suppose that 
(i) two functions p and q are analytic at a point z0 ; 

(ii) p(z0) i= 0 and q has a zero of order mat z0. 

Then the quotient p(z)/q(z) has a pole of order mat z0. 

The proof is easy. Let p and q be as in the statement of the theorem. Since q has 

a zero of order m at z0, we know from Theorem 2 in Sec. 68 that there is a deleted 

neighborhood of z0 in which q (z) i= 0; and so z0 is an isolated singular point of the 
quotient p(z)/q(z). Theorem 1 in Sec. 68 tells us, moreover. that 

where g is analytic and nonzero at z0; and this enables us to write 

(1) 
p(z) p(z)jg(z) 

q (z) (z - zo)m 

Since p(z) 1 g (z) is analytic and nonzero at z0• it now follows from the theorem in Sec. 

66 that zo is a pole of order m of p(z)/q(z). 

EXAMPLE 1. The two functions 

p(z) = 1 and q(z) = z(ez- 1) 

are entire; and we know from the example in Sec. 68 that q has a zero of order m = 2 
at the point z0 = 0. Hence it follows from Theorem 1 here that the quotient 

p(z) 1 

q(z) z(ez- 1) 

has a pole of order 2 at that point. This was demonstrated in another way in Example 5, 
Sec.67. 
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Theorem 1 leads us to another method for identifying simple poles and finding 
the corresponding residues. This method is sometimes easier to use than the one in 
Sec. 66. 

Theorem 2. Let two functions p and q be analytic at a point z0 . If 

p(z0) f=- 0, q (z0) = 0, and q' (z0) f=- 0, 

then z0 is a simple pole (~{the quotient p(z)/q(z) and 

(2) Res p(z) = p(zo) . 
z=zo q (z) q' (z0) 

To show this, we assume that p and q are as stated and observe that, because of 
the conditions on q, the point zo is a zero of order m = 1 of that function. According 
to Theorem 1 in Sec. 68, then, 

(3) q(z) = (z- zo)g(z) 

where g(z) is analytic and nonzero at z0 . Furthermore, Theorem 1 in this section tells 
us that z0 is a simple pole of p(z) jq (z); and equation (1) in its proof becomes 

p(z) p(z)/ g(z) 

q(z) z- zo 

Now p(z)/ g(z) is analytic and nonzero at z0 , and it follows from the theorem in Sec. 
66 that 

Res p(z) = p(zo). 
z=zo q(z) g(zo) 

(4) 

But g(z0) = q'(z0), as is seen by differentiating each side of equation (3) and setting 
z = z0 . Expression (4) thus takes the form (2). 

EXAMPLE 2. Consider the function 

cos z f ( z) = cot z = . , 
smz 

which is a quotient of the entire functions p(z) =cos z and q(z) =sin z. The singu­
larities of that quotient occur at the zeros of q, or at the points 

z =nJT (n = 0, ±1, ±2, ... ). 

Since 

p(nrr) =(-It f:-0, q(nrr) =0, and q'(nrr) = (-1)11 f:-0, 
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each singular point z = n:rr of f is a simple pole, with residue 

Bn= p(n:rr) = (-l)n =1. 
q'(n:rr) (-l)n 

EXAMPLE 3. The residue of the function 

f(z) = tanh z = sinh z 
z2 z2 cosh z 

at the zero z = :rri /2 of cosh z (see Sec. 34) is readily found by writing 

p(z) =sinh z and q(z) = z2 cosh z. 

Since 

(
:rri) . h(:rri) . :rr . ~ 0 p 2 = sm 2 = i sm l = z 1 

and 

( :rri) 0 '(:rri)- (:rri)
2 

. h(:rri) :rr
2

. ~ 0 
q 2 = ' q 2 - 2 sm 2 = -41 1 ' 

we find that z = :rr i /2 is a simple pole of f and that the residue there is 

B = p(:rri /2) = _ _±_. 
q' (:rr i /2) :rr2 

EXAMPLE 4. One can find the residue of the function 

at the isolated singular point 

J(z) = z 
z4 +4 

z0 = J2eirr/4 = 1 + i 

by writing p(z) = z and q(z) = z4 + 4. Since 

p(z0) = z0 =/= 0, q(z0) = 0, and q'(z0) = 4z5 =/= 0, 

f has a simple pole at z0 . The corresponding residue is the number 

80 = p(zo) = zo = _1_ = __!__ = _ ~ 
q'(zo) 4z~ 4z5 8i 8 

CHAP. 6 

Although this residue could also be found by the method of Sec. 66, the computation 
would be somewhat more involved. 
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There are formulas similar to formula (2) for residues at poles of higher order, 

but they are lengthier and, in general, not practical. 

EXERCISES 

1. Show that the point z = 0 is a simple pole of the function 

1 
/(z) = cscz = -.­

smz 

and that the residue there is unity by appealing to 

(a) Theorem 2 in Sec. 69; 

(b) the Laurent series for esc z that was found in Exercise 2, Sec. 61. 

2. Show that 

R 
z- sinh z i 

(a) es = -; 
z=rri z2 sinh z TC 

(b) R 
exp(zt) exp(zt) 

2 es + Res = - cos rr t. 
z=n i sinh z z=-n i sinh z 

3. Show that 

(a) Res(z sec z) = (-l)n+l Zn, where Zn = TC + nTC (n = 0, ±1, ±2, ... ); 
z=~ 2 

(b) Res(tanh z) = 1, where Zn = (TC + nTC)i (n = 0, ±1, ±2, ... ). 
Z=Zn 2 

4. Let C denote the positively oriented circle lzl = 2 and evaluate the integral 

(a) 1 tanz dz; (b) 1 . dz . 
c c smh 2z 

Ans. (a) -4TCi; (b) -TCi. 

5. Let C N denote the positively oriented boundary of the square whose edges lie along the 
lines 

where N is a positive integer. Show that 

Then, using the fact that the value of this integral tends to zero as N tends to infinity 
(Exercise 7, Sec. 41), point out how it follows that 
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6. Show that 

1 dz n 
c (z 2 - 1)2 + 3 = 2./2' 

where C is the positively oriented boundary of the rectangle whose sides lie along the 
lines x = ±2, y = 0, and y = 1. 

Suggestion: By observing that the four zeros of the polynornialq(z) = (z2 - 1)2 + 3 
are the square roots of the numbers 1 ± J3i, show that the reciprocal 1/ q (z) is analytic 
inside and on C except at the points 

~l 
zo = and 

./2 
-zo= 

Then apply Theorem 2 in Sec. 69. 

7. Consider the function 

1 
J(z) = [q(z)]2' 

-~+i 
h 

where q is analytic at z0 , q (z0) = 0, and q' (z0) ::j:. 0. Show that zo is a pole of order m = 2 
of the function f, with residue 

q" (zo) 
Bo=- . 

[q'(zo)]3 

Suggestion: Note that zo is a zero of order m = 1 of the function q, so that 

q(z) = (z- zo)g(z), 

where g(z) is analytic and nonzero at z0. Then write 

f(z) = ¢(z) 
(z- zo)2 

1 
where ¢ (z) = 

2 [g(z)] 

The desired form of the residue B0 = ¢' (zo) can be obtained by showing that 

q'(zo) = g(zo) and q"(z0) = 2g'(zo). 

8. Use the result in Exercise 7 to find the residue at z = 0 of the function 
1 

(a) f(z) = csc2 z; (b) f(z) = ( 
2)

2 z+z 
Ans. (a) 0; (b) -2. 

9. Let p and q denote functions that are analytic at a point z0 , where p(zo) ::j:. 0 and 
q(zo) = 0. Show that if the quotient p(z)jq(z) has a pole of order m at z0 , then z0 is 
a zero of order m of q. (Compare Theorem 1 in Sec. 69.) 

Suggestion: Note that the theorem in Sec. 66 enables one to write 

p(z) = 
' q(z) (z- zo)m 

¢(z) 

where ¢(z) is analytic and nonzero at z0. Then solve for q(z). 
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10. Recall (Sec. 10) that a point z0 is an accumulation point of a set S if each deleted 
neighborhood of z0 contains at least one point of S. One form of the Bolzano-Weierstrass 
theorem can be stated as follows: an infinite set of points lying in a closed bounded region 
R has at least one accumulation point in R.* Use that theorem and Theorem 2 in Sec. 
68 to show that if a function f is analytic in the region R consisting of all points inside 
and on a simple closed contour C, except possibly for poles inside C, and if all the zeros 
of f in R are interior to C and are of finite order, then those zeros must be finite in 
number. 

11. Let R denote the region consisting of all points inside and on a simple closed contour 
C. Use the Bolzano-Weierstrass theorem (see Exercise 10) and the fact that poles are 
isolated singular points to show that if f is analytic in the region R except for poles 
interior to C, then those poles must be finite in number. 

70. BEHAVIOR OFf NEAR ISOLATED SINGULAR POINTS 

As already indicated in Sec. 65, the behavior of a function f near an isolated singular 
point zo varies, depending on whether zo is a pole, a removable singular point, or 
an essential singular point. In this section, we develop the differences in behavior 
somewhat further. Since the results presented here will not be used elsewhere in the 
book, the reader who wishes to reach applications of residue theory more quickly may 
pass directly to Chap. 7 without disruption. 

Theorem 1. If z0 is a pole of a function f, then 

(1) lim f(z) = oo. 
z_,..zo 

To verify limit ( 1 ), we assume that f has a pole of order m at z0 and use the 
theorem in Sec. 66. It tells us that 

f(z) = c/J(z) , 
(z- zo)m 

where c/J(z) is analytic and nonzero at z0. Since 

lim (z- z0)m 
z_,..zo 0 

--=0, 
¢(zo) 

then, limit (1) holds, according to the theorem in Sec. 16 regarding limits that involve 
the point at infinity. 

The next theorem emphasizes how the behavior of f near a removable singular 
point is fundamentally different from the behavior near a pole. 

*See, for example, A. E. Taylor and W. R. Mann. "Advanced Calculus," 3d ed., pp. 517 and 521, 1983. 
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Theorem 2. If z0 is a removable singular point of a function f, then f is analytic 
and bounded in some deleted neighborhood 0 < lz - zol < £ of z0. 

The proof is easy and is based on the fact that the function f here is analytic 
in a disk lz- zol < R2 when f(z 0 ) is properly defined; and f is then continuous in 
any closed disk lz- zol <£where£ < R2. Consequently, f is bounded in that disk, 
according to Sec. 17; and this means that, in addition to being analytic, f must be 
bounded in the deleted neighborhood 0 < lz- z01 < £. 

The proof of our final theorem, regarding the behavior of a function near an 
essential singular point, relies on the following lemma, which is closely related to 
Theorem 2 and is known as Riemann's theorem. 

Lemma. Suppose that a function f is analytic and bounded in some deleted neigh­
borhood 0 < lz - zol < £of a point zo.lf f is not analytic at z0 , then it has a removable 
singularity there. 

To prove this, we assume that f is not analytic at z0. As a consequence, the point 
z0 must be an isolated singularity off; and f(z) is represented by a Laurent series 

(2) 

throughout the deleted neighborhood 0 < lz- zol <£.If C denotes a positively ori­
ented circle lz- zol = p, where p < s (Fig. 88), we know from Sec. 55 that the 
coefficients bn in expansion (2) can be written 

(3) 
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Now the boundedness condition on f tells us that there is a positive constant M such 

that lf(z)l < M whenever 0 < lz- z01 <£.Hence it follows from expression (3) that 

(n = 1, 2, ... ) . 

Since the coefficients bn are constants and since p can be chosen arbitrarily small, we 
may conclude that bn = 0 (n = 1, 2, ... ) in the Laurent series (2). This tells us that zo 
is a removable singularity of f, and the proof of the lemma is complete. 

We know from Sec. 65 that the behavior of a function near an essential singular 
point is quite irregular. The theorem below, regarding such behavior, is related to 
Picard's theorem in that earlier section and is usually referred to as the Casorati­
Weierstrass theorem. It states that, in each deleted neighborhood of an essential singular 
point, a function assumes values arbitrarily close to any given number. 

Theorem 3. Suppose that z0 is an essential singularity of a function f, and let w0 be 
any complex number. Then, for any positive number s, the inequality 

(4) lf(z)- wol < e 

is satisfied at some point z in each deleted neighborhood 0 < lz - zol < ~ of z0 

(Fig. 89). 
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The proof is by contradiction. Since zo is an isolated singularity of f, there is a 
deleted neighborhood 0 < lz- zol < o throughout which f is analytic; and we assume 
that condition (4) is not satisfied for any point z there. Thus lf(z)- w0 1 >£when 
0 < lz- zol <~;and so the function 

(5) 
1 

g(z)=---
f(z)- wo 

(0 < lz - zol < 8) 
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is bounded and analytic in its domain of definition. Hence, according to the above 
lemma, z0 is a removable singularity of g; and we let g be defined at zo so that it is 
analytic there. 

If g(zo) f::- 0, the function j(z), which can be written 

1 
f(z)=- +wo 

g(z) 
(6) 

when 0 < lz- zol < o, becomes analytic at zo if it is defined there as 

1 
f(zo) = + wo. 

g(zo) 

But this means that z0 is a removable singularity of f, not an essential one, and we 
have a contradiction. 

If g(zo) = 0, the function g must have a zero of some finite order m (Sec. 68) at 
z0 because g(z) is not identically equal to zero in the neighborhood lz- zol < o. In 
view of equation (6), then, f has a pole of order m at zo (see Theorem 1 in Sec. 69). 
So, once again, we have a contradiction; and Theorem 3 here is proven. 



CHAPTER 

7 
APPLICATIONS OF RESIDUES 

We tum now to some important applications of the theory of residues, which was 
developed in the preceding chapter. The applications include evaluation of certain types 

of definite and improper integrals occurring in real analysis and applied mathematics. 
Considerable attention is also given to a method, based on residues, for locating zeros 

of functions and to finding inverse Laplace transforms by summing residues. 

71. EVALUATION OF IMPROPER INTEGRALS 

In calculus, the improper integral of a continuous function f(x) over the semi-infinite 
interval x > 0 is defined by means of the equation 

(1) r~ j(x)dx= lim {R j(x)dx. 
lo R-+oo lo 

When the limit on the right exists, the improper integral is said to converge to that 
limit. If f(x) is continuous for all x, its improper integral over the infinite interval 
-oo < x < oo is defined by writing 

(2) f oo fo 1R2 

f(x) dx = lim f(x) dx + lim f(x) dx; 
-oo RJ---*00 -Rt Rz---*00 0 

and when both of the limits here exist, integral (2) converges to their sum. Another 
value that is assigned to integral (2) is often useful. Namely, the Cauchy principal 

251 
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value (P.V.) of integral (2) is the number 

(3) P.V.1
00 

f(x) dx = lim 1R f(x) dx, 
-oo R-+oo -R 

provided this single limit exists. 
If integral (2) converges, its Cauchy principal value (3) exists; and that value is 

the number to which integral (2) converges. This is because 

1
R f(x) dx = 1° f(x) dx + {R f(x) dx 

-R -R lo 
and the limit as R ---+ oo of each of the integrals on the right exists when integral (2) 
converges. It is not, however, always true that integral (2) converges when its Cauchy 
principal value exists, as the following example shows. 

EXAMPLE. Observe that 

(4) P.V.1
00 

x dx = lim 1R x dx = lim [xz]R lim 0 = 0. 
_ 00 R-+oo -R R-+oo 2 -R R-+oo 

On the other hand, 

(5) 100 10 1~ x dx = lim x dx + lim x dx 
-oo RI---"'00 -R! Rz-+oo 0 

[ 
z]O [ z]Rz I. X I' X =Im- +tm-

R1-+oo 2 -Rl R2-+oo 2 O 

R2 R2 
lim - 1 lim -1. · 

' R1-+oo 2 Rz---'>00 2 

and since these last two limits do not exist, we find that the improper integral (5) fails 
to exist. 

But suppose that f (x) ( -oo < x < oo) is an even function, one where 

f(-x) = f(x) for all x. 

The symmetry of the graph of y = f(x) with respect to they axis enables us to write 

1R l1R f(x) dx =- f(x) dx, 
0 2 -R 
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and we see that integral ( 1) converges to one half the Cauchy principal value (3) when 
that value exists. Moreover, since integral ( 1) converges and since 

10 1R1 
f(x) dx = f(x) dx, 

-R1 0 

integral (2) converges to twice the value of integral ( 1 ). We have thus shown that when 
f(x)(-oo < x < oo) is even and the Cauchy principal value (3) exists, both of the 
integrals (1) and (2) converge and 

(6) P.V.1 00 

.f(x) dx = 100 

f(x) dx = 2 r~ f(x) dx. 
-00 -00 h 

We now describe a method involving residues, to be illustrated in the next 
section, that is often used to evaluate impro er integrals of even rational functions 
f(x) = p(x)jq(x), where f(-x) is equal to f(x) and where p(x) and q(x) are 
polynomials with real coefficients and no factors in common. We agree that q(z) has 
no real zeros but has at least on~£~Z~e the. re~l ~!~J 

The method begins with the identification of all of the distinct zeros of the 
polynomial q (z) that lie above the real axis. They are, of course, finite in number 
(see Sec. 49) and may be labeled ZI> z2, ••• , Zn, where n is less than or equal to the 
degree of q(z). We then integrate the quotient 

(7) f(z) = p(z) 
q(z) 

around the positively oriented boundary of the semicircular region shown in Fig. 90. 
That simple closed contour consists of the segment of the real axis from z = -:- R to 
z =Rand the top half of the circle lzl = R, described counterclockwise and denoted 
by C R· It is understood that the positive number R is .large enough that the points 
z 1, z2, ... , Zn all lie inside the closed path. 

y 

-R 0 R X 

FIGURE90 
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The Cauchy residue theorem in Sec. 63 and the parametric representation z = x 
(-R < x < R) of the segment of the real axis just mentioned can be used to write 

R n 

f j(x) dx + 1 j(z) dz = 2ni L ~~s f(z), 
-R CR k=i k 

or 

(8) 
R n 

f f(x) dx = 2ni L Res f(z) -1 j(z) dz. 
-R k=i Z-Zk C« 

If 

lim 1 f(z) dz = 0, 
R-+oo CR 

it then follows that 

(9) f
oo n 

P.V. j(x) dx = 2ni L ~~s f(z). 
-oo k=i k 

If j(x) is even, equations (6) tell us, moreover, that 

(10) f
oo n 

f(x) dx = 2ni L ~~sk f(z) 
-oo k =I 

and 

(11) 
lo

oo n 

f(x) dx = ni L Res f(z). 
0 Z=Zk 

k=l 

72. EXAMPLE 
We tum now to an illustration of the method in Sec. 71 for evaluating improper 
integrals. 

EXAMPLE. In order to evaluate the integral 

roo x2 dx, 
lo x6 + 1 

we start with the observation that the function 

z2 
/(z) = z6 + 1 

has isolated singularities at the zeros of z6 + 1, which are the sixth roots of -1, and is 
analytic everywhere else. The method in Sec. 8 for finding roots of complex numbers 
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reveals that the sixth roots of -1 are 

ck=exp[i(: + 
2~n)] (k = 0, 1, 2, ... ' 5), 

and it is clear that none of them lies on the real axis. The first three roots, 

C -eiTC/6 c l o- , •=, 
lie in the upper half plane (Fig. 91) and the other three lie in the lower one. When 
R > 1, the points ck (k = 0, 1, 2) lie in the interior of the semicircular region bounded 
by the segment z = x (-R < x < R) of the real axis and the upper half C R of the 
circle lzl = R from z = R to z = -R. Integrating f(z) counterclockwise around the 
boundary of this semicircular region, we see that 

(1) iR f(x) dx + { f(z) dz = 2ni(Bo + Bt + B2), 
-R lcR 

where Bk is the residue of f(z) at ck (k = 0, 1, 2). 

y 

-R 0 R X 

FIGURE91 

With the aid of Theorem 2 in Sec. 69, we find that the points ck are simple poles 
off and that 

(k=0,1,2). 

Thus 

2n i ( B0 + B 1 + B2) = 2n i ( ;i - ;i + ;i) = ~ ~ 
and equation (1) can be put in the form 

(2) iR f(x) dx = n - { f(z) dz, 
-R 3 lcR 

which is valid for all values of R greater than 1. 
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Next, we show that the value of the integral on the right in equation (2) tends to 
0 as R tends to oo. To do this, we observe that when lzl = R, 

and 

So, if z is any point on C R• 

where 

and this means that 

(3) 

n R being the length of the semicircle CR. (See Sec. 41.) Since the number 

nR3 
MRnR = R6 -1 

is a quotient of polynomials in R and since the degree of the numerator is less than 
the degree of the denominator, that quotient must tend to zero as R tends to oo. More 
precisely, if we divide both numerator and denominator by R6 and write 

n 
R3 

MRnR= 
1 

, 
1-­

R6 

it is evident that M Rn R tends to zero. Consequently, in view of inequality (3), 

lim 1 f(z) dz = 0. 
R--+oo CR 

It now follows from equation (2) that 

JR x2 n 
lim dx = -, 

R--+oo -R x6 + 1 3 

or 

f oo x2 n 
P.V. 

6 
dx = -. 

-oo X + 1 3 
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Since the integrand here is even, we know from equations (6) in Sec. 71 and the 

statement in italics just prior to them that 

(4) 

EXERCISES 

Use residues to evaluate the improper integrals in Exercises 1 through 5. 

1. . i oo dx 

o x 2 + 1 

Ans.n/2. 

2 roo dx 
• fo (x2 + 1)2 · 

Ans. rr /4. 

3. roo 4dx . 
lo x + 1 

Ans.n/(2,.,fi). 

4. . i oo x2 dx 

o (x2 + l)(x2 + 4) 

Ans.n/6. 

5. i oo x 2 dx 

o (x 2 + 9)(x2 + 4)2 · 

Ans. rr /200. 

Use residues to find the Cauchy principal values of the integrals in Exercises 6 and 7. 

6.1oo dx . 
-oo x2 2x + 2 

1
00 x dx 

~ 2 . 
-oo (x + 1)(x2 + 2x + 2) 

Ans. -n/5. 

8. Use residues and the contour shown in Fig. 92, where R > 1, to establish the integration 

formula 

roo dx 2n 

fo x 3 + 1 = 3-Jf 
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y 
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0 R X 

FIGURE92 

9. Letm and n be integers, where 0 < m < n. Follow the steps below to derive the integration 
formula 

dx =-esc rr . ioo __ x2_m_ 1T (2m+ 1 ) 
o x 2n + 1 2n 2n 

(a) Show that the zeros of the polynomial z2n + llying above the real axis are 

[
. (2k + l)rr J ck = exp z 

2n 
(k = 0, 1, 2, ... , n - 1) 

and that there are none on that axis. 
(b) With the aid of Theorem 2 in Sec. 69, show that 

z2m 1 Res = --ei(2k+I)a (k=0,1,2, ... ,n 1), 
z=ck z2n + 1 2n 

where ck are the zeros found in part (a) and 

2m+ 1 
ot= 17:. 

2n 

Then use the summation formula 

n-1 
'\" k 1- zn 
L._;Z = --
k=O 1- z 

(z ::f. 1) 

(see Exercise 10, Sec. 7) to obtain the expression 

n-1 2 
. Z m 1T 

2m '\" Res = . 
L._; z=ck z2n + 1 n sin a 
k=O 

(c) Use the final result in part (b) to complete the derivation of the integration formula. 

10. The integration formula 

roo dx 

Jo [(x2 - a)Z + IF 
;; [(2a2 + 3)J A+ a+ aJ A -a], 

8 A3 
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where a is any real number and A = J a2 + 1, arises in the theory of case-hardening of 
steel by means of radio-frequency heating.* Follow the steps below to derive it. 

(a) Point out why the four zeros of the polynomial 

q(z) = (z 2 - a)2 + 1 

are the square roots of the numbers a ± i. Then, using the fact that the numbers 

and -z0 are the square roots of a+ i (Exercise 5, Sec. 9), verify that ±z0 are the 
square roots of a - i and hence that z0 and -z0 are the only zeros of q(z) in the 
upper half plane lm z > 0. 

(b) Using the method derived in Exercise 7, Sec. 69, and keeping in mind that z6 =a+ i 
for purposes of simplification, show that the point zo in part (a) is a pole of order 2 
of the function f(z) = l/[q(z)]2 and that the residue B1 at zo can be written 

81 
= _ q11 (z0) =a- i(2a2 + 3) 

[q'(z0)]3 16A2z0 

After observing that q'( -z) = -q'(z) and q"( -z) = q"(z), use the same method to 
show that the point -z0 in part (a) is also a pole of order 2 of the function f(z), with 
residue 

Then obtain the expression 

B - { q"(zo) } - -B 
2- [q'(zo)J3 - I· 

B + B = 1 Im [ -a + i (2a
2 + 3) ] 

I 2 8A2. 
I Zo 

for the sum of these residues. 

(c) Refer to part (a) and show that lq(z) I > (R- lzol)4 if lzl = R, where R > lzol· Then, 
with the aid of the final result in part (b), complete the derivation of the integration 
formula. 

73. IMPROPER INTEGRALS FROM FOURIER ANALYSIS 

Residue theory can be useful in evaluating convergent improper integrals of the form 

(1) i: f(x) sin ax dx or 1: f(x) cos ax dx, 

* See pp. 359-364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1. 
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where a denotes a positive constant. As in Sec. 71, we assume that f(x) = p(x)jq(x), 
where p(x) and q(x) are polynomials with real coefficients and no factors in common. 
Also, q(z) has no real zeros. Integrals of type (1) occur in the theory and application 
of the Fourier integral.* 

The method described in Sec. 71 and used in Sec. 72 cannot be applied directly 
here since (see Sec. 33) 

jsin azl 2 = sin2 ax + sinh2 ay 

and 

Ieos ax! 2 = cos2 ax+ sinh2 ay. 

More precisely, since 

. eay- e-ay 
smh ay = , 

2 

the moduli !sin azl and jcos az! increase like eay as y tends to infinity. The modification 
illustrated in the example below is suggested by the fact that 

I: f(x) cos ax dx i !R f(x) sin ax dx = !R f(x)eiax dx, 
-R -R 

together with the fact that the modulus 

jeiazl = jeia(x+iy)l = je-ayeiaxl = e-ay 

is bounded in the upper half plane y > 0. 

EXAMPLE. Let us show that 

(2) f oo cos 3x d _ 2rr 
X- . 

-oo (x2 + 1)2 e3 

Because the integrand is even, it is sufficient to show that the Cauchy principal value 
of the integral exists and to find that value. 

We introduce the function 

(3) 
1 

f(z) = (z2 + 1)2 

and observe that the product j(z)ei3z is analytic everywhere on and above the real 
axis except at the point z = i. The singularity z = i lies in the interior of the semi­
circular region whose boundary consists of the segment - R < x < R of the real axis 

*See the authors' "Fourier Series and Boundary Value Problems," 6th ed., Chap. 7, 2001. 
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and the upper half C R of the circle lz I = R (R > 1) from z = R to z = - R. Integration 
off (z)ei3z around that boundary yields the equation 

(4) 

where 

Since 

1R ei3x 1 . 
2 2 

dx = 2niB1 - j(z)e13z dz, 
-R (X + 1) CR 

B1 = Res[f(z)ei3z]. 
z=i 

f(z)ei3z = ¢(z) 
(z- i) 2 

ei3z 
where ¢(z) = . 

2
, 

(z + t) 

the p0int z = i is evidently a pole of order m = 2 of j(z)ei3z; and 

'( ') 1 B1 =¢ l = ~· 
te 

By equating the real parts on each side of equation (4), then, we find that 

(5) 1R cos 3x dx = 2n - Re { j(z)ei3z dz. 
-R (x2 + 1)2 e3 JcR 

Finally, we observe that when z is a point on C R• 

1 
lf(z)l < MR where MR = 

2 2 - (R -1) 

and that lei3z I = e-3Y < 1 for such a point. Consequently, 

(6) Re f j(z)ei3z dz 
lcR 

Since the quantity 

< { f(z)ei 3z dz < MRn R. 
lcR 

1 1'( 

tends to 0 as R tends to oo and because of inequalities (6), we need only let R tend to 
oo in equation (5) to arrive at the desired result (2). 
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74. JORDAN'S LEMMA 
In the evaluation of integrals of the type treated in Sec. 73, it is sometimes necessary 
to use Jordan's lemma,* which is stated here as a theorem. 

Theorem. Suppose that 
(i) a function f(z) is analytic at all points z in the upper half plane y > 0 that are 

exterior to a circle lzl = Ro; 
(ii) C R denotes a semicircle z = Rei0 (0 < () < rr), where R > R0 (Fig. 93); 

(iii) for all points z on CR, there is a positive constant MR such that 1/(z)l < MR, 
where 

lim MR = 0. 
R---+oo 

Then, for every positive constant a, 

(1) lim 1 f (z)eiaz dz = 0. 
R---+oo CR 

y 

0 R X 

FIGURE93 

The proof is based on a result that is known as Jordan's inequality: 

(2) {rr e-RsinO de< rr 
lo R 

(R > 0). 

To verify this inequality, we first note from the graphs of the functions y = sine and 
y = 20 /rr when 0 < e < rr /2 (Fig. 94) that sine > 20 jrr for all values of e in that 

*See the first footnote in Sec. 38. 
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y 

(} 

FIGURE94 

interval. Consequently, if R > 0, 

and so 

Hence 

(3) 

1T 
when 0 < e < -; - - 2 

rrJZ e-R sin 0 de < ..!!...._ 
Jo 2R 

(R > 0). 

But this is just another form of inequality (2), since the graph of y =sine is symmetric 
with respect to the vertical line e = 1T /2 on the interval 0 < e < 1T. 

Turning now to the verification of limit (1), we accept statements (i)-(iii) in the 
theorem and write 

Since 

1/(ReiO)I < MR and !exp(iaReie)! <e-aR sinO 

and in view of Jordan's inequality (2), it follows that 

{ f(z)eiaz dz < MRR rr e-aR sine de < MR 1T. 

feR fo a 

Limit (1) is then evident, since MR--+ 0 as R--+ oo. 

EXAMPLE. Let us find the Cauchy principal value of the integral 

1
00 x sinx dx 

2 . 
-oo x + 2x + 2 
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As usual, the existence of the value in question will be established by our actually 
finding it. 

We write 

z z f(z) = - , 
z2 + 2z + 2 (z - ZJ)(z- ZJ) 

where z1 = -1 + i. The point z1, which lies above the .X axis, is a simple pole of the 
function f (z)eiz, with residue 

(4) 

Hence, when R > v'2 and C R denotes the upper half of the positively oriented circle 
lzl = R, 

1R xeix dx 1 . 
2 

= 2niB1 - f(z)e 12 dz; 
-R X + 2x + 2 CR 

and this means that 

(5) 1R x sinx dx 1 · 
2 

= Im(2niB1)- Im f(z)e 1z dz. 
-R X + 2x + 2 CR 

Now 

(6) 

and we note that, when z is a point on C R• 

R 
lf(z)l < MR where MR = ---=-

(R v'2,)2 

and that leizl = e-Y < 1 for such a point. By proceeding as we did in the examples in 
Sees. 72 and 73, we cannot conclude that the right-hand side of inequality (6), and 
hence the left-hand side, tends to zero as R tends to infinity. For the quantity 

M n R = n R2 
R (R- v'2,)2 

does not tend to zero. Limit (1) does, however, provide the desired result. 
So it does, indeed, follow from inequality (6) that the left-hand side there tends 

to zero as R tends to infinity. Consequently, equation (5), together with expression (4) 
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for the residue B h tells us that 

(7) 1
00 x sin x dx . n . 

P.V. 
2 

= Im(2mB1) = -(sm 1 +cos 1). 
-oo x + 2x + 2 e 

EXERCISES 
Use residues to evaluate the improper integrals in Exercises 1 through 8. 

1. 1oo cosx dx (a> b > 0). 
-oo (x2 + a2)(x2 + b2) 

roo cos ax 
2. Jo x2 + 1 dx (a > 0). 

lr -a Ans. -e . 
2 

lo
oo cos ax 

3. 
2 2 2 

dx (a > 0, b > 0). 
o (x + b ) 

A lr ( b -ab ns. -
3 

1 + a )e . 
4b 

4. roo X Sin 2x dx. 
Jo x 2 + 3 

Ans. lr exp( -2.J3). 
2 

5. 1oo x ~in ax dx (a > 0). 
-00 X + 4 

A lr -a . ns. -e sma. 
2 

6. 1oo x3 :in ax dx (a> 0). 
-oo X + 4 

Ans. rre-a cos a. 

7 100 
x sin x dx 

• -oo (x2 + l)(x2 + 4) · 

lo
oo x 3 sin x dx 

8. . 
o (x2 + l)(x2 + 9) 
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Use residues to find the Cauchy principal values of the improper integrals in 
Exercises 9 through 11. 

foo sinx dx 
9. 2 . 

-oo x +4x + 5 

10. 

11. 

Ans. - n sin 2. 
e 

!
00 

(x + 1) cos x dx. 
-oo x2 + 4x + 5 

Ans. n (sin 2 - cos 2). 
e 

!
00 

cos x dx (b > O). 
-oo (x + a)2 + b2 

12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac­
tion theory: 

cos(x2
) dx = sin(x2

) dx = - -. lo
oo looo If; 

0 0 2 2 

(a) By integrating the function exp(iz2) around the positively oriented boundary of 
the sector 0 < r < R, 0 < () < n /4 (Fig. 95) and appealing to the Cauchy-Goursat 
theorem, show that 

lo
R 1 loR 2 1 . 2 cos(x2) dx = r;;. e-r dr - Re e1z dz 

0 V 2 0 CR 

and 

lo
R 1 loR 2 1 . 2 sin(x2) dx = r;;. e-r dr- Im e1z dz, 

0 v2 0 CR 

where C R is the arc z = Reif! (0 < e < n /4). 

y 

Rexp(in'/4) 

0 R X 

FIGURE95 
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(b) Show that the value of the integral along the arc C R in part (a) tends to zero a'l R 
tends to infinity by obtaining the inequality 

{ eiz2 dz < R (n:/2 e-R2 sinc/Jdl/> 

JcR 2 lo 
and then referring to the form (3), Sec. 74, of Jordan's inequality. 

(c) Use the results in parts (a) and (b), together with the known integration formula* 

1oo -x2 d .jii 
e X=-, 

0 2 

to complete the exercise. 

75. INDENTED PATHS 

In this and the following section, we illustrate the use of indented paths. We begin with 

an important limit that will be used in the example in this section. 

Theorem. Suppose that 
(i) a function /(z) has a simple pole at a point z = x0 on the real axis, with a Laurent 

series representation in a punctured disk 0 < lz - xol < R2 (Fig. 96) and with 

residue B0; 

( ii) C P denotes the upper half of a circle lz - x0 i = p, where p < R2 and the clockwise 
direction is taken. 

Then 

(1) 

y 

0 

lim 1 /(z) dz = -B0 ni. 
p-+0 c p 

X 

FIGURE% 

Assuming that the conditions in parts (i) and (ii) are satisfied, we start the proof 

of the theorem by writing the Laurent series in part (i) as 

f(z) = g(z) + Bo 
z -x0 

* See the footnote with Exercise 4, Sec. 46. 
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where 

00 

g(z) = L an(Z- xot 
n=O 

Thus 

(2) i J(z) dz = f g(z) dz + B0 f dz . 
c p J c p J c p z - xo 

Now the function g(z) is continuous when lz- x01 < R2, according to the theo­
rem in Sec. 58. Hence if we choose a number Po such that p <Po < R2 (see Fig. 96), it 
must be bounded on the closed disk lz - x01 < p0, according to Sec. 17. That is, there 
is a nonnegative constant M such that 

lg(z)l < M whenever lz- x01 <Po; 

and, since the length L of the path C P is L = 1'l p, it follows that 

f g(z)dz <ML=Mnp. 
Jcp 

Consequently, 

(3) lim f g(z) dz = 0. 
p-+O Jc p 

Inasmuch as the semicircle -C P has parametric representation 

(0 < (:} < J'C), 

the second integral on the right in equation (2) has the value 

--=- =- -.- pie10 d(:} = -i d() =-in. 1 dz 1 dz 1rr 1 · 1rr 
cpz-xo -cpz-x0 o pe10 o 

Thus 

(4) 1. 1 dz . tm =-lJ'l. 
p-+0 CP Z- Xo 

Limit (1) now follows by letting p tend to zero on each side of equation (2) and 
referring to limits (3) and (4). 



SEC.75 INDENTED PATHS 269 

EXAMPLE. Modifying the method used in Sees. 73 and 74, we derive here the 
integration formula* 

(5) rx; sin X d X = 1T 

lo x 2 

by integrating e12 /z around the simple closed contour shown in Fig. 97. In that 
figure, p and R denote positive real numbers, where p < R; and L 1 and L 2 represent 
the intervals p < x < R and - R < x < - p, respectively, on the real axis. While 
the semicircle CR is as in Sees. 73 and 74, the semicircle _Cp is introduced here in 
order to avoid integrating through the singularity z = 0 of e1 z I z. 

y 

X 

FIGURE97 

The Cauchy-Goursat theorem tells us that 

or 

(6) r eiz dz + { eiz dz = -1 eiz dz- r eiz dz. 
1L1 Z 1L2 Z Cp Z lcR Z 

Moreover, since the legs L 1 and -L2 have parametric representations 

(7) z =reiD= r (p < r < R) and z = reirr = -r (p < r < R), 

respectively, the left-hand side of equation (6) can be written 

1 eiz 1 eiz 1R eir 1R e-ir ·1R sin r 
- dz - - dz = - dr - - dr = 2z dr. 

L1 Z -L2 z p r p r p r 

*This formula arises in the theory of the Fourier integral. See the authors' "Fourier Series and Boundary 
Value Problems," 6th ed., pp. 206-208, 2001, where it is derived in a completely different way. 
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Consequently, 

(8) 1R sinr 1 eiz 1 eiz 2i dr =- - dz- - dz. 
p r 0 z ~ z 

Now, from the Laurent series representation 

eiz 1 [l (iz) (iz)2 
(iz) 3 J 

-=- +-+ + +··· z z 1! 2! 3! 

1 i i 2 i 3 

= - + - + -z +-z2 + · · · z I! 2! 3! 
(0 < lzl < oo), 

it is clear that ei z j z has a simple pole at the origin, with residue unity. So, according 
to the theorem at the beginning of this section, 

1 eiz 
lim - dz = -rri. 
p-+0 c z 

p 

Also, since 

I 1 1 

z !zl R 

when z is a point on C R• we know from Jordan's lemma in Sec. 74 that 

. 1 eiz hm -dz=O. 
R-+oo CR z 

Thus, by letting p tend to 0 in equation (8) and then letting R tend to oo, we arrive at 
the result 

·100 

sin r . 2z dr = rrz, 
o r 

which is, in fact, formula (5). 

76. AN INDENTATION AROUND A BRANCH POINT 

The example here involves the same indented path that was used in the example in the 
previous section. The indentation is, however, due to a branch point, rather than an 
isolated singularity. 

EXAMPLE. ·The integration formula 

(1) 1
00 ln x rr 

---:--- dx =-(In 2- 1) 
o (x 2 + 4)2 32 
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can be derived by considering the branch 

log z 
f(z) = (z2 + 4)2 ( 

n 3n) lzl > 0, -2 < arg z < 2 

of the multiple-valued function (log z)/(z2 + 4)2. This branch, whose branch cut 

consists of the origin and the negative imaginary axis, is analytic everywhere in the 

indicated domain except at the point z = 2i. In order that the isolated singularity 2i 

always be inside the closed path, we require that p < 2 < R. See Fig. 98, where the 

isolated singularity and the branch point z = 0 are shown and where the same labels 

L 1> L2 , C P' and C R as in Fig. 97 are used. According to Cauchy's residue theorem, 

{ f(z) dz + { f(z) dz + { f(z) dz + { f(z) dz = 2ni Re~ f(z). 
JL 1 lcR JL 2 lcp z=2t 

That is, 

(2) { f(z) dz + { f(z) dz = 2ni Re~ f(z)- { f(z) dz- { f(z) dz. 
JL 1 JL2 z-21 lcP JcR 

y 

X 

FIGURE98 

Since 

the parametric representations 

(3) z = reiO = r (p < r < R) and z = rirr = -r (p < r < R) 

for the legs L 1 and - L 2 can be used to write the left-hand side of equation (2) as 

1 f 1R ln r 1R In r +in 
f(z) dz- f(z) dz = 2 2 

dr + 2 2 dr. 
L 1 -L2 p (r +4) p (r +4) 
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Also, since 

¢(z) 
f(z) = (z- 2i)2 

log z 
where ¢(z) = . 

2
, 

(z + 2l) 

the singularity z = 2i of f(z) is a pole of order 2, with residue 

¢'(2i) = !!_ + i 1-ln 2. 
64 32 

Equation (2) thus becomes 

1R In r 1R dr 1r n 2 
2 

2 2
dr+in ? 

2
=-(ln2-l)+i-

P (r + 4) p (r- + 4) 16 32 

(4) - { f(z) dz- { f(z) dz; 
lcp lcR 

and, by equating the real parts on each side here, we find that 

CHAP. 7 

(5) 1R Inr n 1 1 2 
2 2 

dr = -(ln 2- 1)- Re f(z) dz- Re j(z) dz. 
p (r + 4) 16 CP CR 

It remains only to show that 

(6) lim Re f f(z) dz = 0 and 
p-+O lcp lim Re f f(z) dz = 0. 

R-+oo lcR 
For, by letting p and R tend to 0 and oo, respectively, in equation (5), we then arrive 
at 

1
00 In r 1r 

2 
2 2 

d r = -(In 2 - 1), 
o (r + 4) 16 

which is the same as equation (1). 
Limits (6) are established as follows. First, we note that if p < 1 and z = peie is 

a point on C P' then 

llog zl = lln p + iel <lin PI+ liB I <-In p + 1f 

and 

As a consequence, 

Re { f(z) dz < 
lcp 

f f(z) dz 
lcp 
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and, by !'Hospital's rule, the product pIn pin the numerator on the far right here tends 

to 0 as p tends to 0. So the first of limits (6) clearly holds. Likewise, by writing 

n In R 

1 1 lnR+n R+R 
Re f(z)dz < f(z)dz < 

2 2
nR=n , 

eR eR (R -4) (R- ~)-

and using }'Hospital's rule to show that the quotient (In R)/ R tends to 0 as R tends to 

oo, we obtain the second of limits (6). 
Note how another integration formula, namely 

(7) 
rX! dx n 

lo (x2 + 4)2 - 32' 

follows by equating imaginary, rather than real, parts on each side of equation (4): 

(8) 
32 

Im f f(z) dz- Im f j(z) dz. 
leP leR 

Formula (7) is then obtained by letting p and R tend to 0 and oo, respectively, since 

Im f f(z) dz < f f(z) dz 
lcP lep 

and Im f j(z) dz 
lei? 

77. INTEGRATION ALONG A BRANCH CUT 

< f f(z) dz . 
lei? 

Cauchy's residue theorem can be useful in evaluating a real integral when part of the 

path of integration of the function f(z) to which the theorem is applied lies along a 
branch cut of that function. 

EXAMPLE. Let x-a, where x > 0 and 0 < a < 1, denote the principal value of the 

indicated power of x; that is, x -a is the positive real number exp( -a In x). We shall 
evaluate here the improper real integral 

(1) 
r)() x-a d 

lo X+ l X 
(0 <a< 1), 

which is important in the study of the gamma function.* Note that integral (1) is 

improper not only because of its upper limit of integration but also because its integrand 

has an infinite discontinuity at x = 0. The integral converges when 0 < a < 1 since the 

integrand behaves like x-a near x = 0 and like x-a-l as x tends to infinity. We do not, 

* See, for example, p. 4 of the book by Lebedev cited in Appendix 1. 
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however, need to establish convergence separately; for that will be contained in our 
evaluation of the integral. 

We begin by letting C P and C R denote the circles lz I = p and lz I = R, respectively, 
where p < 1 < R; and we assign them the orientations shown in Fig. 99. We then 
integrate the branch 

(2) 
z-a 

f(z)=-­
z+l 

(lzl > 0, 0 < argz < 2n) 

of the multiple-valued function z-a j(z + 1), with branch cut arg z = 0, around the 
simple closed contour indicated in Fig. 99. That contour is traced out by a point moving 
from p to R along the top of the branch cut for f (z), next around C R and back to R, 
then along the bottom of the cut top, and finally around CP back top. 

y 

---
X 

FIGURE99 

Now 8 = 0 and 8 = 2n along the upper and lower "edges," respectively, of the 
cut annulus that is formed. Since 

f(z) = exp( -a log z) = exp[ -a~ln r + W)] 
· z + 1 red'+ 1 

where z = reUJ, it follows that 

J(z) = exp[-a(ln r + iO)] = r-a 

r+l r+l 

on the upper edge, where z = rei0 , and that 

exp[ -a (In r + i2n)] r-ae-i2arr 
f(z)= =---

r+l r+l 

on the lower edge, where z = rei2rr. The residue theorem thus suggests that 

(3) {R r-a dr + { J(z) dz - {R r-ae-i2arr dr + { f(z) dz 
JP r + 1 lcR JP r + 1 lcp 
= 2ni Res f(z). 

z=-1 
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Our derivation of equation (3) is, of course, only formal since /(z) is not analytic, 
or even defined, on the branch cut involved. It is, nevertheless, valid and can be fully 
justified by an argument such as the one in Exercise 8. 

The residue in equation (3) can be found by noting that the function 

¢(z) = z-a = exp( -a log z) = exp[ -a(ln r + ie)] (r > 0, 0 < e < 2;r) 

is analytic at z = -1 and that 

¢( -1) = exp[ -a(ln 1 + i;r)] = e-iarr ~ 0. 

This shows that the point z = -1 is a simple pole of the function /(z), defined by 
equation (2), and that 

Res f(z) = e-iarr. 
z=-1 

Equation (3) can, therefore, be written as 

(4) 

and 

(1- e-i2arr) 1R r-a dr = 2;rie-iarr- { f(z) dz- { f(z) dz. 
p r + 1 lcP feR 

Referring now to definition (2) of /(z), we see that 

f f(z) dz 
Jcp 

p-a 2 2;r 1-a 
< ;rp= p 
-l-p l-p 

1 R-a 2;r R 
/(z) dz < 2;r R = --

c R - R - 1 R - 1 Ra 

1 

Since 0 <a < 1, the values of these two integrals evidently tend to 0 asp and R tend 
to 0 and oo, respectively. Hence, if we let p tend to 0 and then R tend to oo in equation 
( 4), we arrive at the result 

(1 

or 

lo
oo r-a e-iarr eiarr 2i 
-- dr = 2;ri ·2a · -.- = ;r . . . 

o r + 1 1 - e-1 rr ezarr erarr - e-wrr 

This is, of course, the same as 

(5) 
{ oo _x_-_a_ dx = .7T 

Jo x + 1 sin a;r 
(0 <a< 1). 
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EXERCISES 

In Exercises 1 through 4, take the indented contour in Fig. 97 (Sec. 75). 

1. Derive the integration formula 

rXJ cos(ax)- cos(bx) dx = 1f (b- a) 
Jo x2 2 

(a> 0, b > 0). 

Then, with the aid of the trigonometric identity 1 - cos(2x) = 2 sin2 x, point out how it 
follows that 

1
00 sin2 x rr: 

--dx= -. 
o x2 2 

2. Evaluate the improper integral 

roo xa dx, 
Jo (x2 + 1)2 

where - 1 <a< 3 and xa = exp(a In x). 

Ans. (1 - a)n 
4 cos(arr:/2) 

3. Use the function 

zl/3 log z e(I/3) log z log z 
j(z) = z2 + 1 = z2 + 1 ( 

rr: 3n) lzl > 0, -2 < arg z < 2 

to derive this pair of integration formulas: 

1
00 .,yx ln x rr: 2 

-'---- dx = , 
o x 2 + 1 6 

roo .,yx Tl 

Jo x2 + 1 dx = J3 · 
4. Use the function 

f(z) = (log z)2 

z2 + 1 ( 
Jl' 3rr:) lzl > 0, -2 < arg z < 2 

to show that 

1
00 (In x f _ rr 3 
--dx--, 

o x2 + 1 8 
roo In X dx = 0. 

Jo x2 + 1 

Suggestion: The integration formula obtained in Exercise 1, Sec. 72, is needed here. 

5. Use the function 

z113 e0/3) log z 
f(z)=----

(z+a)(z+b) (z+a)(z+b) 
(lzl > 0, 0 < arg z < 2rr:) 

and a closed contour similar to the one in Fig. 99 (Sec. 77) to show formally that 

(a> b > 0). 
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6. Show that 

roo dx 

Jo ..ji(x2 + 1) 

1f 

by integrating an appropriate branch of the multiple-valued function 

z- 1/2 e< -1/2) log z 
f(z) = = -::---

z2 + 1 z2 + 1 

over (a) the indented path in Fig. 97, Sec. 75; (b) the closed contour in Fig. 99, Sec. 77. 

7. The beta function is this function of two real variables: 

B(p, q) = fo 1 

tP-1(1- t)q-1 dt (p > 0, q > 0). 

Make the substitution t = lj(x + 1) and use the result obtained in the example in Sec. 
77 to show that 

1f 
B(p,1-p)=-­

sin(pn) 
(O<p<l). 

8. Consider the two simple closed contours shown in Fig. 100 and obtained by dividing 

into two pieces the annulus formed by the circles C P and C R in Fig. 99 (Sec. 77). The 

legs L and - L of those contours are directed line segments along any ray arg z = 00 , 

where n < 00 < 3n /2. Also, r P and Yp are the indicated portions of C P' while r R and 

YR make up CR. 

y yl 
I 
I 
I 
I 
I 
I 
I p R 

X 

FIGURE 100 

(a) Show how it follows from Cauchy's residue theorem that when the branch 

z-a 
fJ(Z) = 

1 z+ ( 
1f 3Jr) lzl > 0, - 2 < arg z < 2 

of the multiple-valued function z-a I (z + 1) is integrated around the closed contour 
on the left in Fig. l 00, 

fR r-a dr + f fi(z) dz + f f 1(z) dz + f fi(z) dz = 2Jri Res j,(z). 
JP r + 1 JrR L lrP z=-1 



278 APPLICATIONS OF RESIDUES CHAP. 7 

(b) Apply the Cauchy-Goursat theorem to the branch 

z-a 
h(z) = 

1 z+ ( 
7r 5n) lzl > 0, Z < arg z < Z 

of z-a I (z + 1), integrated around the closed contour on the right in Fig. 100, to show 
that 

- {R r-ae-i21ln: dr + 1 h(z) dz- { h(z) dz + 1 h(z) dz = 0. 
]p r + 1 Yp JL YR 

(c) Point out why, in the last lines in parts (a) and (b), the branches j 1(z) and f2(z) of 
z-a j(z + 1) can be replaced by the branch 

z-a 
/(z) = 1 

z+ 
(lzl > 0, 0 < arg z < 2rr). 

Then, by adding corresponding sides of those two lines, derive equation (3), Sec. 
77, which was obtained only formally there. 

78. DEFINITE INTEGRALS INVOLVING SINES AND COSINES 
The method of residues is also useful in evaluating certain definite integrals of the type 

(1) la2

1f F(sin 8, cos B) dB. 

The fact that 8 varies from 0 to 2rr suggests that we consider 8 as an argument of a 
point z on the circle C centered at the origin. Hence we write 

(2) (0 < 8 < 2rr). 

Formally, then, 

dz = iei9 de= iz dB; 

and the relations 

(3) 
. z- z- 1 

smB = , 
2i 

z + z-1 
cosO= , 

2 
dB= ~z 

lZ 

enable us to transform integral (1) into the contour integral 

(4) 1 F(z- ~- 1 , z + z-
1

) ~z 
c 2z 2 zz 

of a function of z around the circle C in the positive direction. The original integral ( 1) 
is, of course, simply a parametric form of integral ( 4 ), in accordance with expression 
(2), Sec. 39. When the integrand of integral (4) is a rational function of z, we can 
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evaluate that integral by means of Cauchy's residue theorem once the zeros of the 
polynomial in the denominator have been located and provided that none lie on C. 

EXAMPLE. Let us show that 

(5) 
f 2

1f de 2n 

Jo 1 +a sin() - J1 - a2 
( -1 <a< 1). 

This integration formula is clearly valid when a = 0, and we exclude that case in our 
derivation. With substitutions (3), the integral takes the form 

(6) r 2/a dz, 
lc z2 + (2ija)z- 1 

where Cis the positively oriented circle lz I = 1. The quadratic formula reveals that the 
denominator of the integrand here has the pure imaginary zeros 

( 
l-JI-a2)· 

Z2 = l. 
a 

So if /(z) denotes the integrand, then 

f(z) = 2ja 
(z- z1)(z- z2) 

Note that, because Ia I < 1, 

Also, since lz 1z21 = I, it follows that lz11 < 1. Hence there are no singular points on C, 
and the only one interior to it is the point z1. The corresponding residue B1 is found 
by writing 

/(z) = ¢(z) 
Z ~ Zl 

where f/>(z) = 2/a . 
Z- Z2 

This shows that z 1 is a simple pole and that 

Consequently, 

1 2/a . 2n 
-=----'---- dz = 2nzB1 = ; 

cz2 +(2i/a)z-1 JI-a2 

and integration formula (5) follows. 
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The method just illustrated applies equally well when the arguments of the sine 
and cosine are integral multiples of(}. One can use equation (2) to write, for example, 

ei29 + e-i29 
cos 2(} = -----

2 

EXERCISES 

(ei9)2 + (ei0)-2 

2 

Use residues to evaluate the definite integrals in Exercises 1 through 7. 

1. r2n __ d_e __ 
lo 5 + 4sin e 

2;rr 
Ans. -. 

3 

!]"( d(J 
2. 2 . 

-n 1 + sin (J 

Ans. ,J'i;rr. 

J. ( 2rr cos2 3e de . 
lo 5-4 cos 2() 

3;rr 
Ans. ~. 

8 

4. {zrr __ d_e __ 
lo 1 +a cosO 

(-1 <a< 1). 

5. 

2;rr 
Ans. -;===:= 

J1-a2 

17t cos 2e de 
0 1 - 2a cos e + a2 

a2;rr 
Ans. 1- a2. 

(-1 <a< 1). 

6 frr de (a > 1). 
· lo (a + cos ())2 

7. fo]"( sin2n e de (n = 1, 2, ... ). 

(2n)! 
Ans. 

2 2 
;rr. 

2 n(n !) 
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79. ARGUMENT PRINCIPLE 

A function f is said to be meromorphic in a domain D if it is analytic throughout 
D except for poles. Suppose now that f is meromorphic in the domain interior to 
a positively oriented simple closed contour C and that it is analytic and nonzero 
on C. The image r of C under the transformation w- f(z) is a closed contour, 
not necessarily simple, in the w plane (Fig. 101). As a point z traverses C in the 
positive direction, its images w traverses r in a particular direction that determines 
the orientation of r. Note that, since f has no zeros on C, the contour r does not pass 
through the origin in the w plane. 

y v 
z 

X u 

FIGURE 101 

Let w and w0 be points on r, where w0 is fixed and ¢0 is a value of arg w0. Then 
let arg w vary continuously, starting with the value ¢0, as the point w begins at the point 
w0 and traverses r once in the direction of orientation assigned to it by the mapping 
w = f (z). When w returns to the point w0, where it started, arg w assumes a particular 
value of arg w0, which we denote by ¢ 1• Thus the change in arg w as w describes r 
once in its direction of orientation is ¢ 1 - ¢0. This change is, of course, independent 
of the point w0 chosen to determine it. Since w = f ( z), the number¢ 1 - ¢0 is, in fact, 
the change in argument off (z) as z describes C once in the positive direction, starting 
with a point z0; and we write 

Llc arg f (z) = ¢J - ¢o· 

The value of D-e arg f (z) is evidently an integral multiple of 2n, and the integer 

I 
-D-e arg f(z) 
2n 

represents the number of times the point w winds around the origin in the w plane. For 
that reason, this integer is sometimes called the winding number of r with respect to 
the origin w = 0. It is positive if r winds around the origin in the counterclockwise 
direction and negative if it winds clockwise around that point. The winding number 
is always zero when r does not enclose the origin. The verification of this fact for a 
special case is left to the exercises. 
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The winding number can be determined from the number of zeros and poles of 
f interior to C. The number of poles is necessarily finite, according to Exercise 11, 
Sec. 69. Likewise, with the understanding that f(z) is not identically equal to zero 
everywhere else inside C, it is easily shown (Exercise 4, Sec. 80) that the zeros of f 
are finite in number and are all of finite order. Suppose now that f has Z zeros and P 
poles in the domain interior to C. We agree that f has m0 zeros at a point z0 if it has a 
zero of order m0 there; and iff has a pole of order m P at z0, that pole is to be counted 
m P times. The following theorem, which is known as the argument principle, states 
that the winding number is simply the difference Z - P. 

Theorem. Suppose that 
(i) a function f(z) is meromorphic in the domain interior to a positively oriented 

simple closed contour C; 
(ii) f(z) is analytic and nonzero on C; 

(iii) counting multiplicities, Z is the number of zeros and P is the number of poles of 
f(z) inside C. 

Then 

(1) 
1 

-Lie arg f(z) = Z- P. 
2n 

To prove this, we evaluate the integral of f'(z)/f(z) around C in two different 
ways. First, we let z = z(t) (a< t <b) be a parametric representation for C, so that 

(2) f f'(z) dz = fb f'[z(t)]z'(t) dt. 
Jc f(z) la f[z(t)] 

Since, under the transformation w = f(z), the image r of C never passes through 
the origin in the w plane, the image of any point z = z(t) on C can be expressed in 
exponential form as w = p (t) exp[i ¢ (t) ]. Thus 

(3) f[z(t)] = p(t)ei<fl(t) (a<t<b); 

and, along each of the smooth arcs making up the contour r. it follows that (see 
Exercise 5, Sec. 38) 

(4) f'[z(t)]z'(t) = !!:_ f[z(t)] = !!:_[p(t)ei<fl(t)] = p'(t)ei<fl(t) + ip(t)ei<fl(t)¢'(t). 
dt dt 

Inasmuch as p 1(t) and ¢'(t) are piecewise continuous on the interval a< t < b, we 
can now use expressions (3) and (4) to write integral (2) as follows: 

f f'(z) dz = fb p'(t) dt + i fb ¢ 1(t) dt = ln p(t)]b + icp(t)]b. 
Jc f(z) la p(t) la a a 
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But 

Hence 

(5) 
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p(b) = p(a) and cp(b)- cp(a) = b.c arg f(z). 

1 ;;_f'_(z-'-) dz = i b.c arg f(z). 
c f(z) 

Another way to evaluate integral (5) is to use Cauchy's residue theorem. To be 
specific, we observe that the integrand f'(z)lf(z) is analytic inside and on C except 
at the points inside C at which the zeros and poles off occur. If f has a zero of order 
m0 at z0, then (Sec. 68) 

(6) f(z) = (z- Zo)m0g(z), 

where g(z) is analytic and nonzero at z0. Hence 

or 

(7) 

f'(zo) = mo(z- Zo)m0-
1g(z) + (z- zo)m0 g1(z), 

f'(z) 

f(z) 

mo + g'(z). 

z- zo g(z) 

Since g' (z) I g(z) is analytic at z0, it has a Taylor series representation about that point; 
and so equation (7) tells us that f' (z) If (z) has a simple pole at z0, with residue m 0. 

If, on the other hand, f has a pole of order m P at z0, we know from the theorem in 
Sec. 66 that 

(8) 

where ¢(z) is analytic and nonzero at z0. Because expression (8) has the same form 
as expression (6), with the positive integer m0 in equation (6) replaced by -m P' it is 

clear from equation (7) that f' (z) If (z) has a simple pole at z0, with residue -m p· 

Applying the residue theorem, then, we find that 

(9) 1 f'(z) dz = 2Jri(Z- P). 
c f(z) 

Expression (1) now follows by equating the right-hand sides of equations (5) and (9). 

EXAMPLE. The only singularity of the function 11z2 is a pole of order 2 at the 
origin, and there are no zeros in the finite plane. In particular, this function is analytic 

and nonzero on the unit circle z = ei8 (0 < () < 2n ). If we let C denote that positively 
oriented circle, our theorem tells us that 

_1 b.c arg(_!_) = -2. 
2n z2 
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That is, the image r of C under the transformation w = 1/ z2 winds around the origin 
w = 0 twice in the clockwise direction. This can be verified directly by noting that r 
has the parametric representation w = e-i28 (0 < e < 2n). 

, 
80. ROUCHE'S THEOREM 

The main result in this section is known as Rouchi's theorem and is a consequence of 
the argument principle, just developed in Sec. 79. It can be useful in locating regions 
of the complex plane in which a given analytic function has zeros. 

Theorem. Suppose that 
(i) two functions f(z) and g(z) are analytic inside and on a simple closed contourC; 

(ii) lf(z)l > lg(z)l ateachpointon C. 
Then f(z) and f(z) + g(z) have the same number of zeros, counting multiplicities, 
inside C. 

The orientation of C in the statement of the theorem is evidently immaterial. 
Thus, in the proof here, we may assume that the orientation is positive. We begin with 
the observation that neither the function f(z) nor the sum f(z) + g(z) has a zero on 
C, since 

lf(z)l > lg(z)l > 0 and IJ(z) + g(z)l > llf(z)l-lg(z)ll > 0 

when z is on C. 
If Z 1 and Z f+g denote the number of zeros, counting multiplicities, of f(z) and 

f(z) + g(z), respectively, inside C, we know from the theorem in Sec. 79 that 

1 1 
Z 1 = 

2
n Llc arg f(z) and Z f+g = 

2
n Llc arg[f(z) + g(z)]. 

Consequently, since 

it is clear that 

(1) 

where 

[ 
g(z) J =D-e arg f(z) +de arg 1 + f(z) , 

1 
Z f+g = Z 1 +-D-e arg F(z), 

2n 

F(z) = 1 + g(z) . 
f(z) 
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But 

IF(z)- 11 = lg(z)l < 1; 
lf(z)l 
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and this means that, under the transformation w = F(z), the image of C lies in the 
open disk Jw- 11 < 1. That image does not, then, enclose the origin w = 0. Hence 
6.c arg F(z) = 0 and, since equation (1) reduces to Z f+g = Z 1, the theorem here is 
proved. 

EXAMPLE. In order to determine the number of roots of the equation 

(2) z 7 
- 4z3 + z - 1 = 0 

inside the circle lzl = 1, write 

f(z) = -4z3 and g(z) = z1 + z- 1. 

Then observe that lf(z)l = 41zl3 = 4 and lg(z)l < lzl7 + lzl + 1 = 3 when lzl = 1. The 
conditions in Rouche's theorem are thus satisfied. Consequently, since f (z) has three 
zeros, counting multiplicities, inside the circle lzl = 1, so does f(z) + g(z). That is, 
equation (2) has three roots there. 

EXERCISES 
1. Let C denote the unit circle lzl = 1, described in the positive sense. Use the theorem in 

Sec. 79 to determine the value of l:J.c arg f(z) when 

(a) f(z) = z2; (b) f(z) = (z3 + 2)/z; (c) f(z) = (2z- 1)7/z3. 

Ans. (a) 4n; (b) -2n; (c) 8n. 

2. Let f be a function which is analytic inside and on a simple closed contour C, and suppose 
that f(z) is never zero on C. Let the image of C under the transformation w = f(z) 

be the closed contour r shown in Fig. 102. Determine the value of l:J.c arg f(z) from 

v 

u 

FIGURE 102 
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that figure; and, with the aid of the theorem in Sec. 79, determine the number of zeros, 
counting multiplicities, of f interior to C. 

Ans. 6rr; 3. 

3. Using the notation in Sec. 79, suppose that r does not enclose the origin w = 0 and that 
there is a ray from that point which does not intersect r. By observing that the absolute 
value of l::.c arg f(z) must be less than 2n when a point z makes one cycle around C 
and recalling that l::.c arg f (z) is an integral multiple of 2rr, point out why the winding 
number of r with respect to the origin w = 0 must be zero. 

4. Suppose that a function f is meromorphic in the domain D interior to a simple closed 
contour C on which f is analytic and nonzero, and let D0 denote the domain consisting 
of all points in D except for poles. Point out how it follows from the lemma in Sec. 26 
and Exercise 10, Sec. 69, that iff (z) is not identically equal to zero in D0, then the zeros 
off in D are all of finite order and that they are finite in number. 

Suggestion: Note that if a point z0 in D is a zero off that is not of finite order, then 
there must be a neighborhood of z0 throughout which j(z) is identically equal to zero. 

5. Suppose that a function f is analytic inside and on a positively oriented simple closed 
contour C and that it has no zeros on C. Show that iff has n zeros Zk(k = 1, 2, ... , n) 
inside C, where each Zk is of multiplicity mk> then 

[ 

! ) II zj (z . 
. dz =2m L mkzk· 

c J(z) k=I 

[Compare equation (9), Sec. 79 when P = 0 there.] 

6. Determine the number of zeros, counting multiplicities, of the polynomial 

(a) z6 - 5z4 + z3
- 2z; (b) 2z4 - 2z3 + 2z2 - 2z + 9 

inside the circle lzl = 1. 

Ans. (a) 4; (b) 0. 

7. Determine the number of zeros, counting multiplicities, of the polynomial 

(a) z4 + 3z3 + 6; (b) z4 - 2z3 + 9z2 + z 1; (c) z5 + 3z3 + z2 + 1 

inside the circle lzl = 2. 

Ans. (a) 3; (b) 2; (c) 5. 

8. Determine the number of roots, counting multiplicities, of the equation 

in the annulus 1 < lzl < 2. 

Ans. 3. 

9. Show that if cis a complex number such that lei > e, then the equation cz11 = ez has n 
roots, counting multiplicities, inside the circle lzl = 1. 
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10. Write f(z) = zn and g(z) = a0 + a1z + · · · + an-IZn-I and use Rouche's theorem to 
prove that any polynomial 

where n > 1, has precisely n zeros, counting multiplicities. Thus give an alternative proof 
of the fundamental theorem of algebra (Theorem 2, Sec. 49). 

Suggestion: Note that one can let an be unity. Then show that lg(z)l < lf(z)l on 
the circle lzl = R, where R is sufficiently large and, in particular, larger than 

11. Inequalities (5), Sec. 49, ensure that the zeros of a polynomial 

P(z) = ao + a1z + · · · + an-IZn-I + anzn 

of degree n > I all lie inside some circle lzl = R about the origin. Also, Exercise 4 above 
tells us that they are all of finite order and that there is a finite number N of them. Use 
expression (9), Sec. 79, and the theorem in Sec. 64 to show that 

N=Res P'(l/z), 
z=O z2 P(ljz) 

where multiplicities of the zeros are to be counted. Then evaluate this residue to show 
that N = n. (Compare Exercise 10.) 

12. Let two functions f and g be as in the statement of Rouche's theorem in Sec. 80, and let 
the orientation of the contour C there be positive. Then define the function 

<P(t) =_I_ f f'(z) + tg'(z) dz 

2rr:i lc f(z) + tg(z) 
(0 < t < 1) 

and follow the steps below to give another proof of Rouche's theorem. 

(a) Point out why the denominator in the integrand of the integral defining <l>(t) is never 
zero on C. This ensures the existence of the integral. 

(b) Lett and t0 be any two points in the interval 0 < t < 1 and show that 

I<P(t) _ <P(to)l = It- tol 
2rr: 

Then, after pointing out why 

fg' 

_ _.::...;;;:____::.....;:;: __ d z . i fg'- f'g 

c (j + tg)(f + t0g) 

lfg'- f'gl < .:..::._::;:_____.::_~ 

(f + tg)(f + t0g) - (lfl - lgl)2 

at points on C, show that there is a positive constant A, which is independent oft 
and t0, such that 

I<P(t)- <P(to)l < Alt- t0 1. 

Conclude from this inequality that <P(t) is continuous on the interval 0 < t < 1. 
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(c) By referring to equation (9), Sec. 79, state why the value of the function <I> is, for each 
value of t in the interval 0 < t < 1, an integer representing the number of zeros of 
f(z) + tg(z) inside C. Then conclude from the fact that <I> is continuous, as shown 
in part (b), that f(z) and f(z) + g(z) have the same number of zeros, counting 
multiplicities, inside C. 

81. INVERSE LAPLACE TRANSFORMS 

Suppose that a function F of the complex variable s is analytic throughout the finite s 
plane except for a finite number of isolated singularities. Then let L R denote a vertical 
line segment from s = y - i R to s = y + i R, where the constant y is positive and 
large enough that the singularities ofF all lie to the left of that segment (Fig. 103). A 
new function f of the real variable t is defined for positive values oft by means of the 
equation 

(1) f(t) = ~ lim 1 est F(s) ds 
2Jrl R~oo LR 

(t > 0), 

provided this limit exists. Expression (1) is usually written 

(2) 
1 jy+ioo 

f(t) = -. P.V. est F(s) ds 
2nz y-ioo 

(t > 0) 

[compare equation (3), Sec. 71], and such an integral is called a Bromwich integral. 
It can be shown that, when fairly general conditions are imposed on the functions 

involved, f(t) is the inverse Laplace transform of F(s). That is, if F(s) is the Laplace 
transform of f(t), defined by the equation 

(3) F(s) = fooo e-st f(t) dt, 

y 

0 y 

_...,y-iR 

FIGURE 103 
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then f(t) is retrieved by means of equation (2), where the choice of the positive 
number y is immaterial as long as the singularities of F all lie to the left of L R·* 

Laplace transforms and their inverses are important in solving both ordinary and partial 
differential equations. 

Residues can often be used to evaluate the limit in expression (1) when the 
function F(s) is specified. To see how this is done, we let sn (n = 1, 2, ... , N) denote 
the singularities ofF (s). We then let R0 denote the largest of their moduli and consider 
a semicircle C R with parametric representation 

(4) s = y + Reie -<(J<-(rr 3n) 
2- - 2 ' 

where R > R0 + y. Note that, for each sn, 

Hence the singularities all lie in the interior of the semicircular region bounded by C R 

and L R (see Fig. 103), and Cauchy's residue theorem tells us that 

N 

(5) 1 e5tF(s)ds=2niL~~s[estF(s)]- {c e5tF(s)ds. 
LR n=1 n J(R 

Suppose now that, for all points s on C R• there is a positive constant M R such that 

IF (s) I < M R• where M R tends to zero as R tends to infinity. We may use the parametric 
representation ( 4) for C R to write 

Then, since 

we find that 

(6) 

*For an extensive treatment of such details regarding Laplace transforms, see R. V. Churchill, "Opera­
tional Mathematics," 3d ed., 1972, where transforms F (s) with an infinite number of isolated singular 
points, or with branch cuts, are also discussed. 
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But the substitution tf> = () - (:rr /2), together with Jordan's inequality (2), Sec. 74, 
reveals that 

1
3
rr

12 
eRtcose d() = {rt e-Rtsin<P df/> < rr. 

rt/2 lo Rt 

Inequality (6) thus becomes 

(7) 

and this shows that 

(8) lim [ est F(s) ds = 0. 
R--+oo lcR 

Letting R tend to oo in equation (5), then, we see that the function f (t), defined by 
equation (1), exists and that it can be written 

(9) 
N 

f(t) = L Res[e51 F(s)] 
S-Sn 

n=l 

(t > 0). 

In many applications of Laplace transforms, such as the solution of partial differ­
ential equations arising in studies of heat conduction and mechanical vibrations, the 
function F (s) is analytic for all values of s in the finite plane except for an infinite 
set of isolated singular points sn (n = 1, 2, ... ) that lie to the left of some vertical line 
Re s = y. Often the method just described for finding f (t) can then be modified in 
such a way that the finite sum (9) is replaced by an infinite series of residues: 

(10) 
00 

f(t) = L Res[est F(s)] 
S-Sn 

n=l 

(t > 0). 

The basic modification is to replace the vertical line segments L R by vertical line 
segments LN (N = 1, 2, ... ) from s = y- ibN to s = y +ibN. The circular arcs CR 
are then replaced by contours C N (N = 1, 2, ... ) from y +ibN toy -ibN such that, 
for each N, the sum L N + C N is a simple closed contour enclosing the singular points 
sb s2, ... , sN. Once it is shown that 

(11) lim { est F(s) ds = 0, 
N--+oo leN 

expression (2) for f (t) becomes expression ( lO). 
The choice of the contours CN depends on the nature of the function F(s). 

Common choices include circular or parabolic arcs and rectangular paths. Also, the 
simple closed contour L N + C N need not enclose precisely N singularities. When, for 
example, the region between LN + CN and LN+l + CN+l contains two singular points 
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of F(s), the pair of corresponding residues of est F(s) are simply grouped together as 

a single term in series (10). Since it is often quite tedious to establish limit (11) in any 

case, we shall accept it in the examples and related exercises below that involve an 

infinite number of singularities.* Thus our use of expression (10) will be only formal. 

82. EXAMPLES 

Calculation of the sums of the residues of est F (s) in expressions (9) and ( 1 0), Sec. 81, 

is often facilitated by techniques developed in Exercises 12 and 13 of this section. We 

preface our examples here with a statement of those techniques. 

Suppose that F (s) has a pole of order m at a point s0 and that its Laurent series 

representation in a punctured disk 0 < Is -sol < R2 has principal part 

Then 

(1) Res[estF(s)]=esot[bt+b2t+···+ bm tm-1]. 
s=so 1! (m -1)! 

When the pole s0 is of the form s0 =a+ if3 (f3 =f. 0) and F(s) = F(S) at points of 

analyticity of F(s) (see Sec. 27), the conjugate s0 =a - if3 is also a pole of order m. 

Moreover, 

Res[est F(s)] + Res[est F(s)] 
s=so s=so 

(2) = 2eat Re{eif3t [bl + b2 t + ... + bm tm-1]} 
1! (m-1)! 

when tis real. Note that if s0 is a simple pole (m = 1), expressions (1) and (2) become 

(3) Res[est F(s)] = esot Res F(s) 
s=so s=so 

and 

(4) ~~~[est F(s)] +~~~[est F(s)] = 2eat Re[ eif3t ~~~ F(s) J, 
respectively. 

*An extensive treatment of ways to obtain limit ( 11) appears in the book by R. V. Churchill that is cited 

in the footnote earlier in this section. In fact, the inverse transform to be found in Example 3 in the next 

section is fully verified on pp. 220-226 of that book. 
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EXAMPLE 1. Let us find the function f(t) that corresponds to 

s 
F(s) = --=--~ 

(s2 + a2)2 
(5) (a> 0). 

The singularities of F (s) are the conjugate points 

Upon writing 

s0 =at and s0 = -ai. 

F(s) = ¢(s) 
(s- ai)2 

s 
where ¢(s) = 

2
, 

(s + ai) 

CHAP. 7 

we see that ¢ (s) is analytic and nonzero at s0 = ai. Hence s0 is a pole of order m = 2 
of F(s). Furthermore, F(s) = F(S) at points where F(s) is analytic. Consequently, s0 
is also a pole of order 2 of F(s); and we know from expression (2) that 

(6) Res[e51 F(s)] + Res[est F(s)] = 2 Re[eiat(bl + b2t)], 
s=so s-so 

where b1 and b2 are the coefficients in the principal part 

b2 + . 
s - at (s - az )2 

of F (s) at ai. These coefficients are readily found with the aid of the first two terms 
in the Taylor series for ¢(s) about s0 = ai: 

F(s) = 1 
. ¢(s) = 1 

. [1/J(ai) + ¢'(ai) (s- ai) + · · ·] 
(s- az)2 (s- at)2 1! 

cp(ai) ¢'(ai) 
--'--'--""'----:- + + · · · (0 <Is- ail < 2a). 
(s - ai) 2 s - ai 

It is straightforward to show that ¢(ai) = -i/(4a) and ¢'(ai) = 0, and we find that 
b1 = 0 and b2 = -i/(4a). Hence expression (6) becomes 

Res[est F(s)] + Res[est F(s)] = 2 Re[eiat (-_!_t)] = -1 
t sin at. 

s=so s=so 4a 2a 

We can, then, conclude that 

(7) f (t) = _!_t sin at 
2a 

(t > 0), 

provided that F(s) satisfies the boundedness condition stated in italics in Sec. 81. 
To verify that boundedness condition, we let s be any point on the semicircle 

s = y + ReiO (n 3n) -<&<-2- - 2 , 
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where y > 0 and R >a+ y; and we note that 

lsi= IY + Rei8
1 < y + R and lsi= IY + Rewl > ly- Rl = R- y >a. 

Since 

it follows that 

lsi 
IF(s)i= 2 22 <MR 

Is +a I 
y+R 

where M R = __ :__ __ -=-=-
[(R _ y)2 _ a2]2 

The desired boundedness condition is now established, since M R --+ 0 as R --+ oo. 

EXAMPLE 2. In order to find f(t) when 

F ( ) 
_ tanh s _ sinh s 

s - - ' 
s2 s2 cosh s 

we note that F(s) has isolated singularities at s = 0 and at the zeros (Sec. 34) 

(n = 0, ±1, ±2, ... ) 

of cosh s. We list those singularities as 

s0 = 0 and 
(2n - l)n . 

Sn = l, 
2 

(2n - l)n . 
Sn =- l 

2 
(n = 1, 2, ... ). 

Then, formally, 

(8) f(t) =¥~~[est F(s)] + f {¥~~[est F(s)] ~~~[est F(s)]}. 
n=l 

Division of Maclaurin series yields the Laurent series representation 

1 sinh s 1 1 
F(s) =- · =-- -s + · · · 

s2 cosh s s 3 

which tells us that s0 = 0 is a simple pole of F(s ), with residue unity. Thus 

(9) Res[e'~t F(s)] =Res F(s) = 1, 
s=so s=so 

according to expression (3). 
The residues ofF (s) at the points sn (n = 1, 2, ... ) are readily found by applying 

the method of Theorem 2 in Sec. 69 for identifying simple poles and determining the 
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residues at such points. To be specific, we write 

F(s) = p(s) where p(s) =sinh s and q(s) = s2 cosh s 
. q(s) 

and observe that 

sinh sn = sinh[i( mr- ~) J = i sin( mr- ~) = -i cos mr = ( -1)n+l if=. 0. 

Then, since 

we find that 

p(sn) 1 4 1 
Res F(s) = = - = -- · ---
s=sn q1(sn) s~ rr2 (2n - 1)2 

(n = 1, 2, ... ) . 

[Compare Example 3 in Sec. 69.] The identities 

sinh s = sinh s and cosh s = cosh s 

(see Exercise 11, Sec. 34) ensure that F(s) = F(s) at points of analyticity of F(s). 
Hence sn is also a simple pole of F(s), and expression (4) can be used to write 

Res [est F(s)] +Res [est F(s)] 
S-Sn S=Sn 

=2Re{-.i_· 1 exp[i(2n-l)rrt]} 
rr2 (2n - 1)2 2 

(10) 
8 1 (2n l)rrt 

=--· cos (n=1,2, ... ). 
rr2 (2n - 1)2 2 

Finally, by substituting expressions (9) and (1 0) into equation (8), we arrive at 
the desired result: 

(11) 
00 

f( ) 
_ 

1 
8 " 1 (2n - 1)rrt t- --~ cos~--~--

rr2 (2n - 1)2 2 
n=l 

EXAMPLE 3. We consider here the function 

(12) 
sinh(xs 112) 

F(s)=---­
s sinh(s 112) 

(0 <X < 1), 

(t > 0). 
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where sl/2 denotes any branch of this double-valued function. We agree, however, to 
use the same branch in the numerator and denominator, so that 

xs 112 + (xs 112
)
3 /3! + · · · x + x 3sj6 + · · · F(s)= = __ ...:__ __ 

s[sl/2 + (sll2)3 /3! + · · ·] s + s2 /6 + · · · 
(13) 

when sis not a singular point of F(s ). One such singular point is clearly s = 0. With 
the additional agreement that the branch cut of s 112 does not lie along the negative real 
axis, so that sinh(s 112) is well defined along that axis, the other singular points occur 
if s 112 = ±n:rri (n = 1, 2, ... ). The points 

-0 d - 2 2 s0 - an sn - -n :rr (n = 1, 2, ... ) 

thus constitute the set of singular points of F(s). The problem is now to evaluate the 
residues in the formal series representation 

00 

(14) f(t) = Res[est F(s)] + L Res[est F(s)]. 
s=so s=sn 

n=l 

Division of the power series on the far right in expression (13) reveals that s0 is 
a simple pole of F(s), with residue x. So expression (3) tells us that 

(15) Res[e8 t F(s)] = x. 
s=so 

As for the residues of F(s) at the singular points sn = -n2:rr2 (n = 1, 2, ... ), we 
write 

F(s) = p(s) where p(s) = sinh(xs 112) and q(s) = s sinh(s 112). 
q(s) 

Appealing to Theorem 2 in Sec. 69, as we did in Example 2, we note that 

and this tells us that each sn is a simple pole of F(s), with residue 

p(s ) 2 ( -l)n . 
Res F(s) = n =- · Silln:rrx. 
s=sn q' (sn) :rr n 

So, in view of expression (3), 

(16) 
2 ( -1)n 2 2 • 

Res[est F(s)] = esnt Res F(s) =- · e-n rr t Sill n:rrx. 
S=Sn S=Sn ]l' n 

Substituting expressions (15) and (16) into equation (14), we arrive at the function 

(17) 
00 

2 '""" ( -l)n 2 2 • f(t) = x +- L..t e-n rr t Sill n:rrx 
:rr n=1 n 

(t > 0). 
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EXERCISES 

In Exercises 1 through 5, use the method described in Sec. 81 and illustrated in Example 
1, Sec. 82, to find the function f(t) corresponding to the given function F(s). 

2s3 

1. F(s) = s4- 4. 

Ans. f (t) = cosh ...fit + cos ...fit. 

2. F(s)= 2s-2 
(s + l)(s2 + 2s + 5) 

Ans. f(t) = e-t(sin 2t +cos 2t- 1). 

12 
3. F(s) = -s3_+_8 

Ans. f(t) = e-21 + e1 ( J3 sin J3t -cos J3t). 

2 2 
4. F(s) = s -a (a> 0). 

(s2 + a2)2 

Ans. f(t)- t cos at. 

8a3s2 
5. F(s)= 

2 23 
(a>O). 

(s +a ) 
Suggestion: Refer to Exercise 4, Sec. 65, for the principal part of F(s) at ai. 

Ans. f(t) = (1 + a 2 t 2) sin at- at cos at. 

In Exercises 6 through 11, use the formal method, involving an infinite series of residues 
and illustrated in Examples 2 and 3 in Sec. 82, to find the function f(t) that corresponds 
to the given function F(s). 

6• F(s) 
__ sinh(xs) (O 

1 <X< ). 
s2 cosh s 

A !()
- 8 ~ (-I)n . (2n-l):rrx (2n-l):rrt 

ns. t - x + 2 L.. 
2 

sm cos . 
Jr n=l (2n - I) 2 2 

1 
7. F (s) = ----:-:-=­

s cosh(s 112) 

A !( ) _ 1 4 ~ ( -l)n [ (2n - 1)2:rr 2t] 
ns. t - +-L.. exp - . 

;r n=l 2n- 1 4 
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S. F(s) = coth(JTs/2). 
s2 + 1 

00 

Ans. f(t) = 2 _ 4""" cos 2nt .* 
JT JT L.. 4n2 - 1 

n=1 

sinh (xs 112) 
9. F (s) = (0 < x < 1). 

s2 sinh (s 112) 

· 00 n+l 

EXERCISES 297 

1 
Ans. f(t) = -x(x2 

6 
1 2 """ ( -1) n2rr2t • ) + xt + 

3 
L.. 

3 e- sm nJTx. 
JT n=l n 

1 1 
10. F(s) = - - --

s2 s sinh s 

2 00 <-w+l 
Ans. f(t) =-L sin nJTt. 

rr n=l n 

11. F(s) = sinh(xs) (0 < x < 1), 
s (s2 + w2) cosh s 

(2n- 1)rr 
where w > 0 and w =/= Wn = (n = 1, 2, ... ). 

2 

A !( ) 
_ sin wx sin wt 

2 
Loo ( -l)n+l . sin wnx sin Wnt 

ns. t - + . 
w2 cos w w w2 - w2 n=l n n 

12. Suppose that a function F(s) has a pole of order m at s = s0, with a Laurent series 
expansiOn 

in the punctured disk 0 < Is- sol < R2, and note that (s - s0)m F(s) is represented in 
that domain by the power series 

00 

bm + bm-I(s- so)+···+ b2(s- so)m-2 + b1(s- so)m-l + L an(s- s0 )m+n. 

n=O 

By collecting the terms that make up the coefficient of (s - so)m- 1 in the product (Sec. 61) 
of this power series and the Taylor series expansion 

[ 

m-2 m-1 j st s t t t m-2 t m-1 
e = e 0 1 + - (s - s0) + · · · + (s - so) + (s - so) + · · · 

I! (m -2)! (m -1)! 

*This is actually the rectified sine function f(t) = 1 sin tj. See the authors' "Fourier Series and Boundary 
Value Problems," 6th ed., p. 68, 2001. 
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of the entire function est = esot e<s-so)t, show that 

Res[estF(s)]=esot[bt+bzt+···+ bm-i tm-2+ bm tm-1], 
s=so 1! (m 2)! (m- 1)! 

as stated at the beginning of Sec. 82. 

13. Let the point s0 =a+ if3 (/3 =!= 0) be a pole of order m of a function F(s), which has a 
Laurent series representation 

00 

F(s) = L a~l~ 
n=O 

in the punctured disk 0 < Is- sol < R2. Also, assume that F(s) = F(S) at points s where 
F(s) is analytic. 

(a) With the aid of the result in Exercise 6, Sec. 52, point out how it follows that 

00 - - -

F(-) "-c- -)n b1 bz bm s = ~ an S - so + _ _ + _ _ 
2 

+ .. · + _ ____:.:.:.____ 
n=O s - so (s - so) (S - So)m 

when 0 < Is- sol < R2• Then replaces by s here to obtain a Laurent series repre­
sentation for F(s) in the punctured disk 0 < Is- sol < R2, and conclude that s0 is a 
pole of order m of F(s). 

(b) Use results in Exercise 12 and part (a) above to show that 

Res[est F(s)) + Res[es1 F(s)] = 2e011 Re{ei{Jt [b1 + bz t + ... + bm tm-l]} 
S=So S=So 1! (m- 1)! 

when t is real, as stated at the beginning of Sec. 82. 

14. Let F(s) be the function in Exercise 13, and write the nonzero coefficient bm there in 
exponential form as bm = r m exp(iem). Then use the main result in part (b) of Exercise 
13 to show that when tis real, the sum of the residues of est F(s) at s0 =a+ if3 (/3 =/= 0) 
and s0 contains a term of the type 

2r 1 ----'--'m-tm- eat cos(f3t + fJm). 
(m- 1)! 

Note that if a > 0, the product tm 1e011 here tends to oo as t tends to oo. When the 
inverse Laplace transform f(t) is found by summing the residues of e~1 F(s), the term 
displayed above is, therefore, an unstable component of f(t) if a > 0; and it is said to 
be of resonance type. If m > 2 and a = 0, the term is also of resonance type. 



CHAPTER 

8 
MAPPING BY ELEMENTARY 

FUNCTIONS 

The geometric interpretation of a function of a complex variable as a mapping, or 
transformation, was introduced in Sees. 12 and 13 (Chap. 2). We saw there how the 
nature of such a function can be displayed graphically, to some extent, by the manner 
in which it maps certain curves and regions. 

In this chapter, we shall see further examples of how various curves and regions 
are mapped by elementary analytic functions. Applications of such results to physical 
problems are illustrated in Chaps. 10 and 11. 

83. LINEAR TRANSFORMATIONS 

To study the mapping 

(1) w= Az. 

where A is a nonzero complex constant and z =I= 0, we write A and z in exponential 
form: 

Then 

(2) 

and we see from equation (2) that transformation (1) expands or contracts the radius 
vector representing z by the factor a = I A I and rotates it through an angle a = arg A 

299 
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about the origin. The image of a given region is, therefore, geometrically similar to 
that region. 

The mapping 

(3) w = z + B, 

where B is any complex constant, is a translation by means of the vector representing 
B. That is, if 

w = u + i v, z = x + i y, and B = b 1 + i b2, 

then the image of any point (x, y) in the z plane is the point 

(4) 

in the w plane. Since each point in any given region of the z plane is mapped into the 
w plane in this manner, the image region is geometrically congruent to the original 
one. 

The general (nonconstant) linear transformation 

(5) w = Az + B (A :;#: 0), 

which is a composition of the transformations 

Z = Az (A =1= 0) and w = Z + B, 

is evidently an expansion or contraction and a rotation, followed by a translation. 

EXAMPLE. The mapping 

w- (1 + i)z + 2 

transforms the rectangular region shown in the z plane of Fig. 104 into the rectangular 

y y v 

-1 + 3i 1 + 3i 

B 
1 + 2i 

B' 

A' A" 

0 A X X u 

FIGURE 104 
w = (l + i)z + 2. 
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region shown in the w plane there. This is seen by writing it as a composition of the 
transformations 

Z = (1 + i)z and w = Z + 2. 

Since 1 + i = ,J2 exp( i rc /4), the first of these transformations is an expansion by the 
factor ,J2 and a rotation through the angle rc j4. The second is a translation two units 
to the right. 

EXERCISES 

1. State why the transformation w = iz is a rotation of the z plane through the angle rc /2. 
Then find the image of the infinite strip 0 < x < 1. 

Ans. 0 < v < 1. 

2. Show that the transformation w = i z + i maps the half plane x > 0 onto the half plane 
v > 1. 

3. Find the region onto which the half plane y > 0 is mapped by the transformation 

w = (1 + i)z 

by using (a) polar coordinates; (b) rectangular coordinates. Sketch the region. 

Ans. v > u. 

4. Find the image of the half plane y > 1 under the transformation w = (1 - i)z. 

5. Find the image of the semi-infinite strip x > 0, 0 < y < 2 when w = iz + 1. Sketch the 
strip and its image. 

Ans. -1 < u < 1, v < 0. 

6. Give a geometric description of the transformation w = A(z + B), where A and B are 
complex constants and A ::j:. 0. 

84. THE TRANSFORMATION w = liz 

The equation 

1 
W=-(1) 

z 

establishes a one to one correspondence between the nonzero points of the z and the 
w planes. Since zz = lzl2, the mapping can be described by means of the successive 
transformations 

(2) 
1 

Z=-
2

z, w=Z. 
lzl 
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The first of these transformations is an inversion with respect to the unit circle 
lz I = 1. That is, the image of a nonzero point z is the point Z with the properties 

1 
I Z I = - and arg Z = arg z. 

lzl 
Thus the points exterior to the circle I z I = 1 are mapped onto the nonzero points interior 
to it (Fig. 105), and conversely. Any point on the circle is mapped onto itself. The 
second of transformations (2) is simply a reflection in the real axis. 

(3) 

y z 

0 X 

FIGURE 105 

If we write transformation ( 1) as 

1 
T(z) =­

z 
(z "I 0), 

we can define T at the origin and at the point at infinity so as to be continuous on the 
extended complex plane. To do this, we need only refer to Sec. 16 to see that 

(4) 

and 

(5) 

lim T(z) = oo smce 
z~o 

1 
lim =0 
z~o T(z) 

lim T (z) = 0 since lim T (I) = 0. 
z~oo z~o z 

In order to make T continuous on the extended plane, then, we write 

(6) T(O) = oo, T(oo) = 0, 
1 

and T(z) =-
z 

for the remaining values of z. More precisely, equations (6), together with the first of 
limits (4) and (5), show that 

(7) lim T(z) = T(z0) 
z~zo 

for every point z0 in the extended plane, including zo = 0 and zo = oo. The fact that T 
is continuous everywhere in the extended plane is now a consequence of equation (7) 
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(see Sec. 17). Because of this continuity, when the point at infinity is involved in any 
discussion of the function 1/z, it is tacitly assumed that T(z) is intended. 

85. MAPPINGS BY liz 

When a point w = u + i v is the image of a nonzero point z = x + i y under the 
transformation w = ljz, writing w = z/lzl 2 reveals that 

X 
u - -,----------,-

- x2 + y2' 
(1) 

-y 
v = ----::---=----

x2 + y2 

Also, since z = 1jw = wflwl2, 

(2) 
u 

X-----::--­
- u2 + v2' 

-v 
y = . 

u2 + v2 

The following argument, based on these relations between coordinates, shows that the 
mapping w = 1/ z transforms circles and lines into circles and lines. When A, B, C, 
and Dare all real numbers satisfying the condition B2 + C2 > 4AD, the equation 

(3) A(x2 + l) + Bx + Cy + D = 0 

represents an arbitrary circle or line, where A :f=. 0 for a circle and A = 0 for a line. 
The need for the condition B2 + C2 > 4AD when A :f=. 0 is evident if, by the method 
of completing the squares, we rewrite equation (3) as 

( x !!__)2 
( +£)2 

= (y'B2+C2-4AD)
2
· 

+ 2A + y 2A 2A 

When A = 0, the condition becomes B2 + C2 > 0, which means that B and C are not 
both zero. Returning to the verification of the statement in italics, we observe that if 
x andy satisfy equation (3), we can use relations (2) to substitute for those variables. 
After some simplifications, we find that u and v satisfy the equation (see also Exercise 
14 below) 

(4) 

which also represents a circle or line. Conversely, if u and v satisfy equation (4), it 
follows from relations ( 1) that x and y satisfy equation (3 ). 

It is now clear from equations (3) and (4) that 

(i) a circle (A :f=. 0) not passing through the origin (D =I= 0) in the z plane is trans­
formed into a circle not passing through the origin in the w plane; 

(ii) a circle (A =I= 0) through the origin (D = 0) in the z plane is transformed into a 
line that does not pass through the origin in the w plane; 
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(iii) a line (A = 0) not passing through the origin (D f= 0) in the z plane is transformed 
into a circle through the origin in the w plane; 

(iv) a line (A = 0) through the origin (D = 0) in the z plane is transformed into a line 
through the origin in the w plane. 

EXAMPLE 1. According to equations (3) and (4), a vertical line x = c1 (c1 f= 0) is 
transformed by w = 1/z into the circle -c1(u

2 + v2) + u = 0, or 

(5) (
u- _1 )2 + v2 = (-1 )2. 

2c1 2c1 

which is centered on the u axis and tangent to the v axis. The image of a typical point 
(cl> y) on the line is, by equations (1 ), 

( 
CJ -y ) 

(u' v) = 2 2' 2 2 · 
c1 + y c1 + y 

If c1 > 0, the circle (5) is evidently to the right of the v axis. As the point (ch y) 
moves up the entire line, its image traverses the circle once in the clockwise direction, 
the point at infinity in the extended z plane corresponding to the origin in the w plane. 
For if y < 0, then v > 0; and, as y increases through negative values to 0, we see that 
u increases from 0 to 1jc1• Then, as y increases through positive values, vis negative 
and u decreases to 0. 

If, on the other hand, c1 < 0, the circle lies to the left of the v axis. As the point 
(cl> y) moves upward, its image still makes one cycle, but in the counterclockwise 
direction. See Fig. I 06, where the cases c1 = l/3 and c1 = -1/2 are illustrated. 

y v 

c1 = -! c1 =-! 

---- - ----c2 = ~ 
u 

FIGURE 
106 
w = 1/z. 

EXAMPLE 2. A horizontal line y = c2 (c2 =I= 0) is mapped by w = 1/z onto the 
circle 

(6) u 2 + v+- = - , ( 1)2 (1)2 
2c2 2c2 
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which is centered on the v axis and tangent to the u axis. Two special cases are shown 
in Fig. 106, where the corresponding orientations of the lines and circles are also 
indicated. 

EXAMPLE 3. When w = ljz, the half plane x > c1 (c1 > 0) is mapped onto the 
disk 

(7) ( u- _1 )2 + v2 < (-1 )2· 
2c1 2c1 

For, according to Example 1, any line x = c (c > c1) is transformed into the circle 

(8) 

Furthermore, as c increases through all values greater than c1, the lines x = c move 
to the right and the image circles (8) shrink in size. (See Fig. 107.) Since the lines 
x = c pass through all points in the half plane x > c1 and the circles (8) pass through 
all points in the disk (7), the mapping is established. 

y 

0 X 

X= Ct X= C 

EXERCISES 

v 

0 u 

FIGURE107 
w = 1/z. 

1. In Sec. 85, point out how it follows from the first of equations (2) that when w = 1/z, 
the inequality x > c1 (c1 > 0) is satisfied if and only if inequality (7) holds. Thus give an 
alternative verification of the mapping established in Example 3 in that section. 

2. Show that when c1 < 0, the image of the half plane x < c1 under the transformation 
w = 1/z is the interior of a circle. What is the image when c1 = 0? 

3. Show that the image of the half plane y > c2 under the transformation w = 1/ z is the 
interior of a circle, provided c2 > 0. Find the image when c2 < 0; also find it when c2 = 0. 

4. Find the image of the infinite strip 0 < y < 1/(2c) under the transformation w = 1/z. 
Sketch the strip and its image. 

Ans. u2 + (v + c)2 > c2 , v < 0. 
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5. Find the image of the quadrant x > 1, y > 0 under the transformation w = 1/ z. 

Ans. (u ~ ~y + v2 
< (~Y· v < 0. 

6. Verify the mapping, where w = 1jz, of the regions and parts of the boundaries indicated 
in (a) Fig. 4, Appendix 2; (b) Fig. 5, Appendix 2. 

7. Describe geometrically the transformation w = 1/(z ~ 1). 

8. Describe geometrically the transformation w = i jz. State why it transforms circles and 
lines into circles and lines. 

9. Find the image of the semi-infinite strip x > 0, 0 < y < 1 when w = i 1 z. Sketch the strip 
and its image. 

Ans. (u- ~y + v2 
> (~y, u > 0, v > 0. 

10. By writing w = p exp(i¢), show that the mapping w = 1/z transforms the hyperbola 
x 2 - y 2 = 1 into the lemniscate p2 cos 2¢. (See Exercise 15, Sec. 5.) 

11. Let the circle lzl = 1 have a positive, or counterclockwise, orientation. Determine the 
orientation of its image under the transformation w = 1/ z. 

12. Show that when a circle is transformed into a circle under the transformation w = 1/ z, 
the center of the original circle is never mapped onto the center of the image circle. 

13. Using the exponential form z =rei() of z, show that the transformation 

1 
w = z + -, 

z 
which is the sum of the identity transformation and the transformation discussed in Sees. 
84 and 85, maps circles r = r0 onto ellipses with parametric representations 

u = (ro +,~)cos e, v = (ro- ,~)sine (0 < e < 2rr) 

and foci at the points w = ±2. Then show how it follows that this transformation maps 
the entire circle I z I = 1 onto the segment -2 < u < 2 of the u axis and the domain outside 
that circle onto the rest of the w plane. 

14. (a) Write equation (3), Sec. 85, in the form 

2Azz + (B - Ci)z + (B + Ci)z + 2D = 0, 

where z = x + i y. 

(b) Show that when w = 1/z, the result in part (a) becomes 

2Dww + (B + Ci)w + (B- Ci)w + 2A =0. 

Then show that if w = u + iv, this equation is the same as equation (4), Sec. 85. 
Suggestion: In part (a), use the relations (see Sec. 5) 

X= 
z+z 

2 

-z-z 
and y = . 

?' -l 
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86. LINEAR FRACTIONAL TRANSFORMATIONS 

The transformation 

(1) 
az+b W=---
cz+d 

(ad- be ::fo 0), 

where a, b, c, and dare complex constants, is called a linear fractional transformation, 
or Mobius transformation. Observe that equation (1) can be written in the form 

(2) Azw + Bz + Cw + D = 0 (AD- BC ::fo 0); 

and, conversely, any equation of type (2) can be put in the form (1). Since this 
alternative form is linear in z and linear in w, or bilinear in z and w, another name 
for a linear fractional transformation is bilinear transformation. 

When e = 0, the condition ad- be# 0 with equation (1) becomes ad ::fo 0; and 
we see that the transformation reduces to a nonconstant linear function. When e ::fo 0, 
equation (1) can be written 

(3) 
a be- ad 

W=-+---
C e 

1 
(ad- be ::fo 0). 

ez+d 

So, once again, the condition ad - be ::fo 0 ensures that we do not have a constant 
function. The transformation w = 1/z is evidently a special case of transformation (1) 
when c ::fo 0. 

Equation (3) reveals that when c ::fo 0, a linear fractional transformation is a 
composition of the mappings. 

Z =ez +d, W=_!_ 
z' 

a be-adW W=-+---
c e 

(ad- be# 0). 

It thus follows that, regardless of whether e is zero or nonzero, any linear fractional 
transformation transforms circles and lines into circles and lines because these special 
linear fractional transformations do. (See Sees. 83 and 85.) 

Solving equation (1) for z, we find that 

(4) -dw+b 
z= (ad-be::foO). 

cw -a 

When a given point w is the image of some point z under transformation ( 1 ), the point 
z is retrieved by means of equation ( 4 ). If e = 0, so that a and d are both nonzero, each, 
point in the w plane is evidently the image of one and only one point in the z plane.; 
The same is true if e ::fo 0, except when w = aje since the denominator in equation 
(4) vanishes if w has that value. We can, however, enlarge the domain of definition 
of transformation (1) in order to define a linear fractional transformation T on the 
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extended z plane such that the point w = ajc is the image of z = oo when c "I 0. We 
first write 

(5) 

We then write 

and 

T(z) = az + b 
cz +d 

(ad- be::/= 0). 

T ( oo) = oo if c = 0 

T(oo) =: and r( ~) = oo if c "I 0. 

In view of Exercise 11, Sec. 17, this makes T continuous on the extended z plane. 
It also agrees with the way in which we enlarged the domain of definition of the 
transformation w = ljz in Sec. 84. 

When its domain of definition is enlarged in this way, the linear fractional 
transformation (5) is a one to one mapping of the extended z plane onto the extended 
w plane. That is, T (z 1) "I T (z2) whenever z1 "I z2; and, for each point w in the second 
plane, there is a point z in the first one such that T(z) = w. Hence, associated with 
the transformation T, there is an inverse transformation r-1, which is defined on the 
extended w plane as follows: 

T- 1(w) = z if and only if T(z) = w. 

From equation (4), we see that 

(6) T-l(W) = -dw + b (ad- be =f: 0). 
cw -a 

Evidently, r-1 is itself a linear fractional transformation, where 

T-\oo)=oo if c=O 

and 

r- 1 
(:) = oo and r- 1(oo) =- ~ if c =I= 0. 

If T and S are two linear fractional transformations, then so is the composition S[T (z) ]. 
This can be verified by combining expressions of the type (5). Note that, in particular, 
r-1[T(z)] = z for each point z in the extended plane. 

There is always a linear fractional transformation that maps three given distinct 
points Zb z2, and z3 onto three specified distinct points wb w 2, and w3, respectively. 
Verification of this will appear in Sec. 87, where the image w of a point z under such 
a transformation is given implicitly in terms of z. We illustrate here a more direct 
approach to finding the desired transformation. 
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EXAMPLE 1. Let us find the special case of transformation ( 1) that maps the points 

z1 = -1, z2 = 0, and z3 = 1 

onto the points 

w1 = -i, w2 = 1, and w3 = i. 
Since 1 is the image of 0, expression (1) tells us that I= bjd, or d =b. Thus 

az+b 
w=--

cz +b 
[b(a - c) =I= 0]. (7) 

Then, since -1 and 1 are transformed into -i and i, respectively, it follows that 

i c - i b = -a + b and i c + i b = a + b. 

Adding corresponding sides of these equations, we find that c = -ib; and subtraction 
reveals that a= ib. Consequently, 

ibz + b 
W=---

-ibz + b 

b(iz + 1) 

b(-iz + 1) 

Since b is arbitrary and nonzero here, we may assign it the value unity (or cancel it 
out) and write 

iz + 1 z z - z 
W= ·-=--

-iz + 1 z i + z 

EXAMPLE 2. Suppose that the points 

Zt = 1, Zz = 0, and z3 = -1 

are to be mapped onto 

w 1 = i, w2 = oo, and w3 = 1. 

Since w2 = oo corresponds to z2 = 0, we require that d = 0 in expression (1); and so 

az +b 
W=-- (be =I= 0). (8) 

cz 

Because 1 is to be mapped onto i and -1 onto 1, we have the relations 

and it follows that 

i c = a + b and - c = -a + b; 

i- 1 
b=--C 

2 

i + 1 
a= c. 

2 
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Finally, then, if we write c = 2, equation (8) becomes 

(i + l)z + (i - 1) 
w=~--~------~ 

2z 

87. AN IMPLICIT FORM 

The equation 

(1) 
(w Wt)(W2- W3) (z- Z1)(z2- Z3) 

(w- w3)(w2- w1) (z- Z3)(Z2- Zt) 

CHAP. 8 

defines (implicitly) a linear fractional transformation that maps distinct points z~o z2, 

and z3 in the finite z plane onto distinct points wb w 2, and w 3, respectively, in the finite 
w plane.* To verify this, we write equation ( 1) as 

If z = zh the right-hand side of equation (2) is zero; and it follows that w = w 1• 

Similarly, if z = z3, the left-hand side is zero and, consequently, w = w3• If z = z2, 

we have the linear equation 

whose unique solution is w = w2. One can see that the mapping defined by equation 
(1) is actually a linear fractional transformation by expanding the products in equation 
(2) and writing the result in the form (Sec. 86) 

(3) Azw + Bz + Cw + D = 0. 

The condition AD- BC :F 0, which is needed with equation (3), is clearly satisfied 
since, as just demonstrated, equation (1) does not define a constant function. It is left 
to the reader (Exercise 10) to show that equation (1) defines the only linear fractional 
transformation mapping the points ZI> z2, and z3 onto wl> w 2, and w 3 respectively. 

EXAMPLE 1. The transformation found in Example 1, Sec. 86, required that 

z 1 = -1, Z2 = 0, z3 = 1 and w 1 = -i, w2 = 1, w3 = i. 

*The two sides of equation ( 1) are cross ratios, which play an important role in more extensive 
developments of linear fractional transformations than in this book. See, for instance, R. P. Boa<;, 
"Invitation to Complex Analysis," pp. 192-196, 1993 or J. B. Conway, "Functions of One Complex 
Variable;' 2d ed., 6th printing, pp. 48-55, 1997. 
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Using equation (1) to write 

(w + i)(l- i) (z + 1)(0- 1) 

(w- i)(l + i) (z- 1)(0 + 1) 
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and then solving for win terms of z, we arrive at the transformation 

i-z 
w=--. , 

z+z 

found earlier. 

If equation (1) is modified properly, it can also be used when the point at infinity 
is one of the prescribed points in either the (extended) z or w plane. Suppose, for 
instance, that z1 = oo. Since any linear fractional transformation is continuous on the 
extended plane, we need only replace z 1 on the right -hand side of equation ( 1) by 1 I z 1, 

clear fractions, and let z1 tend to zero: 

lim (z - 1/zt)(Zz- Z3) . Zt = lim (ZtZ - 1)(Zz- Z3) = Zz- Z3. 

zr-rO (z- Z3)(zz- 1/z1) Z1 Z1-+0 (z- Z3)(z1Z2- 1) Z- Z3 

The desired modification of equation (1) is, then, 

(w- Wt)(Wz- w3) Zz- Z3 

(W- WJ)(Wz- Wt) Z- Z3 

Note that this modification is obtained formally by simply deleting the factors involv­
ing z1 in equation (1). It is easy to check that the same formal approach applies when 
any of the other prescribed points is oo. 

EXAMPLE 2. In Example 2, Sec. 86, the prescribed points were 

z1 =1, Zz=O, z3 =-1 and w 1=i, Wz=OO, w3=1. 

In this case, we use the modification 

W - Wt (z - Zt)(Zz- Z3) 

w- w3 (z- ZJ)(zz- Zt) 

of equation ( 1 ), which tells us that 

w - i (z - 1)(0 + 1) 
-

w - 1 (z + 1)(0 - 1) 

Solving here for w, we arrive at the desired transformation: 

(i + 1)z + (i - 1) w = ---'.----
2z 
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EXERCISES 

1. Find the linear fractional transformation that maps the points z1 = 2, z2 = i, z3 = -2 
onto the points w 1 = 1, w2 = i, w3 = -1. 

Ans. w = (3z + 2i)j(iz + 6). 

2. Find the linear fractional transformation that maps the points z1 = -i, z2 = 0, z3 = i 
onto the points w 1 = -1, w2 = i, w3 = 1. Into what curve is the imaginary axis x = 0 
transformed? 

3. Find the bilinear transformation that maps the points z 1 = oo, z2 = i, z3 = 0 onto the 
points w 1 = 0, w2 = i, w3 = oo. 

Ans. w = -Ijz. 

4. Find the bilinear transformation that maps distinct points ZI> z2 • z3 onto the points 
W] = 0, Wz = 1, w3 = 00. 

A 
(z- Zi)(zz - Z3) 

ns.w= . 
(z - Z3)(Z2 - Zt) 

5. Show that a composition of two linear fractional transformations is again a linear frac­
tional transformation, as stated in Sec. 86. 

6. A fixed point of a transformation w = j(z) is a point zo such that J(z0) = z0. Show that 
every linear fractional transformation, with the exception of the identity transformation 
w = z, has at most two fixed points in the extended plane. 

7. Find the fixed points (see Exercise 6) of the transformation 
z- 1 6z 9 

(a) w = ; (b) w = --
z + 1 z 

Ans. (a) z = ±i; (b) z = 3. 

8. Modify equation (1 ), Sec. 87, for the case in which both z2 and w2 are the point at infinity. 
Then show that any linear fractional transformation must be of the form w = az (a ::/= 0) 
when its fixed points (Exercise 6) are 0 and oo. 

9. Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation, 
then the transformation can be written in the form w = zj(cz +d), where d :f= 0. 

10. Show that there is only one linear fractional transformation that maps three given distinct 
points ZJ> z2, and z3 in the extended z plane onto three specified distinct points WJ> w2, 

and w3 in the extended w plane. 
Suggestion: Let T and S be two such linear fractional transformations. Then, after 

pointing out why s-1[T(zk)] = zk (k = 1, 2, 3), use the results in Exercises 5 and 6 to 
show that s-1[T(z)] = z for all z. Thus show that T(z) = S(z) for all z. 

11. With the aid of equation ( 1 ), Sec. 87, prove that if a linear fractional transformation maps 
the points of the x axis onto points of the u axis, then the coefficients in the transformation 
are all real, except possibly for a common complex factor. The converse statement is 
evident. 

12. Let T(z) = (az + b)j(cz +d), where ad- be::/= 0, be any linear fractional transforma­
tion other than T(z) = z. Show that r- 1 = T if and only if d =-a. 
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Suggestion: Write the equation r- 1(z) = T(z) as 

(a+ d)[cz2 + (d- a)z- b] = 0. 

88. MAPPINGS OF THE UPPER HALF PLANE 

Let us determine all linear fractional transformations that map the upper half plane 
Im z > 0 onto the open disk I w I < 1 and the boundary Im z = 0 onto the boundary 
lwl = 1 (Fig. 108). 

Keeping in mind that points on the line Im z = 0 are to be transformed into points 
on the circle lwl = 1, we start by selecting the points z = 0, z = 1, and z = oo on the 
line and determining conditions on a linear fractional transformation 

az +b 
W=--

CZ +d 
(1) (ad - be :f. 0) 

which are necessary in order for the images of those points to have unit modulus. 
We note from equation (1) that if lwl = 1 when z = 0, then lb/dl = 1; that is, 

(2) lbl = ldl :f. 0. 

Now, according to Sec. 86, the image w of the point z = oo is a finite number, namely 
w = aje, only if e :f. 0. So the requirement that lwl = 1 when z = oo means that 
la/el = 1, or 

(3) Ia I= lei :f. 0; 

and the fact that a and e are nonzero enables us to rewrite equation (1) as 

(4) 

Then, since la/el = 1 and 

y 

\z- Zol 

a z + (bja) 
w =-. . 

e z + (djc) 

b d :f. 0, 
a c 

v 

FIGURE 108 
· z- zo w = e'a · (Im zo > 0). 

z -zo 
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according to relations (2) and (3), equation (4) can be put in the form 

(5) 
· z -zo w=ela_~ 

Z- Zt 

where a is a real constant and z0 and z 1 are (nonzero) complex constants. 

CHAP. 8 

Next, we impose on transformation (5) the condition that lwl = 1 when z = 1. 
This tells us that 

or 

(1- z1)(1- z1) = (1- z0)(1- ZQ). 

But ZtZt = zozo since lztl = lz0 1, and the above relation reduces to 

z 1 + z 1 = zo + zo; 

that is, Re z 1 = Re z0. It follows that either 

z 1 = z0 or z 1 = zo, 

again since lz11 = lz0 1. If z1 = z0, transformation (5) becomes the constant function 
w = exp(ia); hence z1 = zo. 

Transformation (5), with z1 = z0, maps the point zo onto the origin w = 0; 
and, since points interior to the circle I w I = 1 are to be the images of points above 
the real axis in the z plane, we may conclude that Im z0 > 0. Any linear fractional 
transformation having the mapping property stated in the first paragraph of this section 
must, therefore, be of the form 

(6) (lm zo > 0), 

where a is real. 
It remains to show that, conversely, any linear fractional transformation of the 

form (6) has the desired mapping property. This is easily done by taking absolute 
values of each side of equation (6) and interpreting the resulting equation, 

I 1
- z- zo 

w- -, 
z- zo 

geometrically. If a point z lies above the real axis, both it and the point zo lie on the 
same side of that axis, which is the perpendicular bisector of the line segment joining 
z0 and z0 . It follows that the distance lz - zol is less than the distance lz - z01 (Fig. 
108); that is, lwl < l. Likewise, if z lies below the real axis, the distance lz - zol 
is greater than the distance lz - z0 1; and so lwl > 1. Finally, if z is on the real axis, 
I w I = 1 because then lz - zol = lz - z0 1. Since any linear fractional transformation is 
a one to one mapping of the extended z plane onto the extended w plane, this shows 
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that transformation (6) maps the half plane Im z > 0 onto the disk lwl < 1 and the 
boundary of the half plane onto the boundary of the disk. 

Our first example here illustrates the use of the result in italics just above. 

EXAMPLE 1. The transformation 

(7) 
1-Z 

W=--
i+z 

in Examples 1 in Sees. 86 and 87 can be written 

. z- i w =em ___ 
z -l 

Hence it has the mapping property described in italics. (See also Fig. 13 in Appendix 
2, where corresponding boundary points are indicated.) 

Images of the upper half plane Im z > 0 under other types of linear fractional 
transformations are often fairly easy to determine by examining the particular trans­
formation in question. 

EXAMPLE 2. By writing z = x + iy and w = u + iv, we can readily show that the 
transformation 

z-1 
w=--

z+l 
(8) 

maps the half plane y > 0 onto the half plane v > 0 and the x axis onto the u axis. We 
first note that when the number z is real, so is the number w. Consequently, since the 
image of the real axis y = 0 is either a circle or a line, it must be the real axis v = 0. 
Furthermore, for any point w in the finite w plane, 

v = Im w = Im (z - l)(z + l) = 2Y 
(z + l)(z + 1) lz + 11 2 

(z:F-1). 

The numbers y and v thus have the same sign, and this means that points above the 
x axis correspond to points above the u axis and points below the x axis correspond 
to points below the u axis. Finally, since points on the x axis correspond to points 
on the u axis and since a linear fractional transformation is a one to one mapping of 
the extended plane onto the extended plane (Sec. 86), the stated mapping property of 
transformation (8) is established. 

Our final example involves a composite function and uses the mapping discussed 
in Example 2. 

EXAMPLE 3. The transformation 

(9) 
z -1 

w =Log , 
z+l 
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where the principal branch of the logarithmic function is used, is a composition of the 
functions 

z- 1 
Z = and w =Log Z. 

z+l 
(10) 

We know from Example 2 that the first of transformations (10) maps the upper 
half plane y > 0 onto the upper half plane Y > 0, where z = x + i y and Z = X + i Y. 
Furthermore, it is easy to see from Fig. 109 that the second of transformations ( 10) 
maps the half plane Y > 0 onto the strip 0 < v < n, where w = u + i v. More precisely, 
by writing Z = R exp(iE>) and 

Log Z = In R + i G (R > 0, -n < E> < n), 

we see that as a point Z = R exp(iE>0) (0 < E>0 < n) moves outward from the origin 
along the ray E> = G0, its image is the point whose rectangular coordinates in the w 
plane are (In R, G0). That image evidently moves to the right along the entire length 
of the horizontal line v = G0. Since these lines fill the strip 0 < v < n as the choice of 
E>0 varies between G0 = 0 to G0 = n, the mapping of the half plane Y > 0 onto the 
strip is, in fact, one to one. 

This shows that the composition (9) of the mappings ( 1 0) transforms the plane 
y > 0 onto the strip 0 < v < n. Corresponding boundary points are shown in Fig. 19 
of Appendix 2. 

FIGURE 109 
w=Logz. 

EXERCISES 

y 

0 

I 
I 

I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 

X 

1. Recall from Example 1 in Sec. 88 that the transformation 

z-z 
w= 

i+z 

v 
ni 

8 0i ____ .....,.... ____ _ 

0 u 

maps the half plane Im z > 0 onto the disk I w I < 1 and the boundary of the half plane 
onto the boundary of the disk. Show that a point z = x is mapped onto the point 

1- x 2 . 2x 
w = +I ' 

1 + x 2 1 +x2 
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and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2, by 
showing that segments of the x axis are mapped as indicated there. 

2. Verify the mapping shown in Fig. 12, Appendix 2, where 

z -1 
w=--

z+1 

Suggestion: Write the given transformation as a composition of the mappings 

i- z 
W= W=-W. 

i + z' 
Z = iz, 

Then refer to the mapping whose verification was completed in Exercise 1. 

3. (a) By finding the inverse ofthe transformation 

i-z 
w=--

i+z 

and appealing to Fig. 13, Appendix 2, whose verification was completed in Exer­
cise 1, show that the transformation 

.1- z 
W=l--

l+z 

maps the disk lzl < 1 onto the half plane Im w > 0. 
(b) Show that the linear fractional transformation 

can be written 

Z -7 -1 -"" ' 

z-2 
w= 

z 

W 
.1- z 

= l ' 
I+Z 

w=iW. 

Then, with the aid of the result in part (a), verify that it maps the disk lz- 11 < 1 
onto the left half plane Re w < 0. 

4. Transformation (6), Sec. 88, maps the point z = oo onto the point w = exp(ia), which 
lies on the boundary of the disk I w I < 1. Show that if 0 < a < 2rr and the points z = 0 
and z = 1 are to be mapped onto the points w = 1 and w = exp(ia/2), respectively, then 
the transformation can be written 

io: z + exp( -iaj2) 
w=e . 

z + exp(iot/2) 

5. Note that when a = n: /2, the transformation in Exercise 4 becomes 

iz + exp(irr/4) 
w= . 

z + exp(irr/4) 

Verify that this special case maps points on the x axis as indicated in Fig. 110. 
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FIGUREllO 
iz + exp(irr/4) 

w = ---"--'---'--
z + exp(irr /4) 

6. Show that if Im zo < 0, transformation (6), Sec. 88, maps the lower half plane Im z < 0 
onto the unit disk lwl < 1. 

7. The equation w = log(z 1) can be written 

Z = z - 1, w = log Z. 

Find a branch of log Z such that the cut z plane consisting of all points except those on 
the segment x > 1 of the real axis is mapped by w = log(z - 1) onto the strip 0 < v < 2rr 
in the w plane. 

89. THE TRANSFORMATION w = sin z 
Since (Sec. 33) 

sin z = sin x cosh y + i cos x sinh y, 

the transformation w = sin z can be written 

(1) u = sin x cosh y, v = cos x sinh y. 

One method that is often useful in finding images of regions under this transfor­
mation is to examine images of vertical lines x = c1• If 0 < c1 < n J2, points on the 
line x = c1 are transformed into points on the curve 

(2) u =sin c1 cosh y, v =cos c1 sinh y 

which is the right-hand branch of the hyperbola 

(3) 

with foci at the points 

v2 
---=1 
cos2 c1 

(-oo < y < oo), 

w = ±)sin2 c1 + cos2 c1 = ±1. 

The second of equations (2) shows that as a point (c1, y) moves upward along the entire 
length of the line, its image moves upward along the entire length of the hyperbola's 
branch. Such a line and its image are shown in Fig. 111, where corresponding points 
are labeled. Note that, in particular, there is a one to one mapping of the top half (y > 0) 
of the line onto the top half (v > 0) of the hyperbola's branch. If -n /2 < c1 < 0, the 
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w =smz. 

line x = c 1 is mapped onto the left-hand branch of the same hyperbola. As before, 
corresponding points are indicated in Fig. Ill. 

The line x = 0, or the y axis, needs to be considered separately. According to 
equations (1), the image of each point (0, y) is (0, sinh y). Hence they axis is mapped 
onto the v axis in a one to one manner, the positive y axis corresponding to the positive 
v ax1s. 

We now illustrate how these observations can be used to establish the images of 
certain regions. 

EXAMPLE 1. Here we show that the transformation w = sin z is a one to one 
mapping of the semi-infinite strip -n /2 < x < n /2, y > 0 in the z plane onto the 
upper half v > 0 of the w plane. 

To do this, we first show that the boundary of the strip is mapped in a one to one 
manner onto the real axis in thew plane, as indicated in Fig. 112. The image of the 
line segment B A there is found by writing x = n /2 in equations (1) and restricting y 
to be nonnegative. Since u = cosh y and v = 0 when x = rr j2, a typical point (rr j2, y) 
on B A is mapped onto the point (cosh y, 0) in the w plane; and that image must move 
to the right from B' along the u axis as (rr /2, y) moves upward from B. A point (x, 0) 
on the horizontal segment DB has image (sin x, 0), which moves to the right from 
D' to B' as x increases from x = -rr /2 to x = rr /2, or as (x, 0) goes from D to B. 
Finally, as a point ( -n j2, y) on the line segment DE moves upward from D, its image 
(- cosh y, 0) moves to the left from D'. . 

Now each point in the interior -rr /2 < x < rr /2, y > 0 of the strip lies on 
one of the vertical half lines x = cl> y > 0 ( -rr /2 < c1 < rr /2) that are shown in 

E 

D 

y 

M 

0 
c 

L 
A 

B 
1i X 
2 

v 

E' A' 
u FIGURE 112 

w = sm z. 
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Fig. 112. Also, it is important to notice that the images of those half lines are distinct 
and constitute the entire half plane v > 0. More precisely, if the upper half L of a line 
x = c1 (0 < c1 < rr /2) is thought of as moving to the left toward the positive y axis, 
the right-hand branch of the hyperbola containing its image L' is opening up wider 
and its vertex (sin c1, 0) is tending toward the origin w = 0. Hence L' tends to become 
the positive v axis, which we saw just prior to this example is the image of the positive 
y axis. On the other hand, as L approaches the segment B A of the boundary of the 
strip, the branch of the hyperbola closes down around the segment B' A' of the u axis 
and its vertex (sin c1, 0) tends toward the point w = 1. Similar statements can be made 
regarding the half line M and its image M' in Fig. 112. We may conclude that the 
image of each point in the interior of the strip lies in the upper half plane v > 0 and, 
furthermore, that each point in the half plane is the image of exactly one point in the 
interior of the strip. 

This completes our demonstration that the transformation w = sin z is a one to 
one mapping of the strip -rr /2 < x < rr j2, y > 0 onto the half plane v > 0. The final 
result is shown in Fig. 9, Appendix 2. The right-hand half of the strip is evidently 
mapped onto the first quadrant of the w plane, as shown in Fig. 10, Appendix 2. 

Another convenient way to find the images of certain regions when w = sin z 
is to consider the images of horizontal line segments y = c2 ( -rr < x < rr), where 
c2 > 0. According to equations (I), the image of such a line segment is the curve with 
parametric representation 

(4) u =sin x cosh c2, v =cos x sinh c2 (-rr<x<rr). 

That curve is readily seen to be the ellipse 

(5) 

whose foci lie at the points 

w = ±J cosh2 c2 - sinh2 c2 = ± 1. 

The image of a point (x, c2) moving to the right from point A to point E in Fig. 113 
makes one circuit around the ellipse in the clockwise direction. Note that when smaller 
values of the positive number c2 are taken, the ellipse becomes smaller but retains the 
same foci (±1, 0). In the limiting case c2 = 0, equations (4) become 

u = smx, v =0 (-rr <x <rr); 

and we find that the interval -rr < x < rr of the x axis is mapped onto the interval 
-1 < u < 1 of the u axis. The mapping is not, however, one to one, as it is when 
c2 > 0. 

The following example relies on these remarks. 
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EXAMPLE 2. The rectangular region -n /2 < x < n j2, 0 < y < b is mapped by 
w =sin z in a one to one manner onto the semi-elliptical region shown in Fig. 114, 
where corresponding boundary points are also indicated. For if L is a line segment 
y = c2 (-n/2 < x < n/2), where 0 < c2 < b, its image L' is the top half of the ellipse 
(5). As c2 decreases, L moves downward toward the x axis and the semi-ellipse L' 
also moves downward and tends to become the line segment E' F' A' from w = -1 to 
w = 1. In fact, when c2 = 0, equations ( 4) become 

U =Sin X, V = 0 

and this is clearly a one to one mapping of the segment E FA onto E' F' A'. Inasmuch 
as any point in the semi-elliptical region in the w plane lies on one and only one of 
the semi-ellipses, or on the limiting case E' F' A', that point is the image of exactly 
one point in the rectangular region in the z plane. The desired mapping, which is also 
shown in Fig. 11 of Appendix 2, is now established. 

y v 

D bi c B 
C' 

L 

E F A E' F' A' B' 

-¥ 0 1( X 

2 
-1 0 1 cosh b u 

FIGURE 114 
w =smz. 

Mappings by various other functions closely related to the sine function are easily 
obtained once mappings by the sine function are known. 
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EXAMPLE 3. We need only recall the identity (Sec. 33) 

cos z = sin ( z + ~ ) 
to see that the transfonnation w = cos z can be written successively as 

rr 
Z = z + - w = sin Z. 

2' 

CHAP. 8 

Hence the cosine transfonnation is the same as the sine transfonnation preceded by a 
translation to the right through rr /2 units. 

EXAMPLE 4. According to Sec. 34, the transfonnation w = sinh z can be written 
w = -i sin(iz), or 

Z = i z, W = sin Z, w = - i W. 

It is, therefore, a combination of the sine transformation and rotations through right 
angles. The transformation w =cosh z is, likewise, essentially a cosine transformation 
since cosh z = cos(iz). 

EXERCISES 

1. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line 
x = c1 ( -rr /2 < c1 < 0) in a one to one manner onto the top half (v > 0) of the left-hand 
branch of hyperbola (3), Sec. 89, as indicated in Fig. 112 of that section. 

2. Show that under the transformation w =sin z, a line x = c1 (rr /2 < c1 < rr) is mapped 
onto the right-hand branch of hyperbola (3), Sec. 89. Note that the mapping is one to 
one and that the upper and lower halves of the line are mapped onto the lower and upper 
halves, respectively, of the branch. 

3. Vertical half lines were used in Example 1, Sec. 89, to show that the transformation 
w = sin z is a one to one mapping of the open region -rr /2 < x < rr j2, y > 0 onto 
the half plane v > 0. Verify that result by using, instead, the horizontal line segments 
y- c2 (-rr/2 < x < rr/2), where c2 > 0. 

4. (a) Show that under the transformation w =sin z, the images of the line segments 
forming the boundary of the rectangular region 0 < x < rr /2, 0 < y < 1 are the line 
segments and the arc D' E' indicated in Fig. 115. The arc D' E' is a quarter of the 
ellipse 

(b) Complete the mapping indicated in Fig. 115 by using images of horizontal line 
segments to prove that the transformation w = sin z establishes a one to one cor­
respondence between the interior points of the regions ABDE and A' B' D' E'. 
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5. Verify that the interior of a reetangular region -JC < x < rr, a < y < b lying above the x 

axis is mapped by w = sin z onto the interior of an elliptical ring which has a cut along 

the segment -sinh b < v < -sinh a of the negative real axis, as indicated in Fig. 116. 

Note that, while the mapping of the interior of the rectangular region is one to one, the 

mapping of its boundary is not. 
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v 

FIGURE 116 
w=sinz. 

6. (a) Show that the equation w =cosh z can be written 

Z . 7t 
= lZ + -, w =sin Z. 

2 

(b) Use the result in part (a), together with the mapping by sin z shown in Fig. 10, 

Appendix 2, to verify that the transformation w =cosh z maps the semi-infinite 

strip x > 0, 0 < y < rr /2 in the z plane onto the first quadrant u ~ 0, v > 0 of thew 

plane. Indicate corresponding parts of the boundaries of the two regions. 

7. Observe that the transformation w =cosh z can be expressed as a composition of the 

mappings 

1 
W=Z + -, z 

1 
W=-W. 

2 

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z, the semi­

infinite strip x < 0, 0 < y < rr in the z plane is mapped onto the lower half v < 0 of the 

w plane. Indicate corresponding parts of the boundaries. 

8. (a) Verify that the equation w =sin z can be written 

Z = i ( z + ~). W = cosh Z, w = - W. 
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(b) Use the result in part (a) here and the one in Exercise 7 to show that the transformation 
w =sin z maps the semi-infinite strip -n /2 < x < n f2, y > 0 onto the half plane 
v > 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in a different way 
in Example 1, Sec. 89.) 

90. MAPPINGS BY z2 AND BRANCHES OF z112 

In Chap 2 (Sec. 12), we considered some fairly simple mappings under the transfor­
mation w = z2, written in the form 

(1) 

We tum now to a less elementary example and then examine related mappings w = z 112, 
where specific branches of the square root function are taken. 

EXAMPLE 1. Let us use equations ( 1) to show that the image of the vertical strip 
0 < x < 1, y > 0, shown in Fig. 117, is the closed semi parabolic region indicated there. 

When 0 < x1 < 1, the point (x1, y) moves up a vertical half line, labeled L1 in Fig. 
117, as y increases from y = 0. The image traced out in the uv plane has, according 
to equations (1), the parametric representation 

(2) 2 2 
U = x 1 - y , V = 2XJY (0 < y < oo). 

Using the second of these equations to substitute for y in the first one, we see that the 
image points (u, v) must lie on the parabola 

(3) 

with vertex at (xf, 0) and focus at the origin. Since v increases with y from v = 0, 
according to the second of equations (2), we also see that as the point (xb y) moves 
up L 1 from the x axis, its image moves up the top half L~ of the parabola from the 
u axis. Furthermore, when a number x2 larger than xi> but less than 1, is taken, the 
corresponding halfline L 2 has an image L~ that is a half parabola to the right of L~, as 

v 

c B B' FIGURE 117 
1 X 1 u 

w =z2
• 
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indicated in Fig. 117. We note, in fact, that the image of the half line B A in that figure 

is the top half of the parabola v2 = -4(u - 1), labeled B' A'. 
The image of the half line CD is found by observing from equations ( 1) that a 

typical point (0, y), where y > 0, on CD is transformed into the point ( -y2, 0) in the 

u v plane. So, as a point moves up from the origin along CD, its image moves left from 

the origin along the u axis. Evidently, then, as the vertical half lines in the xy plane 

move to the left, the half parabolas that are their images in the u v plane shrink down 

to become the half line C' D'. 
It is now clear that the images of all the half lines between and including CD and 

B A fill up the closed semi parabolic region bounded by A' B' C' D'. Also, each point in 

that region is the image of only one point in the closed strip bounded by ABCD. Hence 

we may conclude that the semi parabolic region is the image of the strip and that there 

is a one to one correspondence between points in those closed regions. (Compare Fig. 

3 in Appendix 2, where the strip has arbitrary width.) 

As for mappings by branches of z112, we recall from Sec. 8 that the values of z112 

are the two square roots of z when z ::j:; 0. According to that section, if polar coordinates 

are used and 

z = r exp(i8) (r > 0, -T( < e < rr), 

then 

(4) 1/2 r::. i(8+2krr) 
z = vr exp 

2 
(k=0,1), 

the principal root occurring when k = 0. In Sec. 31, we saw that z1!2 can also be written 

(5) z112 
= exp(~ Jog z) (z :f:; 0). 

The principal branch Fo(z) of the double-valued function z112 is then obtained by 

taking the principal branch of log z and writing (see Sec. 32) 

Since 

Fo(z) = exp(~ Log z) (lzl > 0, -rr < Arg z < rr). 

1 1 . i8 
- Log z = - (ln r + t 8) = ln Jr + -
2 2 2 

when z = r exp(i8), this becomes 

(6) 
i8 

Fo(z) = v'r exp -
2 

(r > 0, -T( < e < rr). 
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The right-hand side of this equation is, of course, the same as the right-hand side of 
equation (4) when k = 0 and -rr < 8 < n there. The origin and the ray 8 = n form 
the branch cut for F0 , and the origin is the branch point. 

Images of curves and regions under the transformation w = F0(z) may be ob­
tained by writing w = p exp(i¢), where p = .y'r and¢= 8/2. Arguments are evi­
dently halved by this transformation, and it is understood that w = 0 when z = 0. 

EXAMPLE 2. It is easy to verify that w = F0(z) is a one to one mapping of the 
quarter disk 0 < r < 2, 0 < (} < n /2 onto the sector 0 < p < _,f2, 0 < ¢ < n /4 in the 
w plane (Fig. 118). To do this, we observe that as a point z = r exp(i 01) (0 < 01 < n /2) 
moves outward from the origin along a radius R 1 of length 2 and with angle of 
inclination Ob its image w = .y'r exp(iBt/2) moves outward from the origin in the 
w plane along a radius Ri whose length is ~ and angle of inclination is 01/2. See 
Fig. 118, where another radius R2 and its imageR; are also shown. It is now clear from 
the figure that if the region in the z plane is thought of as being swept out by a radius, 
starting with D A and ending with DC, then the region in the w plane is swept out by 
the corresponding radius, starting with D' A' and ending with D'C'. This establishes a 
one to one correspondence between points in the two regions. 

v 

2 
X D' 

C' 

A' u 
FIGURE 118 
w = F0(z). 

EXAMPLE 3. The transformation w = F0(sin z) can be written 

Z=sinz, w=F0(Z) (IZI > 0, -n < Arg Z < rr). 

As noted at the end of Example 1 in Sec. 89, the first transformation maps the semi­
infinite strip 0 < x < n /2, y > 0 onto the first quadrant X > 0, Y > 0 in the Z plane. 
The second transformation, with the understanding that F0 (0) = 0, maps that quadrant 
onto an octant in the w plane. These successive transformations are illustrated in Fig. 
119, where corresponding boundary points are shown. 

When -rr < 8 <nand the branch 

log z = ln r + i ( e + 2rr) 
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FIGURE119 
w = F0(sin z). 

of the logarithmic function is used, equation (5) yields the branch 

(7) F() 
r.: i(8+2n) 

1 z = v r exp --
2
-- (r > 0, -JT < e < JT) 

of z112, which corresponds to k = 1 in equation (4). Since exp(in) = -1, it follows that 

F1(z) = -F0(z). The values ±F0(z) thus represent the totality of values of zl!2 at all 
points in the domain r > 0, -n < 8 < n. If, by means of expression (6), we extend 

the domain of definition of F0 to include the ray 8 = n and if we write F0(0) = 0, 
then the values ±Fo(z) represent the totality of values of z112 in the entire z plane. 

Other branches of z 112 are obtained by using other branches of log z in expression 
(5). A branch where the ray() =a is used to form the branch cut is given by the equation 

(8) 
·e fcAz) = ~ exp _l 
2 

(r > 0, a < () < a + 2n). 

Observe that when a = -n, we have the branch F0(z) and that when a = n, we have 

the branch F 1(z). Just as in the case of F0, the domain of definition of fa can be 
extended to the entire complex plane by using expression (8) to define fa at the nonzero 

points on the branch cut and by writing fa(O) = 0. Such extensions are, however, never 
continuous in the entire complex plane. 

Finally, suppose that n is any positive integer, where n > 2. The values of z11n are 

the nth roots of z when z 1- 0; and, according to Sec. 31, the multiple-valued function 
z1ln can be written 

1/ ( 1 ) i ( e + 2kn) 
(9) z n = exp n log z = yr;: exp n (k = 0, 1, 2, ... , n - 1), 

where r = lzl and 8 = Arg z. The case n = 2 has just been considered. In the general 

case, each of the n functions 

(10) F ( ) 
nC i ( 8 + 2kJT) 

k z =vrexp---­
n 

(k = 0, 1, 2, ... , n - 1) 

is a branch of z11n, defined on the domain r > 0, -n < 8 < n. When w = pei¢, the 

transformation w = Fk(Z) is a one to one mapping of that domain onto the domain 

p > 0, 
(2k - 1)n (2k + 1)n 
-'----- < ¢ < . 

n n 
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These n branches of z11n yield then distinct nth roots of z at any point z in the domain 
r > 0, -rr < e < rr. The principal branch occurs when k = 0, and further branches 
of the type (8) are readily constructed. 

EXERCISES 

1. Show. indicating corresponding orientations, that the mapping w = z2 transforms lines 

y = c2 (c2 > 0) into parabolas v2 = 4c~(u + c~). all with foci at w = 0. (Compare 
Example 1, Sec. 90.) 

2. Use the result in Exercise 1 to show that the transformation w = z2 is a one to one mapping 
of a strip a < y < b above the x axis onto the closed region between the two parabolas 

v2 = 4a2(u + a2), v2 = 4b2(u + b2). 

3. Point out how it follows from the discussion in Example 1, Sec. 90, that the transfor­

mation w = z2 maps a vertical strip 0 < x < c, y > 0 of arbitrary width onto a closed 
semiparabolic region, as shown in Fig. 3, Appendix 2. 

4. Modify the discussion in Example 1. Sec. 90, to show that when w = z2, the image of 
the closed triangular region formed by the lines y = ± x and x = 1 is the closed parabolic 
region bounded on the left by the segment -2 < v < 2 of the v axis and on the right by 
a portion of the parabola v2 = -4(u - 1). Verify the corresponding points on the two 
boundaries shown in Fig. 120. 
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1 w =z-. 

5. By referring to Fig. 10, Appendix 2, show that the transformation w = sin2 z maps the 
strip 0 < x < 7( f2, y > 0 onto the half plane v > 0. Indicate corresponding parts of the 
boundaries. 

Suggestion: Sec also the first paragraph in Example 3, Sec. 12. 

6. Use Fig. 9, Appendix 2, to show that if w =(sin z) 114, where the principal branch of 
the fractional power is taken, the semi-infinite strip -7( /2 < x < n j2, y > 0 is mapped 
onto the part of the first quadrant lying between the line v = u and the u axis. Label 
corresponding parts of the boundaries. 
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7. According to Example 2, Sec. 88, the linear fractional transformation 

Z=z-1 
z+1 

maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half planes 
Y > 0 and Y < 0, respectively. Show that, in particular, it maps the segment -1 < x < 1 
of the x axis onto the segment X < 0 of the X axis. Then show that when the principal 
branch of the square root is used, the composite function 

( )

l/2 
w = zl/2 = z- 1 

z+1 

maps the z plane, except for the segment 1 < x < 1 of the x axis, onto the half plane 
u >0. 

8. Determine the image of the domain r > 0, -:rr < e < :rr in the z plane under each of 
the transformations w = Fk(z) (k = 0, 1, 2, 3), where Fk(z) are the four branches of zl!4 

given by equation (10), Sec. 90, when n = 4. Use these branches to determine the fourth 
roots of i. 

91. SQUARE ROOTS OF POLYNOMIALS 

We now consider some mappings that are compositions of polynomials and square 

roots of z. 

EXAMPLE 1. Branches of the double-valued function (z- z0) 112 can be obtained 

by noting that it is a composition of the translation Z = z - zo with the double-valued 

function z112. Each branch of z112 yields a branch of (z- z0) 112. When Z = ReiB, 

branches of Z 1/ 2 are 

'() 
zl/2 = .JR exp l 

2 

Hence if we write 

(R > 0, a < () <a+ 2:rr). 

R = lz- zol. e = Arg(z- zo). and 0 = arg(z- zo). 

two branches of (z zo) 112 are 

(1) 

and 

(2) 

~n ie 
Go(z) = v r< exp -

2 

'() 
go(z) = .JR exp _z 

2 

(R > 0, -n < E> < n) 

(R > 0, 0 < () < 2n). 

The branch of z112 that was used in writing G0(z) is defined at all points in the 

Z plane except for the origin and points on the ray Arg Z = n. The transformation 
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w = G0(z) is, therefore, a one to one mapping of the domain 

lz - zol > 0, -n < Arg(z - zo) < n 

onto the right half Re w > 0 of thew plane (Fig. 121). The transformation w = g0(z) 
maps the domain 

lz - zol > 0, 0 < arg(z - z0) < 2n 

in a one to one manner onto the upper half plane Im w > 0. 

y 

FIGURE 121 
w = G0(z). 
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EXAMPLE 2. For an instructive but less elementary example, we now consider the 
double-valued function (z 2 - 1)112 . Using established properties oflogarithms, we can 
write 

(z2 
1) 112 = exp [~ log(z2

- 1)] = exp [~ log(z- 1) + ~ log(z + 1)], 

or 

(3) (z2 _ 1) 1;2 = (z _ 1) 112(z + 1) 112 (z :f. ±1). 

Thus, if j 1(z) is a branch of (z- 1)112 defined on a domain D 1 and fz(z) is a branch 
of (z + 1) 112 defined on a domain D2, the product f(z) = j 1(z)J2(z) is a branch of 
(z2 - 1)112 defined at all points lying in both D1 and D2. 

In order to obtain a specific branch of (z2 - 1)112, we use the branch of (z- 1) 112 

and the branch of (z + 1) 112 given by equation (2). If we write 

r 1 = iz- 11 and 01 = arg(z 1), 

that branch of (z- 1) 112 is 

(r1 >0,0<01 <2n). 
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The branch of (z + 1) 112 given by equation (2) is 

where 

i02 fz(z) = Fz exp -
2 

(r2 > 0, 0 < 02 < 2n), 

r2 = lz + 11 and 02 = arg(z + 1). 

The product of these two branches is, therefore, the branch f of (z2 - 1)112 defined 
by the equation 

(4) 
i (01 + 02) f (z) = Jrli2 exp , 

2 

where 

rk > 0, 0 < ()k < 2n (k=l,2). 

As illustrated in Fig. 122, the branch f is defined everywhere in the z plane except on 
the ray r2 > 0, 02 = 0, which is the portion x > -1 of the x axis. 

The branch f of (z2 - 1) 112 given in equation (4) can be extended to a function 

(5) 
i(01 + 112) 

F(z) = Jr1i2 exp , 
2 

where 

rk > 0, 0 < (Jk < 2n (k = 1, 2) and rr + r2 > 2. 

As we shall now see, this function is analytic everywhere in its domain of definition, 
which is the entire z plane except for the segment -1 < x < 1 of the x axis. 

Since F(z) = f(z) for all z in the domain of definition ofF except on the ray 
r 1 > 0, e1 = 0, we need only show that F is analytic on that ray. To do this, we form 
the product of the branches of (z - 1)112 and (z + 1) 112 which are given by equation 
(1). That is, we consider the function 

i(E>r + E>2) 
G(z) = Jrli2 exp , 

2 

y 

FIGURE 122 
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where 

rl = lz II, rz = lz +II, el = Arg(z- I), e2 = Arg(z + 1) 

and where 

(k =I, 2). 

Observe that G is analytic in the entire z plane except for the ray r1 > 0, E>1 = rr. 
Now F(z) = G(z) when the point z lies above or on the ray r1 > 0, e 1 = 0; for then 
(}k = E>k(k = 1, 2). When z lies below that ray, (}k = E>k + 2rr (k = 1, 2). Consequently, 
exp(iOk/2) = -exp(iE>k/2); and this means that 

i((h + Oz) ( Wt) ( Wz) i(E>t + E>z) exp = exp - exp - = exp . 
2 2 2 2 

So again, F(z) = G(z). Since F(z) and G(z) are the same in a domain containing the 
ray r1 > 0, e 1 = 0 and since G is analytic in that domain, F is analytic there. Hence 
F is analytic everywhere except on the line segment P2P1 in Fig. 122. 

The function F defined by equation (5) cannot itself be extended to a function 
which is analytic at points on the line segment P2P1; for the value on the right in 
equation (5) jumps from i#2 to numbers near -i#2 as the point z moves 
downward across that line segment. Hence the extension would not even be continuous 
there. 

The transformation w = F (z) is, as we shall see, a one to one mapping of the 
domain Dz consisting of all points in the z plane except those on the line segment 
P2P1 onto the domain Dw consisting of the entire w plane with the exception of the 
segment -1 < v < I of the v axis (Fig. 123). 

Before verifying this, we note that if z = iy (y > 0), then 

r 1 =r2 >1 and 01 +02 =rr; 

hence the positive y axis is mapped by w = F(z) onto that part of the v axis for which 
v > 1. The negative y axis is, moreover, mapped onto that part of the v axis for which 
v < -1. Each point in the upper half y > 0 of the domain D z is mapped into the upper 
half v > 0 of the w plane, and each point in the lower half y < 0 of the domain Dz 

y v 
z w 

Dw l 

p2 P2 

-1 1 X o• u 
I 
I 

-~ FIGURE 123 
w = F(z). 
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is mapped into the lower half v < 0 of thew plane. The ray r 1 > 0, 01 = 0 is mapped 
onto the positive real axis in thew plane, and the ray r2 > 0, 02 = n is mapped onto 
the negative real axis there. 

To show that the transformation w = F(z) is one to one, we observe that if 
F(z 1) = F(z2), then zi -1 = z~ -1. From this, it follows that z1 = z2 or z1 = -z2• 

However, because of the manner in which F maps the upper and lower halves of the 
domain Dz, as well as the portions of the real axis lying in Dz, the case z1 = -z2 is 
impossible. Thus, if F(z 1) = F(z2), then z1 = z2; and F is one to one. 

We can show that F maps the domain Dz onto the domain Dw by finding a 
function H mapping Dw into Dz with the property that if z = H(w), then w = F(z). 
This will show that, for any point w in Dw, there exists a point z in Dz such that 
F(z) = w; that is, the mapping F is onto. The mapping H will be the inverse of F. 

To find H, we first note that if w is a value of (z2 - 1) 112 for a specific z, then 
w2 = z2 - 1; and z is, therefore, a value of ( w2 + 1) 112 for that w. The function H will 
be a branch of the double-valued function 

(w =I= ±i). 

Followingourprocedureforobtaining the function F(z), we write w- i = p 1 exp(i¢1) 

and w + i = p2 exp(ic/>2). (See Fig. 123.) With the restrictions 

n 3n 
Pk > 0, -l < cl>k < 2 (k = 1, 2) and P1 + P2 > 2, 

we then write 

(6) i ( 1'/>1 + 1'/>2) 
H(w)=~exp , 

2 

the domain of definition being Dw. The transformation z = H(w) maps points of Dw 
lying above or below the u axis onto points above or below the x axis, respectively. It 
maps the positive u axis into that part of the x axis where x > 1 and the negative u axis 
into that part of the negative x axis where x < -1. If z = H ( w), then z2 = w 2 + 1; 
and so w2 = z2 - 1. Since z is in Dz and since F(z) and -F(z) are the two values of 
(z2 - 1)112 for a point in Dz, we see that w = F(z) or w = -F(z). But it is evident 
from the manner in which F and H map the upper and lower halves of their domains 
of definition, including the portions of the real axes lying in those domains, that 
w = F(z). 

Mappings by branches of double-valued functions 

(7) 
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where A = - 2z0 and B = z6 = zt, can be treated with the aid of the results found for 
the function F in Example 2 and the successive transformations 

(8) 
z- z0 z = -----=-, 

Zt 
W = czz- l)t;z, w W = Zt • 

EXERCISES 

1. The branch F of (z2 - 1) 112 inExample2, Sec. 91, was defined in terms of the coordinates 
r 1, r2 , () 1, ()2• Explain geometrically why the conditions r 1 > 0, 0 < 111 + 112 < Jr describe 
the quadrant x > 0, y > 0 of the z plane. Then show that the transformation w = F(z) 
maps that quadrant onto the quadrant u > 0, v > 0 of the w plane. 

Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described, note 
that 111 + e2 = Jr at each point on the positive y axis and that 01 + 02 decreases as a point 
z moves to the right along a ray e2 = c (0 < c < Jr /2). 

2. For the transformation w = F (z) of the first quadrant of the z plane onto the first quadrant 
of the w plane in Exercise 1, show that 

1 I ? 2 1 I 
u = ,fj_V r1r2 + x-- y - 1 and v = .fiY r 1r2 x2 + y2 + 1, 

where 

Crtrz)2 = (x 2 + i + 1)2
- 4x2

, 

and that the image of the portion of the hyperbola x 2 - y2 = 1 in the first quadrant is the 
ray v = u (u > 0). 

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first 
quadrant of the z plane is described by the conditions r1 > 0, 0 < e1 + e2 < Jr /2. Then 
show that the image of Dis the octant 0 < v < u. Sketch the domain D and its image. 

4. Let F be the branch of (z2 - 1)112 defined in Example 2, Sec. 91, and let zo = r0 exp(i()0) 

be a fixed point, where r0 > 0 and 0 < e0 < 2Jr. Show that a branch Fo of (z2 - z5) 112 

whose branch cut is the line segment between the points zo and -z0 can be written 
Fo(z) = z0 F(Z), where Z = z/zo. 

5. Write z - 1 = r 1 exp(ie1) and z + 1 = r2 exp(i8z), where 

0 < el < 2Jr and - 7r < e2 < 7r' 

to define a branch of the function 

(b) (z -1)1/2. 
z+l 

In each case, the branch cut should consist of the two rays e1 = 0 and 8 2 = rr. 
6. Using the notation in Sec. 91, show that the function 

(
z 1)112 /?;1 i(01- 02) w = = - exp _.:__,_______,::.:.. 
z + 1 r2 2 
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is a branch with the same domain of definition Dz and the same branch cut as the function 
w = F(z) in that section. Show that this transformation maps Dz onto the right half plane 
p > 0, -rr: /2 < q, < rr: j2, where the point w = 1 is the image of the point z = oo. Also, 
show that the inverse transformation is 

1+w2 

z=---
1- w2 

(Compare Exercise 7, Sec. 90.) 

(Rew>O). 

7. Show that the transformation in Exercise 6 maps the region outside the unit circle lzl = 1 
in the upper half of the z plane onto the region in the first quadrant of thew plane between 
the line v = u and the u axis. Sketch the two regions. 

8. Write z = r exp(i8), z- 1 = r1 exp(i81), and z 1 = r2 exp(i82), where the values 
of all three arguments lie between -rr: and rr:. Then define a branch of the function 
[z(z2 - 1)]112 whose branch cut consists of the two segments x < -1 and 0 < x < 1 of 
the x axis. 

92. RIEMANN SURFACES 

The remaining two sections of this chapter constitute a brief introduction to the concept 

of a mapping defined on a Riemann surface, which is a generalization of the complex 

plane consisting of more than one sheet. The theory rests on the fact that at each point 

on such a surface only one value of a given multiple-valued function is assigned. The 

material in these two sections will not be used in the chapters to follow, and the reader 

may skip to Chap. 9 without disruption. 
Once a Riemann surface is devised for a given function, the function is single­

valued on the surface and the theory of single-valued functions applies there. Complex­

ities arising because the function is multiple-valued are thus re1ieved by a geometric 

device. However, the description of those surfaces and the arrangement of proper con­

nections between the sheets can become quite involved. We limit our attention to fairly 

simple examples and begin with a surface for log z. 

EXAMPLE 1. Corresponding to each nonzero number z, the multiple-valued func­

tion 

(1) log z = In r + if1 

has infinitely many values. To describe log z as a single-valued function, we replace the 

z plane, with the origin deleted, by a surface on which a new point is located whenever 

the argument of the number z is increased or decreased by 2n, or an integral multiple 

of2n. 
We treat the z plane, with the origin deleted, as a thin sheet R0 which is cut along 

the positive half of the real axis. On that sheet, let() range from 0 to 2n. Let a second 

sheet R 1 be cut in the same way and placed in front of the sheet R0. The lower edge of 

the slitin R0 is then joined to the upper edge of the slit in R 1• On R1, the angle() ranges 
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from 2n to 4n; so, when z is represented by a point on R 1, the imaginary component 
of log z ranges from 2n to 4n. 

A sheet R2 is then cut in the same way and placed in front of R 1• The lower edge 
of the slit in R 1 is joined to the upper edge of the slit in this new sheet, and similarly 
for sheets R3, R4 , .... A sheet R_ 1 on which() varies from 0 to -2n is cut and placed 
behind R0, with the lower edge of its slit connected to the upper edge of the slit in R0; 

the sheets R_2, R_3, ••• are constructed in like manner. The coordinates r and() of a 
point on any sheet can be considered as polar coordinates of the projection of the point 
onto the original z plane, the angular coordinate () being restricted to a definite range 
of 2n radians on each sheet. 

Consider any continuous curve on this connected surface of infinitely many 
sheets. As a point z describes that curve, the values oflog z vary continuously since(), in 
addition tor, varies continuously; and log z now assumes just one value corresponding 
to each point on the curve. For example, as the point makes a complete cycle around 
the origin on the sheet R0 over the path indicated in Fig. 124, the angle changes from 
0 to 2n. As it moves across the ray () = 2n, the point passes to the sheet R 1 of the 
surface. As the point completes a cycle in R 1o the angle () varies from 2n to 4rr; and, 
as it crosses the ray() = 4n, the point passes to the sheet R2. 

yl 
I 

-I-. 
/'I~ 

1 R0 1 , 
- - ...1 - - ::;<? - _,_ -1--.--

\ 0 1 I X 

' I ;I ' ..... L_...,.... 
I 
I 

FIGURE 124 

The surface described here is a Riemann surface for log z. It is a connected surface 
of infinitely many sheets, arranged so that log z is a single-valued function of points 
on it. 

The transformation w = log z maps the whole Riemann surface in a one to one 
manner onto the entire w plane. The image of the sheet R0 is the strip 0 < v < 2n (see 
Example 3, Sec. 88). As a point z moves onto the sheet R1 over the arc shown in Fig. 
125, its image w moves upward across the line v = 2n, as indicated in that figure. 

h 
v 

21ti 
01 I X 

'-L.#R 
I 0 0 u 
I 

FIGURE 125 l 
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Note that log z, defined on the sheet R I• represents the analytic continuation (Sec. 
26) of the single-valued analytic function 

f(z) =In r + i8 (0 < () < 2.rr) 

upward across the positive real axis. In this sense, log z is not only a single-valued 
function of all points z on the Riemann surface but also an analytic function at all 
points there. 

The sheets could, of course, be cut along the negative real axis, or along any other 
ray from the origin, and properly joined along the slits to form other Riemann surfaces 
for log z. 

EXAMPLE 2. Corresponding to each point in the z plane other than the origin, the 
square root function 

(2) 

has two values. A Riemann surface for zll2 is obtained by replacing the z plane with 
a surface made up of two sheets Ro and R., each cut along the positive real axis and 
with R1 placed in front of R0. The lower edge of the slit in R0 is joined to the upper 
edge of the slit in R I, and the lower edge of the slit in R I is joined to the upper edge 
of the slit in R0. 

As a point z starts from the upper edge of the slit in R0 and describes a continuous 
circuit around the origin in the counterclockwise direction (Fig. 126), the angle () 
increases from 0 to 2.rr. The point then passes from the sheet R0 to the sheet R., where 
() increases from 2.rr to 4.rr. As the point moves still further, it passes back to the sheet 
R0 , where the values of() can vary from 4.rr to 6.rr or from 0 to 2.rr, a choice that does 
not affect the value of zi/2, etc. Note that the value of z112 at a point where the circuit 
passes from the sheet R0 to the sheet R I is different from the value of z I/2 at a point 
where the circuit passes from the sheet R 1 to the sheet R0 . 

We have thus constructed a Riemann surface on which zll2 is single-valued for 
each nonzero z. In that construction, the edges of the sheets R0 and R1 are joined in 
pairs in such a way that the resulting surface is closed and connected. The points where 
two of the edges are joined are distinct from the points where the other two edges are 
joined. Thus it is physically impossible to build a model of that Riemann surface. In 

-I-. 
/'I". 
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_.J __ ~-.1...-f--1---
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FIGURE 126 
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visualizing a Riemann surface, it is important to understand how we are to proceed 
when we arrive at an edge of a slit. 

The origin is a special point on this Riemann surface. It is common to both sheets, 
and a curve around the origin on the surface must wind around it twice in order to be 
a closed curve. A point of this kind on a Riemann surface is called a branch point. 

The image of the sheet R0 under the transformation w = z112 is the upper half 
of the w plane since the argument of w is () /2 on R0, where 0 < () j2 < rr. Likewise, 
the image of the sheet R 1 is the lower half of the w plane. As defined on either sheet, 
the function is the analytic continuation, across the cut, of the function defined on the 
other sheet. In this respect, the single-valued function z112 of points on the Riemann 
surface is analytic at all points except the origin. 

EXERCISES 

1. Describe the Riemann surface for log z obtained by cutting the z plane along the negative 
real axis. Compare this Riemann surface with the one obtained in Example 1, Sec. 92. 

2. Determine the image under the transformation w =log z of the sheet Rn, where n is an 
arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 92. 

3. Verify that, under the transformation w = z 112, the sheet R 1 of the Riemann surface for 
z 112 given in Example 2, Sec. 92, is mapped onto the lower half of the w plane. 

4. Describe the curve, on a Riemann surface for zl/2 , whose image is the entire circle I w I = 1 
under the transformation w = zl/2• 

5. Let C denote the positively oriented circle lz- 21 = 1 on the Riemann surface described 
in Example 2, Sec. 92, for z112, where the upper half of that circle lies on the sheet R0 
and the lower half on R 1. Note that, for each point z on C, one can write 

z112 = Jrei012 where 4rr - 1r < e < 4rr + 1r. 
2 2 

State why it follows that 

[ z112 dz = 0. 

Generalize this result to fit the case of the other simple closed curves that cross from one 
sheet to another without enclosing the branch points. Generalize to other functions, thus 
extending the Cauchy-Goursat theorem to integrals of multiple-valued functions. 

93. SURFACES FOR RELATED FUNCTIONS 

We consider here Riemann surfaces for two composite functions involving simple 
polynomials and the square root function. 



SEC.93 SURFACES FOR RELATED FUNCTIONS 339 

EXAMPLE 1. Let us describe a Riemann surface for the double-valued function 

(1) f(z) = (z2 _ 1)112 = Jrii2 exp i(01 + fh), 
2 

where z- 1 = r1 exp(i01) and z + 1 = r2 exp(i02). A branch of this function, with the 
line segment P1 P2 between the branch points z = ± 1 as a branch cut (Fig. 127), was 
described in Example 2, Sec. 91. That branch is as written above, with the restrictions 
rk > 0, 0 < Ok < 2rr (k = 1, 2) and r1 + r2 > 2. The branch is not defined on the 
segment P1 Pz. 

y 

X 
FIGURE 127 

A Riemann surface for the double-valued function ( 1) must consist of two sheets 
of R0 and R1. Let both sheets be cut along the segment P1P2• The lower edge of the 
slit in R0 is then joined to the upper edge of the slit in R I> and the lower edge in R 1 is 
joined to the upper edge in R0 . 

On the sheet R0, let the angles 01 and 02 range from 0 to 2rr. If a point on the 
sheet R0 describes a simple closed curve that encloses the segment P1 P2 once in the 
counterclockwise direction, then both 01 and 02 change by the amount 2rr upon the 
return of the point to its original position. The change in (01 + 02)/2 is also 2rr, and 
the value of f is unchanged. If a point starting on the sheet R0 describes a path that 
passes twice around just the branch point z = 1, it crosses from the sheet R0 onto the 
sheet R 1 and then back onto the sheet R0 before it returns to its original position. In this 
case, the value of 01 changes by the amount 4rr, while the value of 02 does not change 
at all. Similarly, for a circuit twice around the point z = -1, the value of 02 changes 
by 4rr, while the value of 01 remains unchanged. Again, the change in (01 + 02) /2 is 
2rr; and the value of f is unchanged. Thus, on the sheet R0 , the range of the angles 01 

and 02 may be extended by changing both 01 and 02 by the same integral multiple of 
2rr or by changing just one of the angles by a multiple of 4rr. In either case, the total 
change in both angles is an even integral multiple of 2rr. 

To obtain the range of values for 01 and 02 on the sheet R 1, we note that if a point 
starts on the sheet R0 and describes a path around just one of the branch points once, it 
crosses onto the sheet R1 and does not return to the sheet R0. In this case, the value of 
one of the angles is changed by 2rr, while the value of the other remains unchanged. 
Hence on the sheet R 1 one angle can range from 2rr to 4rr, while the other ranges from 
0 to 2rr. Their sum then ranges from 2rr to 4rr, and the value of ( 01 + 02) /2, which is 
the argument of f (z), ranges from rr to 2rr. Again, the range of the angles is extended 
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by changing the value of just one of the angles by an integral multiple of 4rr or by 
changing the value of both angles by the same integral multiple of 2rr. 

The double-valued function (1) may now be considered as a single-valued 
function of the points on the Riemann surface just constructed. The transformation 
w = f (z) maps each of the sheets used in the construction of that surface onto the 
entire w plane. 

EXAMPLE 2. Consider the double-valued function 

(2) f(z) = [z(z2 - 1)]112 = .jrr1r2 exp i(() + ()1 + ()2) 
2 

(Fig. 128). The points z = 0. ±I are branch points of this function. We note that if the 
point z describes a circuit that includes all three of those points, the argument off (z) 

changes by the angle 3rr and the value of the function thus changes. Consequently, a 
branch cut must run from one of those branch points to the point at infinity in order to 
describe a single-valued branch off. Hence the point at infinity is also a branch point, 
as one can show by noting that the function f (1/ z) has a branch point at z = 0. 

Let two sheets be cut along the line segment L2 from z = -1 to z = 0 and along 
the part L 1 of the real axis to the right of the point z = 1. We specify that each of the 
three angles (), ()1> and ()2 may range from 0 to 2rr on the sheet R0 and from 2rr to 
4rr on the sheet R 1• We also specify that the angles corresponding to a point on either 
sheet may be changed by integral multiples of 2rr in such a way that the sum of the 
three angles changes by an integral multiple of 4rr. The value of the function f is, 
therefore, unaltered. 

A Riemann surlace for the double-valued function (2) is obtained by joining the 
lower edges in R0 of the slits along L 1 and L2 to the upper edges in R 1 of the slits 
along L 1 and L2, respectively. The lower edges in R 1 of the slits along L 1 and L2 are 
then joined to the upper edges in R0 of the slits along L 1 and L2, respectively. It is 
readily verified with the aid of Fig. 128 that one branch of the function is represented 
by its values at points on R0 and the other branch at points on R 1. 

y 

FIGURE 128 

EXERCISES 

1. Describe a Riemann surface for the triple-valued function w = (z- 1)1!3, and point out 
which third of the w plane represents the image of each sheet of that surface. 
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2. Corresponding to each point on the Riemann surface described in Example 2, Sec. 93, 
for the function w = j(z) in that example, there is just one value of w. Show that, 
corresponding to each value of w, there are, in general, three points on the surface. 

3. Describe a Riemann surface for the multiple-valued function 

( )

1/2 
J(z) = z ~ 1 

4. Note that the Riemann surface described in Example 1, Sec. 93, for (z2 1) 112 is also a 
Riemann surface for the function 

g(z) = z + (z2- 1)1/2. 

Let fo denote the branch of (z2 - 1) 112 defined on the sheet R0 , and show that the branches 
g0 and g1 of g on the two sheets are given by the equations 

1 
go(z) = = z + fo(z). 

8I(Z) 

5. In Exercise 4, the branch fo of (z2 - 1) 112 can be described by means of the equation 

( i01) ( i02) fo(z) = Jrl.F2 exp 2 exp 2 , 

where el and e2 range from 0 to 2n and 

z- 1 = r 1 exp(it11), z + 1 = rz exp(il12). 

Note that 2z = r1 exp(ie1) + r2 exp(i82), and show that the branch g0 of the function 
g(z) = z + (z2 - 1) 112 can be written in the form 

1( ifh ie2 )
2 

go(z) = - Jrl exp - + y'F2 exp - . 
2 2 2 

Find g0 (z)g0 (z), and note that r 1 + r2 > 2 and cos[(e1 - e2)/2] > 0 for all z, to prove that 
lgo(z) I > I. Then show that the transformation w = z + (z2 - 1) 112 maps the sheet R0 of 
the Riemann surface onto the region lwl > 1, the sheet R 1 onto the region lwl < 1, and the 
branch cut between the points z = ± 1 onto the circle I w I = 1. Note that the transformation 
used here is an inverse of the transformation 





CHAPTER 

9 
CONFORMAL MAPPING 

In this chapter, we introduce and develop the concept of a conformal mapping, with em­
phasis on connections between such mappings and harmonic functions. Applications 
to physical problems will follow in the next chapter. 

94. PRESERVATION OF ANGLES 

Let C be a smooth arc (Sec. 38), represented by the equation 

z = z(t) (a<t<b), 

and let f (z) be a function defined at all points z on C. The equation 

w = f[z(t)] (a<t<b) 

is a parametric representation of the imager of C under the transformation w = f(z). 
Suppose that C passes through a point zo = z(t0) (a < t0 <b) at which f is 

analytic and that f' (z0) =J 0. According to the chain rule given in Exercise 5, Sec. 
38, if w(t) = j[z(t)], then 

(1) w'(t0) = f'[z(t0)].z:'(t0); 

and this means that (see Sec. 7) 

(2) arg w'(t0) = arg f'[z(to)] + arg z'(to). 

343 
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Statement (2) is useful in relating the directions of C and r at the points zo and 
wo = f(zo), respectively. 

To be specific, let lfro denote a value of arg f'(z0), and let 00 be the angle of 
inclination of a directed line tangent to C at zo (Fig. 129). According to Sec. 38, 00 is 
a value of arg z' (t0); and it follows from statement (2) that the quantity 

is a value of arg w' (t0) and is, therefore, the angle of inclination of a directed line 
tangent tor at the point w0 = f(z0). Hence the angle of inclination of the directed 
line at w0 differs from the angle of inclination of the directed line at zo by the angle 
of rotation 

(3) 

y v 

0 X 

1/lo = arg !' (zo). 

[' 

u 
FIGURE 129 
¢o = 1/lo + Bo. 

Now let C 1 and C2 be two smooth arcs passing through z0, and let 01 and 02 be 
angles of inclination of directed lines tangent to C1 and C2, respectively, at z0. We 
know from the preceding paragraph that the quantities 

are angles of inclination of directed lines tangent to the image curves r 1 and r 2 , 

respectively, at the point w0 = f(z0). Thus ¢ 2 -qy1 = 02 - 01; that is, the angle ¢2 - ¢1 
from r 1 to r 2 is the same in magnitude and sense as the angle 02 -01 from C1 to C2. 

Those angles are denoted by a in Fig. 130. 
Because of this angle-preserving property, a transformation w = f(z) is said to 

be conformal at a point z0 iff is analytic there and f' (zo) f= 0. Such a transformation 

y v 

0 X 0 u FIGURE 130 
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is actually conformal at each point in a neighborhood of z0. For f must be analytic in 
a neighborhood of Zo (Sec. 23); and, since r is continuous at zo (Sec. 48), it follows 
from Theorem 2 in Sec. 17 that there is also a neighborhood of that point throughout 
which f' (z) f= 0. 

A transformation w = f(z), defined on a domain D, is referred to as a conformal 
transformation, or conformal mapping, when it is conformal at each point in D. That 
is, the mapping is conformal in D if f is analytic in D and its derivative f' has no 
zeros there. Each of the elementary functions studied in Chap. 3 can be used to define 
a transformation that is conformal in some domain. 

EXAMPLE 1. The mapping w = ez is conformal throughout the entire z plane since 
(eZ)' = ez f= 0 for each z. Consider any two lines x = c1 andy= c2 in the z plane, the 
first directed upward and the second directed to the right. According to Sec. 13, their 
images under the mapping w = ez are a positively oriented circle centered at the origin 
and a ray from the origin, respectively. As illustrated in Fig. 20 (Sec. 13), the angle 
between the lines at their point of intersection is a right angle in the negative direction, 
and the same is true of the angle between the circle and the ray at the corresponding 
point in the w plane. The conformality of the mapping w = ez is also illustrated in 
Figs. 7 and 8 of Appendix 2. 

EXAMPLE 2. Consider two smooth arcs which are level curves u (x, y) = c1 and 
v(x, y) = c2 of the real and imaginary components, respectively, of a function 

f(z) = u(x, y) + iv(x, y), 

and suppose that they intersect at a point z0 where f is analytic and f'(zo) f= 0. The 
transformation w = f(z) is conformal at z0 and maps these arcs into the lines u = c1 
and v = c2, which are orthogonal at the point w0 = f(z 0). According to our theory, 
then, the arcs must be orthogonal at z0. This has already been verified and illustrated 
in Exercises 7 through 11 of Sec. 25. 

A mapping that preserves the magnitude of the angle between two smooth arcs 
but not necessarily the sense is called an isogonal mapping. 

EXAMPLE 3. The transformation w = z, which is a reflection in the real axis, 
is isogonal but not conformal. If it is followed by a conformal transformation, the 
resulting transformation w = f m is also isogonal but not conformal. 

Suppose that f is not a constant function and is analytic at a point z0. If, in 
addition, f' (zo) = 0, then zo is called a critical point of the transformation w = f (z). 

EXAMPLE 4. The point z = 0 is a critical point of the transformation 

W = 1 + z2
, 
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which is a composition of the mappings 

Z = z2 and w = 1 + Z. 

A ray () = a from the point z = 0 is evidently mapped onto the ray from the point 
w = 1 whose angle of inclination is 2a. Moreover, the angle between any two rays 
drawn from the critical point z = 0 is doubled by the transformation. 

More generally, it can be shown that if zo is a critical point of a transformation 
w = f(z), there is an integer m(m > 2) such that the angle between any two smooth 
arcs passing through z0 is multiplied by m under that transformation. The integer m is 
the smallest positive integer such that f(m)(zo) :f=. 0. Verification of these facts is left 
to the exercises. 

95. SCALE FACTORS 

Another property of a transformation w = f(z) that is conformal at a point zo is 
obtained by considering the modulus of f'(z0). From the definition of derivative and a 
property of limits involving moduli that was derived in Exercise 7, Sec. 17, we know 
that 

(1) 1/'(zo)l = lim f(z)- f(zo) = lim lf(z)- f(zo)l. 
z-+zo Z - ZQ Z-+Zo lz - Zol 

Now lz - zol is the length of a line segment joining zo and z, and If (z) - f (zo) I is the 
length of the line segment joining the points f(z0) and f(z) in thew plane. Evidently, 
then, if z is near the point z0 , the ratio 

lf(z)- f(zo)l 
lz- zol 

of the two lengths is approximately the number I!' (z0) 1. Note that If' (z0) I represents 
an expansion if it is greater than unity and a contraction if it is less than unity. 

Although the angle of rotation arg f'(z) (Sec. 94) and the scale factor 1/'(z)l 
vary, in general, from point to point, it follows from the continuity of f' that their 
values are approximately arg J'(zo) and 1/'(zo)l at points z near z0. Hence the image 
of a small region in a neighborhood of zo conforms to the original region in the sense 
that it has approximately the same shape. A large region may, however, be transformed 
into a region that bears no resemblance to the original one. 

EXAMPLE. When f (z) = z2 , the transformation 

w = /(z) = x 2
- i + i2xy 
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is conformal at the point z = 1 + i, where the half lines 

y = x (x > 0) and x = 1 (x > 0) 

intersect. We denote those half lines by C 1 and C2, with positive sense upward, and 
observe that the angle from C 1 to C2 is rc /4 at their point of intersection (Fig. 13I ). 
Since the image of a point z = (x, y) is a point in the w plane whose rectangular 
coordinates are 

u = x2 -l and v = 2xy, 

the half line C 1 is transformed into the curve r 1 with parametric representation 

(2) u = 0, v = 2x2 (0 < x < oo). 

Thus f 1 is the upper half v > 0 of the v axis. The half line C2 is transformed into the 
curve r 2 represented by the equations 

(3) (0 < y < oo). 

Hence r 2 is the upper half of the parabola v2 = -4(u- 1). Note that, in each case, 
the positive sense of the image curve is upward. 

y 

0 

v 

X 
FIGURE 131 

~ w =z-. 

If u and v are the variables in representation (3) for the image curve r 2, then 

dv _ dvfdy 

du dufdy 

2 

-2y 
2 

v 

In particular, d v / d u = -I when v = 2. Consequently, the angle from the image curve 
r 1 to the image curve r 2 at the point w = f (I + i) = 2i is rc f4, as required by the 
conformality of the mapping at z = I + i. As anticipated, the angle of rotation rc /4 at 
the point z = 1 + i is a value of 

arg[J'(l + i)] = arg[2(1 + i)] = rc + 2mr 
4 

The scale factor at that point is the number 

(n = 0, ±1, ±2, ... ). 

lf'(l + i)l = 12(1 + i)l = 2../2. 
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To illustrate how the angle of rotation and the scale factor can change from point 

to point, we note that they are 0 and 2, respectively, at the point z = 1 since f' ( 1) = 2. 

See Fig. 131, where the curves C2 and r 2 are the ones just discussed and where the 

nonnegative x axis C 3 is transformed into the nonnegative u axis r 3. 

96. LOCAL INVERSES 

A transformation w = f (z) that is conformal at a point zo has a local inverse there. That 

is, if w0 = f(z 0), then there exists a unique transformation z = g(w), which is defined 

and analytic in a neighborhood N of w0 , such that g(w0) = zo and f[g(w)] = w for 

all points w in N. The derivative of g ( w) is, moreover, 

(1) ' I 
g (w) = f'(z) 

We note from expression (1) that the transformation z = g(w) is itself conformal at 

wo. 
Assuming that w = f (z) is, in fact, conformal at z0, let us verify the existence 

of such an inverse, which is a direct consequence of results in advanced calculus.* As 

noted in Sec. 94, the conformality of the transformation w = f(z) at zo implies that 

there is some neighborhood of z0 throughout which f is analytic. Hence if we write 

z = x + iy, zo = x0 + iy0 , and f(z) == u(x, y) + iv(x, y), 

we know that there is a neighborhood of the point (x0 , y0) throughout which the 

functions u (x, y) and v (x, y) along with their partial derivatives of all orders, are 

continuous (see Sec. 48). 
Now the pair of equations 

(2) u = u(x, y), v = v(x, y) 

represents a transformation from the neighborhood just mentioned into the uv plane. 

Moreover, the determinant 

which is known as the Jacobian of the transformation, is nonzero at the point (x0, y0). 

For, in view of the Cauchy-Riemann equations ux = vy and uy = -vx, one can write 

J as 

*The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R. 

Mann, "Advanced Calculus,'' 3d ed., pp. 241-247, 1983. 
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and f'(z0) f=. 0 since the transformation w = f(z) is conformal at z0. The above con­
tinuity conditions on the functions u (x, y) and v (x, y) and their derivatives, together 
with this condition on the Jacobian, are sufficient to ensure the existence of a local 
inverse of transformation (2) at (x0 , Yo). That is, if 

(3) u0 = u(x0 , y0) and v0 = v(x0 , y0), 

then there is a unique continuous transformation 

(4) x = x(u, v), y = y(u, v), 

defined on a neighborhood N of the point (u0 , v0) and mapping that point onto (x0 , y0), 

such that equations (2) hold when equations (4) hold. Also, in addition to being 
continuous, the functions (4) have continuous first-order partial derivatives satisfying 
the equations 

(5) 
1 

Yv = -ux 
J 

throughout N. 
If we write w u + iv and w0 = u0 + iv0 , as well as 

(6) g(w) = x(u, v) + iy(u, v), 

the transformation z = g ( w) is evidently the local inverse of the original transformation 
w = f(z) at z0. Transformations (2) and (4) can be written 

u + iv = u(x, y) + iv(x, y) and x + iy = x(u, v) + iy(u, v); 

and these last two equations are the same as 

w = f(z) and z = g(w), 

where g has the desired properties. Equations (5) can be used to show that g is analytic 
in N. Details are left to the exercises, where expression (1) for g' ( w) is also derived. 

EXAMPLE. We saw in Example I, Sec. 94, that if /(z) = ez, the transformation 
w = f(z) is conformal everywhere in the z plane and, in particular, at the point 
zo = 2n i. The image of this choice of zo is the point w0 = 1. When points in the w 
plane are expressed in the form w = p exp(i4J), the local inverse at zo can be obtained 
by writing g(w) =log w, where log w denotes the branch 

log w =In p + i4J (p > 0, n < e < 3n) 

of the logarithmic function, restricted to any neighborhood of w 0 that does not contain 
the origin. Observe that 

g(l) =In 1 + i2rr = 2rri 
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and that, when w is in the neighborhood, 

f[g(w)] = exp(log w) = w. 

Also, 

1 d 1 1 
g (w) = - log w = - = --

dw w expz 

in accordance with equation (1). 
Note that, if the point zo = 0 is chosen, one can use the principal branch 

Log w = In p + i cp (p > 0, -rc < c/J < rc) 

of the logarithmic function to define g. In this case, g(l) = 0. 

EXERCISES 

1. Determine the angle of rotation at the point z = 2 + i when the transfonnation is w = z2, 

and illustrate it for some particular curve. Show that the scale factor of the transfonnation 
at that point is 2.J5. 

2. What angle of rotation is produced by the transfonnation w = 1/ z at the point 

(a) z = I; (b) z = i? 

Ans. (a) n; (b) 0. 

3. Show that under the transfonnation w = 1/z, the images of the lines y = x - 1 and 
y = 0 are the circle u2 + v2 - u - v = 0 and the line v = 0, respectively. Sketch all four 
curves, determine corresponding directions along them, and verify the confonnality of 
the mapping at the point z = 1. 

4. Show that the angle of rotation at a nonzero point zo = r0 exp(i00) under the transfonna­
tion w = zn (n = 1, 2, ... ) is (n - l)e0. Detennine the scale factor of the transformation 
at that point. 

A n-I ns. nr0 . 

5. Show that the transfonnation w = sin z is confonnal at all points except 

JT 
z=-+nn 

2 
(n = 0, ±1, ±2, ... ). 

Note that this is in agreement with the mapping of directed line segments shown in Figs. 
9, 10, and 11 of Appendix 2. 

6. Find the local inverse of the transformation w = z2 at the point 

(a) zo = 2; (b) zo = -2; (c) Zo = -i. 
Ans. (a) wll2 = ,JPeicfJ/2 (p > 0, -n < ¢; < n); 

(c) wlf2 = ,JPei¢12 (p > 0, 2n < ¢ < 4n). 

7. In Sec. 96, it was pointed out that the components x(u, v) and y(u, v) of the inverse 
function g(w) defined by equation (6) are continuous and have continuous first-order 
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partial derivatives in the neighborhood N. Use equations (5), Sec. 96, to show that the 
Cauchy-Riemann equations Xu= Yv• Xv = -yu hold inN. Then conclude that g(w) is 
analytic in that neighborhood. 

8. Show that if z = g(w) is the local inverse of a conformal transformation w = f(z) at a 
point z0 , then 

I 1 
g (w) = f'(z) 

at points w in the neighborhood N where g is analytic (Exercise 7). 
Suggestion: Start with the fact that f[g(w)] = w, and apply the chain rule for 

differentiating composite functions. 

9. Let C be a smooth arc lying in a domain D throughout which a transformation w = f (z) 
is conformal, and let r denote the image of C under that transformation. Show that r is 
also a smooth arc. 

10. Suppose that a function f is analytic at z0 and that 

for some positive integer m(m > 1). Also, write w0 = f(z0). 

(a) Use the Taylor series for f about the point zo to show that there is a neighborhood 
of zo in which the difference f(z)- w0 can be written 

f(m)(z ) 
f(z)- wo = (z- zo)m 0 [1 + g(z)], 

m! 

where g(z) is continuous at zo and g(z0) = 0. 

(b) Let r be the image of a smooth arc C under the transformation w = f (z), as shown 
in Fig. 129 (Sec. 94), and note that the angles of inclination 80 and ¢0 in that figure 
are limits of arg(z- zo) and arg[f(z) - w0], respectively, as z approaches zo along 
the arc C. Then use the result in part (a) to show that 80 and ¢0 are related by the 
equation 

(c) Let a denote the angle between two smooth arcs C1 and C2 passing through zo. 
as shown on the left in Fig. 130 (Sec. 94). Show how it follows from the relation 
obtained in part (b) that the corresponding angle between the image curves r 1 and 
r 2 at the point w0 = f (zo) is ma. (Note that the transformation is conformal at z0 
when m = 1 and that zo is a critical point when m > 2.) 

97. HARMONIC CONJUGATES 

We saw in Sec. 25 that if a function 

j(z) = u(x, y) + iv(x, y) 
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is analytic in a domain D, then the real-valued functions u and v are harmonic in that 

domain. That is, they have continuous partial derivatives of the first and second order 

in D and satisfy Laplace's equation there: 

(1) Uxx + u yy = 0, V.u + Vyy = 0. 

We had seen earlier that the first-order partial derivatives of u and v satisfy the Cauchy­

Riemann equations 

(2) 

and, as pointed out in Sec. 25, v is called a harmonic conjugate of u. 

Suppose now that u (x, y) is any given harmonic function defined on a simply 

connected (Sec. 46) domain D. In this section, we show that u(x, y) always has a 

harmonic conjugate v(x, y) in D by deriving an expression for v(x, y). 

To accomplish this, we first recall some important facts about line integrals in 

advanced calculus.* Suppose that P(x, y) and Q(x, y) have continuous first-order 

partial derivatives in a simply connected domain D of the xy plane, and let (x0 , y0) 

and (x, y) be any two points in D. If Py = Qx everywhere in D, then the line integral 

L P(s, t) ds + Q(s, t) dt 

from (x0 , Yo) to (x, y) is independent of the contour C that is taken as long as the 

contour lies entirely in D. Furthermore, when the point (x0 , y0) is kept fixed and (x, y) 

is allowed to vary throughout D, the integral represents a single-valued function 

l
(x,y) 

F(x, y) = P(s, t) ds + Q(s, t) dt 
(xo.Yo) 

(3) 

of x andy whose first-order partial derivatives are given by the equations 

(4) Fx(x, y) = P(x, y), Fy(x, y) = Q(x, y). 

Note that the value of F is changed by an additive constant when a different point 

(xo, y0) is taken. 
Returning to the given harmonic function u(x, y), observe how it follows from 

Laplace's equation uxx + Uyy = 0 that 

(-uy)y = (ux)x 

everywhere in D. Also, the second-order partial derivatives of u are continuous in D; 

and this means that the first-order partial derivatives of -uy and Ux are continuous 

*See, for example, W. Kaplan, "Advanced Mathematics for Engineers," pp. 546-550, 1992. 
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there. Thus, if (x0 , y0) is a fixed point in D, the function 

l
(x ,y) 

v(x, y) = -u1(s, t) ds + us(s, t) dt 
(xo.Yo) 

(5) 

is well defined for all (x, y) in D~ and, according to equations (4), 

(6) 

These are the Cauchy-Riemann equations. Since the first-order partial derivatives of 
u are continuous, it is evident from equations (6) that those derivatives of v are also 
continuous. Hence (Sec. 21) u(x, y) + i v(x, y) is an analytic function in D; and vis, 
therefore, a harmonic conjugate of u. 

The function v defined by equation (5) is, of course, not the only harmonic 
conjugate of u. The function v(x, y) + c, where c is any real constant, is also a 
harmonic conjugate of u. [Recall Exercise 2, Sec. 25.] 

EXAMPLE. Consider the function u (x, y) = x y, which is harmonic throughout the 
entire xy plane. According to equation (5), the function 

1
(x,y) 

v(x,y)= -sds+tdt 
{0,0) 

is a harmonic conjugate of u (x, y ). The integral here is readily evaluated by inspection. 
It can also be evaluated by integrating first along the horizontal path from the point 
(0, 0) to the point (x, 0) and then along the vertical path from (x, 0) to the point (x, y). 
The result is 

1 2 1 2 
v(x,y)=-

2
x +

2
y, 

and the corresponding analytic function is 
. . 
l 2 2 l 2 

j(z) = xy- -(x - y ) = --z . 
2 2 

98. TRANSFORMATIONS OF HARMONIC FUNCTIONS 

The problem of finding a function that is harmonic in a specified domain and satisfies 
prescribed conditions on the boundary of the domain is prominent in applied mathe­
matics. If the values of the function are prescribed along the boundary, the problem 
is known as a boundary value problem of the first kind, or a Dirichlet problem. If the 
values of the normal derivative of the function are prescribed on the boundary, the 
boundary value problem is one of the second kind, or a Neumann problem. Modifica­
tions and combinations of those types of boundary conditions also arise. 

The domains most frequently encountered in the applications are simply con­
nected; and, since a function that is harmonic in a simply connected domain always 
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has a harmonic conjugate (Sec. 97), solutions of boundary value problems for such 
domains are the real or imaginary parts of analytic functions. 

EXAMPLE 1. In Example 1, Sec. 25, we saw that the function 

T(x, y) =e-Y sinx 

satisfies a certain Dirichlet problem for the strip 0 < x < rr, y > 0 and noted that it 
represents a solution of a temperature problem. The function T (x, y ), which is actually 
harmonic throughout the xy plane, is evidently the real part of the entire function 

-ieiz = e-Y sin x - ie-Y cos x. 

It is also the imaginary part of the entire function eiz. 

Sometimes a solution of a given boundary value problem can be discovered by 
identifying it as the real or imaginary part of an analytic function. But the success of 
that procedure depends on the simplicity of the problem and on one's familiarity with 
the real and imaginary parts of a variety of analytic functions. The following theorem 
is an important aid. 

Theorem. Suppose that an analytic function 

(1) w = f(z) = u(x, y) + iv(x, y) 

maps a domain Dz in the z plane onto a domain Dw in the w plane. If h(u, v) is a 
harmonic function defined on Dw, then the function 

(2) H(x, y) = h[u(x, y), v(x, y)] 

is harmonic in D z· 

We first prove the theorem for the case in which the domain Dw is simply 
connected. According to Sec. 97, that property of D w ensures that the given harmonic 
function h(u, v) has a harmonic conjugate g(u, v). Hence the function 

(3) <P(w) = h(u, v) + ig(u, v) 

is analytic in Dw. Since the function f(z) is analytic in Dz, the composite function 
<P[j(z)] is also analytic in Dz. Consequently, the real part h[u(x, y), v(x, y)] of this 
composition is harmonic in Dz. · 

If Dw is not simply connected, we observe that each point w0 in Dw has a 
neighborhood lw- w0 i < e lying entirely in Dw. Since that neighborhood is simply 
connected, a function of the type (3) is analytic in it. Furthermore, since f is continuous 
at a point z0 in Dz whose image is w0, there is a neighborhood lz - zo I < c5 whose image 
is contained in the neighborhood I w - w0 I < e. Hence it follows that the composition 
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<l>[f(z)] is analytic in the neighborhood lz- zol < 8, and we may conclude that 
h[u(x, y), v(x, y)] is harmonic there. Finally, since w0 was arbitrarily chosen in Dw 
and since each point in Dz is mapped onto such a point under the transformation 
w = f(z), the function h[u(x, y), v(x, y)] must be harmonic throughout Dz. 

The proof of the theorem for the general case in which Dw is not necessarily 
simply connected can also be accomplished directly by means of the chain rule for 
partial derivatives. The computations are, however, somewhat involved (see Exercise 
8, Sec. 99). 

EXAMPLE 2. The function h(u, v) = e-v sin u is harmonic in the domain Dw con­
sisting of all points in the upper half plane v > 0 (see Example 1). If the transformation 
is w = z2, then u(x, y) = x 2 - y2 and v(x, y) = 2xy; moreover, the domain Dz in the 
z plane consisting of the points in the first quadrant x > 0, y > 0 is mapped onto the 
domain Dw, as shown in Example 3, Sec. 12. Hence the function 

H(x, y) = e-2xy sin(x2 - yl) 

is harmonic in Dz. 

EXAMPLE 3. Consider the function h(u, v) = Im w = v, which is harmonic in 
the horizontal strip -n /2 < v < n j2. We know from Example 3, Sec. 88, that the 
transformation w = Log z maps the right half plane x > 0 onto that strip. Hence, by 
writing 

Log z = In J x 2 + y2 + i arctan Y, 
X 

where -n /2 < arctan t < n j2, we find that the function 

H(x, y) =arctan y 
X 

is harmonic in the half plane x > 0. 

99. TRANSFORMATIONS OF BOUNDARY CONDITIONS 

The conditions that a function or its normal derivative have prescribed values along 
the boundary of a domain in which it is harmonic are the most common, although not 
the only, important types of boundary conditions. In this section, we show that certain 
of these conditions remain unaltered under the change of variables associated with a 
conformal transformation. These results wi11 be used in Chap. 1 0 to solve boundary 
value problems. The basic technique there is to transform a given boundary value 
problem in the xy plane into a simpler one in the u v plane and then to use the theorems 
of this and the preceding section to write the solution of the original problem in terms 
of the solution obtained for the simpler one. 
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Theorem. Suppose that a transfonnation 

(1) w = f(z) = u(x, y) + iv(x, y) 

is conformal on a smooth arc C, and let r be the image of C under that transfonnation. 
If, along r, a function h(u, v) satisfies either of the conditions 

(2) 
dh 

h = h0 or - = 0, 
dn 

where h0 is a real constant and dhjdn denotes derivatives normal tor, then, along 
C, the function 

(3) H(x, y) = h[u(x, y), v(x, y)] 

satisfies the corresponding condition 

(4) H=ho or dH =0 
dN ' 

where dHjdN denotes derivatives normal to C. 

To show that the condition h = h0 on r implies that H = h0 on C, we note from 
equation (3) that the value of Hat any point (x, y) on Cis the same as the value of 
hat the image (u, v) of (x, y) under transformation (1). Since the image point (u, v) 
lies on r and since h = ho along that curve, it follows that H = h0 along C. 

(5) 

Suppose, on the other hand, that dh / dn = 0 on r. From calculus, we know that 

dh 
-=(grad h)· n, 
dn 

where grad h denotes the gradient of h at a point (u, v) on r and n is a unit vector 
normal tor at (u, v). Since dhjdn = 0 at (u, v), equation (5) tells us that grad his 
orthogonal ton at (u, v). That is, grad his tangent tor there (Fig. 132). But gradients 
are orthogonal to level curves; and, because grad h is tangent to r, we see that r is 
orthogonal to a level curve h(u, v) = c passing through (u, v). 

y v 
c 

gradh 

r 

gradH 
0 X 0 u FIGURE 132 
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Now, according to equation (3), the level curve H(x, y) = c in the z plane can 
be written 

h[u(x, y), v(.x, y)] = c; 

and so it is evidently transformed into the level curve h(u, v) = c under transformation 
(1). Furthermore, since Cis transformed into rand r is orthogonal to the level curve 
h(u, v) = c, as demonstrated in the preceding paragraph, it follows from the confor­
mality of transformation ( 1) on C that C is orthogonal to the level curve H (x, y) = c 
at the point (x, y) corresponding to (u, v). Because gradients are orthogonal to level 
curves, this means that grad His tangent to Cat (x, y) (see Fig. 132). Consequently, 
if N denotes a unit vector normal to C at (x, y), grad H is orthogonal to N. That is, 

(6) 

Finally, since 

(grad H)· N = 0. 

dH 
=(grad H)· N, 

dN 

we may conclude from equation (6) that dH jdN = 0 at points on C. 
In this discussion, we have tacitly assumed that grad h f=. 0. If grad h = 0, it 

follows from the identity 

I grad H (x, y) I = I grad h(u, v) ll.f' (z) I, 

derived in Exercise lO(a) below, that grad H = 0; hence dhjdn and the corresponding 
normal derivative d H 1 dN are both zero. We also assumed that 

(i) grad h and grad H always exist; 
(ii) the level curve H(.x, y) =cis smooth when grad h f=. 0 at (u, v). 

Condition (ii) ensures that angles between arcs are preserved by transformation 
( 1) when it is conformal. In all of our applications, both conditions (i) and (ii) will be 
satisfied. 

EXAMPLE. Consider, for instance, the function h(u, v) = v + 2. The transforma­
tion 

is conformal when z f=. 0. It maps the half line y = x (x > 0) onto the negative u 
axis, where h = 2, and the positive x axis onto the positive v axis, where the normal 
derivative hu is 0 (Fig. 133). According to the above theorem, the function 

H (x, y) = x 2 
- y2 + 2 

must satisfy the condition H = 2 along the half line y = x (x > 0) and Hy = 0 along 
the positive x axis, as one can verify directly. 
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B H =0 y c X A' h=2 B' u 
FIGURE 133 

A boundary condition that is not of one of the two types mentioned in the theorem 

may be transformed into a condition that is substantially different from the original 

one (see Exercise 6). New boundary conditions for the transformed problem can be 

obtained for a particular transformation in any case. It is interesting to note that, under 

a conformal transformation, the ratio of a directional derivative of H along a smooth 

arc C in the z plane to the directional derivative of h along the image curve r at the 

corresponding point in thew plane is lf'(z)l; usually, this ratio is not constant along 

a given arc. (See Exercise 10.) 

EXERCISES 

1. Use expression (5), Sec. 97, to find a harmonic conjugate of the harmonic function 

u(x, y) = x 3 - 3xy2. Write the resulting analytic function in terms of the complex 
variable z. 

2. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results in 
Sees. 97 and 48, show that its partial derivatives of all orders are continuous throughout 
that domain. 

3. The transformation w = exp z maps the horizontal strip 0 < y < :rc onto the upper half 
plane v > 0, as shown in Fig. 6 of Appendix 2; and the function 

,., ,., 2 
h(u, v) = Re(w~) = u~- v 

is harmonic in that half plane. With the aid of the theorem in Sec. 98, show that the 

function H(x, y) = e2x cos 2y is harmonic in the strip. Verify this result directly. 

4. Under the transformation w = exp z, the image of the segment 0 < y < :rc of the y axis 

is the semicircle u2 + v2 = 1, v > 0. Also, the function 

h(u, v) = Re(2- w + ~) = 2- u + 
2 

u 
2 w u +v 

is harmonic everywhere in the w plane except for the origin; and it assumes the value 
h = 2 on the semicircle. Write an explicit expression for the function H(x, y) defined 
in the theorem of Sec. 99. Then illustrate the theorem by showing directly that H = 2 
along the segment 0 < y < :rc of the y axis. 
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5. The transformation w = z2 maps the positive x and y axes and the origin in the z plane 
onto the u axis in the w plane. Consider the harmonic function 

h(u, v) = Re(e-w) = e-u cos v, 

and observe that its normal derivative hv along the u axis is zero. Then illustrate the 
theorem in Sec. 99 when f(z) = z2 by showing directly that the normal derivative of the 
function H (x, y) defined in that theorem is zero along both positive axes in the z plane. 
(Note that the transformation w = z2 is not conformal at the origin.) 

6. Replace the function h(u, v) in Exercise 5 by the harmonic function 

h(u, v) = Re( ~2iw + e-w) = 2v e-u cos v. 

Then show that hv = 2 along the u axis but that Hy = 4x along the positive x axis and 
Hx = 4y along the positive y axis. This illustrates how a condition of the type 

dh 
- = ho :f::. 0 
dn 

is not necessarily transformed into a condition of the type dHjdN = h0. 

7. Show that if a function H (x, y) is a solution of a Neumann problem (Sec. 98), then 
H (x, y) + A, where A is any real constant, is also a solution of that problem. 

8. Suppose that an analytic function w = f(z) = u(x, y) + iv(x, y) maps a domain Dz in 
the z plane onto a domain Dw in thew plane; and let a function h(u, v), with continuous 
partial derivatives of the first and second order, be defined on Dw. Use the chain rule for 
partial derivatives to show that if H(x, y) = h[u(x, y), v(x, y)], then 

Hxx(X, y) + Hyy(x, y) = [huu(u, v) + hvv(U, v)]lf'(z)l 2
. 

Conclude that the function H(x, y) is harmonic in Dz when h(u, v) is harmonic in 
Dw. This is an alternative proof of the theorem in Sec.98, even when the domain Dw is 
multiply connected. 

Suggestion: In the simplifications, it is important to note that since f is analytic, 
the Cauchy-Riemann equations ux = Vy, uy = -vx hold and that the functions u and v 
both satisfy Laplace's equation. Also, the continuity conditions on the derivatives of h 
ensure that hvu = huv· 

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second 
order and satisfies Poisson's equation 

Puu(u, v) + Pvv(u, v) = <l>(u, v) 

in a domain Dw of the w plane, where <I> is a prescribed function. Show how it follows 
from the identity obtained in Exercise 8 that if an analytic function 

w = f(z) = u(x, y) + iv(x, y) 

maps a domain Dz onto the domain Dw, then the function 

P(x, y) = p[u(x, y), v(x, y)] 
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satisfies the Poisson equation 

Pxx(x, y) + Pyy(x, y) = <P[u(x, y), v(x, y)JI/'(z)l 2 

in Dz. 

10. Suppose that w = f (z) = u (x, y) + i v(x, y) is a conformal mapping of a smooth arc C 
onto a smooth arc r in thew plane. Let the function h(u, v) be defined on r, and write 

H(x, y) = h[u(x, y), v(x, y)]. 

(a) From calculus, we know that the x and y components of grad H are the partial 
derivatives Hx and Hy, respectively; likewise, grad h has components hu and hv. 
By applying the chain rule for partial derivatives and using the Cauchy-Riemann 
equations, show that if (x, y) is a point on C and (u, v) is its image on r, then 

lgrad H(x, y)l = lgrad h(u, v)ll/'(z)l. 

(b) Show that the angle from the arc C to grad Hat a point (x, y) on Cis equal to the 
angle from r to grad hat the image (u, v) of the point (x, y). 

(c) Let s and a denote distance along the arcs C and r, respectively; and let t and 't' 

denote unit tangent vectors at a point (x, y) on C and its image (u, v), in the direction 
of increasing distance. With the aid of the results in parts (a) and (b) and using the 
fact that 

dH dh - = (grad H) · t and - = (grad h) · t', 
ds da 

show that the directional derivative along the arc r is transformed as follows: 

dH = dh lf'(z)l. 
ds da 



CHAPTER 

10 
APPLICATIONS OF 

CONFORMAL MAPPING 

We now use conformal mapping to solve a number of physical problems involving 
Laplace's equation in two independent variables. Problems in heat conduction, elec­
trostatic potential, and fluid flow will be treated. Since these problems are intended to 
illustrate methods, they will be kept on a fairly elementary level. 

100. STEADY TEMPERATURES 

In the theory of heat conduction, the .flux across a surface within a solid body at a point 
on that surface is the quantity of heat flowing in a specified direction normal to the 
surface per unit time per unit area at the point. Flux is, therefore, measured in such 
units as calories per second per square centimeter. It is denoted here by <l>, and it varies 
with the normal derivative of the temperature T at the point on the surface: 

<l>=-KdT 
dN 

(1) (K > 0). 

Relation (1) is known as Fourier's law and the constant K is called the thermal 
conductivity of the material of the solid, which is assumed to be homogeneous.* 

The points in the solid are assigned rectangular coordinates in three-dimensional 
space, and we restrict our attention to those cases in which the temperature T varies 

*The law is named for the French mathematical physicist Joseph Fourier ( 1768-1830). A translation of 
his book, cited in Appendix I, is a classic in the theory of heat conduction. 

361 
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with only the x and y coordinates. Since T does not vary with the coordinate along 

the axis perpendicular to the xy plane, the flow of heat is, then, two-dimensional and 

parallel to that plane. We agree, moreover, that the flow is in a steady state~ that is, T 

does not vary with time. 
It is assumed that no thermal energy is created or destroyed within the solid. 

That is, no heat sources or sinks are present there. Also, the temperature function 

T (x, y) and its partial derivatives of the first and second order are continuous at each 

point interior to the solid. This statement and expression ( 1) for the flux of heat are 
postulates in the mathematical theory of heat conduction, postulates that also apply at 

points within a solid containing a continuous distribution of sources or sinks. 

Consider now an element of volume that is interior to the solid and that has the 

shape of a rectangular prism of unit height perpendicular to the xy plane, with base 

L).x by L).y in that plane (Fig. 134). The time rate of flow of heat toward the right across 

the left-hand face is - K Tx(x, y)L).y; and, toward the right across the right-hand face, 

it is -KTx(x + L).x, y)L).y. Subtracting the first rate from the second, we obtain the 

net rate of heat loss from the element through those two faces. This resultant rate can 

be written 

or 

(2) 

if L).x is very small. Expression (2) is, of course, an approximation whose accuracy 

increases as L).x and L).y are made smaller. 

y 

~X 

r=J~y 
(x,y) 

FIGURE 134 

X 

In like manner, the resultant rate of heat loss through the other faces perpendicular 

to the xy plane is found to be 

(3) 

Heat enters or leaves the element only through these four faces, and the temperatures 

within the element are steady. Hence the sum of expressions (2) and (3) is zero; that 

IS, 

(4) 
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The temperature function thus satisfies Laplace's equation at each interior point of the 
solid. 

In view of equation (4) and the continuity of the temperature function and its 
partial derivatives, T is a harmonic function of x andy in the domain representing the 
interior of the solid body. 

The surfaces T (x, y) = c1, where c1 is any real constant, are the isotherms within 
the solid. They can also be considered as curves in the xy plane; then T(x, y) can be 
interpreted as the temperature at a point (x, y) in a thin sheet of material in that plane, 
with the faces of the sheet thermally insulated. The isotherms are the level curves of 
the function T. 

The gradient ofT is perpendicular to the isotherm at each point, and the maximum 
flux at a point is in the direction of the gradient there. If T (x, y) denotes temperatures in 
a thin sheet and if Sis a harmonic conjugate of the function T, then a curve S (x, y) = c2 
has the gradient of T as a tangent vector at each point where the analytic function 
T (x, y) + iS (x, y) is conformal. The curves S (x, y) = c2 are called lines of flow. 

If the normal derivative d TId N is zero along any part of the boundary of the sheet, 
then the flux of heat across that part is zero. That is, the part is thermally insulated and 
is, therefore, a line of flow. 

The function T may also denote the concentration of a substance that is diffusing 
through a solid. In that case, K is the diffusion constant. The above discussion and the 
derivation of equation (4) apply as well to steady-state diffusion. 

101. STEADY TEMPERATURES IN A HALF PLANE 

Let us find an expression for the steady temperatures T(x, y) in a thin semi-infinite 
plate y > 0 whose faces are insulated and whose edge y = 0 is kept at temperature 
zero except for the segment -1 < x < 1, where it is kept at temperature unity (Fig. 
135). The function T (x, y) is to be bounded; this condition is natural if we consider 
the given plate as the limiting case of the plate 0 < y < Yo whose upper edge is kept 
at a fixed temperature as Yo is increased. In fact, it would be physically reasonable to 
stipulate that T (x, y) approach zero as y tends to infinity. 

The boundary value problem to be solved can be written 

(1) (-OO<X<OO,y>O), 

y v 

C' T=l B' 

C'{_ D~: ls' 
A T=O B T=l T=O DX T=O u 

FIGURE 135 
z- I (r1 :rr 3:rr) w =log-- - > 0, -- < 81 - 82 < - . 
z + 1 r2 2 2 
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(2) T(x O) = { 1 when lxl < 1, 
' 0 when lx I > 1; 

also, IT (x, y) I < M where M is some positive constant. This is a Dirichlet problem 
for the upper half of the xy plane. Our method of solution will be to obtain a new 
Dirichlet problem for a region in the uv plane. That region will be the image of the 
half plane under a transformation w = f(z) that is analytic in the domain y > 0 and 
that is conformal along the boundary y = 0 except at the points (±1, 0), where it is 
undefined. It will be a simple matter to discover a bounded harmonic function satisfying 
the new problem. The two theorems in Chap. 9 will then be applied to transform the 
solution of the problem in the u v plane into a solution of the original problem in the xy 
plane. Specifically, a harmonic function of u and v will be transformed into a harmonic 
function of x andy, and the boundary conditions in the uv plane will be preserved on 
corresponding portions of the boundary in the xy plane. There should be no confusion 
if we use the same symbol T to denote the different temperature functions in the two 
planes. 

Let us write 

z- 1 = r1 exp(i81) and z + 1 = r 2 exp(i82), 

where 0 < ek < n (k = 1, 2). The transformation 

(3) 
z- 1 r 1 • 

w =log = ln- + z(81 - 82) 
z + 1 r 2 

is defined on the upper half plane y > 0, except for the two points z = ± 1, since 
0 < 81 - 82 < n in the region. (See Fig. 135.) Now the value of the logarithm is the 
principal value when 0 < e1 - 82 < n, and we recall from Example 3 in Sec. 88 that 
the upper half plane y > 0 is then mapped onto the horizontal strip 0 < v < n in the 
w plane. As already noted in that example, the mapping is shown with corresponding 
boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure which suggested 
transformation (3) here. The segment of the x axis between z = -1 and z = 1, where 
81 - 82 = n, is mapped onto the upper edge of the strip; and the rest of the x axis, where 
81 - 82 = 0, is mapped onto the lower edge. The required analyticity and conformality 
conditions are evidently satisfied by transformation (3). 

A bounded harmonic function of u and v that is zero on the edge v = 0 of the 
strip and unity on the edge v = n is clearly 

(4) 
1 

T= -v; 
J'( 

it is harmonic since it is the imaginary part of the entire function (ljn)w. Changing 
to x and y coordinates by means of the equation 

(5) z- 1 (z- 1) w=ln +iarg , 
z+l z+l 



SEC. 102 A RELATED PROBLEM 365 

we find that 

[
(z- l)(Z + 1)] [x2 + y2

- 1 + i2y] v=arg =arg , 
(z + l)(z + 1) (x + 1)2 + y2 

or 

v =arctan( 2 
2

Y2 ) . 
X + y -1 

The range of the arctangent function here is from 0 to n since 

arg ( z - 1) = ei - e2 
z + 1 

and 0 < 01 - 02 < n. Expression ( 4) now takes the form 

(6) T = _!_ arctan ( 2 
2

Y2 ) 
n x+y-1 

(0 <arctan t < n). 

Since the function ( 4) is harmonic in the strip 0 < v < n and since transformation 
(3) is analytic in the half plane y > 0, we may apply the theorem in Sec. 98 to conclude 
that the function (6) is harmonic in that half plane. The boundary conditions for the 
two harmonic functions are the same on corresponding parts of the boundaries because 
they are of the type h = h0, treated in the theorem of Sec. 99. The bounded function ( 6) 
is, therefore, the desired solution of the original problem. One can, of course, verify 
directly that the function (6) satisfies Laplace's equation and has the values tending to 
those indicated on the left in Fig. 135 as the point (x, y) approaches the x axis from 
above. 

The isotherms T(x, y) = c1 (0 < c1 < 1) are arcs of the circles 

x2 + (y -cot nc1)
2 = csc2 net> 

passing through the points (±1, 0) and with centers on they axis. 
Finally, we note that since the product of a harmonic function by a constant is 

also harmonic, the function 

T = To arctan( 2 
2

Y2 ) 
n x+y-1 

(0 <arctan t < n) 

represents steady temperatures in the given half plane when the temperature T = 1 
along the segment -1 < x < 1 of the x axis is replaced by any constant temperature 
T = T0. 

102. A RELATED PROBLEM 
Consider a semi-infinite slab in the three-dimensional space bounded by the planes 
x = ±n /2 and y = 0 when the first two surfaces are kept at temperature zero and the 
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CHAP. IO 

third at temperature unity. We wish to find a formula for the temperature T (x, y) at 
any interior point of the slab. The problem is also that of finding temperatures in a thin 
plate having the form of a semi-infinite strip -n /2 < x < n /2, y > 0 when the faces 
of the plate are perfectly insulated (Fig. 136). 

The boundary value problem here is 

(1) ( - n < x < n y > o) 2 2, ' 

(2) (y > 0), 

(3) T(x, 0) = 1 

where T (x, y) is bounded. 
In view of Example 1 in Sec. 89, as well as Fig. 9 of Appendix 2, the mapping 

(4) w=smz 

transforms this boundary value problem into the one posed in Sec. 101 (Fig. 135). 
Hence, according to solution (6) in that section, 

(5) 1 ( 2v ) T = - arctan 
2 2 1r u+v-1 

(0 <arctan t < n). 

The change of variables indicated in equation (4) can be written 

u = sin x cosh y, v = cos x sinh y; 

and the harmonic function (5) becomes 

=-~an . T 1 ( 2 cos x sinh y ) 
1r sin2 x cosh2 y + cos2 x sinh2 y - 1 
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Since the denominator here reduces to sinh2 y cos2 x, the quotient can be put in the 
form 

2 cos x sinh y 

sinh2 y - cos2 x 

2(cosxl sinh y) 
--'----'---=---,. = tan 2a, 
1- (cos xl sinh y)2 

where tan a = cos xI sinh y. Hence T = (2 I TC )a; that is 

(6) T = -2 arctan(-~-os_x_) 
TC smh y ( 0 <arctan t < TC)· - - 2 

This arctangent function has the range 0 to TC 12 since its argument is nonnegative. 
Since sin z is entire and the function (5) is harmonic in the half plane v > 0, the 

function (6) is harmonic in the strip -TC 12 < x < TC 12, y > 0. Also, the function (5) 
satisfies the boundary condition T = 1 when iu I < 1 and v = 0, as well as the condition 
T = 0 when lui > 1 and v = 0. The function (6) thus satisfies boundary conditions (2) 
and (3). Moreover, IT (x, y) I < 1 throughout the strip. Expression (6) is, therefore, the 
temperature formula that is sought. 

The isotherms T (x, y) = c1 (0 < c1 < 1) are the portions of the surfaces 

cos x =tan( TC;
1

) sinh y 

within the slab, each surface passing through the points (±TC 12, 0) in the xy plane. If 
K is the thermal conductivity, the flux of heat into the slab through the surface lying 
in the plane y = 0 is 

2K 
-KTy(x, 0) = -­

TC COS X 

The flux outward through the surface lying in the plane x = TC 12 is 

-KT (TC ) - _2K_ 
X 2'y - • h 

TCSlll y 
(y > 0). 

The boundary value problem posed in this section can also be solved by the 
method of separation of variables. That method is more direct, but it gives the solution 
in the form of an infinite series.* 

*A similar problem is treated in the authors' "Fourier Series and Boundary Value Problems," 6th ed., 
Problem 7, p. 142, 2001. Also, a short discussion of the uniqueness of solutions to boundary value 
problems can be found in Chap. lO of that book. 
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103. TEMPERATURES IN A QUADRANT 

Let us find the steady temperatures in a thin plate having the form of a quadrant if a 
segment at the end of one edge is insulated, if the rest of that edge is kept at a fixed 
temperature, and if the second edge is kept at another fixed temperature. The surfaces 
are insulated, and so the problem is two-dimensional. 

The temperature scale and the unit of length can be chosen so that the boundary 
value problem for the temperature function T becomes 

(1) 

(2) 

(3) 

(x > 0, y > 0), 

{ 
Ty(x, 0) = 0 when 0 < x < 1, 
T(x,O)=l whenx>1, 

T(O, y) = 0 (y > 0), 

where T (x, y) is bounded in the quadrant. The plate and its boundary conditions 
are shown on the left in Fig. 137. Conditions (2) prescribe the values of the normal 
derivative of the function T over a part of a boundary line and the values of the function 
itself over the rest of that line. The separation of variables method mentioned at the end 
of Sec. 102 is not adapted to such problems with different types of conditions along 
the same boundary line. 

As indicated in Fig. 10 of Appendix 2, the transformation 

(4) z=smw 

is a one to one mapping of the semi-infinite strip 0 < u < rr /2, v > 0 onto the quadrant 
x > 0, y > 0. Observe now that the existence of an inverse is ensured by the fact 
that the given transformation is both one to one and onto. Since transformation (4) is 
conformal throughout the strip except at the point w = rr /2, the inverse transformation 
must be conformal throughout the quadrant except at the point z = 1. That inverse 
transformation maps the segment 0 < x < 1 of the x axis onto the base of the strip and 
the rest of the boundary onto the sides of the strip as shown in Fig. 137. 

Since the inverse of transformation ( 4) is conformal in the quadrant, except when 
z = 1, the solution to the given problem can be obtained by finding a function that is 

y 

v---
T=O 

v 

T=O T=l 

C' B' 
cjaa~J!t>rr~uu 

2 FIGURE 137 
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harmonic in the strip and satisfies the boundary conditions shown on the right in Fig. 
137. Observe that these boundary conditions are of the types h = h0 and dhfdn = 0 
in the theorem of Sec. 99. 

The required temperature function T for the new boundary value problem is 
clearly 

(5) 
2 

T= -u, 
rr 

the function (2/rr)u being the real part of the entire function (2/rr)w. We must now 
express T in terms of x and y. 

To obtain u in terms of x andy, we first note that, according to equation (4), 

(6) x = sin u cosh v, y = cos u sinh v. 

When 0 < u < rr /2, both sin u and cos u are nonzero; and, consequently, 

(7) 

Now it is convenient to observe that, for each fixed u, hyperbola (7) has foci at the 
points 

z = ±J sin2 u + cos2 u = ± 1 

and that the length of the transverse axis, which is the line segment joining the two 
vertices, is 2 sin u. Thus the absolute value of the difference of the distances between 
the foci and a point (x, y) lying on the part of the hyperbola in the first quadrant is 

J<x + 1)2 + y2 - J<x- 1)2 + y2 = 2 sin u. 
It follows directly from equations (6) that this relation also holds when u = 0 or 
u = rr /2. In view of equation (5), then, the required temperature function is 

(8) 
2 . [ J (x + 1)2 + y2 _ J (x _ 1)2 + y2] 

T =- arcsm , 
rr 2 

where, since 0 < u < rr /2, the arcsine function has the range 0 torr /2. 
If we wish to verify that this function satisfies boundary conditions (2), we must 

remember that J (x - 1)2 denotes x - 1 when x > 1 and 1 - x when 0 < x < 1, the 
square roots being positive. Note, too, that the temperature at any point along the 
insulated part of the lower edge of the plate is 

T(x, 0) = ~ arcsin x 
rr 

(0 <X< 1). 

It can be seen from equation (5) that the isotherms T(x, y) = c1 (0 < c1 < 1) 
are the parts of the confocal hyperbolas (7), where u = rrc!l2, which lie in the first 
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quadrant. Since the function (2/n)v is a harmonic conjugate of the function (5), the 
lines of flow are quarters of the confocal ellipses obtained by holding v constant in 
equations (6). 

EXERCISES 
1. In the problem of the semi-infinite plate shown on the left in Fig. 135 (Sec. 101), obtain 

a harmonic conjugate of the temperature function T(x, y) from equation (5), Sec. 101, 
and find the lines of flow of heat. Show that those lines of flow consist of the upper half 
of they axis and the upper halves of certain circles on either side of that axis, the centers 
of the circles lying on the segment AB or CD of the x axis. 

2. Show that if the function T in Sec. 101 is not required to be bounded, the harmonic 
function (4) in that section can be replaced by the harmonic function 

T = Im ( ~ w + A cosh w) = ~ v + A sinh u sin v, 

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet problem 
for the strip in the uv plane (Fig. 135) would not, then, be unique. 

3. Suppose that the condition that T be bounded is omitted from the problem for temper­
atures in the semi-infinite slab of Sec. 102 (Fig. 136). Show that an infinite number of 
solutions are then possible by noting the effect of adding to the solution found there the 
imaginary part of the function A sin z. where A is an arbitrary real constant. 

4. Use the function Log z to find an expression for the bounded steady temperatures in a 
plate having the form of a quadrant x > 0, y > 0 (Fig. 138) if its faces are perfectly insu­
lated and its edges have temperatures T(x, 0) = 0 and T(O, y) = 1. Find the isotherms 
and lines of flow, and draw some of them. 

Ans. T = ~ arctan(~). 

y 

T=l 

T=O X FIGURE138 

5. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge if 
its boundary planes() = 0 and() = 00 (0 < r < r0) are kept at constant temperatures zero 
and T0, respectively, and if its surface r = r0 (0 < e < e0 ) is perfectly insulated (Fig. 
139). 

Ans. T = To arctan ( Y ) . 
00 x 
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y 

T=O FIGURE 139 

6. Find the bounded steady temperatures T (x, y) in the semi-infinite solid y > 0 if T = 0 

on the part x < -1 (y = 0) of the boundary, if T = 1 on the part x > 1 (y = 0), and if 

the strip -I < x < 1 (y = 0) of the boundary is insulated (Fig. 140). 

Ans. T = - + - arcsm 1 1 . [/<x+l)2+y2-y'(x-1)2+y2] 
2 lf 2 

(-n/2 <arcsin t < n/2). 

FIGURE 140 

7. Find the bounded steady temperatures in the solid x > 0, y > 0 when the boundary 

surfaces are kept at fixed temperatures except for insulated strips of equal width at the 

comer, as shown in Fig. 141. 
Suggestion: This problem can be transformed into the one in Exercise 6. 

Ans. T = - + - arcsm 
1 1 . [/(x2 - y2 + 1)2 + (2xy)2 /(x2- y2- 1)2 + (2xy)2] 

2 lf 2 

( -lf /2 < arctan t < lf /2). 

y 

T=O 

1 T=l X FIGURE 141 

8. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 142): 

Hu(x, y) + Hyy(x, y) = 0 (0 < x < n/2, y > 0), 

H(x,O)=O (O<x<n/2), 

H(O, y) = 1, H(n/2, y) = 0 (y > 0), 

where 0 < H(x, y):::; l. 
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Suggestion: This problem can be transformed into the one in Exercise 4. 

2 (tanh y) Ans. H = - arctan . 
rc tan x 

y 

H= 1 H=O 

H=Orc x 
2 FIGURE 142 

CHAP. 10 

9. Derive an expression for temperatures T (r, 8) in a semicircular plate r < 1, 0 < e < rc 
with insulated faces if T = 1 along the radial edge e = 0 (0 < r < 1) and T = 0 on the 
rest of the boundary. 

Suggestion: This problem can be transformed into the one in Exercise 8. 

Ans. T = ~ arctan(
1

- r cot 
8

). 
rc l+r 2 

10. Solve the boundary value problem for the plate x > 0, y > 0 in the z plane when the 
faces are insulated and the boundary conditions are those indicated in Fig. 143. 

Suggestion: Use the mapping 

. ·-
l lZ 

w----
- z- lzl2 

to transform this problem into the one posed in Sec. 103 (Fig. 137). 

T=I 

T=O X FIGURE 143 

11. The portions x < 0 (y = 0) and x < 0 (y = rc) of the edges of an infinite horizontal plate 
0 < y < rc are thermally insulated, as are the faces of the plate. Also, the conditions 
T(x, 0) = 1 and T(x, rr) = 0 are maintained when x > 0 (Fig. 144). Find the steady 
temperatures in the plate. 

Suggestion: This problem can be transformed into the one in Exercise 6. 

12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region 
enclosed by an ellipse with foci (±1, 0). The temperature on the elliptical part of its 
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rei T = 0 

T=l X FIGURE 144 

boundary is T = 1. The temperature along the segment -1 < x < 1 of the x axis is T = 0, 
and the rest of the boundary along the x axis is insulated. With the aid of Fig. 11 in 
Appendix 2, find the lines of flow of heat. 

13. According to Sec. 50 and Exercise 7 of that section, if f(z) = u(x, y) + iv(x, y) is 
continuous on a closed bounded region R and analytic and not constant in the interior of 
R, then the function u(x, y) reaches its maximum and minimum values on the boundary 
of R, and never in the interior. By interpreting u (x, y) as a steady temperature, state a 
physical reason why that property of maximum and minimum values should hold true. 

104. ELECTROSTATIC POTENTIAL 

In an electrostatic force field, the field intensity at a point is a vector representing the 
force exerted on a unit positive charge placed at that point. The electrostatic potential 
is a scalar function of the space coordinates such that, at each point, its directional 
derivative in any direction is the negative of the component of the field intensity in that 
direction. 

For two stationary charged particles, the magnitude of the force of attraction or 
repulsion exerted by one particle on the other is directly proportional to the product 
of the charges and inversely proportional to the square of the distance between those 
particles. From this inverse-square law, it can be shown that the potential at a point 
due to a single particle in space is inversely proportional to the distance between the 
point and the particle. In any region free of charges, the potential due to a distribution 
of charges outside that region can be shown to satisfy Laplace's equation for three­
dimensional space. 

If conditions are such that the potential V is the same in all planes parallel to 
the xy plane, then in regions free of charges Vis a harmonic function of just the two 
variables x andy: 

Vxx(x, y) + Vyy(x, y) =0. 

The field intensity vector at each point is parallel to the xy plane, with x and y 
components - Vx(x, y) and - Vy(x, y ), respectively. That vector is, therefore, the 
negative of the gradient of V (x, y). 

A surface along which V (x, y) is constant is an equipotential surface. The 
tangential component of the field intensity vector at a point on a conducting surface is 
zero in the static case since charges are free to move on such a surface. Hence V (x, y) 
is constant along the surface of a conductor, and that surface is an equipotential. 
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If U is a harmonic conjugate of V, the curves U (x, y) = c2 in the xy plane are 
called flux lines. When such a curve intersects an equipotential curve V (x, y) = c1 at 
a point where the derivative of the analytic function V (x, y) + i U (x, y) is not zero, 
the two curves are orthogonal at that point and the field intensity is tangent to the flux 
line there. 

Boundary value problems for the potential V are the same mathematical problems 
as those for steady temperatures T; and, as in the case of steady temperatures, the 
methods of complex variables are limited to two-dimensional problems. The problem 
posed in Sec. 102 (see Fig. 136), for instance, can be interpreted as that of finding the 
two-dimensional electrostatic potential in the empty space 

Jr Jr 
--<X<- y > 0 

2 2' 

bounded by the conducting planes x = ± n /2 and y = 0, insulated at their intersections, 
when the first two surfaces are kept at potential zero and the third at potential unity. 

The potential in the steady flow of electricity in a plane conducting sheet is also 
a harmonic function at points free from sources and sinks. Gravitational potential is a 
further example of a harmonic function in physics. 

105. POTENTIAL IN A CYLINDRICAL SPACE 

A long hollow circular cylinder is made out of a thin sheet of conducting material, 
and the cylinder is split lengthwise to form two equal parts. Those parts are separated 
by slender strips of insulating material and are used as electrodes, one of which is 
grounded at potential zero and the other kept at a different fixed potential. We take the 
coordinate axes and units of length and potential difference as indicated on the left in 
Fig. 145. We then interpret the electrostatic potential V (x, y) over any cross section of 
the enclosed space that is distant from the ends of the cylinder as a harmonic function 
inside the circle x 2 + y2 = 1 in the x y plane. Note that V = 0 on the upper half of the 
circle and that V = 1 on the lower half. 

y v 

V=O 

1 X V=1 1 V=O u 

FIGURE 145 

A linear fractional transformation that maps the upper half plane onto the interior 
of the unit circle centered at the origin, the positive real axis onto the upper half of the 
circle, and the negative real axis onto the lower half of the circle is verified in Exercise 
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1, Sec. 88. The result is given in Fig. 13 of Appendix 2; interchanging z and w there, 
we find that the inverse of the transfonnation 

(1) 
I- W 

z=-­
i + w 

gives us a new problem for V in a half plane, indicated on the right in Fig. 145. 
Now the imaginary part of the function 

(2) 
1 1 i 

- Log w = - In p + -¢ (p > 0, 0 < rp < TC) 
TC TC TC 

is a bounded function of u and v that assumes the required constant values on the two 
parts ¢ = 0 and ¢ = TC of the u axis. Hence the desired harmonic function for the half 
plane is 

(3) V = ~ arctan(:). 

where the values of the arctangent function range from 0 to TC. 

The inverse of transfonnation ( 1) is 

.1- z 
w = l ' 

l+z 
(4) 

from which u and v can be expressed in terms of x andy. Equation (3) then becomes 

(5) V = _!.. arctan( 
1 

x
2 

y
2

) 
TC 2y 

(0 < arctan t < TC). 

The function (5) is the potential function for the space enclosed by the cylindrical 
electrodes since it is hannonic inside the circle and assumes the required values on the 
semicircles. If we wish to verify this solution, we must note that 

lim arctan t = 0 and lim arctan t = TC. 
t........Y.O 
t<O 

The equipotential curves V (x, y) = c1 (0 < c1 < 1) in the circular region are arcs 
of the circles 

with each circle passing through the points (± 1, 0). Also, the segment of the x axis 
between those points is the equipotential V (x, y) = 1/2. A harmonic conjugate U of 
V is -(1/TC) In p, or the imaginary part of the function -{i jTC) Log w. In view of 
equation (4), U may be written 

1 1 - '7 

U =--In "· 
rr 1+z 
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From this equation, it can be seen that the flux lines U (x, y) = c2 are arcs of circles 
with centers on the x axis. The segment of the y axis between the electrodes is also a 
flux line. 

EXERCISES 

1. The harmonic function (3) of Sec. 105 is bounded in the half plane v > 0 and satisfies 
the boundary conditions indicated on the right in Fig. 145. Show that if the imaginary 
part of Aew, where A is any real constant, is added to that function, then the resulting 
function satisfies all of the requirements except for the boundedness condition. 

2. Show that transformation ( 4) of Sec. 105 maps the upper half of the circular region shown 
on the left in Fig. 145 onto the first quadrant of the w plane and the diameter C E onto the 
positive v axis. Then find the electrostatic potential V in the space enclosed by the half 
cylinder x2 + y2 = 1, y > 0 and the plane y = 0 when V = 0 on the cylindrical surface 
and V = 1 on the planar surface (Fig. 146). 

2 ( 1 x2 2) Ans. V = - arctan - - y . 
lf 2y 

y 

V=O 

-1 V= 1 1 X FIGURE 146 

3. Find the electrostatic potential V (r, 0) in the space 0 < r < 1, 0 < e < n /4, bounded by 
the half planes e = 0 and e = lf /4 and the portion 0 < e < lf /4 of the cylindrical surface 
r = 1, when V = 1 on the planar surfaces and V = 0 on the cylindrical one. (See Exercise 
2.) Verify that the function obtained satisfies the boundary conditions. 

4. Note that all branches of log z have the same real component, which is harmonic 
everywhere except at the origin. Then write an expression for the electrostatic potential 
V (x, y) in the space between two coaxial conducting cylindrical surfaces x 2 + y2 = 1 
and x2 + y2 = rji (r0 :j:. 1) when V = 0 on the first surface and V = I on the second. 

ln(x2 + i> 
Ans. V = . 

2ln r0 

5. Find the bounded electrostatic potential V (x, y) in the space y > 0 bounded by an infinite 
conducting plane y = 0 one strip (-a < x <a, y = 0) of which is insulated from the 
rest of the plane and kept at potential V = 1, while V = 0 on the rest (Fig. 147). Verify 
that the function obtained satisfies the boundary conditions. 

Ans. V =_!.arctan( 
2 

la; 
2

) (0 <arctan t < rr). 
rr x +y -a 
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y 

a 

V=O V=l V=O X FIGURE 147 

6. Derive an expression for the electrostatic potential in the semi-infinite space indicated in 
Fig. 148, bounded by two half planes and a half cylinder, when V = 1 on the cylindrical 
surface and V = 0 on the planar surfaces. Draw some of the equipotential curves in the 
xy plane. 

Ans. V =~arctan( 
2 

Zy 
1
). 

TC X y2 

y 

FIGURE 148 

7. Find the potential V in the space between the planes y = 0 and y = rc when V = 0 on 
the parts of those planes where x > 0 and V = 1 on the parts where x < 0 (Fig. 149). 
Check the result with the boundary conditions. 

Ans. V = _.!_ arctan(-~-in-'-y-) 
rc smhx 

(0 <arctan t < rr). 

y 

V=l rri V= 0 
I \ 

I J_ 

V=l V=O X FIGURE 149 

8. Derive an expression for the electrostatic potential V in the space interior to a long 
cylinder r = 1 when V = 0 on the first quadrant (r = 1, 0 < () < rr /2) of the cylindrical 
surface and V = 1 on the rest (r = 1, rc /2 < () < 2rr) of that surface. (See Exercise 5, 
Sec. 88, and Fig. 110 there.) Show that V = 3/4 on the axis of the cylinder. Check the 
result with the boundary conditions. 

9. Using Fig. 20 of Appendix 2, find a temperature function T (x, y) that is harmonic in the 
shaded domain of the xy plane shown there and assumes the values T = 0 along the arc 
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ABC and T = 1 along the line segment DEF. Verify that the function obtained satisfies 
the required boundary conditions. (See Exercise 2.) 

10. The Dirichlet problem 

vxx<x. y) + Vyy(x, y) = 0 (0 <X< a, 0 < y <b), 

V(x,O)=O, V(x,b)=l (O<x<a), 

V(O, y) = V(a, y) = 0 (0 < y <b) 

for V (x, y) in a rectangle can be solved by the method of separation of variables.* The 
solution is 

V 
4 ~ sinh(m;ryja) . mrrx 

=- L sm--
;r n=l m sinh(mrrbja) a 

(m = 2n- 1). 

By accepting this result and adapting it to a problem in the uv plane, find the potential 
V (r, ())in the space 1 < r < r0 , 0 < () < ;r when V = 1 on the part of the boundary where 
e =;rand V = 0 on the rest of the boundary. (See Fig. 150.) 

Ans. V =if sinh(an8) . sin(an ln r) 

7r n=l sinh(an;r) 2n - 1 [ 
_ (2n - l);r J 

an- . 
ln r0 

v 

1ti o-_..;..V_=-=1'---o 

V=O V=O 

FIGURE 150 
V=l V=O ln r0 u 

( 
Jr 3;r) w =log z r > 0, - 2 < () < l . 

11. With the aid of the solution of the Dirichlet problem for the rectangle 

0 < x <a, 0 < y < b 

that was used in Exercise I 0, find the potential V (r, ()) for the space 

1 < r < ro, 0 < e < Jr 

when V = 1 on the part r = r0 , 0 < e < ;r of its boundary and V = 0 on the rest (Fig. 
151). 

Ans. V = 4 f ( r: -r=:) sin me (m = 2n - 1). 
;r n=i ro - ro m 

*See the authors' "Fourier Series and Boundary Value Problems," 6th ed., pp. 135-137 and 185-187, 
2001. 
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V=O V=O X FIGURE 151 

106. TWO-DIMENSIONAL FLUID FLOW 

Harmonic functions play an important role in hydrodynamics and aerodynamics. 
Again, we consider only the two-dimensional steady-state type of problem. That is, 
the motion of the fluid is assumed to be the same in all planes parallel to the x y plane, 
the velocity being parallel to that plane and independent of time. It is, then, sufficient 
to consider the motion of a sheet of fluid in the x y plane. 

We let the vector representing the complex number 

v =p + iq 

denote the velocity of a particle of the fluid at any point (x, y); hence the x and y 
components of the velocity vector are p(x, y) and q (x, y ), respectively. At points 
interior to a region of flow in which no sources or sinks of the fluid occur, the 
real-valued functions p(x, y) and q(x, y) and their first-order partial derivatives are 
assumed to be continuous. 

The circulation of the fluid along any contour C is defined as the line integral 
with respect to arc length a of the tangential component VT(x, y) of the velocity 
vector along C: 

(1) fc VT(x, y) da. 

The ratio of the circulation along C to the length of C is, ther~fore, a mean speed of 
the fluid along that contour. It is shown in advanced calculus that such an integral can 
be written* 

(2) fc VT(x, y) da = fc p(x, y) dx + q(x, y) dy. 

When C is a positively oriented simple closed contour lying in a simply connected 
domain of flow containing no sources or sinks, Green's theorem (see Sec. 44) enables 

*Properties of line integrals in advanced calculus that are used in this and the following section are to 
be found in, for instance, W. Kaplan, "Advanced Mathematics for Engineers," Chap. 10, 1992, 
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us to write 

fc p(x, y) dx + q(x, y) dy = J L [qx(x, y)- Py(x, y)] dA, 

where R is the closed region consisting of points interior to and on C. Thus 

(3) fc Vr(x, y) da = J L [qx(x, y)- Py(x, y)] dA 

for such a contour 
A physical interpretation of the integrand on the right in expression (3) for the 

circulation along the simple closed contour C is readily given. We let C denote a circle 
of radius r which is centered at a point (x0 , y0) and taken counterclockwise. The mean 
speed along C is then found by dividing the circulation by the circumference 2rr r, 
and the corresponding mean angular speed of the fluid about the center of the circle is 
obtained by dividing that mean speed by r: 

l !11 . . .]d -
2 

-[qx(x, y)- Py(x, y) A. 
nr R 2 

Now this is also an expression for the mean value of the function 

(4) 
1 

w(x, y) = 
2 

[qx(x, y)- Py(x, y)] 

over the circular region R bounded by C. Its limit as r tends to zero is the value of 
w at the point (x0 , y0). Hence the function w (x, y ), called the rotation of the fluid, 
represents the limiting angular speed of a circular element of the fluid as the circle 
shrinks to its center (x, y ), the point at which w is evaluated. 

If w (x, y) = 0 at each point in some simply connected domain, the flow is 
irrotational in that domain. We consider only irrotational flows here, and we also 
assume that the fluid is incompressible andfreefrom viscosity. Under our assumption 
of steady irrotational flow of fluids with uniform density p, it can be shown that the 
fluid pressure P(x, y) satisfies the following special case of Bernoulli's equation: 

p 1 
- + -IV 12 =constant. 
p 2 

Note that the pressure is greatest where the speed I VI is least. 
Let D be a simply connected domain in which the flow is irrotational. According 

to equation ( 4 ), Py = qx throughout D. This relation between partial derivatives implies 
that the line integral 

fc p(s, t) ds + q(s, t) dt 
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along a contour C lying entirely in D and joining any two points (x0 , y0) and (x, y) 
in D is actually independent of path. Thus, if (x0 , y0) is fixed, the function 

l
(x ,y) 

(j>(x, y) = p(s, t) ds + q(s, t) dt 
(xo.Yol 

(5) 

is well defined on D; and, by taking partial derivatives on each side of this equation, 
we find that 

(6) 4>x(x, y) = p(x, y), 4>y(x, y) = q(x, y). 

From equations (6), we see that the velocity vector V = p + iq is the gradient of 
4>; and the directional derivative of 4> in any direction represents the component of the 
velocity of flow in that direction. 

The function (j>(x, y) is called the velocity potential. From equation (5), it is 
evident that 4> (x, y) changes by an additive constant when the reference point (x0 , Yo) 
is changed. The level curves (j>(x, y) = c1 are called equipotentials. Because it is the 
gradient of 4> (x, y), the velocity vector V is normal to an equipotential at any point 
where V is not the zero vector. 

Just as in the case of the flow of heat, the condition that the incompressible fluid 
enter or leave an element of volume only by flowing through the boundary of that 
element requires that 4> (x, y) must satisfy Laplace's equation 

4>xx(x, y) +4>yy(X, y) =0 

in a domain where the fluid is free from sources or sinks. In view of equations (6) 
and the continuity of the functions p and q and their first-order partial derivatives, it 
follows that the partial derivatives of the first and second order of 4> are continuous in 
such a domain. Hence the velocity potential 4> is a hannonic function in that domain. 

107. THE STREAM FUNCTION 

According to Sec. I 06, the velocity vector 

(1) V = p(x, y) + iq(x, y) 

for a simply connected domain in which the flow is irrotational can be written 

(2) V = 4>x(x, y) + i(j>y(x, y) =grad (j>(x, y), 

where 4> is the velocity potential. When the velocity vector is not the zero vector, it 
is normal to an equipotential passing through the point (x, y). If, moreover, 'if!(x, y) 
denotes a harmonic conjugate of 4> (x, y) (see Sec. 97), the velocity vector is tangent to 
a curve 'if/(x, y) = c2. The curves 1/f(x, y) = c2 are called the streamlines of the flow, 
and the function 1/1 is the stream function. In particular, a boundary across which fluid 
cannot flow is a streamline. 



382 APPLICATIONS OF CONFORMAL MAPPING 

The analytic function 

F(z) = !/J(x, y) + i1/f(x, y) 

is called the complex potential of the flow. Note that 

F'(z) = !/Jx(X, y) + i1frx(x, y), 

or, in view of the Cauchy-Riemann equations, 

F'(z) = !/Jx(x, y)- i!/Jy(x, y). 

Expression (2) for the velocity thus becomes 

(3) V = F'(z). 

The speed, or magnitude of the velocity, is obtained by writing 

lVI = IF'(z)l. 

CHAP. IO 

According to equation ( 5), Sec. 97, if !fJ is harmonic in a simply connected domain 
D, a harmonic conjugate of !fJ there can be written 

J
(x,y) 

1/f(x,y)= - -!/J1(s,t)ds+!/J8 (s,t)dt, 
(xo.Yo) 

where the integration is independent of path. With the aid of equations (6), Sec. 106, 
we can, therefore, write 

(4) 1/f(x,y)= L -q(s,t)ds+p(s,t)dt, 

where Cis any contour in D from (x0 , y0) to (x, y). 

Now it is shown in advanced calculus that the right-hand side of equation (4) 
represents the integral with respect to arc length a along C of the normal component 
VN(x, y) of the vector whose x andy components are p(x, y) and q(x, y), respec­
tively. So expression (4) can be written 

(5) 1/f(x, y) = L VN(s, t) da. 

Physically, then, 1/1 (x, y) represents the time rate of flow of the fluid across C. More 
precisely, 1/1 (x, y) denotes the rate of flow, by volume, across a surface of unit height 
standing perpendicular to the x y plane on the curve C. 

EXAMPLE. When the complex potential is the function 

(6) F(z) = Az, 
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where A is a positive real constant, 

(7) tf>(x, y) =Ax and 1/f(x, y) = Ay. 

The streamlines 1/f(x, y) = c2 are the horizontal lines y = c2/ A, and the velocity at 
any point is 

V=F'(z)=A. 

Here a point (x0 , y0) at which 1/f(x, y) = 0 is any point on the x axis. If the point 
(x0 , y0) is taken as the origin, then 1/f (x, y) is the rate of flow across any contour drawn 
from the origin to the point (x, y) (Fig. 152). The flow is uniform and to the right. It 
can be interpreted as the uniform flow in the upper half plane bounded by the x axis, 
which is a streamline, or as the uniform flow between two parallel lines y = y1 and 
Y = Y2· 

Yl 
I 

(x,y) 1 --.---.--\ :r : - V 

s:~ : 
X FIGURE 152 

The stream function 1/1 characterizes a definite flow in a region. The question of 
whether just one such function exists corresponding to a given region, except possibly 
for a constant factor or an additive constant, is not examined here. In some of the 
examples to follow, where the velocity is uniform far from the obstruction, or in Chap. 
11, where sources and sinks are involved, the physical situation indicates that the flow 
is uniquely determined by the conditions given in the problem. 

A harmonic function is not always uniquely determined, even up to a constant 
factor, by simply prescribing its values on the boundary of a region. In this example, 
the function 1/f(x, y) = Ay is harmonic in the half plane y > 0 and has zero values 
on the boundary. The function 1/11 (x, y) = B ex sin y also satisfies those conditions. 
However, the streamline 1/11 (x, y) = 0 consists not only of the line y = 0 but also of 
the lines y = nrr(n = 1, 2, ... ). Here the function F1 (z) = Bez is the complex potential 
for the flow in the strip between the lines y = 0 and y = rr, both lines making up the 
streamline 1/f (x, y) = 0; if B > 0, the fluid flows to the right along the lower line and 
to the left along the upper one. 

108. FLOWS AROUND A CORNER 
AND AROUND A CYLINDER 

In analyzing a flow in the xy, or z. plane, it is often simpler to consider a corresponding 
flow in the uv, or w, plane. Then, if 4> is a velocity potential and 1/f a stream function 
for the flow in the uv plane, results in Sees. 98 and 99 can be applied to these harmonic 
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functions. That is, when the domain of flow Dw in the uv plane is the image of a domain 
Dz under a transformation 

w = f(z) = u(x, y) + iv(x, y), 

where f is analytic, the functions 

q>[u(x, y), v(x, y)] and 1/f[u(x, y), v(x, y)] 

are harmonic in Dz. These new functions may be interpreted as velocity potential and 
stream function in the xy plane. A streamline or natural boundary 1/f(u, v) = c2 in the 
uv plane corresponds to a streamline or natural boundary 1/f[u(x, y), v(x, y)] = c2 in 
the xy plane. 

In using this technique, it is often most efficient to first write the complex potential 
function for the region in the w plane and then obtain from that the velocity potential 
and stream function for the corresponding region in the xy plane. More precisely, if 
the potential function in the uv plane is 

F(w) = q>(u, v) + i1/f(u, v), 

then the composite function 

F[f(z)] = q>[u(x, y), v(x, y)] + i1/f[u(x, y), v(x, y)] 

is the desired complex potential in the x y plane. 
In order to avoid an excess of notation, we use the same symbols F, 4>, and 1/1 for 

the complex potential, etc., in both the xy and the uv planes. 

EXAMPLE 1. Consider a flow in the first quadrant x > 0, y > 0 that comes in 
downward parallel to they axis but is forced to turn a corner near the origin, as shown in 
Fig. 153. To determine the flow, we recall (Example 3, Sec. 12) that the transformation 

w = z2 = x2 -l + i2xy 

maps the first quadrant onto the upper half of the u v plane and the boundary of the 
quadrant onto the entire u axis. 

From the example in Sec. 107, we know that the complex potential for a uniform 
flow to the right in the upper half ofthe w plane is F = Aw, where A is a positive real 

y 

0 x FIGURE 153 
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constant. The potential in the quadrant is, therefore, 

(1) 

and it follows that the stream function for the flow there is 

(2) 1/1 = 2Axy. 

This stream function is, of course, harmonic in the first quadrant, and it vanishes on 
the boundary. 

The streamlines are branches of the rectangular hyperbolas 

2Axy = c2. 

According to equation (3), Sec. 107, the velocity of the fluid is 

V = 2Az = 2A(x- iy). 

Observe that the speed 

lVI = 2Ay'x2 + y2 

of a particle is directly proportional to its distance from the origin. The value of the 
stream function (2) at a point (x, y) can be interpreted as the rate of flow across a line 
segment extending from the origin to that point. 

EXAMPLE 2. Let a long circular cylinder of unit radius be placed in a large body 
of fluid flowing with a uniform velocity, the axis of the cylinder being perpendicular 
to the direction of flow. To determine the steady flow around the cylinder, we represent 
the cylinder by the circle x2 + y2 = 1 and let the flow distant from it be parallel to the 
x axis and to the right (Fig. 154). Symmetry shows that points on the x axis exterior 
to the circle may be treated as boundary points, and so we need to consider only the 
upper part of the figure as the region of flow. 

The boundary of this region of flow, consisting of the upper semicircle and the 
parts of the x axis exterior to the circle, is mapped onto the entire u axis by the 
transformation 

X 

1 
w =z + -. 

z 

FIGURE 154 
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The region itself is mapped onto the upper half plane v > 0, as indicated in Fig. 17, 
Appendix 2. The complex potential for the corresponding uniform flow in that half 
plane is F = A w, where A is a positive real constant. Hence the complex potential for 
the region exterior to the circle and above the x axis is 

(3) 

The velocity 

(4) 

approaches A as lzl increases. Thus the flow is nearly uniform and parallel to the x 
axis at points distant from the circle, as one would expect. From expression ( 4 ), we 
see that V (z) = V ( z); hence that expression also represents velocities of flow in the 
lower region, the lower semicircle being a streamline. 

According to equation (3), the stream function for the given problem is, in polar 
coordinates, 

(5) 1/1 = A (r - :) sin e. 

The streamlines 

A (r - :) sin e = Cz 

are symmetric to they axis and have asymptotes parallel to the x axis. Note that when 
c2 = 0, the streamline consists of the circle r = I and the parts of the x axis exterior 
to the circle. 

EXERCISES 

1. State why the components of velocity can be obtained from the stream function by means 
of the equations 

p(x, y) = 1/ly(x, y), q(x, y) = -1/lx(x, y). 

2. At an interior point of a region of flow and under the conditions that we have assumed, 
the fluid pressure cannot be less than the pressure at all other points in a neighborhood 
of that point. Justify this statement with the aid of statements in Sees. 106, 107, and 50. 

3. For the flow around a corner described in Example 1, Sec. 108, at what point of the region 
x > 0, y > 0 is the fluid pressure greatest? 

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2, Sec. 
108, is 2A I sine I and also that the fluid pressure on the cylinder is greatest at the points 
z ± 1 and least at the points z = ± i. 
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5, Write the complex potential for the flow around a cylinder r = r0 when the velocity V 
at a point z approaches a real constant A as the point recedes from the cylinder. 

6. Obtain the stream function 

1{r = Ar4 sin 4(} 

for a flow in the angular region r > 0, 0 < (} < :rr /4 (Fig. 155), and sketch a few of the 
streamlines in the interior of that region. 

x FIGURE 155 

7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite region 
-:rr /2 < x < :rr f2, y > 0 (Fig. 156). Write the equations of the streamlines. 

_li 
2 

y 

1T X 
2 FIGURE 156 

8. Show that if the velocity potential is 4> =A ln r (A > 0) for flow in the region r > r0, 

then the streamlines are the half lines (} = c (r > r0) and the rate of flow outward through 
each complete circle about the origin is 2:rr A, corresponding to a source of that strength 
at the origin. 

9. Obtain the complex potential 

F = A(z2 + 
2
;) 

for a flow in the region r > 1, 0 < (} < :rr /2. Write expressions for V and 1{r. Note how 
the speed I VI varies along the boundary of the region, and verify that 1{r (x, y) = 0 on the 
boundary. 

10. Suppose that the flow at an infinite distance from the cylinder of unit radius in Example 
2, Sec. 108, is uniform in a direction making an angle a with the x axis; that is, 

lim V = Aeia 
JzJ-+oo 

(A> 0). 
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Find the complex potential. 

( 
. 1 . ) Ans. F =A ze-ux + ~ e1a . 

11. Write 

and 

where 

The function (z2 - 4) 112 is then single-valued and analytic everywhere except on the 
branch cut consisting of the segment of the x axis joining the points z = ± 2. We know, 
moreover, from Exercise 13, Sec. 85, that the transformation 

1 
z=w+­

w 

maps the circle I w I = 1 onto the line segment from z = -2 to z = 2 and that it maps the 
domain outside the circle onto the rest of the z plane. Use all of the observations above 
to show that the inverse transformation, where lwl > 1 for every point not on the branch 
cut, can be written 

1 
w=-[z+(z2 

2 
4) 112] = Jrl exp :..I+ Jr2 exp ~ . 1 ( ·e ·e )

2 

4 2 2 

The transformation and this inverse establish a one to one correspondence between points 
in the two domains. 

12. With the aid of the results found in Exercises 10 and 11, derive the expression 

F = A[z cos a- i(z2 - 4) 112 sin a] 

for the complex potential of the steady flow around a long plate whose width is 4 and 
whose cross section is the line segment joining the two points z = ±2 in Fig. 157, 
assuming that the velocity of the fluid at an infinite distance from the plate is A exp(ia). 
The branch of (z2 - 4) 112 that is used is the one described in Exercise 11, and A > 0. 

13. Show that if sin a -f=- 0 in Exercise 12, then the speed of the fluid along the line segment 
joining the points z = 2 is infinite at the ends and is equal to A I cos a I at the midpoint. 

14. For the sake of simplicity, suppose that 0 < a < n /2 in Exercise 12. Then show that the 
velocity of the fluid along the upper side of the line segment representing the plate in 
Fig. 157 is zero at the point x = 2 cos a and that the velocity along the lower side of the 
segment is zero at the point x = -2 cos a. 
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FIGURE 157 

15. A circle with its center at a point x0 (0 < x0 < 1) on the x axis and passing through the 
point z = 1 is subjected to the transformation 

1 
w = z + -. 

z 
Individual nonzero points z can be mapped geometrically by adding the vectors 

z = rei0 and 
1 1 -ie - = -e . 
z r 

Indicate by mapping some points that the image of the circle is a profile of the type shown 
in Fig. 158 and that points exterior to the circle map onto points exterior to the profile. 
This is a special case of the profile of a Joukowski airfoil. (See also Exercises 16 and 17 
below.) 

16. (a) Show that the mapping of the circle in Exercise 15 is conformal except at the point 
z = -1. 

-2 

(b) Let the complex numbers 

~z 
t = lim 

Az-+0 IAzl 
~w 

and r = lim 
Aw-+0 IAwl 

represent unit vectors tangent to a smooth directed arc at z = -1 and that arc's image, 
respectively, under the transformation w = z + (1/z). Show that T = -t2 and hence 
that the Joukowski profile in Fig. 158 has a cusp at the point w = -2, the angle 
between the tangents at the cusp being zero. 
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17. Find the complex potential for the flow around the airfoil in Exercise 15 when the velocity 
V of the fluid at an infinite distance from the origin is a real constant A. Recall that the 
inverse of the transformation 

1 
w=z+­

z 
used in Exercise 15 is given, with z and w interchanged, in Exercise 11. 

18. Note that under the transformation w = e2 + z, both halves, where x 2: 0 and x < 0, of 
the line y = 1r are mapped onto the halfline v = n(u < -1). Similarly, the line y = -n is 
mapped onto the halfline v = -rr(u < -1); and the strip -n < y < n is mapped onto the 
w plane. Also, note that the change of directions, arg(dw/dz), under this transformation 
approaches zero as x tends to -co. Show that the streamlines of a fluid flowing through 
the open channel formed by the half lines in the w plane (Fig. 159) are the images of the 
lines y = c2 in the strip. These streamlines also represent the equipotential curves of the 
electrostatic field near the edge of a parallel-plate capacitor. 

u 

FIGURE 159 



CHAPTER 

11 
THE SCHWARZ-CHRISTOFFEL 

TRANSFORMATION 

In this chapter, we construct a transformation, known as the Schwarz-Christoffel 
transformation, which maps the x axis and the upper half of the z plane onto a given 
simple closed polygon and its interior in the w plane. Applications are made to the 
solution of problems in fluid flow and electrostatic potential theory. 

109. MAPPING THE REAL AXIS ONTO A POLYGON 
We represent the unit vector which is tangent to a smooth arc C at a point zo by the 
complex number t, and we let the number r denote the unit vector tangent to the image 
r of Cat the corresponding point w0 under a transformation w = f(z). We assume 
that f is analytic at z0 and that f' (z0) =f=. 0. According to Sec. 94, 

(1) arg r = arg f'(z0 ) + arg t. 

In particular, if C is a segment of the x axis with positive sense to the right, then t = 1 
and arg t = 0 at each point z0 = x on C. In that case, equation (1) becomes 

(2) arg r = arg j'(x). 

If f' (z) has a constant argument along that segment, it follows that arg r is constant. 
Hence the image r of C is also a segment of a straight line. 

Let us now construct a transformation w = f (z) that maps the whole x axis onto 
a polygon of n sides, where x 1, x2 , ... , Xn-l• and oo are the points on that axis whose 

391 
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images are to be the vertices of the polygon and where 

The vertices are the points wj = f(x1) (j = 1, 2, ... , n- 1) and wn = f(oo). The 
function f should be such that arg J'(z) jumps from one constant value to another at 
the points z = x J as the point z traces out the x axis (Fig. 160). 

y v 

I 

u 

FIGURE 160 

If the function f is chosen such that 

(3) f'(z) = A(z ~ xl)-k1(z- Xz)-k2 • • • (z- Xn_ 1)-kn-I, 

where A is a complex constant and each k j is a real constant, then the argument of 
f' (Z) changes in the prescribed manner as z describes the real axis; for the argument 
of the derivative (3) can be written 

(4) arg f'(z) = arg A- k1 arg(z- x1) 

- k2 arg(z- xz) ~ · · ·- kn-1 arg(z ~ xn-1). 

When z = x and x < xI> 

arg(z- x 1) = arg(z x2) = · · · = arg(z- Xn-1) = Jr:. 

When x 1 < x < x2, the argument arg(z- x 1) is 0 and each of the other arguments is 
Jr. According to equation (4), then, arg J'(z) increases abruptly by the angle k1n as 
z moves to the right through the point z = x 1. It again jumps in value, by the amount 
k2n, as z passes through the point x2, etc. 

In view of equation (2), the unit vector r is constant in direction as z moves from 
x 1 _ 1 to x 1; the point w thus moves in that fixed direction along a straight line. The 
direction of r changes abruptly, by the angle k1n, at the image point w1 of x1• as 
shown in Fig. 160. Those angles k 1 ;r: are the exterior angles of the polygon described 
by the point w. 

The exterior angles can be limited to angles between -;r: and ;r:, in which case 
-1 < k1 < 1. We assume that the sides of the polygon never cross one another and 
that the polygon is given a positive, or counterclockwise, orientation. The sum of the 
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exterior angles of a closed polygon is, then, 2n; and the exterior angle at the vertex 
wn, which is the image of the point z = oo, can be written 

Thus the numbers k j must necessarily satisfy the conditions 

(5) -l<kj<1 (j=1,2, ... ,n). 

Note that kn = 0 if 

(6) kt + kz + ... + kn-1 = 2. 

This means that the direction of r does not change at the point Ww So Wn is not a 
vertex, and the polygon has n 1 sides. 

The existence of a mapping function f whose derivative is given by equation (3) 
will be established in the next section. 

110. SCHWARZ-CHRISTOFFEL TRANSFORMATION 

In our expression (Sec. 1 09) 

(1) 

for the derivative of a function that is to map the x axis onto a polygon, let the factors 
(z- xj)-kj represent branches of power functions with branch cuts extending below 
that axis. To be specific, write 

(2) 

where ej = arg(z - x j) and j = 1, 2, ... , n - 1. Then f' (z) is analytic everywhere 
in the half plane y > 0 except at then- 1 branch points xj. 

If zo is a point in that region of analyticity, denoted here by R, then the function 

(3) F(z) = 1z f'(s) ds 
zo 

is single-valued and analytic throughout the same region, where the path of integration 
from z0 to z is any contour lying within R. Moreover, F'(z) = f'(z) (see Sec. 42). 

To define the function Fat the point z = x1 so that it is continuous there, we note 
that (z- x1)-k' is the only factor in expression (1) that is not analytic at x 1• Hence, if 
¢ (z) denotes the product of the rest of the factors in that expression, </J(z) is analytic at 
x 1 and is represented throughout an open disk lz- x 11 < R 1 by its Taylor series about 
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x 1. So we can write 

or 

(4) 

where 1/J is analytic and, therefore, continuous throughout the entire open disk. Since 
1- k1 > 0, the last term on the right in equation (4) thus represents a continuous 
function of z throughout the upper half of the disk, where Im z > 0, if we assign it 
the value zero at z = x 1• It follows that the integral 

of that last term along a contour from Z 1 to z, where Z 1 and the contour lie in the half 
disk, is a continuous function of z at z = x 1. The integral 

along the same path also represents a continuous function of z at x 1 if we define the 
value of the integral there as its limit as z approaches x 1 in the half disk. The integral 
of the function ( 4) along the stated path from Z 1 to z is, then, continuous at z = x1; and 
the same is true of integral (3) since it can be written as an integral along a contour in 
R from zo to Z 1 plus the integral from Z 1 to z. 

The above argument applies at each of the n - 1 points x J to make F continuous 
throughout the region y > 0. 

From equation (1), we can show that, for a sufficiently large positive number R, 
a positive constant M exists such that if lm z > 0, then 

(5) 
I M 

If (z)l < lzl2-kn whenever lzl > R. 

Since 2 - kn > 1, this order property of the integrand in equation (3) ensures the 
existence of the limit of the integral there as z tends to infinity; that is, a number 
wn exists such that 

(6) lim F(z) = W11 z-+oo 
(Imz>O). 

Details of the argument are left to Exercises 1 and 2. 
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Our mapping function, whose derivative is given by equation (1 ), can be written 
f(z) = F(z) + B, where B is a complex constant. The resulting transformation, 

(7) w =A l\s- x1)-k
1(s- x2)-k2 • • • (s- Xn_ 1)-kn-J ds + B, 

zo 

is the Schwarz-Christoffel transformation, named in honor of the two German math­
ematicians H. A. Schwarz (1843-1921) and E. B. Christoffel (1829-1900) who dis­
covered it independently. 

Transformation (7) is continuous throughout the half plane y > 0 and is con­
formal there except for the points xj. We have assumed that the numbers kj satisfy 
conditions (5), Sec. 109. In addition, we suppose that the constants x j and k j are such 
that the sides of the polygon do not cross, so that the polygon is a simple closed con­
tour. Then, according to Sec. 109, as the point z describes the x axis in the positive 
direction, its image w describes the polygon P in the positive sense; and there is a 
one to one correspondence between points on that axis and points on P. According to 
condition (6), the image wn of the point z = oo exists and wn = Wn + B. 

If z is an interior point of the upper half plane y > 0 and x0 is any point on the 
x axis other than one of the x j, then the angle from the vector t at x0 up to the line 
segment joining x0 and z is positive and less than 1f (Fig. 160). At the image w0 of x0, 

the corresponding angle from the vector r to the image of the line segment joining x0 
and z has that same value. Thus the images of interior points in the half plane lie to the 
left of the sides of the polygon, taken counterclockwise. A proof that the transformation 
establishes a one to one correspondence between the interior points of the half plane 
and the points within the polygon is left to the reader (Exercise 3). 

Given a specific polygon P, let us examine the number of constants in the 
Schwarz-Christoffel transformation that must be determined in order to map the x 
axis onto P. For this purpose, we may write zo = 0, A = 1, and B = 0 and simply 
require that the x axis be mapped onto some polygon P' similar to P. The size and 
position of P' can then be adjusted to match those of P by introducing the appropriate 
constants A and B. 

The numbers k j are all determined from the exterior angles at the vertices of P. 
The n - 1 constants x j remain to be chosen. The image of the x axis is some polygon 
P' that has the same angles as P. But if P' is to be similar to P, then n - 2 connected 
sides must have a common ratio to the corresponding sides of P; this condition is 
expressed by means of n - 3 equations in the n - 1 real unknowns x j. Thus two of the 
numbers x j• or two relations between them, can be chosen arbitrarily, provided those 
n - 3 equations in the remaining n - 3 unknowns have real-valued solutions. 

When a finite point z = Xn on the x axis, instead of the point at infinity, represents 
the point whose image is the vertex Wn, it follows from Sec. 109 that the Schwarz­
Christoffel transformation takes the form 

(8) w =A iz (s- x1)-kl(s- x 2)-kz · · · (s- Xn)-kn ds + B, 
zo 
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where k1 + k2 + · · · + kn = 2. The exponents ki are determined from the exterior 
angles of the polygon. But, in this case, there are n real constants x J that must satisfy 
then - 3 equations noted above. Thus three of the numbers x 1, or three conditions on 
those n numbers, can be chosen arbitrarily in transformation (8) of the x axis onto a 

given polygon. 

EXERCISES 

1. Obtain inequality (5), Sec. 110. 
Suggestion: Let R be larger than any of the numbers lxjl(j = 1, 2, ... , n- 1). 

Note that if R is sufficiently large, the inequalities lzl/2 < lz- x1 I < 21zl hold for each 
x1 when lzl > R. Then use equation (1), Sec. 110, along with conditions (5), Sec. 109. 

2. Use condition (5), Sec. 110, and sufficient conditions for the existence of improper 
integrals of real-valued functions to show that F(x) has some limit Wn as x tends to 
infinity, where F(z) is defined by equation (3) in that section. Also, show that the integral 
of j'(z) over each arc of a semicircle lzl = R (Im z > 0) approaches 0 as R tends to oo. 
Then deduce that 

lim F(z) = Wn 
z~oo 

(Imz > 0), 

as stated in equation (6) of Sec. 110. 

3. According to Sec. 79, the expression 

N = _1_1 g'(z) dz 
2rri c g(z) 

can be used to determine the number (N) of zeros of a function g interior to a positively 
oriented simple closed contour C when g(z) =fo 0 on C and when C lies in a simply 
connected domain D throughout which g is analytic and g' (z) is never zero. In that 
expression, write g(z) = f(z)- w0 , where f(z) is the Schwarz-Christoffel mapping 
function (7), Sec. 110, and the point w0 is either interior to or exterior to the polygon P 
that is the image of the x axis; thus f (z) =fo w0. Let the contour C consist of the upper 
half of a circle I z I = R and a segment - R < x < R of the x axis that contains all n - 1 
points x 1, except that a small segment about each point x J is replaced by the upper half 
of a circle I z - x J I = pi with that segment as its diameter. Then the number of points z 
interior to C such that f (z) = w0 is 

Nc = _1_1 f'(z) dz. 
2rri c f(z)- wo 

Note that f(z)- w0 approaches the nonzero point Wn w0 when lzl =Rand R tends 
to oo, and recall the order property (5), Sec. 110, for If' (z) 1. Let the p 1 tend to zero, and 
prove that the number of points in the upper half of the z plane at which f (z) = w0 is 

N = _1_ lim 1R f'(x) dx. 
2rri R~oo -R f(x)- Wo 
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Deduce that since 

1 dw . JR f'(x) 
~--= hm dx, 

p w- w0 R--.oo -R f(x)- Wo 

N = 1 if w0 is interior to P and that N = 0 if w0 is exterior to P. Thus show that the 
mapping of the half plane Im z > 0 onto the interior of P is one to one. 

111. TRIANGLES AND RECTANGLES 

The Schwarz-Christoffel transformation is written in terms of the points x j and not in 
terms of their images, the vertices of the polygon. No more than three of those points 
can be chosen arbitrarily; so, when the given polygon has more than three sides, some 
of the points x j must be determined in order to make the given polygon, or any polygon 
similar to it, be the image of the x axis. The selection of conditions for the determination 
of those constants, conditions that are convenient to use, often requires ingenuity. 

Another limitation in using the transformation is due to the integration that is 
involved. Often the integral cannot be evaluated in terms of a finite number of elemen­
tary functions. In such cases, the solution of problems by means of the transformation 
can become quite involved. 

If the polygon is a triangle with vertices at the points Wt. w2, and w 3 (Fig. 161), 
the transformation can be written 

(1) w =A lz (s- x 1)-k
1(s- x2)-k2 (s - x3)-k3 ds + B, 

zo 

where k1 + k2 + k3 = 2. In terms of the interior angles 01, 

(j = 1, 2, 3). 

Here we have taken all three points x J as finite points on the x axis. Arbitrary values 
can be assigned to each of them. The complex constants A and B, which are associated 
with the size and position of the triangle, can be determined so that the upper half plane 
is mapped onto the given triangular region. 

y v 

X 

FIGURE 161 
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If we take the vertex w3 as the image of the point at infinity, the transformation 
becomes 

(2) w =A l\s- x1)-k
1(s- x2)-k2 ds + B, 

zo 

where arbitrary real values can be assigned to x1 and x2. 

The integrals in equations ( 1) and (2) do not represent elementary functions unless 
the triangle is degenerate with one or two of its vertices at infinity. The integral in 
equation (2) becomes an elliptic integral when the triangle is equilateral or when it is 
a right triangle with one of its angles equal to either rr /3 or rr f 4. 

EXAMPLE 1. For an equilateral triangle, k1 = k2 = k3 = 2f3. It is convenient to 
write x 1 = -1, x2 = 1, and x3 = oo and to use equation (2), where z0 = 1, A= 1, and 
B = 0. The transformation then becomes 

(3) w -1\s + 1)-21\s- 1)-2
/ 3 ds. 

The image of the point z = 1 is clearly w = 0; that is, w2 = 0. If z = 1 in this 
integral, one can write s = x, where -1 < x < L Then 

x + 1 > 0 and arg(x + 1) = 0, 

while 

lx - 11 = 1 - x and arg(x - 1) = rr. 

Hence 

(4) 

(
rri) (

1 
2dx 

= exp 3 Jo (1 - x2)213. 

With the substitution x = .;i, the last integral here reduces to a special case of the one 
used in defining the beta function (Exercise 7, Sec. 77). Let b denote its value, which 
is positive: 

(5) h= t 2dx = f\-t;2(t-t)-213dt=B(I.I). lo (1 - x 2) 213 lo 2 3 

The vertex w1 is, therefore, the point (Fig. 162) 

(6) 
rri 

w1 =hexp -. 
3 



SEC. III TRIANGLES AND RECTANGLES 399 

The vertex w3 is on the positive u axis because 

w3 = t)Q (x + 1)-21\x- 1)-2/3 dx = roo dx ') . 
JI Jl (x2 - 1)~/3 

But the value of w3 is also represented by integral (3) when z tends to infinity along 
the negative x axis; that is, 

r-1 ( 2 . ) 
w3 = }

1 
(lx + 111x- 11)-213 exp - ;z dx 

1-oo ( 4 ') + _
1 

(Jx + l!Jx- 11)-213 exp - ;z dx. 

In view of the first of expressions ( 4) for wb then, 

( 
4 ') ~-00 w3 = w1 + exp - ;z _

1 
(lx + lllx- 11)-213dx 

rri ( rri) ioo dx = b exp - + exp --
2 213

, 
3 3 1 (x - 1) 

or 

w3 = b exp ~i + w3 exp (- ~i). 
Solving for w3, we find that 

(7) 

We have thus verified that the image of the x axis is the equilateral triangle of side b 
shown in Fig. 162. We can see also that 

y 

b rri 
w=-exp- when z=O. 

2 3 

X u 
FIGURE 162 

When the polygon is a rectangle, each kj = 1/2. If we choose ±1 and ±a as the 
points x j whose images are the vertices and write 

(8) 
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where 0 < arg( z - x J) < rr, the Schwarz-Christoffel transformation becomes 

(9) w=- fozg(s)ds, 

except for a transformation W = A w + B to adjust the size and position of the 
rectangle. Integral (9) is a constant times the elliptic integral 

but the form (8) of the integrand indicates more clearly the appropriate branches of the 
power functions involved. 

EXAMPLE 2. Let us locate the vertices of the rectangle when a > 1. As shown in 
Fig. 163, x1 =-a, x2 = -1, x3 = 1, and x4 =a. All four vertices can be described in 
terms of two positive numbers b and c that depend on the value of a in the following 
manner: 

(10) 11 11 dx b = lg(x)l dx = , 
0 0 Jo- x2)(a2- x2) 

(11) ia ia dx 
c = lg(x)l dx = 

I I ~(x2 - l)(a2 - x2) 

If - 1 < x < 0, then 

arg(x +a) = arg(x + 1) = 0 and arg(x - 1) = arg(x- a)= rr; 

hence 

g(x) = [exp(- ~i) r Jg(x)l = -lg(x)l. 

If -a < x < -1, then 

g(x) = [exp(- ~i) r lg(x)l = ilg(x)J. 

Thus 

WI=- r-a g(x) dx = r-l g(x) dx -1-a g(X) dx 
lo lo -I 

1-1 ~-a 
= lg(x)l dx- i Jg(x)l dx = -b + ic. 

0 -1 
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It is left to the exercises to show that 

(12) W3 =b, w4 =b+ic. 

The position and dimensions of the rectangle are shown in Fig. 163. 

y v 

lC 
WI w4 

-I I -b b 
XI x2 0 x3 x4 X w2 0 w3 u 

FIGURE 163 

112. DEGENERATE POLYGONS 

We now apply the Schwarz-Christoffel transformation to some degenerate polygons 
for which the integrals represent elementary functions. For purposes of illustration, 
the examples here result in transformations that we have already seen in Chap. 8. 

EXAMPLE 1. Let us map the half plane y > 0 onto the semi-infinite strip 

TC TC 
--<u<- v>O. 2- - 2' 

We consider the strip as the limiting form of a triangle with vertices wb w2, and w3 
(Fig. 164) as the imaginary part of w3 tends to infinity. 

y 

-I I X 1r u 
2 FIGURE 164 

The limiting values of the exterior angles are 

and 

We choose the points x1 = -1, x2 = 1, and x3 = oo as the points whose images are the 
vertices. Then the derivative of the mapping function can be written 

dw = A(z + 1)-lf2(z- 1)-1/2 = A'(l- z2) 1/2 
dz 
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Hence w = A' sin -I z + B. If we write A' = 1/ a and B = b I a, it follows that 

z = sin(aw- b). 

This transformation from the w to the z plane satisfies the conditions z = -1 when 
w = -n /2 and z = 1 when w = 1r /2 if a = 1 and b = 0. The resulting transformation is 

z = srn w, 

which we verified in Sec. 89 as one that maps the strip onto the half plane. 

EXAMPLE 2. Consider the strip 0 < v < 1r as the limiting form of a rhombus with 
vertices at the points w1 = ni, w2, w3 = 0, and w4 as the points w2 and w4 are moved 
infinitely far to the left and right, respectively (Fig. 165). In the limit, the exterior 
angles become 

We leave x1 to be determined and choose the values x2 = 0, x3 = 1, and x4 = oo. The 
derivative of the Schwarz-Christoffel mapping function then becomes 

thus 

y 

X 

dw = A(z 
dz 

w =A Logz +B. 

-- ------- -..... _ ( 
( 

tK- -,. 

W - -- w 
) 2 ---- --- 4 -- -- u 

FIGURE 165 

Now B = 0 because w = 0 when z = 1. The constant A must be real because the 
point w lies on the real axis when z = x and x > 0. The point w = ni is the image of 
the point z = x~> where x 1 is a negative number; consequently, 

ni =A Logx1 =A ln lxtl +Ani. 

By identifying real and imaginary parts here, we see that lx11 = 1 and A= 1. Hence 
the transformation becomes 

w =Log z; 

also, x1 = -1. We already know from Example 3 in Sec. 88 that this transformation 
maps the half plane onto the strip. 
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The procedure used in these two examples is not rigorous because limiting values 
of angles and coordinates were not introduced in an orderly way. Limiting values were 
used whenever it seemed expedient to do so. But, if we verify the mapping obtained, 
it is not essential that we justify the steps in our derivation of the mapping function. 
The formal method used here is shorter and less tedious than rigorous methods. 

EXERCISES 
1. In transformation (1), Sec. Ill, write B = z0 = 0 and 

3rri 
A=exp-, 

4 
X1 = -1, x2 = 0, 

3 
kl = -, 

4 

1 
kz = -, 

2 

to map the x axis onto an isosceles right triangle. Show that the vertices of that triangle 
are the points 

Wt = bi, w2 =0, and 

where b is the positive constant 

Also, show that 

where B is the beta function. 

2. Obtain expressions ( 12) in Sec. 111 for the rest of the vertices of the rectangle shown in 
Fig. 163. 

3. Show that when 0 < a < 1 in equations (8) and (9), Sec. Ill, the vertices of the rectangle 
are those shown in Fig. 163, where b and c now have values 

b =loa !g(x)! dx, c = 11

!g(x)i dx. 

4. Show that the special case 

of the Schwarz-Christoffel transformation (7), Sec. 110, maps the x axis onto the square 
with vertices 

w2 =0, W3=b, w4 = b + ib, 
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where the (positive) number b is given in terms of the beta function: 

5. Use the Schwarz-Christoffel transformation to arrive at the transformation 

v 

(0 < m < 1), 

which maps the half plane y > 0 onto the wedge I w I > 0, 0 < arg w < mrr and transforms 
the point z = 1 into the point w = 1. Consider the wedge as the limiting case of the 
triangular region shown in Fig. 166 as the angle a there tends to 0. 

u FIGURE 166 

6. Refer to Fig. 26, Appendix 2. As the point z moves to the right along the negative real 
axis, its image point w is to move to the right along the entire u axis. As z describes 
the segment 0 < x < 1 of the real axis, its image point w is to move to the left along 
the half line v = rri (u > 1); and, as z moves to the right along that part of the positive 
real axis where x > 1, its image point w is to move to the right along the same half line 
v = rri (u > 1). Note the changes in direction of the motion of w at the images of the 
points z = 0 and z = 1. These changes suggest that the derivative of a mapping function 
should be 

f'(z) = A(z- 0)- 1(z- 1), 

where A is some constant; thus obtain formally the mapping function, 

w = rri + z- Log z, 

which can be verified as one that maps the half plane Rc z > 0 as indicated in the figure. 

7. As the point z moves to the right along that part of the negative real axis where x < -1, 
its image point is to move to the right along the negative real axis in the w plane. As 
z moves on the real axis to the right along the segment - 1 < x < 0 and then along the 
segment 0 < x < 1, its image point w is to move in the direction of increasing v along 
the segment 0 < v < 1 of the v axis and then in the direction of decreasing v along the 
same segment. Finally, as z moves to the right along that part of the positive real axis 
where x > 1, its image point is to move to the right along the positive real axis in the 
w plane. Note the changes in direction of the motion of w at the images of the points 
z = -1, z = 0, and z = 1. A mapping function whose derivative is 

J'(z) = A(z + 1) 1; 2(z- 0) 1(z- 1) 112 
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where A is some constant, is thus indicated. Obtain formally the mapping function 

w = Jz2 - 1, 

where 0 < arg J z2 - 1 < rr. By considering the successive mappings 

Z - 2 - z , W = Z - 1, and w = .JW, 

verify that the resulting transformation maps the right half plane Re z > 0 onto the upper 
half plane Im w > 0, with a cut along the segment 0 < v < 1 of the v axis. 

8. The inverse of the linear fractional transformation 

Z= z -z 
i+z 

maps the unit disk IZI < 1 conformally, except at the point Z = -1, onto the half plane 
Im z > 0. (See Fig. 13, Appendix 2.) Let Zj be points on the circle IZI = 1 whose 
images are the points z = x j (j = 1, 2, ... , n) that are used in the Sch warz-Christoffel 
transformation (8), Sec. 110. Show formally, without determining the branches of the 
power functions, that 

dw , -k -k -k 
dZ =A (Z- Zt) 1(Z- Z2) 2 ••• (Z- Zn) n, 

where A' is a constant. Thus show that the transformation 

maps the interiorofthe circle IZI = 1 onto the interior of a polygon, the vertices of the 
polygon being the images of the points Z j on the circle. 

9. In the integral ofExercise 8, let the numbers Z j (j = 1, 2, ... , n) be the nth roots of unity. 

Write w = exp(2n i In) and Z 1 = 1, Z2 = w, ... , Zn = wn-l. Let each of the numbers 
kj (j = 1, 2, ... , n) have the value 2/n. The integral in Exercise 8 then becomes 

'1z dS w=A +B. 
0 (Sn- 1)2/n 

Show that when A' = 1 and B = 0, this transformation maps the interior of the unit circle 
I Z I = 1 onto the interior of a regular polygon of n sides and that the center of the polygon 
is the point w = 0. 

Suggestion: The image of each of the points Zj (j = 1, 2, ... , n) is a vertex of 
some polygon with an exterior angle of 2n In at that vertex. Write 

w - {I __ d_S----=-_ 
l- Jo (Sn - 1)2/n, 

where the path of the integration is along the positive real axis from Z = 0 to Z = 1 and 
the principal value of the nth root of (Sn - 1)2 is to be taken. Then show that the images 
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fth · t Z Z n-l th · t n-l · l o e pom s 2 = w, ... , n = w are e pom s wwJ> ... , w wh respective y. 
Thus verify that the polygon is regular and is centered at w = 0. 

113. FLUID FLOW IN A CHANNEL THROUGH A SLIT 

We now present a further example of the idealized steady flow treated in Chap. l 0, an 
example that will help show how sources and sinks can be accounted for in problems 
of fluid flow. In this and the following two sections, the problems are posed in the uv 
plane, rather than the xy plane. That allows us to refer directly to earlier results in this 
chapter without interchanging the planes. 

Consider the two-dimensional steady flow of fluid between two parallel planes 
v = 0 and v = rc when the fluid is entering through a narrow slit along the line in the 
first plane that is perpendicular to the uv plane at the origin (Fig. 167). Let the rate of 
flow of fluid into the channel through the slit be Q units of volume per unit time for 
each unit of depth of the channel, where the depth is measured perpendicular to the 
u v plane. The rate of flow out at either end is, then, Q j2. 

y 

X 

FIGURE 167 

The transformation w = Log z is a one to one mapping of the upper half y > 0 of 
the z plane onto the strip 0 < v < rc in thew plane (see Example 2 in Sec. 112). The 
inverse transformation 

(1) 

maps the strip onto the half plane (see Example 3, Sec. 13). Under transformation (1), 
the image of the u axis is the positive half of the x axis, and the image of the line v = rc 
is the negative half of the x axis. Hence the boundary of the strip is transformed into 
the boundary of the half plane. 

The image of the point w = 0 is the point z = 1. The image of a point w = u0, 

where u0 > 0, is a point z = x0, where x0 > 1. The rate of flow of fluid across a curve 
joining the point w = u0 to a point (u, v) within the strip is a stream function l/f(u, v) 
for the flow (Sec. 1 07). If u 1 is a negative real number, then the rate of flow into the 
channel through the slit can be written 

Now, under a conformal transformation, the function 1/1 is transformed into a function 
of x and y that represents the stream function for the flow in the corresponding region 
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of the z plane; that is, the rate of flow is the same across corresponding curves in the 
two planes. As in Chap. 10, the same symbol1fr is used to represent the different stream 
functions in the two planes. Since the image of the point w = u 1 is a point z = x 1, where 
0 < x1 < 1, the rate of flow across any curve connecting the points z = x0 and z = x1 
and lying in the upper half of the z plane is also equal to Q. Hence there is a source at 
the point z = 1 equal to the source at w = 0. 

The above argument applies in general to show that under a conformal transfor­
mation, a source or sink at a given point corresponds to an equal source or sink at the 
image of that point. 

As Re w tends to -oo, the image of w approaches the point z = 0. A sink of 
strength Q /2 at the latter point corresponds to the sink infinitely far to the left in the 
strip. To apply the above argument in this case, we consider the rate of flow across a 
curve connecting the boundary lines v = 0 and v = n of the left-hand part of the strip 
and the rate of flow across the image of that curve in the z plane. 

The sink at the right-hand end of the strip is transformed into a sink at infinity in 
the z plane. 

The stream function 1fr for the flow in the upper half of the z plane in this case 
must be a function whose values are constant along each of the three parts of the x 
axis. Moreover, its value must increase by Q as the point z moves around the point 
z = 1 from the position z = x0 to the position z = x1, and its value must decrease by 
Q/2 as z moves about the origin in the corresponding manner. We see that the function 

1fr = ~ [ Arg(z - 1) - ~ Arg z J 
satisfies those requirements. Furthermore, this function is harmonic in the half plane 
Im z > 0 because it is the imaginary component of the function 

F = Q [Log(z- 1)- I Log z] = Q Log(z 112 - z-112). 
1l" 2 1l" 

The function F is a complex potential function for the flow in the upper half of the 
z plane. Since z = e w, a complex potential function F ( w) for the flow in the channel is 

F(w) = Q Log(ew/2 - e-w/2). 
1l" 

By dropping an additive constant, one can write 

(2) F(w) = ; Log(sinh ~). 
We have used the same symbol F to denote three distinct functions, once in the z plane 
and twice in the w plane. 

-=-:-:--:-
The velocity vector F' ( w) is given by the equation 

(3) 
Q w 

V =- coth -. 
2rr 2 
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From this, it can be seen that 

lim V=R. 
lul-+oo 2:rr 

Also, the point w = :rr i is a stagnation point; that is, the velocity is zero there. Hence 
the fluid pressure along the wall v = :rr of the channel is greatest at points opposite 
the slit. 

The stream function '1/J(u, v) for the channel is the imaginary component of the 
function F(w) given by equation (2). The streamlines '1/J(u, v) = c2 are, therefore, the 
curves 

This equation reduces to 

(4) 
v u 

tan - = c tanh -, 
2 2 

where c is any real constant. Some of these streamlines are indicated in Fig. 167. 

114. FLOW IN A CHANNEL WITH AN OFFSET 

To further illustrate the use of the Schwarz-Christoffel transformation, let us find the 
complex potential for the flow of a fluid in a channel with an abrupt change in its 
breadth (Fig. 168). We take our unit of length such that the breadth of the wide part of 
the channel is :rr units; then h:rr, where 0 < h < 1, represents the breadth of the narrow 
part. Let the real constant V0 denote the velocity of the fluid far from the offset in the 
wide part; that is, 

lim V = V0 , 
U-+ -00 

where the complex variable V represents the velocity vector. The rate of flow per unit 
depth through the channel, or the strength of the source on the left and of the sink on 
the right, is then 

(1) Q- :rrVo. 

y 

u 

FIGURE 168 
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The cross section of the channel can be considered as the limiting case of the 
quadrilateral with the vertices wl> w2, w3, and w4 shown in Fig. 168 as the first and 
last of these vertices are moved infinitely far to the left and to the right, respectively. 
In the limit, the exterior angles become 

As before, we proceed formally, using limiting values whenever it is convenient to do 
so.lf we write x 1 = 0, x3 = 1, x4 = oo and leave x2 to be determined, where 0 < x2 < 1, 
the derivative of the mapping function becomes 

(2) dw = Az-'(z- x2)-1/2(z- 1)1/2. 
dz 

To simplify the determination of the constants A and x2 here, we proceed at once 
to the complex potential of the flow. The source of the flow in the channel infinitely 
far to the left corresponds to an equal source at z = 0 (Sec. 113). The entire boundary 
of the cross section of the channel is the image of the x axis. In view of equation ( 1 ), 
then, the function 

(3) F = V0 Log z = V0 In r + i V0e 

is the potential for the flow in the upper half of the z plane, with the required source 
at the origin. Here the stream function is 1/f = v0e. It increases in value from 0 to 
V0n over each semicircle z = Reie (0 < e < n ), where R > 0, as e varies from 0 ton. 
[Compare equation (5), Sec. 107, and Exercise 8, Sec. 108.] 

The complex conjugate of the velocity V in the w plane can be written 

V(w) = dF = dF dz . 
dw dz dw 

Thus, by referring to equations (2) and (3), we can see that 

(4) V ( w) = Vo z - x2 
( )

1/2 

A z -1 

At the limiting position of the point wh which corresponds to z = 0, the velocity 
is the real constant V0. It therefore follows from equation ( 4) that 

Vo 
Vo=-F2· 

A 

At the limiting position of w4, which corresponds to z = oo, let the real number V4 
denote the velocity. Now it seems plausible that as a vertical line segment spanning 
the narrow part of the channel is moved infinitely far to the right, V approaches V4 at 
each point on that segment. We could establish this conjecture as a fact by first finding 
w as the function of z from equation (2); but, to shorten our discussion, we assume 
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that this is true, Then, since the flow is steady, 

n h V4 = n V0 = Q, 

or V4 = V0/ h. Letting z tend to infinity in equation (4), we find that 

Vo Vo 
-=-
h A 

Thus 

(5) A =h, 

and 

(6) V(w) = Vo (z- h2)I/2 
h z -1 

CHAP. II 

From equation (6), we know that the magnitude lVI of the velocity becomes 
infinite at the comer w3 of the offset since it is the image of the point z = 1. Also, 
the comer w2 is a stagnation point, a point where V = 0. Along the boundary of the 
channel, the fluid pressure is, therefore, greatest at w2 and least at w3• 

To write the relation between the potential and the variable w, we must integrate 
equation (2), which can now be written 

(7) d w = h ( z - 1 )
112 

dz z z- h2 

By substituting a new variables, where 

z- h2 2 
--=s, 
z -1 

one can show that equation (7) reduces to 

dw _ 2h( 1 _ 1 ) 
ds - 1 - s2 h2 - s2 · 

Hence 

hL 
l+s L h+s w = og - og 
1-s h-s 

(8) 

The constant of integration here is zero because when z = h2, the quantity s is zero 
and so, therefore, is w. 

In terms of s, the potential F of equation (3) becomes 

h2- s2 
F = V0 Log 2 ; 1-s 
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consequently, 

2 exp(F I V0) - h2 
s = ___;:__:__;__..:::.;_ __ 

exp(F I V0) - 1 
(9) 

By substituting s from this equation into equation (8), we obtain an implicit relation 
that defines the potential F as a function of w. 

115. ELECTROSTATIC POTENTIAL ABOUT AN EDGE 
OF A CONDUCTING PLATE 

Two parallel conducting plates of infinite extent are kept at the electrostatic potential 
V = 0, and a parallel semi-infinite plate, placed midway between them, is kept at the 
potential V = 1. The coordinate system and the unit of length are chosen so that 
the plates lie in the planes v = 0, v = :n:, and v = :n: 12 (Fig. 169). Let us determine 
the potential function V (u, v) in the region between those plates. 

y 
V=O 

-1 1 

-----,... ..... --------;;:w2_______ v= 1 
.. ::::- -21 -
w4 ----- --------- ...... _ --- ---- ----

V=O FIGURE169 
X 

The cross section of that region in the uv plane has the limiting form of the 
quadrilateral bounded by the dashed lines in Fig. 169 as the points w1 and w3 move 
out to the right and w4 to the left. In applying the Schwarz-Christoffel transformation 
here, we let the point x4, corresponding to the vertex w4, be the point at infinity. We 
choose the points x1 = -1, x3 = 1 and leave x2 to be determined. The limiting values 
of the exterior angles of the quadrilateral are 

k2rr = -rr, 

Thus 

dw =A(z+l)-l(z-xz)(z-1)-l=A (z-xz) =A (l+xz + 1-xz). 
dz z2 - 1 2 z + 1 z - 1 

and so the transformation of the upper half of the z plane into the divided strip in the 
w plane has the form 

(1) 
A 

w = -[(1 + x2) Log(z + 1) + (1- x2) Log(z- 1)] +B. 
2 

Let A 1, A 2 and B 1, B2 denote the real and imaginary parts of the constants A and 
B. When z = x, the point w lies on the boundary of the divided strip; and, according 
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to equation (1), 

. AI+ iA2 . 
u + zv = {(I+ xz)[ln lx + 11 + z arg(x + 1)] 

2 
(2) 

+ (1- x2)[ln lx- 11 + i arg(x- 1)]} + B1 + iB2 . 

To determine the constants here, we first note that the limiting position of the 
line segment joining the points wi and w4 is the u axis. That segment is the image of 
the part of the x axis to the left of the point x1 = -1; this is because the line segment 
joining w3 and w4 is the image of the part of the x axis to the right of x3 = 1, and 
the other two sides of the quadrilateral are the images of the remaining two segments 
of the x axis. Hence when v = 0 and u tends to infinity through positive values, the 
corresponding point x approaches the point z = -1 from the left. Thus 

arg(x + 1) = rr, arg(x - 1) = rr, 

and ln lx + II tends to -oo. Also, since -1 < x2 < 1, the real part of the quantity inside 
the braces in equation (2) tends to oo. Since v = 0, it readily follows that A2 = 0; 
for, otherwise, the imaginary part on the right would become infinite. By equating 
imaginary parts on the two sides, we now see that 

Hence 

(3) A2 =0. 

The limiting position of the line segment joining the points w1 and w2 is the half 
line v = 11: j2 ( u > 0). Points on that half line are images of the points z = x, where 
-1 < x < x2; consequently, 

arg(x + 1) = 0, arg(x - 1) = n. 

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at the 
relation 

(4) rr AI - = -(1- x2)rr + B2 . 
2 2 

Finally, the limiting positions of the points on the line segment joining w3 to w4 
are the points u + 11: i, which are the images of the points x when x > 1. By identifying, 
for those points, the imaginary parts in equation (2), we find that 

rr = B2• 

Then, in view of equations (3) and (4), 

A1 =-1, x2 = 0. 
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Thus x = 0 is the point whose image is the vertex w = n i j2; and, upon substituting 
these values into equation (2) and identifying real parts, we see that B1 = 0. 

Transformation (1) now becomes 

(5) 

or 

(6) 

w = _I[Log(z + 1) + Log(z- 1)] + ni, 
2 

Under this transformation, the required harmonic function V(u, v) becomes a 
harmonic function of x and y in the half plane y > 0; and the boundary conditions 
indicated in Fig. 170 are satisfied. Note that x2 = 0 now. The harmonic function in that 
half plane which assumes those values on the boundary is the imaginary component 
of the analytic function 

1 z - 1 1 r1 i 
-Log =-In-+ -(81- f:h), 
11: z + 1 11: r 2 11: 

where e1 and e2 range from 0 to n. Writing the tangents of these angles as functions 
of x and y and simplifying, we find that 

(7) 
2y 

tan n V = tan(e1 - e2) = 
2 2 X + y -1 

z 

V;:;;Q -1 1 V;:;;QX FIGURE 170 

Equation (6) furnishes expressions for x 2 + y 2 and x2 - y2 in terms of u and 
v. Then, from equation (7), we find that the relation between the potential V and the 
coordinates u and v can be written 

(8) 

where 

EXERCISES 

tan nV = IJe-4u- s2, 
s 

s = -1 + J 1 + 2e-2u cos 2v + e-4u. 

1. Use the Schwarz-Christoffel transformation to obtain formally the mapping function 
given with Fig. 22, Appendix 2. 
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2. Explain why the solution of the problem of flow in a channel with a semi-infinite 
rectangular obstruction (Fig. 171) is included in the solution of the problem treated in 
Sec. 114. 

FIGURE 171 

3. Refer to Fig. 29, Appendix 2. As the point z moves to the right along the negative part 
of the real axis where x < -1, its image point w is to move to the right along the half 
line v = h ( u < 0). As the point z moves to the right along the segment -1 < x < l of the 
x axis, its image point w is to move in the direction of decreasing v along the segment 
0 < v < h of the v axis. Finally, as z moves to the right along the positive part of the real 
axis where x > 1, its image point w is to move to the right along the positive real axis. 
Note the changes in the direction of motion of w at the images of the points z = -1 and 
z = 1. These changes indicate that the derivative of a mapping function might be 

dw =A (z + 1)
112

, 
dz z- l 

where A is some constant. Thus obtain formally the transformation given with the figure. 
Verify that the transformation, written in the form 

w = ~{(z + l)I/2(z- l)I/2 + LogLz + (z + l)If2(z- l)l/2]} 
:rr 

where 0 < arg(z ± 1) < :rr, maps the boundary in the manner indicated in the figure. 

4. Let T(u, v) denote the bounded steady-state temperatures in the shaded region of the 
w plane in Fig. 29, Appendix 2, with the boundary conditions T ( u, h) = l when u < 0 
and T = 0 on the rest (B'C' D') of the boundary. Using the parameter a (0 <a < :rr /2), 
show that the image of each point z = i tan a on the positive y axis is the point 

w = ~ [In (tan a + sec a) + i (; + sec a) J 
(see Exercise 3) and that-the temperature at that point w is 

a 
T(u, v) =-

:rr 

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in 
the bed of a deep stream represented by the shaded region of the w plane in Fig. 29, 
Appendix 2, where the fluid velocity V approaches a real constant v0 as lwl tends to 
infinity in that region. The transformation that maps the upper half of the z plane onto 
that region is noted in Exercise 3. Use the chain rule 

d F dF dz 
- --

dw dz dw 
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to show that 

and, in terms of the points z = x whose images are the points along the bed of the stream, 

show that 

Note that the speed increases from !Vol along A' B' until! VI = oo at B', then diminishes 

to zero at C', and increases toward !Vol from C' to D'; note, too, that the speed is !Vol at 

the point 

. ( 1 1) w=tl+Jl'h, 

between B' and C'. 





CHAPTER 

12 
INTEGRAL FORMULAS 
OF THE POISSON TYPE 

In this chapter, we develop a theory that enables us to obtain solutions to a variety of 

boundary value problems where those solutions are expressed in terms of definite or 

improper integrals. Many of the integrals occurring are then readily evaluated. 

116. POISSON INTEGRAL FORMULA 

Let C0 denote a positively oriented circle, centered at the origin, and suppose that a 

function f is analytic inside and on C0. The Cauchy integral formula (Sec. 47) 

(1) j(z) = ~ { f(s) ds 
2m Jc0 s- z 

expresses the value off at any point z interior to C0 in terms of the values off at points 

s on C0. In this section, we shall obtain from formula (1) a corresponding formula for 

the real part of the function f; and, in Sec. 117, we shall use that result to solve the 

Dirichlet problem (Sec. 98) for the disk bounded by C0. 

We let r0 denote the radius of C0 and write z = r exp(i8), where 0 < r < r0 

(Fig. 172). The inverse of the nonzero point z with respect to the circle is the point z 1 

lying on the same ray from the origin as z and satisfying the condition lz111zl = r~; 
thus, if s is a point on C0 , 

(2) 
2 2 -ro ro ss 

Zt =- exp(iO) =-=- = -=-· 
r z z 

417 
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Since z1 is exterior to the circle C0 , it follows from the Cauchy-Goursat theorem that 
the value of the integral in equation ( 1) is zero when z is replaced by z 1 in the integrand. 
Hence 

f(z) = -
1-.j ( 1 

-
1 

)f(s) ds; 
21l'l Co S- Z S- Zt 

and, using the parametric representation s = r0 exp(i l/J) (0 < l/J < 2n) for C0 , we can 
write 

/(z)=-1 fzrr( s - s )f(s)dl/J, 
2n}o s-z s-z1 

where, for convenience, we retain the s to denote r0 exp(i l/J). 
In view of the last of expressions (2) for z 1, the factor inside the parentheses here 

can be written 

(3) 
s 

s-z 
1 

1- (s/z) 
s - rz- r2 + z - 0 . 

s - z s- z Is - zl2 

An alternative form of the Cauchy integral formula ( 1) is, therefore, 

r2 - r212rr f( i¢) 
(4) f(reie) = o roe dl/J 

2rr o Is - zl2 

when 0 < r < r0. This form is also valid when r = 0; in that case, it reduces directly to 

f(O) = -1 fzrr f(roeitfl) dl/J, 
2rr lo 

which is just the parametric form of equation ( 1) with z = 0. 
The quantity Is - z! is the distance between the points s and z, and the law of 

cosines can be used to write (see Fig. 172) 

(5) Is- ze = rJ- 2r0r cos(l/J- 0) + r 2• 

y 

FIGURE 172 
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Hence, if u is the real part of the analytic function f, it follows from formula ( 4) that 

(6) 
1 lo2rr (rJ- r2)u(ro, ¢) 

u(r, 6) =- d¢ 
2rr o rJ - 2r0r cos(¢ - 6) + r 2 (r < r0). 

This is the Poisson integral fonnula for the harmonic function u in the open disk 
bounded by the circle r = r0 . 

Formula (6) defines a linear integral transformation of u (r0 , ¢) into u (r, e). The 
kernel of the transformation is, except for the factor 1/ (2rr ), the real-valued function 

r2- r2 
P(r0 ,r,¢-e)= 

2 
° , 

r0 - 2r0r cos(¢ -e) + r2 
(7) 

which is known as the Poisson kernel. In view of equation (5), we can also write 

(8) 

and, since r < ro, it is clear that P is a positive function. Moreover, since z/(i- Z) 

and its complex conjugate z/ (s - z) have the same real parts, we find from the second 

of equations (3) that 

(9) ( s z ) (s + z) P(r0,r,¢-0)=Re + =Re . 
s-z s-z s-z 

Thus P(r0 , r, ¢-e) is a harmonic function of r and() interior to C0 for each fixed s 
on C0• From equation (7), we see that P(r0 , r, ¢-())is an even periodic function of 
¢ - (), with period 2rr; and its value is 1 when r = 0. 

The Poisson integral formula (6) can now be written 

(10) 
1 lo2rr 

u(r, 0) =- P(ro, r, ¢- O)u(r0 , ¢) d¢ 
2rr o 

(r < r 0). 

When j(z) = u(r' e)= 1, equation (10) shows that p has the property 

(11) 1 lo2rr 
- P(r0 , r, ¢ - e) d¢ = 1 
2rr o 

(r < r0). 

We have assumed that f is analytic not only interior to C0 but also on C0 itself 
and that u is, therefore, harmonic in a domain which includes all points on that circle. 
In particular, u is continuous on C0. The conditions will now be relaxed. 

117. DIRICHLET PROBLEM FOR A DISK 

Let F be a piecewise continuous function of e on the interval 0 < () < 2rr. The Poisson 
integral transform of F is defined in terms of the Poisson kernel P(r0 , r, ¢- 6), 
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introduced in Sec. 116, by means of the equation 

(1) U (r, B)= -
1 fzrr P(r0 , r, l/J - B)F(l/J) d¢ 

2n Jo 

CHAP. 12 

(r < r0). 

In this section, we shall prove that the function U (r, B) is harmonic inside the 
circle r = r0 and 

(2) lim U(r, B)= F(B) 
r-..r0 
r<ro 

for each fixed e at which F is continuous. Thus U is a solution of the Dirichlet problem 
for the disk r < r0 in the sense that U (r, B) approaches the boundary value F(O) as 
the point (r, B) approaches (r0 , B) along a radius, except at the finite number of points 
(r0 , B) where discontinuities of F may occur. 

EXAMPLE. Before proving the above statement, let us apply it to find the potential 
V (r, B) inside a long hollow circular cylinder of unit radius, split lengthwise into two 
equal parts, when V = 1 on one of the parts and V = 0 on the other. This problem 
was solved by conformal mapping in Sec. 105; and we recall how it was interpreted 
there as a Dirichlet problem for the disk r < 1, where V = 0 on the upper half of the 
boundary r = 1 and V = 1 on the lower half. (See Fig. 173.) 

y 

V=O 

1 X 

V=l FIGURE173 

In equation (1), write V for U, r0 = 1, and F(¢) = 0 when 0 < ¢ < n and 
F(¢) = 1 when n < ¢ < 2n to obtain 

(3) 

where 

1 12rr V(r, B)=- P(l, r, ¢-B) d¢, 
2n rr 

1- r 2 
P(l, r, ¢-B)= -------

1 + r2 - 2r cos(¢ -B) 
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An antiderivative of P(1, r, 1/1) is 

(4) f P(l, r, 1/1) dlf! = 2 arctan( 
1 + r tan 1/1), 
1- r 2 

the integrand here being the derivative with respect to 1/J of the function on the right. 
So it follows from expression (3) that 

( 
1 + r 2n - e ) ( 1 + r n - e) n V (r, ()) = arctan tan - arctan tan . 
1-r 2 1-r 2 

After simplifying the expression for tanfn V (r, 11)] obtained from this last equation 
(see Exercise 3, Sec. 118), we find that 

(5) 1 ( 1- r
2 

) V (r, B) = - arctan . 
n 2r sm () 

(0 <arctan t < n), 

where the stated restriction on the values of the arctangent function is physically 
evident. When expressed in rectangular coordinates, the solution here is the same as 
solution (5) in Sec. 105. 

We tum now to the proof that the function U defined in equation (1) satisfies the 
Dirichlet problem for the disk r < r0, as asserted just prior to this example. First of 
all, U is harmonic inside the circle r = r 0 because P is a harmonic function of r and 
() there. More precisely, since F is piecewise continuous, integral (1) can be written 
as the sum of a finite number of definite integrals each of which has an integrand that 
is continuous in r, e, and¢. The partial derivatives of those integrands with respect 
to r and e are also continuous. Since the order of integration and differentiation with 
respect tor and e can, then, be interchanged and since P satisfies Laplace's equation 

r2 Prr + r P, + Pee = 0 

in the polar coordinates r and 11 (Exercise 5, Sec. 25), it follows that U satisfies that 
equation too. 

In order to verify limit (2), we need to show that if F is continuous at (}, there 
corresponds to each positive number s a positive number o such that 

(6) IU(r, 11)- F(B)I < s whenever 

We start by referring to property ( 11 ), Sec. 116, of the Poisson kernel and writing 

U(r, 11)- F(l1) = -
1 (:n: P(r0 , r, ¢- 11)[F(¢) - F(B)] d¢. 

2n Jo 
For convenience, we let F be extended periodically, with period 2n, so that the 
integrand here is periodic in ¢ with that same period. Also, we may assume that 
0 < r < r0 because of the nature of the limit to be established. 
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Next, we observe that, since F is continuous at(), there is a small positive number 
a such that 

(7) 

Evidently, 

(8) 

where 

B 
IF(¢)- F(fJ)I <-

2 
whenever 

U(r, (})- F(fJ) = h(r) + h(r), 

1 ie+o: 
/1(r) =- P(r0 , r, ¢- fJ)[F(¢)- F(O)] d¢, 

2n e-o: 

1 1e-o:+2rr 
lz(r) =- P(ro, r, ¢- fJ)[F(¢) - F(fJ)] d¢. 

2n e+o: 

The fact that P is a positive function (Sec. 116), together with the first of 
inequalities (7) just above and property (11 ), Sec. 116, of that function, enables us 
to write 

1 ie+o: lh(r)l <- P(ro, r, ¢- 0) IF(¢)- F(O)I d¢ 
2n e-o: 

e 12rr e <- P(r0,r,¢-fJ)d¢=-. 
4n o 2 

As for the integral /2(r), one can see from Fig. 172 in Sec. 116 that the denominator 
Is - zl2 in expression (8) for P(r0 , r, ¢ - 0) in that section has a (positive) minimum 
value m as the argument ¢ of s varies over the closed interval 

e + a < ¢ < e - a + 2n. 

So, if M denotes an upper bound of the piecewise continuous function IF ( ¢) - F ( ()) 1 

on the interval 0 < ¢ < 2n, it follows that 

1/ ( )I 
(r~- r

2
)M 

2 
2Mr0 ( ) 2Mr0 1' e 

2 r < n < r0 - r < u = -
2nm m m 2 

whenever r0 - r < 8, where 

(9) 0 = me . 
4Mr0 

Finally, the results in the two preceding paragraphs tell us that 

B B 
IU(r, 0)- F(O)I < llt(r)l + l/z(r)l < 

2 
+ 

2 
= e 
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whenever r0 - r < o, where o is the positive number defined by equation (9). That is, 
statement (6) holds when that choice of o is made. 

According to expression ( 1 ), the value of U at r = 0 is 

_1 {2rr F(¢) d¢. 
2n Jo 

Thus the value of a harmonic function at the center of the circle r = r0 is the average 
of the boundary values on the circle. 

It is left to the exercises to prove that P and U can be represented by series 
involving the elementary harmonic functions rn cos nO and rn sin n() as follows: 

(10) P(r0 , r, ¢- ()) = 1 + 2 f (; J cos n(¢- 0) 
n=l 0 

(r < r0 ) 

and 

(11) 1 
00 

( )n U(r, 0) = -ao + L !_ (an cos n() + bn sin n()) 
2 n=l ro 

(r < r0), 

where 

(12) 1 !o2rr 
an=- F(¢) cos n¢ d¢, 

1r 0 

l !o2rr 
bn =- F(¢) sin n¢ d¢. 

1r 0 

118. RELATED BOUNDARY VALUE PROBLEMS 

Details of proofs of results given below are left to the exercises. The function F rep­
resenting boundary values on the circle r = r0 is assumed to be piecewise continuous. 

Suppose that F (2n - ()) = - F ( ()). The Poisson integral formula ( 1) of Sec. 117 
then becomes 

(1) 1 !orr U (r, ()) = - [P(r0 , r, ¢-e) - P(r0 , r, ¢ + O)]F(¢) d¢. 
2n o 

This function U has zero values on the horizontal radii () = 0 and () = n of the circle, 
as one would expect when U is interpreted as a steady temperature. Formula ( 1) thus 
solves the Dirichlet problem for the semicircular region r < r0 , 0 < () < n, where 

U = 0 on the diameter AB shown in Fig. 174 and 

(2) lim U(r, e)= F(()) 
r-+ro 
r<ro 

for each fixed e at which F is continuous. 
If F(2n - ()) = F(fJ), then 

(0 < e < n) 

(3) 1 !orr U(r, ()) =- [P(r0 , r, ¢- ()) + P(r0 , r, ¢ + 8)]F(¢) d¢; 
2n o 
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and U 8 (r, e) = 0 when e = 0 ore = n. Hence formula (3) furnishes a function U that 
is harmonic in the semicircular region r < r0, 0 < e < 1f and satisfies condition (2) 
as well as the condition that its normal derivative be zero on the diameter A B shown 
in Fig. 174. 

FIGURE174 

The analytic function z = rJ;z maps the circle 121 = r0 in the Z plane onto the 
circle I z I = r0 in the z plane, and it maps the exterior of the first circle onto the interior 
of the second. Writing z = r exp(i e) and Z = R exp( i 1{1), we note that r = rJ f R and 
e = 2rr - 1{1. The harmonic function U (r, B) represented by formula (1), Sec. 117, is, 
then, transformed into the function 

U _Q_' 2rr- 1{1 = -- ° F(l/J) dlfJ, 
(

r2 ) 1 12rr ,.2 _ R2 

R 2rr o rJ-2r0Rcos(l/J+1/I)+R2 

which is harmonic in the domain R > r0• Now, in general, if u(r, B) is harmonic, then 
so is u (r, -e) (see Exercise 11). Hence the function H (R, 'if!) = U (rJf R, 1{1 - 2rr), or 

(4) H(R, 1{1) = --
1 

{
2

rr P(ro, R,l/J -'if!)F(l/J) dl/J 
2rr Jo (R > r0), 

is also harmonic. For each fixed 1{1 at which F ( 1{1) is continuous, we find from 
condition (2), Sec. 117, that 

(5) lim H ( R, 1/1) = F ( 1{1) . 
R->ro 
R>ro 

Thus formula (4) solves the Dirichlet problem for the region exterior to the circle 
R = r0 in the Z plane (Fig. 175). We note from expression (8), Sec. 116, that the 

y 

... 
/ (R, 1/1) 

X 

FIGURE175 
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Poisson kernel P (r0, R, ¢ - lfr) is negative when R > r0. Also, 

(6) 1 fn2Jr - P(r0 , R, ¢ -1/1) d¢ = -1 
2rr o 

(R > r0) 

and 

(7) 1 fn2rr lim H(R, 1/1) =- F(¢) d¢. 
R~oo 2rr o 

EXERCISES 

1. Use the Poisson integral formula (1), Sec. 117, to derive the expression 

V(x, y) =-arctan Y 1 [ 1- x2- 2 ] 

n (x - 1)2 + (y - 1)2 - 1 
(0 < arctan t < rr) 

for the electrostatic potential interior to a cylinder x 2 + y2 = 1 when V = 1 on the first 
quadrant (x > 0, y > 0) of the cylindrical surface and V = 0 on the rest of that surface. 
Also, point out why 1- Vis the solution to Exercise 8, Sec. 105. 

2. Let T denote the steady temperatures in a disk r < 1, with insulated faces, when T = 1 
on the arc 0 < e < 200 (0 < 00 < n /2) of the edge r = 1 and T = 0 on the rest of the 
edge. Use the Poisson integral formula to show that 

T(x, y) =-arctan - - Y Yo 1 [ (1 x
2 2

) ] 

n (x - 1)2 + (y - Yo)2- Y5 (0 <arctan t < rr), 

where Yo = tan e0. Verify that this function T satisfies the boundary conditions. 

3. With the aid of the trigonometric identities 

2 
( {3) 

_ tan a - tan {3 
tana-- , 

1 + tan a tan {3 
tan a + cot a = , 

sin 2ct 

show how solution (5) in the example in Sec. 117 is obtained from the expression for 
1T V (r, e) just prior to that solution. 

4. Let I denote this finite unitimpulse function (Fig. 176): 

I h e e _ { 1/ h when eo < e < &0 + h, 
( ' - o) - 0 when 0 < e < 00 or 00 + h < e < 21T, 

where h is a positive number and 0 < e0 < B0 + h < 21T. Note that 

l
tl0+h 

l(h, e - B0) dB= 1. 
tlo 
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l(h,e- eo) 

1 
h ' ' I I 

I 
I 
I 
I 
I 

0 eo e0 +h 27f () FIGURE176 

With the aid of a mean value theorem for definite integrals, show that 

where 00 < c < 00 + h, and hence that 

1
21!" 

lim P (ro, r, </> - e)I(h, </> - 00) d<f> = P(ro. r, 0 - Oo) 
h-->0 0 
h>O 

(r < r0). 

Thus the Poisson kernel P (r0 , r, e - e0) is the limit, as h approaches 0 through positive 
values, of the harmonic function inside the circle r = r0 whose boundary values are 
represented by the impulse function 27f l(h, e- eo). 

5. Show that the expression in Exercise 8(b), Sec. 56, for the sum of a certain cosine series 
can be written 

00 1 2 
~ -a 1 + 2 L.. an cos nO = 

2 n=1 1- 2a cos e +a 
(-l<a<l). 

Then show that the Poisson kernel has the series representation (10), Sec. 117. 

6. Show that the series in representation ( 1 0), Sec. 117, for the Poisson kernel converges 
uniformly with respect to <f>. Then obtain from formula (I) of that section the series 
representation (11) for U (r, 0) there.* 

7. Use expressions (11) and (12) in Sec. 117 to find the steady temperatures T(r, e) in a 
solid cylinder r.::: r0 of infinite length if T(r0 , 0) =A cos e. Show that no heat flows 
across the plane y = 0. 

A A 
Ans. T = -r cos()= -x. 

ro ro 

*This result is obtained when r0 = 1 by the method of separation of variables in the authors' "Fourier 
Series and Boundary Value Problems," 6th ed., Sec. 48, 2001. 
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8. Obtain the special case 

A 

1 lo:rr (a) H(R, 1/1) =- [P(r0 , R, 4J + 1/1)- P(r0 , R, 4J -1/I)]F(4J) d4J; 
2rr o 

1 lo:rr (b) H(R, 1/1) = -- [P(r0 , R, 4J + 1/1) + P(r0 , R, 4J -1/l)lF(4J) d4J 
2rr o 

of formula (4}, Sec. 118, for the harmonic function H in the unbounded region R > r0 , 

0 < 1/J < rr, shown in Fig. 177, if that function satisfies the boundary condition 

lim H(R, 1/1) = F('l/l} 
R-+ro 
R>ro 

on the semicircle and (a) it is zero on the rays BA and DE; (b) its normal derivative is 
zero on the rays B A and DE. 

y 

B D E X FIGURE 177 

9. Give the details needed in establishing formula (1) in Sec. 118 as a solution of the 
Dirichlet problem stated there for the region shown in Fig. 174. 

10. Give the details needed in establishing formula (3) in Sec. 118 as a solution of the 
boundary value problem stated there. 

11. Obtain formula ( 4 ), Sec. 118, as a solution of the Dirichlet problem for the region exterior 
to a circle (Fig. 175). To show that u(r, -())is harmonic when u(r, 0) is harmonic, use 
the polar form 

of Laplace's equation. 

12. State why equation (6), Sec. 118, is valid. 

13. Establish limit (7), Sec. 118. 

119. SCHWARZ INTEGRAL FORMULA 

Let f be an analytic function of z throughout the half plane Im z > 0 such that, for 
some positive constants a and M, f satisfies the order property 

(1) iza /(z)l < M (Im z > 0). 

For a fixed point z above the real axis, let C R denote the upper half of a positively 
oriented circle of radius R centered at the origin, where R > lzl (Fig. 178). Then, 
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y 

-R t R X FIGURE178 

according to the Cauchy integral formula, 

(2) /(z) = _1_. { f(s) ds + ~ JR f(t) dt 
2:n:z lcR s- z 2m -R t- z 

We find that the first of these integrals approaches 0 as R tends to oo since, in 
view of condition ( 1 ), 

Thus 

(3) 

{ f(s)ds < M :n:R= :n:M 
JcR s- z Ra(R- lzl) Ra(l- lzl/ R) 

/(z) = _1_. Joo f(t) dt 
2:n:t -00 t- z 

(lm z > 0). 

Condition (1) also ensures that the improper integral here converges.* The number 
to which it converges is the same as its Cauchy principal value (see Sec. 71), and 
representation (3) is a Cauchy integral formula for the half plane Im z > 0. 

When the point z lies below the real axis, the right-hand side of equation (2) is 
zero; hence integral (3) is zero for such a point. Thus, when z is above the real axis, 
we have the following formula, where c is an arbitrary complex constant: 

(4) f(z) =--: + _ f(t) dt 1 /
00 

( 1 c ) 
2:n: l -00 t - z t - z 

(Im z > 0). 

In the two cases c = -1 and c = I, this reduces, respectively, to 

(5) /(z) = _!_ Joo yf(t) dt 
:n: -oo It - zl2 

(y >0) 

*See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., Chap. 22, 1983. 
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and 

(6) /(z) = ~ 1oo (t- x)f(t) dt 
m -oo It- zl2 

(y > 0). 

If f(z);;::;; u(x, y) + iv(x, y), it follows from formulas (5) and (6) that the har­
monic functions u and v are represented in the half plane y > 0 in terms of the boundary 
values of u by the formulas 

(7) ( ) - _! 1oo yu(t, 0) d - _! 1oo yu(t, 0) d 
U X, y - t- t 

TC -oo It- zl2 rc -oo (t- x)2 + y2 
(y > 0) 

and 

(8) ( ) l1 00
(x-t)u(t,O)d 

vx,y =- t 
rc -oo (t-x)2+y2 

(y > 0). 

Formula (7) is known as the Schwarz integral formula, or the Poisson integral 
formula for the half plane. In the next section, we shall relax the conditions for the 
validity of formulas (7) and (8). 

120. DIRICHLET PROBLEM FOR A HALF PLANE 

Let F denote a real-valued function of x that is bounded for all x and continuous except 
for at most a finite number of finite jumps. When y > s and lx I < 1/ s, where s is any 
positive constant, the integral 

l(x' y) = 1oo F(t) dt -oo (t - X )2 + y2 

converges uniformly with respectto x andy, as do the integrals of the partial derivatives 
of the integrand with respect to x and y. Each of these integrals is the sum of a finite 
number of improper or definite integrals over intervals where F is continuous; hence 
the integrand of each component integral is a continuous function oft, x, and y when 
y > s. Consequently, each partial derivative of l(x, y) is represented by the integral 
of the corresponding derivative of the integrand whenever y > 0. 

We write U (x, y) = y I (x, y) I rc. Thus U is the Schwarz integral transform of F, 
suggested by the second of expressions (7), Sec. 119: 

(1) U(x, y) = _! 1oo yF(t) dt 
n -oo (t-x)2+y2 

(y > 0). 

Except for the factor 1/n, the kernel here is y /It- ze.lt is the imaginary component 
of the function 1/(t- z), which is analytic in z when y > 0. It follows that the kernel 
is harmonic, and so it satisfies Laplace's equation in x and y. Because the order of 
differentiation and integration can be interchanged, the function (1) then satisfies that 
equation. Consequently, U is harmonic when y > 0. 
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To prove that 

(2) Jim U(x, y) = F(x) 
y->0 
y>O 

CHAP. 12 

for each fixed x at which F is continuous, we substitute t = x + y tan r in formula ( 1) 

and write 

(3) 
1 11r/2 

U(x, y) =- F(x + y tan r) dr 
T{ -1t/2 

(y > 0). 

Then, if 

G(x, y, r) = F(x + y tan r)- F(x) 

and a is some small positive constant, 

1
1t/2 

(4) rc[U(x, y)- F(x)] = G(x, y, r) dr = lt(Y) + h(y) + h(y), 
-lt/2 

where 

1 
( -n; j2)+a ~ (1t /2)-a 

/ 1(y)= G(x,y,r)dr, 12(y)= G(x,y,r)dr, 
-1r /2 (-1r /2)+a 

1
1t/2 

/3(y) = G(x, y, r) dT. 
(1r /2)-a 

If M denotes an upper bound for IF(x)l, then IG(x, y, r)l <2M. For a given 
positive number£, we select a so that 6Ma < s; and this means that 

e 
llt(Y)I < 2Ma < 

3 
and 

e 
lh(y)l < 2Ma < 

3
. 

We next show that, corresponding to s, there is a positive number ~ such that 

B 
llz(y)l < 

3 
whenever 0 < y < ~. 

To do this, we observe that, since F is continuous at x, there is a positive number y 
such that 

s 
IG(x, y, r)l <-

3rr 
whenever 0 < yltan rl < y. 

Now the maximum value of I tan T I as T ranges from ( -rr /2) +a to (rc /2) - a is 
tan[ (;r /2) - a] = cot a. Hence, if we write ~ = y tan a, it follows that 

e s 
l/z(y)l < -(;r- 2a) <-

3;r 3 
whenever 0 < y < ~. 
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We have thus shown that 

whenever 0 < y < 8. 

Condition (2) now follows from this result and equation (4). 
Formula (1) therefore solves the Dirichlet problem for the half plane y > 0, with 

the boundary condition (2). It is evident from the form (3) of expression (1) that 
I U (x, y) I < M in the half plane, where M is an upper bound of IF (x) I; that is, U 
is bounded. We note that U(x, y) = F0 when F(x) = F0, where F0 is a constant. 

According to formula (8) of Sec. 119, under certain conditions ofF the function 

(5) V(x, y) = _!_ ~oo (x- t)F(t) dt 
1f -oo (t - X )2 + y2 

(y > 0) 

is a harmonic conjugate of the function U given by formula (1). Actually,formula (5) 
furnishes a harmonic conjugate of U ifF is everywhere continuous, except for at most 
a finite number of finite jumps, and ifF satisfies an order property 

(a> 0). 

For, under those conditions, we find that U and V satisfy the Cauchy-Riemann 
equations when y > 0. 

Special cases of formula (1) when F is an odd or an even function are left to the 
exercises. 

EXERCISES 
1. Obtain as a special case of formula ( 1 ), Sec. 120, the expression 

U(x,y)=- - F(t)dt y ioo [ 1 1 J 
rr o (t-x)2+y2 (t+x)2+y2 

(x > 0, y > 0) 

for a bounded function U that is harmonic in the first quadrant and satisfies the boundary 
conditions 

U(O,y)=O 

lim U(x, y) = F(x) 
y-+0 
y>O 

(y > 0), 

(x >O,x ::j::.x1), 

where F is bounded for all positive x and continuous except for at most a finite number 
of finite jumps at the points x 1 (j = 1, 2, ... , n). 

2. Let T(x, y) denote the bounded steady temperatures in a plate x > 0, y > 0, with 
insulated faces, when 

lim T(x, y)= F1(x) 
y-+0 
y>O 

lim T(x, y)= F2(y) 
x-+0 
x>O 

(x > 0), 

(y > 0) 
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y 

FIGURE 179 

(Fig. 179). Here F1 and F2 are bounded and continuous except for at most a finite number 

of finite jumps. Write x + i y = z and show with the aid of the expression obtained in 

Exercise 1 that 

T(x, y) = T1(x, y) + T2(x, y) (x > 0, y > 0), 

where 

y looo ( 1 1 ) Tt(X, y) =-
2

-
2 

Ft(t) dt, 
7f o it - zl It+ zl 

y 100 

( 1 1 ) T2(x,y)=- . 
2
-. 

2 
F2(t)dt. 

7f o llf-zl lrt+zl 

3. Obtain as a special case of formula (1), Sec. 120, the expression 

U(x,y)=.I_ + F(t)dt 1
00 

[ 1 1 J 
7f o (t-x)2 +y2 (t+x)2+y2 

(x > 0, y > 0) 

for a bounded function U that is harmonic in the .first quadrant and satisfies the boundary 

conditions 

Ux(O, y) = 0 

lim U(x, y) = F(x) 
y--+0 
y>O 

(y > 0), 

(x>O,x:;bx1), 

where F is bounded for all positive x and continuous except possibly for finite jumps at 

a finite number of points x = x1 (j = 1, 2, ... , n). 

4. Interchange the x andy axes in Sec. 120 to write the solution 

U(x, y) = _!.. loo xF(t) dt 
7f -oo (t- y)2 +x2 

(x > 0) 

of the Dirichlet problem for the half plane x > 0. Then write 

F( ) = { 1 when -1 < y < 1, 
Y 0 when IYI > 1, 

and obtain these expressions for U and its harmonic conjugate - V: 

1 ( y + 1 y- 1) U(x, y) =- arctan -arctan , 
7f X X 

V( ) 
- _1 1 x2 + (y + 1)2 

x,y- n 2 2' 
27f X + (y- l) 
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where -n /2 < arctan t < n /2. Also, show that 

V(x, y) + iU(x, y) = _!_[ Log(z + i)- Log(z- i)], 
n 

where z = x + i y. 

121. NEUMANN PROBLEMS 

As in Sec. 116 and Fig. 172, we write s = r0 exp( i if>) and z = r exp(i 0), where r < r0. 

When s is fixed, the function 

(1) Q(ro. r, ¢- 0) = -2ro ln Is- zl = -r0 ln[r~- 2r0r cos(¢- 0) + r2
] 

is harmonic interior to the circle lzl = r0 because it is the real component of 
-2r0 log(z- s), where the branch cut oflog(z- s) is an outward ray from the points. 
If, moreover, r :f. 0, 

(2) Qr(ro, r, if> _ O) = _ r0 [ 2r
2 

- 2r0r cos(¢ - 0) ] 
r rJ- 2r0r cos(¢- 0) + r2 

ro =- [P(r0 , r, if>- 0) -1], 
r 

where P is the Poisson kernel (7) of Sec. 116. 
These observations suggest that the function Q may be used to write an integral 

representation for a harmonic function U whose normal derivative Ur on the circle 
r = r0 assumes prescribed values G(O). 

If G is piecewise continuous and U0 is an arbitrary constant, the function 

(3) 1 lo2:Jr U(r, 0) =- Q(r0 , r, ¢- O)G(¢) dcf> + U0 
2rr o 

(r < r0 ) 

is harmonic because the integrand is a harmonic function of r and 0. If the mean value 
of Gover the circle lzl = r0 is zero, or 

(4) 
lo

21f 
G(¢) de/>= 0, 

() 

then, in view of equation (2), 

1 lo2tr r Ur(r, 0) =- _Q[P(ro, r, ¢- 0)- l]G(¢) d¢ 
2n o r 

r J lo2n = _Q ·- P(r0, r, if>- O)G(¢) d¢. 
r 2n o 
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Now, according to equations (1) and (2) of Sec. 117, 

Hence 

(5) 

1 12:rr lim - P(r0 , r, Q>- 8)G(Q>) dQ> = G(8). 
r--Ho 2n 0 
''"O 

lim Ur(r, 8) = G(8) 
r-+ro 
r<ro 

for each value of 8 at which G is continuous. 

CHAP. 12 

When G is piecewise continuous and satisfies condition (4), the formula 

r 12:rr (6) U (r, 8) = - __Q_ ln[rJ - 2r0r cos(Q> - 8) + r 2] G(Q>) dQ> + U0 (r < r0), 
2n o 

therefore, solves the Neumann problem for the region interior to the circle r = r0, 

where G(8) is the normal derivative of the harmonic function U (r, 8) at the boundary 
in the sense of condition (5). Note how it follows from equations (4) and (6) that, since 
In rJ is constant, U0 is the value of U at the center r = 0 of the circler = r0• 

The values U (r, 8) may represent steady temperatures in a disk r < r0 with insu­
lated faces. In that case, condition (5) states that the flux of heat into the disk through its 
edge is proportional to G(8). Condition (4) is the natural physical requirement that the 
total rate of flow of heat into the disk be zero, since temperatures do not vary with time. 

A corresponding formula for a harmonic function H in the region exterior to the 
circle r = r0 can be written in terms of Q as 

(7) 1 12:rr H(R, l/1) = -- Q(r0 , R, Q> -lfr)G(Q>) dQ> + Ho 
2n o 

(R > r0), 

where H0 is a constant. As before, we assume that G is piecewise continuous and that 
condition (4) holds. Then 

and 

(8) 

H0 = lim H(R, l/1) 
R--+oo 

lim HR(R, l/1) = G(lfr) 
R->ro 
R>ro 

for each l/1 at which G is continuous. Verification of formula (7), as well as special 
cases of formula (3) that apply to semicircular regions, is left to the exercises. 

Turning now to a half plane, we let G(x) be continuous for all real x, except 
possibly for a finite number of finite jumps, and let it satisfy an order property 

(9) (a> 1) 
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when -oo < x < oo. For each fixed real numbert, the function Log lz- ti is harmonic 
in the half plane Im z > 0. Consequently, the function 

1100 

(10) U(x, y) =- lnlz- tiG(t) dt + Uo 
Jr -00 

=- ln[(t- x)2 + iJG(t) dt + Uo 1 100 

2Jr -00 

(y > 0), 

where U0 is a real constant, is harmonic in that half plane. 
Formula (10) was written with the Schwarz integral transform (1), Sec. 120, in 

mind; for it follows from formula (1 0) that 

(11) 1 100 
yG(t) Uy(x, y) =-

2 2 
dt 

Jr -oo (t X) + y 

In view of equations ( 1) and (2) of Sec. 120, then, 

(12) lim Uy(x, y) = G(x) 
y-+0 
y>O 

at each point x where G is continuous. 

(y > 0). 

Integral formula (10) evidently solves the Neumann problem for the half plane 
y > 0, with boundary condition ( 12). But we have not presented conditions on G that 
are sufficient to ensure that the harmonic function U is bounded as lzl increases. 

When G is an odd function, formula ( 1 0) can be written 

(13) 1 looo [(t x)2 + y2] U(x,y)=- In 
2 2 

G(t)dt 
2rr o (t + x) + y 

(x > 0, y > 0). 

This represents a function that is harmonic in the first quadrant x > 0, y > 0 and 
satisfies the boundary conditions 

(14) 

(15) 

EXERCISES 

U(O,y)=O (y>O), 

lim Uy(x, y) = G(x) (x > 0). 
y-+0 
y>O 

1. Establish formula (7), Sec. 121, as a solution of the Neumann problem for the region 
exterior to a circle r = r0, using earlier results found in that section. 

2. Obtain as a special case of formula (3), Sec. 121, the expression 

1 !oJr U(r, tJ) =- [Q(ro, r, ¢- tJ)- Q(ro, r, ¢ + tJ)]G(¢) d¢ 
2Jr 0 
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for a function U that is harmonic in the semicircular region r < r0 , 0 < e < 1r and satisfies 
the boundary conditions 

U(r, 0) = U(r, 1r) = 0 (r < ro), 

lim Ur(r, 0) = G(O) (0 < e < 1r) 
r_,.ro 
r<ro 

for each (} at which G is continuous. 

3. Obtain as a special case of formula (3), Sec. 121, the expression 

1 1rr U (r, (}) = - [Q(r0 , r, l/J - 0) + Q(ro, r, l/J + 0)] G(</J) dl/J + U0 
2Jr 0 

for a function U that is harmonic in the semicircular region r < r0 , 0 < (} < 1r and satisfies 
the boundary conditions 

U8 (r, 0) = U8 (r, 1r) = 0 (r < r0), 

lim U,(r, {}) = G(O) (0 < (} < 1r) 
r-+ro 
r<ro 

for each (} at which G is continuous, provided that 

!orr G(</J) d¢ = 0. 

4. Let T (x, y) denote the steady temperatures in a plate x > 0, y > 0. The faces of the plate 

are insulated, and T = 0 on the edge x = 0. The flux of heat (Sec. 100) into the plate 
along the segment 0 < x < 1 of the edge y = 0 is a constant A, and the rest of that edge 
is insulated. Use formula (13), Sec. 121, to show that the flux out ofthe plate along the 

edgex = 0 is 

A ln(l +I.). 
1( y2 
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(See Chap. 8) 

FIGURE 1 
w =z2. 
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FIGURE2 
w =z2. 
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FIGURE3 
w =z2 ; 
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A' B' on parabola v2 = -4c2(u - c2). 

FIGURE4 
w = 1/z. 

FIGURES 
w = lfz. 

FIGURE6 
w =expz. 
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FIGURE 11 
w =sin z; BCD on line y = b (b > 0), 

2 v2 
B'C' D' on ellipse u 
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2 

= 1. 
cosh b sinh b 
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u 

A' B' u 

C' 

FIGURE? 
w =expz. 

FIGURES 
w =expz. 

FIGURE9 
W =Sill z. 

FIGURE 10 
w=smz. 
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FIGURE 14 
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FIGURE12 
z- 1 

w=--
z+1 

z _a 1 + XJX2 + J (1 - Xf)(1 - x;) 
w= ;a= , 

az-1 x 1+x2 

FIGURE 13 
i-z 

w=--. 
i+z 

1- X1X2 + Jo- Xf)(1- xi) 
R0 = (a > 1 and R0 > 1 when - 1 < x2 < x1 < 1). 

Xt -x2 
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FIGURE 15 
z- a 1 + XtX2 + J(Xf- 1)(x;- 1) 

w= ;a= , 
az- 1 x 1 + x2 

x1x2 - 1- J<xt- 1)(xi- 1) 
R0 = (x2 <a < x1 and 0 < R0 < 1 when 1 < x2 < x1). 

E D 

FIGURE 17 
1 

w=z+-. 
z 

FIGURE 18 
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FIGURE 16 
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FIGURE 19 
z-1 w 

w = Log ; z = - coth -. 
z + 1 2 

y v 

F' E' m D' 

u 

FIGURE20 
z - 1 

w =Log ; 
z+1 

ABC on circle x 2 + (y +cot h)2 = csc2 h (0 < h < 1r). 

y v 

u 

FIGURE21 

w =Log z + 
1

; centers of circles at z = coth en, radii: csch en (n = 1, 2). 
z- 1 
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v 

FIGURE22 

w = h In h +In 2(1- h)+ i1r - h Log(z + 1)- (1- h) Log(z- I); x1 = 2h - 1. l-h 

v 

FIGURE23 
u 

w = (tan ~)
2 

= l -cos z. 
2 l+cosz 

y 

X u 

FIGURE24 
y=-Jr D z ez + 1 

w=coth-= . 
2 ez- 1 

v 

X 

FIGURE25 

y=-Jr D 
w = Log(coth ~). 
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v 

y 

FIGURE26 
w = 1ri + z -Log z. 

y 

FIGURE27 
(z + 1)1/2 - 1 

w = 2(z + 1)112 +Log . 
(z + 1)1/2 + 1 

y v 

FIGURE28 
i 1 i ht 1 + t ( z - 1 ) 

1
1

2 

w = - Log + Log --; t = . 
h l-iht 1-t z+h2 
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FIGURE29 

w = ~[(z2 - 1) 112 + cosh-1 z).* 
7r 

y 

FIGURE30 

F' 

~I 

h- 1(2z-h-1) 1 h-1[(h+l)z-2h] w=cos --cos . 
h - 1 ...(Ji (h - I)z 

*See Exercise 3, Sec. 115. 
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Absolute convergence, 179, 201-202 
Absolute value, 8-9 
Accumulation point, 31 
Aerodynamics, 379 
Analytic continuation, 81-82, 84-85 
Analytic function(s), 70--72 

compositions of, 71 
derivatives of, 158-162 
products of, 71 
quotients of, 71, 242-243 
sums of, 71 
zeros of, 239-242, 246-247, 282-288 

Angle: 
of inclination, 119, 344 
of rotation, 344 

Antiderivative, 113, 135-138, 150 
Arc, 117 

differentiable, 119 
simple, 117 
smooth, 120 

Argument, 15 
Argument principle, 281-284 

Bernoulli's equation, 380 
Bessel function, 200n. 

INDEX 

Beta function, 277, 398 
Bibliography, 437-439 
Bilinear transformation, 307 
Binomial formula, 7 
Boas, R. P., Jr., 1 67n. 
Bolzano-Weierstrass theorem, 247 
Boundary conditions, 353 

transformations of, 355-358 
Boundary point, 30 
Boundary value problem, 353-354, 417 
Bounded: 

function, 53, 248 
set, 31 

Branch cut, 93, 325-334, 338-340 
integration along, 273-275 

Branch of function, 93 
principal, 93, 98, 325 

Branch point, 93-94 
at infinity, 340 

Bromwich integral, 288 

Casorati-Weierstrass theorem. 249 
Cauchy, A. L, 62 
Cauchy-Goursat theorem, 142-144 

converse of, 162 
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Cauchy-Goursat theorem (continued) 

extensions of, 149-151 
proof of, 144-149 

Cauchy integral formula, 157-158 
for half plane, 428 

Cauchy principal value, 251-253 
Cauchy product, 216 
Cauchy-Riemann equations, 60--63 

in complex form, 70 
in polar form, 65-68 
necessity of, 62 
sufficiency of, 63-65 

Cauchy's inequality, 165 
Cauchy's residue theorem, 225 
Chebyshev polynomials, 22n. 
Christoffel, E. B., 395 
Circle of convergence, 202 
Circulation of fluid, 379 
Closed contour, 135, 149 

simple, 120, 142, 151 
Closed curve, simple, 117 
Closed set, 30 
Closure of set, 30 
Complex conjugate, 11 
Complex exponents, 97-99 
Complex form of Cauchy-Riemann 

equations, 70 
Complex number(s), 1 

algebraic properties of, 3-7 
argument of, 15 
conjugate of, 11 
exponential form of, 15-17 
imaginary part of, 1 
modulus of, 8-11 
polar form of, 15 
powers of, 20,96-99 
real part of, 1 
roots of, 22-24, 96 

Complex plane, 1 
extended,48,302,308 
regions in, 29-31 

Complex potential, 382 
Complex variable, functions of, 33-35 
Composition offunctions, 51, 58,71 
Conductivity, thermal, 361 

Conformal mapping, 343-358 
applications of, 361-386 
properties of, 343-350 

Conformal transformation, 343-350 
angle of rotation of, 344 
local inverse of, 348 
scale factor of, 346 

Conjugate: 
complex, 11 
harmonic, 77, 351-353 

Connected open set, 30 
Continuity, 51-53 
Continuous function, 51 
Contour, 116-120 

closed, 135, 149 
indented, 267 
simple closed, 120, 142, 151 

Contour integral, 122-124 
Contraction, 299, 346 
Convergence of improper integral, 251-253 
Convergence of sequence, 175-177 
Convergence of series, 178-180 

absolute, 179,201-202 
circle of, 202 
uniform, 202 

Coordinates: 
polar, 15, 34, 39, 65-68 
rectangular, l 

Critical point, 345 
Cross ratios, 310n. 
Curve: 

Jordan, 117 
level, 79-80 
simple closed, 117 

Definite integrals, 113-116, 278-280 
Deformation of paths, principle of, 152 
Deleted neighborhood, 30 
De Moivre 's formula, 20 
Derivative, 54-57 

directional, 71, 356-357 
existence of, 60--67 

Differentiable arc, 119 
Differentiable function, 54 
Differentiation formulas, 57-59 



Diffusion, 363 
Directional derivative, 71, 356-357 
Dirichlet problem, 353 

for disk, 419-423 
for half plane, 364, 429-431, 432 
for quadrant, 431 
for rectangle, 378 
for region exterior to circle, 424 
for semicircular region, 423 
for semi-infinite strip, 366-367 

Disk, punctured, 30, 192, 217, 223 
Division of power series, 217-218 
Domain( s ), 30 

of definition of function, 33 
intersection of, 81 
multiply connected, 149-151 
simply connected, 149-150, 352 
union of, 82 

Electrostatic potential, 373-374 
in cylinder, 374-376 
in half space, 376-377 
between planes, 377 
between plates, 390, 411 

Elements of function, 82 
Elliptic integral, 398 
Entire function, 70, 165-166 
Equipotentials, 373, 381 
Essential singular point, 232 

behavior near, 232, 249-250 
Euler numbers, 220 
Euler's formula, 16 
Even function, 116, 252-253 
Expansion, 299, 346 
Exponential form of complex numbers, 

15-17 
Exponential function, 87-89, 99 

inverse of, 349-350 
mapping by, 40-42 

Extended complex plane, 48, 302, 
308 

Exterior point, 30 

Field intensity, 373 
Fixed point, 312 

Fluid: 
circulation of, 379 
incompressible, 380 
pressure of, 380 
rotation of, 380 
velocity of, 379 

Fluid flow: 
around airfoil, 390 
in angular region, 387 
in channel, 406-411 
circulation of, 379 
complex potential of, 382 
around comer, 383-385 
around cylinder, 385-386 
irrotational, 380 
around plate, 388 
in quadrant, 384-385 
in semi-infinite strip, 387 
over step, 414-415 

Flux of heat, 361 
Flux lines, 374 
Formula: 

binomial, 7 
Cauchy integral, 157-158 
de Moivre's, 20 
Euler's, 16 
Poisson integral, 417-435 
quadratic, 29 
Schwarz integral, 427-429 

INDEX 453 

(See also specific formulas, for example: 
Differentiation formulas) 

Fourier, Joseph, 361n. 
Fourier integral, 260, 269n. 
Fourier series, 200 
Fourier's law, 361 
Fresnel integrals, 266 
Function( s ): 

analytic (See Analytic function) 
antiderivative of, 113, 135-138 
Bessel, 200n. 
beta, 277, 398 
bounded,53,248 
branch of, 93 

principal, 93, 98, 325 
composition of, 51, 58, 71 
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Function(s): (continued) 
continuous, 51 
derivatives of, 54-57 
differentiable, 54 
domain of definition of, 33 
elements of, 82 
entire, 70, 165-166 
even, 116,252-253 
exponential (See Exponential function) 
gamma, 273 
harmonic (See Harmonic function) 
holomorphic, 70n. 
hyperbolic (See Hyperbolic functions) 
impulse, 425-426 
inverse, 308 
limit of, 43-48 

involving point at infinity, 48-51 
local inverse of, 348 
logarithmic (See Logarithmic function) 
meromorphic, 281-282 
multiple-valued, 35, 335 
odd, 116 
piecewise continuous, 113, 122 
principal part of, 231 
range of, 36 
rational, 34, 253 
real-valued, 34, 111, l13, 120, 

131 
regular, 70n. 
stream, 381-383 
trigonometric (See Trigonometric 

functions) 
value of, 33 
zeros of (See Zeros of functions) 

Fundamental theorem: 
of algebra, 166 
of calculus, 113, 135 

Gamma function, 273 
Gauss's mean value theorem, 168 
Geometric series, 187 
Goursat, E., 144 
Gradient, 71-72, 356-357, 360 
Green's theorem, 143, 379 

Harmonic function, 75-78, 381 
conjugate of, 77, 351-353 
maximum and minimum values of, 

171-172,373 
in quadrant, 435 
in semicircular region, 423-424, 436 
transformations of, 353-355 

Holomorphic function, 70n. 
Hydrodynamics, 379 
Hyperbolic functions, 105-106 

inverses of, 109-110 
zeros of, 1 06 

Image of point, 36 
inverse, 36 

Imaginary axis, 1 
Improper real integrals, 251-275 
Impulse function, 425 426 
Incompressible fluid, 380 
Independence of path, 127, 135 
Indented paths, 267-270 
Inequality: 

Cauchy's, 165 
Jordan's, 262 
triangle, 10, 14 

Infinity: 
point at, 48-49 
residues at, 228 

Integral(s): 
Bromwich, 288 
Cauchy principal value of, 251-253 
contour, 122-124 
definite, 113-116, 218-280 
elliptic, 398 
Fourier, 260, 269n. 
Fresnel, 266 
improper real, 251-275 
line, 122, 352 
modulus of, 114, 130--133 

Integral transformation, 419 
Interior point, 30 
Intersection of domains, 81 
Inverse: 

function, 308 
image of point, 36 



Laplace transform, 288-291 
local, 348 
point, 302, 417 
z-transform, 199 

Inversion, 302 
Irrotational flow, 380 
Isogonal mapping, 345 
Isolated singular point, 221 
Isolated zeros, 240 
Isotherms, 363 

Jacobian, 348 
Jordan, C., 117 
Jordan curve, 117 
Jordan curve theorem, 120 
Jordan's inequality, 262 
Jordan's lemma, 262-265 
Joukowski airfoil, 389 

Lagrange's trigonometric identity, 22 
Laplace transform, 288 

inverse, 288-291 
Laplace's equation, 75, 79, 362-363, 381 
Laurent series, 190-195 
Laurent's theorem, 190 
Legendre polynomials, 116m., 164n. 
Level curves, 79-80 
Limit(s): 

offunction,43-46 
involving point at infinity, 48-51 

ofsequence, 175 
theorems on, 46-48 

Line integral, 122, 352 
Linear combination, 74 
Linear fractional transformation, 307-311 
Linear transformation, 299-301 
Lines of flow, 363 
Liouville's theorem, 165-166 
Local inverse, 348 
Logarithmic function, 90-96 

branch of, 93 
mapping by, 316, 318 
principal branch of, 93 
principal value of, 92 
Riemann surface for, 335-337 

Maclaurin series, 183 
Mapping, 36 
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conformal (See Conformal 
transformation) 

by exponential function, 40-42 
isogonal, 345 
by logarithmic function, 316, 318 
one to one (See One to one mapping) 
of real axis onto polygon, 391-393 
by trigonometric functions, 318-322 
(See also Transformation) 

Maximum and minimum values, 130, 
167-171,373 

Maximum modulus principle, 169 
Meromorphic function, 281-282 
Modulus, 8-11 

ofintegral, 114, 130-133 
Morera, E., 162 
Morera's theorem, 162 
Multiple-valued function, 35, 335 
Multiplication of power series, 215-217 
Multiply connected domain, 149-151 

Neighborhood, 29-30 
deleted, 30 
of point at infinity, 49 

Nested intervals, 156 
Nested squares, 146, 156 
Neumann problem, 353 

for disk, 434 
for half plane, 435 
for region exterior to circle, 434 
for semicircular region, 436 

Number: 
complex, 1 
winding, 281 

Odd function, 116 
One to one mapping, 37-40, 301, 308, 315, 

318-321,325-326,332,336 
Open set, 30 

Partial sum of series, 178 
Picard's theorem, 232, 249 
Piecewise continuous function, 113, 122 
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Point at infinity, 48-49 
limits involving, 48-51 
neighborhood of, 49 

Poisson integral formula, 417-435 

for disk, 419 
for half plane, 429 

Poisson integral transform, 419-420 

Poisson kernel, 419 
Poisson's equation, 359 
Polar coordinates, 15, 34, 39, 65-68 

Polar form: 
of Cauchy-Riemann equations, 65-68 

of complex numbers, 15 
Pole(s): 

number of, 24 7, 282 
order of, 231, 234, 239, 242, 246, 282 

residues at, 234-235, 243 
simple, 231, 243,267 

Polynomial(s): 
Chebyshev, 22n. 
Legendre, 116n., 164n. 
zeros of, 166, 172, 286-287 

Potential: 
complex, 382 
electrostatic (See Electrostatic potential) 

velocity, 381 
Power series, 180 

Cauchy product of, 216 
convergence of, 200-204 

differentiation of, 209 
division of, 217-218 
integration of, 207 
multiplication of, 215-217 

uniqueness of, 210 
Powers of complex numbers, 20, 96-99 

Pressure of fluid, 380 
Principal branch of function, 93, 98, 325 

Principal part of function, 231 
Principal value: 

of argument, 15 
Cauchy, 251-253 
of logarithm, 92 
of powers, 98 

Principle: 
argument, 281-284 

of deformation of paths, 152 
maximum modulus, 167-171 
reflection, 82-84 

Product, Cauchy, 216 

Punctured disk, 30, 192,217,223 

Pure imaginary number, 1 

Quadratic formula, 29 

Radio-frequency heating, 259 

Range of function, 36 
Rational function, 34, 253 

Real axis, 1 
Real-valued function, 34, 111, 113, 120, 

131 
Rectangular coordinates: 

Cauchy-Riemann equations in, 62 

complex number in, 8 

Reflection, 11, 36, 82, 302 
Reflection principle, 82-84 

Regions in complex plane, 29-31 

Regular function, 10n. 
Remainder of series, 179-180 

Removable singular point, 232, 248 

Residue theorems, 225, 228 

Residues, 221-225 
applications of, 251-295 

at infinity, 228n. 
at poles, 234-235, 243 

Resonance, 298 
Riemann, G. F. B., 62 
Riemann sphere, 49 
Riemann surfaces, 335-340 

Riemann's theorem, 248 
Roots of complex numbers, 22-24, 96 

Rotation, 36, 299-301 
angle of, 344 
of fluid, 380 

Rouche's theorem, 284, 287 

Scale factor, 346 
Schwarz, H. A., 395 
Schwarz--Christoffel transformation, 

391-413 
onto degenerate polygon, 401-403 



onto rectangle, 400-401 
onto triangle, 397-399 

Schwarz integral formula, 427-429 
Schwarz integral transform, 429 
Separation of variables, method of, 367, 

378 
Sequence, 175-177 

limit of, 175 
Series, 175-220 

Fourier, 200 
geometric, 187 
Laurent, 190--195 
Maclaurin, 183 
partial sum of, 178 
power (See Power series) 
remainder of, 179-180 
sum of, 178 
Taylor, 182-185 
(See also Convergence of series) 

Simple arc, 117 
Simple closed contour, 120, 142, 151 

positively oriented, 142 
Simple closed curve, 117 
Simple pole, 231, 243, 267 
Simply connected domain, 149-150, 352 
Singular point, 70 

essential, 232, 249-250 
isolated, 221 
removable, 232, 248 
(See also Branch point; Pole) 

Sink, 407, 408 
Smooth arc, 120 
Source, 407, 408 
Stagnation point, 408 
Stereographic projection, 49 
Stream function, 381-383 
Streamlines, 381 
Successive transformations, 300, 307, 

315-318,322-324,333-334 
Sum of series, 178 

Table of transformations, 441-449 
Taylor series, 182-185 
Taylor's theorem, 182 
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Temperatures, steady, 361-363 
in cylindrical wedge, 370--371 
in half plane, 363-365 
in infinite strip, 364, 372-373 
in quadrant, 368-370 
in semicircular plate, 372 
in semi-elliptical plate, 373 
in semi-infinite strip, 365-367 

Thermal conductivity, 361 
Transform: 

Laplace, 288 
inverse, 288-291 

Poisson integral, 419-420 
Schwarz integral, 429 
z-transform, 199 

Transformation( s ): 
bilinear, 307 
of boundary conditions, 355-358 
conformal, 343-350 
critical point of, 345 
of harmonic functions, 353-355 
integral, 419 
linear, 299-301 
linear fractional, 307-311 
Schwarz-Christoffel, 391-413 
successive, 300, 307, 315-318, 322-324, 

333-334 
table of, 441-449 
(See also Mapping) 

Translation, 35, 300 
Triangle inequality, 10, 14 
Trigonometric functions, 100--103 

identities for, 10 1-102 
inverses of, 108-109 
mapping by, 318-322 
zeros of, 1 02 

Two-dimensional fluid flow, 379-381 

Unbounded set, 31 
Uniform convergence, 202 
Union of domains, 82 
Unity, roots of, 25-26 
Unstable component, 298 
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Value, absolute, 8-9 
of function, 33 

Vector field, 43 
Vectors, 8-9 
Velocity of fluid, 379 
Velocity potential, 381 
Viscosity, 380 

Winding number, 281 

Zeros of functions, I 02, 166 
isolated, 240 
number of, 282, 284--288 
order of, 239, 242 

z-transform, 199 
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