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1. Preliminary Remarks

Up to now the history of functionality has remained insufficiently studied.
This important subject is actually avoided even by C.BoYER, whose book [1]
on the history of the main concepts of the calculus ran into three editions. It goes
without saying that this work, as well as others on the history of mathematics,
does contain a number of statements on isolated features of the evolution of the
concept of functional dependence and on several scholars’ interpretation of this
dependence. While undoubtedly valuable, such statements, even taken together,
do not provide the whole picture. In addition, the opinions of various authors
often differ from each other; in particular, they do not agree about the time when
the concept of function actually originated. Perhaps the commonest point of
view was voiced in the well known book of D.E.SMiTH ([2], p. 376) who stated,
some fifty years ago:

... after all, the real idea of functionality, as shown by the use of coordinates
was first clearly and publicly expressed by Descartes
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However, Bover’s opinion ([1], p. 156), formulated in connection with the
works of FERMAT, a scholar contemporary with DESCARTES, is that

... the function concept and the idea of symbols as representing variables does not
seem to enter into the work of any mathematician of the time.

On the other hand, W.HARTNER & M. ScaramM ([3], p. 215) suppose that

The question of [the] origin and development [of the concept of function]
is usually treated with striking one-sidedness: it is considered almost exclusively
in relation to Cartesian analysis, which in turn is claimed (erroneously, we
believe) to be a late offspring of the scholastic latitudines formarum.

And, further,

...operating with functions had already reached a high degree of perfection
by the time the first attempts were made to form a general conception of functions.

Operations with functions, these authors contend, may be found in astronomical
calculations of ancient scholars (e.g., in those of PTOLEMY), then in Arabic science
and indeed in AL-BIRGNT's works (to whom the authors’ article is devoted).

In a book [4] published later than the one quoted above [1] and devoted to
the history of analytic geometry C. BOYER points out other prototypes of functions
in ancient Greek mathematics. Thus, considering the use of proportions, he says

(p.5):

This was somewhat equivalent to the modern use of equations as expressions
of functional relationships, although far more restricted.

The same author ([4], p.46) as well as J.E. HormanN ([5], pp. 80-81), A.C.
CroMBIE ([6], vol.ii, pp.88-89) and others relate geometrical expressions of
functions and computation of their values with the theory of calculations and with
the theory of latitudes of forms of the 14™ century. However, H. WIELEITNER
([7], p. 145) supposed that the idea of a function in the last theory contained

... nicht die geringste Vorstellung der zahlenmafigen Abhingigkeit einer Grosse
von einer anderen

while E.T.BeLL ([8], p. 32) credited even Babylonian mathematicians with an
instinct for functionality. Lastly, an opinion on the existence of an idea of a function
in antique mathematics has been put forward recently by O.PEDERSEN [9].

I shall not extend this list of opinions, some concordant and some discordant
one with another, sometimes correct and sometimes incorrect or at least incomplete.
Ishall only add that, as regards the 19" century, the classical definition of a function
included in almost every current treatise on mathematical analysis is usually
attributed either to DIRICHLET or to LOBATCHEVSKY (1837 and 1834, respectively).
However, historically speaking, this general opinion is inaccurate because the
general concept of a function as an arbitrary relation between pairs of elements,
each taken from its own set, was formulated much earlier, in the middle of the
18® century.
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The importance of a historical analysis of the concept of functionality, especially
bearing in mind contemporary discussions of this very concept, is obvious. Not
attempting such a goal, I shall offer brief remarks describing only the main stages
of development of the idea of function up to the middle of the 19" century. As I
see it, these stages are:

(1) Antiquity, the stage in which the study of particular cases of dependences
between two quantities had not yet isolated general notions of variable quantities
and functions.

(2) The Middie Ages, the stage in which, in the European science of the 14
century, these general notions were first definitely expressed both in geometrical
and mechanical forms, but in which, as also in antiquity, each concrete case of
dependence between two quantities was defined by a verbal description, or by a
graph rather than by formula.

(3) The Modern Period, the stage in which, beginning at the end of the 16"
century, and, especially, during the 17™ century, analytical expressions of functions
began to prevail, the class of analytic functions generally expressed by sums of
infinite power series soon becoming the main class used.

It was the analytical method of introducing functions that revolutionized
mathematics and, because of its extraordinary efficiency, secured a central place
for the notion of function in all the exact sciences.

Still, with all its fruitfulness, by the middle of the 18" century this interpretation
of functions as analytic expressions proved itself inadequate so that a new, general
definition of a function, which later became universally accepted in mathematical
analysis, was introduced during that very period.

In the second half of the 19™ century this general definition opened up widest
possibilities for the development of the theory of functions but at once betrayed
logical difficulties which in the 20" century caused the essence of the concept of
function to be reconsidered (as, indeed, were the other main concepts of mathema-
tical analysis). The struggle between different points of view continues; however,
as I stated above, I will not discuss this period (or, rather, these two periods,
connected respectively with the theory of functions and with mathematical logic),
which have been described by A.F.Monna [10].

Here I shall as a rule discuss single-valued functions of one real variable. Such
functions are introduced in modem treatises on mathematical analysis in some-
what various wordings which have a common meaning. In the most general
sense a function y of the variable x, y = f(x), is a relation between pairs of elements
oftwo number sets, X and Y, such that to each element x from the first set X one and
only one element y from the second set Y is assigned according to some definite
rule. Leaving aside logical difficulties inherent in the definition just given®, I
remark only that the functional rule, or “law”, might be introduced in various
forms: verbally; by a table of values of x and y; by an analytic expression; by a
graph, etc., subject only to the condition that this rule be definite and, once the
value of x be given, sufficient for finding y.

! A study of some aspects of the idea of function as represented in this definition (but not of the
difficulties mentioned!) and, also, of the traditional terminology, aimed at a broader circle of readers is
contained in KENNETH O.May’s book ([11], pp. 253-262).
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The idea of function understood in one or another sense is implicitly contained
in rules for measuring areas of the simplest figures such as rectangles, circles, etc.,
known even at the outset of civilization and, also, in the very first tables (some of
them being tables of functions of two variables) of addition, multiplication, division,
etc. used so as to facilitate calculations. _

Obviously relations between numbers or, more generally, quantities, are
encountered at every step in the realm of what is called elementary mathematics.
However, this trivial fact is in itself fruitless in our search for the formation of the
idea of function, its generalization and gradual comprehension, the concrete
meaning which it acquires with the progress of scientific and philosophical thought
and, lastly, for the role it plays during various stages of this progress.

2. Tabulated Functions and the *“Symptoms” of Conic Sections in Antiquity

As stated above, the first stage of the concept of function is that of antiquity.
Even in 2000 B.C. Babylonian mathematicians used widely for their calculations
sexagesimal tables of reciprocals, squares and square roots, cubes and cube
roots as well as some other tables. Tables of functions of two different types,
the step-function and the linear-zigzag-function, as O. NEUGEBAUER ([12], Chap. 5)
called them, were used in Babylonian astronomy during the reign of the SELEUCIDS
for compilation of ephemerides of the sun, moon, and the planets. Empirically
tabulated functions thereafter became the mathematical foundation for the whole
subsequent development of astronomy.

New shoots of the concept of function made their appearance in Greek
mathematics and natural science. Attempts attributed to the early PYTHAGOREANS
to determine the simplest laws of acoustics are typical of the search for quanti-
tative interdependence of various physical quantities, as, for example, the lengths
and the pitches of notes emitted by plucked strings of the same kind, under
equal tensions. Later on, during the ALEXANDRIAN epoch, astronomers developed
a whole trigonometry of chords corresponding to a circumference of a fixed
radius and, using theorems of geometry and rules for interpolation, calculated
tables of chords actually tantamount to tables of sines such as those that came
into use by the Hindus a few centuries afterward. The earliest of extant table of
chords is found in PtoLEMY’s Almagest, in which numerous astronomical tables
of other quantities, equivalent to rational functions and, also, the simplest ir-
rational functions of the sine are inserted [9].

However, the Greeks did not restrict themselves to use of tabulated functions.
The main role in the theory of conics was played by their symptoms (ovuntouoza),
i.e. by those basic planimetric properties of corresponding curves that follow
immediately from their original (though actually unused) stereometric definition
as being plane sections of the cone. A symptom of some conic section represents,
a modern mathematician would say, for each point of the given curve one and
the same functional dependence between its semichord y and the segment x of
the diameter conjugate with the chord, the ends of this segment being the point
of intersection of the diameter with the chord and the corresponding vertex.
Antique geometers described symptoms verbally and, also, by means of geo-
metrical algebra (the term is due to H. G. ZEUTHEN ([13], p. 7)), in which identities
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and equations of the first two degrees were represented by equalities of areas of
certain rectangles. The meaning of these symptoms, the verbose antique des-
cription of which seems unusual to the modern ear, could be conveyed absolutely
accurately in the language of analytic geometry by equations of curves of the
second order with respect to their vertices,

y2=2px$£ x%,  y?=2px.
a

However, opportunities provided by geometrical algebra were insufficient
for conveying similarly the properties of curves of the third and fourth orders
(cissoid and conchoid) and of some other algebraic curves known to Greek
mathematicians, who had to define all these curves and also certain transcendent
curves such as the quadratrix and the equiangular spiral, by means of special
geometric or mechanical (kinematic) constructions.

Antique mathematicians introduced a peculiar classification of curves and
of problems solved by means of these curves. Even before EuCLID they singled
out three classes of geometric loci: plane (éninedor) loci — straight lines and circles;
solid (otepeoi) loci—conic sections; and linear loci (zémor ypaupixoi)—all other
curves. It is really impossible to study here the origin and meaning of this classi-
fication, so remote it is from ours, which originated in the 17® century ([14], §25).

In ancient Greece and in Hellenistic countries later to become Roman pro-
vinces functions introduced in connection with mathematical and astronomical
problems were subjected to studies similar to those carried out in the mathematical
analysis of modern times. According to the goal pursued, functions were tabulated
by use of linear interpolation, and, in the simplest cases, limits of ratios of two
infinitely small quantities were found as, e.g., the limit of sin x/x as x — 0.

Problems on extremal values and on tangents were solved by methods equi-
valent to the differential method; areas, volumes, lengths, and centres of gravity
were calculated by integral methods equivalent to the calculation of integrals,

eg., [xdxand [x?dx.
0 0

Lastly, problems in which roots of cubic polynomials had to be calculated
were solved by using conic sections (curves of the second order). For this purpose
roots of the corresponding equations were considered as coordinates of points
of intersection, or contact, of two such appropriate curves. In this description I
use the common modern terminology and notation, foreign to antique mathe-
matics. I emphasize this fact as distinctly as possible.

Greek symbolism until about the third century A.D., apart from the use of
digits, confined itself to denoting various quantities by different letters of the
alphabet. No algebraic formula, no kind of literal algorithm, no analytical ex-
pression was ever introduced. Only in the works of the late Alexandrian mathe-
matician DioPHANTUS and, possibly, in those of his immediate predecessors,
whose names have been forgotten, do some algebraic signs appear, as, for example,
signs for the first six powers of the unknown quantity, a sign of equality, etc.
However, with the downfall of antique society, this notation was not developed.
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3. A General Notion of Function in Antiquity

Apart from the lack of symbolism, which impeded the whole progress of
mathematics, the achievements of the Greeks both in increasing the number of
functional dependences used and in discovering new methods to study them
were indeed substantial and played a prominent role in the later development
of mathematics right up to the creation of the new algebra, analytic geometry
and the infinitesimal calculus in the 16™ and 17% centuries. Nevertheless, I must
repeat that there was no general idea of functionality in ancient times.

The problem of whether antique mathematicians possessed a general concept
of function has been considered in detail also by O. PEDERSEN in his paper devoted
to ProLEMY’s Almagest [9]. Quite correctly, PEDERSEN notices that, according to
the PToLEMAIC system of the world, positions of the sun, moon and planets are
considered to change continuously and periodically in time; that the deter-
mination of these positions is accomplished by PTOLEMY by means of standard
procedures, sometimes explained by a numerical examples or, alternatively,
formulated verbally in a quite general manner; that, lastly, these standard pro-
cedures are used to compile various astronomical tables, i.e, to tabulate cor-
responding functions (not only of one, but even of two, and, in several instances,
of three variables). Noticing that the word function itself first appeared not in the
works of antique mathematicians but much later, PEDERSEN ([9], p. 35) asks the
next question:

But are we for that reason justified in concluding that they had no idea of
functional relationships?

His own answer is that everything depends on what actually is meant by a
function. If, together with many mathematicians of bygone days, one is to interpret
a function as an analytical expression, then the conclusion is that the ancients did
not know functions.

But if, continues PEDERSEN (p. 36), we conceive a function, not as formula,
but as a more general relation associating the elements of one set of numbers
(viz, points of time t,, t,, t5, ...) with the elements of another set ( for example
some angular variable in a planetary system), it is obvious that functions in
this sense abound throughout the Almagest. Only the word is missing: the thing
itself is there and clearly represented by the many tables of corresponding
elements of such sets.

I almost agree with all this. Of course, PTOLEMY, like other astronomers of
that age and of earlier ones, knew that celestial coordinates of moving heavenly
bodies periodically change with time, or that, in a given circle, chords of unequal
lengths are related to arcs of unequal lengths. Above (see §2) I have considered
other, earlier instances of functions studied by Greek mathematicians who did
not compile tables for the purpose. Also, two thousand years before PTOLEMY,
tabular relationships were well known to Babylonians. All this notwithstanding,
antique mathematical literature lacks not only words tantamount to the term
function but even an allusion to that more abstract and more general idea which
unifies separate concrete dependences between quantities or numbers in whichever
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form (verbal description, graph, table) these dependences happen to be considered.
There is a good distance between the instinct for functionality (BELL) and the per-
ception of it, and the same is true in regard to particular functions and the emer-
gence of the concept of a function in one or another degree of generality. The use
of the singular (the thing itself, i.e. the functional relation represented by various
tables) by PEDERSEN in connection with the Almagest (see quotation above)
seems to be incorrect in that it allows the whole passage to be interpreted as
implying that functions corresponding to these tables were considered as parti-
cular instances of functional relationship in general.

A similar situation may be found in Greek mathematics as a whole. Its pro-
cedures of calculating or of determining individual concrete limits never led to
an explicit formulation of general concepts of a sequence, variable, limit, infinitely
small quantity, integral, or of general theorems concerning these objects 2. Appro-
priate examples are quadratures and cubatures accomplished by ARICHIMEDES.
Indeed, solving several problems (determining the area of a turn of a spiral, the
volume of a spheroid, the area of a segment of a hyperboloid of revolution), he

a
actually calculated one and the same integral | x* dx or, to put it otherwise, the
0

limit of one and the same “RIEMANN-DARBOUX” sum, completely carrying out
the procedures required by the method of exhaustion each time anew. Noticing
that also some other problems solved by ARCHIMEDES (quadrature of a parabola,
determination of the centre of gravity of a triangle) could have been reduced to
the calculation of the same integral, N. BoURBAKI ([ 15], p. 208) continues:

. nous ignorons jusqu'a quel point il a pris consience des liens de parenté qui
unissent les divers problemes dont il traite (liens que nous exprimerions en
disant que la méme intégrale revient en maints endroits, sous des aspects
géométriques variés), et quelle importance il a pu leur attribuer.

It is impossible to answer this question, but of course ARCHIMEDES could not
have failed to notice that the procedures of calculation in the first three problems
were identical. Still, even for the case of the one function he used, y=x?2, he did
not introduce a general notion of a definite integral (cf. [16]).

Generally speaking, studying mathematics of bygone ages, one often not only
estimates its importance for the further development of this science (which is
necessary) but also, not infrequently, one impermissibly broadens the inter-
pretation of its ideas, linking them with modern, much more general, notions
and conceptions. And it really happens that, as GoETHE’S FAUST remarked to
his pupil WAGNER, the historian equates the spirit of the times with its reflection
in his own mind:

Was ihr den Geist der Zeiten heisst,
Das ist im Grund der Herren eigner Geist,
In dem die Zeiten sich bespiegeln.

% One of the few exceptions is Proposition I from Book X of EucLID’s Elements according to which
(in our terminology), beginning from a certain term, each subsequent term of any sequence

a,aq,,99, 492,294,443, ... (qké%s k=1,2,3,..)

becomes smaller than any given quantity b.
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In particular, it would have been an impermissible modernization to see the
idea of a variable quantity in the proper sense in the works of DIoOPHANTUS, who
did use substitutions for calculation of rational roots of indeterminate equations
and whose method does make it possible in many instances to calculate an in-
finite number of values of the unknown of the indeterminate problem. At best,
it is possible to speak, as D.T. WHITESIDE ([17], p. 197) does, about the notion
or, rather, about the actual use of a substitution variable, but not about the fully
free variable characteristic of the algebra of VIETE.

Ideas of change and of variable quantity were not foreign to Greek thought.
Problems of motion, continuity, infinity, have been considered since the times
of HERACLITUS and ZENO of ELEA, and to the study of these notions was devoted
most of the ARISTOTELIAN Physics or natural philosophy (¢voic means nature).
Using the term motion of matter in the broad sense of change, ARISTOTLE® dis-
tinguished three main forms of the world processes: alteration or change of
quality; change of magnitude or quantity, e.g. growth or decrease; and local
motion (motus localis), this being the lowest form of motion, which necessarily
accompanies the two other, higher forms of changes of matter. The local motion
was subdivided into uniform motion, in which equal distances (segments or, say,
arcs of a circumference) are travelled in equal times and difform motion; however,
neither the (mean) velocity, such as the quotient s/z, nor, much less, the instan-
taneous velocity, was introduced in antiquity. Hence, neither the quantitative
change nor the local motion, both of which have eventually found their represen-
tation in a more abstract notion of a variable quantity, became an object of
mathematical study for the Greeks. This fact could be partially accounted for by
the influence of controversies brought about by Zen0’s paradoxes.

The connection of this fact with the general direction of the development of
Greek mechanics and astronomy is striking. Neither of these sciences overstepped
the limits of uniform motion, for the irregular motions of heavenly bodies were
reduced in antique systems of the world to combinations of uniform circular
motions. Irregular motion was not studied as such. Wherever possible, kinematic
ideas were banished from the realm of pure mathematics. Isolated propositions
found in EucLID in which motion and superposition are used, as well as isolated
cases of kinematic definitions of curves (say, of the quadratrix or of the equi-
angular spiral) do not change the general picture.

I have remarked above that even the so-called PYTHAGOREANS had glimpsed
quantitative laws of nature. Apart from kinematic models of the system of the
world, this quantitative aspect of laws of nature was little developed in Greek
science.

Whatever the ideological or social causes and circumstances which brought
about the features of ancient science just described, the mathematical thought
of antiquity created no general notion of either a variable quantity or of a function.
In the field of applications, mainly in astronomy, in which quantitative methods
of research underwent the greatest development, the chief goal was the tabular
representation of functions conceived as relations between discrete sets of given
constant quantities isolated for practical purposes from continua of numerical
values of quantities functionally related one to another.

3 ARISTOTLE used the term petafolds (change) on a par with kivioeic (motion).
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In this context, a similarity with the statical conception of CANTOR’S set
theory, in which the intuitive idea of a variable quantity is reduced to an idea of
a set of constant quantities given beforehand, suggests itself. In any case the
thoughts of Greek mathematicians taken in general were far, far from the kine-
matic conception of a flowing quantity, characteristic of the infinitesimal cal-
culus of the 17*, 18" and 19*® centuries.

4, Kinematic and Geometrical Representation of Functional Relations.
Theories of Calculations and of Latitudes of Forms

Occurring some time after the downfall of antique society, the new flowering
of science in countries of Arabic culture did not, as far as is known, bring about
essentially new developments in functionality. Still, the number of functions used
increased, and methods of studying them improved. Thus every one of the main
trigonometrical functions was introduced, methods of tabulating them were
perfected (in particular, quadratic interpolation came to be used along with
linear interpolation), and the study of positive roots of cubic polynomials by
means of conic sections advanced essentially. Further progress was made in
optics and astronomy. An exception, it seems, and an especially remarkable one
from my point of view, was the analysis of accelerated motion in the Mas’iidic
Canon (ca. 1030) of AL-BIRONI, which was partly preceded in 9® century by
THABIT IBN QURRA ([3], pp. 212-214; [17a], p. 37-38).

Still, AL-BIRONTs analysis and ideas did not exert much influence on his
successors. The notion of function first occured in a more general form three .
centuries later, in the schools of natural philosophy at Oxford and Paris. Following
such thinkers as ROBERT GROSSETESTE and ROGER BACON, these two schools,
which flourished in the 14" century, declared mathematics to be the main in-
strument for studying natural phenomena. Departing from the ARISTOTELIAN
doctrine of intension and remission of qualities and forms (intensio et remissio
qualitatum et formarum), they proceeded to the mathematical study of non-
uniform quantitative and local motion.

Qualities or forms are phenomena such as heat, light, color, density, distance,
velocity, etc., which can possess various degrees (gradus) of intensity (intensio)
and which, generally speaking, change continuously within some given limits.
Intensities of forms are considered in relation to their extensions (‘extensio) such
as, for example, quantity of matter, time etc. During such considerations a whole
series of most important concepts came to be introduced, e.g., instantaneous, or
punctual, velocity (velocitas instantanea, punctualis ), acceleration (intensio motus
localis, also velocitatio), and variable quantity, conceived as being a degree or a
flux of quality (gradus qualitatis, fluxus qualitatis). In all this, a dominant role
was played by a synthesis of kinematic and mathematical thought.

Toute cinématique, notices N. BOURBAKI ([15], p. 292), repose sur une idée
intuitive, et en quelgue sorte expérimentale, de quantités variables avec le temps,
C’est-d-dire de fonctions du temps.

Simultaneously, an idea that quantitative laws of nature were laws of functional
type gradually ripened in natural philosophy.
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The doctrine of intensity of forms, or, otherwise, the theory of “calculations™
(calculationes) and its most important part, kinematics, had been developed in
England by WiLLIAM HEYTESBURY, RICHARD SWINESHEAD, and others, mostly in
the kinematic-arithmetical direction, while in France, where its main represen-
tative was NICOLE ORESME, it developed also in the geometrical direction. Of
special interest is the theory of configurations of qualities (de configurationibus
qualitatum ), or, in other words, of uniformity and difformity of intensities, or, in
still other words, of latitudes of forms (de latitudinibus formarum ), developed by
ORESME in the middle of the 14" century.

Every measurable thing, wrote ORESME ([ 18], pp. 164-165), except numbers
[which he, like the ancient Greeks, understood to be a set of units] is imagined
in the manner of continuous quantity ( Omnis res mensurabilis exceptis numeris
ymaginatur ad modum quantitatis continue ).

Therefore points, lines, and surfaces, in which, according to ARISTOTLE, the
measure or ratio (mensura seu proportio) is initially found, are needed so as to
measure these things; in all other things measure or ratio is learned by their
mental relation with points, lines, and surfaces.

ORESME represents degrees of intensity by segments of corresponding lengths,
“latitudes” (latitudo) perpendicularly erected upon the line of “longitudes”
(longitudo ), the segments of which represent extensions; the ratio of two inten-
sities of some quality is the same as that of the corresponding latitudes, so that,
as OrResME himself says, latitudes and longitudes of some quality could be con-
sidered instead of its intensity and extension. The upper ends of the latitudes of
some quality generate the “line of intensity” (linea intensionis) or, in other
words, the “line of summit” (linea summitatis) which, as does also the figure
bounded by this line, by the segment of the line of longitudes under consideration,
and by the two extreme latitudes, represents the given quality and its “degrees”.
The angle between the latitudes and the line of longitudes could be chosen
arbitrarily, although latitudes are most conveniently constructed perpendicular
to the line of longitudes.

One of ORESME’s remarks should be specially noticed, viz, that intensities
could be called longitudes, so extensions should then be named latitudes. In this
context “linear” (linearis) qualities are considered, the intensities of which are
distributed among points of a line, but there exist also “surface” (superficialis)
and “corporeal” (corporalis) qualities, distributed among points of a two-
dimensional or three-dimensional continuum. Surface qualities are represented
by solids with flat bases; as to corporeal qualities, the problem of their geometrical
representation naturally presented ORESME with extraordinary difficulties, so that
his remarks about them are far from clear ([18]; see especially Pt. 1, Chapters i-iv
and x).

Thus these theories, developed in the 14® century, seem to be founded on a
conscious use of general ideas about independent and dependent variable quan-
tities; though direct definitions of these quantities are lacking, each of them is
designated by a special term. The latitude of a “quality” is interpreted in a most
general manner as being a variable quantity dependent on its longitude and,
similarly, the “line of summit” is understood to be a graphical representation of
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some continuous functional relation ([6], Vol. IL, p. 88; [19], p. 341). Thus, in
these theories, a function is defined either by a verbal description of its specific
property or directly by a graph.

In the mathematical language of modern times the latitude and longitude
and also the corresponding semichords and segments of diameters of the antique
theory of conic sections (see §2) could well be called the ordinate and abscissa,
respectively, with only one, albeit substantial, reservation: coordinates used in
the 14" century were always related to points of some curve rather than to arbi-
trary points of the plane. However, the same reservation applies even to DEs-
CARTES. It really seems that coordinates of arbitrary points having no connection
with some curve first appear in FR. VAN SCHOOTEN’s commentary on the Latin
edition of DESCARTES’ Geometry (published in 1649), in the context of deducing
the first known formulae for transformation of coordinates ([20], p. 191 and ff).

The theory of latitude of forms is distinctive for its absolutely abstract pre-
liminary interpretation of the problems solved, no significance being attached
to the concrete form or quality. But then ORESME introduces also a kind of classi-
fication of the main kinds of linear qualities, to the study of which he essentially
restricts himself. This classification is as follows ([18], Pt. 1, Chap. x1—xvi):

(1) Uniform quality (qualitas uniformis) with a constant latitude and the
line of intensity being parallel to the line of longitudes. The corresponding figure
is a rectangle.

(2) Uniformly difform (uniformiter difformis) quality ([18], pp. 192-193)

is one in which if any three points [of the line considered] are taken, the

ratio of the distance between the first and the second to the distance between
the second and the third is as the ratio of the excess in intensity of the first
point over that of the second point to the excess of that of the second point over
that of the third point; I call the first of those three points the one of greatest
intensity. ( Est cuius omnium trium punctorum proportio distantie inter primum
et 2™ ad distantiam inter 2™ et 3™ est sicut proportio excessus primi supra 2™
ad excessum 2' supra 3™ intensione, ita quod punctum intensiorem illorum trium
voco primum.)

Corresponding to this verbal description is our equation of a straight line passing .
through two given points (x,; y;) and (x,; y,):

Y=h _ X=X
V2=V Xp—Xxg
The line of intensity is here represented by the hypotenuse of a rectangular
triangle or, alternatively, by the inclined upper side of a quadrangle having two
right angles at its base, the difference between these cases being occasioned by
whether this line meets the given segment of the line of longitudes at one of its
ends (in ORESME’s terminology, in this case the line is terminated at no-degree,
terminatur ad non gradum, i.e., at the zero point of latitude) or does not meet the

given segment (is terminated in both extremes at some degree, terminatur utrobique
ad gradum).
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(3) Difformly difform (difformiter difformis) qualities, to which all other
cases belong. This, the most extensive class of qualities could be “described
negatively” (potest describi negative) as belonging neither to uniform nor to
uniformly difform qualities ([18], pp. 194-195).

First, ORESME here distinguishes four simple (simplex) kinds of qualities,
these being convex and concave (relative to the line of longitudes) arcs of a circle,
not larger than the semicircle, and, also, similar arcs of an ellipse. (The word
itself is not used; what is actually discussed is a curve proportional in altitude to
a circular figure). Then, in the second place, ORESME discusses 63 “composite”
(compositae) difform difformities the lines of intensity of which are composed
of two or more arcs of previously described curves or of segments of a straight
line. These combined lines somewhat resemble EULER’s “mixed” curves (lineae
- mixtae), see § 9; ORESME even uses the same term, mixtio, mixture.

An important component of the theory of calculations or latitudes of forms
was the study of functions of time. Correctly pointing out the rudimentary nature
of these studies, N. BourBAKI ([15], p.217) notices that obviously they have
been carried out sans considérations infinitésimales. This, however, is not exactly
so. Infinitesimal considerations were not only latently present in the concepts of
instantaneous velocity and acceleration themselves but also explicitly used in
solving a whole series of problems, such as, e.g., problems of determining the
areas of some figures unbounded in their extent, or the mean velocity of bodies
the (instantaneous) velocities of which change by leaps according to some definite
law an infinite number of times during a given interval of time divided into such
parts as form a geometric progression. In these problems the main method of
calculation was exactly the summation of infinite geometric progressions; later
on, in the framework of the same theory, mathematicians encountered more
complicated series, the sums of which were represented by (still unknown) tran-
scendental quantities which they had to estimate approximately both from above
and below (A. THOMAS, in 1509).

An achievement most important for mechanics if not for mathematics was the
determination of the mean velocity of uniformly difform (uniformly accelerated)
motion, notwithstanding failure to connect this problem with the problem of the
free fall of heavy bodies. This achievement, first accomplished at Oxford, was de-
scribed in the works of W.HEYTESBURY (in 13357?), R.SWINESHEAD, and J.
DUMBLETON written almost simultaneously; they concluded that the uniformly
difform motion is equivalent to a uniform motion with a velocity equal to the
velocity of the accelerated movement at the middle moment of time*. Since all
three scholars worked in the same place, at Merton College in Oxford, modern
literature usually refers to their conclusion as the “Merton theorem” ([19],
Chapter 5).

ORESME, also, proved this theorem. He represented the past distance or the
proportional quantity, the total (mean) velocity (velocitas totalis), by the area of a
triangle or a trapezium ([18], Pt.iii, Chap. vii). Actually ORESME (21], pp. 37-39
and 122-124) went still further and determined that, for a zero initial velocity, the

4 A special feature of SWINESHEAD’s research was his attempt to study a rectilinear motion, the
velocity of which is proportional to the distance from a fixed point ([17], p. 217).
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distance increases proportionally to the square of time and, also, that the distances
travelled during equal intervals of time increase in proportion to odd numbers
(1:3:5:7:...). As a matter of fact ORESME arrived at these results much as GALILEO
was to do in his study of the free fall of heavy bodies in vacuo, published in the
Dialogo (in 1632) and, again, in the Discorsi e dimostrazioni matematiche (in 1638).
However, GALILEO’s proof of the “Merton theorem” explicitly rests upon the
method of indivisibles, whereas in ORESME’s derivation infinitesimal considerations
- are only implied.

In the 15® century and also in the first half of the 16™ the theory of latitudes
of forms and calculations enjoyed wide fame, especially in England, France,
Italy and Spain. It had been expounded in university courses and to it not only
manuscript works but also a number of printed books had been devoted. Never-
theless, it was not much enriched at that time and, in particular, applications of
its methods in physics and mechanics did not go beyond isolated, artificially
posed, problems. As A.C.CroMsik {[6] vol. ii, p. 89) puts it:

In the 14% century the idea of functional relationships was developed without
actual measurements and only in principle.

A survey of the general achievements of the theory under discussion might
well conclude that in the development of some of the basic concepts of mathe-
matics and mechanics, that of function included, in generalization and in abstrac-
tion the natural philosophers of the 14™ century advanced far beyond all their prede-
cessors taken together. Also, particular results of fundamental importance were
arrived at; thus for example, the existence of figures of unbounded extent but of
finite areas and the divergence of the harmonic series were discovered (ORESME).
But then, potential possibilities provided by the new concepts were not widely
exploited either in mathematics or in its applications. The schools of Oxford and
Paris disposed only of scant means for concrete mathematical research; neither
the representatives of these schools nor their immediate successors introduced
any substantial novelties in computational techniques, algebra (except in the
theory of proportions and the work of BRADWARDINE and ORESME), trigonometry,
or methods of quadrature and cubature. An obvious disproportion developed
between the high level of abstract theoretical speculations and the weakness of
mathematical apparatus.

To determine the influence exerted by the theories of calculations and latitude
of forms upon the mathematics of modern times is a rather complicated problem,
the materials at our disposal being insufficient for an accurate and comprehensive
solution. In many instances the similarity between the common concepts and
particular results of the two is so great as hardly to be attributed to ordinary
coincidence. More naturally, we may perceive here persistence of traditions some-
times transmitted by complicated means, e.g. by migration through a number of
countries. Information could have been transmitted not only in written or printed
form but also by means of lectures or even private conversations (some indubitable
evidence of which exists).

An example is provided by GALILEO’s study of the free fall of heavy bodies:
Even the general resemblance of GALILEO’s mathematical interpretation of the
corresponding law to ORESME’s interpretation of the Merton theorem implies
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a continuity of ideas; this implication becomes certitude in view of the fact that
M.CLAGETT has found the Merton theorem in no less than seventeen books
printed in the 16™ century.

Just as striking is the resemblance of some basic principles of DESCARTES
universal mathematics with ORESME’s theory of latitudes of forms. What I mean
here is the representation of all quantities and relations among them by means of
geometric forms and, ultimately, by means of segments of straight lines, as
Descartes himself stated in his Regulae ad directionem ingenii, written as early
as 1629. We do not know whether DESCARTES actually read ORESME’s works, but
we do know how important for DESCARTES were his conversations with his friend,
I. BEECKMAN, whose familiarity with ORESME’s ideas and in particular with the
Merton theorem is testified by his diary for the year 1618 ([19], pp. 417-418). Thus,
some influence of ORESME upon DESCARTES is very probable; of course it is not
contradicted by the direct connection between DESCARTES' coordinate method
with the symptoms of conic sections as described by APoLLONIUS of Perga .

Also, it could hardly be doubted that the kinematic ideas of English calculators
persisted in England and influenced the works of NEPER, BARROW and NEWTON.
In particular, we know that SWINESHEAD was not forgotten even in the 17"
century; among those who read SwINESHEAD and who admired him highly was
LeBniz, ([1], p. 88).

5. Descartes’ Variable Quantity; Algebraic Functions

Sure as I am that the ideas of both the Oxford and the Paris schools of natural
philosophy played a noticeable role in the making of mathematics of modern
times and, in particular, in the development of the general notion of function, still
I do not maintain that this role was dominant, the more so as a new interpretation
of functionality came to the fore in the 17 century.

Decisive significance for the further development of the doctrine of functions
was played, on the one hand, by the impetuous growth of computational mathe-
matics and, on the other, by. the creation of literal, symbolic algebra along with the
corresponding extension of the concept of number, so as, by the end of the 16™
century, to embrace not only the whole field of real numbers but also imaginary
and complex numbers. These were, so to say, preliminaries in mathematics itself
to the introduction of the concept of function as a relation between sets of numbers
rather than “quantities ” and for analytical representation of functions by formulae.
It is sufficient in this context to mention the progress in trigonometry and discovery
of logarithms; what should be especially emphasized, though, is the introduction
of numerous signs for mathematical operations and relations (in the first place,
those of addition, substraction, of powers and of equality) and, above all, of signs
for unknown quantities and parameters, which VIETE in 1591 denoted by vowels
A,E I ... and consonants B, G, D, ... of the Latin alphabet, respectively. The
importance of this notation, which, for the first time ever, made it possible to put
on paper in symbolic form algebraic equations and expressions containing un-

5 This connection has been recently pointed out again by M.ScHRAMM in a polemic with A.C.
CROMBIE, who supposes that OrResME had made a step toward founding analytic geometry and that
DESCARTES probably knew ORESME’s works ([22], pp. 90-91).
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known quantities and arbitrary coefficients (a word also originating with VIETE),
could be hardly overestimated. However, the creator of the new algebra did not
use his remarkable discovery to further the concept of function; “functional
thought” was not characteristic of his mind.

VIETE's symbolism suffered from serious shortcomings and soon was amended
by number of scholars, then extended beyond the realms of algebra and used in the
infinitesimal calculus. DEescarTES, NEwTON, LEIBNIZ (who -attached utmost
importance to the appropriate selection of signs), EULER and other scholars of the
highest calibre participated in this process of perfecting mathematical symbolism;
this process continues in our time in all branches of mathematics.

On the other hand, in the exact sciences of former times, especially from the
beginning of the 17" century, the new conception of quantitative laws of nature
(see § 4) as establishing functional relations between numerical values of physical
quantities had been gathering strength in ever-increasing measure and becoming
more and more distinctive. In this process the creation of a broader and broader
field of physical metrology with the introduction of quantitative measures of
heat, pressure etc. played an important role; so did the swift gain in the precision of
experiments and observations, brought about by the invention of various scientific
instruments. Among the sciences mechanics, overtaking astronomy, came to the
fore and, with it, its new branch, dynamics, soon to be joined by celestial mechanics.
To study the relation between curvilinear motion and the forces affecting motion
had become the chief problem of science. This problem gave rise to a series of
problems in infinitesimal analysis, the solution of which had to be carried through

to numerical answers.
As a consequence of all this, a new method of introducing functions was

brought into being, to become for a long time the principal method in mathematics
and, especially, in its applications. As before, functions not infrequently were
introduced verbally; by a graph; kinematically; and, as before, tables of functions
continued to be used most extensively. However, in theoretical research, the
analytical method of introducing functions by means of formulae and equations
came to the foreground. '

We are able to tell almost exactly when this reversal of ideas took place. Even
by the turn of the 16™ century functions were being introduced only by means of
old methods. In just this way the logarithmic function (the most important, along
with the trigonometric functions), was introduced. J. BURGI calculated his logarith-
mic tables (published in 1620), starting from the relation, emphasized earlier
by M.STIEFEL (in 1544) but known even to ARCHIMEDES, between the geometric
progression of the powers of some quantity (e.g., g, g% ¢°, ... and the arithmetic
progression of its powers (1;2;3;...). This relation, as is evidenced by the inter-
polation process used by him, BURG! intuitively understood to be continuous.
However, J.NEPER, whose work was published in 1614-1619, proceeded from a
comparison of two continuous rectilinear motions, one being that of a point (L)
moving uniformly and the other being that of a second point (N) the velocity
of which is presumed proportional to its distance from some fixed point.® In this
case, the distance travelled by point L is the (NAPIERIAN) logarithm of the distance
travelled by point N.

¢ See Footnote 4 on the corresponding work of SWINESHEAD.
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But then, only fifteen to twenty years after this, independently of each other,
both FERMAT and DESCARTES in applying the new algebra to geometry presented
the analytical method of introducing functions, thus opening a new era in mathe-
matics.

In his Introduction to plane and solid loci ( Ad locos planos et solidos isagoge)
written somewhat before 1637 but published only in 1679, FErMmaT ([23], p. 91)
says:

As soon as two unknown quantities appear in a final equation, there is a locus,
and the end point of one of the two quantities describes a straight or a curved line.

(Quoties in ultima aequalitate duae quantitates ignotae reperiuntur, Sit
locus loco et terminus alterius ex illis describet lineam rectam aut curvam.)

Here both the argument and the function are just called unknown quantities, this
term actually meaning line-segments of continuously varying length.

Using VIETE’s notation and also a rectilinear coordinate system, FERMAT
then writes down equations of a straight line and, drawing upon APOLLONIUS’
Conics, of some curves of the second order.

In more detail the idea of introducing a function analytically was developed
by DESCARTES in his celebrated Geometry (La géométrie, 1637). His main purpose
was to reduce the solution of all algebraic problems and equations to some stan-
dard procedures for constructing their real roots —i.e., the coordinate segments of
points of intersection of appropriate plane curves of the lowest possible order.

Relating a plane algebraic curve with an equation between the coordinates of
its points, the coordinates being again understood as line-segments, DESCARTES
([24], p. 386) wrote:

Prenant successivement infinies diverses grandeurs pour la ligne y, on en
trouvera qussi infinies pour la ligne x, et ainsi on aura une infinité de divers
points tels que celui qui est marqué C, par le moyen desquels on décrit la ligne
courbe démandée.

Here, for the first time and completely clearly, is maintained that an equation
in x and y is a means for introducing a dependence between variable quantities
in such a way as to enable calculation of the values of one of them corresponding
to a given values of the other one.

A little further on DESCARTES singles out the class of algebraic curves (which
he calls geometric curves). All the points of these curves, as DESCARTES noticed,
bear some relation to all the points of a straight line, it being possible to represent
this relation by some equation, the same for each point of a given curve. By an
equation DESCARTES, not being able to write down in symbols any equations
of other kinds, actually meant an algebraic equation. Calling non-geometrical
curves mechanical, DESCARTES then and there introduced his not yet perfect
classification of geometrical curves in kinds ( genres), those of the first kind being
lines described by equations of second degree; those of second kind, described by
equations of the third and fourth degrees; those of the third kind, by equations of
fifth and sixth degrees etc.”

7 The universally adopted classification of algebraic curves introduced by NEwToN about the
year 1670 was published only in his Enumeration of lines of the third order ( Enumeratio linearum tertii
ordinis) in 1704.
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Introduction of functions in the form of equations effected a real revolution
in the development of mathematics. The use of analytical expressions, the opera-
tions with which are carried out according to strictly specified rules, imparted
a feature of a regular calculus to the study of functions, thus opening up entirely
new horizons. Originating in the course of applying algebra to geometry, this
method of representing functions was immediately extended to other branches of
mathematics and in the first place to the realm of infinitesimal calculations.

In notes written approximately a hundred years ago but first published only in
1925 F.ENGELS ([25], p. 275), the great thinker, maintained that

Der Wendepunkt in der Mathematik war Descartes’ variable Grfe. Damit
die Bewegung und damit die Dialektik in der Mathematik, und damit auch
sofort mit Notwendigkeit die Differential- und Integralrechnung, die auch sofort
anféngt ...

The opinion of the noted mathematician H. HANKEL expressed approximately
at the same time ([26], pp. 44-45) is much the same as the assertion just quoted:

... wihrend die Alten den Begriff der Bewegung, des rdumlichen Ausdruckes
der Verdinderlichkeit ... in ihrem strengen Systeme niemals und auch in der
Behandlung phoronomisch erzeugten Kurven nur voribergehend verwenden,
so datiert die neuere Mathematik von dem Augenblicke, als Descartes von der
rein algebraischen Behandlung der Gleichungen dazu fortschritt, die Grossen-
verdnderungen zu untersuchen, welche ein algebraischer Ausdruck erleidet,
indem eine in ihm allgemein bezeichnete Grisse eine stetige Folge von Werten
durchliuft.

Exactly at the time of DESCARTES and FERMAT functional thought became
predominant in mathematical creative work. In connection with this I notice in
passing also that the analytic geometry of DESCARTES and FERMAT, poor as it was
at first in discovery if compared with the achievements of the theory of conic
sections of the ancients, is potentially superior to the analytic geometry of
ApoLLONIUS and differs from it as much as the new symbolic algebra differs from
the antique “geometrical algebra™ (cf. [17], p. 294).

At the beginning the range of analytically expressed functions was restricted
to algebraic ones, and DESCARTES even excluded from his geometry all mechanical
curves as not being amenable to his method of analysis. However, a discovery
made somewhat later, in the middle of the 17" century by P.MEeNGoLi, N.
MERCATOR, J. GREGORY and I.NEwTON independently made it possible to re-
present analytically any functional relation studied in those times.

What I mean here is the discovery of how to develop functions into infinite
power series. Other infinite expressions of functions were afterwards added —
infinite products, continued fractions etc. In an embryonic form the idea that an
infinite expression was a “function” was not new, the infinite decreasing geometric
progression having long been known (see § 4), but only in the second half of the
17™ century did the power series become the most fruitful and, as was supposed
even a great while afterwards, the universal means for analytic expression and
study of any function. P. BouTROUX ([27], p. 117) even considered the theory of
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development of functions into power series to be the most original, remarkable,
and fruitful component of the new mathematics as discovered by NEwToN and
Lemniz. In any case, exactly because of power series the conception of function
as an analytic expression occupied the central place in mathematical analysis.
Not without reason one of NEWTON’s principal works was called The method of
Fluxions and infinite Series ( Methodus fluxionum et serierum infinitarum ).

6. The Concept of Function as Understood by Newton (c. 1670)
and Leibniz (1673-1694)

There was no great distance between first descriptions of the new concepts of
function and the formulation of corresponding definitions which at first bore
mechanical or geometrical features, both by force of tradition and because the
methods of infinitesimal calculus were created mainly in the course of solution of
problems in mechanics and of related geometrical problems.

The logarithmic function was a hyperbolic area; the elliptic function, an arc
of a conic section; integrals were represented by distances, areas, arcs, volumes;
differentials, by infinitely small coordinate segments; derivatives, by velocities
or ratios of sides of infinitely small (characteristic) rectangle triangles, etc.

An especially clear kinematic-geometric interpretation of the basic conceptions
of mathematical analysis was presented by NEwTON, who developed the ideas of
his teacher, I. BARROW, as explicated in lectures delivered at Cambridge in 1664
1665 but published only later [28], which describe conceptions of time and motion
and of their geometrical presentation originating with GALILEO and ORESME
({157, p. 220; [29], p. 240).

Like BARROW, NEWTON chooses time as a umversal argument and interprets
dependent variables as continously flowing quantities possessing some velocity
of change.

In two letters to J. WALLIS, dated 27 August and 17 September 1692 (old style),
NEWTON concisely explained his conception of the infinitesimal calculus, the
development of which he had begun as early as 1664-1666. Somewhat shorter
versions of these were published in 1693, in the Latin, enlarged edition of WALLIS’
algebraic tract (English edition 1685). Here one reads that Newron ([30], p. 391)
reduced his method to the solution of two problems:

Data aequatione fluentes quotcunque quantitates involvente, fluxiones
invenire: et vice versa. Per fluentes quantitates intelligit indeterminatas, id est
quae in generatione Curvarum per motum localem perpetuo augentur vel diminu-
untur, et per earum fluxionem intelligit celeritatem incrementi vel decrementi.®

In more detail NEwWTON expounded these same ideas in a number of other
works, as for example in the above-mentioned Method of fluxions and infinite

8 A somewhat loose English translation made at the end of the 17 or at the beginning of the
18™ century, published in 1961 ([31], p. 222 and ff), is included in the following passage:

The illustrious Mr Newton has reduced the Doctrine of Fluxions to two Prop: 1 Any Equation
given wherein are Flowing Quantities to find the Fluxions, and ye Contrary. By flowing quantities
he understands Indeterminate Quantities, that is which in ye Generation of a Curve by local motion
perpetually Encrease or Decrease, & by ye Flux: he means the Celerity of their Increm’t or Decrem’t.



The Concept of Function 55

series, written ca. 1670 but published in an English translation from a Latin manu-
script only mn 1736 [32]. As is evident, even the two principal problems of the
infinitesimal calculus were expressed in mechanical terms, viz, given the law for
the distance, to determine velocity of motion (differentiation), and, given the
velocity of motion, to determine the distance travelled (integration of differential
equations and, in particular, of functions). However, NEWTON’s conceptions
plainly incline towards a more abstract understanding of philosophical and
mechanical terms. Thus, concerning the universal argument, time, NEWTON
says in his Method of fluxions ([32a], pp. 72-73) (I am here quoting his original
Latin version, dating back to 1670~1671):

We can have, however, no estimate of time except in so far as it is expounded
and measured by an equable local motion, and furthermore quantities of the same
kind alone, and so also their speeds of increase and decrease, may be compared
one with another. For these reasons, in what follows I shall have no regard
to time, formally so considered, but from quantities propounded which are of the
same kind shall suppose some one to increase with an equable flow: to this all
the others may be referred as though it were time, and so by analogy the name of
“‘time’ may not improperly be conferred upon it.

(Cum autem temporis nullam habeamus aestimationem nisi quatenus id per
aequabilem motum localem exponitur et mensuratur, et praeterea cum quantitates
ejusdem tantum generis inter se conferri possint et earum incrementi et decre~
menti celeritates inter se, eapropter ad tempus formaliter spectatum in sequentibus
haud respiciam, sed e propositis quantitatibus quae sunt ejusdem generis aliquam
aequabili fluxione augeri fingam cui caeterae tanquam tempori referantur,
adeoque cui nomen temporis analogicé tribui mereatur.)®

Somewhat further ([32a], pp. 88-91) NewTon calls the fluent, which plays
the role of independent variable, a correlated quantity (quantitas correlata); the
dependent quantity he calls related (relata). Thus only the basic notions are
introduced kinematically, so actually the method of fluxions is developed for the
fluents, expressed analytically either in a finite form or by sums of infinite power
series, those decimal fractions of mathematical analysis.

At the outset, LEIBNIZ also arrived at the basic notions of differential and inte-
gral calculus, developing them from the geometry of curves. It is sufficient to recall
that as early as in his basic memoir on the differential calculus, 4 new method for
maxima and minima as well as tangents, ... and a remarkable type of Calculus for
them ( Nova methodus pro maximis et minimis, itemque tangentibus ..., et singularis
pro illis calculi genus ), in 1684, he described the differential (dy) of an ordinate

9 Cf. OresME ([18], pp. 274-275):

... therefore time so stated is in no way “difform” or even properly “uniform”, as time also is
not said to be ** quick™ or “ slow”. However, time can be said improperly to be uniform, since that dura-
tion which is time in'the aforesaid way is not properly measured except by uniform motion, i.e. regular
motion. (... idcirco tempus sic dictum nullo modo est difforme nec etiam proprie uniforme, sicut
etiam tempus non dicitur velox vel tardum. Verumptamen improprie tempus potest dici uniforme
quoniam illa duratio que tempus est modo predicto non mensuratur proprie nisi per motum uniformem,
id est, regularem).
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of some curve ([33], v, p. 220) as being a segment whose ratio to dx, an arbitrary
imcrement of the abscissa , is equal to the ratio of its ordinate to the subtangent.

The word “function” first appears in LEIBNIZ’ manuscripts of August, 1673, and
in particular in his manuscript entitled The inverse method of tangents, or about
Sunctions ( Methodus tangentium inversa, seu de functionibus). At first the deter-
mination of subtangents, subnormals and other segments related to variable
points of a curve is here treated both for “geometrical” and “non-geometrical”
curves for which ([34], p. 44)

the relation between its applicate [ordinate] ED and abscissa AE is re-
presented by some equation known to us (in qua Relatio applicatae ED ad
abscissam AE aequatione quadam nobis cognita explicatur ).

Then LeiBNIZ {[34], p. 47) goes on to consider the inverse problem of deter-
mining applicates (ordinates) from a given property of the curve’s tangent or of

other kinds of lines which, in a given figure, perform some function (ex aliis
linearum in figura data functiones facientium generibus assumtis ).

It should be remembered that the Latin verb fungor, functus sum, fungi means,
to perform, to fulfil (execute) an obligation, etc. As D. MAHNKE remarks ([34],
p-47):

LEiBNIZ gebraucht allerdings in der vorliegenden Handschrift fiir diese
gesetzliche Beziehung, in der die Ordinate einer Kurve zu ihrer Abszisse ...
steht, noch nicht das Wort Funktion; aber wie der Anfang der Handschrift be-
weist, hat er den Funktionsbegriff schon im weitesten Sinne gebildet und benennt
ihn mit dem Wort relatio. Auch an der vorliegenden Stelle, bei der allgemeinen
Formulierung der dem umgekehrten Tangentenproblem (hnlichen Probleme,
hat das Wort Funktion noch nicht ganz den heutigen mathematischen Sinn,
sondern eher den, den wir in der Sprache des tdglichen Lebens mit ihm verbinden;
es bedeutet also etwa die “ Verrichtung”, die ein Glied eines Organismus oder ein
Teil einer Maschine zu leisten hat, seine Aufgabe, Stellung oder Wirkungsweise.
“In figura functionem facere” bedeutet also z.B.: die Kurve beriihren, auf ihr
senkrecht stehen, ihre Subtangente oder Subnormale bilden usw., wobei natiirlich
immer ein begrenztes Stiick der so oder so “funktionierenden” Linie, z.B. das
Tangentenstiick zwischen Beriihrungspunkt und X-Achse, in Betracht zu ziehen
ist.

But further on in the same manuscript the term function takes on a new meaning
as a general term for different segments connected with a given curve.

So spricht er [LeBNIZ], said D.MAHNKE (p. 48), an spiteren Stellen der
Handschrift von dem regressus a Tangentibus aut aliis functionibus ad ordinatas,
und in diesem Sinne ist auch der Ausdruck de functionibus in der Uberschrift zu
verstehen.

In the same relatively broad sense of differential geometry a definition of a
function first appeared in print in a few articles of LEiBNIZ published in 1692 and
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1694. There he calls functions (functiones, fonctions) any parts of straight lines,
i.e., segments obtained by constructing infinite straight lines corresponding to a
fixed point and to points of a given curve'®. He explains that he actually means
abscissae, ordinates, chords, segments of tangents and of normals cut off by
coordinate axes, segments of subtangents and subnormals etc., and in the same
sense the word function was used by JAKoOB BERNOULLI in his work in the Acta
Eruditorum for October 1694.

However, such a definition of a function did not correspond to any broader
analytical context. The correspondence of LEBNIZ with JOHANN BERNOULLI
during 1694-1698 actually traces how the want of a general term to represent
arbitrary quantities dependent on some variable soon brought about the use of
the term function in the sense of an analytical expression.

7. A Function as an Arbitrary Analytic Expression:
Johann Bernoulli (1694-1718) and Euler (1748)

In his letter of 2 September 1694 BernouLL ([33], iii, p. 150), telling LEIBNIZ
about his discovery of the development of | ndz into an infinite series
dn 1 ; ddn

Nt T

(which, however, LEIBNIZ already knew) wrote:

by n I understand a quantity somehow formed from indeterminate and constant
[quantities] (per n intelligo quantitatem quomodocunque formatam ex inder-
minatis et constantibus).

In the same year this discovery, expressed in the same words, appeared in
BERNOULLT's article ([35], i, p. 126) in the Acta Eruditorum. The term function is
not yet used. It is lacking also in BERNOULLI's letter of 25 Aug. 1696 ([33], iii,
p. 324) where he proposes to denote by

1 2

X, X
diverse quantities given somehow by an indeterminate [quantity] x and by
constants ... [either] algebraically or transcendentally (quantitates diversas

utcunque datas per indeterminatam x et constantes ... vel algebraica, vel trans-
cendenter ).

JoraNN BErRNoOULLI first uses the word function only two years later, in an
article appended to his letter of 5July 1698 and devoted to the solution of the
isoperimetric problem posed by his brother JAKoB: among all the curves BFN

10 See LEIBNIZ, De linea ex lineis numero infinitis ordinatim ductis inter se concurrentibus formata ...,
Acta Eruditorum, Apr. 1692 ([33], V, p. 268); Nova Calculi differentialis applicatio et usus ..., Acta
Eruditorum, July 1694 ([33], V, p. 306); Considérations sur la différence qu’il y a d observer entre I' Analyse
ordinaire et le nouveau Calcul des Transcendentes, Journal des Sgavans, Aug. 1694 ([33], V, p. 307-308).
E.g. ([33], v, p- 306)

Functionem voco portionem rectae, quae, ductis ope sola puncti fixi et puncti curvae cum curvedine
sua dati rectis, abscinduntur.
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of given length and base BN to find a curve any powers of the ordinates FP of
which generate ordinates PZ of (another) curve BZN of a maximum, or minimum,
area.

Actually, JoHANN BerRNouULLI ([33], iii, pp. 506-507) even generalizes this
problem supposing it to be

to find [a curve] BEN, the ordinates F P of which, raised to a given power or,
in general, some functions of these ordinates, etc. (illa [curval BFN, cujus
applicatae FP ad datam potestatem elevatae seu generaliter earum quaecunque
functiones etc.).

In a French translation published in 1706 in the Mém. Acad. sci. Paris ([35],
t. 1, p. 424) this passage from the original reads thus:

trouver la courbe BFN telle, que ses appliquées FP élevées a une puissance
donnée, ou généralement telle, que les fonctions quelconques de ces appliquées
PZ, exprimées par d’autres appliquées PZ etc.

BErRNOULLI does not explain in what sense he takes “some” (quaecunque)
functions; nevertheless, he could hardly have meant anything other than analytic
expressions already known by that time.!?

11 It seems that the first approach to a general definition of a function as being an “analytic”
expression and, moreover, allowing an infinite process to be involved, is found in J. GREGORY’s Veritable
quadrature of the circle and hyperbola (Vera circuli et hyperbolae quadrature ), published in 1667. This
book being unavailable, 1 shall describe the corresponding definition introduced by GREGORY as
expounded in the article of M. DEaN & E.HELLINGER ([36], p. 477):

we call a quantity x composed ( compositum) of other quantities a, b,.... if x results from a, b, ... by
the four elementary species, extracting of roots or by any other imaginable operation (quacungue
alia imaginabili operatione ).

By these last words GREGORY meant composition of convergent sequences, he himself having
introduced the term convergens, possibly transplanting it into mathematics from optics, with which he
occupied himself a good deal. Note that GREGORY used the term rerminatio for the limit of a convergent
sequence ( series convergens ).

Addendum. Having forwarded this article to the Editor, I am now able to add the relevant passage
from GREGORY’s work Vera circuli et hyperbolae quadratura (1667), for which 1 am greatly indebted
to Dr. D.T. WHITESIDE [37a, p. 9]:

Definitiones
5. Quantitatem dicimus & quantitaribus esse compositum; cum & quantitatum additione, sub-
ductione, multiplicatione, divisione, radicum extractione, vel guacunque alia imaginabili operatione,
fit alia quantitas.

6. Quando quantitas componitur ex quantitatum additione, subductione, divisione, radicum
extractione; dicimus illam componi analytice.

7. Quando quantitates @ quantitatibus inter se commensurabilibus analyticé componi possunt,
dicimus illas esse inter se analyticas.

Definition 5 corresponds to the definition published by J. BERNOULLI in 1718 (see § 7): only the
any other imaginable operation means for GREGORY some rather general infinite process called by
him our sixth operation (nostra sexta operatio ).

Definition 6, which defines the quantity composed analytically (analyricé), corresponds to a
certain degree to our algebraic function. It is difficult to agree with M. BaARON who says [29, p. 8] that:
The expression analytic was first used by James Gregory who defined an analytic quantity as one obtainable
by algebraic operations together with passage to the limir. The word analyticé is employed here by
GREGORY in VIETE's sense. As C.J.SCRIBA says [37b, p. 13-14]: “ Analytisch™ nennt er dabei eine Grosse,
die durch endlich viele der fiunf Grundoperationen aus zueinander kommensurablen Grdssen zusammen-
gesetzt ist.
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On 29 July 1698 LemNIZ expressed his satisfaction with JOH. BERNOULLI'S
use of his (LEBNIZ’) term “function” ([33], iii, p. 526) after which both correspon-
dents exchanged their opinions a few times more about the most appropriate
notation for a function of one or many variables. Both favored distinguishing
functions by means of indices, not in the way we do it now but thus:
x X125 yW) Xy and so on ([33], i, p. 537).

In the same place LEmNIZ proposed to write dz for the ratio dz:dx. This
notation did not endure.

Simultaneously or somewhat earlier LEIBNIZ introduced into general use the
words “constant” and “variable”,!? “coordinates™ (in 1692 ([33], v, p. 268)), and
“parameter” in the sense of an arbitrary constant segment or quantity [in a
manuscript written ca. 1679 ([33], ii1, p. 103) and, in 1692, in a printed work
(ibidem, p.268)], etc. Lastly, he found inconvenient the terminology which
DzscarTEs had introduced, and so he changed it. DESCARTES had classified curves
as “geometrical” and “mechanical”, erroneously excluding the latter from
geometry as being insusceptible to study by means of his (algebraic) method;
see also § 5. .

LemeNiz instead divided functions and curves into two classes: algebraic,
namely, those which could be represented by an equation of a certain order
(certi gradus ), and transcendental. Transcendental functions and curves could also
be subjected to an exact study and calculus, although of a different nature, by their
representation by equations of an indefinite (gradus indefiniti) or infinite order
which ([33], V, pp. 123-124 and 228, 1684 and 1686 respectively)

transcend any algebraic equation (omnem aequationem algebraicam trans-
cendant )*3.

LEeiBN1Z’ definition of transcendental functions as non-algebraic ones has been
repeated in textbooks right up to our day. As to the intrinsic property of trans-
cendental complex analytic functions (possession of at least one singular point
besides poles and branch points of finite order), this was to be established only in
the middle of the 19™ century. However, twenty years had to pass until the new de-
finition of a function appeared in print. All this time the term function itself
remained little known. It is lacking in Cur. WOLFF’s Mathematisches Lexicon,
published in 1716, in which, nevertheless, two related articles were included,
Quantitas constans, eine unverdnderliche Grésse, and Quantitates variabiles,
verdnderliche Grossen. The second article mentions that the distinction between the
two kinds of quantities is essential in LEIBN1Z’ new analysis ([38], columns 1144
and 1149-1150).

Expression of one variable quantity by means of another one is also treated
in the same source, though in another article, Abscissa, die Abscisse, it is as follows
([38], columns 3-4):

12 These two words happened to enjoy a wider fame because of the first printed treatise on differen-
tial calculus, written by L’HospPiTAL and published in 1696, in which [37] the quantités constantes and
quantités variables are defined right from the beginning.

3 In the manuscript, dated 1679, LemsNiz ([33], iii, p. 103) called algebraic curves “analytic”
(curva analytica); in the same place also the term “transcendent curve” is found.
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Durch die Relation der Abszisse AP zu der halben Ordinate [ we should have
preferred: to the (whole) ordinate] PM pfleget man die krummen Linien von
einander zu unterscheiden.

A few examples of functions are presented in such articles as Aequatio ex-
ponentialis, eine Exponential-Gleichung; Aequatio indeterminata, eine undeter-
minirte Gleichung and Aequatio transcendens, eine Transcendentische Gleichung.

The idea of functional relationship is not even mentioned in such articles as
Calculus differentialis, die Differential-Rechnung and Calculus integralis, seu
summatorius, die Integral-Rechnung. The idea that mathematical analysis is a
general science of variables and their functions seems to be due to EULER, who
said just this in the preface to his famous Introductio in analysin infinitorum,
completed ca. 1744 and published in 1748 [39].

The first explicit definition of a function as an analytic expression to appear
in print is in J.BERNOULLI’s article Remarques sur ce quwon a donné jusqu’ici de
solutions des problémes sur les isopérimétres, published in the Mém. Acad. roy.
sci. Paris for 1718. Here it is that one finds ([357, i, p. 241)

Définition. On appelle fonction d'une grandeur variable une quantité
composée de quelgue maniére que ce soit de cette grandeur variable et de constantes.

In the same place BERNOULLI also proposed the Greek letter ¢ as a notation
for a caractéristique of a function (the term is due to LEIBNIZ), still writing the argu-
ment without brackets: ¢ x. Brackets, as well as the sign f for function are due to
EULER who used them in his article E. 45, communicated in 1734 and published
in 1740.

In his definition BERNOULLI gave no indication of how to constitute functions
from the independent variable. But then, it is obvious that he actually meant
analytic expressions of functions, this being in accord with the basic tendency
in the development of the infinitesimal analysis which, retaining and even strength-
ening its connections with geometry, mechanics and physics, during the 18™
century became a scientific discipline more and more self-contained in its principles.
All the initial concepts of the calculus gradually lose their geometrical and mechan-
ical shell, are formulated arithmetically or algebraically, and begin to be appre-
hended as logically preceding similar concepts of other exact sciences.

The process of making mathematical analysis into an autonomous scientific
discipline, which in the 19" century turned into a process of arithmetizing it,
was protracted. At first it subdued mechanics, making it a part of mathematical
analysis: indeed, for NEwTON a fluxion of a quantity was the velocity of its change;
for LAGRANGE velocity was a derivative of the function which represented distance
in terms of time. Moreover, in his Mécanique analytique (in 1788) LAGRANGE de-
clared mechanics to be a part of mathematical analysis the exposition of which
demanded neither figures nor geometrical or mechanical considerations in general.
There was a similar trend concerning the relation of mathematical analysis to
geometry, the methods of which ceased to be applied not only for defining, but
even for illustrating basic concepts of the calculus.

This is testified by even a most cursory comparison of L’HOSPITAL’s Analyse
des infiniments petits, etc. (published in 1696) with EULER’s and LAGRANGE’s
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courses, in which geometrical illustrations are not used at all. Of course, geometrical
intuition did continue to play its constructive role; of course, there always were
scholars who substantiated analytical “existence theorems” by referring to geo-
metrical obviousness; and, of course, the educational value of geometrical and
mechanical analogies came to be understood once again.

The general tendency does not change, however, so that in due time (though
only in the second half of the 19" century) it became necessary to define analytically
such geometrical notions as the area of a surface, the length of a curve, etc., which
before that seemed to be intuitively obvious. _

Further essential development of the concept of function was effected by
LeONHARD EULER, the pupil of JoH. BERNOULLL In Chapter I of Volume I of his
Introductio in analysin infinitorum, in 1748 (E.101) EULER subjected to more
detailed study the concept of function as actually used in mathematical analysis.
He began by defining initial notions. According to EULER, a constant is a definite
quantity always assuming one and the same value while a variable is introduced
as the set (sometimes as one or another subset) of complex numbers.

A variable quantity, wrote EULER ([39], p.17), is an indeterminate, or
universal, quantity, which comprises in itself absolutely all determinate values.

(Quantitas variabilis est quantitas indeterminata seu universalis, quae
omnes omnino valores determinatos in se complectitur.)

Thus, he continues (p. 18), a variable quantity comprises in itself absolutely
all numbers, both positive and negative, both integer and fractional, both rational
and irrational and transcendent. Even zero and imaginary numbers are not
excluded from the meaning of a variable quantity.

(Quantitas ergo variabilis in se complectitur omnes prorsus numeros, tam
affirmativos quam negativos, tam integros quam fractos, tam rationales quam
irrationales et transcendentes. Quin etiam cyphra et numeri imaginarii a significatu
quantitatis varabilis non excluduntur.)

In his definition of a function EULER once more followed his teacher, JoH.
BerNOULLI, changing however the word “quantity” into “analytic expression”
(ibidem):

A function of a variable quantity is an analytic expression composed in any
way from this variable quantity and numbers or constant quantities.

(Functio quantitatis variabilis est expressio analytica quomodocunque
composita ex illa quantitate variabili et numeris seu quantitatibus constantibus. )

I shall have to leave aside both EULER’s introduction of functions of a complex -
variable on a par with those of a real variable (a step of utmost importance) and
also some formal inconvenience occasioned by the fact that FULER did not con-
sider constants to be functions in their own right. To me, it is important that
EULER was the first to attempt to answer the question, what is the extent of the
term analytic expression? Or, which methods of its composition are actually
meant? 14

14 This problem had been encountered even in the 17™ century (see Footnote 11) when, in his
own way, J. GREGORY attempted to solve it.
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Enumerating operations by means of which analytical expressions are com-
posed, EULER starts with algebraic operations (to which he refers also the solution
of algebraic equations) and then names various transcendent ones, arriving in
particular at exponential and logarithmic functions and at an infinite number of
other functions furnished by the integral calculus, integration of differential
equations included.

Then, EuLer singles out explicit and implicit functions, the latter being those
originated by solution of equations, and formulates theorems on the existence
of a function inverse to a given one and of a function represented parametrically
(given y and x as functions of z, y is a function of x and, inversely, x is a function
of y). Practically speaking ([39], p. 25), because of the imperfection of algebra
such functions are not always capable of being represented explicitly;

meanwhile, nevertheless, this reciprocity of functions is understood as if all
equations could be solved.

(interim tamen nihilominus, quasi omnes aequationes resolvi possent, haec
functionum reciprocatio perspicitur ).'®

I shall show in §8 how EULER classifies these last methods of introducing
functions under his first general definition of a function. For the time being, I
remark that EULER’s classification of functions (described above, to be sure, not
in every detail) was put to use in its entirety.

8. Analytic Functions

Obviously, it seemed impossible to enumerate various methods of expressing
functions analytically so in Chapter 4 of his Introductio EULER reduces them all
to a single one, declaring the universal and, simultaneously, the most convenient
form of an analytic expression of a function to be an infinite power series of the type

A+Bz+Cz22+Dz>+---.

Being of course unable to prove that any function could be developed into such
a series, he offered the challenge ([39], p. 74):

... should anyone doubt, [his] doubt will be eliminated by the very development
of one or another function.

(si quis dubitet, hoc dubium per ipsam evolutionem cuiusque functionis
tolletur).

However, added EULER, to render this explication broader, not only positive
integral powers of z should be admitted, but any powers. Thus there will be no
doubt that any function of z could be transmuted into an infinite expression of the
type

P A+ Bz +Cz’+ D2+
the exponents o, fB, y, 0 etc. denoting any numbers.

15 Whatis here said about algebraic equations holds, muzatis murandis, also for any other equations.
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(Quo autem haec explicatio latius pateat, praeter potestates ipsius z ex-
ponentes integros affirmativos habentes admitti debent potestates quaecunque.
Sic dubium erit nullum, quin omnis functio ipsius z in huiusmodi expressionem
infinitam transmutari possit (see above) denotantibus exponentibus o, §, 7, 8,
etc. numeros quoscunque.)

Indeed, the overwhelming majority of functions used in mathematical
analysis in EULER’s time were analytic (in our sense of the term) in the whole
domain of their definition, except perhaps at isolated values of the argument and,
in special cases, could have been developed in series of terms containing fractional
or negative powers of the argument.'® No wonder that power series and, to a lesser
extent, infinite products and developments into sums of partial fractions or con-
tinued fractions are used in Volume 1 of the Introductio as the main instrument for
studying various classes of elementary functions.

As noticed above, theorems on the existence of implicit or parametric functions
from EULER’s viewpoint could have been considered within the limits of a general
definition of a function. The point is that, according to EULER, an arbitrary alge-
braic equation of any power is solvable in radicals. In a more general case, because
each function, y,could be represented by some series of terms containing powers
of the argument, z, this argument could be expressed in terms of y by inverting the
series; procedures of inverting series had been introduced by NEwWTON.

Jon. BerNouLLl and EULER’s definition of a function as being an analytic
expression the most general form of which is a power series was accepted by many
other mathematicians right up to LAGRANGE who, referring in his Théorie des
Jonctions analytiques (in 1797) to LEBNIZ and BERNOULLI called a function any
expression de calcul”.

In passing I shall notice that LAGRANGE, like EULER and other mathematicians
of the 18" century, considered it beyond doubt that any function of mathematical
analysis could be represented by a series of terms proportional to real powers of
the independent variable; moreover, LAGRANGE ([40], Pt.1, Chapter I) even
attempted to prove that, generally, the powers occuring are positive integers,
while fractional or negative powers could occur only in cases corresponding to
isolated, special values of the argument.

Thus, a function, defined in the beginning of Volume 1 of EULER’s Introductio
as any analytic expression, is later declared to be (in our terminology) a function
analytic everywhere except, perhaps, at isolated special points in the vicinity of
which it could be represented by a generalized power series (see also § 10).

1€ In essence, such an interpretation of analytic representability is similar to the conception held
by J. GREGORY (see Footnote 11).

17 As LAGRANGE says {[40], p. 15):

On appelle fonction d’une ou de plusieurs quantités, toute expression de calcul dans laquelle ces
quantités entrent d’une maniére quelconque, mélées ou non dautres quantités quwon regarde comme
ayant des valeurs données et invariables, tandis que les quantités de la fonction peuvent recevoir toutes
les valeurs possibles. Ainsi, dans les fonctions on ne considére que les quantités qu’on suppose variables,
sans aucun égard aux constantes qui peuvent y étre mélées.
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9. Continuous and Discontinuous (mixed) Functions in Euler’s Sense;
the Controversy About the Vibrating String

Actually studied in Volume 1 of the Introductio are only analytic functions.
However, EULER knew that functions of a different kind also exist. This fact is
noticed in the beginning of Volume 2 of the Introductio, which is devoted mainly
to the theory of plane curves. Just as some curved line corresponds to any function
of x, so also curved lines are represented by functions of x, says EULER, continuing
([41], p. 11) thus:

From such an idea about curved lines at once follows their division into
continuous and discontinuous or mixed ones.

( Ex hac linearum curvarum idea statim. sequitur earum divisio in continuas
et discontinuas seu mixtas.)

This terminology, which for EULER had a special sense, unusual to us, was used
right up to the time when BorLzano (in 1817) and CaucHY (in 1821) attached the
now generally adopted meaning to the expressions continuous and discontinuous;
sometimes it was used even later than that.

In EULER’s sense continuity meant invariability, immutability of the law —of
the equation determining the function over all the domain of values of the inde-
pendent variable, while discontinuity of a function meant a change of the analytical
law, an existence of different laws on two or more intervals of this domain. Dis-
continuous curves, explained EULER, are composed from continuous parts, being
exactly for this reason called mixed or irregular (irregulares); also, he sometimes
called such curves mechanical (mechanices). In geometry, according to EULER,
mainly continuous (i.e. analytic) curves are studied.

Discontinuous, or mixed functions and curves of Volume 2 of the Introductio
correspond to our piecewise analytic functions; thus their inclusion into mathe-
matical analysis offered no essential extension of the concept of function.'®

18 According to an opinion recently expressed by I GRATTAN-GUINNESs ([42], pp. 6-7) EULER’s
term continuous is synonymous with our “differentiable” while his *“discontinuous” corresponds to
our “continuous”. On the other hand, A.SpPEISER [42a] had written, “By a continuous function EULER,
like LEiBNIZ before him, means a function specified by an analytic law, precisely as are those now called
analytic functions. They have the property of being determined in their entire range by an arbitrarily
small piece ...” TRUESDELL [42b, pp. XLI-XLIII], accepting SPEISER’s statement, contended that the
context of partial differential equations, in which EULER introduced his discontinuous functions, made
it plain that he regarded those functions as failing to be differentiable only at isolated points. He wrote,
“EULER’s physical universe ... is piecewise smooth, still indeed “continuous™ though in lesser degree
than the LEmBNITZIAN.” Later [51, pp. 243, 247-248, 296-297, 419] TruespeLL adduced evidence to
show that in the context of the vibrating string EULER meant by “function” (not necessarily continuous
in his sense) what we should now call a continuous function with piecewise continuous slope and
curvature. However, see Footnote 22a for EULER’s use of functions discontinuous in the modern sense.

Leaving aside the problem of EULER's having identified analytical expressions with analytic
functions (in essence an illegitimate thing to do), I remark that EULER’s functions, whether continuous
or discontinuous (mixed) in any of his senses of those words, can have discontinuities in the modern
sense at isolated points.

In his late works EULER, as I shall show, took a broader point of view as regards discontinuous
functions; see below.
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However, not later than the very year in which the Introductio was published
(we recall that the manuscript of this work was completed in 1744), EULER under-
stood that the class of discontinuous functions (curves), far from being exhausted by
mixed functions (curves), should be essentially extended. As noticed by A.L
MARKUSHEVICH ([43], pp. 108-109) EULER had seen the necessity for such an ex-
tension even in 1744, during his work on the Methodus inveniendi lineas maximi
minimive proprietates gaudentes (E.65) when he compared extremal curves—
solutions of variational problems — with curves differing infinitely little from them
in the vicinity of one, or of a few, isolated points.

Nevertheless, the main impulse for further development of the concept of
function came from EULER’s work on mathematical physics, beginning with the
celebrated problem concerning infinitely small vibrations of a finite homogeneous
string fixed at both ends!'®. The first mathematical interpretation of this problem,
speculations about which go back to GALILEO, was offered by TAYLOR (in 1715),
though the first decisive step toward the theory was made by D’ALEMBERT in a
memoir communicated to the 4cad. Roy. Sci. et Belles-Lettr. Berlin at the end of
1746 and published in its Histoire in 1749 [45].

D’ALEMBERT expressed the conditions of this problem by equations equivalent
to a partial differential equation

8%y _ 0’y
ot? dx?

{which appeared in an explicit form in EULER’s memoir E. 213, published in 1755)
and proved that the general solution of the problem could be represented by a
sum of two arbitrary functions

y=o@{x+at)+¥(x—art),

which, because of the boundary conditions, reduces to

y=@(at+x)—(at—x).

In each particular case the functions appearing in the general solution are
determined by the initial form of the string (and the initial velocities of its points).
Of course, these initial conditions could be various, but D’ALEMBERT rigidly
restricted the class of admitted initial forms of the string, holding that without
such restrictions no solution of the problem by mathematical analysis would be
possible. Among restrictions imposed by D’ALEMBERT particularly interesting is
the assumption that the initial form of the string must be represented over all its
extent by one and the same equation, i.e. that in EULER’s sense the string is con-
tinuous.

19 GRATTAN-GUINNESS statement ([42], p. 6) to the effect that the distinction between continuous
and discontinuous functions made by EULER in Vol. 2 of his Introductio was occasioned by his study of
the problem of the string is rather doubtful. So far as I know, the only correction to the manuscript
of this volume, which already was in the hands of its Swiss publisher, M. BOUusQUET, and the edition of
which was supervised by J. CASTILLON, was sent by EULER on December 15, 1744, through G.CraMER
([44], N°. 462-464). The printing of the Inrroductio, as evidenced by a letter of CRAMER to EULER dated
August 13, 1746 ([44], N° 467), had begun during the winter of 1746-1747, while on April 8, 1748,
CASTILLON informed EULER (ibidem, N°. 369) that it had been completed.
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EULER soon responded to D’ALEMBERT’S memoir, with which he had become
acquainted soon after its communication, by presenting, on May 16, 1748, his
own memoir, De vibratione chordarum exercitatio, E. 119, published in Nova
Acta Eruditorum in 1749 (French version: Sur la vibration des cordes, E. 140,
published in 1750 ([46], pp. 50-77) by the same Acad. Roy. Berlin).

Highly valuing D’ALEMBERT’s method as a whole, EULER disagreed with him
as to the nature of functions admitted in the initial conditions (and, consequently,
in the solution of the problem). Guided by physical considerations and profound
mathematical intuition, even in stating the problem he wrote ([46], p. 64):

...la premiére vibration dépend de notre bon plaisir, puisqu’on peut, avant
de lacher la corde, lui donner une figure quelconque; ce qui fait que le mouvement
vibratoire de la méme corde peut varier a Uinfini, suivant qu’on donne a la corde
telle ou telle figure au commencement du mouvement.

Repeating this assertion in the research itself, which in its first part rather
resembles that of D’ ALEMBERT, EULER (p. 72) considers a

courbe anguiforme, soit réguliére, contenue dans une certaine équation, soit
irréguliére ou mécanique,

i.e. with no restrictions to be imposed on the form of the string. In one particular
case he produces a solution corresponding to the continuous initial form represented
by a trigonometric series

2nx

. 3nx
] +y s ——- -, (%)

. WX .
y=ocsm—l—+ﬁsm l

the string being fixed at the end points x=0and x=1.

D’ALEMBERT did not agree with EULER. Thus began the long controversy
about the nature of functions to be allowed in the initial conditions and in the
integrals of partial differential equations, which continued to appear in an ever
increasing number in the theory of elasticity, hydrodynamics, acrodynamics, and
differential geometry.

Soon the controversy gained a new dimension with the entry of a new partici-
pant, D.BERNOULLI, whose contribution was published in 1755. Developing the
principle of superposition of modes, introduced by him in his earlier studies,
BERNOULLI maintained that both the arbitrary initial form of the string and its
subsequent vibrations could be represented by an infinite series of terms including
sines of multiple angles. According to BERNOULLI an appropriate choice of coeffi-
cients makes such series () as general as power series; however, the method of
calculating “FOURIER coefficients” remained unknown to him. ‘

EULER, who shortly before had offered, in one special case, a solution in the
form of a series (+), excluded any possibility of representing in such a form arbitrary
mixed functions or extensive classes of continuous functions, e.g., algebraic ones.
(See his Remarques sur les mémoires précédents de M. Bernoulli (E. 213), published
in 1755; Eclaircissements sur le mouvement des cordes vibrantes (E. 317), published
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in 1766; Sur le mouvement d’une corde qui au commencement wa été ébranlée que
dans une partie (E. 339), published in 1767 ([46], pp. 237, 385, 430-431).)*°

D’ALEMBERT rejected D. BERNOULLI’s solution also. However the controversy
did not end. It was taken up by LAGRANGE (in 1759-1762), and, somewhat later,
by other prominent mathematicians (MONGE, LAPLACE, ARBOGAST, FOURIER
and others).

This controversy, a most detailed history of which up to 1788 is presented by
C. TRUESDELL [51], was of utmost importance both for the progress of mathematical
physics and for the methodological development of the foundations of mathematical
analysis. From the point of view of my subject, it is essential that, from the very
beginning of his study of the problem of the string, EULER laid down the thesis
that in its solution curves of an arbitrary form should be admitted, i.e. curves which’
do not belong to the class of mixed functions and, generally (in EULER’s opinion),
do not comply with any analytical law. -

Inmore detail EULER developed his views on this subject in his De usu functionum
discontinuarum in analysi (E.322) forwarded to the Petersburg Academy in the
spring of 1763 and published in 1767 ([52], pp. 74-91). In this memoir, continuous
functions are defined, in terms of geometrical images, by assuming not only that
the relation between coordinates of all points of any such curve is determined by
one and the same law or equation but also that (pp. 75-76)

all the parts of the [continuous] curve are firmly connected with each other
in such a way as to make impossible any change in them without disturbing the
connection of continuity.

(omnes curvae partes ita vinculo arctissimo inter se cohaerent, ut nulla in
illis mutatio salvo continuitatis nexu locum invenire possit ).

EuLER emphasizes that what he means is not the connectedness, or continuity,
of the course, or run, of the curve (continuitas tractu ), but, exclusively, the single-

2% EuLER supposed that a function continuous on some interval is defined by one and only one
expression over all this interval (as will be said below). Thus, according to EULER, an odd, periodic sum
of a sine series could not represent either any algebraic function or, as a rule, transcendent functions.
Later on, in his memoir Disquisitio ulterior super seriebus secundum multiplae cuisdam anguli progredi-
entibus (E.704), forwarded to the Petersburg Academy of sciences on (June 9) May 29, 1777, and
published posthumously in 1798 ([47], pp.333-355), EuLer deduced formulae for the “FOURIER
coefficients” on the interval [0, n]. However, he took no further part in the controversy about re-
presentability of functions by trigonometric series.

Somewhat earlier {in 1772, see [48]) D.BERNOULLY, starting from other reasoning, developed the
function

i3 X
= *)

2 2
into a sine series, noticing correctly that the development holds in the interval (0,2 ) and also describing
quite strictly the behavior of the series both at the ends of, and beyond, this interval. He also considered
a few more examples.

It is remarkable that the same development of the functions () had been known to EULER who,
notwithstanding this contradiction of his own opinion, included it both in his letter to GOLDBACH
dated July 4, 1744 ([49], p. 195) and in his Institutiones calculi differentialis (E.212) published in 1755
([50], pt.2, §92) without mentioning that the development holds for 0 <x <2z only. This is not the
only occasion on which EULER knew examples which did not comply with his conceptions but which
he may have considered to be insignificant exceptions from the general rule.
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ness of the corresponding analytical law. Thus, the two conjugate branches of a
hyperbola constitute one continuous curve. This main property of continuous
lines which, for EULER, directly followed from his conception of continuity, could
be expressed otherwise: any small part of a continuous line (function) umquely
determines this line as a whole (see Footnote 18).

Long ago I. Yu.TimcHENCKO ([53], p. 482) noticed that

to the extent that EULER identified analytical expressions with functions
representable by TAYLOR series the property of “continuity” corresponds to
the property of uniqueness of analytic functions in WEIERSTRASS sense?!

As to discontinuous curves, EULER ([52], p. 76) defines them as

all curves not determined by any definite equation, of the kind wont to be
traced by a free stroke of the hand.

(omnes enim lineae curvae per nullam certam aequationem determinatae,
cuiusmodi libero manus tractu delineari solent ).

Again, this discontinuity does not apply to the course of the curve; discontinuous
are also such lines as extend continuously (etiamsi continuo procedant) in the
sense of connectedness. If we disregard the empirical fact that ideal geometrical
figures cannot be traced, discontinuous functions thus correspond to our arbitrary
piecewise continuous functions with piecewise continuous derivatives of both the
first and the second order (cf. [51], p. 247)*2. Without this last condition, implied
by the geometrical description though not formulated explicitly, the discontinuity
becomes absolutely arbitrary so that no part of a discontinuous curve need be
continuous, i.e. analytically representable and thus, according to EULER, analytic.

The breadth of EULER’s new conception is also confirmed by his mentioning,
immediately after giving a description of the whole class of discontinuous, or
mechanical, curves, that (ibidem) to this class

should be attributed also lines usually called mixed ( Atque huc etiam referri
convenit lineas vulgo mixtas vocatas)

as, e.g., the boundary of a polygon (an example repeatedly considered during the
controversy about the string) etc.

In the subsequent part of his memoir EULER studies the role of different kinds
of functions in mathematics. In traditional branches of both mathematical analysis
and higher geometry continuous functions are studied, the case being somewhat
different in that newly discovered and as yet little developed field of integral
calculus, the integration of equations containing differentials of functions of two
or more variables.

Just as arbitrary constant quantities appear in the integrals of ordinary differen-
tial equations, so solutions of that essentially new kind of equations contain

2! The uniqueness of the development of a function (of a real variable) into a TAYLOR series under
the assumption that such a series does exist had been established by C. MacLauriv ([54], Vol. 2,
pp- 610-611).

22 In the problem of the string, also supposed is its continuity (connectedness) over all the interval
of its vibration.
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discontinuous functions, absolutely indefinite and dependent upon our discretion
(ab arbitrio nostro) ([52], p. 86). EULER supposed that exactly this circumstance
constitutes the main feature (and main power) of integrating partial differential
equations, which presents a most extensive sphere of further research. To partial
differential equations EULER devoted somewhat later almost the whole of Volume 3
of his Institutiones calculi integralis (E. 385), published in 1770, once again vigo-
rously emphasizing the usefulness of discontinuous functions ([55], §§ 37 and 299).

10. Euler’s Geﬁeral Definition of a Function

Since, according to EULER, discontinuous functions generally are not analytical-
ly representable, the definition of a function given in Volume I of the Introductio
and somewhat modified in its Volume 2 became too narrow. So as to formulate
another definition comprising all known classes of relation EULER turned to a
notion which was always present albeit not explicitly expressed in any method of
mtroducing functions: the general notion of correspondence between pairs of
elements, each belonging to its own set of values of variable quantities. This
notion, unconnected with any definite analytical expression, had been used more
than once in reasonings implicitly contained in Volume I of the Introductio, espe-
cially in its Chapters 2 and 3, the first of which opens with following phrase ([39],
p- 32):

Functions are transmuted into other forms either by introducing another
variable quantity instead of the initially used or [even] while retaining the same
variable quantity.

( Functiones in alias formas transmutantur vel loco quantitatis variabilis
aliam introducendo vel eandem quantitatem variabilem retinendo ).

Examples given in the same passage illustrate how one and the same variable
quantity can be represented in various forms. Thus, a function of z, u=2-3z+z*
isthe same as u=(1—2z)(2—z), and v=a*—4a32z464a*2*> —4az>+ z* is transmuted
into a more simple function of y, v=y*, by a substitution g —z = y, while an irra-
tional function of z,

w=1/a’+7z?,
becomes a rational function of y,

_a’+y?
=5

after a substitution
@ — yz
2y
It is obvious that any such two (or more) analytical expressions possess a
common property, viz they establish in different form the same correspondence

between two sets of numerical values of the variable z and the corresponding
function u or v or w.
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Now this idea of relationship must needs be given in as universal and as
abstract form as possible, and exactly this did EULER do when he formulated his
new definition of a function in the preface to his Institutiones calculi differentialis
(published in 1755) ([50], p. 4):

If some quantities so depend on other quantities that if the latter are changed
the former undergo change, then the former quantities are called functions of the
latter. This denomination is of broadest nature and comprises every method by
means of which one quantity could be determined by others. If, therefore, x
denotes a variable quantity, then all quantities which depend upon x in any
way or are determined by it are called functions of it.

(Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam
ipsae mutationes subeant, eae harum functiones appellari solent; quae denomina-
tio latissime patet atque omnes modos, quibus una quantitas per alias determinari
potest, in se complectitur. Si igitur x denotet quantitatem variabilem, omnes
quantitates, quae utcungue ab x pendent seu per eam determinantur, eius func-
tiones vocantur.)

However, in the book itself, devoted to the differential calculus, only analytic
functions are considered, a circumstance which enabled EULER to manage without
explicit use of the concept of the limit of a function (only once mentioned in the
preface), basing himself on a peculiar “calculus of zeros” [56].

EULER’s concept of function exerted a great positive influence on the whole
subsequent development of mathematics. First of all, of essential importance, was
the isolation of the class of continuous functions, i.e. analytic functions represen-
table by power series, and the discovery of the main properties peculiar to this
class, of which up to now I have mentioned only uniqueness (characteristic, as was
found out only in the 20™ century, of the even more general class of quasi-analytic
functions).

Besides this property, EULER (also to some extent, D’ALEMBERT) determined
other essential properties of analytic functions. Thus, he showed (in 1755, published
in 1778) that analytic functions map a sphere conformally on to a plane, preserving
similarity of infinitely small figures; the expression itself (projectio conformis) is
due to F.SCHUBERT, who used it in 1789, after EULER’s death. EULER was the first
to use complex quantities in calculations of definite integrals and, in connection
with this, deduced (in 1777, published in 1797), using general analytical considera-
tions, the so-called CAUCHY-RIEMANN equations, which D’ALEMBERT had derived
in 1752 in the course of his hydrodynamical researches. Thus the general theory of
analytic functions of the 19® century, with its three directions developed by
CaUCHY, RIEMANN, and WEIERSTRASS, was rooted in the works of EULER and
D’ALEMBERT.

Not less important for the subsequent development of mathematical analysis
was the introduction of arbitrary discontinuous functions and the study of a number
of problems concerning relations between intrinsic properties of one or another
class of functions of a real variable and the nature of the mathematical apparatus
used to represent those functions.
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Notwithstanding the prolonged and persistent opposition of D’ALEMBERT,
who sometimes pointed out really weak or insufficiently founded details in
EULER’s conception (special difficulties were connected with the problems of
discontinuity, in our sense of the word, of the slope and curvature of the initial
form of the string), this conception gradually became more and more widely
disseminated. The first to come out in favor of EULER was LAGRANGE (in 1759-1762)
in his works on the propagation of sound and on vibration of strings; though he
turned his coat for some time to D’ALEMBERT’s side, he returned later on (in 1788)
_to his previous stand.

With some reservations or specifications EULER’s point of view was supported
later by many other mathematicians, including G.MONGE, P.S.LAPLACE, M.J.
ConNDORCET and L.ARBOGAST. Even D’ALEMBERT, during his last years, changed
his opinion and allowed in the solutions of partial differential equations of any
order discontinuous functions the derivatives of which up to the same order
possess no saltus (Sur les fonctions discontinues, 1780). Actually D’ALEMBERT
used the concept of left-derivative and right-derivative at a point [57].

It should be noticed in this connection that these discussions revealed the need
for a more distinct separation of continuous from discontinuous functions (in our
sense), as was indeed effected by L. ARBOGAST in a work [58] to which the Peters-
burg Academy of Sciences in 1790 awarded the prize for its competition of 1787
regarding the nature of arbitrary functions to be admitted in solving partial diffe-
rential equations.

ARBOGAST thought it possible (though not in the problem of the string, in
which the continuity of the curve is conditioned by its very nature) to use not only
functions with discontinuous derivatives but also functions discontinuous at
isolated points®?*; these he called ([58], p. 11) fonctions discontigiies

parce que toutes leur parties ne tiennent pas, ou ne sont pas contigiies les
unes aux autres. '

However, ARBOGAST offered no analytical definition of continuity {(or dis-
continuity). Mathematicians of the 18" century had not felt need for such a defini-
tion; if necessary, they described the main property of continuity verbally.

Thus, for example, explaining methods of approximate calculation of definite
integrals in Volume I of his Institutiones calculi integralis (E. 342), published in
1768, EULER wrote ([59], §§ 297 and 300) that the calculation of | X dx would be

222 As this paper was going to press, C. TRUESDELL called to my attention EULER’s paper E 340,
Eclaircissements plus détaillés sur la génération et la propagation du son, et sur la formation de P'écho,
Opera omnia, ser. 111, Vol. 1, ed. E.BERNOULLL, R. BERNoOULLL F.RUDIO, A. SPEISER, 1926. In this paper,
which was presented to the Berlin academy on 19 and 26 September 1765 and was published in 1767,
EULER considers the wave equation in the context of aerial disturbances. There, in contrast with the
problem of the vibrating string, the physical problem does not require solutions continuous in the
modern sense. To study solutions of the functional equation EULER regards as equivalent to or perhaps
a replacement for the partial differential equation, he introduces functions that have the value 0 at all
points except one. He remarks that since these pulse functions form what is called now a (non-enumer-
able) basis for the set of all functions, use of them as initial values for a wave function makes it possible
to describe concisely and in geometric terms the entire theory of propagation and reflection of plane
waves. It is interesting to note also that EULER effects these solutions by diagrams in which the pulse
functions are represented. The matter is explained at length by TRUESDELL [42b, pp. LXI-LXII].



72 : A.P. YOUSCHKEVITCH

the more accurate the smaller are the assumed increments of the independent
variable x provided the increments of the integrand X were also small. Also
verbally EULER describes (§304) the behavior of a discontinuous function

X ='_1'1/1:f in the vicinity of the point x =1, noticing that any small increment in
—X

x gives rise to an extremely large change of the function X, but he did not use the

term continuity.??

Discontinuities in the derivatives of solutions of partial differential equations
present great difficulties, to overcome which proved possible only at the much
higher level of mathematical analysis as reached in the second half of the 19"
century (cf. [51], pp- 286-297). In our time a further, extremely broad and most
important development of this problem grew from functional analysis. What I
mean here is the theory of generalized solutions of partial differential equations
(in particular, of the wave equation) developed mainly at the hands of S. L. SOBOLEV
(1936) and L.ScHwaRTZ (1945). These generalized functions (SOBOLEV) or distri-
butions (SCHWARTZ) are linear functionals which need not be differentiable in the
usual sense but possess generalized derivatives.

Just as the modern theory of summation of series showed the essential correct-
ness of EULER’s views on the importance and use of divergent series, so also the
* theory of generalized functions illustrates strikingly EULER’s profound intuition
and perspicacity as regards discontinuous functions.

However, in neither case did the general state of mathematical analysis in the
18® century allow EULER either to establish his ideas accurately (from the point
of view of subsequent generations) or to formulate exact definitions, or, also, to
save him from errors, some of which were noticed even by his junior contempo-
raries.

11. Criticism of the Concept of “Mixed” Functions;
Charles (1780) and Fourier (1807-1821)

The first of EULER’s ideas to be criticized was his isolation of the class of
mixed functions. Soon after his death it was shown that functions which were
introduced by different analytic expressions in different regions of some finite (or,
sometimes, infinite) interval could be represented also by one and the same
equation. The first examples of such functions were offered by J. CHARLES in his
Fragment sur les fonctions discontinues, 1780 [60].

Much later, a no lesser person than CaAucHY himself considered it worthwhile
to devote a paper expressly to this problem, the Mémoire sur les fonctions continues

23 It should be noticed that in the case under consideration EULER essentially interprets the de-
finite integral as being the limit of the sum Y X(x)4x,; he himself supposed ([59], § 302) that the
integration could be carried out as accurately as needed, adding, however, that an absolute exactness
is attainable only if all the 4x, be infinitely small, i.e. equal to zero.

Such a conception of a definite integral, originating with LEIBNIZ and revitalized in a more precise
formulation due to CAucHy, differed from the basic definition adopted by EULER and his contempo-
raries, according to which the integral was understood to be a function the differential of which is
equal to X dx, the definite integral being equal to the difference between the values of the primitive
function (a terme due to LAGRANGE) at the upper and lower limits of integration.
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[61] (published in 1844). His simplest example was a function

) =x, x20,
) =
) —x, x<0,

thus discontinuous but simultaneously representable by a single equation y=]/3c7
for every — oo <x< + 00 and thus continuous. Thus the discrimination between
mixed and continuous functions proved itself theoretically untenable.

Much more important, though, was the criticism of this same notion of
mixed functions within the framework of the theory of trigonometric series. As
we have seen (see § 9) in two of his memoirs (E. 317 and 339) EULER flatly denied
that it was possible to represent the initial figure of the string, as defined on two
parts of a given finite interval by two different equations, by a series of terms
containing sines of multiple arcs.

In the beginning of the 19™ century, FOURIER refuted this assertion in his works
on the theory of propagation of heat, which also gave rise to the general theory of
trigonometric series. Even in 1805, in a fragment recently published by I. GRATTAN-
GuINNESss ([62], p. 183), FOURIER wrote:

Il vésulte de mes recherches sur cet objet que les fonctions arbitraires méme
discontinues peuvent toujours étre représentées par les développements en
sinus ou cosinus d’arcs multiples, et que les intégrales [of the partial differential
equations] qui contiennent ces développements sont précisement aussi générales
que celles ou entrent les fonctions arbitraires d’arcs multiples. Conclusion que
le célébre Euler a toujours repoussée. '

FOURIER goes on to present a few examples illustrated by graphs. He developed
his reasoning in more detail in his Théorie de la propagation de la chaleur dans les
solides, forwarded to the Institut de France on December 21, 1807, but published
only recently, again by GRATTAN-GUINNESS (see [62]), and, afterwards, in his
basic Théorie analytique de la chaleur in 1822 [63].

Conclusions reached by FOURIER in 1807 startled mathematicians of older
generations, and LAGRANGE, for one, distrusted them; on the other hand, after
1822 they received an enthusiastic welcome from young mathematicians.

Brought up in traditions of the 18" century, FOURIER himself supposed that a
trigonometric series may be, used so as to represent any mixed function and
offered no statisfactory analysis of the problem of representing functions by such
a series. However, once the problem had been stated, in the next few years it
became the subject of special studies based on the new general conception of the
calculus, the elements of which had been systematically developed by CaucHY
in his Cours d’analyse ... 1™ partie: analyse algébrique, 1821 [64] and Résumé
des lecons ... sur le calcul infinitésimal, 1823 [65].

The coefficients of FOURIER series of any given function f(x) being equal to
integrals of the products f(x)cos nx and f(x)sin nx, the class of such series was
gradually broadened as more and more general definitions of the integral were
formulated. Also, the concepts of convergence and of summation of series gradually
acquired new content.
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12. Digression: The Analytical Representation of Functions

Here we shall not go into the details of numerous researches devoted to suffi-
cient conditions for representing functions by FOURIER series. I shall mention only
that from the conditions presented by P. LEJEUNE-DIRICHLET in 1829-1837 [66]
it followed that any bounded function if piecewise continuous and piecewise
monotone over a given interval could be developed into a FOURIER series con-
vergent to that function. This meant that an arbitrary curve traced over a given
interval by a free stroke of the hand (i.e., any arbitrary discontinuous, in EULER’s
sense, and bounded function) could be represented by a single analytical law, thus
changing it into a continuous one. Of course, not every function continuous over a
given interval is representable by its FOURIER series which, in this interval, may
diverge at infinitely many points.

Whether a given function be representable analytically or not depends on the
methods of analytical expression admitted. In Volume 1 of his Introductio EULER
declared the most general form of analytical expression to be a power series
generated by a denumerable number (a modern term) of additions and multi-
plications of the variable x and a denumerable set of constants, an additional
limiting process being allowed?“.

Later on EULER definitely expressed his confidence in the fact that his dis-
continuous functions are not, generally speaking, analytic, explaining in addition
(e.g., in his Eclaircissements sur le mouvement des cordes vibrantes, E. 317 ([46],
p. 385)) that

on regarderoit fort mal d propos toutes les courbes comme renfermées dans
cette équation parabolique

y=A+Bx+Cx*+Dx>+etc
quoi qu'on puisse faire passer cette courbe par une infinité de points donnés.

And right he was: CAUCHY proved that even a function infinitely differentiable
at a-given point could still fail to be analytic at that point. His example,

exp (———17), x=%0
X
0, x=0

F(x)=

published in 1823 in his Résumé des lecons ... sur le calcul infinitésimal [65], has
become classical?°. Moreover, as was shown by A. PRINGSHEM (in 1893) there are
infinitely differentiable functions not analytic over any interval.

If the fund of algebraic expressions be extended, the realm of analytically
representable functions broadens most extraordinarily. Thus WEIERSTRASS
showed that any function continuous over a closed interval could be represented
in that interval by a sum of uniformly convergent series of integer polynomials
(published 1885). Furthermore, even discontinuous functions of a very complex

24 As pointed out above (Footnote 11), such a construction recalls the idea of J. GREGORY.

25 This function could be written down by a single analytical expression, viz, by a sum of every-
where convergent series of exponential functions of special form.
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nature, the classification of which was developed by R.BAIRE (in 1898-1899),
can be represented by sums of convergent series and multiple series of polynomials.
H.LEBESGUE called analytically representable any function that could be con-
structed by a denumerable set of additions, multiplications and limiting processes,
carried out according to a definite law regarding the independent variable and a
denumerable set of constant quantities.

BAIRES classification (as established in 1905 by LEBESGUE) embraces all
such functions which are also measurable in E. BOREL’s sense. This law of construc-
tion LEBESGUE named une expression analytique {(cf. [107]).

13. Euler’s General Definition Recognized: Condorcet (1778), Lacroix (1797),
Fourier (1821), Lobatchevsky (1834), Dirichlet (1837)

Thus the division into continuous functions and discontinuous functions
(mixed ones included) failed to retain its place in mathematics2%; on the other hand,
the general definition of a function due to EULER (see § 10) gradually gained wider
and wider recognition and use. It seems that the first to appraise correctly the
importance of this new definition was CONDORCET, who developed EULER’s
conception in an unpublished Traité du calcul integral, an unfinished manuscript
of which, transmitted to the Paris Academy of sciences in 1778-1782, is preserved
at the Library of the Institut de France, complete with proofsheets.?”

As projected by its author this book should have had five parts, only two of
which were actually written. The first of these parts, entitled De fonctions analyt-
iques, opens with an explanation of what is understood to be an analytic function
(see [67], p. 134):

Je suppose que jaie un certain nombre de quantités x, y, z, ..., F, et que pour
chaque valeur déterminée de x, y, z, ... etc., F ait une ou plusieurs valeurs déter-
minées qui y répondent; je dis que F est une fonctionde x, y, z

PR

Offering a few examples of explicit and implicit functions, introduced by means
of equations, CONDORCET continues:

Enfin, si je sais que lorsque x, y, z seront déterminées, F le sera aussi, quand
méme je ne connoitrois ni la maniére d’exprimer F en x,y, z, ni la forme de
Péquation entre F et x, y, z; je saurai que F est fonctionde x, y, z.

Finally, three kinds of functions are distinguished:

(1) Functions the form of which is known (we should say, explicit functions);

(2) Functions introduced by unsolved equations between F and x, y, z (implicit
functions); and

(3) Functions given only by certain conditions (e.g. by differential equations).

26 1 am leaving aside the function y=(—1)* considered in 1727-1728 in the correspondence of
EuLER with JoH. BERNOULLI ([44], No. 190-192) and, also, in Vol. 2 of EULER’s Introductio ([41], § 517).
This function, which is expressed by an equation and thus is in this sense continuous, assumes real
values only for such values of x as are irreducible fractions with odd denominators. In Vol. 2 of the
Introductio EULER showed that this function, which he called paradoxical, is represented, as we should
say now, by two everywhere dense sets of isolated points belonging to the straight lines y=1 and y= — L.

%7 Not to be confused with CONDORCET’s earlier book of the same title (Paris, 1765).
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Some mechanical examples are given so as to illustrate the third kind, to which
also are attributed

des fonctions qui ne sont connues que parce qu'on sait en général qu'une
certaine quantité sera déterminée lorsque d’autres quantités le seront.

Again, examples of some physical phenomena the mathematical description
of which is unknown are given.

As is seen, CONDORCET was the first to use the term fonction analytique for
describing functions of arbitrary nature, the adjective analytique implying above
all functions considered in mathematical analysis. Continuing his exposition,
CONDORCET attempts to derive a TAYLOR series formally for an arbitrary function,
almost in the way LAGRANGE had done, a little earlier, in his memoir, Sur une
nouvelle espéce de calcul relatif d la différentiation et a lintégration des quantités
variables, published in 1774 ([68], pp. 441-476). It seems, however, that the term
Jonction analytique is due primarily to CONDORCET.

Although CoNDORCET’s unfinished Traité never saw the light of day, its printed
pages had been read by a number of mathematicians at Paris, as S.F. LACROIX
indicated in the preface to his course of mathematical analysis in three volumes
[69]. Moreover, in defining a function LACRoIX followed EULER and CONDORCET.
Noticing that at first a function of some quantity had been understood to be any
of its powers (the same inaccuracy was commited by LAGRANGE in the beginning
of his Théorie des fonctions analytiques [407) then, also, any other algebraic ex-
pressions, LACROIX continues (p. 1):

Enfin de nouvelles idées, amenées par le progres de lanalyse, ont donné
lieu a la définition suivante des fonctions. [ The definition itself, emphasized by
the author, follows immediately.] Toute quantité dont la valeur dépend d’'une
ou de plusieurs autres quantités, est dite fonction de ces derniéres, soit qu'on
sache ou qu'on ignore par quelles opérations il faut passer pour remonter de
celles-ci a la premiére.

Lacroix’s Traité, being widely known, contributed greatly to the dissemination
of the new concept of function. It is true that in many other books and manuals
of that time the old definition of a function as being an analytical expression was
still used. As I have mentioned (see Footnote 17), this was the case with LAGRANGE’s
Théorie des fonctions analytiques, first published in 1797, the second, revised and
supplemented edition of which appeared in 1813. Essentially the same interpreta-
tion of the concept of function was implied also in CAUCHY’S Analyse algébrique
(in 1821) although in the definition -itself the term analytical expression is not
used 28.

28 CaucHY’s definition is ([64], Chap. I, § I):

Lorsque des quantités variables sont tellement lies entre elles que, la valeur de l'une d’elles
érant donnée, on puisse en conclure les valeurs de toutes les autres, on congoit d’ordinaire ces diverses
quantités exprimées au moyen de l'une d’entre elles, qui prend alors le nom de variable indépendente
et les autres quantités exprimées au moyen de la variable indépendente sont ce qu'on appelle des
fonctions de cette variable.

Contrary to the opinion of M.KLINE ([70], p. 950) who holds that an analytical expression is not
required by CaucHY and to the opinion of F.A.MepvEDEV ([71], p.238), I suppose that CaucHY
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But then, rather soon, EULER’s general definition was accepted by three
scholars of the highest calibre, in all three cases in connection with their researches
on the theory of trigonometric series. First of all, one finds such a definition in
Fourier’s Théorie analytique de la chaleur, published in 1821 ([63], p. 500):

En général, la fonction f(x) représente une suite de valeurs ou ordonnées,
dont chacune est arbitraire.

Immediately FOURIER repeats himself, maintaining that he does not suppose
these ordinates to be subject to a common law, they succeed each other in any
manner whatever, and each ordinate could be considered as given individually. I
shall touch upon the sense implied by FOURIER (and other mathematicians) in
speaking about arbitrary nature of a functional dependence below.

Following this laconic definition by FOURIER, whose work at once acquired
wide fame, LOBATCHEVSKY and DIRICHLET published much more wordy definitions.
In his article, O6 ucuesanmm Tpuronomerpmiecrux crpor (On the disappearance
[convergence] of trigonometric series), in 1834, LOBATCHEVSKY wrote ([72], p. 43):

General conception demands that a function of x be called a number which is
given for each x and which changes gradually together with x. The value of the
function could be given either by an analytical expression, or by a condition which
offers a means for testing all numbers and selecting one of them; or, lastly, the
dependence may exist but remain unknown.

(Obmee momaTtue Tpelyer, 4ToOH (QYHKIME! OT X HA3HBATH YHMCIO0, KOTOPOE
TAETCA NS KAKZOrO X W BMECTE C X OCTEIIeHHO UM3MeHAeTcH. SHadeHue GyHKuuu
MOKeT OBITHh JAHO HWIN AQHAIMTHYECKMM BbIpasKeHMeM, WX YCIOBHEM, KOTOPOeE mo-
7Ia€eT CPencTBO HCHHTHBATE BCE YHCIA W BHIOMPATh ONHO M3 HUX; WM HAKOHEIL 3aB-
HCUMOCTS MOZKET CYIeCTBOBATH M OCTABATHCHA HEUBBECTHOIH. )

Then, declaring that, though no contradictory examples were yet known, the
alleged possibility of representing any function analytically is no more than an
arbitrary assumption, LOBATCHEVSKY concludes (p. 44):

It seems impossible to doubt either the truth that everything in the world
could be expressed by numbers or the correctness [of the judgement] that any
change and relation in it is represented by an analytic function. Meanwhile the
broad view of the theory allows the existence of dependence only in the sense that
numbers, in connection with one another, be regarded as though given together.
For this reason Lagrange, in his Calcul des fonctions,?® with which he wished to
replace the differential calculus, damaged the generality of the concept as much
as he thought to gain in the strictness of judgement.

actually thought here only of analytically expressed functions. This is implied both by his formulation,
in which he twice mentions that on congoit d'ordinaire that the functions are exprimées au moyen de la
variable indépendante, and by his separation (following the definition) of explicit and implicit functions,
the latter being characterized by the fact that the equations which they and the independent variable
should satisfy are not solved algebraically.

2% In his Legons sur le calcul des fonctions (1801, 2™ ed. 1806 [73]) LAGRANGE offered the same de-
finition of a function as given by him earlier (in 1797) in his Théorie des fonctions analytiques (see
Footnote 17).
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(Hasmercs Helb3A COMHEBATLCA HH B MCTHHE TOTO, 4TO BCE B MHpe MOMET OHITh
HPeACTABIeHO YHCIAMH; HN B CIpPAaBeIIMBOCTH TOTO, YTO BCAKAA B HeM IepeMeHa
H OTHOINEHX ¢ BHPAMAETCA aHATATHIecKol PyHK muelt. Memxy Tem o6MM PHELA BBIILAL
TEOPHY JOMyCKaeT CYI[ECTBOBAHNE 3aBHCHMOCTI TOJXBKO B TOM CMBICIE, YT0CH UMCIa,
OflHE C APYTMMH B CBs3H, IPUHUMATH Kak Obl JAHHEIME BMecTe. Jlarpatmx B CBOEM
seraucienun Qyusuni (Calcul des fonctions), koroprivu Xoren samenntsd guddepe-
HOUAIBHOE, CTOMBKO #ie, CIe0BATENHHO, IOBD AT OGMAPHOCTH OHATH, CKOIBKO
AyMaJ BEUTDATh B CTPOTOCTH Cy:HeHU.)

The tendency to include in the concept of function also such hypothetical de-
pendences as might turn out to be not analytically representable is thus expressed
absolutely distinctly. But then, because LOBATCHEVSKY’s term gradually means
continuously in CAUCHY’s sense, LOBATCHEVSKY's definition taken literally
somewhat unexpectedly concerns continuous functions only.

The same is true concerning the definition that DIRICHLET offered in 1837 in
his memoir Uber die Darstellung ganz willkiirlicher Funktionen durch Sinus- und
Cosinusreihen, from which I shall now quote the whole relevant passage ([66],
pp. 135-136):

Man denke sich unter a und b zwei feste Werthe und unter x eine verdinderliche
Grisse, welche nach und nach alle zwischen a und b liegenden Werthe annehmen
soll. Entspricht nun jedem x ein einziges, endliches y, und zwar so, dass, wihrend
x das Intervall von a bis b stetig durchlduft, y=f(x) sich ebenfalls allméhlich
verdndert, so heisst y eine stetige oder continuirliche Function von x fiir dieses
Intervall. Es ist dabei gar nicht nithig, dass y in diesem ganzen Intervalle nach
demselben Gesetze von x abhingig sei, ja man braucht nicht einmal an eine durch
mathematische Operationen ausdriickbare Abhingigkeit zu denken. Geometrisch
darstellt, d.h. x und y als Abszisse und Ordinate gedacht, erscheint eine stetige
Function als eine zusammenhdngende Curve von der jeder zwischen a und b
enthaltenen Abszisse nur ein Punkt entspricht. Diese Definition schreibt den
einzelnen Theilen der Curve kein gemeinsames Gesetz vor; man kann sich dieselbe
aus den verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos
gezeichnet denken. Es geht hieraus hervor, dass eine solche Function fiir ein
Intervall als vollstindig bestimmt nur dann anzusehen ist, wenn sie entweder fiir
den ganzen Umfang desselben graphisch gegeben ist, oder mathematischen, fiir
die einzelnen Theile desselben geltenden Gesetzen unterworfen wird. So lange man
iiber eine Function nur fiir einen Theil des Intervalls bestimmt hat, bleibt die
Art ihrer Fortsetzung fiir das tibrige Intervall ganz Willkiir itberlassen.

In essence the definitions of LoBATCHEVSKY and DIRICHLET are identical,
the only difference being that DIRICHLET thought it necessary to add a geometrical
explanation. Their positively general nature concerning continuous functions and
the possibility of their being directly generalized so as to include discontinuous
functions are absolutely evident.

Since the authors considered discontinuous functions, their restricting their
definitions to functions continuous in CAUCHY’s sense seems the more surprising:
functions (or derivatives) with isolated points of discontinuity are explicitly in-
cluded in the sufficient conditions for representing a function by FOURIER series
as established by LoBaTCHEVSKY and DIRICHLET themselves. And to DIRICHLET
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we are also indebted for his celebrated example of a function discontinuous at
each point of the interval 0 x<1:

f(X)={

Why did both these scholars think it expedient to restrict their definitions with
continuous functions? The most natural explanation of this circamstance has been
offered by MEDVEDEV ([71] pp.242-243): the class of functions just isolated,
functions continuous in CAUCHY’s sense, immediately became extremely important,
and it was precisely this class which it was necessary to free from the restriction
of analytical representation the more so since even later some scholars, for example
V.Ya. BuNvakovsky ([74], p.246) and G.G. StokEes ([75], p.240), identified
continuity in the sense of CAucHY with continuity in EULER’S sense.

H. BURKHARDT noticed that only in 1841 did A. Cournor formulate a definition
of a function with the degree of generality that came to be commonly attributed
to DIRICHLET and, later on, to both DIRICHLET and LoBATCHEVSKY3®. The attri-
bution to DIRICHLET is due to HANKEL, whose work was published in 1870.
CourNoOT’s Théorie des fonctions, t.I (Paris, 1841) having proved unavailable,
1 shall quote his words as given by BURKHARDT ([ 76], p. 968):

0  for rational values of x,
1 for irrational values of x.

Nous concevons quune grandeur peut dépendre d'une autre, sans que cette
dépendance soit de nature & pouvoir étre exprimée par une combinaison des
signes de l'algébre.

Somewhat further COURNOT (ibidem) suggested that it is possible to

imaginer une théorie qui aurait pour objet la discussion des propriétés
générales des fonctions.

14. Hankel on Functionality

It is obvious that, as just mentioned, a concept of function of no lesser generality
was really due both to LOBATCHEVSKY and to DIRICHLET. However neither
CoURNOT’s book nor LOBATCHEVSKY’s article enjoyed in those times any wide
popularity, as is evidenced by H. HANKEL’s Untersuchungen iiber die unendlich oft
oszillierenden und unstetigen Funktionen ([26], publ. 1870). Having presented a
concise historical essay, HANKEL then offers introductory remarks on the concept
of function, formulating the following definition ([26], p. 49):

Eine Funktion heifit y von x, wenn jedem Werte der verdnderlichen Grofe x
innerhalb eines gewissen Intervalles ein bestimmter Wert von y entspricht;
gleichviel, ob y in dem ganzen Intervalle nach demselben Gesetze von x abhdngt
oder nicht; ob die Abhdngigkeit durch mathematische Operationen ausgedriickt
werden kann oder nicht.

HANKEL goes on to add (ibidem) that he will call this definition by DIRICHLET’s
name

3% Jn his commentaries on the work of LOBATCHEVSKY, G.L.LuNz ([72], pp. 15-16) interpreted
the quoted definition as relating to any function. According to LuNz, the word gradually is used here
by LOBATCHEVSKY on a par with consecutively rather than with continuously (in CAUCHY’s sense).
As pointed out by MEDVEDEV ([71], pp. 235-236), this interpretation is rather doubtful.
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weil sie [this definition] seinen Arbeiten iiber die Fourierschen Reihen,
welche die Unhaltbarheit jenes dlteren Begrlffes zweifellos dargetan haben,
zugrunde liegt.

This old concept HANKEL also calls EULERsche Auffassung (p. 48), recalling the
continuous and discontinuous functions in the Introductio.

Then, on p. 53, HANKEL qualifies his definition saying that the bestimmter Wert
von y does not include the case of infinite discontinuity and offers a new definition
almost coinciding with part of the original preceding the semicolon. Exactly
in this or in a similar form the general definition of a function was included in
courses in mathematical analysis at the end of the 19™ century and in the 20",

It should be noticed that HANKEL formulated his definition prudently: Not
reproducing DIRICHLET’s definition, he restricted himself to remarking that his
own definition actually is the cornerstone of DIRICHLET’s Arbeiten iiber die Fourier-
schen Reihen.

Having contributed so much to the study of discontinuous functions, HANKEL
could hardly have failed to notice that the definition of DIRICHLET himself had to
do with continuous functions, a circumstance pointed out only in our time,
by A.CHURCH [77], A.OsTROWSKY [78], and other authors.

15. The Historical Role of Eunler’s General Definition

Thus, it seems that for HANKEL the main point was the spirit of DIRICHLET's
definition rather than its literal formulation. On the other hand, in contrasting
DiRICHLET’s definition with die Eulersche Auffassung HANKEL was positively
mistaken.

As shown above (see § 10), EULER’s concept of function actually underwent
essential evolution, and if one or another name is to be connected with the de-
finition of a function in one-to-one correspondence, that name should be EULER’s;
EULER it was whose concept, described in 1755, was developed by many scholars,
LoBATCHEVSKY and DIRICHLET included.

A special consideration of the arbitrary nature of functional relations and of
their analytical representability is warranted.

First, different notions about the degree of arbitrariness and about the kind
of behavior of the functions used are characteristic of different times and different
generations of mathematicians. Though EULER, LACROIX, or FOURIER never came
across such functions as the discontinuous function due to DIRICHLET®! mentioned
above (see § 13), their concept of a function as being an arbitrary correspondence
was for their time as general as was DIRICHLET’s concept for his time. And, for
that matter, Dirichlet himself did not imagine such functions as came to be intro-
duced in the times of G. CANTOR, BAIRE, BOREL and LEBESGUE.

Second, as has been said (see § 12), the problem of analytical representability
of functions came out to be much more complex than had been supposed by
mathematicians right up to the beginning of the 20™ century. Circumvention of
analytical representability was thought necessary during a long period beginning

31 In this connection it is nevertheless instructive to remember EULER’s paradoxical function
y=(—1)* (see Footnote 26).
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with EULER and ending with DIRICHLET and COURNOT. But then, it was gradually
found out that more and more extensive classes of functions, at first those com-
plying with DIRICHLET’s conditions in the theory of FOURIER series, then continuous
functions and even those of more general nature, are representable by means of
one or another analytical method.

U.Dini, in his Fondamenti per la teorica delle funzioni di variabili reali, published
in 1878 (German edition, 1892), quite appropriately inquired ([797, p. 49)

ob bei Aufrechterhaltung der ganzen in der Definition enthaltenen Allge-
meinheit es stets moglich sein wird, in einem gewissen Intervall eine Funktion y
von x fiir alle Werte der Variabelen in diesem Intervall durch eine oder mehrere,
endliche oder unendliche Reihen von Rechnungsoperationen, die man mit der
Variabelen vornimmt, analytisch auszudriicken oder nicht.

Also, added Dini, the current level of mathematical knowledge being taken into
account, a quite satisfactory answer to his question is just impossible.

As noticed above (see § 12) LEBESGUE, in 1905, gave a positive answer to this
question concerning all measurable functions, simultaneously offering an example
of a function not representable analytically in his sense.

I am compelled to leave aside the related problem of the legitimacy of BAIRE’s
and LEBESGUE’s constructions, later subjected to criticism from the point of view
of “effectivism™, “contructivism” and other directions of the foundations of
mathematics.

If rejection of analytical representability turns out to be in a sense illusory, of
what importance then is EULER’s definition of 17557 Also, of what importance are
all the definitions growing from it? The weak side of EULER’s definition did not
escape the attention of HANKEL who, for one, regarded it as a reine Nominal-
definition ([26], p. 49), pointing out that functions defined so universally possess
no common property whatsoever.

The proper answer to the question just posed is given by the development itself
of the theory of functions. As time went on, the class of functions considered,
growing broader and broader, underwent essential changes. Analytical expressions
composed by means of comparatively simple calculating operations having been
almost the only subject of study during approximately two centuries, they never
lost their importance. But then, with the course of time, it became necessary to
study different classes of functions (continuous, differentiable, with finite variation,
pointwise discontinuous, measurable, etc.) introduced by means of one or another
basic property which defines the whole structure of a given class independently
of whether the functions of this class are analytically representable. As formulated
by N.N.LuzIiN in his book Harerpan n rpuronomerpuaecsuit pan (Integral and
trigonometric series) published in 1915 ([80], p. 50), )

the main difference between methods of studying functions within the framework
of mathematical analysis and [alternatively] theory of functions is that classical
analysis deduces properties of any function starting from the properties of those
analytical expressions and formulae by which this function is defined, while the
theory of functions determines the properties of function starting from that
property which a priori distinguishes the class of functions considered.
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(OcrOBHAA pPasHHIA B METORe U3YIeHNA PYHK I QaHATMBOM U Teopueit DYyHK uuii
COCTOHT B TOM, YTO KIACCHYECKMI AHAJIN3 M3BJIEKAET CBOMCTBA QYHKLME U3 CBOMCTB
TeX aHAIMTUYEeCKHX BEIPAKEHN ¥ (OPMYI, KOTOPHIME OHA ONpeleNeHa, TOrIA KA
Teopua QYHKINE XefcTBUTEIHHOTO IepeMEeHHOr0 BLIBOAWT CBolicTBa (yHKIMN M3
TOI'0 CBOMCTBA, KOTODPOE & Priori XapaKTepPUsyeT PacCMaTpUBAeMblit Kiace QyHK Hil. )

It is also important to notice that, within the theory of functions, verbal de-
scriptions of the behavior of functions over one or another set of values of the
independent variable become generally used.

As mentioned above, modern mathematical logic discovered essential diffi-
culties inherent in the universal, hence nonalgorithmic definition of a function.
Even in 1927, H. WEYL maintained, quite correctly, that ([81], p. 8)

Niemand kann erkliren, was eine Funktion ist. Aber: “Eine Funktion f ist
gegeben, wenn auf irgendeine bestimmte gesetzmdissige Weise jeder reelen
Zahl a eine Zahl b zugeordnet ist ... Man sagt dann, b sei der Wert dér Funktion f
fiir den Argumentwert a”.

Thus, two differently defined functions are considered identical if, for all possible
values of g, the corresponding values of b coincide. Opinions of mathematicians
about the sense of the words auf irgendeine bestimmte gesetzmdssige Weise (empha-
sized by me, not by WEeyL) differ. However, EULER’s general (nominal) definition
of a function, which became necessary as early as the middle of the 18™ century,
has been successfully used — to borrow an expression uttered on another occasion —
as ein Medium freien Werdens —for more and more complex constructions in the
theory of functions and, also, has opened up new horizons in the development
of many branches of mathematical analysis and its applications. Even the diffi-
culties inherent in this definition served a positive role in the statement and study
of a number of problems in foundations of mathematics and mathematical logics.

Addendum

When this article was almost complete I received the Tagungsbericht, Problem-
geschichte der Mathematik 22.9. bis 28.9.1974, Mathematisches Forschungs-
institut Oberwolfach, BRD.

From this source I learn that the central subject of the Conference was the
development of the concept of function, to which almost half the reports were
devoted. The first report delivered by Dr. KARIN REICH was a summary of the
original version of this article (see Acknowledgment): Bericht iiber einen Aufsatz
von A.P. Juschkewitsch zur Geschichte des Funktionsbegriffs. Other reports on the
subject were those by C.J.ScriBa, E.M.Bruins, C.O. SELENIUS, 1.SCHNEIDER,
O.VoLk, I. GRATTAN-GUINNESS and H. GERICKE. Participants in the concluding
discussion were H. GERICKE, G. HIRSCH, J.J. M. Bos and others.

The summaries of the reports published in the Tagungsbericht are too concise
to be taken into account here, and I may only hope that the reports themselves
will be published. Also, I regret that one source, mentioned in the report of
SCRIBA, viz, S. BOCHNER, The rise of functions (Rice Univ. Studies 56 (1970), No. 2,
3-21 (1971)), remains unknown to me.
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