
CHI 90 Prtxeednc~~ April1990

User-Tailorable Systems:
Pressing the Issues with Buttons

Allan MacLean, Kathleen Carter, Lennart L&strand and Thomas Moran

Rank Xerox EuroPARC,
61 Regent Street, Cambridge CB2 lAB, England

ABSTRACT
It is impossible to design systems which are
appropriate for all users and ail situations. We
believe that a useful technique is to have end users
tailor their systems to match their personal work
practices. This requires not only systems which can
be tailored, but a culture within which users feel in
control of the system and in which tailoring is the
norm. In a two-pronged research project we have
worked closely with a group of users to develop a
system to support tailoring and to help the users
evolve a “tailoring culture”. This has resulted in a
flexible system based around the use of distributed
on-screen Buttons to support a range of tailoring
techniques.

KEYWORDS: Tailorability; Modifiability;
Customization; User Interface Design; Office
Systems; Design Process.

TAILORABLE SYSTEMS
User-tailorable computer systems have been a goal
in some form for a number of years, but
achievements to date have not lived up to the
promise. Progress has been made by producing
higher level languages which have increased the
productivity of programmers and like-minded users
[211, and an increasing number of applications are
available which have their own languages built in
(e.g. Framework in the PC world [l]; Apple’s
HyperCard [121X Alternatively, some systems
provide their user with a range of predefined
parameters which allow limited control. EMACS is
probably one of the most successful examples of a
tailorable system (“extensible and customizable”, as
its author describes it 1‘231). EMACS is tailorable
both by programming and by setting parameters,
and there are many people who would use no other
editor. However, there are also many people who
are inhibited from using EMACS, far less tailoring
it, because of its complexity [22].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish requires a fee and/or specific
permission.

0 1990 ACM O-89791 -345-O/90/0004-01 75 1.50

Significant effort is required to acquire the skills
necessary to use these tailoring mechanisms.
Figure 1 characterises the relationship between the
amount of skill required and tailoring power using a
mountain climbing analogy. In a system like
EMACS with over a hundred parameters a steep
incline has to be climbed to begin to understand how
or if a desired change can be made and what kinds of
changes are possible. After this, there is a more
gentle slope where the effects of different
parameters can be explored. To make more
extensive changes beyond what is possible by
changing parameters, a programming language has
to be used. A vertical cliff represents the barrier to
understanding and using that language.

The Tailorability Mountain
and its Inhabitants

Skill
Required

for
Tailoring

hange Parameters

Worker h
Tailoring Power

Figure 1. People with different levels of tailoring
skills, and changes in skill required for increasing
tailoring power using two common tailoring
mechanisms. Steep slopes are barriers to skill
acquisition.

The different terraces on this mountain lead to
different cultures with people of different skill levels
inhabiting them. At the risk of minor caricature we
can characterise these cultures as follows:

0 Worker: Lives on the plains. No interest in the
computer system per se. Just wants to get work

http://crossmark.crossref.org/dialog/?doi=10.1145%2F97243.97271&domain=pdf&date_stamp=1990-03-01

CHI ?30 l’nmedir~~ April 1990

done. No expectation of being able to tailor the
system.

0 Tinkerer: Lives on the foothills. A worker who
enjoys exploring the computer system, but may
not fully understand it.

l Programmer: Lives on the peaks. A guru who
understands the system inside out. Has formal
training or extensive experience in computing.
The programmer may have an application
support role, but more often is not accessible to
ordinary workers.

The “worker” is a particular challenge for building a
tailoring culture. If workers have no expectation of
controlling changes to the system, they are not in a
good position to understand what changes might be
possible let alone make them happen themselves. In
such a position, communicating ideas or
requirements to tinkerers or programmers is also
likely to be problematic. Our goal is to give the
worker a feeling of ownership of the system, to feel
in control of changing the system and to understand
what can be changed. From such a position and
with an appropriate system, we would expect
workers to be able to carry out a considerable
amount of change for themselves, to know who in
the community to ask for help, what to ask for and
how to interpret offerings from others.

The foregoing discussion highlights two routes to
make systems more tailorable for the worker. First,
we can aim to make tailoring mechanisms
accessible. The major problem suggested by figure 1
is that it is all too easy to spend considerable effort
in attempting to learn new skills with no reward in
increased power over what changes can be made.
One goal is therefore to remove the cli& and reduce
the slope of the inclines so that more continuous
progress can be made as effort is expended. As a
second route, we believe that tailoring should be a
community effort. Programmers, tinkerers and
workers each have important and different roles.
We want to form a single culture within which we
can take full advantage of these different skills for
the benefit of the community as a whole. Again,
“smoothing off’ the mountain should allow people
with different skills to intermingle more and so
communicate better with each other. (It is worth
emphasising that we are interested here in skills
required for tailoring. We do not intend to suggest
that a “programmer” is more skilled than a
“worker” in any absolute sense. If we were to focus
on skills in the work domain, we would find that the
worker was most skilled and the programmer least
skilled.)

This paper describes a project within which we have
implemented a software system designed to make
tailoring a reality for the “worker”. We have made
the design process explicitly include user

176

participation, and one of the goals was to bring
together the cultures above to grow :a “tailoring
culture’*. The design process and the use of the
system as it developed were themselves objects of
study.

Our “workers” were four members of the EuroPARC
administrative staff. None of them were
“tinkerers”, far less programmers, and when the
project started they had no experience of tailoring
their system either for themselves or by asking for
system facilities they felt would be helpful in their
work. Although working within our research
community, all have well defined roles to play
within the organ&&ion and it was important that
our research not impede their day to day work in
any way.

The two main activities by the project research team
were to build a flexible architecture to make
tailoring accessible and to help the workers gain
control over changing their system to their own
requirements. To facilitate the latter, a new role
emerged for one member of our project team, to add
the previous ones [61:

l Handyman: Lives in the foothills and the peaks.
Sure-footed individual. Bridges between workers
and computer professionals. Works alongside
office staff. Responds to their immediate needs.
Also able to communicate user needs to
programmers for longer term or more complex
development.

BUTTONS: TAILORABLE INTERFACE OBJECTS
We have been exploring the issues of end-user
tailoring by developing a system based around
on-screen buttons. On their own, buttons are not
particularly novel interface objects. However, we
can claim novelty for the integration we achieve
with buttons as tailorable interface objects, in a
community, and in a user-participative design
process.

User Interface to Tailorable Objects
Our Buttons are screen objects in Xerox Lisp which
look “pressable” and when pressed (by clicking with
the mouse) carry out an action. Buttons can be used
without any understanding of the details of the
encapsulated action, and thus are a convenient way
to tailor th.e Xerox Lisp environment for individual
user needs. The Buttons architecture allows users
with little or no programming experience to modify
various aspects of buttons for themselves (the labels,
the graphical image, aspects of the actions). At the
same time, the architecture is sufficiently powerful
and flexible to allow users with programming skills
to create buttons for novel applications.

A number of modern user interfaces use the concept
of a buttson (or related concepts) as important

Cl-II 90 Ploceecsngs April 1990

components. For example, icons can be thought of as
button-like in many respects, but they are typically
no more than a mechanism for starting up an
application, or referring to a file or process. They
are not tailorable.

The Xerox Viewpoint office system has an option for
a “Customer Programming Language” (CUSP)
which allows desktop activities to be automated and
accessed via buttons [25]. However, CUSP buttons
can only exist inside documents, not on the desktop;
they rely on the CUSP language so there is a barrier
for many end users in changing them; and the
language used is different from the Viewpoint
implementation language, so CUSP cannot access
other Viewpoint applications in a flexible way, and
cannot be used to extend the environment.

In the Apple world, HyperCard [12] makes extensive
use of buttons, again with an English-like
programming language (HyperTalk) behind them.
In contrast to CUSP, HyperCard is itself just one of
many Apple applications - or perhaps more
accurately, an application builder. So, although
HyperCard contains a number of features which
give accessibility for non-programming users, it is
aimed at building structures of information. It has
no way of accessing internal parts of other
applications to tailor their behaviour.

Buttons were originally built into Xerox Lisp as
part of the Rooms system [141. The architecture we
are currently using is a considerable extension of
and is upwards compatible with Rooms buttons.
Buttons can ‘exist on the desktop or in documents.
Since all applications such as text processors, mail,
etc. in the Xerox Lisp environment also have Lisp as
the underlying language, details of the behaviour of
these applications can be modified using Buttons.
Architecturally, the Buttons system is based on a
simple object-oriented framework with an Active
Property Engine (in the spirit of Loops’ Active
Values [31). Properties may have agents
(procedures) which are activated when certain
operations are performed on the property, such as
setting or getting its value, editing or copying it, etc.
This mechanism is able to handle computed values,
side effects, dependencies, indirection, lazy
evaluation, and more object-oriented paradigms
such as class abstraction and delegation. The
Buttons architecture will be described more fully
elsewhere [161, but note here that the architecture
provides a great deal of flexibility for programmers.

The Tailoring Culture
We stress the importance of building a community
with a culture of changing the workstation
environment. This is more difficult than it may at
first seem. Tailorability shifts some of the system
design problems to end users, a role for which they
are ill-equipped. For example, Grudin and Barnard
1131 have shown that when users are asked to carry

out what might seem a simple interface design task
- designing a set of abbreviations for a given
command set - they do a very poor job. Users
typically have more problems with the
abbreviations they produce themselves than they do
with a set which has been designed to conform to a
simple abbreviation rule structure. Given such
observations, we should be cautious in expecting
users to optimise a system for themselves through
tailoring. Additional support will be necessary.
One approach to help users better understand the
possibilities for tailoring would be to design a
system so that the range of variations and their
consequences were a salient part of the design -
MacLean, Young and Moran [191 suggest the
possibility of including a rationale with a system as
a way of achieving this. Fischer and Lemke [IO]
advocate a combination of “construction kits and
design environments” - basically a collection of
possible options and design information to help the
user with ways of combining options. However, we
have already observed that the type of
non-programming user we are most interested in
supporting in our project currently lives in a culture
whose members have no expectation of being able to
change their computing environments. It is
therefore unlikely that simply presenting such
users with even a helpful and intelligent system will
change their expectations.

The approach we employed here was to have a
member of our design team (the “handyman”)
working closely with the target users [61,[71. This
arrangement provided a mechanism for the
designers to take careful account of the users’ real
requirements and for the users to gain a better
understanding of how their working environment
could be different by helping design it themselves.
This latter point is critical in helping to develop a
“tailoring culture”, as an attitude which has
“design” as a component is also one which
understands change. Certain Scandinavian
approaches to system design argue that this kind of
participation of users is essential [21; Ehn and
Kyng argue that system design “should be done with
users, neither for nor by them” [9]. Our focus on
tailorability extends the value of this approach. We
not only build a mutual understanding which helps
users to influence the design of the system - we also
help them to adopt an attitude which will help them
make better use of the system.

TAILORING TECHNIQUES
As a first step in growing a tailoring culture, we
claim that it should be as easy to change the
environment as it is to use it (clearly all changes one
might want to make will not be so easy - but it is
important that some should be). Since our buttons
are independent objects which can be easily moved
around the screen, they provide an excellent
mechanism for helping users to evolve their own

177

CHI 90 PmxdinQs April 1990

personalised environment. One role of the
handyman was to seed the environments of users
with buttons appropriate for their own personal day
to day activities. For example, one of our
administrative staff had the task of sending the
weekly EuroPARC calendar out by email to a
number of different people, to the nearest printer for
some other people, and distributing hard-copies to
yet other people. A button was produced to carry out
most of these tasks with a. single mouse click. Other
buttons support a small community cf users rather
than a single individual. For instance, all members
of the administrative staff have a button which
allows them to add an item to an agenda for weekly
meetings. These cases exemplify some of the ways
in which buttons directly help users to work more
efficiently: by making functionality accessible (the
button is visible on the screen at all times), as an
accelerator for regularly performed sequences, and
as a memory aid for complicated operations. So a
remarkable amount of tailoring can be done simply
by “begging, stealing or borrowing” appropriate
buttons and placing them in strategic places on the
screen.

Situated Creation
The next step beyond simply placing buttons around
the screen is to give users mechanisms to create new
buttons for themselves, Programming by example is
one possible technique which could be used to
minimise overheads for the user by recording the
sequences of actions to carry out tasks (see Myers for
a review [20]). However, on a multi-process
mouse-driven workstation it is very difficult to
determine the intent of an action (e.g. is a mouse
click referring to a location on the screen; a relative
location within a window; a specific object within a
window...).

We take an alternative approach which we call
“situated creation”. It relies on capturing relevant
aspects of the system state into a button for later
re-use. The idea is that the user carries out some
task using normal manual methods, and is then able
to encapsulate relevant parts into a button without
doing anything which looks like programming.
Unlike programming by example, this approach
allows the computer to regenerate the state in the
most efficient way (if the user got there through a
long-winded route, that route is not preserved in the
button). For example, a user may be writing a
report which requires the same long phrase to be
repeated several times. We provide a mechanism
which creates a button “containing” the relevant
phrase. When this button is pressed, the phrase is
entered into the text. In this case the user may only
keep the button for a few hours until the report is
finished. In other cases, some buttons may become a
relatively permanent part of the user’s
environment. As another example of situated
creation, we have modified the window system to
include a “buttonize” option. When this is selected,

a buMon is automatically produced with properties
relevant for the type of window. For example, the
button produced from a text window will allow the
user to recreate that window withou.t worrying
about the precise location of the underl.ying file in
the filing system; a button produced from a
filebrowser will allow a directory to be re-examined
at a later time without worrying about re-entering
the file pattern and viewing parameters.

Copying and Specialising Buttons
Tailoring can be seen as a process of users evolving
the system gradually along with their own changing
skills and req,uirements. So they may h.ave a button
of their own, or one provided by a colleague, which
does almost what they now want, “except for...“.
This situation closely relates to the object-oriented
programming concept of specialisation, where all
the behaviour to remain unchanged is inherited
from a suitabie object and only the novel behaviour
has to be explicitly specified. However, it is difficult
for non-programming users to think in terms of
abstract object-oriented concepts. Borning and
O’Shea 151 have shown that even experienced
programmers can have enormous difficulty with
some aspects of class inheritance in Smalltalk [ll].
Although the Buttons architecture supports a form
of inheritance, we currently use it in a more limited
way than a traditional object oriented approach.
Our Buttons user who wants to create a variant of
an existing button would typically copy the entire
button and then change a few details .as necessary.
Although this approach means more duplication of
code, it has several advantages. By making
individual buttons independent objects they are
conceptually simpler for the user to understand. In
addition, if a user wants to send a button to someone
else by email, it does not require the recipient’s
environment to already contain a complex hierarchy
of classes on which the button relies. In this respect
Buttons are for most purposes more akin to what has
become known as the “prototype” approach to
object-oriented systems [4,15].

Tailoring-Oriented Attributes
Although object-oriented concepts hold promise for
handling certain aspects of tailorability, it is clearly
not sufficient simply to provide users with an
object-oriented environment and expect them to be
able to tailor their system. The arguments already
presented about the overheads of a programming
language for tailoring apply. One way of alleviating
such problems is to identify in advance the kinds of
things that the user is most likely to want to be able
to change and make sure that they are easily
accessible and easily understandable. This strategy
has been successfully used for ra

1
id prototyping the

structure and content of menu riven dialogues in
an environment for creating presentation graphics
material [17, 181. In the design of Boxer, DiSessa
uses a concept, which he calls shallow structuring,
meaning that “...anything the novice is likely to

CHI 90 F%xxedings Apil1990

need to use or modify must be near the surface of the
environment” [81.

We have taken this approach in Buttons both
globally and locally. From the global perspective
(i.e. common to all buttons), we give users direct
access to attributes of the appearance and to a text
label. These are both very visible parts of the
button and are good attributes for users to change as
it gets them used to thinking in terms of change and
seeing the consequences of their modifications, so
helping develop the tailoring culture.

When it comes to making modifications to the
behaviour of a button a global approach is clearly
impossible since the range of actions a button might
carry out is open-ended. Our solution is to provide
direct editing access on all buttons to “parameters”.
Each individual button has its own specification of
what attributes should be presented as parameters.
So the precise details of what the user has easy
access to can be varied from button to button,
depending on the attributes the user is likely to
want to change. As a simple example, if the user
wants to add a facility for checking a regularly used
file directory, we have already mentioned that a
button can be created directly From a file browser
window. Such a button is automatically created
with separate parameters that refer to the file
pattern, the number of subdirectories to check, and
the information to show. Once the user has one such
button on the desktop, that button can be copied and
have its parameters changed to create a new button
giving a fast way of accessing different file
information. To take a concrete example, let’s say I
have a button which will generate a file browser on
all files and subdirectories under my personal “text”
directory, showing the creation date and author of
each file. I can copy that button; change the file
pattern parameter to search for all files with the
substring “CHI” in them (using a string editor);
change the search depth to “1” (using a numeric
keypad) to only search one directory level; and
choose to show the size of each file (selecting from a
menui. So each parameter can be changed using an
editor most appropriate for that parameter. The
structure of the button is such that 1 am only
presented with parameters which might be
especially relevant for the sort of action that
particular button carries out (i.e. file browsing
options in this case). The type of editor which is
brought up implicitly helps understand the type of
value that is appropriate for the parameter.

Modifying Program Code
Buttons support the user with some experience of
programming, but who is by no means expert in Lisp
(i.e. the “tinkerer”). Since the relevant piece of Lisp
is encapsulated within the button, someone who has
some feel for programming and who wants to carry
out minor modifications to the button is faced with a
relatively small piece of code and so can be quite

happy working out which part of the Lisp expression
to change. A number of our research staff have
started to use buttons in this way. A specific
example was one in which one of our researchers
who is not a Lisp programmer observed some of us
exploring new buttons which allowed us to open
two-way audio-visual connections between members
of EuroPARC staff. Despite warnings that some of
the software on which these buttons relied was
unstable and would be superceded in an
incompatible way, he persuaded us to email the
buttons to him. Within a short time he had modified
some of the internal Lisp code to make connections
relevant for his own use. He gaver these buttons to a
few other people as well, allowing them to explore
the use of our AN infrastructure sooner than would
otherwise have been possible. We were particularly
impressed by this experience as it was one we had
not engineered in any way - indeed we had tried to
discourage it if anything. It helps to demonstrate
that the approach we have taken with Buttons is
useful for a wide range of users with very different
expertise.

Building Blocks
An experienced Lisp programmer can place any
arbitrary piece of Lisp inside a Button, and so the
range of things which can be done with Buttons is
incredibly flexible. In practice, however, we need to
encourage a constrained approach to creating new
buttons. One obvious example is that we want a
consistent interface style for users to interact with
buttons. We provide a set of user-interface building
blocks that can be used when the button action
causes some interaction with the user. For example,
they provide information to the user, ask for yes/no
responses, ask for string input and so on.
Domain-dependent building blocks provide high
level functionality to support common applications.
For example, there are text editing functions which
give direct control over various text window
properties such as labels, location on the screen etc.
Other building blocks extend the range of possible
applications within the Lisp environment as a
whole, such as the functions to communicate with
our AIV server, giving control over A/V connections
from buttons. These building blocks are similar in
cOncept to the construction kit approach advocated
by Fischer and Lemke [lo], or to the “programmer’s
interface” which provides high-level access for the
programmer wishing to tailor NoteCards [‘24].

THE BUTTONS USER’S VIEW
Part of the handyman’s role was to observe how the
use of Buttons evolved, and to interview the users
about their perceptions of and reactions to Buttons.
Output from this has already been used to illustrate
some of the specific tailoring techniques. The aim of
this section is to give a more general overview of
how Buttons were perceived and used. One
particularly striking observation was a change in

179

CHI 90 Proceedings April x390

attitude towards Buttons. Early on, users talked
about Buttons as being “not my personal buttons” or
being “sewn to the screen” (i.e. not under personal
control). Later, we started getting quotes such as “I
don’t know what I’d do without my Buttons’* or
“Buttons are my friends, always there...“. Note the
use of “my” in these quotes. Buttons became
perceived to be very personal - indeed when one
user’s system was accidently modified by a
workstation “gremlin”, sh.e compared it to her house
being ransacked by burglars. The tailorability
aspects of Buttons were also appreciated by users.
For example, during an interview one user reflected
that she “used to think you had to be a programmer
to make buttons”. Buttons seemed to serve a
stronger role than we expected in communicating
between people with different programming skills.
They are regularly distributed by email, but
perhaps more interesting, it is not uncommon for
someone to request “a button to do X”, where “X”
may be something for which a button is quite
definitely not the solution. We suspect that some of
these requests would not be made at all if it were not
possible to articuIate a putative solution in terms of
something concrete and comprehensible such as a
button.

Different people adopt different strategies for
organising th.eir buttons on th.e screen. Figure 2
shows a typical screen from one of our users. This
user is particularly tidy in the way she sets up her
screen. Note how she has adopted both graphic
image and spatial location to identify different types
of buttons which are used in different contexts.
Such strategies have functional as well as aesthetic
roles - another user commented “I like my buttons
to look different so I don’t have to read them”. One
comment which people who are not fa.miliar with
buttons often make is that the screen can become
very clutteread. So far this has caused remarkably
few problems in practice. Users tend to regard their
Buttons as “screen furnishings” or “wallpaper” -
very much part of their environment. The user of
the screen in figure 2 has the screen laid out so that
for most tasks she would only use one group of
buttons. She simply organises her working windows
over groups not currently required, leaving easy
access to the buttons she needs for her current task.

REALISING THE TAILORABILITY PROMISE
A major reason for our success in enabling
non-program.ming users to tailor their own
workstation environment is that we have produced

i , . . . , . , ,. , .., . , . .-, 1

Figure 2. A Buttons user’s screen, showing a variety of buttons. Buttons can exist either on the desktop or in
documents. This snapshot shows the user reading an electronic mail message with buttons in it. If she wants
to keep them available they can be easily transferred from the message to the desktop,

180

CHI 90 Proceedings April1990

an architecture which supports a large number of
tailoring techniques. Figure 3 relates these
techniques to the skill required to use them. This
characterisation suggests that we have succeeded in
producing a much less rugged landscape than the
mountainous one with which we started. Some
tailoring techniques are therefore accessible to
workers of any level of expertise. As they learn new
techniques, the increment in skill to learn yet
another one is always relatively small, so there is
little barrier to learning new mechanisms.

Buttons - The Gentle Slope to Tailorability
and the Folk Who Live on the Hill

Skill

Re%Y
Tailoring

Editing Parameters

Tailoring Power

Figure 3. Tailoring techniques in Buttons. Roughly
plotted as a function of skill required and tailoring
power. There is not a simple monotonic relation
between the different techniques, but some idea of
the relationship between them is illustrated. Each
category of “tailor” has access to techniques lower
down the hill, but has to put in some effort to learn
new techniques and climb the hill.

Starting at the bottom of the hill, the least skillful
techniques rely on users simply having the control
to moue buttons where they want them on the
screen. A remarkable amount of tailoring can be
done by relying on buttons produced by other people.
Buttons can be kept in documents and can be easily
passed around by email, thus they are a tool for the
user community to augment the Xerox Lisp
environment by combining individual innovation
and by sharing improvements with others. The fact
that small-grain improvements can easily “diffuse”
throughout the user community is a powerful
principle for supporting user-driven evolution of
systems. Situated creation allows the User to create
a button by capitalising on a system state which has
been created by more tedious methods. Buttons can
be easily copied. It may be useful to have multiple
copies of a given button available for easy access
from different parts of the screen, or for use in

different Rooms [14]. More interesting though, is
specialising a copy to change it in some way. This
permits new buttons to be created without having to
worry about all the details required to produce a
button from scratch. There are various ways in
which a button can be modified, some very
lightweight. Each button contains menu options to
change a number of attributes of its appearance.
Many buttons have specialised parameters which
allow important attributes of their behaviour to be
changed. It is possible to get direct access to the Lisp
code inside a button if one desires. Minor
modfications are easily done by someone with
limited programming skills, either by modifying the
existing code, or by combining high-level building
blocks. More experienced programmers can insert
any arbitrary Lisp into a button.

With this range of techniques, we now have our
worker off of the plains, living half way up the hill,
able to tailor by a good number of methods lower
down the hill. There are still inevitable differences
in what people with different skill levels can do, but
there are no longer insurmountable barriers
between these people. Most importantly, since the
workers have now become familiar with the kinds
of changes which can be made, they are in a much
better position to envisage changes and
communicate their ideas to tinkerers, handymen or
programmers when they are not able to make the
changes themselves. This is important in building a
single culture within which we can take full
advantage of different people’s skills for the benefit
of the community as a whole.

In summary, we must take a broad perspective if we
are to achieve the promise of genuinely
user-tailorable systems. A range of techniques is
required to make as much tailoring as possible feel
no different from making use of the system, and to
allow migration between different techniques. We
must develop a tailoring culture which encourages
individuals to think in terms of improving their
computational environment by tailoring it, and
encourages members of user communities to help
each other by sharing insights and expertise. We
must grow a design culture which has tailorability
as a major goal of system design, and which works
closely with users to achieve it. Helping users to
“think design” to contribute to this process is also an
important component of the mindset for users to
tailor their own systems, so supporting the tailoring
culture. The Buttons project described here has
helped us to better understand these issues and
ways of tackling them. Some of the success of the
project can be measured by the fact that our
administrative staff are now regular and committed
users of buttons, as are many of our research staff.
Our experience with Buttons suggests that we can
realise the promise of user tailorable systems, and
our Buttons system itself shows some techniques
which can be used to achieve this.

CHI 90 proceedings April 1!390

ACKNOWLEDGEMENTS: Many of the insights
reported in this paper would not have been possible
without the willing participation of the EuroPARC
admin staff (Kathleen Kavanagh, Christine King,
Sian Wicklow, Penny Wisdom). Austin Henderson
wrote the original version of Buttons software and
helped us understand the potential which led to the
project reported here. Thomas Green and Moira
Minoughan gave valuable contributions to many
discussions of using buttons for tailorability.
Richard Southall assisted with the design of the
Buttons graphics. Bob Anderson, Alan Borning,
Bill Gaver, Jonathan Grudin and Richard Young
provided comments on previous versions of this
paper which helped improve the final version.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10

Ashton-Tate. Framework II Reference Manual.
1986.

Bedker, S., Ehn, P., Kammersgaard, J., Kyng,
M. and Sundblad, Yngve. A UTOPIAN
experience: On the design of powerful computer
based tools for skilled graphic workers. In
Bjerknes, G., Ehn, P. and Kyng, M. (Eds)
Con
chatl

uters and Democracy - A Scandinavian
enge, Avebury, Aldershot, England, 1987.

Bobrow, D.G. and Stefik, M. The LOOPS
Manual. Tech Rep. KB-VLSI-81-13. Xerox Palo
Alto Research Center, 1981.

Borning, A. Classes versus prototypes in
object-oriented languages. In Proc ACM/IEEE
Fall Joint Computer Conference, (Dallas, Nov
1986),36-40,1986.

Borning, A. and O’Shea, T. An empirically and
aesthetically motivated simplification of
Smalltalk-80. Proceedings of the European
Conference on Object-Oriented Programming,
(Paris, June 1987), 155-165,1987.

Carter, K. Two Conce tions of Designing. IRIS
Conference on ’ reativity 8 in Sys tern
Development’! 1989.

Carter, K. Methods for designing with users.
PICT workshop on Social perspectives on
Software. UMIST, Manchester, July 19-20 1989.

DiSessa, A. A principled design for an
integrated computational environment.
Human-Computer Interaction, I, l-47,1985.

Ehn, P. and Kyng, M. The collective resource
approach to systems design. In Bjerknes, G.,
Ehn, P. and Kyng, M. (Eds) Computers and
Democracy - A Scandinavian Challenge,
Avebury, Aldershot, England, 1987.

Fischer, G. and Lemke, A. Construction kits
and design environments: Steps toward human
problem-domain communication. Human-
Computer Tnteraction, 3,179-222,1988.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Goldberg, A. and Robson, D. Smalltalk-80, the
language and its implementation. Addison-
Wesley Publishing Co., 1983.

Goodman, D. The complete HyperCard
handbook. Bantam Books, New York.. 1987.

Grudin, J. and Barnard, P. When does an
abbreviati.on become a word? And related
questions. In Proc CHl’8.5 (San Francisco),
ACM, New York, 121-125, 1985.

Henderson, A. and Card, S Rooms:: The use of
multiple virtual workspaces to reduce space
contention in a window based
interface. ACM Transactions on 8

raphical user
raphics.

Lieberman, H. Using prototypical objects to
implement shared behavior in object-oriented
systems. In Proceedings of OOPSL,A 87, ACM
PressNew York, 214-223, 1987.

Liivstrand, L. Buttons: An object-oriented archi-
tecture to support tailorability. In preparation.

MacLean, A. Human factors and the design of
user interface management systems: EASIE as
a case study. Information and Software
Technology, a,192-201,1987.

MacLean, A., Barnard, P. and Wilson, M. Rapid
prototyping of dialogue for human factors
research: The EASIE approach. In Harrison, M
and Monk, A. (Eds.) People and Computers:
Designing for Usability. CUP, Cambridge,
180-195, 1986.

MacLean, A., Young, R. and Moran, T. Design
Rationale: The argument behind the artifact.
In Proc. CHI’89, Austin, Texas, April 30-May 4,
ACM, New York, 247-252,1989.

Myers, B. Visual programming, programming
by example, and program visu.alisation; a
taxonomy. In Proc CHI86 (Boston, MA. April
13-161, 59-66, 1986.

Rich, C. and Waters, R. Automatic
programming: Myths and Prospects. IEEE
Computer, August, 42-51,1988.

Ritchie, R. and Weir, G. Menu-based
extensions to GNU Emacs. In Sutcliffe, A. and
Macaulay, L. (Eds.) People and Computers V.
CUP, Ca.mbridge, 245260,1989.

Stallman, R. EMACS, the extensible, custom-
izable, self-documenting display editor. Proc
ACM SIGPLAN SIGOA Symposoium on Text
Manipulation. Portland, Oregon, June, 1981.

Trigg, R, Moran, T. and Halasz, F. Adaptability
and Tailorability in NoteCards. In Bullinger,
H.J. and Shackel, B. (Eds.) Proceedings of
INTERACT ‘87, London, 723-728,1987.

Xerox Corporation. Viewpoint CUSP Button
R&$-ence. Viewpoint Series Reference Library.

182

