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Abstract—Anonymous content sharing in overlay networks
protects user privacy and content confidentiality. Most overlay
anonymous communication protocols employ some relay nodes
as the proxies to forward content and require relays to perform
cryptography or coding operations on messages. They have
two major limitations. First, extra computation overhead may
discourage overlay nodes from serving as relays. Second, long
forwarding latency at relays makes an anonymous path easier to
fail under network churn. In this paper, we present a lightweight
and decentralized anonymous content sharing system named
Garlic Cast, which requires near-zero computation cost on relays
and does not rely on any centralized service. Garlic Cast uses
random walks to find proxies in overlay networks and an
security-enhanced Information Dispersal Algorithm to search
and deliver content files. We have implemented a prototype of
Garlic Cast and performed extensive simulation on real overlay
topologies. Evaluation results show that the throughput of Garlic
Cast is higher than that of RSA-based anonymous routing by
over two orders of magnitude. Garlic Cast provides high level of
anonymity and is robust to various attacks.

I. INTRODUCTION

Overlay networks such as Akamai [1] serve as a major con-
tent delivery service for the Internet. The concept of overlay
networks may also be extended to online social networks,
which play a fundamental role in the diffusion of Internet
information [2]. Anonymously searching and sharing contents
are important for today’s Internet users. For example, users
having medical problems may wish to get helpful online
contents from peer-to-peer (P2P) networks or online social
networks (OSNs) without revealing any personal information,
including their real and Internet IDs, IP addresses, and loca-
tions. An online survey collector needs to collect responses in
the network that could be anonymous. In typical anonymous
routing, the sender knows the destination of its messages.
Anonymous content sharing is different in the sense that the
communication initiator does not know the locations of content
providers and both the initiator and provider may wish to
be anonymous to the other side. Anonymous content sharing
requires mutual anonymity.

The essential idea of anonymous communication is allow-
ing the message to travel through multiple relays to hide
the information of the source and destination. To preserve
anonymity and message confidentiality, most, if not all of
the existing protocols require that intermediate nodes perform
cryptography or coding operations on message content. Chaum
mixes [6], onion routing [7], and their variants [6] [7] [9] [8]
[10] [11] require layered public key encryption and message

decryption operations at relays. These operations introduce
non-trivial forwarding delay and computation cost at each
relay. In addition, public key dissemination either relies on a
centralized and trusted public key infrastructure (PKI) or ex-
tensive message exchange between nodes. For overlay anony-
mous communication, a decentralized protocol is considered
more practical. Cryptographic operations discourage overlay
nodes from serving as relays. Moreover, extra operations on
relays incur non-trivial latency and makes the message delivery
easier to fail under network churn, i.e, nodes failure, leave, and
join. It is desirable that an overlay-based anonymity system
requires intermediate nodes to perform no more than simple
message forwarding.

In this paper, we propose a novel decentralized anonymous
content sharing system, Garlic Cast, which can utilize any
overlay-based networks such as P2P systems and OSNs for
Internet users. A user participated in Garlic Cast finds a
group of “proxies” in one or more overlays. The initiator and
provider will communicate via their proxies to achieve mutual
anonymity. Like other practical solutions [14] [13], Garlic
Cast does not aim at perfect anonymity and confidentiality
which may require tremendous resource to achieve. Instead,
it is a lightweight and practical method that is possible to be
deployed with current overlay networks.

Garlic Cast has the following important properties.

• Garlic Cast is cost-efficient. It only requires symmet-
ric cryptography on two endpoints of a communication
session. Intermediate nodes perform message forwarding
without any cryptography or encoding/decoding opera-
tion.

• Garlic Cast hides the information of two communication
parties by creating random overlay paths between a node
and its proxies. Each intermediate node on the path
(including the proxies) only knows its predecessor and
successor.

• Garlic Cast uses random walks to build anonymous paths.
Unlike other random walk based anonymous systems [9]
[11], a node running Garlic Cast does not need to know
its k-hop neighbors (k > 1), and hence nodes do not
reveal their neighbor list to others.

• To protect message confidentiality, a user uses a security-
enhanced Information Dispersal Algorithm (IDA) to split
its message into n segments. Only the message receiver
can receive more than k out of n cloves and decode the
original message.

• Garlic Cast is resilient to network churn because clove
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delivery latency is short. The communication latency and
throughput is close to simple overlay routing latency
because relays only perform message forwarding. Cryp-
tographic/coding operations on the two endpoints are not
affected by network churn. The (k, n) IDA approach also
introduces redundancy for robustness.

The balance of this paper is organized as follows. We
discuss the related work in Section II. Section III introduces
the system overview and model. We present the detailed design
of Garlic Cast in Section IV. We analyze the security and
anonymity of Garlic Cast in Section V. In Sections VI and
VII, we use real implementation and simulation to evaluate
the performance of Garlic Cast. We conclude this work in
Section VIII.

II. RELATED WORK

It is generally considered that Chaum mixes [6] and its
variant onion routing [7] pioneered the modern anonymous
communication systems. Tor [9] is a widely used implemen-
tation of onion routing. Many protocols utilize structured
P2P systems for anonymity [8] [10] [11]. The resiliency to
churn is a non-trivial concern for structured P2P systems.
Information Slicing [14] employs linear network coding to
achieve anonymous routing, which significantly improves the
communication throughput. Rumor Riding (RR) [13] uses
random walk to construct an anonymous channel for P2P file
sharing.

Current protocols mainly have four limitations for overlay
content sharing.

1) Symmetric or asymmetric key cryptography is used at
every relay. Asymmetric key encryption/decryption need
large cryptographic overhead. Symmetric key manage-
ment, such as negotiation, distribution and group re-
keying, is also expensive in large-scale overlay networks.

2) Single anonymous path is susceptible to relay failures
under network churn. Using multiple paths can provide
reliable message delivery. However, the maintenance
cost is non-trivial, especially in dynamic environments.

3) Anonymous communications via static paths is vulnera-
ble to timing and traffic analysis attacks [15] [16] [17].

4) Some network information, such as TTL and overlay
neighborship, might be utilized by attackers to break
the anonymity or message confidentiality.

To our knowledge, no method can resolve all of the above
four problems.

III. PROBLEM OVERVIEW AND MODEL

Garlic Cast aims at providing anonymity for overlay-based
content sharing. A user performs as a node in an application-
based overlay. A pair of neighbors are two nodes connected
based on established TCP links in P2P systems, friendship in
OSNs [3], or user-to-user trust in an online community such as
Advogato [4]. Two neighbors can exchange messages directly
using various communication structures [12]. The node that
is looking for a content is called the “initiator”, and the
node that is providing a content is called the “provider”. An
initiator first searches the network for an interested content
and finds a content provider. Then the provider will deliver

the content to the initiator. Such communication mode is
essential for overlay networks such as P2P file sharing, video
streaming, and information dissemination in OSNs. We also
require Garlic Cast to be fully decentralized. There is no
trusted third party or PKI.

Anonymous content sharing should satisfy the following se-
curity requirements: 1. Initiator Anonymity: the initiator cannot
be identified by any other entities, including the provider. 2.
Provider Anonymity: the provider cannot be identified by any
other entities, including the initiator. 3. Content Confidential-
ity: the plaintext of the content is not exposed to any entities
other than the initiator and provider.

Threat model: We consider an adversary that can collude
a fraction of nodes (called malicious nodes) and launch
collaborative attacks. Similar to other work [9] [14] [13], we
do not assume the adversary can observe the traffic on all links.
A malicious node can observe the network traffic forwarded by
it. Malicious nodes can also collude among them by sharing
observed traffic and other related information. The initiator
or provider may also be a malicious node that wants to get
the identity of the other communication party. However if the
initiator or provider is malicious, the message confidentiality
is not guaranteed. Similar to other work [13] [14], we assume
the current methods to defend against the Sybil attack [29],
such as Sybilguard [30]. We will discuss the robustness of
Garlic Cast under various attacks in Section V-C.

IV. GARLIC CAST

In this section we present the detailed design of Garlic
Cast. We first introduce the security-enhanced IDA algorithm
that protects message confidentiality. Then we describe the
communication protocols for anonymous content sharing in
Garlic Cast.

A. Security-enhanced IDA

The basic idea to achieve message confidentiality in Garlic
Cast is splitting a message into multiple segments, each of
which is in ciphertext. If the receiver gets enough segments,
it can recover the plaintext message. In the literature there
are two methods to achieve it, namely secret sharing [18] and
Information Dispersal Algorithm (IDA) [19].

Garlic Cast uses Information Dispersal Algorithm (IDA),
which is a k-threshold recovery method and each fragment is
only l/k long plus a short piece of information with constant
length. IDA is a well known example of Erasure Coding. It
was first used for the distribution of some information among
n processors, in such a way that any k of the processors can
recover the information [19]. Unlike Secret sharing, IDA does
not have the property “k− 1 shares providing no information
about the secret”. It is possible that other peers holding i IDA
fragments (2 ≤ i < k) can recover partial original message.

We improve the security level of IDA by combining it with
symmetric encryption, such as Advanced Encryption Standard
(AES). To apply this security-enhanced IDA (S-IDA) [20] for
a message M , the sender

1. encrypts M by an AES key K, getting {M}K .
2. splits {M}K into n fragments, M1,M2, ...,Mn by a k-

threshold IDA.
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3. splits K into n fragments, K1,K2, ...,Kn by a k-
threshold secret sharing.

4. constructs n messages called cloves, C1, C2, ..., Cn,
where Ci includes two fields Mi and Ki.

5. sends the cloves to the receiver. We explain how the
sending paths are constructed in the next subsection.

By receiving at least k cloves, the receiver:

1. recovers both the encrypted message {M}K using IDA
and the key K by secret sharing.

2. decrypts {M}K and gets the original message M .

In this way, only when a peer collects k cloves, it can
recover the key and decrypted {M}K . Without the complete
key, it can only see the ciphertext related to {M}K . Note that
the key is sent together with the message. Hence no centralized
key management is needed.

B. Proxy Discovery

Before searching and sharing content, Garlic Cast requires
that each node finds a number of proxies using the proxy
discovery protocol presented as follows.

The initiator prepares a message M which only contains one
sentence: “Are you willing to be a proxy?”. It uses IDA to split
M into n cloves, with the threshold k = 2. It also generates
an one-time random clove sequence number and writes it on
all cloves. The initiator then sends the cloves to n different
neighbors that may belong to different overlays.

A node stores all cloves it receives in its local memory and
records the last hop (predecessor) and the next hop (successor)
information of each clove. Note that storing cloves and pre-
decessor/successor information requires state maintenance on
each node. Garlic Cast allows that the local stored clove is in
soft state and will expire after a time period. If the state is not
used after a period of time, it will be automatically deleted.
Upon receiving a clove from a overlay neighbor, a peer can
search its local memory by the sequence number, checking
whether it has received multiple cloves of a series. If it does,
the node can recover M , as the threshold is only two. If there
is no hit, the newly received clove is then randomly forwarded
to one of the neighbors in the same overlay. An example is
provided in Fig. 1, Step 1.

If a peer recovers M and volunteers to be a proxy for the
unknown initiator, it just replies a short agree message to each
neighbor that passes a clove of the initiator to it. The agree
messages will return to the initiator by the reverse paths. To
allow the initiator to identify agree messages from a same
proxy, the proxy will write a random sequence number on each
agree message. An agree message includes a hop count field to
record the number of hops between a proxy and the initiator.
The purpose to put this record to the agree message rather than
a discovery clove is to let the initiator know the path length
while avoiding malicious nodes to track the initiator location.
Fig. 1 Step 2 shows this process.

After collecting the agree messages, the initiator knows
there are multiple paths to the proxy. It then generates a
proxy sequence number and a symmetric session key K.
The initiator uses 2-threshold IDA to generate cloves for the
session key K, writes the proxy sequence number in plaintext
on each clove, and sends the cloves to the proxy in different

Fig. 1. An example of proxy discovery

paths, as shown in Fig. 1 Step 3. Every node on these paths
uses the information of previous message route to deliver the
confirmation, and records the proxy sequence number as well
as the predecessor and successor.

Finally, we can expect that a number of nodes receive
multiple cloves and become proxies. The initiator obtains
a pool of proxies, each of which is identified by a proxy
sequence number and has a unique session key. There are
at least two anonymous paths between the initiator and a
proxy. Every node on the paths only knows the predecessor
and successor.

Note that a node only uses a neighbor for one anonymous
path. If the number of proxies are not enough, the node will
explore more proxies by sending cloves to more neighbors
rather than contact those neighbors that have already provided
anonymous paths. This mechanism ensures that no two neigh-
bors can collaboratively tell the initiator a lot of fake proxies.

In order to prevent them walking in the overlay endlessly, all
nodes agree on a probability p. When a node receives a clove
and finds no hit, the clove has probability 1−p to be forwarded
further, and probability p to be dropped. When a node receives
a same clove twice, it will change the successor to be the new
next-hop node but does not change the predecessor. Hence
there is no loop on the path between the initiator and a proxy.
The reason to use a probability rather than a fixed time-to-live
(TTL) is to defend against trace-back attacks. For example, if
a malicious node receives a clove with a very high TTL, it can
guess that the predecessor is the original sender. Since cloves
in proxy discovery are cheap, dropping them does not waste
a lot network resource.

In the proxy discovery process, the initiator and its proxies
also exchange their public keys. Note the public keys will only
be used to encrypt sequence numbers. They will not be used
for encrypt the content data. Due to security considerations
or anonymous path failures caused by churn, each peer can
timely delete (add) proxies from (to) its proxy pool.

C. Overlay search

To search a content in overlays, the initiator I generates a
query message Q including the content name or ID, and the IP
addresses and session keys of a number of its proxies. Using
IDA, I splits Q into n cloves with 2-threshold.

Assuming n is even and d = n/2, the initiator randomly
picks d proxies from the proxy pool. For each proxy, the
initiator sends two cloves to it by different paths. Hence these

218



Fig. 2. Content delivery: The provider splits the content into 6 cloves, with
a 4-threshold IDA. PR

1 , PR
2 , PR

3 are provider proxies, each of which can
recover the IP address of an initiator proxy and sends the cloves to the initiator
proxy directly. The initiator proxies P I

1 , P
I
2 , P

I
3 use anonymous paths to

forward cloves. Finally the initiator recovers the content if it collects enough
cloves.

proxies can recover the query message, and search the network
on behalf of the unknown initiator by any searching methods
such as central directories, distributed hash tables, or gossip-
based search [22]. Garlic Cast does not limit the use of overlay
routing protocols.

D. Content delivery

Suppose a content holder R receives one or more queries,
and is willing to become a provider. Assume the proxies
provided by the initiator in the query message are proxies
P I
1 , P

I
2 , ..., P

I
n′ . The provider R generates cloves based on the

requested content by the following steps.
1. encrypts the content F by an AES key K, getting {F}K .
2. splits {F}K into n′ fragments, F1, F2, ..., Fn′ by a k-

threshold IDA.
3. splits the key K into n′ fragments, K1,K2, ...,Kn′ by a

k-threshold IDA.
4. for each initiator proxy P I

i , the provider splits it IP
address IP (P I

i ) into two fragments, IPi1, IPi2, by a 2-
threshold IDA.

5. generates a unique sequence number s for this content
sharing. For each initiator proxy P I

i , s is encrypted by the
proxy session key, resulting {s}Ki,I

.
6. constructs n′ garlic cloves C1, C2, ..., Cn′ , each of which

includes for fields: an IP fragment, an encrypted sequence
number, a file fragment and a key fragment. A typical clove
appears as IPi1||{s}Ki,I

||Fi||Ki.
7. sends the cloves to d′ proxies of the provider, denoted

by PR
1 , PR

2 , ..., PR
d′ , where d′ = n′/2. The provider sends two

cloves to each proxy by two different paths, such that the
proxy PR

i will receive two cloves containing IPi1 and IPi2

respectively. For two cloves to a same proxy, the provider also
attaches a same sequence number s′ to notify that they belong
to a same series.

After the provider proxy PR
i receiving two cloves contain-

ing IPi1 and IPi2, it can recover the IP address of a initiator
proxy P I

i . PR
i directly sends the two cloves to P I

i . When an
initiator proxy P I

i receives one or more cloves, it forwards the
cloves to the initiator by the constructed anonymous paths.
When the initiator receives a clove from a proxy P I

i , it

decrypts the sequence number s using the session key Ki,I .
If the initiator receives no less than k cloves with the same
sequence number s, it can recover the content file F .

Note that the sequence number s of this file delivery is
always in ciphertext {s}Ki,I

. Such process is called sequence
number protection. Even though the n′ cloves have a same
sequence number, it is encrypted by d′ different session keys.
Therefore only the provider, the initiator, and the initiator
proxies can get the value of s. It guarantees that the initiator
knows that the cloves belong to a same communication
while intermediate nodes other than the initiator proxies
do not know. Fig. 2 illustrates the file delivery of Garlic
Cast. The content provider constructs six cloves for the
requested content file F . Although one clove fails to reach
the destination, five delivered cloves are enough for the
initiator to get F .

V. SECURITY ANALYSIS

A. Confidentiality

To understand the level of confidentiality of Garlic Cast,, we
briefly review the definition of packet independent security
[23], [24]. Suppose x1, x2, . . . , xk are original messages,
and y1, y2, . . . , yk are the corresponding cipher messages.
Consider a function y = f(X), where X is a combination of
elements of {x1, x2, . . . , xk}. We say this function is packet
independent secure, if the value of every single xi is com-
pletely undetermined as long as one of the cipher messages is
undetermined. This definition basically implies that to decrypt
any message block xi, an attacker needs to get at least k cipher
messages. Similar to other k-or-nothing techniques [18], [23],
[14], Garlic Cast is also packet-independent secure. Note that
the number of cipher messages is more than k, but the k-or-
nothing property still holds.

With sequence number protection, attackers can decode the
messages only if they control no less than k initiator proxies.
Even if attackers control nodes on k distinct paths, it still
requires brute-force decoding of every possible combination
of all communication messages forwarded by the attackers.

However, the confidentiality level of Garlic Cast is lower
than public key cryptography based protocols such as onion
routing. If the adversary colludes most of the nodes, it may
be able to recover a Garlic Cast message. We do not believe
such a case would become true in practice. According to
our simulation results presented in Section VII-E, Garlic Cast
can still achieve perfect confidentiality when the collaborative
attackers are as many as 1% of the population.

B. Anonymity

We apply a commonly used entropy-based measurement
[14] to evaluate the anonymity of Garlic Cast. The entropy
of a system can be defined as follows:

Definition: Let S be the set of all nodes in the network and
|S| = N . An attacker assigns each node x a probability px as
being the source/destination of a message. The entropy of a
system is defined as: H(S) = −∑

x∈S px log2(px).
The perfect anonymity happens when the attacker gains no

information about the system. Hence it can only assign each
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node equal probability 1/N to be the source. The entropy
is then Hmax = log2(N). To evaluate the anonymity of a
system, we normalize the entropy to be the measurement

metric. The anonymity of a system is measure as:
H(S)
Hmax

=
−∑

x∈S px log2(px)

log2(N) . Obviously the anonymity measure is in the

range [0, 1]. Note that the anonymity value does not equal
to the probability for the attacker to make a wrong guess.
Suppose in a 10000-node system, the attacker can limit the
source of every message in a subset of 100 nodes. Hence the
probability that the attacker can make a correct guess is 1%.
The anonymity measure of the system is

−(100× 0.01× log2 0.01 + 9900× 0)

log2 10000
=

log2 100

log2 10000
= 0.5

Therefore the anonymity equal to 0.5 is not low, because the
probability of the attacker to make a correct guess is only 1%
in this system.

We use such metric to evaluate the anonymity of Garlic
Cast. Suppose a source (e.g., the provider) is sending messages
to a destination (e.g., the initiator). Let f be the fraction of
collaborative malicious nodes. Some of them may sit on the k
paths between the source/destination and the proxies. Suppose
the number of all nodes on the k paths is L. There may exist
multiple chains of consecutive attackers on the paths. The
attackers may guess that the predecessor of every chain is the
source and the successor of every chain is the destination. Note
one of the two guesses must be wrong, because an endpoint
of this path is a proxy. Hence the probability of a guess being
correct is k

2(kL+k−s) , where s is the number of attackers on

the k paths. Let Γ be the set of predecessors of all malicious
chains. We then have,

Pr(x = src) =

{
k

2(kL+k−s) if x ∈ Γ
(1− |Γ|k

2(kL+k−s) )
1

(1−f)N−|Γ| otherwise

The entropy-based anonymity can be computed using
the above probabilities. We will numerically evaluate the
anonymity of Garlic Cast based on trace-driven simulation and
compare it with Chaum mixes in the performance evaluation
section.

C. Robustness to other attacks

In addition to the common collaborative attacks targeted
on the confidentially and anonymity, we also analyze the
robustness of Garlic Cast against a number of typical attacks.

Denial of service attacks: A malicious node can simply
drop any message it receives. In such scenario, Garlic Cast
decreases the vulnerability of an anonymous system to such
an attack, compared with single-path approaches. It is because
Garlic Cast has duplicate paths to deliver a message. To
deny the delivery of a message, the attackers should sit on
at least n − k + 1 distinct paths between the source and
destination. The paths including no attacker can still be used
for communication. For a typical single-path approach, one
attacker in the middle can cause a message loss and force the
sender to reconstruct a path.

In another denial of service attack, attackers keep sending
faked messages to a node and make it busy forwarding
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Fig. 3. Throughput of Garlic Cast and onion routing

cloves, denying other nodes to make use of it as relays. The
duplicate paths (and relays) of Garlic Cast again decreases the
vulnerability to such an attack.

An effective way to defend against denial of service attacks
is to increase the network size [14]. Since Garlic Cast can
bring many application layer networks together, it can easily
increase the robustness of the system.

Traffic analysis attack: When collaborative attackers ob-
serve the traffic of the network, they can utilize traffic in-
formation such as traffic data, volume and patterns to build
correlations between different nodes [26] [27] [28].

(I) Timing attack [26]: Attackers may add particular time
delay between any two consecutive packets. When later other
attackers also observe these delays among packets, they have
the potential to location the transmission path. Garlic Cast
is less vulnerable to the timing attack because there is no
fixed transmission path between the initiator and the provider.
For example, a proxy p1 of the provider may send a clove
to a random proxy p2 of the initiator. Next time p1 would
communicate with a different proxy p3 of the initiator to send.
Hence only attackers controlling all possible paths between the
initiator and provider can guarantee to observe the timing of
cloves, which is hard to achieve in practise.

(II) Predecessor attack [28]: In this type of attack, attackers
control a subset of nodes on a path and force to frequently
rebuild the paths. They may be able to infer or identify the
source and destination during such process. Compared with
fixed-path approaches, Garlic Cast is less vulnerable to this
attack because each source may select paths randomly from
a relatively large proxy pool. Also a proxy pool may be re-
constructed periodically.

Sybil attacks: Similar to most overlay anonymous com-
munication protocols [13] [14] [11], Garlic Cast is vulnerable
to Sybil attacks [29], because Sybil attackers may be able
to attain the fraction of malicious nodes arbitrarily close to
1. The robustness of Garlic Cast can be improved by using
Sybil-resistent social networks [30]. Like other work [13] [14]
[11], we do not provide explicit solution for Sybil attacks and
consider it as a separate open problem.

VI. PROTOTYPE IMPLEMENTATION

We have implemented a prototype system of Garlic Cast on
six Dell PowerEdge R720 servers with Linux operation system
to evaluate the throughput and cryptographic overhead of
Garlic Cast. All servers are connected via a campus network.
Each machine runs multiple threads to emulate multiple nodes
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Fig. 4. Number of proxies for the Advogato and Facebook overlays

TABLE I
COMPARISON OF CRYPTOGRAPHIC OVERHEAD

Algorithms Throughput (Mbytes/s)

AES Encrypt + IDA Dispersion 3.76
AES Decrypt + IDA Recovery 14.57

1024-bit RSA Encryption 1.16
1024-bit RSA Decryption 0.19

in an overlay. We configure the node deployment such that two
neighbor nodes are in different machines. All cryptography
algorithms were implemented with Crypto++ library 5.6.2.

We mainly measure the throughput of the content deliv-
ery phase, beginning with the provider’s operations on the
requested file and ending with the initiator’s operations to
successfully recovery the file.

A. Cryptographic overhead

We measure the overhead of IDA, AES and RSA on a
file of size 100k using Crypto++ library 5.6.2. From the
Table I, we can see that the cryptographic operations, IDA
(n = 6, k = 4) and AES, in Garlic Cast are much efficient
than RSA, the kernel operations in raw onion routing. More
importantly, Garlic Cast requires no cryptographic overhead
on intermediate nodes except the decryption/encryption of
sequence numbers on proxies. It is known that the overall
throughput is bounded by the throughput of a bottleneck.
Hence the overall throughput of onion routing using RSA is
less than 0.19 Mbytes/s while the overall throughput of Garlic
is tens of times bigger.

B. File delivery throughput

We also measure the throughput to delivery files in different
sizes using Garlic Cast and onion routing. We deployed some
mini networks in our servers with different path length be-
tween the sender and receiver. Each server may serve different
nodes by using multiple threads. We conduct each set of
experiments for 10 times and take the average. In Garlic Cast
experiments, we set the parameters as n = 6 and k = 4
and the proxy number for initiator and file holder both to be
three. We also set the AES (ECB mode) key length to be 128
bits. For onion experiments, the RSA key length is 1024 bit
and the padding scheme we adopted is Optimal Asymmetric
Encryption Padding.

Figure 3(a) shows the throughput comparison of transmit-
ting files of 100 KB, 1 MB, and 10 MB. We find that the

throughput of onion routing decrease fast when the path length
grows, which is a consequence of the layer-wise encryption
and decryption. The throughput of Garlic Cast is over two
orders of magnitude higher than that of raw onion routing. We
also show the 10th and 90th percentile bars of the Garlic Cast
throughput results in Figure 3(b). The throughput varies very
little. According to Figure 3(b), increasing the path length does
not result significant decrease of the Garlic Cast throughput.
This is because the cryptographic operations contribute to most
of the file delivery latency, which is mainly carried out on
the two end points. Considering typical Internet host-to-host
bandwidth and latency [32], the overall throughput of Garlic
Cast to send a 1 MByte file on the Internet may still be close
to 1 Mbytes/s.

VII. SIMULATION RESULTS

A. Methodology
We conduct extensive simulation on real overlay network

topologies. The first topology is the trust network of the
Advogato online community [4] [5], where nodes are users
and links represent trust relationships. The total number of
users is 6,551 and the average degree value is 7.84. The second
topology is a Facebook friendship network [31], where nodes
are users and links represent a friendship between two users.
The total number of users is 63,731 and the average degree
value is 48.51.

Let the number of nodes in a network be N . We use f to
denote the fraction of malicious nodes. The f · N malicious
nodes can share information and perform collaborative attacks.
Network churn is simulated by random selected node to fail.
The node failure rate in a time duration follows Poisson
distribution.

Performance criteria.
Number of proxies: the effectiveness of proxy discovery is

measured by the number proxies a node can find in a overlay
network. In the results we count the number of nodes that
receive two or more cloves of an initiator. In practice, however,
some nodes may refuse to serve as a proxy.

Path lengths: the path length is very important to an
anonymous path. If a path is too short, any intermediate node
has a very high probability to make a right guess about the
sender or receiver. If a path is too long, network churn can
easily break the path. Since an agreement message includes
the hop count of the path, nodes can actively select those paths
with proper lengths. However we need to know the availability
of these paths using the proxy discovery protocol.
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Fig. 5. Path length for the Advogato and Facebook overlays
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Fig. 6. Communication survive probability in Facebook under churn

Resiliency under churn: we evaluate the time that an anony-
mous path can exist in a network with different levels of churn.
Node joins and leaves are all in Poisson distribution.

Anonymity: we use the entropy method presented in Section
V.B to measure the system anonymity.

Confidentially: we measure the probability that the group of
attackers can break the message confidentially. For Garlic Cast,
only when the attackers compromise more than k initiator
proxies, they can recover the message.

For results plotted in average or cumulative distribution, we
conduct more than 10,000 experiments for each case.

B. Number of proxies

In this set of experiments, a random node will perform
proxy discovery. We count the number of nodes that receive
more than two cloves. Figure 4 shows the results in cumulative
distribution. For the Advogato network, a node can find 3 to
10 proxies in most cases when the dropping rate p = 0.1,
and it can find 6 to 20 proxies in most cases when p = 0.05.
For the Facebook network, a node can find 2 to 5 proxies in
most cases when p = 0.1, and it can find 4 to 10 proxies
in most cases when p = 0.05. In all four sub-figures, using
more cloves can get more proxies. Note that a node can use
proxies from different overlays to send a same group of cloves.
Hence users can always discover more proxies as long as they
are participating multiple overlays. From Figures 4(a) and 4(c)
we find a small fraction of nodes (around 5%) cannot find any
proxy when p = 0.1 and the clove number is 7. We suspect
those are inactive accounts which have very few neighbors.

C. Path Length

We show whether Garlic Cast can build paths in a variety
of lengths for the initiator to choose. Figure 5 shows the
cumulative distribution of path lengths. In Advogato most

path lengths are in the range of [2, 15] when p = 0.1, and
in [2, 30] when p = 0.05. When the value of p is smaller,
path lengths are longer. The Facebook results are similar to
those of Advogato. We also find that the number of cloves has
very little impact to the path length. Note that we do not want
to select very long paths, because using long paths consumes
more network resources and they are easy to fail under churn.
The initiator may intentionally not choose long paths since it
can get the path length information. Combining the results of
proxy numbers, we find that choosing a dropping rate between
0.1 and 0.05 may be proper. The proxy discovery can find
enough number of proxies with appropriate path lengths.

D. Resiliency to churn

When there is network churn, an anonymous path connect-
ing a node and its proxy may fail and the clove sent on the path
will be lost. If less than the threshold k cloves are received
by the receiver, a communication fails. Here we evaluate the
resiliency of Garlic Cast in the Facebook overlay. When we
say the churn rate is x nodes per minute, we mean there are
100 nodes fail and 100 nodes join the network within one
minute. The fail and join times are in Poisson distribution.
For cloves in (k, n) IDA where n is the number of cloves
and k is the recovery threshold, we define the redundancy as
(n−k)/k. For given churn rate, redundancy, and time period,
we run experiments to send a group of cloves from a sender to
a receiver, which repeats 1000 production runs. We define the
survive rate as the probability of experimental cases in which
there are still at least k paths alive.

Figure 6(a) shows the survive rate of Garlic Cast under
different levels of churn (50, 100, and 200 nodes/min). When
the redundancy is 1, Garlic Cast is quite resilient to churn.
After 10 minutes, the survive rate is still above 90% when
the churn rate is 200 nodes/min. Since Garlic Cast does not
require cryptography operations on relays, we expect the end-
to-end latency to send a clove is at most a few minutes. When
the redundancy is 0.5, the survive rate decreases obviously. We
compare the survive rates of Garlic Cast and onion routing in
Figure 6(b). More redundancy offers stronger resiliency, but
will potentially cause more traffic. Moreover onion routing
requires public key decryption on each relay. It may need more
time to finish the file delivery compared with Garlic Cast, and
hence becomes more vulnerable to churn.

E. Anonymity and Confidentiality

In all experiments of this subsection, we generate a network
of 10000 nodes. We vary the fraction of malicious nodes f
from 0.001 to 0.9. For a node running Garlic Cast, n is the
number of proxies to which it sends cloves, k is the threshold
of S-IDA, and L is the average path length to the proxies. We
assume nodes do not fail in these experiments. Similar to most
other designs [14] [13], we compare Garlic Cast with onion
routing [7], which can represent a large group of protocols.
We choose the path length L = 6, 8 that are small values
according to the results in Section VII-C.

We measure the anonymity by the entropy method presented
in Section V.B. In Figure 7, we fix n = 4 for Garlic Cast
and vary the path length for both Chaum and Garlic Cast.
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It shows that for f < 0.7, the anonymity of Garlic Cast is
only slightly worse than that of Chaum. Increasing the path
length can improve the anonymity values, but not significantly.
Note that both protocols have very high level of anonymity:
even if the anonymity is around 0.5, the malicious nodes still
have a very low probability (could be less than 1%) to make
a right guess. In Figure 8, we fix L = 6 and try different
values of n. Similar to the results in Figure 7, Garlic Cast’s
anonymity is a little worse when f < 0.7. Interestingly, we
find that smaller n provides better anonymity when f < 0.7,
and worse anonymity when f > 0.7.

We measure the confidentiality by the value of 1−p, where
p is the probability that the malicious nodes can recover the
original message. We evaluate Garlic Cast with and without
sequence number protection, for n = 4, k = 3 and n = 5, k =
3. Figure 9 shows sequence number protection can evidently
improve the confidentiality. When f is as large as 0.1, the
confidentiality of Garlic Cast with SNP is still above 0.99.

VIII. CONCLUSION AND FUTURE WORK

We propose a lightweight and decentralized anonymous
content sharing system, Garlic Cast, based on overlay random
walks and the security-enhanced IDA. Nodes can use any
overlay networks such as P2P systems, content distribution
networks, OSNs, and online organizations and communities.
Garlic Cast provides mutual anonymity, confidentiality, and
efficiency. The trade-off is that the anonymity level is a little
less than that of onion routing. We have also implemented
a prototype system and deployed it in a campus network.
Extensive simulation results show that Garlic Cast provides
high level of confidentiality and anonymity in various network
environments.

Ongoing work on Garlic Cast includes deploying it on
the Internet and improve its security levels. We will also
investigate how Garlic Cast defends against more types of
attacks such as the Sybil attack.
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