
CHAPTER 7

Toward a theory of planning

Michael D. Intriligator and Eytan Sheshinski

1 Introduction

Planning refers to the elaboration of an explicit set of decisions concern-
ing the present and future values of certain choice variables by a decision
maker (planner) in order to achieve certain goals. Planning, therefore,
involves the determination of a strategy that, in turn, involves decisions
on both actions and their timing or pattern of implementation.1 Plan-
ning in this sense is pervasive in the economy, and it is exemplified by
national economic planning, corporate capital planning, inventory plan-
ning, household expenditure planning, investor portfolio planning, and
planning in many other areas, for example, defense planning, development
planning, environmental planning, energy planning, and educational plan-
ning. Most previous studies have treated the problem of planning in such
a particular institutional or sectoral context. The purpose of this chapter
is to contribute a general theory of planning that treats certain common
features of all these particular forms of planning. These features involve
certain basic choices concerning timing and implementation and typically
must be chosen in advance of any specific plan. First is the choice of a
horizon, that is, the time interval covered by the plan. Second is the choice
of a period, that is, the time interval during which the plan remains in
effect before it is revised. There is also a choice between time planning,
in which the horizon and period are fixed time intervals, and event plan-
ning, in which the period may be influenced by the state of the system,
with particular events triggering a revision of the plan.

Section 2 presents the basic concepts of horizon and period, and Sec-
tion 3 develops the distinction between time planning and event planning.
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136 Michael D. Intriligator and Eytan Sheshinski

Section 4 presents a formal framework for the analysis of these choices.
This framework leads in Section 5 to five theorems on planning. The the-
ory is illustrated in Section 6 by the problem of a monopolistic firm ad-
justing prices in a situation of inflation. Conclusions are summarized in
Section 7.

Before turning to the specific aspects of planning, it is important to
consider both the nature of planning in several different organizations
and its usefulness.

In many organizations, both public and private, planning is embodied
in a budget or, more typically, in an interrelated set of budgets. There
are often many overlapping plans at various levels, such as the operating
and capital budgets in a corporation. There can be severe problems in
obtaining consistency between these plans and in integrating short- and
long-term plans, for example, annual budgets and five-year plans.

In other institutional settings, planning can take other forms. An ex-
ample is household expenditure planning, which can involve purchases
at fixed times (e.g., buy groceries on Monday), purchases when certain
levels of goods fall below predetermined critical levels (e.g., purchase gas-
oline when the tank is one-quarter full), or purchases at random times
(e.g., impulse purchases). A related example is inventory planning. Yet
another example is the problem of a monopolistic firm revising its prices
in a period of inflation (as discussed in Section 6) where there are costs
associated with this action (e.g., printing new catalogs); the firm must
determine both when to revise prices and what the new prices will be.
Another example is a change in government, involving political rather
than economic decisions. One alternative is the presidential system, in
which a new administration is elected every certain number of years (e.g.,
four years in the United States and six years in Mexico). An alternative
is the parliamentary system, such as that found in Western Europe and
Canada, in which a new government is elected when there is a vote of no
confidence. A third alternative is the quasipermanent system, such as that
found in Eastern Europe and in most developing nations, in which a gov-
ernment lasts until a leader dies or the next coup replaces it. On the basis
of these examples, it is clear that planning includes many different situa-
tions and a great variety of institutional contexts.

2 Horizon and period

Two fundamental decisions that must be made in advance of any specific
plan and in any specific institutional setting concern the horizon and the
period of the plan. The horizon of the plan is the time period covered by
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Toward a theory of planning 137

the plan, whereas the period of the plan is the time period during which
the plan remains in effect. These decisions are often made on the basis of
traditional choices or rules of thumb rather than on the basis of conscious
choices. Perhaps the most widely used rule of thumb is the annual bud-
get, for which a plan covering one year (the horizon) is revised annually
(the period). These traditional choices of horizon and period are based
on seasonal factors, especially the harvest in agricultural planning. In
other settings, they have been replaced by more deliberately chosen alter-
natives that are more appropriate to the particular set of decisions to be
made. For example, many major corporations use capital budgets that ex-
tend over three years and are revised every six months, involving a three-
year horizon and a half-year period. Another example is a consumer who
plans purchases over horizons longer than one year, as recognized in the
permanent income hypothesis, but who may revise plans more frequent-
ly than once a year, for example, a four-year horizon and a four-month
period.

In most traditional approaches to planning, the horizon decision is
linked to the period decision by the requirement that the time interval
covered by the plan be the same as the interval between successive plans,
so that the horizon and the period are equal. This requirement is clearly
not necessary. It is possible (and generally desirable) to have plans over-
lap by choosing a horizon that is longer than the period. Such a choice
implies that the decisions can be made over a long enough horizon to take
account of their long-range impacts, although at the same time these deci-
sions can be revised in the light of new information. In practice, this pro-
cess of having a horizon longer than the period is frequently achieved by
having both short- and long-term plans, the former referring to the pe-
riod of the plan and the latter referring to the horizon of the plan.

The choice of a particular horizon and period depends on the degree
of uncertainty concerning the decisions to be made.2 Substantial uncer-
tainty, particularly over the very long term, would imply that there is
little value in planning over a very long horizon. An example is the use of
relatively short horizons in the development of high-technology projects,
such as advanced energy and weapons systems, because of their high de-
gree of uncertainty. In such projects, short horizons of sequential deci-
sions and prototypes result in more informed decisions than does inte-
grated development, since each stage in the sequence can use information
obtained during a previous stage.

However, whereas an infinite horizon is generally not optimal because of
substantial uncertainty, a zero horizon is also generally not optimal since
there is usually some information about the near future, and decisions
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138 Michael D. Intriligator and Eytan Sheshinski

as to this near future are closely interrelated to those pertaining to the
present. Thus, as stated in Theorem 1 (see Sec. 5), a positive but finite
horizon is generally optimal.

Cost factors, in particular the costs of planning and of processing new
information, are also important considerations in the choice of a partic-
ular horizon and period. Theorem 3 (see Sec. 5) states that if there were no
costs of planning, then it would be desirable to plan over the indefinite fu-
ture and to revise plans each instant, thus resulting in a rolling plan with
a zero period and an infinite horizon.3 All planning entails some costs,
however, so it is generally desirable to choose a finite horizon and a non-
zero period for a plan.

Political, social, legal, and other constraints often set limits on the
horizon and period of a plan. For example, the requirement that Con-
gress must approve the U.S. federal budget implies that the period can-
not exceed two years. In general, the horizon and period for many orga-
nizations, particularly for governments, are closely related to the decision
makers' length of tenure.

3 Time planning and event planning

Decisions concerning the period of the plan can be made in several dif-
ferent ways. The traditional approach is time planning, in which the plan
is revised after a fixed time interval has elapsed. Examples include the
one-year period for annual budgets, the six-month period frequently used
for corporate capital budgets, and the four-year U.S. presidential term.
An alternative approach is event planning, in which the plan is revised
after a certain event or set of events occurs. The event that triggers the
drawing up of a new plan is usually closely related to the goals of the
decision maker. Frequently, it is defined as the time that one or a set of
the state variables describing the system under consideration reaches a
particular value or values.

An example of event planning is a portfolio manager who reviews the
portfolio when certain market measures reach predetermined values (e.g.,
the Dow Jones average passes above a particular ceiling or below a par-
ticular floor). By contrast, the portfolio manager who reviews the port-
folio at fixed dates (e.g., the first of each month) would be an example
of time planning. A second example of event planning is national eco-
nomic planning in which a new fiscal plan is drawn up in the event of war
or if inflation or unemployment rises above particular critical levels. A
similar example is household expenditure planning in which the plan is
revised in the event of a major illness or a loss of a job. A fourth example
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Toward a theory of planning 139

is inventory planning in which a reorder decision may be triggered when
inventory falls below a certain level. A specific illustration of this last
example of event planning is the (s, S) inventory policy in which new
inventory is ordered when the level of inventory falls below s and enough
is ordered to bring the level up to S.4 This inventory policy may be con-
trasted to the (/, T) policy of time planning in which new inventory is
ordered at fixed times /, with enough ordered to carry (expected) positive
levels of inventory up to time T.5 This optimality of the (s, S) policy is an
example of the general optimality of event planning in situations of un-
certainty, formalized below as Theorem 5. A fifth example is investment
for capacity expansion, where the time phasing of new investment de-
pends on a projection of future demand.6

Hybrid planning represents a combination of time planning and event
planning. In this case, either time or some event(s) can trigger a new plan
being developed. Typically, a new plan is formulated if either a partic-
ular event occurs or a certain time interval has passed since the last plan
revision. An example is the formulation of a new fiscal plan if either one
year has elapsed since the last plan or if the inflation or unemployment
rate exceeds 10 percent. Another example is a parliamentary system in
which a new government is elected if there is a vote of no confidence or if
five years has elapsed since the last election. This approach to planning
has the desirable properties of both pure types of planning. It recognizes
the existence of uncertainty by allowing events to trigger action. At the
same time, it recognizes that a particular event or small set of events can-
not embody all relevant information concerning a system.

Theorem 5 states that in any system involving uncertainty, revising
plans on the basis of events is preferable to revising plans only on the
basis of time. Thus, if the results of the plan or the state of the world are
uncertain, then events should influence the period of the plan. A major
problem of event (or hybrid) planning, however, is identifying the par-
ticular event(s) that would trigger the new plan. The event(s) should sum-
marize relevant information available concerning the state of the system,
involving certain significant changes in some fundamental variables of
the system. Given a relevant index or set of indexes, the particular level(s)
that would trigger a new plan would generally depend on the cost of plan-
ning and the opportunity cost of not revising the plan.7

4 A formal framework for the analysis of planning decisions

The concepts introduced so far, those of horizon, period, and time ver-
sus event planning, can be defined and analyzed in a formal framework.
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140 Michael D. Intriligator and Eytan Sheshinski

This framework is introduced and used here to characterize optimal
choices of horizon and period and in the next section to develop five theo-
rems on planning. The development of the formal framework proceeds
in four steps: from the overall planner to a sequence of subproblems to
the individual subproblem planner to the overall results.

4.1 Overall planner

In the first step, the overall planner must select a trajectory over the en-
tire time interval from time t0 for a set of control variables. Letting a(t)
be the vector of control variables at time /, the overall planner, starting
at time t0, solves the problem of maximizing expected net benefit

maxV0 = E\r B(x(t),a(t))e-rt dt-Ce'"0). (1)

Here [a(t)\ refers to the entire trajectory for ot(t) from /0 to oo; Vo is ex-
pected net benefit, to be maximized by the choice of trajectories for the
control variables; B(x(t),a(t)) is the benefit derived from the vector of
state variables x(t) and the vector of control variables a(t), discounted
at the rate r, which is assumed given; and C is the cost of planning the
trajectory (o:(/)}, which is incurred at time t0. Benefits are discounted
continuously, and the costs of planning are discounted from the begin-
ning of the period when they are incurred.

The system dynamics are given by the equations of motion

= f(x(t),a(t)9u(t),t), (2)

x(to)=xo, (3)

where f(x(t),a(t), u(t), t) gives the time rate of change of each of the
state variables in x as functions of their levels x{t)\ the control variables
a(t); a stochastic disturbance term u(t), which provides the underlying
uncertainty in the problem and is assumed independent of x(t) and a(t);
and possibly time itself.8 The initial state of the system x0 and initial time
t0 are given in (3).

4.2 Sequence of subproblems

In the second step, the overall planner is assumed to treat this problem by
breaking it into a sequence of subproblems due to the complexity of for-
mulating a trajectory over the entire interval [/0, oo). The overall planner
chooses a sequence of decisions times t0, tx, t2, ...,/'T, tT+],... and dele-
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Toward a theory of planning 141

gates the problem of choosing the trajectory to a sequence of planners.
The zeroth planner is responsible for the interval [/0, tx), the first planner
is responsible for the interval [/,, t2),..., and the /th planner is responsi-
ble for the interval [tT,tT+l). Each planner is replaced by the next planner
at the end of the interval, with the rth planner replaced at time tT+] by
the (r-hl)st planner. The rth plan is the trajectory {aT(t)} for a(t) over
the period from tTto tT+l, representing a set of decisions concerning pres-
ent and future values of certain choice variables.9 The period of the plan
is then simply the time interval between successive decisions times, period
r being

The overall planner chooses the decision times tT as the solution to the
problem

B(*(t),&V))e-rt dt-CTe-rtr[9 (4)

where [tT] is the sequence of decision times.10 Here Kis the expected net
benefit, the expectation of a sum, the sum covering all plans, indexed by
r and ranging from the initial plan at t0, corresponding to r = 0, through
all future plans, and CT is the cost at time tT of planning for period r. As
before, benefits are discounted continuously, and the costs of planning
are discounted from the beginning of each period, when they are incurred.
To solve (4), the control variables are set at expected values a(t), which
may, for example, reflect past trends or extrapolations. The state vari-
ables are also set at expected values x(t), which satisfy the equations of
motion for expected values,

= f(X(t)9a(t)9a(t)9t)9 (5)

where u(t) is the expected stochastic disturbance at time /. It is assumed
that the sequence [tT\ solves (4) subject to (5) and (6) for given expected
values of control and state variables.

4.3 Individual subproblem planner

In the third step the rth individual subproblem planner is assumed to solve
a subproblem involving not just the interval from tT to tT+] but beyond
this time to tT + HT, where HT is the horizon chosen by the rth planner.
The horizon is chosen subject to the condition that it be at least as long
as the period
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142 Michael D. Intriligator and Eytan Sheshinski

HT>tT+l-tT = PT (7)

so that there are not "gaps," that is, times for which decisions regarding
actions to be taken have not been made. It is advantageous for the rth
planner to formulate plans over the interval [tT, tT + HT), even though
only the portion from tT to tT+] is put into effect since considering the
state and controls beyond tT+] can possibly improve decisions made for
the interval up to tT+l.

n To the extent that the horizon exceeds the period,
there is an interval in which actions planned at a particular time are su-
perceded by actions planned at the next decision time, that is, by the
(r + l)st planner.

The rth planner solves

max VT = E B(x(t), a(t))e~rt dt-Cr(H7)e-rtA (8)
\aT(t)\,HT CJ'r )

subject to (2) and (3). The rth planner chooses the trajectory [aT(t)\ for
a(t) over the interval up to the horizon, from tT to tT + HT, where the
horizon HT is also chosen by this planner subject to (7). Note that the
integral ranges from tT to tT + HT and that HT influences the cost of plan-
ning since planning over a longer horizon generally entails higher costs of
planning. In general, the rth planner first chooses an optimal horizon HT

and then chooses an optimal trajectory for the control variables {aT(t)\
within an admissible class of such trajectories AT, where [aT(t)]eAT sum-
marizes all actions at time t for tT < / < tT + H7. The admissible class AT is
chosen by the overall planner, and it embodies all of the technical con-
straints of the problem.

The equations of motion are given for the rth planner by

= f(x(t)9aT{t),u(t),t) for te[tT,tT

where x(tr) is determined, in part, on the basis of actions taken by past
planners.

Figure 1 illustrates this formulation of horizon and period for the case
of a single control variable a in which the admissible set AT is the real
line, shown as the vertical axis. The decision times tT appear on the time
axis, the horizon HT gives the span over which actions are planned, and
the period PT gives the time until the plan is revised. Any one curve is a
plan aT(t) chosen at time tT. Overlapping curves indicate plans that are
superceded by later plans. In such cases, the horizon exceeds the period,
so the time interval from tT+] to HT is one in which the initial plans are
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a = DECISION
VARIABLE

PLANS.aT(t)

DECISION TIMES'.t t'

PERIODS:?,.

HORIZONS :

TIME

Figure 1. Plan aT(t), extending from tT to tT + HT, is put into effect at
decision time /T, where the horizon is HT and the period is PT = tT+] — tT.

revised and replaced by new plans. These portions of the plans are shown
as the shaded segments of Figure 1. They can be interpreted as decisions
concerning the future levels of the control variable that are superceded
on the basis of information available at a later point in time. Consider,
for example, the case of corporate capital budgeting introduced in Sec-
tion 2, for which the horizon is three years and the period is six months.
In this case, the last two and one-half years of plans are superceded and
can be revised. In such a case, it is desirable to plan over a three-year
period, but it is also desirable to reconsider and revise the plan every six
months on the basis of the most recently available information. As another
example, a U.S. president might commit his or her administration to a
series of decisions extending over perhaps ten to fifteen years or even
longer, but the latter portion of such a plan can possibly be revised by a
new administration.

4.4 Overall results

The fourth and last step is that of overall results for the overall planner
choosing decision times [tT] and delegating the problem of planning to
a sequence of planners, planner r choosing horizon HT and the trajectory
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{aT(t)\ over [tT, tT + HT) and being replaced at the end of the period tT+l

by planner r + 1. The resulting expected net benefit is

V=E[ S \^+lB(x(t),aT(t))e-rtdt-CT(HT)e-rtr), (9)

where aT(t) depends on the horizon HT. Note that V is not the sum of the
VT in (8). The system dynamics are then summarized by

) = f(x(t),aT(t),u(t),t) for te[tT9tT+l), (10)

(11)
tuT

Traditional approaches to planning utilize a fixed time interval for both
the horizon and period and set them equal to one another

as in annual budgets, where H = P = \ year. More generally, autonomous
approaches to planning utilize fixed time intervals for both the horizon
and period, which need not be equal,

HT = H>P = PT, (12)

such as the corporate capital budgets that cover three years and are re-
vised every six months, where H=3 years >P = \ year. In general ap-
proaches to planning, only condition (7) is imposed, allowing both the
horizon and the period to change over time and also allowing for the
period to be determined possibly by events as well as by the time interval,
as in the (s, S) inventory policy, parliamentary systems of government,
and investment for capacity expansion. Thus, the autonomous approach
is a special case of the general approach, whereas the traditional approach
is a special case of the autonomous approach. When u(t) is a station-
ary stochastic process, the solutions for the horizon and period involve
the autonomous approach. If u(t) is a nonstationary stochastic process,
however, the optimal horizons and periods are generally not autonomous.

The formal framework thus far has involved time planning, in which
the decision times tT are determined in (4) as certain specific times. In
event planning, the overall planner determines not the specific tT but a
decision rule under which the plan is revised when the state variables at-
tain certain values in a given revision manifold R in En + ] as

tT denned by (x(tT),tT)eR (13)

The overall planner solves (4) for R rather than for tT. An example is
the (s9 S) inventory plan where the manifold is defined by the two para-
meters s and S.
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Toward a theory of planning 145

5 Five theorems on planning

The optimal planning framework introduced in the last section leads to
five theorems on planning.

Theorem 1. In general, a positive horizon is better than a zero horizon.

Here, a zero horizon refers to the extreme case, in which decisions are
made at each instant with no account taken of future decisions over later
periods. This extreme case generally leads to a lower value of the expected
net benefit of the plan than the case of an optimal horizon, which is gen-
erally not zero and, at time /, is generally determined from the first-order
condition for problem (7):

e-iri'T+HT)--^e-r'T = O. (14)
H

The theorem holds other than in certain extreme cases, where the dif-
ference in (14) is negative when computed at HT = 0. In such cases, H* = 0
is optimal. For example, if the discount rate is infinite, r = oo, so that no
account is taken of the future, then the optimal horizon is zero. Another
extreme case is one in which the cost function is discontinuous in HT,
rising from a small (e.g., zero) value to a large (e.g., infinite) value in
moving from HT = 0 to HT > 0. In this case, it is not worthwhile to take
account of the future due to the extreme cost of doing so. In such ex-
treme cases with H* = 0, the expected net benefit function reduces to the
discounted sum of benefits less costs, as in benefit-cost analysis, where
aT(t) summarizes the decisions made at time tT. Leaving aside such ex-
treme cases, however, this type of analysis, in which no account is taken of
the future values of the state variables, in particular, the effects of current
choices on future states, is, by the theorem, generally worse than an analy-
sis in which such effects are taken specifically into account. For example,
weapons systems planning that takes into account only the first year's
cost, as was done by the Department of Defense in the 1950s, is inferior
to planning that takes into account the later years' costs as well, for ex-
ample, planning over five years or over the lifetime of the weapons system.

Theorem 2. A permanent plan is optimal when there are no costs of plan-
ning and there is no uncertainty.

Here, a permanent plan is one with an infinite period, for which P£ =
oo, so HQ = oo. In this case, all decisions are made at the outset, at r = 0,
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146 Michael D. Intriligator and Eytan Sheshinski

covering all decisions to be made in the infinite future. Once this plan is
put into effect, there is no revision of the plan. Furthermore, the horizon
is infinite, since it must cover all future time. In this case, the expected net
benefit function in (9) reduces to

V= rB(xnao(t))e-rldt-Coe-"°, (15)

as in the usual optimal control problem where ao(t) represents the time
paths of the control variables chosen at t0 and covering all future time.

To demonstrate this theorem, note that since there is no uncertainty,
the equations of motion (10) can be integrated forward from the given
x0, t0 values to yield values of the state variables at any time as functions
of the present and all past (optimal) plans,

x ( t ) = F t [ a T ( t ) 9 a t _ x ( t ) 9 . . . 9 a 0 ( t ) ] f o r t e [ t T , t T + l ) . (16)

Thus, the expected net benefit in (9) can be expressed in this case as

maxK= f \'T+l B{Ft[aT{t)9at_l(t)9...9a0(t)],aT(t))e-rl dt, (17)
T = 0 J / T

the expectation sign being dropped because of the fact that there is no
uncertainty and the cost function being dropped because of the assump-
tion of no costs of planning. Consider an increase in Po = t] —10, or, equiv-
alently, an increase in tx since t0 is fixed. All of the later periods PT can be
adjusted in such a way that there is no change in each of the integrals in
(7) starting from r = 1. Thus, the effect of the increase in /,, which would
reduce the second integral from tx to t2, can be offset entirely by an in-
crease in t2. The effect of the increase in t2 can, in turn, be offset by an
increase in t3, and so on. Then the effect of an increase in tx is

Since this partial is positive for all tx, the optimal /, is infinite, so PQ = °°,
involving a permanent plan. Since Ho > Po, it follows that //0* = oo. Thus,
in this case, a permanent plan, with P* = i /* = oo, is optimal.

Theorem 3. A rolling plan with an infinite horizon is optimal when there
are no costs of planning and there is uncertainty.

Here a rolling plan is one with a zero period, P* = 0, so decisions are
being continuously revised in the light of new information. In this case,
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a = DECISION VARIABLE

-H-l/2
t = TIME

Figure 2. The plan a*(t) is optimal conditional on information avail-
able up to tT, specifically all xt for t < tT. The plan a*+1/,2(0 is optimal
conditional up to tT+l/2.

the benefit and cost functions take explicit account of the effects of cur-
rent decisions on all future values of the state variables.

This theorem can be illustrated using a geometric argument. Consider
the optimal plan a*(t) at time tT conditional on information available up
to time /T, specifically the set of all xt for / < tT. In the case of a single
decision variable, this optimal plan is shown as the solid curve in Figure
2, and it remains in effect from tT to tT+l. Consider now dividing the in-
terval in half, at tT+l/2, allowing for a revision of the plan at this half-
way point. The plan a*(t) is now in effect from tT to tT+l//2- A new plan
a?+i/2(t) starts at /T+1/2, shown as the dotted curve Figure 2. This new
plan, which remains in effect from tT+]/2 to tT+], uses information avail-
able from tT to tT+l/2, specifically the values assumed by xt for tT<t<
tT+\/2- This information was not available at time tT since xt is affected by
the stochastic term ur This added information may be of use in planning
over the period from tT+x/2 to tT+l. Thus, the value of the expected net
benefit function must be greater or at least no worse for the shorter in-
terval between planning times. The same division-in-half argument can
then apply for /T + 1 / 4 . The argument can continue to be applied for any
finite interval between successive plans so long as the two assumptions -
that xt is affected by the stochastic term (so there is a value in using the
information in the later part of the interval between plans) - and that
there is no cost of planning (so there is no cost in using a shorter interval
between plans) are maintained. The result of this process is an optimal
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period P* = 0. As to the horizon, as long as there are no costs of plan-
ning, there is no reason to select any horizon short of an infinite one,
since there may be a benefit and since there is no cost in selecting as long
a horizon as possible. Thus, in this case, a rolling plan with an infinite
horizon for which P* = H* = oo is optimal.

Theorem 4. In the absence of uncertainty, time planning and event plan-
ning are equivalent in having the same net payoff.

Here time planning refers to a choice of horizon and period based on
specific time intervals, and event planning, as discussed in Section 3, re-
fers to planning in which these choices are triggered by events. Specifi-
cally, in event planning, the plan is revised when the state variables attain
values in a given revision manifold R as in (13).12 Time planning, then,
is the special case for which the revision manifold does not depend on
x(tT), with it depending only on the tr. In the case of certainty, where the
future of the system can be determined solely on the basis of decisions
made by the planner, events can be predicted exactly, so there is no dif-
ference between time planning and event planning.

To demonstrate this theorem, note that here, as in Theorem 2, no un-
certainty makes it possible to integrate the equations of motion forward
to obtain the values of the state variables as functions of all past plans,
as in (16). Time planning and event planning are then equivalent. Know-
ing the times t* at which plans are optimally revised, it is possible to de-
fine the revision manifold in terms of these /*, independent of x(tT). Con-
versely, given the optimal revision manifold /?*, knowledge of the time
paths of the state variables implies that it is possible to determine ex-
plicitly those times t* such that (x(t*), t*)eR*.

Theorem 5. In the presence of uncertainty, event planning has a higher
expected net payoff than time planning.

With uncertainty, events cannot be predicted exactly, so taking ac-
count of new information conveyed by the state of the system, which
responds to uncertain "outside" influences as well as to the decisions of
the planner, can improve performance as measured by the expected net
benefit. An exceptional case is that for which P* = 0, as in this continuous
revision case there can be no difference between time planning and event
planning.
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X = STATE

T+l
t =TIME

Figure 3. The anticipated optimal path for the state variable is the solid
curve. Alternative possible paths are dotted. With event planning using
the revision manifold /?*, the plan is revised at t'T+x, tT+u or /"+1, de-
pending on which path is taken by the state variable.

This theorem can be illustrated using a geometric argument, as in The-
orem 3. Figure 3 shows, in the case of a single state variable, its antici-
pated optimal path from tT to tT+l as the solid curve. The plan is revised
at time tT+l. Because of the uncertainty that is present, however, the state
variable may take a different path, and two alternative paths are shown
as dotted lines. The revision manifold is given as R*. Under time plan-
ning, the plan is revised at time tT+{ (which can be considered the special
case of a vertical revision manifold at tT+i). Under event planning, the
plan is revised at time tT+{if the actual path is the same as the anticipated
optimal path or at time t'T+l or t"+l if the actual path veers away from the
anticipated optimal path. The decision to revise the plan is thus based on
information on the state, which can increase the value of the expected net
benefit of the plan.

An example of Theorem 5 on the optimality of event planning is the op-
timality of the (s, S) inventory policy. The (s, S) policy is one of reorder-
ing at times when the inventory level falls below a certain critical level s,
which is precisely event planning, decisions being determined not a priori
but in response to the (uncertain) evolution of the system. This policy is
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superior to the alternative policy of time planning, namely reordering
at certain fixed intervals.13 A fundamental theorem in inventory theory
states that (s, S) is an optimal inventory policy. Theorem 5 broadens and
extends this theorem to a wider class of problems, stating that event plan-
ning is an optimal planning policy. The next section presents an applica-
tion of event planning to yet another area, that of price adjustment in
inflation.

6 Example: price adjustment in inflation

An example of the concepts and theorems presented thus far is the plan-
ning used by a monopolistic firm in adjusting prices in a period of infla-
tion.14 Such a firm must choose a horizon for its prices, specifically over
how long a time interval it will honor the prices it announces. It must also
choose a period for its prices, specifically the length of the time interval
before it establishes new prices, and this time interval could be deter-
mined via time or event planning. A traditional plan would, for example,
be an annual catalog, where the published prices are honored for a year
and where at the end of the year a new catalog is published, entailing both
a one-year horizon and a one-year period. A less traditional plan would,
by contrast, involve a catalog published every six months where the pub-
lished prices are honored for a year, entailing a one-year horizon and a
six-month period. Such a firm must also choose between time planning,
as in these examples, or event planning, where the decision to revise prices
is influenced by the state of the system, such as the level of the aggregate
price level. For example, in event planning, prices might be revised if the
aggregate price level has risen by more than 50 percent.

All five theorems discussed earlier are relevant to this example. As in
Theorem 1, a positive horizon is better (i.e., more profitable to the firm)
than a zero horizon, with the firm honoring price commitments over the
positive horizon. As in Theorem 2, a permanent plan is optimal if there
are no costs of planning and there is no uncertainty. In this case, the firm
might, for example, simply announce once and for all the rate at which
its prices are rising. This fixed rate might be related (e.g., equal to) the
(known) inflation rate. As in Theorem 3, if there are no costs of planning
(i.e., costs of revising prices) and uncertainty, then a rolling plan is opti-
mal. In this case, the firm continually revises its prices, based on the real-
ized aggregate rate of inflation. As in Theorem 4, if there is no uncer-
tainty (i.e., inflation is perfectly anticipated), then time planning and
event planning are equivalent. Both will lead to the same level of profits,
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and the firm could revise its plan at either fixed intervals or in response to
a particular realized level of inflation. Finally, as in Theorem 5, event
planning is superior to time planning in the case of uncertainty. In this
case, where the inflation rate is not known or fully anticipated, the firm
that revises its prices based on the realized rate of inflation will have a
higher expected profit than an identical firm that revises its prices at fixed
time intervals. The remainder of this section will summarize some results
concerning the last two cases, involving the firm adjusting prices both
where inflation occurs at a known constant rate and where inflation occurs
at an uncertain rate.

The case of inflation at a known constant rate illustrates Theorem 4
on the optimality of time planning in the absence of uncertainty. Letting
p(t) be the nominal price charged by the firm at time t, if the general
price level /?(/) is rising exponentially at the known constant rate of infla-
tion g, then the real price charged by the firm is

z(t)=p(t)/p(t)=p(t)e-*',

where, by normalization, /?(0) = 1. The firm revises its nominal prices at
the times tT, starting from t0 = 0, so that over the period from tT to tT+],
the real price is given as

zT(t)=pTe-gi, te[tT9tT+l), (18)

where pT is the fixed nominal price during the period [tT,tT_l). The firm
chooses a set of decision times tT and a set of nominal prices pT so as to
maximize the total discounted profits, given, as in (9), as

oo

V — V
0 £J

Here, F(zT(t)) is the real profit function of the firm, which depends on
the real price level in (18) and is comparable to the benefit function B(-)
in (9), and /? is the real cost of nominal price adjustment assumed to be
incurred at the end of the period, tT+]. In this case of no uncertainty, the
firm can, according to Theorem 4, optimally use time planning, and She-
shinski and Weiss (1977) proved that such planning is indeed optimal. In
particular, they showed that the optimal policy is one in which the periods
PT = tT+] — tT are all equal,

PT = e9 for all r, i.e., tT+] = tT + e, for all r, (19)

and the nominal prices are chosen so that the real prices are the same at
the beginning of each period
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zT(tT) = S, for all r,
(20)

i . e . , zT(t) = Se g{t 'T\ te[tT,tT+]).

Since the periods are all the same, the real prices are the same at the be-
ginning of each period, and since inflation occurs at a constant rate, the
real prices are also the same at the end of each period

zT(tT+l) = s, for all r where s = Se~^(.

The real price thus moves between S and s in each period, declining, given
the constant nominal price, at the inflation rate g. The firm thus starts at
time t0 = 0 by setting a nominal price Po = S, and it retains this nominal
price up to time tx = e, at which time it revises the nominal price px = Seg(,
so the real price is S. It retains this new nominal price up to time t2 = 2e,
at which time it revises the nominal price to p2 = Se2fi(

9 and so on.
The interval between decision times is constant (e), and the real price

at each of the decision times is also constant (S). These two constants,
determined on the basis of the rate of inflation (g), the cost of price ad-
justment (13), and the parameters characterizing the net revenue function
(F(-)), completely characterize the optimal pricing plan of the monopo-
listic firm in a situation of inflation in which there is no uncertainty. This
solution is one of time planning, as in Theorem 4.

The case of inflation at an unknown and stochastically determined
rate illustrates Theorem 5 on the optimality of event planning in the pres-
ence of uncertainty.15 In this case, if the general price level p(t) responds
to random shocks instead of rising exponentially, then, at time /,

log/HO = S JV (21)

Here the y{ are assumed independently and are identically distributed as
h(y), and the number of random shocks influencing the system at time
t, given as Nt in (21), is determined by the Poisson process, where

so that

E(\ogp(t)) = \tE(y).

Under these assumptions, Sheshinski and Weiss (1983) proved the opti-
mality of event planning, where the firm always sets a nominal price pT at
the decision times tT so that the real price is always S at these times, as in
the case of a certain inflation rate (20). By contrast to the certainty case,
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however, in this case of uncertainty, the periods are not constant. Rather,
the real price floats down, depending on the random shocks in (21), and
the optimal policy is one of event planning where the next decision time
is determined as that time when the real price assumes the value s, as in
(s, S) inventory planning. Because of the uncertainty in the system, the
lengths of the periods are not constant, in contrast to (19), and they are
not predictable a priori. This type of event planning, where the period is
determined endogenously by the evolution of the uncertain system, yields
a higher value for expected profits than does time planning, where the
period is determined as a fixed time interval. It thus illustrates Theorem 5.

An extension of this case of price adjustment by a monopolistic firm
in the case of stochastic inflation would treat the case in which the gen-
eral price level is not known but must be determined, where its determin-
ation entails certain costs. For example, the general price level relevant to
a particular firm may be obtained only via subscribing to trade journals
or by sampling prices of firms in related markets. In such a situation, the
optimal policy is one in which the firm determines the general price level
at certain fixed time intervals but then adjusts its own price relative to the
general price level as determined at these fixed times, according to event
planning, as described above. Thus, at the time the general price level is
determined, the nominal price would be left unchanged or revised up-
ward according to whether the real price is above or below s. This case
of stochastic inflation (in which the price level must be determined) there-
fore leads to hybrid planning, combining time planning for the determin-
ation of the general price level with event planning for the revision of
the firm's nominal price.

This example of price adjustment in inflation illustrates the nature of
time and event planning, the theorem on event planning, and also the
nature of hybrid planning. It is, in fact, one of two problems discussed in
the literature where the concepts of planning (as developed here) have
been treated, the other being inventory planning, particularly the (s, S)
inventory policy. An important implication of this chapter is that these
concepts apply not just to these problems but, in fact, to a much wider
range of planning problems for not only firms but also for all planners,
whether firms, individuals, government agencies, or nations.

7 Conclusions

This chapter has identified two decisions that are part of any planning
process, namely the horizon of the plan and the period of the plan. A for-
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Table 1. Optimal planning depends on whether or not there are costs
of planning and whether or not there is uncertainty

Cost of
planning

No cost of
planning

Costs of
planning

Uncertainty

No uncertainty

Permanent plan: an initial
plan covering all future
time adopted at t0 and
never revised (Pfi=aot

Hg =00)
(Theorem 2)

Time planning or event
planning: period chosen
either as a specific time
interval or dependent on
certain events (P* and
H* can be chosen inde-
pendently of the state of
the system)
(Theorem 4)

Uncertainty

Rolling plan with an infinite
horizon: continuous revi-
sion of the plan at each
point in time, with plan-
ning over all future time
(PT* = 0, 7/;= 00)
(Theorem 3)

Event planning: period
dependent on events, with
the revision of the plan
possibly triggered by events
rather than time (P* deter-
mined as t*+ j — t*,
where (x(t*)9t*)ER*9 a re-
vision manifold at time tT)
(Theorem 5)

mal framework for planning has been introduced in which the first stage
is that of choosing the horizon and period, and the second stage is that of
choosing a specific plan. This framework has led to five theorems on plan-
ning, of which the first states that a positive horizon is generally prefer-
able to a zero horizon. The other four theorems are summarized in Table 1,
showing the optimality of different types of planning in different situa-
tions, depending on the presence or absence both of costs of planning
and of uncertainty. The problem of price adjustment in inflation illus-
trates the nature of these theorems. This problem and that of inventory
planning by the firm (in particular, the (s, S) policy) are the two cases
in which the issues treated here - in particular the concepts of horizon
and period and the contrast between time planning and event planning -
have been discussed in the literature. A principal conclusion of this chap-
ter is that these concepts can be applied to a much wider class of planning
problems.

It is hoped that this chapter will contribute toward more deliberately
set and more informed choices about planning, which can significantly
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improve performance in a wide variety of settings. It is also hoped that
models of specific planning processes, such as capacity expansion and
portfolio selection, will be expanded to include specific consideration of
the choices of horizon and period and to allow for the possibility of event
as well as time planning. Finally, it is hoped that this essay will stimulate
the further development of a pure theory of planning.

NOTES

1 For discussions of planning and its different aspects, typically in the context of
national economic policy, see Tinbergen (1952, 1954, 1956, 1964), Theil (1961,
1964), Hickman (1965), Kornai (1967), Hansen (1967), Chakravarty (1969),
Lange (1971), Heal (1973), Czerwinski and Porwit (1977), Deleau and Mal-
grange (1977), and Intriligator (1978).

2 Using a numerical linear-quadratic formulation that allows for both the cost
of uncertainty and progressively acquired information on uncontrolled fac-
tors, Deleau and Malgrange (1974) found that for a five-year horizon, revision
near the end of the period (years 3, 4, and 5) is favored. Their numerical re-
sults in fact suggest that a four-year period is optimal, with the plan being re-
vised in the fourth year. See Intriligator (1971) for a discussion of linear-qua-
dratic control problems.

3 For a discussion of a rolling plan in the context of an optimal growth model,
see Goldman (1968). For a discussion of a shifting finite time horizon, see
Inagaki (1970).

4 For a discussion of the (s, S) inventory policy, see Scarf (1960).
5 For a discussion of the (/,S) policy and its relation to the (s,S) policy, see

Naddor (1962).
6 See Srinivasan (1967) and Manne (1967). For related models dealing with the

timing of investments, see Flemming (1969), Weitzman (1970), and Dixit,
Mirrlees, and Stern (1975).

7 If there are several indicators of the state of the system, then the event trig-
gering the need for a new plan should be based on all these indicators. Radner
(1964) investigated this issue with reference to command and control decisions.
He considered the case of two sensors, such as lights on a panel, that, when
lit indicate the need for action; when not lit, involve no need for action; and
which could be accidentally turned on, involving a known probability distri-
bution. He showed that a desirable rule for action in such a case is the likeli-
hood ratio rule of acting if v̂  > wx or w2 > vv2 or min(w,, w2) > w, where w, is
the length of elapsed time during which the z'th sensor is turned on (/ = 1,2,)
and Wj, w2, and w are parameters obtained from the probability distribution
and the disutility for a type I error (do not act when should act) as compared
to that for a type II error (act when should not act). The examination of this
rule and its comparison to other rival rules is instructive, but the major prob-
lem is probably that of identifying and obtaining the sensors in the first place
or recognizing critical events, rather than in adjudicating between them.
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8 As formulated here, the stochastic disturbance term applies only to the equa-
tions of motion (2). More generally, the benefit-cost functions in (1) can also
be influenced, in part, by stochastic disturbance terms.

9 Note that a plan is a set of decisions concerning present and future values of
certain choice variables. In particular, it is not the same as a strategy, which
relates the choice variables to the state variables of the system.

10 For a similar formulation of a criterion function for a related problem, see
Sheshinski and Weiss (1977, 1978). See also Chakravarty (1969) for a related
approach.

11 As an example, weapons procurement decisions that treat only costs of the
first few years can lead to commitments with ballooning costs in later years -
the "camel's nose under the tent" approach, avoided by using longer ho-
rizons.

12 The state variables may cross these values several times. To determine at
which of these times the plan should be revised, it is necessary to discriminate
among these several crossings. One such way is to introduce as added state
variables the first, second, and higher time derivatives of the original state
variables and to discriminate on the basis of these higher derivatives.

13 For the optimality of the (s, S) policy in inventory planning, see Scarf (1960).
For the result that states that in the case of a separable cost function, the
(5, S) policy of reordering at times when the level of inventory falls below a
certain critical level (event planning) is superior to the (/,S) policy of reor-
dering at fixed time intervals (time planning), see Naddor (1962).

14 See Sheshinski and Weiss (1977, 1978) for a treatment of price adjustment in
the presence of a perfectly anticipated aggregate rate of inflation. For exten-
sions to the case in which the aggregate rate of inflation is stochastic, see
Padon (1981), Sheshinski and Weiss (1983), and Danziger (1984). For an em-
pirical analysis of price adjustment in inflation, see Sheshinski, Tishler, and
Weiss (1981). For related work on price adjustment by a monopolist firm, see
Arrow (1962) and Barro (1972).

15 The developments reported here are based on Sheshinski and Weiss (1983),
who developed event planning for the case of uncertain inflation. Danziger
(1984) also treated uncertain inflation but developed only time planning for
this case.
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