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Preface to the English Edition 

These few prefatory lines have only a very modest aim. It is 
to introduce to the reader and clarify certain aspects of the present 
work which are likely to seem to him unfamiliar. 

To begin with the discipline itself and its name uncommon in 
Western usage. The past decade saw in socialist countries a vigorous 
mathematization of the theory of planning—a process of which Oskar 
Lange was one of the principal promotors and in which he pars 
magna fuit. The immediate purpose has been to provide the planner 
with a modern effective box of tools, but inevitably this has entailed 
and propelled a search for its mathematically formalized theoretical 
infra-structure. This search has moved in many directions. It em-
braces by now such widely spread regions as the theories of systems, 
of control in the widest sense, of self-teaching and homeostatic 
mechanisms, servo-mechanisms and automata, of information, of 
decision-making including its stochastic branches (as well as theories 
of optimization including mathematical programming, theories of 
sets, of topologic algebra and so on). The broad idea is to construct 
a new discipline from bricks drawn from all the many sources: 
a discipline that is which would assimilate and integrate the various 
elements from the specific angle—that of economics, in particular 
the angle of the economics of planning. In so far as some of the 
fields of inquiry indicated have been evolved with an eye to some 
specific sciences, pure or applied—particularly physics and mechanics, 
this process would entail a suitable reformulation and readjustment. 
The discipline under construction has come to be known in that 
part of the world as economic cybernetics. As its name indicates 
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PREFACE TO THE ENGLISH EDITION 

it has been conceived as a member of the wider family stemming 
from Norbert Wiener's ideas and sharing with it at least certain 
common heuristic roots. Needless to stress, while there is little 
noticeable attempt—at least as yet—in Western economics to build 
up its "cybernetics", virtually every one of the source-disciplines we 
enumerated has attracted the attention of, and some of them are 
in wide use by the Western economist. This by itself stimulates our 
interest in the Eastern groping. 

Admittedly the author of the present book maintains that be-
cause the organization of economic processes under capitalism is 
elemental, it is rather for the socialist economy that cybernetics is 
of prime significance. For it is in a socialist economy—so he argues— 
that it has great potentialities as a basic scientific tool of manage-
ment (p. 173). 

In our submission, however, the general consideration mention-
ed apart, the Langovian version of cybernetics in particular deserves 
careful study by Western economists: this is an area of cognitive 
promise in macro-economics. This is not only so because the well 
observable trend of confluence in fundamental thinking in the theories 
of indicative and normative planning. In actual fact with respect 
to a good deal of matters treated here, Lange's reference to Moliere's 
Monsieur Jourdain and his prose is very much ä propos. On a closer 
look we discover ourselves on common ground. 

True, as already hinted, the process of the build-up of the new 
discipline is not completed. Its frontiers are still fluid and uncertain. 
There are almost as many definitions of its subject matter as there 
are writers on it. On Lange's own it is the application to economics 
of cybernetics; in turn, understood as the behavioural science of 
control and regulation of coupled systems—a very restrictive de-
finition: others adopt one embracing a far more general theory of 
manageable systems. To be sure Lange himself takes a wider approach 
in a previous publication—Whole and Parts—devoted to his philo-
sophy of cybernetics. But the present work is essentially confined 
to a formalized analysis of the technical content of its subject—as 
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defined. It is when thus organized that the discipline and its rigour 
become congenial to the Western student. 

To b^ more specific, as will be seen, the core of the Lange in-
quiry is concerned with problems in closed thematic affinity, and 
works with methods well known in the Western study of multi-
plier-accelerator systems, of closed cycle and loop control systems, 
feedback transfer functions, impulse propagation, lagged processes, 
their stability and reliability. A good deal of inspiration is patently 
owed to familiar and acknowledged sources: the latter going back as 
far as von Neumann's beautiful study of reliable organisms from 
unreliable components. Of other seminal influences one will easily 
detect first and foremost A. A. Philips, A. Tustin, R. G. D. Allen. 
Indeed in many respects, we feel, Chapter 9 of Sir Roy Allen's classic 
in mathematical economics recommends itself to the Western reader 
of the present book as an excellent prolegomenon. The kinship 
includes in fact the technique of exposition—the mathematics used— 
and its schematic-diagrammatic representation—in Lange a system-
atically employed medium. (Incidentally the level of mathematics 
expected from the reader is not too exacting: as a rule it does not exceed 
elementary calculus, differential-difference equations and matrix 
algebra and rudiments of probabilistic methods: where somewhat 
deeper knowledge of a specific analytical instrument is required 
Lange almost always comes forward with immediate aid: the expo-
sition of the algebra of operators—on which the apparatus of the 
book heavily relies—is a case in point.) 

One or two words about the specific characteristic of the pres-
ent book, related as it is to its native environment—the Polish uni-
versity students. This accounts for allusions and references to some 
factual experiences in the Polish economy possibly unknown to 
the Western reader and may be outside his sphere of interest: but 
skipping them would not affect the understanding of any major 
argument. (The reader will no doubt appreciate, and approve, one 
hopes, of the Editorial policy of presenting the original Lange 
text—in the English version—intact, without cuts or adjustments.) 

On the face of it, difficulties due to a definitional frame, the 
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knowledge of which is taken by Lange as granted but is uncommon 
to the Western economist, may appear more serious. We have in 
mind in particular the parts on growth. The original addresses of 
Lange have been brought up on Marx's model of economic growth 
and taught to think within its conceptual framework and termino-
logical scaffolding. To adopt these as one's frame of reference was 
then for the author the very natural thing to do. Patently this does 
not hold for the Western economist in general. (Again textual readjust-
ments of Lange's original would not be acceptable for Editorial 
policy reasons just indicated.) Snags could seem to begin with the 
very titles of Chapter 3 and its first two sections: in Marxian termino-
logy reproduction, simple and expanded stand for stationary state 
and growth respectively. In fact Lange employs some of such terms 
almost throughout the book. To help the reader on this count the 
Western-employed equivalent of a few basic terms has been compiled 
in the footnote.* 

* Labour, live—direct input of labour. 
Labour, means of—capital stock. 
Reproduction, simple—a system with full replacement of inputs and zero 

capital formation; stationary economy. 
Reproduction, expanded—a system of positive capital formation; economic 

growth. 
Reproduction schema—Marx's growth model. In Marxian classical notation 

it is written: 
c1+vl+mi = Px\ c2+v2+m2 — P2, 

The symbols c, v, m and P describe respectively constant capital, variable capital, 
surplus value and output; the subscripts 1 and 2 stand for Marx's two "divisions", 
i.e. section producing producer-goods and consumer-goods respectively. 

For "simple reproduction" the equilibrium condition is in Marx defined 
as c2 = v1+ml; and for "expanded reproduction" c2<vi+ml. 

The equilibrium qualified in the equations is conceived in value-terms, in 
the sense of the labour theory of value. 

Value, surplus—the part of the net product value in excess of remuneration 
paid out to labour. In the prevailing doctrine this value item has a different in-
terpretation for a capitalist and a socialist society: it will be noted, however, 
that the break-up of the "direct labour outlays" into the two components of v 
and m is not relevant for Lange's basic argument in the present context: he makes 
it clear in the context of the dynamized variant that his use of the term "value 
of the surplus product" makes it valid with respect both to a "socialist and a cap-
italist system" (cf. p. 54 fn.). 
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The element that unifies the "cybernetic" theory of growth in 
Lange is his feedback principle demonstrated immanently to underlie 
a reproduction system, be it Marx's or Keynes' or Leontief's. In 
cybernetical interpretation of the former the point of departure is 
a stationary two-sector system: thence it moves on to his growth 
scheme; and further on the model is expanded into a multisector 
one: restated in terms of the classical open static, linear input-output 
construct. (The argument rests largely on Lange's reasoning first 
presented in the mid-fifties in a paper on the fundamental agreement 
of Marx's and Leontief's systems—a celebrated paper which had 
paved the way to the revival of mathematical economics in that 
part of the world.) Next the time dimension is introduced; both 
the Keynes and the Marx models are given a dynamic shape and the 
continuous and discrete alternatives are examined. 

Lange's explicit objective is to demonstrate that "not only the 
Keynesian theory of the formation of national income in the sense 
of expenditures in the national economy, but also the Marxian 
schemata of reproduction may be interpreted and analysed on the 
basis of the general theory of regulation" (p. 57). Once the con-
ceptual and terminological equivalents have been made clear there 
is no reason why the discussion of Marxian growth system should 
not be intelligible to the Western non-specialist. Indeed, if anything, 
in this the "cybernetic" reinterpretation is likely to prove of consid-
erable help: so is, with respect to the multisector variant, the Western 
reader's familiarity with the Leontief apparatus. 

Hardly any barriers of concept or idiom are likely to be encoun-
tered by the Western reader in what follows. This is true also of 
the excursus on the dynamic market equilibrium and pricing which— 
again in terms of the feedback principle—reformulates Lange's 
approach known from his writings of both the thirties and the 
sixties—the section of his econometrics dealing with oscillatory 
market movements (including a mathematical sophistication of 
cobweb-type processes). 

The piece de resistance of the book is its two last chapters which 
synthesize it. First, a fully-fledged theory of stability is developed 
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for regulation processes both monotonically continuous and those 
operated by the governor with specific time lags. Investment policies 
are discussed as an application of the theory offered, and—within 
the same context—the problem of response to incentive is treated, 
exemplified with a case borrowed from Goldberg, restated in terms 
of Markov's chains as one of reaction probability. 

The book ends with Lange's attempt at a general theory of reg-
ulation formalized as a linear differential-difference "equation 
of response" and its solution is given for both the homogeneous 
and non-homogeneous versions. It stands out, in our submission, 
as by itself a very major contribution to the literature on the subject. 
An excellent illustration of the equation and its solution here is Ka-
lecki's business-cycle theory (on this too one will note the con-
vergence with R. G. D. Allen's thinking!). In logical sequence the 
discussion of the general theory branches out into one of the opera-
tional reliability of regulation systems, as so much else in contem-
porary economics derived from the engineer's realm—and its efficiency 
criteria evolved in probabilistic terms as mathematical expectation. 
Thus Lange links up here with his work on problems of optimal 
and efficient systems—from a technically new angle. 

In concluding these remarks we may come back to the question: 
is the build-up of the separate discipline really necessary? One 
hesitates to be apodictic. But in defence of the economic cyber-
netics independence one may plead the observable dialectics in the 
general tendency to compartmentize and at the same time to syn-
thesize disciplines. One will certainly count one's blessings when-
ever this provides an opportunity for the advance of our knowledge. 
What we said just now about Lange's important contribution to 
a general theory of regulation is a case in point, and justifies a very 
high ranking of the present book. 

It is good that Oskar Lange chose to devote the efforts of the last 
years of his life to giving shape to the nascent discipline. Professor 
Domar, in a reference to the Keynesian General Theory, is on 
record with a recent remark, that "only after Lange's comments 
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had everyone understood what Keynes really had in mind". In 
introducing the present book one feels one should join in this tribute 
to Lange's magnificent gift for helping the rigorous crystallization 
of scientific thought. 

London School of Economics ALFRED ZAUBERMAN 
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Foreword 

The application of cybernetics to the problems of managing 
the economic processes, and particularly the processes in a socialist 
economy, is the subject of constantly increasing interest. This 
prompted me to deliver, in the school year 1962/3, a series of lectures 
at the Faculty of Political Economy of Warsaw University. The 
series was entitled "Introduction to Economic Cybernetics" and 
as usual Doctor Antoni Banasinski made notes of the lectures and 
then helped me in editing them for which I express my sincere 
thanks to him. 

The limited number of hours allocated to the lectures made it 
impossible to discuss all the problems that I intended to raise. There-
fore, after the lectures were ready for printing, I added one more 
chapter on the generalized approach to the theory of regulation. 
Thus this book constitutes a certain entity concerning the application 
of the principles of the theory of control of systems to the economic 
processes. 

Because of the necessity of taking into consideration the require-
ments of the students the lectures included the presentation of the 
basic principles of the theory of control. As a result the book has 
also become an introduction to the general theory of control and 
may be of interest not only to economists but also to all those who 
are interested in this important field of contemporary cybernetics. 
As an exposition of the fundamentals of the theory of control this 
book differs from most of the other books on this subject in that 
it does not deal with specific applications to technique but it concerns 
itself rather with general cybernetic principles and mathematical 

XIV 



FOREWORD 

formulations. This applies particularly to the analysis of stability 
of systems and to the general theory of systems presented in the 
form of a uniform response equation of the system. Particular at-
tention was given to the problem of the reliability of the systems. 

Economic analyses presented in the book are not an independent 
subject of interest. They are in the nature of examples pointing out 
the possibility and usefulness of applying the principles of the gen-
eral theory of control to studying the economic processes. They 
serve as an illustration of the principles of the theory of control 
in a different field from that to which they are usually applied. This 
is also the purpose of the example from the field of the psychology 
of incentives. This emphasizes the wide scope of applications of 
cybernetics in contemporary science. 

The book does not exhaust all problems in cybernetics and their 
applications to analysis of the economic processes. It is limited to 
the part of these problems included in the theory of control of systems. 
I hope that I have succeeded in showing the diversity and a wide 
scope of applications of this theory. I also hope that this will be of 
interest to the reader and will be an encouragement to studying also 
other fields of cybernetics which are of no lesser importance to the 
analysis of the economic processes and to perfecting the methods 
of the effective management of the development of a socialist econ-
omy. 

This book is being published as the first volume of the series of 
publications by the Polish Cybernetics Society and the Polish Scien-
tific Publishers devoted to the subject of cybernetics. I am very 
grateful to the Polish Cybernetics Society and the Polish Scientific 
Publishers for including this book in the series. I am convinced 
that this will increase the interest in the book among many readers 
interested in cybernetics. 

OSKAR LANGE 
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INTRODUCTION 

Cybernetics and Economics 

The subject of this study is an analysis of the pattern of the eco-
nomic processes with the help of the contemporary scientific apparatus 
of cybernetics and particularly of its branch called the theory of 
automatic control. This theory is of great practical importance; it 
can also be used in studying the way of the functioning of the systems 
and economic processes. In this way new light can be shed on the 
problem of proper control of the course of these processes and a new 
tool is obtained for effective planning and management of the national 
economy or of its particular sectors. 

Mr. Jourdain, a hero of one of Moliere's comedies was surprised 
to be told by his teacher that he spoke in prose all his life.1 A similar 
situation exists in economics and cybernetics. From the very onset 
of the development of the political economy, economists were en-
gaged in problems which we define today as cybernetic problems. 
They were dealing with the processes of regulation and control of 
processes consisting of mutually related elements before such prob-
lems appeared in other fields of studies—in technique and biology— 
and long before they were formulated in general theoretical terms 
in a new science—cybernetics. 

Political economy, and particularly the bourgeois economics, 
regarded a capitalist economy as an automatically regulated system, 
or as we say today, as a self-regulating system. From this view the 

1 Cf. Moliere, Le bourgeois gentilhomme. 
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political and economic premises of laissez-faire were derived; ac-
cording to them the government should not interfere with the course 
of economic processes because it will only disturb the mechanism 
of self-regulation of these processes and upset the automatically 
achieved economic equilibrium. 

The theory of harmonious self-regulation of a capitalist econ-
omy was criticized by socialists, and particularly by the scientific 
socialism of K. Marx and F. Engels. Scientific socialism has proved 
that the automatic mechanism of self-regulation of a capitalist 
economy is only a link in the dialectic process of development which 
leads to increasing internal contradictions in a capitalist economy 
which, in turn, must result in the establishment of a planned socialist 
economy. Later, also bourgeois economists, and J. M. Keynes 
primarily, began to abandon the theory of harmonious self-regulation 
of a capitalist economy. They say that even if self-regulation appears 
in it, it does not necessarily lead to socially desirable results. The 
results of self-regulation in a capitalist economy may be lasting 
unemployment, the waste of resources, etc. For this reason state 
intervention is deemed necessary for controlling the pattern of eco-
nomic processes in a desired way. 

Scientific socialism was the first to expand the principle of con-
scious management of social processes as its basic historical task. 
Planning of a socialist national economy constitutes a tool of such 
management. An effective use of this tool, however, requires a very 
good knowledge of the scientific principles of the functioning of a so-
cialist economy and of controlling the pattern of its processes. 

Thus the concepts and terms such as regulation, stability, man-
agement, etc., which belong to the contemporary vocabulary of 
cybernetics, as well as the problems related to these concepts in 
economic literature appeared before they have been included in the 
study of cybernetics. 

Cybernetics is a new science. It originated in 1948 with the pub-
lication, simultaneously in France and in the United States, of the 
book by prominent mathematician Norbert Wiener, entitled Cy-
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bernetics or Control and Communication in the Animal and the Ma-
chine. 

However, cybernetics as a science had its predecessor in the 
theory of servo-mechanisms. Servo-mechanism in technique is a de-
vice which serves for controlling a technical process: a machine or 
a set of machines, electrical equipment, etc. This term is used for 
describing the mechanism which replaces man in controlling a machine 
or a technical process; servo-mechanism is a "serving mechanism".1 

The growing scope of applications of servo-mechanisms to technique 
necessitated a mathematical analysis of their functioning. This analysis 
is called the theory of servo-mechanisms or, more commonly now, 
the theory of automatic control. 

The theory of automation is now a very well developed branch 
of applied mathematics and literature on this subject is abundant.2 

Cybernetics has actually been born in consequence of the discovery 
that the theory of servo-mechanism treated as a mathematical discipline 
has a much wider scope of applications than the area of technical 
processes in industry. The theory of servo-mechanisms has found 
its most refined applications in the design of electronic computers. 
The founder of cybernetics, Wiener, discovered the existence of 
profound analogies between the functioning of servo-mechanism and 
electronic computers and the functioning of living organisms. 
This analogy appears with particular clarity between the functioning of 
electronic computers and the functioning of the central nervous 
system in living organism. For this reason these machines have 
been called "artificial brains".3 

1 On the role of servo-mechanisms in the contemporary process of production 
see O. Lange, Spoleczny proces produkcji i reprodukcji (The Social Process 
of Production and Reproduction), Ekonomista, No. 1, 1962, pp. 14-17. 

2 The following books on the theory of automation were published in 
Polish: (1) The Collective study by Czech authors: Teoria regulacji automatycz-
nej (The Theory of Automatic Regulation), Warsaw, 1962, and more popular: 
(2) Stefan W^grzyn, Podstawy automatyki (The Foundations of Automation), 
Warsaw, 1963; (3) Guido Wünsch, Podstawy automatyki (The Foundations 
of Automation), Warsaw, 1960. 

3 On this subject see John Von Neumann, The Computer and the Brain, 
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Living organisms are characterized by the ability of self-regulation. 
For instance, birds and mammals control their internal temperature 
and maintain it at a specific level automatically regardless of the 
temperature of the environment. There exists then a certain regulating 
mechanism which causes that the internal temperature of a human 
organism is maintained at the level of 37 degrees Centigrade. Similarly 
the blood pressure and other properties of a human organism are 
maintained at a specific level. In biology this phenomenon is known 
as homeosthasis. 

If self-regulation or homeosthasis in a living organism fails, 
sickness may set in, and in order to remove this it is necessary 
to restore its ability of proper functioning. 

Living organisms have also the quality of controlling their de-
velopment according to an a priori determined pattern, with a con-
siderable degree of independence of the conditions prevailing in the 
environment. Very well known in biology is the experiment performed 
by H. Driesch on the fertilized egg of a sea urchin. It turns out that 
if the embryo is cut in half then from each half as if by the same 
plan, a whole sea urchin is born.1 

Wiener has shown that the principles of self-regulation in living 
organisms are the same as the principles of automatic regulation 
in technical equipment.2 Both these instances of self-regulation may 
be presented by a common schema and a common mathematical 
theory. Wiener went even further and pointed out that the regulation 
and control of social and economic processes can be treated simi-
larly. 

Without jumping to conclusions, for the time being concerning 

New Haven, 1958 and the popular exposition by W. Slutsky, Mozg i maszyny 
(The Brain and the Machines), Warsaw, 1957. 

1 Driesch has shown that 1/4 of an early embryo suffices for the develop-
ment of a sea urchin. Attempts were made to derive philosophical conclusions 
from this fact in order to justify the contentions of the theory of neovitalism. 
On this subject see O. Lange, Whole and Parts in the Light of Cybernetics, Oxford-
Warsaw, 1965, pp. 82-83. 

2 N. Wiener, Cybernetics..., Paris-New York, 1948; see especially Chapters 4 
and 5. 
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the extent to which a capitalist economy is a self-regulating system 
and what consequences result from this, or concerning the principles 
of regulation and control of a socialist economy, it should be stressed 
that the same theoretical schemata which apply to automatic reg-
ulation and control in technique can also be applied to living or-
ganisms, as well as, in some situation, to socio-economic processes. 
In this way cybernetics came into being as a general science of 
regulation and control1 of the systems consisting of various and 
mutually related elements. 

The systems with which cybernetics deals are collections of ele-
ments connected with one another by a chain of cause-effect relations. 
This sort of relationship among the elements of a system is called 
coupling. Hence cybernetics may be defined as a science of the func-
tioning of the system of coupled operations.2 Each mechanism, in the 
narrow sense of this word, is an example of the system of coupled 
elements in which the cause-effect relationship is based on the 
principles of mechanics or electro-mechanics. The operation of one 
element is a cause of the operation of another element coupled with 
the first, the second, in turn, affects further elements coupled with 
it directly or indirectly. A similar situation exists in the system of 
coupled elements which appear in the chemical, biological and other 
similar processes and also in the socio-economic processes. These 
facts made it possible to evolve the general science of the functioning 
of the system of coupled operations under the general name of cy-
bernetics. It is usually added that cybernetics is a science of "control" 
or "management" of the systems of coupled operations.3 Some 
authors define cybernetics as a science on "machines" or "median-

1 These concepts will be defined precisely later on; also the relationship 
between control and regulation will be explained. 

2 See O. Lange, Spoleczny proces produkcji i reprodukcji (The social process 
of production and reproduction), ed. cit., pp. 13-14, and also O. Lange, Whole 
and Parts in the Light of Cybernetics, ed. cit., p. 19. 

3 The term "cybernetics" is etymologically related to the notion of steering 
because it comes from the old Greek word kybernetes, which means a "coxswain". 
The word "governor" also stems from the same Greek-Latin root. 
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isms" in the most general sense of these words,1 understanding by 
a "machine" or a "mechanism" a system of coupled and mutually 
related elements, i.e. a system of coupled operations. 

The application of cybernetics to economics serves both the 
purpose of cognition and economic practice. The heuristic purpose 
is achieved since cybernetics sheds new light on the relationships 
among the elements and the functioning of the economic systems, 
both as entire socio-economic formations and as their parts such 
as the market "mechanism", money circulation, commodity exchange 
in foreign trade, etc. These are the problems with which the science 
of economics dealt from its very onset. However, there was no 
special science which, with the help of an appropriate scientific 
apparatus, would give those studies the required precision and 
would make possible their proper formulation and solution. 

For a socialist economy cybernetics is of particular importance. 
In the socialist socio-economic system, similarly as in any other 
system, we are dealing with a set of operations of a large number 
of elements (in the final analysis these elements are particular in-
dividuals) but in a socialist planned economy, in order to achieve 
a desired result, these elements can be collected, sorted and combined 
into appropriately coupled systems. Socialism sets as a basic task 
the possibility of managing the socio-economic processes which in 
a capitalist economy develop spontaneously. This explains the fact 
that the general theory of the functioning and management of 
systems of coupled operations is of great importance in socialism. 
Particularly for the science of planning and management of the 
national economy cybernetics is becoming a very important auxiliary 
discipline. This was pointed out by N. Wiener.2 More extensive 
studies of this problem have begun several years ago both in capitalist 
and socialist countries, primarily in the Soviet Union.3 There is 

1 See, e.g., W. Ross Ashby, Introduction to Cybernetics, London, 1956, 
p. 15. 

2 See N. Wiener, Cybernetics..., ed. cit., pp. 185 ff. 
3 See especially the collective work edited by A. J. Berg, Kibernetiku na 

sluzhbu Kommunizmu, Moscow-Leningrad, 1961, vol. 1; 1964, vol. 2. 
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a wide-spread conviction that cybernetics is very important for 
managing the whole national economy and its particular sectors. 

Literature on this subject is not very extensive yet, even though 
it is now fashionable to speak and write about cybernetics in general 
and about the possibility of applying this discipline to economics. 
However, there are very few studies dealing with specific applications 
of cybernetics to economic problems. (This incidentally is a usual 
situation at the beginning of every new science.) There are, in fact, 
only two books on this subject worth mentioning: one by Tustin 
and another by Allen.1 Tustin, an electrical engineering professor, 
was the first to attempt to show how the theory of electrical net-
works can be applied to studies of economic systems and to control-
ling and regulating those systems. In the last decade a number of 
papers have been published on the application of cybernetics to 
economic theory.2 Also worth noting is a collection of essays published 
in German at Munich in 1957 under the general heading: Economic 
Regulation Processes Compared with Regulation Process in Tech-
nique? This actually exhausts the list of literature on this subject. 

We have defined cybernetics as a general science of control 
and regulation of systems of coupled operations. It studies general 
regularities and principles to which all such systems are subject, 
regardless of their nature. The statement of the existence of common 

1 R. G. Allen, Mathematical Economics, London, 1957, Chapter 9; Arnold 
Tustin, The Mechanism of Economic Systems, London, 1953, 2nd ed., 1957. 

2 Particularly worth noting are the works by: A. W. Phillips, "Stabilization 
Policy in a Closed Economy", Economic Journal, London, 1954; "Stabilization 
Policy and the Time Forms of Lagged Responses", ibid., 1957; "La Cyberneti-
que et le controle des systemes economiques", Cahiers de VInstitute des Sciences 
Economiques Appliques, serie N, No. 2, Paris, 1958. Moreover, G. A. Simon, 
"An Application of Servo-mechanism Theory to Production Control", Eco-
nometrica, 1952. See also Stafford Beer, Cybernetics and Management, London, 
1959, and J. Steindl, "Servo-Mechanisms and Controllers in Economic Theory 
and Policy" in the collective work On Political Economy and Econometrics, Essays 
in Honour of Oskar Lange, Oxford-Warsaw, 1969. 

3 The title of the original: Volkswirtschaftliche Regelungsvorgänge der 
Technik. The collection of these articles was also translated into Russian and 
published in Moscow in 1961. 
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principles of operations of technical, biological, economic and similar 
systems is the main discovery attributed to cybernetics. Particular 
principles of operations of mechanisms or of other coupled operation 
systems have been known before, but a generalization of these prin-
ciples and a determination of common regularities were lacking. 

Both A. Smith writing of an "Invisible Hand" which in an al-
legedly harmonious way controls and coordinates the economic 
processes bringing them into the state of equilibrium, and K. Marx 
in analysing the law of value as a regulator of commodity production, 
particularly in capitalism, were, in fact, dealing with the problems 
of regulation of the economic systems and thus with cybernetics. 

The discovery by cybernetics of similarities among, and the 
general principles of, the systems of coupled operations has had 
far-reaching consequences, both theoretical and practical. The 
theoretical importance of this discovery consists primarily in showing 
the existence of a structural analogy—or mathematically speaking, 
isomorphism—in the processes which take place in various fields: 
in technology, biology, economics, etc. 

It is worth mentioning that in sociology there existed an "or-
ganic school" which saw analogy between biological organisms 
and a human society. Its approach, however, was primitive and 
superficial and it sought material similarities by comparing, for 
instance, the nervous system in man's body with a telephone network, 
the veins with a transportation network, the brain with the gov-
ernment of a society, etc. These analogies were evidently wrong 
and unscientifically construed. Cybernetics has discovered a different 
and deeper analogy based on a structural similarity of the method 
of operations of systems of coupled elements. This is a serious 
scientific achievement of great consequence from the point of view 
of philosophy and of the general methodology of the sciences. 

And what is the practical importance of analogies discovered 
by cybernetics? It turns out that on the basis of these similarities 
it is possible to design in certain fields processes analogous to those 
which actually occur in other fields. For instance, it is possible to 
construct mechanisms which operate in a way analogous to certain 
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socio-economic processes.1 Such devices are called analogue com-
puters or simulating machines. 

It is possible, for instance, to present by using a hydraulic mech-
anism the pattern of inter-branch flow processes in the national 
economy and to solve certain problems in expanded reproduction.2 

In devices of this kind the formation of stocks of products is presented 
by the accumulation of liquid in certain tanks so that a decrease 
in the amount of liquid in the tank means a decrease in stocks, 
etc. Instead of a hydraulic mechanism it is possible to use an electric 
network; then the electric current replaces the flow of liquid and the 
intensity (or the power), of the current is measured in particular 
points of the network.3 Similarly, one kind of physical phenomena 
(e.g. in the field of hydromechanics) can be presented with the help 
of phenomena occurring in another branch of physics (e.g. electric 
phenomena). Thus, a hydraulic mechanism can be used instead of 
an electric one and both can serve as models of an economic process. 

Modelling devices make possible the measuring of processes 
which they reflect. This is done by measuring the quantities pro-
cessed through a given modelling device. For instance, the volume 
of liquid in a given tank of a hydraulic device represents the level 
of stocks of a given product at a given moment of time. Modelling 
devices used for measuring are called analogue computers. 

1 See A. Tustin, The Mechanism of Economic Systems, London, 1953, chap-
ters 6 and 7, and N. F. Moorhouse, R. H. Strolz, S. J. Horwitz, "An Electro-
Analogue Method for Investigating Problems in Economic Dynamics", Econo-
metrica, 1950; O. J. M. Smith and J. F. Erdley, "An Electronic Analogue for 
an Economic System", Electrical Engineering, 1952. Bibliography is given in 
the book by Tustin and other studies primarily in the periodical Econometrica. 

2 Compare Appendix 1 in the book by O. Lange, Theory of Reproduction 
and Accumulation, Oxford-Warsaw, 1969. 

3 Such an electric apparatus has been constructed according to the design 
described in the above-mentioned book by O. Lange by the members of the 
Chair of Automation at the Academy of Mining and Metallurgy in Cracow 
under the direction of Professor Henryk Gorecki with the cooperation of Pro-
fessor Boleslaw Klapkowski, the chairman of the Chair of Political Economy 
of the Academy. This apparatus is now at the Political Economy Department 
of Warsaw University. 
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Thus the discovery of the common principles of the functioning 
of systems of coupled operations in various fields resulted in designing 
analogue computers of various types and for various uses. A wide 
variety of electronic computers are now used for modelling in tech-
nique, in economics and in industrial management. The utilization 
in economic practice of the common principles of the functioning 
of systems of coupled operations is called simulation. This method, 
used particularly in industrial management, is gaining in importance. 
Simulation also makes possible the presentation by various types 
of mechanisms, of complicated processes which occur in living 
organisms. 

Cybernetics has contributed also to designing digital computers 
which serve for processing a large amount of numerical data and 
for performing certain logistic operations. 

The principles of operation of digital computers, however, 
are different from the operation of analogue computers. They are 
not based on a direct structural analogy with regard to processes 
which they are to simulate, but on the rules of logic and arithmetic. 
They do not simulate directly the pattern of physical, biological 
or socio-economic processes, but they simulate logical and arithme-
tical operations. Since, however, the rules of logic and arithmetic 
reflect, in a way, the functioning of the human brain, therefore there 
exists an indirect analogy between the operation of digital computers 
and of the brain. This analogy, so far, is not yet sufficiently known 
because we know too little about the details of the functioning of the 
central nervous system.1 

1 On this subject see the above mentioned book by J. von Neumann, The 
Computer and the Brain, ed. cit. The use of the rules of logic and arithmetic in 
digital computers is based on algorithms, i.e. on the rules of procedures leading 
to the result sought by performing a finite number of operations. In this connection 
a new branch of mathematics has been established under the name of the theory 
of algorithms. The foundations of this theory are presented by M. M. Gloushkov, 
Vvyedyeniye v kibernetiku, Kiev, 1964. 
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CHAPTER 1 

General Principles of Regulation and Control 

1. AUTOMATIC REGULATION IN TECHNIQUE 

In order to explain the process of automatic regulation or to 
present diagramatically the functioning of this process we shall 
give first several examples of automatic regulation in technology. 
Since the diagram of the operation of regulation processes is the 
same in every field in which systems of coupled operations function, 
a study of regulation in technique will enable us to develop by anal-
ogy the general theory of regulation and to express it in the form 
of models and mathematical formulae. 

FIG. 1 FIG. 2 

One of the simplest regulating devices used in technique is an 
automatic thermostat. This device is shown in the form of a diagram 
in Figs. 1 and 2 and serves for maintaining a steady temperature, 
for instance, in an apartment heated by heaters denoted by letter G. 
In general, if the outside temperature is known, we can calculate the 
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temperature in the apartment at a given flow of steam regulated by 
the valves A. And vice versa, at a given outside temperature we can 
determine the flow of steam required to maintain the temperature 
in the apartment at a specific level. Both the temperature in the 
apartment and the flow of steam to the heaters can be measured 
and expressed in numbers. 

If the temperature of the environment changes, e.g. drops, then, 
at a given supply of steam to the heaters, also the temperature in 
the apartment will drop. To maintain this temperature at a specific, 
required level (norm) it is necessary to increase the supply of steam 
to the heaters. This can be done in various ways. The simplest but 
also the most primitive way is to have a special operator for controlling 
the valve regulating the flow of steam; the operator, on the basis of 
observation of changes in the outside temperature as shown by the 
termometer or on the basis of observed changes in inside temperature, 
shifts the valve so as to increase or decrease the flow of steam. The 
operator who controls the temperature in the apartment could use 
a table determining the dependence of the supply of steam required 
to maintain a steady temperature in the apartment on the outside 
temperature, or he could act on the principle of "trial and error". 
In the latter case no tables will be needed and the regulation will 
take place through appropriate, larger or smaller, shifts in the po-
sition of valves on the basis of constant observations of the temper-
ature of the apartment. 

An analysis of the example of regulation of the temperature 
of the apartment enables us to draw the following conclusion: 

(1) Regulation can be performed by equalization of deviations of 
the real value of the effect from the required value (norm); this is 
the principle of equalization of deviations. Devices used for this 
kind of regulation are called regulators. 

(2) Regulation can also be performed by the compensation of 
disturbances. In the example considered above this would mean 
that equalization of deviations in the temperature in the apartment 
is based on changes occurring in the outside temperature. Devices 
for compensating disturbances are called compensators. 
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(3) Regulation can also be performed by the elimination of dis-
turbances. In the case of striving for the maintenance of steady 
temperature this is tantamount to striving for the elimination of the 
influence of changes in the outside temperature on the inside tem-
perature. 

It may appear that the easiest and simplest way of regulation is 
the elimination of disturbances. Indeed, devices for eliminating 
disturbances are frequently used. They are called by various names, 
e.g. shock absorbers, buffers, shields and insulators, etc. Devices 
of this kind exist also in living organisms, e.g. a turtle is protected 
by his shell from the influence of the environment and in this way 
the disturbances that could have undesirable effects on his organism 
are eliminated. 

It is not always possible, however, to use buffers, etc. and then 
regulation must be performed by the method of equalization of 
deviations or compensation of disturbances. At a first glance the 
compensation of disturbances is a simpler method than the equali-
zation of deviations, but, as we have seen, the use of the former 
in regulating the temperature of an apartment requires a quantita-
tive knowledge of the relationship that exists between the outside 
temperature and the flow of steam on the one hand, and the inside 
temperature on the other hand. This is a characteristic feature of 
the method of compensation of disturbances, which requires, as 
a rule, a considerable amount of knowledge (the knowledge of certain 
functional relationships), particularly when the sources of disturb-
ances are numerous and varied. For the implementation of the 
principle of equalization of deviations in practice such information 
is usually not required because the method of trial and error can 
be used. For this reason regulation in technology usually consists 
in the equalization of deviations, particularly when disturbances are 
unpredictable and frequent and the functional relationship between 
the intensity of disturbances and their effects is not known. Therefore 
the principle of equalization of deviations is regarded today as 
a classical method of regulation used in technique; however, it 
has been automated so that regulation by man has been replaced 
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by automation equipment. This, of course, does not affect the essence 
of the process of regulation itself. 

Figure 1 presents a diagram of automatic regulation of temperature 
in the premises on the basis of the principle of compensation of dis-
turbances, and Fig. 2 presents a diagram of automatic regulation 
by the method of equalization of deviations. In both cases the equip-
ment for automatic regulation consists of receptor C which is a tank 
filled with gas. The receptor is connected with the regulation equip-
ment proper. When the temperature outside the receptor rises the 
gas in the receptor expands and exerts the pressure on the piston 
which, in turn, puts in motion an appropriate spring, lever and 
valve thus causing a decrease in the flow of steam. And vice versa, 
when the temperature outside the receptor drops an increase in the 
flow of steam to heating equipment takes place in a similar way. 

In an analogous way the equipment for automatic regulation 
by the method of equalization of deviations (Fig. 2) is constructed 
with this difference that the receptor is placed not outside but inside 
given premises. Changes in the temperature in the premises put in 
motion immediately the mechanism of regulation of the flow of 
steam. 

Regulation based on the equalization of deviations is characterized 
by what is known as feedback in which the chain of couplings of 
the elements of a given system is closed. We say also that there 
exists then a closed loop control. In regulation based on the compen-
sation of disturbances there is no feedback because the chain of 
couplings is open. We say then that there exists an open loop control. 

It is worth mentioning here that in terminology of cybernetics 
a considerable chaos still reigns; for instance, sometimes for de-
noting the process of regulation the term control is used which means 
that some influence is exerted on the result of operations of the system 
in order to achieve a desired result. The term regulation (or steering) 
is often used in a narrower sense. 

We shall discuss now one more example of equipment used for 
regulating technical processes; historically this was the first one 
produced on an industrial scale. This is an automatic regulator of 
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the flow of steam in the steam engine invented by Watt and patented 
in 1769. This regulator consists of two heavy balls placed on the 
arms which rotate around a vertical rod with the speed depending 
upon the speed of the main shaft of the engine. If the speed of ro-
tation of the main shaft of the engine exceeds the specified norm the 
centrifugal force causes the raising of the balls and of their arms. 
Attached to the arms of the regulator is a lever with the help of 
which the valve is partly closed in the pipe through which steam is 
supplied from the boiler to the cylinders of the engine. Then the 
speed of rotations of the engine decreases which, in turn, results 
in lowering the balls of the regulator and in increasing the flow 
of steam to the engine. In this way, owing to Watt's governor, the 
rotations of the engine are stabilized at a certain specified level. 
All deviations in the speed of rotation from the specified norm are 
quickly and automatically equalized.1 

Based on a similar principle is automatic regulation of the speed 
of rotations in other mechanisms, e.g. in hydraulic turbines. Of 
course, mechanisms can be regulated in two or three ways described 
above. By mounting machines on springs and on an appropriate 
foundation we eliminate the possibility of the influence of certain 
disturbances on the working of the machine; at the same time other 
devices compensate the disturbances which have not been eliminated 
and the regulator equalizes the deviations from the norm which occur 
in the operation of the machine. In such cases we say that complex 
methods of control or regulation are used.2 

We shall now give an example of analogous methods of regulation 
of economic processes. Let us assume that we want to stabilize the 

1 The first to formulate mathematically the operation of Watt's regulator 
and of other similar regulators was the well known physicist J. C. Maxwell. 
See his work, On Governors, Proceedings of the Royal Society of London, 1868. 

2 On various methods of regulation and on complex methods see A. G. 
Ivakhnyenko, Cybernetyka techniczna (Technical Cybernetics), translated from 
Russian, Warsaw, 1964. 

From the term, "complex methods of regulation" the concept "complex 
regulation" should be distinguished. The latter occurs when many quantities 
characterizing a given process are regulated. 

15 



INTRODUCTION TO ECONOMIC CYBERNETICS 

income of the farmers (individual farmers or members of coopera-
tive farms); their incomes fluctuate considerably in particular years, 
depending upon crops. This objective can be achieved in three ways. 
Firstly, efforts can be made to maintain crops in every year at a level 
not much lower then a certain average. This would be the method 
of elimination of disturbances, which in this case is practically 
impossible since it would require from us the ability to control 
the weather. However, this objective can be partly achieved by 
progress in agricultural technique which decreases the dependence 
of the crops upon the weather. Secondly, it is possible to use the 
method of compensation of disturbances, which in this case can 
be implemented by resorting to the control of artificial water supply 
(irrigation), depending upon the weather. Thirdly, we can set up an 
appropriate equalization fund1 formed from the contributions by 
farmers in the years in which crops are higher than the average and 
from which, in turn, payments are made to the farmers in the years 
in which crops are lower than the average. This method consists in 
the equalization of deviations from the average income of the farm-
ers. 

In practice we can use also here all three methods of regulation 
of the level of income of the farmers, and thus have a complex method 
of regulation. In Poland and in many other countries a tool of reg-
ulation of the income of the farmers is the insurance fund formed 
from the premiums paid by all the farmers and used for compensating 
various random losses (floods, hurricanes, hail, fires), which occur 
in particular farms. In insurance practice all three methods of reg-
ulation are used. In the insurance language the method of regulation 
consisting in the elimination of disturbances is called preventive 
activity, the method of equalization of disturbances is called damp-
ening activity and the method of compensation of deviations is 
called insurance activity. The Polish Insurance Agency conducts all 

1 The setting up of such an equalization fund was proposed in the Soviet 
Union by S. V. Nemchinov who distinctly defines the operations of such a fund 
as a cybernetical process of automatic regulation. See S. V. Nemchinov; Eko-
nomiko-matematicheskiye metody i modeli, Moscow, 1962, p. 55. 
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three types of activity so it can be said that it uses a complex method 
of regulation. 

It is worth noting that the choice of the degree to which each 
of the above-mentioned methods of regulation should be used is 
an economic decision. It would be inadvisable, for instance, to use 
the method of compensation of disturbances at all costs if the imple-
mentation of this method turns out to be too expensive. Then, from 
an economic point of view, it may be better to use, for instance, the 
method of equalization of deviations. This is the guiding principle 
in regulation in technique. 

2. THE BASIC FORMULA OF THE THEORY OF REGULATION 

The basic concept in the science of regulation and control is 
feedback which has already been mentioned in the preceding section. 
We shall now discuss this concept in greater detail, and therefore 
shall return once more to an analysis of the course of technical 
regulation. 

Let us consider a regulated system S (it may be a steam engine, 
a turbine, heating equipment of given premises, etc.) which is influenced 
by specific activities (e.g. the supply of steam) resulting in a specific 
effect (e.g. an increase in the speed of rotation of an engine). Let 
us assume that the effect thus achieved influences certain equipment, 

—»· s 

R 

~ 

FIG. 3a FIG. 3b 

called governor R which, in turn, affects the regulated system under 
consideration. This kind of "reversed influence" is called feedback 
between the activity of governor R and the regulated system S. 

This kind of coupling can also be presented graphically in the 
form of a block or structural diagram (Fig. 3a and 3b) in which 
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the rectangle marked S denotes the regulated system and the rectangle 
marked R denotes the governor, also called the regulating system. 
The whole system which consists of the regulated system and the 
governor is called regulation system and is denoted by the symbol 
S+R in which JR and S are connected by a feedback effect. In this 
diagram the feedback effect of governor R is superimposed upon 
the input of the regulated system S, or, as we say, the superposition 
of operations occurs. This is expressed graphically either by marking 
the feedback effect of the governor on the regulated system as an 
additional input (Fig. 3a) or by marking the superposition of oper-
ations by a circle with a plus sign and by introducing as one input 
the result of this superposition (Fig. 3b). Both these ways of presen-
tation are equivalent. 

Let us now formulate more precisely the regulation system 
presented by the block diagram. There are here two systems with 
certain properties. First of all, each of these systems is influenced 
by external factors in a specific way. Resorting to an analogy from 
the field of technique we say that external influences affect the systems 
S and R by specific input. Inputs may also be treated as specific 
external states to which the system reacts in a certain way. The 
specific states of a system which influence the external environment 
are called outputs. For instance, the input in a steam engine is the 
inflow of steam and the output is the rotating speed of this engine. 
In heating equipment the input is also the flow of steam and the 
output is specified temperature, etc.1 

The system of elements connected with the environment only 
through specific inputs and outputs is called relatively isolated system.2 

1 See O. Lange, Whole and Parts in the Light of Cybernetics, ed. cit., p. 12. 
Many concepts in cybernetics, such as, e.g., input, output, coupling, have been 
borrowed from the theory of electrical networks. 

2 This term has been popularized by H. Greniewski in his works: Zasady 
logiki indukcji (The Principles of the Logic of Induction), Warsaw, 1955, p. 28 
and also Cybernetyka sposobem niematematycznym wylozona (A Non-mathemat-
ical Exposition of Cybernetics), Warsaw, 1959, pp. 11-12. The term "relatively 
isolated systems*' was used earlier in Poland in the theory of electrical works 
and in radio-technique. 
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The state of inputs and outputs of a given system can be de-
termined by numbers. If the system has only one input and one 
output, the state of its input shall be denoted by x and the state of 
its output by y. The block diagram of such a system is presented in 
Fig. 4. The numbers denoting the states of input and output are 
usually real numbers. In cases when the state of input and output 
are of a qualitative nature, i.e. they consist in the appearance or 
non appearance of a certain characteristic, two numbers 0 and 1 
may be used for denoting them; the first of them denotes the lack 
of the characteristic and the second the existence of the characteristic 
at the input or the output. 

FIG. 5 

There may be more than one input or output in a system (see 
Fig. 5). Since the state of each input and output is denoted by one 
number, the state of all m inputs and n outputs may be denoted by 
the corresponding vectors: 

X = [X\ , Χ25 · · · 9 Χγη) 

and 
y = (yi,y2, - J » ) · 

Then the block diagram of the system can be presented similarly 
as in the case of one input and one output (Fig. 4) with the difference 
that x and y will denote not single numbers but corresponding 
vectors. 

Let us now consider what happens inside the system. A certain 
operation denoted by a number (or vector) x is fed into the system 
and an operation denoted by number (or vector) y is fed out. We 
can say then that a certain transformation takes place in the system; 
we can write it in the form: 

y=Tx. (1.1) 
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Often, but not always, the transformation that takes place within 
a system can be described by a function y = f(x) which allocates 
a certain state of output y to every state of input x. In any case 
the operation of the system consists in transforming the state of 
input into the state of output. We denote this as in Fig. 6 by writing 
symbol T in the block diagram. 

y 

y 

FIG. 6 FIG. 7 

In what does the operation of the regulation system S+R con-
sist? In the regulated system S there occurs a transformation of 
the state of input x into the state of output y which we denote by 

y = Sx. (1.1a) 

As shown in the block diagram in Fig. 7 the state of output y 
of the regulated system S is introduced as the input of governor 
R which transforms it into its state of output Ax. The state of output 
of the governor is added to the value of input x of the system S 
and in the final result the state of input of the system S is x+Ax. 
A correction of the input of system S depends on the state of out-
put y. Let us denote by z the required value or the desired norm of 
the state of output of the regulated system S. The governor R should 
be set so that the correction Ax should cause the equalization of 
all deviations of the state of output y from the required value z and 
bring the state of output of the regulated system to the required 
norm, i.e. to y — z. 

It is possible to perform calculation which will determine the 
numerical results of the feedback described above. We shall assume 
first that in the regulated system there occurs a simple transformation 
which consists in multiplying the state of input by the real number S; 
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we have y = Sx. This kind of transformation is called proportional 
transformation. 

Proportional transformation is often called strengthening if 
S > 1 and weakening if S < 1. The system in which proportional 
transformation occurs is called amplifier or reducer respectively. 
The number S = y/x is called the transmittance of the system. If, 
for instance, the state of input of the system x = 3 denotes the 
amount of water which flows into a given system and the state of 
output y = 2 denotes the amount of water which flows out of the 
system, then the transmittance of this system S = y/x = 2/3 < 1; 
this means that the system is a reducer. 

The transmittance of the system S = — is a denominate number 
x 

because numbers x and y may be measured in different units. For 
instance, x may denote the amount of steam in litres which is intro-
duced into the steam engine in one second and y may denote the 
number of revolutions in the engine per second. Then the transmit-

y 
tance S = — is expressed in "revolutions per second per one litre of 
steam per second". We assume that in the governor also proportional 
transformation takes] place with the transmittance R. Then the 
correction which the governor introduces to the state of input of 
the regulated system is Ax = Ry. After introducing this correction 
we find that the state of output of the regulated system is finally 

y = S(x+Ax) = S(x+Ry) = Sx+SRy. 
Hence we obtain 

y-jA&x. (1-2) 

This is the basic formula of the theory of regulation.1 It shows 
1 In literature this formula is often given in the form: 

S 
y 1+SR*' 

because some authors give the minus sign to the transmittance of governor R 
to mark the reverse direction of the coupling of the governor with the regulated 
system. 
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the relationship between the state of output and the state of input 
of the regulated system S after taking into account the correction 
introduced by governor R. 

This formula enables us to determine the state of input—the 
input magnitude x also called the feeding of the regulation system 
required in order to obtain, with given values of S and R, the result 
y = z, so that the state of output of the regulated system equals 
the required value. To achieve this we substitute y = z in formula 
(1.2) and obtain: 

x = —^—z. (1.2a) 

If the required input magnitude x is also given then we can determine 
the transmittance R of the governor required in order to obtain 
the desired value y = z. Namely: 

* = - £ - . (L2b> 

which follows directly from the formula (1.2a). 
It will turn out that the operations of the linear regulation systems 

can be determined by the formula (1.2). The expression ·-—— 
1—oR 

is called the transmittance of the regulation system. In the case de-
scribed above, i.e. when in the regulated system and in the governor 
proportional transformation takes place the transmittance is a real 
number. 

On the basis of formula (1.2) the specific role of the governor 
can be explained. If there were no governor (R = 0) then the transmit-
tance of the regulation system would be S. The governor causes 
that the right-hand side of the formula y = Sx is multiplied by 
factor - — — which characterizes the operation of the governor. 

1 O J TV 

This can be seen even better when the formula (1.2) is presented in 
the form 
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from which it follows directly that the first factor which appears 

on the right-hand side of the formula (1.2c), i.e. - — — , determines 
1 — oxv 

the operation of the governor and the second factor determines the 

operation of the regulated system. The factor - — — expresses the 
1—oK 

feedback operation in the regulation system; we shall call it the 
feedback multiplier (or operator). Multiplication by it transforms 
the transmittance of the regulated system into the transmittance of 
the regulation system. 

3. THE KEYNESIAN MULTIPLIER 

Let us note that the feedback multiplier - — — resembles by 
1—oR 

its construction the Keynesian multiplier which plays a basic role 
in the writings of this economist. We shall show that, indeed, the 
Keynesian mutliplier can be treated as a special case of the feedback 
multiplier. 

Let us remember that Keynes considers the national income 
Y in the sense of a total sum of net expenditures (i.e. after deducting 
the depreciation of the means of production) in the national economy 
as the sum of two components: expenditures for investments A 
and expenditures for consumer goods C. The second component 
is treated as a linear function of the national income, namely C = cY 
in which c, i.e. the consumption coefficient, satisfies the condition 
0 < c < 1 which means that not all of the national income is spent 
on consumption. 

We have then 
Y=A + C=A+cYf (1.3) 

hence it follows that: 

Y=-^—--=-^—A, (1.4) 
1—c \—c 

where ----—— is called the Keynesian multiplier. 
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The similarity that exists between the basic formula of the theory 
of regulation (1.2) and the formula (1.4) enables us to give an in-
teresting interpretation of the Keynesian multiplier. We shall not 
consider here the correctness of Keynes' theory and the question 
to what extent it really reflects the process of the shaping of the 
national income in a capitalist economy. We are interested here 
only in its methodological aspect and in its formal construction. 

Let us assume that we have a certain system with the "input", 
i.e. a system influenced by a certain investment activity of the size 
x = A. The transmittance of this system S = 1, which means that 
investments result in expenditures equal to the level of investment 
outlays A. There is a feedback relation between the system and the 
governor with the transmittance R = c. After the correction intro-
duced by the governor the overall input of the first system is the 
activity of the size Y = A+cY. As a result we obtain a regulation 
system of the kind described in the preceding section with the proviso 
that the transmittance of the regulated system in this case is 1 and 

A c 
; 

C=CY 

~\ w 
k 

1 
1 

C 

Y 

Y 

FIG. 8 

the transmittance of the governor is c. This is shown in the form of 
a block diagram in Fig. 8. Let us note that the operation of the 
regulation system described in Fig. 8 is identical with the operation 

of the system without feedback with the transmittance which 
\—c 

is equal to the Keynesian multiplier (Fig. 9).1 

Let us consider now what practical applications can be found 
1 This example confirms what we said at the beginning, namely that eco-

nomists deal with problems of regulation and use formulae from the theory of 
regulation, often not knowing about it. 
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for the basic regulation formula in economics. First of all, the whole 
regulation system which consists of the regulated system S and the 
governor R may be replaced by one system with the transmittance 

-—— (Fig. 10). Secondly, using the basic formula of the theory 
1—o/v 

of regulation (1.2) we can perform certain calculations. 

FIG. 9 FIG. 10 

As we have already mentioned, if y is to have a certain desired 
value z then quantity x (the input magnitude of the regulation system) 
must amount to (formula 1.2a): 

\-SR 

In the case of a system whose transmittance equals the Keynesian 
multiplier and in which the state of input denotes the investment 
quantity A this formula will assume the form: 

A = (\-c)z. (1.5) 

We can then make the following computation: let us assume 
that P denotes net production to which there corresponds employment 
equal to aP, where a is the labour-output ratio of net production. 
If JV0 denotes the number of persons that we want to employ then it 

is necessary to ensure net production in the amount of P0 = —. 

To obtain this net production the national income (i.e. the total 
sum of expenditures) must equal P0, i.e. Y = P0} The desired value 
of Yequals then z = P0. Substituting this in formula (1.5) we obtain: 

A = (l-c)P0. (1.6) 
1 If the sum of expenditures Y were greater than the value of net production 

PQ then, to maintain equilibrium, it would be necessary to raise the prices of 
products, or to introduce rationing; if, however, Y < P0f then not the whole 
production would be sold; thus it would be impossible to realize the employment 
target N0. 
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This means that the amount of investments must be proportional 
to the desired net production and the proportionality coefficient 
is 1—c. 

On the basis of formula (1.2) we can also determine the transmit-
tance of governor R needed in order to obtain the desired value 
Y = z at the given transmittance of the regulated system S and the 
given input magnitude x. The transmittance of the regulation system, 
as we have shown before, must amount to (formula 1.2b) R = 
_ z—Sx 
= Sz ' 

If the transmittance of the regulation system equals the Keynesian 
multiplier and the input magnitude equals the amount of investment 
A then 

' = ■ —■ < > ·7> 

Formula (1.7) may be applied to solving the following economic 
problem. The amount of investment A0 is given and the desired 
state of output of the system is z = Y = P0, to ensure employment 
N0. We are to determine the consumption coefficient c, i.e. to find 
what part of the income of the population should be earmarked 
for consumption for the problem to be solved. 

Introducing the corresponding quantities in formula (1.7), we 
obtain: 

c = ^ = 4 . (1.8) 

Formula (1.8) determines the transmittance of the governor which 
transforms income into expenditures on consumption. If the transmit-
tance of the governor corresponds to this quantity, i.e. if it is possible 
to influence the distribution of income so that the consumption 
coefficient c has the value determined by the formula (1.8) then the 
above problem is soluble. 

It can be seen from formula (1.2b) that in order to obtain the 
desired value z at a given input magnitude x the transmittance of 
the governor must be directly proportional to the deviation (disturb-
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ance) z—Sx which would occur if there were no governor, and in-
versely proportional to Sz9 i.e. to the value of input magnitude that 
would be needed if there were no governor. In the case of the economic 
problem considered above the solution of which is formula (1.8), 
it turns out that the consumption coefficient must be directly pro-
portional to the difference between net production corresponding to 
the desired employment and the desired amount of investments, 
i.e. inversely proportional to net production. 

4. REGULATION AND CONTROL. TYPES OF CONTROL 

Regulation consists in ensuring such operations of the system 
in which all deviations of the state of output of the system from 
its desired value, i.e. from the norm, are equalized. This necessitates, 
as we have seen, an appropriate choice either of the input magnitude 
("feed") of the regulated system or of the transmittance of the gov-
ernor. 

The desired value, i.e. the norm of the state of output of the reg-
ulation system, may be either a constant or a variable quantity. 
In the former case, when z = const, we speak of simple regulation.1 

In the latter case we speak of controlled regulation.2 By control we 
understand the determination of every value of variable z9 i.e. of 
the variable norm of the regulation system. Regulation consists 
then in correcting deviations of the state of input of the system from 
the value of its variable norm. Regulation applies then to the equali-
zation of deviations from the norm whose value is determined by 
control. 

There are various methods of determining the variability of norm 
z. If z is defined as the desired time function of t, i.e. z = f(t), then 
we speak of programmed control and the function z = f(t) is called 
the programme of control. An example of such programmed control 
is for instance the movement of a vessel on the route determined 

1 Simple regulation is also called stabilization and the corresponding governor 
is called stabilizer. 

2 In this case the governor is called controlling device. 
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by the geographical coordinates of the points of this route. If the 
speed of the vessel is known it is possible to determine its desired 
location at any moment. The route thus determined is a programme 
of control and an automatic regulator determines possible deviations 
from the desired route and equalizes them striving in this way to 
maintain the determined course, i.e. the programme of control. 

It is not difficult to give an economic example of programmed 
control. Let P(t) denote the programme of net production in the 
period of, say, 10 years. The problem is to determine the investment 
function A(t) so that, at a given consumption coefficient c, the pro-
duction programme can be realized. In accordance with formula 
(1.4) there must exist then the following relationship between the 
production function P(t) and investments: 

P{t) = -^A{t), 

hence 
A(t)={\-c)P(t). 

Another example of programmed control are automatic machine 
tools which are usually controlled by a certain time function z = f(t). 

The desired value z does not have to be defined as a time function, 
however. The desired value z may be a function of some other quantity 
which we denote by w. We say then that we are dealing with watching 
regulation because the operation of a given system determined by 
quantity z consists, in a sense, in watching some other quantity. 
Quantity w is called the leading magnitude and the desired value, 
i.e. the norm z is called the following magnitude. The following magni-
tude z is defined by the function of the leading magnitude w which 
it watches, i.e. z =f(w). 

An example of watching regulation is, for instance, the determi-
nation of the course of a ship so that it must sail in such a way as 
to be removed from the land 10 kilometres al4 the time. The route 
of the ship is then a line parallel to the coast line. If we have a map 
we can determine the route of the ship and apply programmed 
control. If, however, we do not have a map and the land is visible 
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we can apply watching control which in this case consists in constant 
measurements of the distance of the ship from the land. The task 
of control is then to equalize the deviations, i.e. to correct the route 
of the ship when its distance from the land is greater or less than 
10 kilometres. The coast line is here the leading magnitude and the 
route of the ship is the following magnitude. 

Let us now consider another example of watching control. Liquid 
flows through two parallel pipes A and B. The speed of flow of the 
liquid in pipe B is a leading magnitude w. The task is to make the 
speed of flow of the liquid in pipe A (the following magnitude) 
equal to the speed of flow of the liquid in pipe B (the leading magni-
tude). For the technical realization of this task by the method of 
watching control it would be necessary to place in pipe B the re-
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ceptor C, i.e. the device which would measure the speed of flow 
of the liquid in pipe B; it would also be necessary to equip pipe A 
with automatic governor R which would increase or decrease the 
speed of flow of the liquid in this pipe depending upon the directions 
from the receptor C (Fig. 11). 

The known "pursuit task" is also an example of watching control. 
Let us assume that dog P which is at the starting moment located 
at a certain point of the vertical axis z chases a hare which runs 
along the vertical axis x in the positive direction. The dog changes 
the direction all the time aiming always at the point at which the 
hare is located at a given moment. If the dog changed the direction 
at some short intervals of time, e.g. every second, then the path 
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travelled by it would consist of a broken line as shown in Fig. 12a. 
At the limit, i.e. if the dog changes the direction at every moment 
the broken line tends to a continuous line which is called the pursuit 
curve (Fig. 12b). The pursuit curve actually reflects the process 
of watching control because its shape is determined by the movements 
of the fleeing hare. Its property is that the tangent at every point of 
this curve indicates the point in which at the given moment the 
hare is located. 

p 

0 zi z2 z3 

FIG. 12a FIG. 12b 

The pursuit task would change if we were to assume that the dog 
does not run thoughtlessly in the direction at which at a given mo-
ment the hare is located but, by anticipating the movements of 
the hare, runs along a straight line and tries to catch the hare by 
running by the shortest route to the point at which the routes of the 
dog and of the hare intersect. This kind of process is an example 
of anticipatory control which will be discussed later on. Such an 
anticipatory control in this case requires from the dog the knowledge 
of function w(t) of the movement of the hare. The knowledge of this 
function is not needed in an ordinary, non-anticipatory pursuit.1 

We shall give now an example of watching control as applied 
to an economic problem. As we know from the preceding section, 
the national income Y (in the sense of total expenditures) may be 

1 Let us point out here the principle used by an aircraft (or a ship) under 
enemy fire: it consists in frequent and random changes in the route. The point 
is to make impossible for the enemy to resort to anticipatory control and to 
force him to use ordinary watching control which because of the time needed 
to adjust the guns reduces his chances of scoring a hit. 

z. x 
0 x w(t) x 
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expressed as a function of the sum of investments: Y=~ A, 
\—c 

where is the Keynesian multiplier. Let us assume that we want 
\—c 

to obtain income Y of such magnitude as to ensure full employment 
at any moment of a specified period of time (e.g. five years). We 
denote by N(t) the population at the productive age at moment t, 
and by P(t) we denote the value of production at moment t and 
by a we denote labour-output ratio of net production in the national 
economy which we take as constant. We also assume that the con-
sumption coefficient c does not change in the period under consider-
ation. The problem that we want to solve consists in determining 
the amount of investments A(t) at the moment t so that there is 
always the state of full employment, i.e. that at every moment the 
following equality is satisfied: 

z(O = - ^ - = -P(0=r(0· 
a 

If the population N(t) which changes in time is taken as a leading 
magnitude1 then the solution of the problem consists in determining 
the following magnitude A(t)9 i.e. the investment programme for 
the period under consideration. From the equation 

we obtain as a result 
N(t) 

A(t)=(l-c) 
U 

This example is simplified because it does not allow for the 
fact that in a longer period of time both the labour-output ratio 
A and the consumption coefficient c change and, therefore, they 
are time functions: a(t) and c(t). However, knowing the forecasts 
for these quantities the problem which consists in determining A(t) 

1 The population at the productive age treated as a function of time can be 
arrived at on the basis of a population forecast. 

31 



INTRODUCTION TO ECONOMIC CYBERNETICS 

is soluble on the basis of an equation analogous to the one shown 
above. Namely we obtain: 

This condition must be satisfied at any given moment t. 
If A(t) is determined in accordance with this formula at partic-

ular moments t on the basis of the value of N(t) recorded at those 
moments, we are dealing with an ordinary watching control. Using 
a population forecast, however, we can determine the future values 
oiN(t) for a certain period of time (e.g. five years), and then the above 
equation enables us to determine in advance the values of A(t) 
required in this period, i.e. to plan investments. In this case control 
becomes of an anticipatory type. All economic planning is an anti-
cipatory control. 

We shall now deal with the third kind of control. It occurs when 
there is no defined leading magnitude and the task of control is to 
determine the desired value z (the norm of operation of the system) 
from the record of past controls. In other words, the desired value 
z is a function of states achieved in preceding periods or moments. 
This is called adaptive control. 

An important case of adaptive control is the process of learning 
which consists in drawing conclusions from experience in the past. 
Therefore, adaptive control is often called "the process of learning". 
Sometimes adaptive control is also called the hereditary process 
because in this process experience gained in the past is "inherited". 
The desired value is determined on the basis of "inheritance" from 
the past. 

In adaptive control the desired value at the moment t, let us 
denote it by z(t), is the function of the states of output of the system 
y achieved at the moments ί—Θΐ9 ί—Θ2, etc., i.e. the values y(t—Θ{)9 

y(t—02), etc. We write it in the following form: 
z(t)=f[y(t-01), y(t-02), ...]. 

There is the fourth kind of control in which the desired value 
(variable or constant) constitutes the maximum or minimum value 
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of a certain function. Usually such a function contains the input 
magnitude x and the transmittance S and R as well as various addi-
tional parameters. We write this in the form: z = / (* , S9 R9 additional 
parameters); then z = max/(x, S, R, parameters) or z = min/(x, 
S9 R, parameters). 

This kind of control, if z is constant, is called extremal or optimal 
control.1 

An example of such control is the anticipatory process of the dog 
chasing the hare described above, in which the dog attempts to 
catch the hare, fleeing with a known speed along a given route 
(a straight line or a curve), by taking the shortest route or in the 
shortest possible time. Another example of extreme control is the 
regulation of the rotating speed of a steam engine (or a turbine) 
so that its technical efficiency, i.e. the ratio of work performed to 
the amount of energy used up for operating the machine, is at 
a maximum. In economic problems extremal control usually consists 
in such a choice of the desired norm of the operation of the system 
as to reduce to a minimum the costs of its operation or to obtain 
a maximum income. 

The type of control mentioned above may be described in a uni-
form way. The variable norm of the regulation system is a function 
of a specified parameter which we shall call the criterion of control. 
Denoting this parameter by s we have the function z =f(s). If this 
parameter is time, i.e. s — tv/e have the case of programmed control. 
If the parameter is the quantity determined by some other process 
external to the regulation system we are dealing with watching 
control; this quantity is a leading magnitude w of control and we 
have s = w. If the parameter is an earlier state of output of a reg-
ulation system (or a collection of such earlier states) we have adap-
tive control. And finally if the parameter s is determined by the 
condition of extremization: max f(s) or min f(s), we are dealing 

1 An attempt at a systematic approach to adaptive control which is also 
extremal control is made by R. Bellman in Adaptive Control Processes, Princeton, 
1961. Bellman shows that this kind of control can be reduced to solving a certain 
dynamic programming problem. 
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with extreme control. Particular types of control are then defined 
by the nature of parameter s which is the criterion of control. 

To generalize our considerations we can assume that the norm 
of a regulation system is a function of a large number of parameters. 
We have then a multi-parameter criterion of control and we speak 
of complex control. For instance, control may be programmed with 
respect to one parameter (time), it may be of a watching type with 
respect to another parameter (the leading magnitude), adaptive 
with respect to a third parameter (depending upon earlier state of 
output) and extremal with respect to a fourth parameter (representing 
the condition of minimization of certain outlays or efforts). This 
kind of complex control is characteristic of the development of living 
organisms. The behaviour of an organism (the states of its output) 
depends upon the age of the organism (i.e. upon time as a parameter), 
upon various leading magnitudes determined by the environment, 
upon earlier behaviour of the organism (its earlier state of output), 
e.g. acquired reflex, and also upon quantities resulting from certain 
extreme conditions (e.g. the minimization of efforts). Homeostatic 
control equalizes deviations from the norm of behaviour determined 
by the factors mentioned above. 

It is worth noting that if a multi-parameter criterion of control 
contains a parameter that satisfies a condition of extremization 
as well as time as a parameter, or a parameter determined by earlier 
states of output of the systems, complex control is equivalent to 
solving a certain problem of dynamic programming. 

5. LINEAR OPERATORS 

The basic formula of the theory of regulation y = - — — x is 
1 —SR 

derived on the assumption that S and R determine proportional 
transformations which occur in the regulated system and in the 
governor respectively, i.e. that in both these systems there takes 
place transformation which consists in multiplying the state of 
input by the real numbers S or R. We shall now show that the basic 
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formula of the theory of control has a much wider scope of appli-
cation. The assumption that in the regulated system and in the gov-
ernor only proportional transformation takes place may be replaced 
by a much wider assumption. To show this we shall discuss briefly 
the elements of the operational calculus. 

As we know,r in every relatively separated system there occurs 
a transformation of the state of input x into the state of output 
y which is written symbolically as: y = Tx. The symbol T is called 
a transformation operator-, this is a rule of behaviour which deter-
mines what should be done with the state of input x to obtain the state 
of output y. It turns out that with such rules of behaviour, or with 
such transformation operators, various types of algebraic operations 
may be performed. The collection of rules of performing algebraic 
operations with operators is called operational calculus. 

We shall consider a special case of operators called linear. They 
are operators which satisfy the following two conditions: 

(1) T(cx) = cTx 

(2) T(x+v) = Tx+Tv, 

for all values of x and y which belong to a specified collection and 
the constant c. 

The first of these conditions means that the transformation 
T of the quantities ex (where c is constant) is tantamount to the 
transformation T of the quantity x multiplied by c. In other words 
the constant c may be extracted before the operator sign. 

The second condition means that linear operators have an ad-
ditive property, i.e. the transformation of the sum of quantities 
x and v is tantamount to the sum of transformation of x and the 
transformation of v. 

The simplest linear operator is the operator of proportional 
transformation which transforms the state of input x into the state 
of output y by multiplying the state of input by a certain real number 
so that y = kx where k is constant (real). The constant k is called 
the transmittance of the transformation. It should be stressed that 
the proportional transformation operator is not identical with 

35 



INTRODUCTION TO ECONOMIC CYBERNETICS 

the constant k. The operator in this case is the rule of behaviour: 
"multiply x by &". 

We shall now list basic linear operators. They are: 
(1) The proportional transformation operator, or simpler the 

operator of proportionality which was discussed above. It consists 
in multiplying the state of input x by the constant real number k. 

(2) The differential operator. Assuming that the state of input x 
is a function of a certain parameter t, i.e. x = f(t\ this operator 
means that in order to obtain the state of output we should differ-
entiate the function expressing the state of input, i.e. determine its 

derivative. The differential operator is denoted by the symbol —-, 

or simpler by D. We know from the differential calculus that the 
determination of the derivative satisfies the conditions of linearity 
of transformation because Dcx = cDx and D(x-\-v) = Dx+Dv. 

(3) The integration operator in which the state of output is obtained 
as the original function, i.e. the integral of the state of input x = / ( 0 · 
This operator is denoted by the symbol of indefinite integral / ... dt. 
It is a linear operator because a constant may be extracted before 
the sign of the integral and moreover the integral of a sum equals 
the sum of the integrals. 

(4) The finite-difference operator (the differencing operator) is 
denoted by symbol A. The meaning of this operator is that if a col-
lection of possible values of the input of the system may be presented 
as the sequence xl9 x2, ..., xn, then the operator A transforms 
the state of input xt into the difference xi+\—Xi, i.e. Axt — xi+i—Xi. 
This operator is linear because: 

AcXi = cxi+i—cXi = c(xi+l—Xi) = cAxi 

or 
A(Xi+Vi) = xi+i+vi+1—Xi—Oi = Axi+Avi. 

(5) The summation operator is denoted by the symbol Σ which 
consists simply in adding up the states of input according to a certain 
indicator /. 
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(6) The lead {shift) operator is denoted by the symbol E. If a collec-
tion of the possible values of the input of the system can be arranged 
in the form of the sequence xl9 x2, .·.,*„> then the operator E 
transforms the state of input Xi into the state of output xi+1 and, 
therefore, Ext = xi+1. 

(7) The backing (inverse shift) operator is analogous to the shift 
operator with this difference that the state of input xt is transformed 
into the state of output *,·_ι. We denote it by E~l and we write 
E~l Xi = Xi_i. It is easy to check that the last three operators are 
linear. 

In technology the systems or devices corresponding to these 
basic operators are called respectively: the proportional device 
(depending upon circumstances called an amplifier or a reducer), 
the differentiating device or the differentiator, the integrating device 
or the integrator, the lead device or the backing device (in certain 
circumstances also called the delaying (lagging) device). The defi-
nition of the sum of two operators may be written as follows: 

(T1 + T2)x= T,x+T2x. (1.9) 

This means that the sum of the operators 71 and T2 applied to x 
gives the same result as the application, once, of the operator Tx 

to x and then of the operator T2 also to x and the adding of the 
obtained results. 

Analogously we define the difference of two operators: 

(Ti-T^x = Txx-T2x. (1.10) 

The definition of the product of two operators Ti and T2 is as 
follows: 

Τ2Τγχ=Τ2(Τλχ), (1.11) 

which means that the product of the operators T2 and Tx applied 
to x consists in performing transformation Tx on x and then 
transformation T2 on the obtained result. It should be noted 
that the multiplication of operators is not always commutative, 
i.e. the transformation 7\ of x and then the transformation T2 of 
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the result may produce a different result than the transformation T2 

before the transformation T2} 
The second power of the operator is defined by multiplying the 

same operators: 
T2x= T(Tx). (1.12) 

It is easy to explain by the method of induction that the nth 
power of the operator: Tnx where n is a natural number is the «-fold 
repetition of the same transformation. 

The symbol 1/Tor T~l is called the inverse transformation operator. 
It means that if T is the transformation operator which transforms 
x into y then T~l is the transformation operator which transforms 
y into x, i.e. if y = Tx then Λ: = T~ly. 

The definition of the operator T~l enables us to define the di-
vision of operators, namely: 

Γ,:Γ2 = Ι ί - Γ ϊ 1 . (1.13) 

Finally we shall introduce the symbol of identity transformation 
T° which we shall also denote by /. The identity transformation 
transforms a given quantity x into the same quantity x9 i.e. T°x 
= Ix = x. If transformation is proportional, / is the transformation 
operator which consists in multiplication by 1 and then we can write 
/ =■ 1. This way of writing we shall use also in other cases when this 
will not give rise to misunderstandings. 

It follows from the definition of the inverse transformation 
that 

TT'1 = T'lT= Γ0 = 1, (1.14) 
because we have: 

y=Tx=TT-1y = y, 

as well as x= T~ly = T~xTx = x. 
1 For instance, the multiplication of proportional transformation operators 

is not commutative if it consists in multiplying the vector by the matrix which 
can be regarded as a certain generalization of proportional transformation. 
Similarly the multiplication of differential operators is not always commutative. 
If, for instance, we have the function f(x,y) and we denote by Dx the differential 
operator with respect to x, and by Dy the differential operator with respect to y9 

then DxDy = DyDx only if the derivative DxDyf(x,y) is continuous. 
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The operations on operators defined above enable us to substi-
tute for each other some of the basic linear operators mentioned 
above. Thus, the integration operator may be replaced by the operator 
inverse with respect to the differential operator because / ... dt = D_1. 

Similarly, the backing operator is equivalent to the operator 
inverse with respect to the lead operator which we have already 
marked by denoting it by the symbol E'1. 

The operator of forming finite differences may be expressed by 
the lead operator. Indeed, 

ΖΛΧι — Λ/_|_ι X{ — HijCi~~'Xi — \<tjj~~~ IJX}9 

and therefore A = E—\ or E = A + l. 
The formula A = E~ 1 means that the finite-difference operator 

is equivalent to the difference between the lead operator and the 
identity transformation operator. 

Also the summation operator may be expressed by the lead 
operator because we have: 

Xi = Χι-\-Εχγ-\-Ε X\ = . . . -\-E ~ X\ 

= (l+E+E2+ ... +E»-i)x1 = ^ T * i . 

Therefore, we write: 

2J ~ E-\ * 
i = l 

In this way we can confine ourselves to three of the above listed 
seven basic linear operators. We shall call them elementary linear 
operators. The remaining operators can be expressed with their 
help. As elementary operators we accept the proportionality operator, 
the differential operator and the lead operator. 

We shall now prove that the basic formula of the theory of reg-

ulation y = -—— x holds for all transformations which occur 
1 — o/v 

in the regulated system and in the governor whose operators are 
linear. 

39 

Σ 



INTRODUCTION TO ECONOMIC CYBERNETICS 

Let us assume that in a regulated system an arbitrary transfor-
mation y = Sx takes place, where the transformation operator 
S is linear. After connecting it, by feedback, with the governor 
in which there takes place the transformation Ax = Ry also with 
the linear operator R, we obtain the regulation system in which the 
following transformation takes place: 

y = S(x+Ax) = S(x+Ry). 

Since both operators (S and R) are linear then 

y = S(x+Ry) = Sx+SRy 
or 

y—SRy = Sx. 
It follows that (l-SR)y = Sx 
and writing symbolically / = 1 

S 
y = l=SRX-

This is the basic formula of the theory of regulation. We have 
proved that this formula is true if the operators S and R are linear. 

The contemporary technique of regulation and control is based 
mainly on the above basic formula. It is based on the assumption 
of linearity of operators of transformations which take place in 
the regulated system and in the governor. Regulation or control 
based on this assumption is called linear regulation or linear control. 

The theory of non-linear regulation is mathematically much 
more difficult. We shall not discuss it here. 

It can be seen from the example of the basic formula of the 
theory of regulation why it is convenient to use operational cal-
culus. It turns out that algebraic operations can be performed on 
operators and the formulae can be obtained as if these operators 
were numbers. This enables us to allocate certain numbers (or 
vectors) to operators. Let us take the transformation y = Tx where 
x and y are numbers (or vectors). Then we can write symbolically 

y y 
T = —. The ratio of the numbers (or vectors) — we allocate to the 

x x 
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operator T. This ratio is called the operational transmittance, or 
briefly the transmittance of transformation y — Tx. 

In the regulation system there appears the transmittance of 
y 

the regulated system S = — and the transmittance of the governor 

R = 
Ax The basic formula of the theory of regulation indicates 

that the system which consists of the regulated system and the gov-
ernor can be replaced by one system in which there takes place 

y S 
one transformation v = Tx with the transmittance T = — = -——. 

x 1—SR 
This transmittance is called by analogy the transmittance of the 
regulation system with this provision that we are dealing here, of 
course, with the operational transmittance. 

6. CYBERNETIC INTERPRETATION OF OPERATIONS ON OPERATORS 

Let us consider the situation in which a certain state x is an 
input of two systems with linear operators Τλ and T2, and the results 
of state x are then two states of output yxy2 which are added up and 
whose sum is denoted by y. This kind of coupling of two systems 
is called parallel coupling (Fig. 13). 

r* H 
Y__ 

n 

h 

^ 

V2 . 

FIG. 13 FIG. 14 

The transformation computations are as follows: 
yx = Txx and y2 = T2x, 

hence 
y = yi+yi = Άχ+τ2χ = {τλ+τ2)χ. 
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The result of this calculation can be presented in the form of one 
transformation y = Tx where T=Ti + T2. 

In this way we have obtained the following theorem: the transfor-
mation operator in which two systems are related by parallel coupling 
equals the sum of operators of particular systems. 

This theorem may be generalized by induction into a finite or 
infinite, but numerable, number of systems coupled in a parallel 
way. 

Let us now consider the serial coupling of two systems with 
linear operators Tx and T2 presented in Fig. 14. In serial coupling 
the state of output of one system becomes the state of output of 
another system. We have then yx = Txx and y — T2y1. Substituting 
the first transformation for yx in the second transformation we 
obtain y = T2Txx. This is equivalent to one transformation 
y — Tx whose operator is T= 7\ T2. 

We have arrived at the following theorem: the operator cor-
responding to the serial coupling of two systems equals the product 
of the operators of these systems. Also this theorem may be generalized 
by the method of induction into a finite or numerable infinite number 
of systems coupled in a serial way. 

In technology serial coupling of a larger number of systems 
is often called cascade coupling. The term stems from the fact that 
in this kind of coupling of systems the transformation of the original 
input Λ: passes through a number of thresholds corresponding to 
serial coupling systems. 

Since, as we have seen, we can allocate to linear operators the 
operational transmittance of the corresponding transformations, 
therefore, the above two theorems may be expressed also in the 
following way: the first theorem—the joint transmittance of parallel 
coupling systems equals the sum of the transmittances of these systems; 
and the second theorem—the joint transmittance of serially coupled 
systems equals the product of the transmittance of these sys-
tems. 

Let us now consider the third kind of coupling, which we have 
already mentioned, namely the feedback presented in Fig. 15. We 
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denote the transformation in the two coupled systems by y = Τλχ 
and Ax = T2y. Then the following formula holds: 

Ά 
ι-ΆΤ2 

X. 

This is equivalent to one transformation y=Tx9 where T 

1~ΆΤ2 
. The feedback of two systems results then in the multi-

plication of the operator of the first system Tx by 1 This 
1-ΆΤ2 

"multiplier" is the feedback operator. If transformations are pro-
portional this operator is equivalent to the feedback multiplier 
which we discussed above. 

We shall now deal with two more complicated couplings of 
systems. In the first example we assume that there exists a regulated 
system to which there corresponds operator S, and there exist also 
two parallel feedback systems coupled with the former, i.e. two 
governors with operators Ri and R2 respectively (Fig. 16). 
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Let us now perform operational calculation. The overall result 
of such a regulation system can be written in the form of one transfor-
mation y = Tx. Denoting by Δχχ and A2x the state of first and 
second governors respectively, i.e. Δλχ = Riy and A2x = R2y we 
obtain: 

y - S(x+AlX+A2x) = S(x+Riy+R2y) = Sx+SRiy+SR2y. 
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Hence 

and 
yil-S^-SRz)^ Sx 

y = \-S{R^R2) 
(1.15) 

It turns out that in this case the resultant operator of the whole 

operation system is T = x_s{Ri+R^ ■ 

The result obtained is then the same as if two governors coupled 
in a parallel way were replaced by one governor with the operator 
R = R1+R2. This means that instead of two governors coupled 
in a parallel way we can use one with the transmittance equal to the 
sum of the transmittances of the particular governors. This theorem 
may be generalized into any finite or infinite number of governors 
coupled in a parallel way. 

In the second example we assume that the regulation system 
consists of two regulated systems coupled with one another in a serial 
way with the operators Si and S2 respectively. And each of these 
systems is equipped with the feedback governor with the operators 

* c ^ 
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Rx and R2 (Fig. 17). The state of input of the first system is denoted 
by Xi and the state of its output by j L and the state of output of 
the second system by y. 

The overall result of operation of such a complex system we can 
write in the form of one transformation y = Tx. On the basis of 
the theorems proved above we have: 

yi l-S1R1 
X and y 
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As a result we obtain: 

»J2 *^1 ,-i Λ£\ 

1 — S2 R2 1 — *̂ 1 -*M 

Therefore, the resultant operator of the regulation system under 
consideration is: 

T — ^2 *5Ί 
1 — S2 R2 1 — S\ /vj 

The above examples of complex systems may apply to specific 
economic problems: the national income Y treated as the total 
sum of expenditures in the national economy may be divided into 
three components: Y= C+I+A where C denotes consumption, 
/—induced investments which depend upon the level of the national 
income1 and A—autonomous investments whose volume is deter-
mined regardless of the volume of the national income. 

Let us assume further that C = cx Y and / = c2 Y, while both 
the consumption coefficient 0 < cx < 1 and the induced investment 
coefficient 0 < c2 < 1. Moreover, wê  assume that Ci+c2 < 1· 
Thus we have Y = cx Y+c2Y+A. Hence: 

y = Λ * .A. (1.17) 

It follows that the operator of transformation y = TA 
which takes place in the complex system under consideration is 

T = -—> r-, where the expression -—-. is an expanded 
l - ( c !+c 2 ) ^ l — (ci+c2) 

form of the Keynesian multiplier. The block diagram of this system 
is shown in Fig. 18. It can be seen from this diagram that in the 
regulated system there occurs proportional identity transformation 
with the operator S = 1 which means that autonomous investments 
are transformed into income of the same size as investments. Coupled 

1 In the capitalist economy the size of the national income determines the 
profitability of production which, in turn, determines the volume of induced 
investments. In a socialist economy there exists a direct functional relationship 
between investments and the national income because the achievement of a certain 
level of income makes possible the planning of appropriate investment outlays. 
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with the regulated system, in a parallel way, are two governors with 
the operators cx and c2. It follows from our previous considerations 
that this kind of set of systems may be replaced by a system com-
posed of the regulated system and only one governor with the oper-
ator cx+c2 = c. Then the Keynesian multiplier will assume the 

old form- , with this provision, however, that c is now the sum 

of the consumption coefficient and the induced investment coefficient. 
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The system composed of two regulated systems, coupled in 
a serial way, with the operator S = 1, each of which has a governor 
with the operators ct and c2 respectively (Fig. 19), may be inter-
preted, from the point of view of economics, in the following way. 
In the first regulated system and in the governor corresponding to 
it, the following transformation takes place: Υλ = c^+A, therefore 

A. Let this system represent the country which obtains Yi 1 - d 
foreign credit in the amount c2 Y\ so that foreign credit is proportion-
al to the national income attained in the country. This additional 
factor, i.e. foreign credit, causes a transformation which takes place 
in the second regulated system and in its governor, namely Y= Yi 

1 „ 
-c2Y, therefore Y = 

l-c2 

Substituting in the last formula Υλ = 

l-ci 

1 A, we obtain: 

(1.18) 
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It can easily be seen that the resultant operator of the complex 

system under consideration T = · is the product of 
1— c2 1—Ci 

the multipliers of both regulation systems coupled serially. 
We shall draw certain general conclusions from the above con-

sideration. Using a cybernetic interpetation of operations on oper-
ators representing various types of couplings we can calculate the 
resultant operator of the operations of the whole set of systems. 
It follows that each system whose operator can be presented in the 
form of a sum, a difference, a product, or a quotient of other operators 
is actually a set of systems coupled with each other in a certain way. 

We have shown in the preceding section that linear operators 
may be reduced to three elementary types, namely: 

(1) The proportionality operator, i.e. the multiplication of the 
state of input by the number k; 

(2) The differential operator D; 
(3) The lead operator E. 

All remaining basic operators may be presented as the result 
of operations performed with these elementary operators. In partic-
ular using inverse transformation we obtain: 

(1) The inverse proportionality operator k~x\ 
(2) The integration operator D~l; 
(3) The backing operator E~l. 
The systems in which there takes place only transformation 

determined by the elementary operator or by the transformation 
inverse to it are called elementary systems or elements. 

In this way all systems are either elements or sets of elements 
coupled with each other in a certain way because each algebraic 
operation on elementary operators may be interpreted as a correspond-
ing coupling of elements. 

We shall now give a cybernetic interpretation of the inverse 
transformation operator denoted by the symbol T~l. Inverse transfor-
mation means that if y = Tx then x = T~1y. In a block diagram 
this can be presented as shown in Fig. 20. As a result T~lT= I, 
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i.e. the product of the operator Tand the operator T~l is the operator 
of identical transformation of x into x. 

F I G . 20 

Finally, let us consider the meaning of zero transformation in 
a cybernetic block diagram. This transformation can be written 
in the form y = (T—T)x = 0. Its interpretation is given in Fig. 21. 
It can easily be seen that zero transformation is a parallel coupling 
of a system with the operator T and of a system with the operator 

F I G . 21 

F I G . 22 

— T. The operator — T may be interpreted as a result of a serial 
coupling of a system with the operator T and the system with the 
proportionality operator —1. In consequence, the block diagram 
of zero transformation may be presented in the form shown in Fig. 22, 
representing the coupling of elementary systems. 

48 



CHAPTER 2 

Cybernetic Schemata of the Theory of Reproduction 

1. THE SCHEMA OF SIMPLE REPRODUCTION 

In this chapter we shall discuss a cybernetic analysis and inter-
pretation of the Marxian schemata of reproduction. We shall consider 
this problem initially jointly for the whole national economy and then 
we shall take into account the division of the economy into two 
parts and finally we shall consider the problem in the general form 
assuming that the national economy is divided into n branches. 

The total product X, expressed in value units, may be defined 
as the sum of three components: 

X=c+(v+m). (2.1) 

The first component c denotes the volume of outlays of the means 
of production needed to produce the amount X and the sum (v+m) 
is the outlay of direct labour.1 

Let us now introduce into our considerations the coefficient 
of outlays of the means of production and of direct labour defined, 
respectively, by the formulae: 

c A v+m 
ac=Y and av+m = —γ- (2.2) 

(where ac+aO+m = 1). 

1 The division of direct labour outlays into two components v and m is 
irrelevant in this context. 
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Then the formula (2.1) can be presented in the following form: 

X=acX+(v+m) 
or 

Hence 
(l-ac)X=v+m. 

1 
X = 

l-at 
(v+m). (2.3) 

It is evident from the form of the formula (2.3), which presents 
the process of generation of value, that there exists some feedback 

v+m 

^ 
acX 

N ^ 

r 
A 

ac 

X 

X 

FIG. 23 

relationship in this process. Indeed, the process of the formation 
of value may be presented in the form of a cybernetic block diagram 
shown below (Fig. 23). 

It follows from Fig. 23 that direct labour v+m is transformed 
into product X and this is identity transformation denoted by the 
symbol 1. Included, in some sense, in the regulated system is a gov-
ernor with the proportionality operator ac whose existence is due 
to the fact that a part of product X must be used for replacing the 
used up means of production. Transformation that takes place in 
this kind of regulation system is defined by formula (2.3). 

Let us now assume that the national economy is divided into 
two divisions: Division 1 in which the means of production are 
produced and Division 2 in which the means of consumption are 
produced. The formulae defining the total products of the particular 
divisions of the national economy we write in the following form: 

iXx = a+fa+mi) = aicJTi+(»i+/Wi) 
\X2 = c2+(v2+m2) = c2+a2(v+m)X2. 
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In the formulae (2.4) alc denotes the coefficient of outlays of the 
means of production in Division 1 and a2(v+m) denotes the coeffi-
cient of outlays of direct labour in Division 2. The well known 
condition of equilibrium of the process of simple reproduction is: 

c2 = Vi+mi. (2.5) 

This condition means that the value of the means of production 
which Division 2 acquires from Division 1, i.e. Vx+nti must be 
equal to the value of the means of consumption transferred from 
Division 2 to Division 1, i.e. c2} 

From the formulae (2.4) we obtain the transformed formulae 
for the amount of total production of the means of production and 
of total production of the means of consumption: 

1 
- ( M - I W I ) 

(2.6) 

1 a2(v+m) 

which correspond to transformation presented in the form of block 
diagrams for Division 1 in Fig. 24 and for Division 2 in Fig. 25. 

Xi = 1-
1 
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On the basis of formulae (2.6) we calculate the ratio of the values 
of total products in both divisions. Considering the equilibrium 
condition (2.5) and taking into account that 

ß2c+#2(i;+m) — 
C2 v2+m2 1 

1 A detailed analysis of this subject can be found in the book by O. Lange, 
The Theory of Reproduction and Accumulation, Oxford-Warsaw, 1969. 
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we obtain 
X\ 1—^2(y+m) a2c 

%2 1—öle 1—Ale 
Hence 

X1=-^--X2. (2.7) 
1—«ic 

Also transformation (2.7) may be presented in the form of a block 
diagram shown in Fig. 26. From the point of view of economics 
his diagram may be interpreted as follows. 

FIG. 26 

Let us assume that we intend to produce the amount X2 of the 
means of consumption and we want to know the amount of the means 
of production required for the equilibrium of the process of simple 
reproduction so that the plan can be fulfilled. To produce X2 of 
the means of consumption it is necessary to have c2 = a2cX2 of 
the means of production where alc is the coefficient of outlays of 
the means of production in Division 2. This transformation takes 
place in a system with the operator a2c. However, to produce c2 

= a2cX2 of the means of production we need again a certain amount 
of the means of production and, therefore, the system under consid-
eration must be connected by feedback, in a serial way, with the 
regulating system (governor) whose operator, as follows from (2.7), 

is equal to aic = —--, i.e. to the coefficient of outlays of the means 
Xi 

of production in Division 1. 
In a similar way as before we can obtain the ratio of the total 

product in Division 2 to the total product in Division 1: 
Xl flj_(ü+m) 

X\ 1 ö.2(u+»0 

52 



CYBERNETIC SCHEMATA OF REPRODUCTION 

and hence 

~< , n Xx- (2.8) 

The block diagram corresponding to transformation (2.8) is shown 
in Fig. 27. 

The formula (2.8) and the block diagram shown in Fig. 27 have 
the following economic meaning. Let us assume that we are planning 
to produce Xx of the means of production and we want to determine 

* 1 G1(V+/77) 

Q2(v+n 

r 

i) %2 

"\_ 
ι 

F I G . 27 

1 

a2(v + m) «* 

*l 

x2 

the amount of the means of consumption needed to realize this 
plan. To produce Xx of the means of production it is necessary to 
have the means of consumption in the amount ^i+mi = oHv+m)Xi. 
But, in turn, to produce these means of consumption it is necessary 
to have an additional amount of the means of consumption. There-
fore, in the regulation system there appears a regulating system 
connected by a feedback relationship; its operator equals α2^ν+ιη) 

= — γ — , i.e. the coefficient of outlays of direct labour in Division 2. 

2. THE SCHEMA OF EXPANDED REPRODUCTION 

We shall now discuss a cybernetic analysis of the schema of 
expanded reproduction assuming, similarly as in the preceding 
section, that the national economy is divided into two divisions. 
The Marxian schemata in the case of expanded reproduction can 
be written as follows: 

lci+vi+mlc+mlv+mi0 = Xu 
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In the first of these formulae mlc and mlv denote the parts of 
the value of the surplus product1 in Division 1 earmarked for in-
creasing the stock of the means of production and for employing 
additional labour in production, while m10 denotes the part of the 
value of the surplus product in Division 1 which is non-produc-
tively consumed. The quantities m2c, m2ü and m20 should be inter-
preted in an analogous way. The remaining quantities in the formulae 
(2.9) have the same meaning as in the preceding section. 

It is convenient to group the components which appear in the 
left-hand side of the formulae (2.9) in the following order: 

^1+^1^ + ^10 = X\ 

/ (2.9a) 

I c2+m2c \+v2+m2v+m20=X2. 
In the first of these formulae the sum Ci+mlc denotes the total 

requirements of Division 1 for the means of production, and the 
sum ^i+Tft^+Wio denotes the total requirements of Division 1 
for the means of consumption. From the form of the formulae 
(2.9a) we can also derive the known condition of equilibrium in 
the process of expanded reproduction: 

c2+m2c == Vi+miv+mu, (2.10) 

which means that the requirements of Division 2 for the means of 
production c2+m2c equal the requirements of Division 1 for the 
means of consumption for the workers already employed and for 
increasing employment vx+miv as well as for the non-productive 
consumption mi0 of a part of the value of the surplus product. 

Introducing the coefficient of outlays of the means of production 

in Division 1: alc = —~9 the coefficient of accumulation of the means 

of production in Division 1: a l c = - = ^ - , the coefficient of direct 

1 The use of the term "the value of the surplus product" enables us to inter-
pret the formula (2.9) and the following ones, as valid both with respect to a social-
ist and a capitalist economy. 
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labour outlays in Division 2: a2v = -= - , the coefficient of accumulation 
Xl 

of variable capital (i.e. the means of consumption for expanding 

employment) in Division 2: ct2v = -ττ- and the rate of non-productive 
Xl 

consumption of the value of the surplus product in Division 2: 

«20 = -^-> the formulae (2.9a) can also be presented in a different 
Xl 

way: 
iaic-yi+aic-Yi+Vi+iw^+Wio = Xi 

\ci+m2c+a2vX2+cc2vX2+oc20X2 = X2 

Hence we obtain: 
1 

Xi-

X2: 

l-(alc+ctlc) 

1 
(c2+m2c). 

(2.9b) 

(2.11) 

l — (a2v+oc2v+oc20) 

On the basis of the formulae (2.11) the process of formation 
of the value of the product in Division 1 and Division 2 can be illus-
trated by block diagrams in Fig. 28 and 29 respectively. 

V"'1r"r///1ff 

(α 2 ν,+α 2/α 2 0)Χ 2 

SH«-icc2l/U-

"Ρ*20}— 

FIG. 28 FIG. 29 
It follows from Fig. 28 that the sum ^i+m^+mjo is transformed 

identically into the product of Division 1. A part of this product 
is retained in the given division and, as follows from the first formula 
(2.11), there takes place here a transformation corresponding to the 
feedback relationship between two regulating systems, connected 
in a parallel way, whose proportional operators equal alc and alc. 
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In a similar way we can explain the operation of the regulation 
system presented in Fig. 29 with this provision that there appear 
here three regulating systems, connected in a parallel way, with the 
operators: α2υ, oc2v,

 α2ο· 
On the basis of the formulae (2.11) we can calculate the ratio 

of the total product in Division 1 to the total product in Division 2. 
Considering the equilibrium condition (2.10) of the process of 
expanded reproduction and taking into account that 

l — (ci2v+oc2v+oc2o) = a2c+cc2c9 

we obtain 

Hence 

a2c + CC2c 

*2 l - ( ö i c + a i c ) 

a2c+oc2c v 
* i = 

1—(flic+aic)" 
(2.12) 

Transformation defined by formula (2.12) is shown in the block 
diagram in Fig. 30. Let us note that in this diagram the regulated 
system with the operator a2c-{-a2c may be replaced by two systems 

a2c+azc -Φ 1 

(aic+*M 

^ c + «1C W 

*w 

*i 

FIG. 30 

coupled in a parallel way, with the operators equal to a2c and a2c, 
respectively. Similarly, the governor with the operator alc+alc 

may be replaced by two governors coupled in a parallel way with 
the operators equal to alc and alc respectively. 

It is easy to calculate in an analogous way that 

X2 = fli^+ftiü+aio 
-(a2v+ot2v + cc20) 
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and to present this transformation in a corresponding block diagram. 
An economic interpretation of the formulae (2.12) and (2.13) and 
of the block diagrams corresponding to them is similar to the inter-
pretation of the formulae (2.7) and (2.8) in the preceding section. 

Let us note finally that the formulae (2.7) and (2.8), corresponding 
to simple reproduction, are special cases of the formulae (2.12) 
and (2.13) for expanded reproduction. To ascertain that this is so 
it is enough to assume that in the formulae (2.12) and (2.13) the 
coefficients of accumulation equal zero. 

We have shown in this way that the schemata of simple and 
expanded reproduction can be explained by the basic formula of 
the theory of regulation. This is not surprising because in these 
schemata there appear feedbacks characteristic of the regulation 
processes. We can see then that not only the Keynesian theory 
of the formation of the national income in the sense of expenditures 
in the national economy, but also the Marxian schemata of repro-
duction may be interpreted and analysed on the basis of the general 
theory of regulation. 

3. THE MULTIBRANCH SCHEMA OF REPRODUCTION 

We shall now discuss a cybernetic analysis of the process of 
reproduction in the case when the national economy is divided into 
n branches. 

The input-output table corresponding to such a situation, is 
shown below. 
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In this table Xu X2, ..., Xn denote the values of total products 
in particular branches; Cij(i,j = 1, 2, ..., n) denotes the values 
of inter-branch flows of the means of production from branch i to 
branch j ; Yl9 Y2, ..., Y„ are the final products in the particular 
branches; vu v2, ..., vn are outlays of labour; mu m2, ..., mn 

are the values of the surplus product obtained in the particular 
branches of the national economy. 

On the basis of the inter-branch flow tables it is easy to write 
(by adding up the rows in the table) the following balance equations 
of product allocation: 

Xi = cn+ci2+ ... +cin+Yi (i - 1, 2, ..., ri) (2.14) 

and (by adding up the columns of the table)—the balance equations 
of production outlays: 

Xi = cu+c2i+ ... +cni+Vi+mi (i = 1, 2, ..., n). (2.15) 

After denoting, in the last equation, the sum c l i +c 2 i + ... +cni 

by Ci we obtain the following equation: 

Xi = Ci+Vi+nii (i = 1, 2, ..., n), (2.15a) 

which is of the same type as the equations appearing in the Marxian 
schemata. 

By equating the right-hand sides of the equations (2.14) and 
(2.15) we obtain the equilibrium equations of inter-branch flows which 
are equivalent to the equilibrium equations of the process of re-
production given by Marx.1 

To simplify further considerations we can introduce the outlay 
coefficients of the means of production defined by the formulae 

C' * 

1 A detailed development of the theory of inter-branch flows (multibranch 
schemata of reproduction) can be found in the book by O. Lange, Introduction 
to Econometrics, Oxford-Warsaw, 1967 and in his Theory of Reproduction 
and Accumulation, Oxford-Warsaw, 1969. 
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The balance equations of production outlays can be written as 
follows: 

Xi = aliXi+a2iXi+ ... +aniXi+vi+mi 

Hence we obtain: 

Xi = 

(i= 1,2, . . . , « ) . 

1 
1 — (flii+fl2i+ ··· +ani) 

( i = 1 , 2 , . . . , « ) · 

(Vi+mi) 

(2.16) 

(2.17) 

If the sum an+e 2 i+ ... +ani is denoted by a-, then the formulae 
(2.17) can be transformed into: 

Xi = 
1 

1-e, 
(Vi+nii) ( i = l , 2 , . . . , w ) . (2.18) 

These formulae are analogous to the formula (2.6) corresponding 
to transformation obtained on the basis of the Marxian schema of 
simple reproduction. 

Transformations defined by the formulae (2.17) may be pre-
sented in the form of a block diagram shown in Fig. 31. In drawing 
this block diagram we use the theorem on the sum of operators 
which can be interpreted as a parallel coupling of elementary systems 
(Section 6, Chapter 1). 
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Let us now deal with the balance equations of product allocation 
which, after the outlays coefficients are introduced in them, assume 
the following form: 

Xx = allX1+anX2+ ... +aaXt+ ... +ainXn+Yi (2.19) 

( i = 1 ,2 , . . . , J I ) . 

or : 

Χί(1-α») = ΣαιΛ+Υ> 0'= 1,2, ...,*), 

hence 

χι = Τ ^ (Σa"Xt+Y) Ο' = 1, 2, ..., Λ). (2.20) 

The block diagram corresponding to the equations (2.20) is shown 
in Fig. 32. 

4. THE MATRIX FORM OF THE BALANCE EQUATIONS OF 
PRODUCTION ALLOCATION AND OUTLAYS 

We shall now try to present the balance equations of product 
allocations (2.19) and the balance equations of production outlays 
(2.16) in the matrix form. Using the input coefficients we can present 
the inter-branch flows table in the following form: 

Xi\ 

Xi\ 

Xn\ 

V 

M 

αηΧχ 

<h\Xi 

an\X\ 

Vi 

mi 

\Xi 

QiiXi · 

CI22X2 ♦ 

an2X2 . 

v2 

m2 

Xi . 

.. ainXn 

. a2nXn 

• annXn 

• Vn 

.. mn 

l̂ L 

Yi 

Yn 

- Xn I 
1 
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It is easy to check by looking at this table that the system of 
balance equations of product allocation (2.19) can be expressed 
in the matrix form: 

x = Ax+y, (2.21) 

where A is the matrix of the input coefficient for the means of pro-
duction, x is the vector of total products and y is the vector of final 
products, i.e. 

A = 

an «12 · · 

«21 ^22 · 

ani an2 . 

♦ « m 

. a2n 

· · «/m 

, X = 

"Χχ' 

Xi 
' y = 

Yi 

Solving the matrix equation (2.21) we obtain: 

x—Ax = y, 
and hence 

x = (I-A)-]y; 

this can also be written in the following form: 

1 

Here / is a unit matrix, and the matrix 

■y> (2.22) 

I-A = 

1 0 . 
0 1 . 

0 0 . 

. 0 

. 0 

. 1 

— 

«11 «12 · 

«21 «22 · . 

_«nl «n2 · 

• «1« 

. a2n 

• «nn 

1—«11 —«12 · · · " « I n 

— 021 I " « 2 2 · · · —«2/i 

L —««1 «fi2 · · · 1 «rt«. 

is called, in the theory of inter-industry analysis, Leontief 's Matrix. 
The equation (2.22) has the form corresponding to the basic 

formula of the theory of regulation and can be interpreted as a cor-
responding operational equation in which vector y is the state of 
input and vector x is the state of output. Transformation consists 
here in multiplying by the matrix (this is a certain generalization 
of proportional transformation), and the matrix symbol A can also 
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be interpreted as the operator of this transformation. The cybernetic 
multi-branch schema of the theory of production can then be pre-
sented in the way shown iri Fig. 33 with the provision that the oper-

y c 

t ' 
Ax 

1 

A 

; ( 
> 

X 

v+m 
c 

A'X 

I 

A' 

K 

X 

FIG. 33 FIG. 34 

ator / denotes here multiplication by the unit matrix /, and the 
operator A denotes here multiplication by the matrix of input coeffi-
cients of the means of production. 

A similar cybernetic interpretation may also be used for balance 
equations of production outlays (2.16). Their matrix form is: 

x = A'x+(v+m)9 (2.23) 

where x, v and m are the corresponding vectors and A' denotes the 
transposed matrix A. 

Solving the matrix equation (2.23) we obtain: 

(I-A')x = v+m 
and 

x= {I~A'Y\v+m), 

which can be written in the form: 

x = 1^jT(v+m). (2.24) 

We solve the balance equations of outlays for means of production 
in a similar way as the balance equations of product allocation. 
In the formula (2.24) the input is the direct labour outlay given in 
the vector form v+m and instead of Leontief 's Matrix there appears 
in the formula (2.24) the matrix transposed with respect to it because, 
as can easily be checked I—A' = (I—A)'. A cybernetic block diagram 
corresponding to the formula (2.24) is shown in Fig. 34. 
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CHAPTER 3 

The Dynamics of Regulation Processes 

1. DYNAMIC INTERPRETATION OF THE KEYNESIAN 
MULTIPLIER AND OF THE REPRODUCTION SCHEMA 

We shall begin our discussion of the dynamics of regulation 

processes with an analysis of the Keynesian formula Y = — A 
l—c 

in which, as we know, Y stands for the national income (treated 
as the total sum of expenditures), c is the consumption coefficient 
and A denotes the volume of autonomous investments. 

The formula which Keynes used for explaining the process 
of shaping total expenditures in the national economy was intro-
duced earlier by R. F. Kahn and J. M. Clark who—dealing with 
the influence of public works on the national income—obtained 
this formula in a different way than Keynes.1 Kahn and Clark reasoned 
in the following way. The autonomous investments A in the national 
economy are transformed into income (the total sum of expenditures) 
Y. Thus the initial direct effect of the investments is given by the 
equation Y0 = A. Assuming that the level of investments is always 
the same, i.e. A, and that consumption depends upon income attained 
in the preceding period, the level of income in the following period is: 

Y1 = A+cY0 = A+cA = A(l+c)9 

where c is the consumption coefficient. 
1 See R. F. Kahn, "The Relation of Home Investment to Unemployment", 

The Economic Journal, 1931 and J. M. Clark, The Economics of Planning Public 
Works, Washington, 1935. 
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The value of income in the next period is 

Y2 = A+cY1 = A(l+c+c2) etc. 

In general, income in period t is 

Yt = A+Ac+ ... +Ac* = A(l+c+c2+ ... +c*). 

If we assume that the number of periods t -► oo and if we take 
into account that 0 < c < 1, we obtain, at the limit: 

r^-i^r. (3-D 

i.e. the known Keynesian formula. The multiplier , because 

of the way in which it is derived, is often called the dynamic multiplier. 
It follows from the reasoning by Kahn and Clark, as outlined 

above, that the activity initiated by autonomous investments causes 
a process of infinite increase in the national income. The sum of 
the effects of this process, when 0 < c < 1, tends to a finite limit 
value defined by the formula (3.1). 

In section 4 of the preceding chapter we have arrived at the 
following solution (expressed in the matrix form) of the system 
of equations of production allocation corresponding to the multi-
branch schemata of reproduction: 

x = (I-Ay'y. (3.2) 

Under certain conditions the inverse matrix (I— A)'1 may be 
presented in the form of an infinite series (called Neumann's series). 

(I-A)-1 = I+A+A2+.... (3.3) 

Then the solution of the multi-branch schema of reproduction can 
be written 

x=(I+A+A2+...)y. (3.4) 

The proof of formula (3.3) is as follows. After multiplying both 
sides of the matrix equation (3.3) by the matrix (I—A) we obtain: 

(I-A) (I-AY1 = (I~A)(I+A+A2+ . . . ) , 
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i.e. 
1= I+A+A2+ ... -A-A2~A3- .... 

Hence after reduction / = / and, therefore, (3.3) is true. 
If the series is finite I+A+A2+ ... +Am then 

F—Am+1 

I+A+A2+ ... +Am = —jZTÄ- = (Ι-Α)-\ΐ-Α'η-λ\ 

because, as we know, the rules used in matrix algebra (with the 
exception of commutative multiplication) are the same as those in 
the algebra of real numbers. 

If we assume that the matrix of input coefficients raised to the 
power m + 1 , i.e. Am+1 tends to the zero matrix when m -» oo, then 
the matrix (/— Α)~λ (I—Am) is convergent to matrix (/— A)~l when 
m -+ oo and the right-hand side of the equation (3.3) has a finite 
value. 

It follows from the assumption that Am+l->0, that also the 
transposed matrix1 (A')m+1 -+0. Indeed, it follows from the con-
dition Am+l -»O, when m -► GO,that all the elements of this matrix 
tend to zero. Therefore, also all the elements of the matrix (A')m+l 

tend to zero and this matrix tends to the zero matrix. 
The formula (3.3) is used for calculating, in practice, the inverse 

values of Leontief's matrix. It can be calculated by the method of 
consecutive approximations after developing (3.3), e.g. 

(I-A)-1 Ä I+A+A2+A\ 

The formula (3.4) enables us to calculate the solution of production 
allocation equations by the method of consecutive approximation 
(iteration), and to interpret these equations from an economic point 
of view. Indeed, the solution x = {I—A)~*y of the product allocation 
equation given in the form: 

x = y+Ay+A2y+ ... (3.5) 

may be interpreted as follows. 

1 Symbol 0 denotes here the corresponding zero matrix, i.e. the matrix 
composed of zeros only. 
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The initial total product x equals the final product, i.e. x = y 
is the first approximation to the solution (3.5). However, to produce 
the amount y of the total product we need the means of production 
in the amount of Ay. This, in turn, requires the production of the 
means of production in the amount of A(Ay) = A2y, etc. 

Thus, we have obtained an economic interpretation of the pro-
cess of formation of the national income which takes place in the 
national economy. We encounter this kind of interpretation in the 
literature on input-output analysis. 

The solution (3.5) may be interpreted also by the cybernetic 
diagram shown in Fig. 35. After the first passing of the value y 

u S7\ 
— s 

1 

rj w 
i 

I 

A 

X 

X 

FIG. 35 

through the feedback to the original value y the value Ay is added, 
which, in turn, passing again through the feedback will be increased 
by A(Ay) = A2y, etc. 

Feedback puts in motion an infinite process which leads to a finite 
limit if the matrix A has the property that Am -> 0, when m -> oo, 
i.e. when the consecutive increases in the final product Ay, A2y, 
A3y, ... become smaller and finally fade away. Thus we must find 
out when this property occurs and when the infinite series (3.5) 
is convergent and the solution of the product allocation equation 
may be presented in the form of the formula (3.4) 

2. THE CONDITION OF CONVERGENCE OF THE MATRIX Am 

In order to analyse the conditions of convergence of matrix 
Am, discussed in the preceding section, we shall use the following 
theorem of linear algebra. 
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The matrix Am tends to the zero matrix when m -> oo, if all 
the characteristic roots of the matrix have the absolute value less 
than 1. Let us remember that the characteristic roots of matrix A 
are the numbers λ which, for x Φ 0 satisfy the vector equation 

Ax = λχ. (3.6) 

This equation can also be written in the form 

(Α-λΙ)χ = 0. (3.7) 

The vector equation (3.6) or (3.7) constitutes a system of homo-
geneous linear equations and its solutions are not all equal to zero 
if the determinant of the matrix of coefficients of this system equals 
zero, i.e. if 

\Α-λΙ\ - 0 . (3.8) 

This is a characteristic equation of matrix A; the numbers which 
satisfy it are characteristic roots of the matrix. 

Multiplying the equation (3.6) by matrix A we obtain 

A2x = λΑχ, i.e. A2x = λ(λχ); 

hence 

A2x = λ2χ. 

The last equation is satisfied when the determinant 

\Α2-λ2Ι\ = 0. (3.9) 
Proceeding in this way we find that the characteristic equation 

of the matrix Am has the form Amx = λ™χ, and is satisfied when the 
determinant 

\Am-XmI\ - 0. (3.10) 

It follows from the equation (3.10) that the characteristic roots 
of the matrix Am are the rath power of the characteristic roots of 
the matrix A. From the equation Amx = Xmx with the vector x Φ 0 
it follows that Am tends to zero when Xm tends to zero, and vice versa, 
Xm tends to zero when Am tends to zero. The condition, both necessary 
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and sufficient, for Am -> 0, when m -» oo, is then that Am -* 0, when 
m -> oo. This happens only when \λι\ < 1. 

Hence it follows that the necessary and sufficient condition 
of convergence of the series Ι+Α+Α2-\-Α3+ ... is that all the 
characteristic roots of the matrix Am have the absolute value less 
than 1. 

Since the characteristic roots of the matrix A and the transposed 
matrix A' are the same, the above condition determines also the 
convergence of the series Ι+Α' + (Α')2+(Α')3+ .... 

We shall now explain the economic meaning of the condition 
\λι\ < 1. On the basis of the equation (3.6) we find that Amx = XAm~ lx 
holds. Therefore, the solution (3.5) can be written in the form: 

χ = γ+(\+λ+λ2+ ...)Ay. 

If \λ\ < 1 then the absolute values of the consecutive increments 
of the total product decrease in the ratio \λ\. The absolute values 
of the characteristic roots λ{ are then the coefficients of weakening 
of consecutive increments in the total product, resulting from the 
feedback effect. 

3. DYNAMIC INTERPRETATION OF THE BASIC FORMULA 
OF THE THEORY OF REGULATION 

Our consideration in preceding sections can be used to arrive 
at a dynamic interpretation of the basic formula of regulation: 

y = Xt ft is possible to assume, by analogy, that the feedback 
1 —o/v 

operator --■—----- which expresses the operation of the governor can 
1 —ΟΛ 

be regarded as the sum of the infinite geometric series 

I^SR = l+SR+(SR)2+(SR)3+ - ; (3-H) 
this formula makes sense (i.e. the above series is convergent) when 
the "absolute value" of SR is less than 1, i.e. \SR\ < 1. 
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The meaning of the symbol \SR\, in the general case, has not 
yet been precisely stated. We know, however, its sense in partic-
ular cases. If, for instance, the regulated system and the governor 
perform proportional transformation and thus to S and R there 
correspond real numbers by which the state of input is multiplied, 
then \SR\ has a definite meaning, because it means multiplication 
of the product of two real numbers by an absolute value. Also the 
symbol \SR\ can be determined when the operators S and R denote 
multiplication by a complex number because there exists in mathe-
matics the notion of the absolute value (modulus) of the complex 
number, which we can use here. 

In the general case, however, it does not make sense to speak 
of absolute value because the symbol of the operator T which de-
fines transformation of the state of input x into the state of output 
y, i.e. y = Tx, is a rule of behaviour to which there does not necessarily 
correspond a defined number. We need some general interpretation 
of the "absolute value" of the operator and we shall deal with this 
problem now. 

The transformation y = Tx may be written in the form T = — · 
y 

This shows that to each operator we can assign the ratio —, i.e. the 
transmittance of the system. This is the ratio of two numbers or 
vectors. Since the absolute value (modulus) of the vector is a real 
number, we can always speak of the absolute value of the transmit-

y 
tance of the system — 
rive the definition of the absolute value of the operator as the absolute 
value of its transmittance. 

Absolute value thus defined, however, is, as a rule, a variable 
quantity because the state of input x and the state of output y are, 
as a rule, variable, i.e. are time functions x(t) and y(t)9 or depend 
upon other variables. To obtain a uniquely defined constant quantity 
allocated to operator T, we take the upper boundary of the absolute 

y 

y y 
— · Thus, from the form T = — we de-
x x 

values For continuous linear operators such an upper boundary 
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always exists.1 Finally, we define the absolute value of the operator, 
also called the norm, as 

||7ΊΙ = upper boundary (3.12) 

In this way to each operator there is assigned a quantity which con-
stitutes its absolute value.2 

It turns out, then, that (SR)m -> 0 when m -► oo, if \SR\ < 1, 
i.e. if the corresponding upper boundary of transmittance is less 
than unity. Then in accordance with the results obtained in section 2, 

the sum of the infinite series l+(SR)+(SR)2+(SR)3+ ... = -—---
1 — SR 

S 
and y = [ l+(Si?)+(£K)2+ ...]SJC = -7—7^*· A s w e c a n s e e ' t h e 

1—SR 
operation of the governor consists in producing consecutive increments 
(positive or negative) in the value of the state of output^ of the reg-
ulation system. At first this state is Sx and then it increases by 
(SR)x, and further it increases by (SR)2Sx, etc. This occurs in con-
sequence of consecutive action of the state of output of the regulated 
system on its state of input by the feedback coupling with the gov-
ernor. If I SI?I < 1 then these increments get smaller and the sum of 
increments is convergent. 

The condition of convergence of the series that appears on the 
right-hand side of the formula (3.11) can also be determined by the 
characteristic roots of the operator SR. Similarly, as in the case of 
matrices we define the characteristic roots of the operator T, as the 
numerical values of the parameter λ for which there exists a non-zero 
solution of the equation 

Τχ = λχ, (3.13) 

1 See, e.g. B. Z. Vulikh, Vvyedyenye v funktsyonalnyi analyz, Moscow, 1958, 
p. 198. 

2 The upper boundary of a collection of real numbers is the real number 
g such that: (1) each number of the collection is not greater than g, (2) each 
number less than g is smaller than at least one number of the collection. 
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where quantity x is a number, vector or function. This equation can 
also be written in the following form: 

(Τ-Ιλ)χ = 0. (3.13a) 

The condition for the existence of a non-zero solution of this 
equation is 

Τ-λΙ=09 (3.14) 

i.e. that the operator T— A/is a zero operator. This is the characteristic 
equation of the operator T. The values of the parameter which sat-
isfy the characteristic equation are the characteristic roots of the 
operator T. 

Similarly as in the case of matrices we find by consecutive sub-
stitutions in the equation (3.13) that Tmx = Xmx. Therefore, for 
x Φ 0, Tm tends to zero when m increases when, and only when 
Xm -► 0. This happens when \λ\ < 1 for all the possible values of 
the characteristic roots.1 Then the series I+T+T2+ ... is con-
vergent and its sum is ———, i.e. (I—T)~l. 

Using the characteristic roots we can write the feedback operator 
(3.11) in the following form: 

1 
2 ■= 1 + (1+λ+λ2+ ...)SR 

l-SR 

and the basic formula of the theory of regulation as: 

Y = Ξχ+[(1+λ+λ2+ ...)SR]Sx. (3.15) 

1 In the case of matrices the number of characteristic roots is finite (or nu-
merable when the matrix is infinite); in the general case of the linear operator 
a collection of characteristic roots may be infinite, or even non-numerable. E.g. 
the values that satisfy the characteristic equation may constitute a continuous 
function of some variable s, and then the characteristic roots form a continuous 
spectrum of the values of the function Λ0). To illustrate let quantity Λ: be a differ-
entiable function x(s) of variable s which has a continuous first derivative x'(s); 
let the operator T be the differential operator D. Then, instead of the equation 

x'(s) (3.13) we have Dx{s) = Xx(s), i.e. x'(s) = Xx(s\ and, therefore, λ = ——- is 
xi.s) 

a continuous function of variable s. 
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If \λ\ < 1, then \λ\ is the coefficient of weakening of consecutive 
changes of the state of output of the regulation system, resulting 
from the operation of the governor. 

In this way we have come to the conclusion that regulation 
systems may be considered dynamically as infinite processes of 
continuous weakening influences whose sum gives a finite effect. 
However, to present fully the dynamics of the process it is necessary 
to show its pattern in time. So far, when the corresponding formulae 
were used exclusively for calculating the final result of the course 
of the particular stages of the process, time did not have to be taken 
into consideration explicitly. This should be done, however, if we 
want to study the pattern of the regulation process in time. 

4. AN EXAMPLE OF THE COURSE OF THE REGULATION 
PROCESS IN TIME 

We shall now give an example which will help in explaining how 
a full picture of the dynamics of the regulation process can be obtained. 
We shall have to return once more to an analysis of the dynamics 
of the Keynesian multiplier. Let us divide time in which the process 
of growth of the national income takes place into finite periods 
0, 1, 2, .... The national income and the consumption expenditures 
in the particular periods we shall denote by Y0, Yiy Y2, ... and 
Co, C1? C2, ..., respectively. If we assume, as before, that the level 
of autonomous investments A and the coefficient of consumption c 
do not change and consumption expenditures are a function of 
the income in the preceding year, then we obtain the following 
system of recurrent equations determining the level of the national 
income in the sense of total expenditures in the particular periods. 

Yo = A 

Y^A+cYo 

Y2 = A+cYl 
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Thus we have the difference equation: 

Yt = A+cYt_u (3.16) 
where t assumes the integer values 0, 1, 2, .... 

This last equation can also be written in the following form: 

Yt = A + Ct, where Ct = cYt_i. (3.17) 

Using in the above equations consecutive substitutions we ob-
tain: 

Y2 = A+cY, = A+Ac+A& 

Y3 = A+cY2 = A+Ac+Ac2+Ac\ etc. 

or generally: 

Yt = A+Ac+Ac2+ ... +A<? = A(l+c+c2+ ... +c*). 

If t -* oo, then Yt -► ^ 4 - — (because 0 < c < 1), where 

is called, as we know, the dynamic Keynesian multiplier. In this 
way we have shown once more that the dynamics of the process 
of shaping the national income tends to a finite value. 

We shall now give a different method of solving the problem 
of the dynamics of the process of shaping the national income. 
Let us assume, in advance, that there exists a certain state of equilib-
rium of this process, i.e. such a level of income which, once it has 
been reached, does not change any more. At the state of equilibrium 
the following condition is satisfied: 

Yt = cYt-A. 
Its solution is: 

1 

Let us now consider the deviation Yt from the state of equi-
librium Yt. Denoting this deviation by Yt9 we obtain: 

Yt = Yt-Yt = r , - - - 1 — A. (3.18) 
\ — c 
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It follows that: 

A 
because Yt-\ — Λ is the deviation Yt_x from the state of equi-1 — c 

A 
librium Yt = — . 

\—c 

In this way we obtain the reduced difference equation: 

Yt = cYt_u (3.19) 

which is a simplified form of the previous difference equation (3.16) 
because in the equation (3.19) the constant component A does not 
appear. The reduced difference equation is homogeneous which 
simplifies its solution. 

The equation (3.19) can easily be solved directly by the method 
of consecutive calculations of the values of the variables Yl9 Y2, ..., 
i.e. by the recurrent method. 

We obtain: 
Y\ = cY0, 

Y2 = cYl = c2Y0, 

and generally 

Yt = <?YQ. (3.20) 

Let us analyse the obtained solution in which Y0 denotes the 
initial deviation from the state of equilibrium. If at the beginning 
of the period studied the systems were in a state of equilibrium, i.e. 
F0 = 0, then it would remain permanently at the state of equilibrium 
because then Yt = 0 for every /. 

Let us assume that some disturbance occurred in the national 
economy and resulted in a deviation of the national income (total 
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expenditures) from the state of equilibrium and, therefore, Y0 Φ 0. 
Then, as we know Yt == cfY0 and 

lim Yt = Y0 lim c% (3.21) 
/->oo i->oo 

if 
|c| < 1, then Yt -> 0, 

which means that the disturbance in the state of equilibrium of 
the system will eliminate itself in time. We speak of systems of this 
kind as stable. But, if |c| > 1 then Yt -* oo, when / -> oo. This 
means that the disturbance which occurred in the system steadily 
increases and therefore is cumulative. We describe such a system 
as unstable. 

In the case considered by us we have 0 < c < 1 and so the system 
is stable. 

The dynamic process which occurs in the system and is defined 
by the equation (3.18) can be illustrated graphically. In Fig. 36 the 
above dynamic process is presented for the case when 0 < c < 1. 

In a system of rectangular coordinates we measure on the axis of 
abscissae the size of the national income Y and on the axis of ordi-
näres the size of consumption and autonomous investments. The 
graph of the consumption function Ct = cYt_i is a straight line 
through the origin of the system of coordinates whose slope with 
respect to the positive direction of the axis of abscissae is less than 
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45° (because 0 < c < 1). The segment OA represents the size of 
autonomous investments. It follows that for the initial national 
income Y0 = OM the size of consumption Q = cY0 is determined 
by the ordinate MW9 and the national income Yy ~ Cy+A by 
the ordinate MP = cY0+A (the straight line AP is parallel to the 
straight line O W). Measuring oif, with the help of the straight line 
OR which goes through the origin of the system of coordinates and 
whose slope with respect to the positive direction of the axis of 
abscissae is 45°, the segment OMx equal to MP (i.e. the size of the 
national income in the first year Y}), we determine the national 
income in the second year Y2 = C2+A = cYy+A. It is equal to 
the segment MyPy. Repeating this operation further we note that 
moving from the left-hand side we are increasingly close to the point 
of equilibrium R to which there corresponds the income at the 
state of equilibrium Y = RiR = ORy. 

In a similar way we can consider the case in which the initial 
size of the national income Y0 is greater than the national income 

0 M2\M N N^ N2 

M< 

F I G . 37 

at the state of equilibrium Ϋ. If t -> oo then the size of the income 
Y will also tend to Y from the right-hand side. 

It follows that the system under consideration is stable because 
each deviation from the state of equilibrium, i.e. a disturbance, 
is liquidated automatically and the process tends to equilibrium 
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The situation is different when the consumption coefficient 
c > 1, i.e. the straight line whose equation is C = cYt_{ forms 
with the positive direction of the x axis an angle greater than 45°. 
It follows from Fig. 37 that in this case the system is not stable be-
cause not only does a deviation (disturbance) which occurs in it 
fail to eliminate itself automatically but, on the contrary, increases 
more and more. 

In the case when the consumption coefficient c = 1, the straight 
line Ct = cYt_u i.e. Ct = Yt_\ forms with the positive direction 
of the x axis the angle 45° and, therefore, coincides with the auxiliary 
straight line OR (Figs. 36 and 37). Then, as can easily be checked 
on the corresponding graph, the system is always in equilibrium. 
Every state is a state of equilibrium and does not change further 
because we have Yt = Yt-\, hence Y0 = Υγ = Y2 — .... 

5. THE DYNAMICS OF THE MARXIAN PROCESS OF 
REPRODUCTION 

As the second example of an analysis of the dynamic process 
we shall study, in a similar way, the development of the economy 
according to the schema presented by Marx. We start with the 
equation, corresponding to this process, which appears in the Marxian 
schema of reproduction (Section 1, Chapter 2): 

x = acx+(v+m), (3.22) 

where ac is the coefficient of outlays of the means of production. 
This equation can also be written as follows: 

x = -■--— (v+m). (3.22a) 
1— ac 

The quantities x, v and m are expressed in units of value or prices. 
Studying the dynamics of the process of reproduction we must 

introduce the element of time in the equation under consideration 
(3.22), i.e. we must "date" the quantities. We introduce indicator 
/ which denotes the period which for the sake of simplicity we shall 
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call year. We assume that the outlay of the means of production in 
the given year acxt_x is proportional to production in the preceding 
year. Then the equation will assume the form: 

xt = acxt_x + (vt+mt). (3.23) 

This means that production in the year t— 1 determines the amount 
of the means of production used up in the year /. In other words, 
the amount of the means of production used up in a given year 
(i.e. the value of the means of production transferred to the product) 
is a certain constant fraction of production of the preceding year 
(0 < ac < 1). 

The difference equation (3.23) we solve, as usual, by the recurrent 
method. If, for simplicity, we assume that the annual direct labour 
outlay vt+mt is constant and the same as in the initial year, namely 
Vo+rrio and that in the initial year there were no means of production, 
we obtain the following system of equations which express the 
value of production in consecutive years: 

Xo = v0+rn0, 

*i = acXo+(v0+m0) = (v0+m0)(l+ac)9 

x2 = acx{ + (vQ+m0) = (v0+m0)(l+ac+a2
c) 

Generally: 

xt = acxt_i + (v0+m0) = (v0+m0)(l+ac+a2
c+ ... +a*c). (3.24) 

It follows from the general solution (3.24) that the process studied 
tends to equilibrium if \ac\ < 1 which is the case here because 
0 < ac < 1. Then 

lim xi = (v0+m0) . (3.25) 

In this way we have obtained a picture of the pattern of the 
Marxian process of reproduction in time. The feedback operator 

which appears in the formula (3.25) is the ratio of the value 
\—ac 
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of the product to the direct labour outlay. Since 0 < ac < 1, then 

> 1. This operator is then an amplifier which expresses an 
\-a( 

increase in the value of the product (in relation to the direct labour 
outlay) in consequence of using up the means of production. 

Let us note that, similarly as in the first example, the study of 
the dynamics of this process can be simplified. We can assume that 

v0+m0 there is a value of production xt = 
\—ac 

which corresponds to 

the state of equilibrium: 

-** 
v0+m0 

xt ■-
\—ac 

(3.26) 

After transformation, similar as before, we obtain the following 
difference equation in the reduced (homogeneous) form: 

xt — acxt_\. 

The solution of this equation is: 

(3.27) 

xt = a'cx0. (3.28) 

It follows from the solution (3.28) that the deviations from 
the state of equilibrium eliminate themselves if the process is stable 
because 0 < ac < 1. The Marxian process of reproduction can be 
illustrated graphically similarly as the process of shaping national 
income on the basis of the Keynesian multiplier. 

*mt 

FIG. 38 

The assumption, accepted by us, on the stability of direct labour 
outlays v0+m0 is not necessary. It can be shown, even by a graphical 
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method, that the basic results of the analysis do not change, when 
direct labour outlays change from year to year. In the corresponding 
graph the line corresponding to production xt = acxt_i + (vt+mt) 
will then not be parallel to the straight line representing the outlays 
of the means of production acxt_u even though 0 < ac < 1 and 
the process will tend to equilibrium as shown in Fig. 38. The line 
corresponding to production in year t does not have to be straight 
but it should intersect the straight line which goes through the origin 
of the system of coordinates and its slope with respect to the positive 
direction of the x axis is 45°. 

6. BLOCK SCHEMATA OF DYNAMIC PROCESSES 

We shall now give block diagrams corresponding to the dynamic 
processes presented in sections 4 and 5: the process of the operation 
of the Keynesian multiplier and the Marxian process of repro-
duction. 

As we know the dynamics of the operation of the Keynesian 
multiplier is presented by the difference equation 

Yt = cYt_!+A 

or, more simply, by the reduced (homogeneous) difference equation 

Yt = cYt_u 

where Ϋ] = Yt— ■■■- A is the size of deviation from the state of 
\ — c 

equilibrium (disturbance). 
The solution of this reduced difference equation has the form: 

Yt - £ % , 

from which it follows evidently that the system is stable if 0 < c < 1. 
A static presentation of the Keynesian multiplier by block diagrams 

is shown in Fig. 39. Autonomous investments A in a given system 
are transformed into income Yt which, through consumption, by 
feedback affects, in turn, the regulated system. 
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In a dynamic approach the operation of the Keynesian multi-
plier on the output of the regulated system does not aflfect the income 
in the given year Yt, but it affects the income of the preceding year 
yr_i. It follows that an additional operator must be included in 

t̂  

FIG. 39 

the block diagram and it consists in backing the value of income 
by one year. Such an operator is denoted by the symbol E~l. 

Using this operator the difference equation Yt = cYt_i+A can 
be written as follows: 

Hence 

i.e. 

Yt = cE~lYt+A. 

(l-cE-l)Yt = A, 

Yt = 
1 

A. (3.29) 
\-cE~1 

It follows from the equation (3.29) that the block diagram cor-
responding to the dynamic Keynesian model can be presented as 
shown in Fig. 40. 

A f l \ w 

i 
1 

c £-1 

« . 

FIG. 40 

Let us note that the equation (3.29) can also have a different 
equivalent form. The equation Yt = cYt_i+A is equivalent to the 
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equation Yt+i = cYt+A; using the "lead" operator E the latter 
may be written: 

EYt = cYt+A; 
hence 

Y, = - ^ A . (3.30) 

We can check algebraically that the formulae (3.29) and (3.30) 
are equivalent, by multiplying the numerator and the denominator 
on the right-hand side of the formula (3.29) by E. We obtain:1 

EA A 
E-EE-'c ~~ E-c ' 

i.e. the right-hand side of the formula (3.30). 
The dynamics of the Marxian process of reproduction is pre-

sented by non-homogeneous difference equation (3.23) 
xt = acxt_i+(vt+mt) 

or by the reduced (homogeneous) difference equation (3.27): 
xt = acxt_\\ 

its solution has the form (3.28) 
Xt = ac

xo-

As we know 0 < ac < 1. 

vt+mt r\. w 
v. 1 

1 

°c —̂ £' 
1 

Xt 

FIG. 41 

The equation xt = acxt_i+(vt+mt) after applying the operator 
E~\ can be written as follows: 

xt = acE-xxt+(vt+mt). 
1 EA = A because A is a constant quantity independent of /. 
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hence 

*t = ! - f l £ - ι (Vt+Wt)· (3.31) 

The block diagram of this dynamic process is shown in Fig. 41. 
Also the reduced difference equations can be presented in block 

diagrams. The equation Yt = cYt_i indicates that in the system 
the input value 7f_i is multiplied by c and, therefore, the transfor-
mation is proportional. The corresponding block diagram is shown 
in Fig. 42. In this schema there is no feedback; it has been replaced 
by an appropriate serial coupling. 

Yt-i , c 
γ ί , Ko c v. c Yz* c Yi 

FIG. 42 FIG. 43 

The dynamic process expressed by the equation Yt = cYt_l9 

whose solution has the form Yt = <?YQ, can also be presented as 
a serial coupling consisting of an infinite but numerable number 
of systems and in each of those systems there takes place proportional 
transformation which consists in multiplying the input value by 
c (Fig. 43). Since 0 < c < 1 this is a weakening transformation 
which causes the stability of the system. 

In an analogous way we can present in the form of block diagrams 
the dynamics of the Marxian process of reproduction in accordance 

' M , ac 
Xt > 

FIG. 44 FIG. 45 

with the reduced difference equation xt = acxt^utins is illustrated 
in Figs. 44 and 45. 

As can be seen from the block diagrams feedback may be replaced 
by an equivalent serial coupling. Such an operation is called the 
reduction of feedback. This is the sense of using the reduced difference 
equation. As indicated by the formulae (3.18) and (3.25) the feedback 
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operator, which determines the state of equilibrium, is eliminated 
by replacing the original quantities by their deviations from the state 
of equilibrium. In consequence, the feedback operator does not 
appear in the reduced difference equation and in its place there 
appears the serial coupling which determines this equation. 

7. THE DYNAMICS OF THE MARKET PRICE 

We shall now give one more example of a dynamic process, name-
by the price pattern in the free market. 

Let us assume that the demand function xt = apt+<x and supply 
function yt = bpt_i+ß of a product are given. In these formulae 
xt denotes the size of demand for the given product and yt denotes 
the supply of the same product (X and yt are measured in physical 
units, e.g. kilograms, metres, litres, etc.) in period t; pt and pt_\ 
denote the price in the period t and in the preceding period t—1. 
We assume that a <0, a > 0, b > 0 and ß > 0; the value of these 
parameters is determined by econometric methods. Let us note 
that the supply in a given period Ms a function of price in the pre-
ceding period t—l. This is a realistic assumption particularly with 
respect to the supply of agricultural products1 where the period of 
production is fairly rigid (from sowing to harvests in vegetable 
production, or the period of breeding in animal production). 

As we know market equilibrium is achieved when the demand 
xt equals the supply yt. In every period t we have then a periodic 
equilibrium which is expressed by the following equation: 

apt+cc = bpt_i+ß. 

Hence 
apt = bPt-i + (ß-*). (3.32) 

1 A detailed discussion on the subject of supply and demand functions can 
be found in Chapter 2 in the book by O. Lange, Introduction to Econometrics, 
Oxford-Warsaw, 1967. The reader will also find in this book a detailed expla-
nation of the formation of special cycles and of the cobweb theorem which is 
related to this problem. 
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It is convenient to replace the difference equation (3.32) by an 
equivalent reduced equation in which the variable is the deviation 
of the price from the final equilibrium price determined by the point 
of intersection of the demand line with the supply line, as shown 
in Fig. 46. 

y=x 

FIG. 46 

The final equilibrium price p we obtained from equation (3.23) 
assuming that pt = pt_u i.e. that the price does not change. Then 

. ß-a 

and therefore the deviation of the price in period / from the final 
equilibrium price is: 

B-OL 
Pt=Pt--r-r-a—b 

The introduction of the new variable pt is, as we can see from 
Fig. 46, equivalent to shifting the origin of the system of coordinates 
to the "point of final equilibrium" C Therefore, the equation of 
periodic equilibrium can be written as:1 

apt = bpt_x 

1 The new difference equation (3.33) can also be obtained by substituting 
in the equation (3.32) the expressions: 

Pt = Pt+ 
ß—OL 

and pt-i = pt-i-l· 
ß-OL 
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or 

Ä = — Ä - i . (3-33) 
a 

As we know from previous examples (Sections 4 and 5) this is 
a reduced difference equation whose solution is the following se-
quence : 

Λ = | Λ ; Ä = ( £ ) Ä ; Α = ( 4 ) Λ . . . . 

In general we have then 

Α = ( | ) Λ . (3.34) 

Here j?0 denotes the initial deviation from the final equilibrium 
price (disturbance). On the basis of the general solution (3.34) we 

'b\ 
say that the process of shaping the market price is stable if 

\a 
< 1 . 

The result obtained is similar to those obtained before. There 
is a certain difference, however, namely that the proportionality 

operator — is, in this case, negative. Since the supply function 

is decreasing therefore its slope is a < 0; in consequence we 

have — < 0. 
a 

It follows that the deviations from the final equilibrium price 
Ä J ^ ) - » Ä J • • • a r e alternately positive and negative, i.e. the 
prices in the particular years oscillate around the final equilibrium 

h 1 
price. If, for instance, pQ = 1 and — = — - , then the sequence 

a 2 
of consecutive deviations from the final equilibrium price is: 1, 

_1 1 _± J_ 
2 ' 4 ' 8 ' 1 6 ' " · ' " 

The amplitude of these oscillations is: (1) increasing when 

> 1 and then the process is not stable; (2) decreasing when 
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< 1 and then the process of shaping prices tends to equilibrium, 

i.e. is stable. 
When —: 

a - 1 the amplitude of oscillations around the point 

of equilibrium is stable. 

If 0 < — < 1, which rarely happens in practice, then the process 

Level of 
equilibrium 

price 

a<0,b>0 

a) 

-Vw-

a<0:b>0 

b) 

FIG. 47 

0 <t) 

tends to the state of equilibrium monotonically, from above or from 
below, depending upon the initial direction (sign) of the disturbance. 
This is illustrated by the following numerical sequences: 

i X l l lb - l " _ i \ 

1 l l lb l - _ i\ 
- i , - - 2 , —4, - - g , . . . ^ - - Ί , Ρ Ο - -η. 

All the cases described above are presented in Fig. 47. The block 
diagram in which, in accordance with (3.33) feedback is reduced, 
is shown in Fig. 48. 

Po 
a 

Pi P3 

FIG. 48 
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CHAPTER 4 

The Theory of Stability of Regulation Systems 

1. GENERAL ANALYSIS OF THE DYNAMICS OF REGULATION 
PROCESSES 

In Section 3 of the preceding chapter we have shown that the 
operator which appears in the basic formula of the theory of regu-
lation y = -———x can be under certain circumstances interpreted 

1 —SJi 
as the sum of the infinite geometric progression 

- γ ^ - l+(SR)+(SR)2+(SR)3+ .... 

The basic regulation formula will then assume the following 
form: 

y= [l+SR+(SR)2+ ...]Sx 
or 

y = Sx+(SR)Sx+(SR)2Sx+ .... 

To analyse the dynamics of the regulation process more closely 
it is necessary to take into consideration the fact that the reactions 
that take place in the regulation system require a certain amount 
of time. Therefore, the variables x and y must be dated. Let us as-
sume that the governor in a given period t is affected by the quantity 
yt-i, i.e. by the value of the variable y in the previous period. 
Then the basic formula of regulation will assume the form: 

yt = S(xt+Ryt_i). (4.1) 
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In other words we assume that there is a certain time-lag in the 
operation of the governor and we can take this time-lag as a unit 
of measuring time. 

The formula (4.1) can be transformed as follows: 

yt = SRy^+Sxt, 
or 

yt = SRE~]yt+Sxt. 

Determining yt from the last equation we obtain the formula: 

S 
l-SRE _ i *t (4.2) 

which is analogous to the basic formula of regulation in the case 
of instantaneous reaction. 

In the difference equation (4.1) feedback can be reduced by intro-
ducing the variable yt which is the deviation of variable yt from the 
state of equilibrium of the system determined by the formula y 

S 
l-SR 

x. We obtain then: 

S Sx S2Rx 
* = *-T=SÄ * = SRy'-l+Sx-l—SR = S*»-l-l=SR· 

ίΑΑ=4·,_Ί^«4 
As a result we have the reduced difference equation 

yt = SRyt_u (4.3) 
because 

yt-i- l _ S R
 x = yt-i-y = yt-\ ■ 

The solution of the reduced equation (4.3) is the expression 

yt=(SR)%. (4.4) 

The solution (4.4) enables us to study the process of regulation 
in time. As we know the condition of stability is that the absolute 
value of the operator SR be less than 1, i.e. \SR\ < 1 and, as we 
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have said above, the absolute value of the operator is the upper 
boundary of the absolute value of its transmittance.1 

The condition \SR\ < 1 can also be written in the form: |JR| 

< -—. The absolute value of R we call the power of the governor 

and the absolute value of S we call the power of the regulated system. 
We can say then that the condition of stability of the regulation 
system is that the power of the governor be less than the reciprocal 
of the power of the regulated system. In this case we also say that 
feedback is of the compensation type. 

The above formulation of the condition of stability of the system 
can easily be interpreted. If the governor is to operate effectively 
it must diminish the disturbances which occur in the system. When 

\R\ > —-, the operation of the governor is too strong and the process 

that occurs in a given system moves away from the state of equi-
librium. We say then that feedback is cumulative. This occurs when 
the power of the governor is greater than the reciprocal of the pow-
er of the regulated system. In the case when \R\ = —-, i.e. when 

the power of the governor equals the power of the regulated system, 
the system is on the border of stability; disturbances which occur 
are neither eliminated nor growing; every state is the state of equi-
librium. 

We shall give a plus or minus sign to the operators of the gov-
ernor and of the regulated system, wherever it makes sense. In 
the case when transformation consists in multiplying by a real num-
ber (proportional transformation), there is no difficulty in giving 
the operator an appropriate sign. As a sign of the operator we accept 
the sign of the real number mentioned. In the case of operators in 
other transformations we give a sign to the operator by multiplying 
it by the unit proportionality operator + 1 or — 1 . The sign of the 
operator is so selected that the operators R and S have the same 

1 See Section 3, Chapter 3. The absolute value of the linear operator is usually 
called norm. 
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sign when the change of the state of output of the governor has the 
same sign as the change in the state of output of the regulated system, 
and we give them different signs in the opposite case. 

Assuming that the operator was given a sign we can easily notice, 
on the basis of formula (4.4), that if the sign of the operator S is 
the same as of the operator R, i.e. when sign S = signi?, then the 
pattern of disturbance in the given system is monotonic. In other 
words in consecutive periods the system is always above or below 
the state of equilibrium. 

In the case when S and R have the same sign we say that feedback 
in the regulation system is positive. 

If the operators S and R have different signs we say that feedback 
in the regulation system is negative. Then the disturbance has an 
oscillating pattern. As we can see from the formula (4.4) the de-
viation yt from the state of equilibrium in consecutive periods changes 
the sign because the index t is, alternately, odd and even. Oscillations 
increase or decrease or are stable depending upon whether \SR\ > 1, 
\SR\ < 1, \SR\ = 1. 

The above results can be shown in the form of the table which 
gives the areas corresponding to various values of SR. 

Area of Oscillation I Area of Monotonic Pattern 

SR- oo - 1 0 + 1 +oo 

Area of instability of the Area of stability of the 
system j system 

Area of instability of the 
system 

left 
border 
of the 
area of 
stability 

right 
border 
of the 
area of 
stability 

A graphical illustration of the particular cases of patterns 
of dynamic processes was given in Fig. 47 which presents a specific 
example of the dynamics of market prices. 
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2. THE DYNAMICS OF CONTINUOUS REGULATION 
PROCESSES 

In the preceding section we analysed the dynamics of a discrete 
regulation process, i.e. we have assumed that the governor operates 
in a discrete way with the specific time-lag At. We have accepted 
this time-lag as a unit of time so that At = 1. Accordingly we have 
obtained a reduced regulation equation in the form of the difference 
equation (4.3) which (after deducting from both sides yt_^) can also 
be written in the following form: 

tt-tt_i = (ÄR--l)tt_,. (4.3a) 

We assume now that the time-lag may have any value At which 
we treat as a variable. Introducing the variable value At in the re-
duced regulation equation and assuming that the difference yt 

—yt-jt is proportional to At we obtain instead of the equation 
(4.3a) the following equality: 

yt-yt-M = {SR-\)yt_ :tAt. (4.5) 
or 

yt-yt-M 
At 

(SR-l)yt_t. (4.5a) 

In the case when At = 1 this equation is reduced to the equation 
(4.3a) or (4.3). The left-hand side of the equation (4.5) expresses 
the increase in the disturbance in the period At which constitutes 
the time-lag in the operation of the governor. This increase grows 
as the time-lag in the operation of the governor increases; it is an 
increasing function of this time-lag. For small time-lags it can be 
assumed that this increase is proportional to the time-lag At, hence 
the factor At on the right-hand side of the equation. 

Let us assume now that the time-lag in the operation of the 
governor becomes shorter, i.e. that At -> 0. Then the equation 
(4.5a) is transformed into the following differential equation1 

dy{t) 
dt = {SR-\)y{t)- (4.6) 

Let us note that if y(t) is a vector then the formula (4.6) represents a system 
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This equation depicts a continuous process of regulation. In the 
case of a continuous process we shall write t in brackets and not 
in the form of a subscript, i.e. y(t) instead of yt, etc. This will enable 
us to distinguish between continuous and discrete processes. 

The solution of this differential equation can be written in the 
familiar form: 

y(t) = 3>(0)e(S*-1)f, (4.7) 

where the constant j(0) is determined by the initial condition of 
the state of the system. Namely y(0) is a disturbance at the initial 
moment t = 0. Indeed, the differential equation (4.6) may be trans-
formed as follows: 

dy{t) 1 dlogyjt) 
— = — · — = » > / c — 1 , or ; = SR— 1. 

dt yt dt 

After integrating both sides we obtain logy(t) = (SR—l)t+const, 
i.e. y(t) = Ke{SR~l)t where K is a constant. Taking t — 0 we find 
that K = y(0). 

It follows from the formula (4.7) that the condition of stability 

of the system is that SR— 1 < 0, i.e. SR < 1 or R < —. It may 

happen that SR = — 2 and the system is stable. This is a different 
condition from that obtained in Section 1. Stability depends here 
not upon the power of \R\ and \S\ but upon the transmittance R 
and S. 

It turns out further that the regulation process which takes place 
in the system, in which the governor operates continuously, is always 
of a monotonic nature and no oscillations appear in it. The value 
y(t), when t -► oo, is always positive or always negative depending 
upon the sign of y(0). 

We shall now give two examples of the operation of the system 
with continuous regulation, first—for a continuous generalization 
of the Keynesian multiplier, second—for a continuous process of 
shaping the market price. 

of differential equations corresponding to the particular components of vector 

93 



INTRODUCTION TO ECONOMIC CYBERNETICS 

In the case of the Keynesian model the reduced regulation equa-
tion is 

In a similar way as before it can be presented in the following 
form: 

At 

By moving to the limit (i.e. assuming that At -» 0), we obtain 

the differential equation —-— = (c—l)Y(t) whose solution is Y(t) 

= Y{G)e{c~X)t. It follows from this solution that in the continuous 
Keynesian model the pattern of the process is always monotonic. 
The condition of its stability is c < 1. Since, however, by assumption 
c > 0, then we obtain the same condition as in a discrete case, name-
ly 0 < c < 1. 

The situation is similar in the case of a continuous shaping of 
the market price. The difference equation, appropriately reduced, 

has the form:/?, = -—nf_1# It can be transformed as follows: 
a 

Pt—Pt-At = —Pt-AtAt—pt_AtAt, 
a 

or 
Pt—Pt-At u-1)*·-*· At 

dm Moving to the limit we obtain the differential equation 

= I l)p(t) whose solution is: 

dt 

p(t)=K0)e^^\ 

The condition of stability of a continuous process of shaping 

prices is that 1 < 0, i.e. < 0. If, for instance, b < 0, then 
a a 
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the stability condition states that the parameter b must be less than 
the parameter a in absolute values, i.e. \b\ < \a\. This means that the 
market process of price determination is stable regardless of whether 
the supply function is increasing or decreasing, provided the absolute 
value of its slope does not exceed a certain value. This is the tradi-
tional Walras condition of market equilibrium; we obtain it by as-
suming that the determination of the market price is a continuous 
process. 

The formulae which characterize a continuous regulation pro-
cess may be derived directly by using operational calculus. As we 
know the reduced differential equation may be written as follows: 

yt = SRE~lyt or Eyt = SRyt9 (4.8) 

where E~l denotes the operator of backing a given quantity in time 
by At = 1, and E—the lead operator of a given quantity by At = 1. 

We know that there exists a relationship between the operator 
E and the differencing operator, namely E = Δ + l.1 Using this 
relationship the reduced difference equation (4.8) can be written: 

(A + l)yt = SRyt, 
or 

Ayt=(SR-l)yt. 

Substituting the variable time-lag At for the constant time-lag equal 
to the unit of time, i.e. At = 1, we obtain 

Ayt=(SR-l)ytAt, 
i.e. 

^L=(SR-l)yt. (4.9) 

If At-+09 then the operator —τ— on the left-hand side of the 

equation tends to the differentiation operator —=- = D? As a result, 

1 See Section 5, Chapter 1. 
2 The proof is immediate. Let x(t) be a differentiable (i.e. continuous) function 

of variable /. We denote by Ax(t) the difference between the values of this function 
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when At -► 0, the difference equation (4.9) is transformed into the 
differential equation 

Dy(t)=(SR-l)y(t), 
which is identical with the differential equation (4.6) obtained above 
in a different way. 

3. PRACTICAL PROBLEMS IN REGULATION 

The regulation system consists of two parts: the regulated system 
S and the governor R. In practical applications of the theory of 
regulation we usually assume that the first part of the regulation 
system S is given and determined by external conditions over which 
we have no control, and the second part R is constructed appro-
priately by man and coupled in some way with the system 5. 

A regulated system may be, for instance, an objective economic 
process S which does not depend on authorities controlling the 
national economy (e.g. population increase, consumption growth, 
a decline in savings, etc.) and the governor R may be a certain 
specific device set up and controlled by the government or by other 
agencies in order to influence the pattern of the process S. 

Another example of the governor R is a set of technical and 
economic devices which are to influence and control the impact 
of nature, independent of man, on the pattern and development 
of the national economy. An interesting example of regulation is 
an insurance fund and other reserves earmarked for offsetting the 
damages to the economy resulting from elemental disasters and 
other random events. The regulated system S, in this case, is the 
national economy which is influenced by random events regardless 

determinated for the values t-\-At and / of the independent variable. Then Ax{t) 
= x(t+At)—x(t). Since the function is differentiable then 

Ax(t) x(t+At)-x(t) 
-AT- At >Dx®> 

where At->0. Therefore, the operator —τ- tends to the operator D as a limit. 
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of the will and behaviour of man and the governor R is an insurance 
fund which prevents disturbances in the stability, direction and 
the rate of development of the economy. 

There are many regulated systems in technology. In this field 
both parts of the system, S and R are designed by man but their 
roles, from the point of view of the theory of regulation, are different. 

The basic objective in practical applications of the theory of 
regulation is that the process which takes place in the system S be 
stable and tend to the desired result (the desired value or norm). 
The point is then, first of all, to select such power for governor R 
as to make the process stable so that all deviations from the desired 
value (norm) are automatically eliminated. We know that in the case 
of a discrete process the power of the governor R must be less than 

the reciprocal of the power of the regulated system, i.e. \R\ < -r^r9 

and in the case of a continuous process the transmittance of the 
governor must be less than the reciprocal of the transmittance of 

the regulated system, i.e. S < — .* 
R 

Governors used for maintaining the stability of the system are 
called stabilizers. In practice it may be necessary to use several 
such stabilizers. This does not create any theoretical difficulties, 
because, as we know, the operations of several stabilizers are equiv-
alent to the operation of one governor whose transmittance equals 
the sum of the transmittances of the particular stabilizers. 

Problems in regulation are not confined, however, to the problem 
of stabilization of the regulation system. Usually the object is also 
to stabilize a given system at a specific level. In other words the 
value of the state of output of the regulation system should be equal 
to the desired value z (norm), and z may be either a scalar, a vector 
or a function. In the first case, we have simple regulation or stabili-
zation, in the second—when z is a function—we are dealing with 
control (see Chapter 1, Section 4). 

1 See Section 1 of this chapter. 
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It may happen that a control process tends to the state of equi-
librium y which differs from the desired value z. The difference 
between the level reached by the system already stabilized and the 
norm will be denoted by letter ε which we call the static deviation 
of the system. Therefore the following equality holds: 

e = y-z. (4.10) 
The situation in which there occurs static deviation in a given 

system is frequently encountered in practice. We say then that the 
operation of the control system is subject to a certain systematic 
error. The question arises how to remedy this. There are two possibil-
ities: (1) to correct the input magnitude (2) to reconstruct the gov-
ernor or, what amounts to the same thing, to include in the system 
an additional governor. There are no other possibilities because 
system S is objectively given and we have no control over its oper-
ation. 

We calculate the transmittance of governor R corresponding 
to the desired value z. On the basis of the basic regulation formula 

y = -—-— x, in which we assume that y = z9 we obtain the equation: 
1—o/v 

Hence we find 

or 

z—SRz—Sx = 0. 

-Sx 
R = 

Sz 

-ΞΞ. 

Ä = ^ - · (4.11) 

It follows from formula (4.11) that transmittance of the gov-
x ernor in a stable system depends upon the quantity —, i.e. upon 
z 

the ratio of the quantity of the input of the system x (the feeding 
of the system) to the norm of the system z. If in regulation process 
there appears a static deviation (the regulation system contains 
a systematic error) the governor should be reconstructed so that its 
transmittance satisfies the condition (4.11). 
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However, regulation can be corrected in another way, namely 
by changing the state of input x, i.e. by adjusting appropriately 
the feeding of the controlled system. It follows directly from the 
basic control formula that in order to achieve the desired norm 
y = z the magnitude of supply in a stable system must equal 

In practice the second method of correcting the operation of 
a control process is usually easier and cheaper. It consists in increasing 
or decreasing the supply of *. 

We shall give several examples of control of systems used in 
practice. The first example is of a technological nature. It concerns 
the regulation of temperature in given premises. Let us assume 
that by using an appropriate thermostat we have reached a stable 
system and the level of equilibrium of temperature is 15 degrees. 
We want to have the temperature at 18 degrees. This task can be 
solved in two ways. First, we can try to rebuild the governor, in 
this case the thermostat, so that the temperature be equal in the 
state of equilibrium, to the norm z — 18. We can also change the 
supply by adding the amount of fuel for heating the premises as 
determined on a trial basis. 

The second example is of an economic nature. It is well known 
that the actual investment outlays are in Poland, as a rule, higher 
than planned. This is due to a number of reasons: (1) the costs of 
building a great number of new projects can never be exactly fore-
seen; (2) during the realization of investment unforeseen difficul-
ties are encountered, e.g. in constructing a mine a layer of rock 
or sub-soil water is encountered; (3) technical progress during 
construction makes it necessary to innovate and introduce changes 
not foreseen originally because otherwise the project will be techni-
cally obsolete at the time of its completion. 

It may happen that during the construction of an investment 
project some technical improvements are introduced in order to 
lower the cost, but the distribution of the probabilities of raising 
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or lowering the cost of investment is highly asymmetrical: it is much 
more probable that the planned cost will be exceeded rather than 
reduced in the process of implementation. 

At a first glance it may seem that it is extremely difficult to design 
a governor that would prevent this sort of thing and would stabilize 
the cost of construction of an investment project at a planned 
level. Attempts may be made, however, to apply economic incentives 
that would weaken the tendency to exceed the planned cost of in-
vestment.1 This may be accomplished by charging interest on the 
fixed capital at the disposal of a given factory or association from 
the very beginning of the construction of an investment project, 
i.e. from the moment the means are put at the disposal of a given 
establishment. It is also possible to introduce a system of penalties 
or "penal rate of interest" that the investor must pay when he exceeds 
the planned cost of an investment. 

This kind of arrangement, to use the language of the theory 
of control, is tantamount to a reconstruction of the governor of 
a given economic process. Alternatively one could change the feeding 
of the controlled system, i.e. raise appropriately the planned cost 
of the investment project. If, for instance, the preliminary cost of 
investment were estimated at, say, 10 million zlotys one could plan 
the amount 10 per cent higher, i.e. at 11 million zlotys. 

We shall discuss yet another simple example to explain the methods 
of correcting a control process in which a systematic error appears. 
If the scale displays a tendency to some steady deviation in measuring 
weight, it may simply be repaired or, what is even simpler, a "com-
pensation feeding" may be added which, in this case, consists in 
placing on one of the scales an appropriate weight. 

Besides the two main problems discussed above (the securing 
of stability of the system and the attainment of a desired value by 

1 Special efforts can be made to prevent the practice of "getting into the plan'* 
which consists in showing a lower cost of the investment in which a given enterprise 
or association is particularly interested. This is based on the premise that once 
a given investment project is included in the investment plan the means for 
financing it will have to be found even if the originally planned amount is exceeded. 
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the system) there are also various other problems in control. The 
most important among them is an appraisal of efficiency or, as we 
often say, of the "goodness" of a control system. This appraisal 
consists in determining which of the governors that can possibly 
be used in a given case will be faster in eliminating the disturbance. 
This is important because in practice efforts should be made to use 
a more efficient governor. 

The problem may also arise whether we want to use the governor 
that would stabilize the system by oscillations or the one that would 
achieve this in a monotonic way. The related problem is whether 
the oscillations that are to result in stabilization should have a large 
but rapidly vanishing amplitude, or a small but slowly fading one. 

All such characteristics of the governor are called the efficiency 
of governor. The problem of efficiency will be dealt with further in 
this book. For the time being let us return to our discussion on the 
stability of a control system. 

4. EXAMPLE: THE PROBLEM OF REACTION TO STIMULI 

It turns out that by using mathematical methods, similar to 
those used in the theory of control it is possible to solve certain 
problems concerning the reactions of living organisms (animals or 
men) to external stimuli. Problems of this kind are of great practical 
importance not only in psychology but also in economic accounting. 

Let us consider the following example.1 

Let pn+i denote the probability that an animal will react in a way 
desired by the person conducting the experiment to a given set of 
stimuli after n-\-l repetitions; we shall call it briefly the probability 
of response. Statistical studies on the behaviour of animals indicate 
that the probability pn+\, depends upon the previous reactions of 
the animal to a given set of stimuli. The larger the probability of 

1 This example was taken from the book by S. Goldberg, Introduction to 
Difference Equations, New York-London, 1958, pp. 103 if. It is based on 
the same approach to the subject as taken by R. R. Bush and F. Mosteller in 
"A Mathematical Model for Simple Learning", Psychological Review, 1951. 
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response after the nth repetition, the larger the probability pn+i; 
this relationship can be regarded as approximately linear. Hence we 
can write the following difference equation: 

pa+i = a+mpn, (4.12) 

which states that pn+\ is a linear function of pn. Of course 0 < pn < 1 
and 0 < / ? n + i < l because these variables denote probabilities;1 

also m > 0 since consecutive repetitions of the stimulus increase 
(and certainly do not decrease) the probability of response. 

The equation (4.12) expresses the pattern of the process of the 
animal's acquiring the habits of reaction to a specific set of stimuli. 
For this reason it is often referred to as the equation of learning. 
The parameters a and m are determined on the basis of experiments. 

It is convenient to present the equation (4.12) in a different way. 
We write m = 1 —a—b where a > 0 and b^O; since m > 0 therefore 
l-a-b^O. 
Then 

pn+i = a+(l—a—b)pn = pn+a(l—p„)—bpn (4.13) 
or 

Pn+i—Pn = a(l—p„)~bp„. (4.13a) 

The equation in the form (4.13a) shows what an improvement 
in the reaction of the animal to stimuli, or progress in the process 
of "learning" depends on. This improvement is expressed by the 
difference Apa+i = ρη+ί— ρη which appears on the left-hand side of 
the equation. 

Let us now consider the meaning of the expressions (1— p„) 
and — pn = 0—pn appearing on the right-hand side of the equation 
(4.12). The first of them defines the greatest possible degree of improve-
ment and the second—the greatest possible degree of deterioration 
in the results of the experiment, because the best result that can 
be obtained is pn+1 = 1, and the worst pn+} = 0. Therefore Apn+i 

= Pn+i—Pn, i-e. the actually achieved improvement in the results 

1 The difference equation (4.12) is an example of "Markov's chain" which 
is the simplest case of a stochastic process. 
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of the experiments equals, as follows from the equation (4.13a), 
the weighted sum of the greatest possible degree of improvement 
and the greatest possible degree of deterioration in the results of 
the experiment. The weights in this sum are the parameters a and b; 
parameter a depends upon the set of circumstances which tend to 
a maximal improvement in the results of the experiment and para-
meter b depends upon the circumstances which influence a maximal 
deterioration in the results of the experiment. Thus parameter a may 
be regarded as a measure of intensity of the operation of the posi-
tive stimuli and parameter b may be regarded as a measure of in-
tensity of the operation of the negative stimuli E.g. positive stimuli 
are rewards and negative ones are penalties or other unpleasant 
effects resulting from the reaction of the animal. 

We shall solve the equation (4.13) by the method used before. 
We shall determine, first of all, whether there is a state of equilibrium 
and to what value of p it corresponds. To do this we turn the differ-
ence equation (4.13) into an ordinary one by assuming that the 
variables pn+i= pn= P, i-e. the probabilities of reaction have settled 
at a constant level. Thus we obtain the equation 

p = a+(l—a—b)p 
and hence 

p = -—-r- (on the assumption that a+b Φ 0). 
a-\-b 

The value of the variable corresponding to the state of equi-
librium p being known we calculate the magnitude of deviations 
from this value 

Hence 

and similarly 

Pn+1==pn+1+J+b' 
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Substituting these values in the equation (4.13) we obtain the 
reduced difference equation: 

Pn+1 + -^+f = a+(l-a-b)pn+(l-a-b)—:-£, 

which after further reduction assumes the form 

pn+x = {\-a-b)pn. (4.14) 

This equation can be solved immediately by the recurrent method: 

pn+i = (l-a-b)n+1
Po, (4.15) 

where p0 is the prior probability and therefore is equal to the prob-
ability with which the animal reacts to a given set of stimuli before 
the experiment starts. 

Considering that 1— a—£ > 0, it follows from the formula 
(4.15) that the condition of stability of the process of training the 
animal in reacting to a certain set of stimuli is that the following 
double inequality be satisfied: 0 < 1—a—b < 1; from this it follows 
that 0 < a-\-b < 1. If this condition is satisfied, then, when n -» oo, 

/?n+i-» 0, and Pn+i~*—ΤΤΓ'' anc* t m a s t 0 t n e s t a t e °^ equilibrium. 

If a+b = 0 (i.e. 1—a—b = 0) then, as a rule, the formula (4.15) 
can also be used, but then/?n+i = p0, i.e. the probability of reaction 
during the process does not change and is always equal to the initial 
probability p0. The animal makes no progress in "learning". 

Let us analyse more closely the obtained solution. On the assump-

tion that 0 < a+b < 1 we have pn. i -> ,- when n -» oo. What 
a+b 

does it mean? It turns out that after the experiment is repeated 
many times the probability of reaction of the animal to a specific 
set of stimuli tends to a certain limit which is equal to the ratio 
of the measure of the positive stimuli to the sum of the measures 
of both positive and negative stimuli (disincentives). 

Let us consider several particular cases. 
(1) When a = 0 and b Φ 0 then pn+i -> 0; this means that if 
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the negative stimuli only are used the animal will learn not to react 
because it is always "punished". 

(2) When a Φ 0 and b = 0 then pn+i -> 1, i.e. in the case when 
only positive stimuli are applied the process of training the animal 
will get to the state in which it will "certainly" or "almost certainly"1 

react to a given stimulus. 

(3) When a = b Φ 0 then ρη+ΐ -» —; this means that with equal 

intensity of positive and negative stimuli the probability of reaction 

tends to —. After a sufficiently large number of experiments the 

animal is so confused that it reacts in only one half of all cases. 
It is worth noting that in a general case the result of the process 

of training described above does not depend upon the absolute 
intensity of positive and negative stimuli, but it depends upon the 

ratio r = -r, i.e. the ratio of the measure of positive stimuli to the 
b 

a 
h r 

measure of negative stimuli. Indeed, pn+i -» = . The 

ratio r = -r- is then a measure of the method of training; it can be 
b 

called the structure of motivation. However, the number of repetitions 
of the experiment needed to achieve results depends upon the absolute 
intensity of positive and negative stimuli. For, as can be seen from 
the formula (4.15) the smaller the value of l—a—b, i.e. the greater 
the value of a+b9 the greater the speed of convergence. Thus the 
result of the process of learning depends upon the structure of motiv-
ations and the speed with which the result is achieved depends 
upon the joint intensity of motivations. 

1 If the probability is determined over a finite collection then p = 1 means 
that the event is certain but if the probability is determined by an infinite and 
innumerable collection, then p = 1 means that the event is "almost certain", 
i.e. the cases in which the event does not occur form a collection with the measure 0. 
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The problem presented above is an interesting example of ap-
plications of mathematical methods (difference equations) to solving 
and analysing certain problems in psychology. For instance the 
following question may be posed: with what intensity should the 
positive and negative stimuli be used in order to attain a specified 
probability of the desired reaction of the animal, so that pn+i -* z, 
where z is the desired quantity. The problem thus formulated is 
typical in the theory of control. 

This problem can be solved immediately. Assuming that pn+1 -» z 
Y z 

we obtain the equation —— = z; hence r = . If the ratio of 
1+r 1—z 

z 
positive to negative stimuli equals then pn+i -» z when n -» oo. 
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If, for instance, we assume that z =—— then r = ^— = 1 9 
1 _ l ö b 

which means that— = 19. The positive stimuli must be 19 times 

as strong as the negative stimuli. 
The above example of control may be applied to solving some 

economic problems if we assume that human reactions to positive 
and negative stimuli follow the same or similar general pattern. 
Positive stimuli in activities of particular persons or groups are 
various types of bonuses, profits etc.; negative stimuli are penalties, 
losses due to a failure of a venture or to other reasons, etc. 

What practical conclusions can be drawn from the results of 
this analysis with regard to the possibility of applying an effective 
system of incentives and disincentives to economic activity? 

If the probability of achieving the target is to be greater than 

—, the intensity of positive incentives (e.g. the expected profit) should 

be greater than the intensity of disincentives (the possibility of 
a loss). Hence a clear indication which should be taken into consider-
ation in bonus systems. If the activity of a person or of a group 
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of persons (e.g. an enterprise) may result in a loss (disincentives), 
positive incentives (bonuses, additional profits) of a greater intensity 
than that of the existing disincentives should be used. 

In this context the question arises whether it is worth while to 
struggle against disincentives if their influence can be weakened 
by a corresponding increase in incentives? Of course, this method 
can be used only when great difficulties are encountered in removing 
disincentives. However, from an economic point of view this be-
haviour is not proper because very high bonuses would be required, 
much higher than intensity of disincentives. The same effect may be 
achieved more cheaply by decreasing or removing the disincentives. 

It can be seen from the formula z = that if we want to attain 

a very high degree of certainty of reaction, i.e. z ^ 1, then r must 

be very large. Since r = —, then a would have to be very large for 
b 

b considerably greater than zero, i.e. bonuses or profits would have 
to be very large. However, the same result can be achieved with 
lower bonuses or profits, if b ^ 0, i.e. if disincentives are removed. 

A practical conclusion follows from these considerations: to 
stimulate effectively and economically to a more intensive economic 
activity it is necessary to remove, first of all, the disincentives ham-
pering this activity. This, of course, is not always possible. It should 
be also noted that for achieving this objective quickly an appropriate 
intensity of positive incentives is required. For, as we have seen, 
the speed of convergence of the process of reaction to incentives 
and of the desired result depends upon the absolute magnitude 
of the sum a+b. Even though a decrease in b, with a constant a, 
improves the structure of motivation r, the sum a+b (the intensity 
of incentives) which determines the speed of convergence decreases 
at the same time. To increase the speed, therefore, it is necessary to 
increase appropriately the intensity of positive incentives. 

An interesting example of encouraging farmers to cultivate 
some industrial crops particularly susceptible to random losses 
(frost, hail, drought) by removing the disincentives to this economic 
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activity is the use of general insurance against disasters that may 
affect the "contract" crops. It has turned out in practice that even 
considerable increases in the purchase prices of some plants (i.e. 
an increase in positive incentives) did not result significantly in 
increasing the area of their cultivation. The elimination of disin-
centives, however, by providing insurance at a relatively low cost 
resulted in a considerable increase in the cultivation of specific 
industrial crops.1 

It can be surmised that the application of a similar method of 
removing disincentives is possible and advisable also in other areas 
of economic activity. For instance, the insurance against losses 
that may temporarily occur in an enterprise which had embarked 
upon a program of modernization might encourage many enter-
prises to strive for technical progress and improvements in organi-
zation. It can be expected that this method will be much more eco-
nomical and effective than the method of increasing bonuses for 
technical progress. 

1 See the collective work edited by A. Banasinski, Ubezpieczenia w Polsce 
Ludowej w liczbach (Social Insurance in People's Poland in Figures), Warsaw, 
1959, p. 182 ff. 
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CHAPTER 5 

A Generalization of the Theory of Regulation 

1. THE RESPONSE EQUATION OF THE SYSTEM 

The general theory of stability of control systems presented 
in this chapter can be formulated by using only two operators: 
the proportionality operator k and the differentiation operator D, 
or the proportionality operator k, and the lead operator E. 

In Chapter 1, Section 5 we have shown that the operation of 
every linear control system may be presented by three elementary 
operators: (1) the proportionality operator which multiplies the 
input of an element by the real number k; (2) the differentiation 
operator D; (3) the lead operator E. We can reduce to these three 
elementary operators all other ones and especially those that are 
inverse in relation to them, such as: (1) the integration operator 
D"1 = / ... dt and (2) the backing operator E~l. 

It turns out, however, that the differentiation operator D and 
the lead operator E are not independent, i.e. one of them may be 
replaced by the other. In this way the number of basic operators 
may be limited to two. 

We have shown above that the operator —r- tends to the operator 

D as the limit, when Δ t -> 0. This sort of shifting to the notion of limit 
was resorted to in previous chapters. It can be shown, however, 
without using the notion of limit, that there is a direct relationship 
between the operator E (and thus also the operator Δ) and the oper-
ator D. 
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Let x(t) be a continuous function of the variable t differentiable 
any number of times. Let us denote χ(ί+Θ) = ΕΘ, i.e. ΕΘ is the 
replacement operator of the value x{t) by the value χ(ί+Θ)9 i.e. 
it is the lead operator of the argument of the function by Θ.1 The 
value of the function x{t+0) can be developed into a Taylor's series. 
We obtain then: 

E&x(t) = χ(ί+Θ) = j c (0+-^-J f (0 + - | - * " ( * ) + ·.., 

where x'(t), x"(t), ... are consecutive derivatives at the point t. 
Using the differentiation operator D we can write this result as follows. 

E*x(t) = x(t)+-^-Dx(t) + ^-D2x(t)+ ..., 

or 

( Θ θ2 \ 

Hence we have the equivalence of the operators 

Θ Θ2 

E&=l + —D+~D2+... (5.1) 

The operator ΕΘ, i.e. the lead operator of the argument of the function 
by Θ is then equivalent to the power series of the operator D. 

Using the known development of the exponential function 
into a power series 

^,+£+f ! + .... 
we can write formula (5.1) as follows: 

or 
ΘΌ = logE®. (5.2a) 

1 We have assumed before that the function x(t) is a numerical sequence 
xt and that Θ = 1; the lead operator by one place in this sequence is E. 
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Taking Θ = 1 we obtain finally 
E=eD or D = logE. (5.3) 

In this way we have determined the relationship between the 
operators E and D. Since Δ = E—\, therefore1 we also have the 
relationship A = eD—l. Thus the number of elementary operators 
may be reduced to two: the proportionality operator k and the 
differentiation operator D (or, alternatively, the lead operator E). 

As we know, every linear control system can be presented as 
a set of conjugate elementary systems or elements in which transfor-
mations are determined by elementary operators. The total transfor-
mation that takes place in the system we present in the form y = Tx 
where x is the input and y is the output of the system, or in the form 
of inverse transformation Λ: = T~1y. The latter form is particularly 
useful in studying control processes, for if we have the desired value 
of output y = z we find directly the required input x (the input 
magnitude also called the supply of the system), namely x = T~1y. 

The operator 71"1, similarly as the operator T, is the result of 
algebraic operations with the elementary operators1 k, D and ΕΘ 

or their inverse operators. In every element there takes place a transfor-
1 Hence we obtain also the shift to the limit used above. For we have 

Θ Θ2 

or 

Treating Θ as a variable quantity and writing Θ — At in order to make the no-
tation consistent with the notation used before, we obtain 

£-„+>+.... 
when At -> 0 the operator —r— tends towards the operator D. 

1 Here we take ΕΘ and not E, as an elementary operator, because the lead Θ 
cannot always be expressed by an integer. If Θ is not an integer the operator 
ΕΘ cannot be interpreted as the repetition Θ times of the operation E and therefore 
must be treated as an elementary operator. 
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mation determined by one of the above elementary operators (pro-
portional transformation, differentiation or lead), or by a correspond-
ing inverse operator (integration, backing). These elements are 
related by parallel or serial coupling, or by feedback. As we know, 
the result of this sort of coupling is expressed in the form of the 
addition, multiplication or division of operators (subtracting is 
adding of the operator multiplied by the proportionality operator 
k= - 1 ) . 

Therefore, the operator T~l (or the operator T) which describes 
the total transformation that takes place in the control system can 
be presented in the form of the multinomial of the operators D and 
Ee. Thus we have 

I m 

T-1^ £ £arsD
rE&s. (5.4) 

r = -k s = 0 

In this multinomial the coefficients ars are the result of multiplication 
of various values of k corresponding to proportional transformations 
that take place; thus they are real numbers. The operators Dr denote 
r-fold differentiation if r > 0 or integration if r < 0. The operators 
ΕΘχ denote the shift forward by 0S if Θ8 > 0, or backward if &s < 0. 
If r — 0 or ΘΕ = 0 we have the identity operators D° and ΕΘ which 
can be disregarded. It is obvious that some, but not all, coefficients 
ars may equal zero. We assume that the number of elements in the 
system is finite so that the limits of summation of k (the number 
of repetitions of integration), / (the maximum number of repetitions 
of differentiation) and m (m+1 is the number of leads) are finite. 

The total transformation x = T'^y that takes place in the reg-
ulated system may be presented as follows: 

l m 

r=-k s = 0 

Assuming that x and y are functions of time x(t) and y(t) we call 
them input functions and output functions assuming also that the 
function y(t) can be differentiated and integrated the required num-
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ber of times, this expression is an operator form of a linear func-
tional equation with constant coefficients. Namely 

l m 

(]? ]?arsD'E&s}y(t) = x(t), (5.5) 
r=-ks=0 

or in the non-operator form 
l m 

Σ Σarsyin(t-Os) = x(t), (5.5a) 
r = -ks=0 

where y(r)(t—0S) denotes the rth derivative (for r > 0) or the rth 
integral (for r < 0) of the function y(t) at the moment t—&s. 

The obtained functional equation is a brief description of the 
joint operation of the system. The right-hand side of the equation 
describes the pattern of feeding (the input magnitude) the system 
x(t) over time and the equation determines the function y(t) repre-
senting the pattern of the output of the system over time. Solving 
the equation we obtain the pattern of output corresponding to the 
specific pattern of input. Therefore the equation (5.5) is called the 
response equation of the system. 

The functional equation 5.5 can be transformed by removing 
the integrals from the left-hand side. To do this we introduce a new 
function y*{t) = D~ky{t) and substitute it in the left-hand side 
of the equation (5.5). We obtain in this way the equivalent equation 

k + l m 

(Σ Σ a"D'E&s) y*w = *w· ( 5 · 6 ) 

On the left-hand side of this equation there appear only differentiation 
and lead operators. This is, then, a differential-difference equation.1 

It turns out that the response equation of a linear control system 
can always be written in the form of a differential-difference equation. 
The differentiation operators that appear in this equation express 

1 The most systematic and exhaustive exposition of the theory of differential-
difference equations and of the methods of solving them is given by R. Bellman 
and K. C. Cooke in Differential-Difference Equations, New York-London, 1961. 
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continuous processes, and the lead operators express discrete pro-
cesses that occur in the control system. 

In a special case, when all processes that occur in the control 
system are continuous, the equation (5.6) is reduced to a linear 
differential equation with constant coefficients1 

<hy*(t)+a1Dy*(t)+a20
ly*(t)+ ... +anD

ny*(t) = x(t). (5.7a) 

In the case when all processes are discrete the equation (5.6) is re-
duced to a linear difference equation with constant coefficients.2 

a0y*(t)+a1E*y*(t)+a2E
ey*(t)+ ... +amE*my*(t) = x(t). 

(5.7b) 
For the sake of simplicity we shall, in the future, leave out the 

asterisk in the notation of the function y*(t) in the differential-
difference equation (5.6) in its various special cases. 

The operator form of the equation (5.6) enables us to write its 
solution also in the operator form: 

n m 

r=0 s=0 

and n = k+l in the formula (5.6). This expresses the transformation 
y= Tx. 

The solution (5.8) of the response equation of the system can 
always be presented in the form of the basic formula of the theory 
of regulation 

y{f) = T=SRx{f)' ( 5 9 ) 

We write the solution (5.8) in the form 

y(0= . . *(0 

r=o s=o 

1 Such an equation appears as a basic equation in the theory of linear control 
systems in technology. 

2 The first term on the left-hand side can always be presented in the form 
a0 = α0Ε

Θ. 
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and factorize the operator multinomial which appears in the denom-
inator into two components, in any way. We obtain then 

1 
y(t) 

Σ Σ α,,&Ε9* + Σ Σ arsD'E&* 
Q σ τφρ sj=a 

- x(f). 

Multiplying the numerator and denominator on the right-hand side 
by (Σ Σ αρσΌ

6ΕΘσ)~ we obtain the expression 

(ΣΣαβσΌ°Ε°°)-
y(t) = 

Q σ ΓΦρs^a 

x(t). (5.10) 

Writing 
S = (Σ Σ ^^ΕΘή~1 and Κ=-ΣΣ a"DrE@s 

Q a τφρ τφα 

we state that this is the basic formula of the theory of control (5.9). 
It turns out that every linear system of coupled operations can 

be factorized into two components of which one functions as a con-
trolled system and the other as a controlling system or a controller. 
Some elements of the system belong to the controlled system and 
some to the controller. The allocation of the elements to the controlled 
system and to the controller is arbitrary providing that all the ele-

x(t) 
-$- HiV** 

y(t) 

/?=-r ΣαΓ6ο
Γεθ5 

FIG. 49 

ments not allocated to the one are allocated to the other and that 
the joint operator of the elements allocated to the controller is sub-
jected to the proportional transformation k= — 1. This is shown 
in the block diagram in Fig. 49. Since the allocation of elements 
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is arbitrary there are many ways of resolving the system of coupled 
operations into the controlled system and the controller; all these 
ways are equivalent.1 

To illustrate let us consider the case in which all the processes 
that take place in the system are continuous and the response equation 
of the system assumes the form of a differential equation (5.7a). 
The solution of the equation we write then as 

y{t) = a,+aiD+a2D
2+ ... +anD» *(0* 

Dividing the numerator and denominator by aQ (we assume that 
a0 Φ 0) we transform the obtained expression as follows: 

y{t) = l-a^i-a.D-a.D1- ... -anD») x ( 0 " 

Taking aö1 = S and —a1D—a2D
2— ... —anD

n = R we have the 
control formula (5.9). 

The block diagram corresponding to this differential equation 
is identical with the diagram in Fig. 49 with the difference that the 
operator of the controlled system is S = aö1, and the operator 
of the controller is R = —(alD+a2D

2+ ... +anD
n). The controlled 

system consists of only one element in which there takes place pro-
portional transformation a^1 = — . But the transformation that 

a0 

takes place in the controller is the sum of n transformations. The 
controller is then equivalent to the system of n controllers coupled 

1 This can be shown by taking the joint operator T~l. We resolve the operator 
T~l in any way into two components so that Γ - 1 = A+B. The transformation 

y = Tx is then y = (Α+Β)-χχ, or y = x. After multiplying the numerator 

and denominator on the right-hand side of this expression by A~x we obtain 
A~l 

y = x. Substituting S = A-1 and R = —B we obtain the basic control 
1+A-*B 

formula (5.9). 
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in a parallel way, as shown in Fig. 50. Transformation that takes 
place in each of these controllers is of the —arD

r type, i.e. there 
is one proportional transformation and r differentiations (r 
= l , 2 , . . . , / i ) . These controllers can, in turn, be resolved into a cor-

FIG. 50 

responding number of elementary controllers coupled in a serial 
way (Fig. 51). In every such serial coupling there takes place one 
proportional transformation — ar and an r-fold transformation 
consisting in differentiation (r — 1,2, ..., ri). 

In a similar way, only slightly more complicated, we can present 
the formula (5.10), i.e. the solution of the differential-difference 
equation (5.6). In this way we can read off the structure of the coup-
lings of the elements of which the system consists and separate the 
elements of the controlled system and of the controller. Moreover, 
each linear differential-difference equation (and thus also each 
differential equation and difference equation) with constant coeffi-
cients can be cybernetically interpreted by means of a block diagram. 
Each such equation can be regarded as a description of certain reg-
ulation processes. It is of great practical importance because on 
the basis of such block diagrams as shown in Fig. 50 and Fig. 51 
we can construct models (e.g. electrical ones), i.e. analogue com-
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puters for solving differential-difference equations. In this way we 
can construct machines (analogue computers or simulators) for 
studying the reactions of various systems of coupled operations. 

FIG. 51 

The response equation (5.6) is expressed with the use of three 
elementary operators: the operator k (which appears in the form 
of the coefficients ars)9 the operator D and the operator ΕΘ. This 
equation, however, can be expressed by using only two elementary 
operators, namely the proportionality operator k (in the form of 
the coefficient ars) and the differentiation operator D. For consid-
ering the relationship between the operator ΕΘ and the operator 
D defined by the formula (5.2) we can substitute e®sD for E&s. 

In consequence we can write the equation (5.6) as follows: 

(22arsD'e®s°)y(t)^x(t). (5.11) 

Similarly by substituting e°sD for £0s,we can present the solution 
(5.8) of the response equation in the form of the control formula 
(5.10). The latter form of writing the response equation is partic-
ularly useful for solving it. 
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2. SOLUTION OF THE RESPONSE EQUATION 

We shall now discuss a method of solving the differential-difference 
equation (5.11), used for formulating the general theory of regulated 
systems. 

We distinguish two cases of this equation: (1) the equation is 
homogeneous, i.e. x(t) = 0 for all values of t; (2) the equation is 
not homogeneous, i.e. x(t) Φ 0 for at least some values of t. 

Let us deal first with the first case when the equation is homoge-
neous, i.e. 

n m 

r=0 s=0 

The method of solving a homogeneous linear differential-difference 
equation with constant coefficients is the same as that of solving 
a linear differential equation with constant coefficients, which is 
well known. We used it above in the simple case when the differential 
equation was of order one, namely in solving the equation (4.6) 
in Chapter 4. 

We assume that the solution has the form of the exponential 
function y(t) = ext and check it by substituting in the equation 
(5.12). Considering that Drext = Xrex\ we find 

r=0 s=0 

and since ekt Φ 0, 
n m 

ΣΣα»λ'^'ί = 0- ( 5 · 1 3 ) 
r=0 s=0 

It turns out that the function y(t) = ekt is, indeed, a solution of the 
equation (5.12) if the parameter λ satisfies the equation (5.13), 
i.e. is a root of this equation. The equation (5.13) is a characteristic 
equation of the differential-difference equation. 

In the case when all processes which occur in the system are 
continuous, the left-hand side of the characteristic equation is an 
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algebraic multinomial of the nth degree and the equation has n 
roots (counting the/?-fold root as/? roots). In a general case, however, 
when there are also step processes which introduce in the characteristic 
equation the factors e®*1 the left-hand side of this equation is an 
exponential multinomial (and thus a transcendental function). An 
exponential multinomial is an analytical function determined in 
the whole area of the complex plane. In this area e®sλ is a periodic 
function with the period 2ni. This causes that there exists an infinite 
number of characteristic roots. The set of characteristic roots is 
numerable, because we know from the theory of analytic functions 
that in a defined area the zeros of an analytic function are isolated. 
There is, then, a sequence of functions yx = eXl\ y2 = βλι\ ... which 
are solutions of the differential-difference equation. This sequence 
is, in principle, infinite, with the exception of the case when all 
0S = 0 and the equation is transformed into an ordinary differential 
equation: the characteristic multinomial becomes then an algebraic 
multinomial. 

By substitution and induction we can also check that if the 
functions eXl\ eXlt are solutions of the homogeneous equation (5.12) 
then also the weighted sum of such functions is a solution of this 
equation. Therefore, the general solution of the homogeneous differ-
ential-difference equation (5.12) is of the form 

y(t) = ^Kje
xJt. 

j 

In the case when the root λ] is multiple, let us say /?-fold, then, 
as we can check by substitution, besides the function ekJf also the 
functions texJ \ t2exJ \ ..., tp~ lexJ * are solutions of the equation (5.12).* 
Therefore the weighted sum (K1+K2t+K3t

2+ ... Kpt
v~^)exJt is also 

a solution; in brackets we have here the multinomial of the degree 

1 Let us denote the left-hand side of the characteristic equation (5.13) by 
F{1). As we have already mentioned F(X) is an analytic function λ in the area 
of the whole complex plane. If Xj is a /?-fold root of the equation F(K) = 0, then 
F(A) = (λ-λβρΦ(λ), where Φ(λ) # 0. Hence it follows that 

F'&j) = F"&j) = ... = FiP-'KAy) = 0. 
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smaller by 1 than the multiplication factor of the function. Therefore, 
considering the possibility of multiple roots we write the general 
solution in the following form: 

^ 0 = 2>(0**Λ (5.14) 
j 

where qj(t) is a multinomial of the degree by 1 smaller than the 
multiplication factor of the root of the characteristic equation, 
qj(t) is a constant if the root is one-fold. 

The coefficients qj(t) are determined on the basis of the initial 
conditions of the problem. If, as is generally the case, the number 
of coefficients is (numerably) infinite, an infinite number of initial 
conditions is needed. It is given implicitly if we know the pattern 
of the function in the initial interval from t = 0 to t = max0s, 
coresponding to the maximum lead. 

We shall now show how to solve the non-homogeneous differen-
tial-difference equation (5.11). The solution of this equation can 
be presented as the sum of two functions y(t) = y(t)+y(t), of which 
the first is a general solution of the corresponding homogeneous 
equation obtained by assuming that on the right-hand side x(t) = 0 
(a reduced equation), and the second is any particular solution of 
a non-homogeneous equation. 

To check this we substitute the sum y(t)+y(t) in the non-homo-
geneous equation (5.11). After arranging in order we obtain: 

n m n m 

r=0 f=0 r=0 s 0 

Differentiating consecutively the homogeneous equation F(K)ekt = 0 we obtain 

Ff{X)e^-\-F{X)teXt = 0 

F"ß)e*t-\-2F'ß)teM+Fß)t2e>>t = 0 etc. 

If Xj is a /7-fold root, we have 
Fßj)e*j f

 = F{Xj)telix = F{Xj)t2eX^ = ... = F ( A / ) r p - 1 ^ t = ° 

and therefore exJf
9 texJ\ t2e?'J* ..., tp~ieXJ* are solutions of homogeneous 

equation (5.12). 
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Since y(t) is a general solution of a homogeneous equation, the 
first component equals zero. The second component equals x(t) 
because y(t) is a particular solution of a non-homogeneous equation. 
Therefore y(t)+y(t) satisfies the non-homogeneous equation (5.11) 

A general solution of the equation (5.11) can, therefore, be pre-
sented in the following form: 

y(0 = Z^)elJt+Ht), (5-15) 
where y(t) is a particular solution of a non-homogeneous equation. 

The particular solution y(t) can easily be found by the operator 
method. It is given by the formula (5.8). Introducing the operator 
eesD instead of the operator ΕΘκ we obtain 

r=0 s=0 

We find that this expression is a solution of the differential-difference 
equation (5.11) by substituting it in this equation. We obtain then: 

x(t) = x(t). 
As we know, the expression (5.16) can be reduced to the basic 

formula of the theory of control (5.9). It may be written in the form 

^y(t) = J~SRx(tl ( 5 · 1 7 ) 

where S = (Σ Σ a„D°e*') and R = - Σ Σ ^ ^ β ^ . 

Therefore, the general solution of the response equation can be 
written as follows: 

ν(0 = Σ qAt)eh''+1=SR *(°· (5,18) 

This solution determines the behaviour of output, i.e. the output 
function y(t), if input is subject to "feeding" corresponding to the 
input function x{t). As can be seen from the formulae (5.15) and 
(5.18) this behaviour is expressed as the sum of two components. 
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The second component appearing in this formula, namely the partie-
s' 

ular solution y(t) = - — P ^ - * ( 0 > depends upon the input function 
1—oK 

x(t), i.e. upon the pattern of feeding the system. We shall call it 
the input component. The first component, the solution of a homo-
geneous equation, is independent of inputs, but it depends only upon 
the structural properties of the system, upon its "own characteristics". 
These "own characteristics" of the system are expressed by the char-
acteristic roots Xj. This is known as the structural component. 

The characteristic roots Xj can be real or complex and they always 
appear in coupled pairs because the coefficients ars are real by as-
sumption. If the roots are real three cases are possible: 

(1) All roots are real and negative, i.e. A,· < 0 for every j . Then 
the structural component of the solution tends to zero when t -* oo. 
This component disappears with the passage of time; therefore, 
in this case it is also called a temporary component. For this reason 
the general solution y(t) tends to y(t)9 i.e. to the input component 
determined by the basic control formula. The system is then stable, 
tends to a specific state of equilibrium. The state of equilibrium 
changes with the passage of time as the input quantity x(t) changes 
(we speak then of a moving equilibrium) and remains invariable 
when input is constant, i.e. when x(t) = const (we speak then of 
a stationary equilibrium). The convergence to the state of equilibrium 
is monotonic. 

If the system is controlled then there exists a postulated value 
(norm) z(t) which should be met by the output. In the case of con-
trolled regulation the norm is a result of the accepted criterion of con-
trol. If y(t) = z(t) then the system operates in accord with the task set 
for it, but if y(t) Φ z{t) there is a permanent systematic error in the 
system e(t) = y(t)—z(t). Such an error, as we know, can be elimi-
nated either by correcting the part of the system that functions as 
a controller, or by appropriately changing the input, i.e. the input 
function x(t). 

(2) One, or more, of the real roots Xj > 0. Then component of 
the general solution (5.15) or (5.18) tends to oo when t -> oo. 
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The system is then unstable, the output y{t) moves more and more 
away from the state of equilibrium determined by the input com-
ponent. The "own characteristics" of the system disturb more and 
more the effect caused by the input x(t) and the system "gets out 
of control" of the feeding. In this case the structural component 
of y(t) determines the trend of the output of the system. This trend 
does not depend upon the input x(t); it is the result of the "own 
characteristics" of the system, expresses its inner law of motion} 

(3) All roots Xj = 0. Then the structural component of the so-
lution assumes any value and we have: y{t) = any value +y(t)* 
We say then that the system is on the border of stability and it can 
be given any deviation from the state of equilibrium y(t). The de-
viation neither decreases nor increases. We say then that every 
state of the system is a state of equilibrium. 

Let us now consider the case in which the characteristic equation 
has complex roots. Let Xj = a/+//?,·; then the function exJf can be 
written as follows: 

Using the well known Euler's formula: em = cosco+Zsinco we write 

exjt = e'j'icosßjt+isinßjt). (5.19) 

Thus, when the characteristic root is complex the structural com-
ponent of y(t) of the solution of the response equation contains 
an element with a periodic pattern. The pattern at the moment of 
output y{t) is then of an oscillating nature. The character of oscilla-
tion depends upon the sign of the real part of the root Xj9 i.e. upon 
the sign of a,· which determines the amplitude of oscillation. If 
(Xj < 0 then the oscillation is damped and fades with the passage 
of time. If a,· = 0 then the oscillation is constant and its amplitude 

1 The expression "the law of motion" is used by Marx for defining the reg-
ularity of development resultant from "own characteristics" of the capitalist 
system. See Kapital (Capital), Vol. 1, Warsaw 1950, p. 6. The generalized 
concept of the "inner law in motion" of the system was introduced by O. Lange 
in Whole and Parts in the Light of Cybernetics, Warsaw, 1965, pp. 37. 45-46. 

124 



GENERALIZATION OF THEORY OF REGULATION 

remains unchanged; if Uj > 0 the amplitude of oscillation increases 
indefinitely. 

Since the real numbers can be treated as a special case of the 
complex numbers the result may be summarized as follows. We 
treat the characteristic roots as complex numbers: 

λ] = rekj+imXj 

where reXj denotes the real part and imXj denotes the imaginary 
part. The real part is decisive for the stability of the system, namely 
the system is stable if reX3 < Ofor every kj; it is on the border of 
stability if reXj = 0 for every Xj; it is unstable if reXj > 0 for one 
or more Xj. The imaginary part decides whether the pattern at the 
moment of output is monotonic or oscillating. The pattern is mono-
tonic if imXj = 0 for every Xj and is oscillating if imXj Φ 0 for one 
or more Xj. 

Especially worth noting is a situation in which there exist one 
or several positive real roots and one or several complex roots such 
that reXj < 0. Positive real roots determine the development trend 
of the output of the system and complex roots determine oscillations 
in the output of the system. Since the structural component of the 
solution is a sum of the expressions of the type qj(t)eAJt, the trend 
and oscillations are superimposed. However, since reXj < 0 these 
oscillations eventually fade away and the deviations from the trend 
are gradually eliminated. In such a case we say that the system is 
self-regulated.1 The "inner properties" of the system determine 
its "inner law of motion" which manifests itself in the trend in the 
pattern of the outputs peculiar to this system; the same inner prop-
erties determine also the property of self-elimination of oscillating 
deviations from the trend. 

Also of interest is a system which is at the limit of self-regulation. 
This occurs when some characteristic roots are real and positive 
and some are complex, and reXj < 0, while reXj = 0 for at least 
one of them. Then the trend and oscillations with a constant ampli-
tude are superimposed. As we shall see this case constitutes a basis 

1 On the subject of self-regulation see O. Lange, Whole and Parts in the Light 
of Cybernetics\ ed. cit.y p. 74. 

125 



INTRODUCTION TO ECONOMIC CYBERNETICS 

for the theory of business cycles in a capitalist economy (at least 
at a certain stage of its development). 

Whether the system is stable, monotonic or oscillating it depends 
upon the structural component of the response equation of the 
system. The input component determines the state of equilibrium 
of the system. These components, however, are not independent 
of one another. For it turns out that there exists a certain relationship 
between the characteristic roots λ^ which appear in the structural 
component, and the operators S and R, which appear in the input 
component. This relationship exists because the input component 
j ( 0 expresses the response of the system to input x(t). Different 
systems react in different ways to the same input for the response 
depends upon the characteristics of the system or upon its "inner 
properties". These "inner properties" affect also the characteristic 
roots and thus the structural component of the solution of the re-
sponse equation of the system. 

We shall now describe the method of determining the relationship 
between the operators S and R and the characteristic roots Ay. We 
have seen above that the basic formula of the theory of regulation 
can be presented in the form of an infinite series1 

y ( t ) = [l + (SR)+(SR)2+ ...]Sx(t). 

This series expresses the output function y(t) depending upon the 
input function x(t). The same relationship expresses the solution 
of the response equation of the system written in the form given by 
the formula (5.18), namely: 

j 

The first expression is convergent with the state of equilibrium 

J'(') = Ί—Έ^χ(*)> tf 1^1 < *> where |&R| == the upper boundary 

liKol 
—-7— of the time interval /. The second expression, for t -» oo, is 

1 See Chapter 3, Section 3 
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convergent with the same state of equilibrium if for all characteristic 
roots rekj < 0. Thus the condition of stability reX] < 0 is equivalent 
to the condition of stability \SR\ < 1 discussed above,1 where \SR\ 
is defined as the upper boundary of the absolute value of the transmit-

tance ^γγ in the interval (t0, oo).2 

To the absolute value thus defined there corresponds 

5Ä = & = - ^ ± [ ( 7 = 1 , 2 , . . . ) . 

This is a transformation of a circle with the radius 1 in the complex 
plane ρ into the complex semiplane λ, and vice versa. Its property 
is that \QJ\ < 1 when and only when rekj < 0.3 In this way to each 
root Xj with a negative real part there corresponds the absolute 
value |g/1 = \SR\ < 1. The condition of stability of the system 
resulting from the solution of the response equation turns out to 
be identical with the condition of stability resulting from expanding 

into an infinite series the feedback multiplier ———- = l + (SR) 
1—oR 

+ (5JR) 2 + ..., which appears in the basic formula of the theory of 
regulation. 

3. EXAMPLE: KALECKI'S MODEL OF BUSINESS CYCLES 

To illustrate the response equation of a system and its solution 
we shall take as an example a model of business cycles in a capitalist 

1 See Chapter 3. 
2 As mentioned above in Chapter 3 such an upper boundary always exists 

for continuous linear operators. 
3 We write λ = x+iß. Then 

_ λ+1 _ (α+ΙΗ/jg 
ρ λ-ι (oL-imß 

and 
|(α+1) + #Ι2

 = ( g + i y + y 
Ιρΐ \(<x-l) + ißf (oc-l)2+02* 

If |ρ| < 1 then also |ρ|2 < 1 and vice versa. 
Then (a+l)2+|32 < (a-l)2+/52, hence 2a < - 2 a , or a < 0. 
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economy designed by M. Kalecki.1 He takes into consideration 
a number of macro-economic quantities determined at the moment t, 
such as the stock of investment goods K(t), the amount of investment 
goods produced in excess of replacement requirements, i.e. the net 
production of investment goods L(t), the planned investments B(t), 
the national income 7(0, the total consumption C(0, and the total 
net investments I(t). 

The relationships between these quantities are expressed by 
the following equations: 

^ - = £(0 , (5.20) 

i.e. an increase in the stock of investment goods equals the net pro-
duction of investment goods 

L(t+0) = B(t), (5.21) 
or the net production of investment goods at the moment t+Θ 
equals the investments planned at the moment t. The period of 
time Θ, which elapses between the decision to invest and comple-
tion of the production of the investment goods, is taken as constant. 

B(t) = a[Y(t)-C(t)]-bK(t), where a > 0, b > 0. (5.22) 

1 Kalecki's model gained international fame and was first described in the 
book entitled: Proba teorii koniunktury (An Attempt at a Theory of Business 
Cycles), Warsaw, 1933 (reprinted in part in Kalecki's: Studies in the Theory 
of Business Cycles 1933-1939, Oxford, 1969). Subsequently it was published 
in various versions of which the following are worth noting: "A Macro-dynamic 
Theory of Business Cycles", Econometrica, 1935; Studies in Economic Dynamics, 
London, 1943; Theory of Economic Dynamics, London, 1954. A detailed descrip-
tion can be found in R. G. D. Allen's Mathematical Economics, London-New 
York, 1957, pp. 251-261 and 286-288. In its somewhat simplified form the model 
is discussed by O. Lange in "Micha! Kalecki's Model of the Business Cycles" 
and in "A New Version of Kalecki's Model" in the collection of papers 
and articles: O. Lange, Papers in Economics and Sociology 1930-1960, Oxford-
Warsaw, 1970, and in: Feedback and Stability in Operations Research and Sys-
tems Engineering by M. H. Chiksy, edited by C. D. Flagle, W. H. Huggin and 
R. H. Roy, Baltimore, 1960. Kalecki's model is also discussed by A. A. Tustin in 
The Mechanism of Economic Systems, London, 1953, pp. 12-14. 
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The volume of planned investments is proportional to the non-
consumed part of the national income, i.e. to the total accumulation 
(savings). Kalecki assumes that only capitalists save and they make 
decisions to invest. But also in cases when non-capitalists save, 
their savings are put at the disposal of the capitalists (e.g. by granting 
credit) and influence the decisions to invest. The volume of invest-
ments depends also on the existing stock of investment goods: the 
greater the stock, the smaller the volume. This is so because, at 
a given level of national income and consumption, the greater the 
stock of investment goods, the smaller the return on an investment. 

Y(t)=C(t)+I(t), (5.23) 

i.e. the national income is the sum of consumption and investments. 

C(t) = cY(t), where 0 < c < 1. (5.24) 

The total consumption is proportional to the national income; 
c is the consumption coefficient. 

t 

I(t) = ~ JB(t)dt, (5.25) 
t-e 

i.e. total investments at the moment t are equal to the average value 
of all investments planned in the period [i—(9, t\. For at the mo-
ment t all investments decided upon in this period are in process, 

' 1 
i.e. f B(t)dt; however, only the -~- part of this amount is completed. 

For the purpose of this analysis it is more convenient to present 
these equations in the form of operators. We have then 

DK(f)=*L(t) (5.26) 

E&L{t)=B(t) (5.27) 

B(t) = a[Y(t)-C(t)]-bK(t) (5.28) 

Y(t) = C(t)+I(t) (5.29) 

C{t) = cY{t) (5.30) 
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I{t)^~D-Kl-E-e)B{t). (5.31)1 

These equations determine the linear system of coupled operations 
whose block diagram is shown in Fig. 52. It can be seen from the 
diagram that there are three feedbacks in this system. One is the 
coupling of the elements defined by the operators ΕΘ, D~\ —b; 

- 1 
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FIG. 52 

the equations corresponding to it are: (5.26), (5.27) and (5.28). 
Another one is the coupling of the elements defined by the opera-
tors 1, 1, c; it is expressed by the equations (5.29) and (5.30). The 

third is the coupling of the operators -^ D~l(l-~E~e), 1, c, — 1, 

a to which there correspond the equations: (5.31), the first term 

xIn the equation (5.31) there appears the definite integral 

j B(t)dt = j B{t)dt- j B{t-G)dt. 
ί-Θ 

In the operator form we can write this as follows: 
D-'BiO-D'E-eßit) = Dl{\-E-®)B{t). 
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on the right-hand side of the equation (5.28) and the second term 
on the right-hand side of the equation (5.30). It can be seen that 
in this system the following transformations occur: proportional 

transformation (the operators I, a, — b, c, - ^ 1 , differentiation (oper-
ator D), integration (operator D'1), lead (operator ΕΘ) and backing 
(operator E~&). 

The system of equations (5.26)—(5.31) can be expressed as one 
equation. By combining the equations (5.26), (5.27) and (5.28) 
we obtain 

ΌΕΘΚ(ί) = a{Y(t)-C(t)]-bK{t). 

Because of the equation (5.30) we have 

DE®K{t) = a(\-c)Y(t)-bK(t). 

Combining the equations (5.29) and (5.30) we obtain 

Substituting this result in the expression obtained previously we have 

DE&K{t) = aI(t)-bK(t). 

Substituting the right-hand side of the equation (5.25) for I(t) we 
find 

DE®K{t) = a~D-1(l-E~G)B(t)-bK(t). 

On the basis of the equations (5.20) and (5.21) we have £ ( 0 
= E®DK(t). Taking into consideration this relationship we obtain 

DEGK(t) = * i D-\\-E-®)EeDK(t)-bK(t). 

Hence finally 

DE0K{t) - - ^ (ΕΘ- \)K{t)-bK(t). (5.32) 

The result obtained is a linear differential-difference equation 
with constant coefficients. Since the time-lag between a decision to 
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invest and the completion of the investment, 0 , is a constant quantity, 
we can take period 0 as a unit of time. Then 0 = 1 . Considering 
the relationship E = eD we can write the differential-difference 
equation as follows: 

[DeD+a(l-eD)]K^+bK(t) = 0 
or 

[(D-a)eD+a+b]K(t) = 0. (5.33) 

The operator (D—a)eDjra+b which appears on the left-hand 
side of the result obtained is a joint operator of the system defined 
by the equations (5.26)—(5.31). The differential-difference equation 
(5.33) is the response equation of the system and it corresponds to 
transformation T~ly{t) = x(t) discussed above. The output function 
of the system is K(t) and it depicts the pattern of changes in time in 
the stock of investment goods. Instead of the stock of investment 
goods we can take other quantities as output of the system, e.g. 
the national income Y(t). From the relations determined above we 
obtain 

a(l-c)Y(t) = DeDK(t)+bK{t), 
or 

The left-hand side of the equation (5.33) represents the input 
function x(t). In this case, however, we have identically x(t) = 0 
and the equation is homogeneous. This means that the system is 

x(t) = 0 [(0-α)β° + α+ο]'* K(t) 

FIG. 53 

not fed from outside and the pattern in time of its output K(t) or 
7 (0 depends exclusively upon the "inner properties" of the system. 
The block diagram of such a system is shown in Fig. 53. 
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We find the solution of the equation (5.33) by assuming that it 
has the form K(t) = K0e

xt, where K0 = #(0) denotes the stock of 
investment goods at the initial moment. Substituting this function 
in equation (5.33) we obtain the characteristic equation 

(X-a)ex+a+b = 0. (5.34) 

It can be seen that the left-hand side of the characteristic equation 
is an exponential multinomial. 

The real roots of the exponential multinomial (5.34) and the 
condition of their existence can be expressed graphically. To do 
this we write the characteristic equation in the following form: 

(X-a)e
x= -(a+b). 

Both sides of this equation are shown graphically in Fig. 54. The 
left-hand side is a function of variable λ shown in the graph as a curve 

Fio. 54a 

with the equation/(λ) = (A—a)ex. The right-hand side is shown as 
a horizontal straight line with the equation y = —(a+b). The real 
roots are determined by the points of intersection of the function 
/(A) with the straight line y. 

The function /(A) is continuous and its derivative is /'(A) 
= (1+A—a)ex. Therefore it is increasing for A > a—I and decreasing 
for λ < a— 1. At the point corresponding to the value λ = a—I 
the function reaches its minimum. If λ -> — oo then /(A) -> 0 and 
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if λ -> +oo then/(A) -» oo.1 The minimum of the function is — ea~l 

and at the point corresponding to λ = 0 the value of the function 
is — a. The value of the function is zero for λ = a. These properties 
are shown in Fig. 54a and 54b. In Fig. 54a it has been assumed that 

λ 

y=-(a+b) 
Q 

FIG. 54b 

a < 1 and therefore the minimum of the function is on the left 
side of the axis of ordinates. If a > 1 then the minimum is on the 
right side of the axis of ordinates which is shown in Fig. 54b. The 
general shape of the function remains the same. 

Since by assumption a > 0 and b > 0 then the horizontal straight 
line y= — (a+b) is below the axis of abscissae and even below 
point P which corresponds to the value of the ordinate —a. Therefore, 
if this straight line intersects the curve of the function f(X), then it 
does so at two points. This is shown in Fig. 54a and 54b (points 
R and S). If a < 1 then the intersection is to the left of the axis of 
ordinates, i.e. in the range of negative values of λ; this can be seen 
in Fig. 54a. If a > 1 then the points of intersection are to the right 
of the axis of ordinates, i.e. in the range of positive values of λ (see 
Fig. 54b). The condition of intersection of the straight line with the 
graph of the function/(A) is: a+b < ea~l. In the limiting case 
a+b = ea~l the straight line is tangent to the graph of the function 

1 Writing/(Λ) = kek—aex we state that when λ -> — oo then aex-+0. Since 
ex changes faster than Λ, then λβλ -> ex -► 0 when λ -> — oo. 
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f(X) at the point Q. The point of tangency may be on the left or the 
right side of the axis of ordinates, depending upon whether a < 1 
or a > 1; if a = 1, the point of tangency Q is on the axis of ordi-
nates. If a+b > ea~l then the straight line does not intersect the 
graph of the function f(X) and the characteristic equation has no 
real roots. 

It turns out, then, that real characteristic roots exist if a+b 
< ea~l and there are two of them in the case of inequality and one 
(double) in the case of equality. The roots are negative if a < 1 and 
positive if a > 1; in the special case when a = 1 there is one (double) 
root and it equals zero. 

We find the complex roots of the characteristic equation (5.34) 
by substituting the expression λ = on+iß in the equation. We have 
then 

(ot-a+iß)e*+iß+a+b = 0 
or 

(<x-a+iß)ea = -(a+b)e~iß. 

Considering the Euler Theorem e~iß = cos/?—/sin/S we write 

(<x—a+iß)e* = — (a+b) (cosß—isinß). 

The real part of the left-hand side of the equation must equal 
the real part of the right-hand side of the equation and the imaginary 
part must equal the imaginary part. Thus the following equations 
are satisfied: 

(α-α)<?α = -(a+b)cosß (5.35a) 
ßea = (a+b)sinß. (5.35b) 

From the equation (5.35b) we have 
, , ,. sin/? 

e" = (a+b)-^. 

Substituting this in the equation (5.35a) we obtain 

(a-a) (a+b) ^ - = ~(a+b)cosß, 
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or 
(a-e)tgj8 = - / ? . 

Hence 

tgß=—^—ß. (5.36) 
a—a 

Since a and ß are real the equation (5.36) can be solved graphi-
cally. Presented in Fig. 55 is a graph of the function tgß in the in-

JZ 7t 1 
terval — - - < ß < — and the straight line y = ß. The points 
of intersection of this straight line with the graph of the function 
tgjS are determined by the roots of the equation (5.36). The point 
of intersection is always the origin of the system of coordinates 0. 
This intersection gives the result ß = 0, i.e. it corresponds to the 
real root (if it exists). Complex roots are determinated by inter-
sections at the points corresponding to β Φ 0. The existence of 
such intersections depends upon the slope of the straight line which 

is . The slope of the curve of the function tgß is — ~ - = 1 + 
a—a aß 

tg2/? and is smallest at point 0, where it equals 1. For the straight 
line to intersect the curve tgß at other points its slope must be 
greater than the smallest slope of this curve, i.e. > 1. Then 

a—oc 
the straight line intersects the graph of the function tgß at two sym-
metrical points R and S corresponding to conjugate roots cc+iß 
and α —iß. If < 1 then the straight line intersects the curve 

α—α 
only at the point 0 and there are no complex roots. 

It turns out that the condition for the existence of complex roots 
is that > 1, i.e. a—I <<x< a. The consequences are interesting. 

If a > 1 then a > 0, complex roots have the real part positive and 
oscillations are increasing. If a < 1, then a may (but not necessarily) 
be negative or equal zero and oscillations may be fading or with 
a constant amplitude. 
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There is a certain relationship between the values of a which 
determine changes in the amplitude of oscillations, and the values 
of /?, which determine their frequency (or period). As can be seen 
from Fig. 55 the value of ß determined by the point of intersection 

FIG. 55 

R is contained within the open interval 

1 
te) — I and increases as the 

slope of the straight line 
a—oc 

increases, or as a—a decreases. It 
Ίτι follows that the period of oscillations which is T = —5- cannot 

be shorter than 4 units of time (we have taken Θ as a unit of time, 
i.e. the lag between the completion of the production of investment 
goods and the moment at which the decision is taken). Period T 
increases as the value of a decreases. Taking a = 0 (i.e. the case 
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of oscillations with a constant amplitude) as the criterion of boundary 
we obtain a certain critical value ß0 and T0. It turns out then that in 
the case of a > 0 (increasing oscillations) ß > ßo and T > T0, 
while in the case of a < 0 (decreasing oscillations) ß < ß0 and T < T0. 
Thus oscillations with a period longer than the critical period T0 

are decreasing and only oscillations with the period T < T0 persist. 

The equation (5.36) has also roots outside the interval 

which we have been considering. If this equation is satisfied within 
the interval by a definite value ß then it is also satisfied by the value 
ß-^kn (where k = 1,2, ...) located outside this interval. This 
follows from the property tg(ß±kri) = tgß. In addition to the root ß 
there are then the roots β±π, β±2π, .... To these roots there cor-
respond additional oscillation factors in the solution of the re-
sponse equation of the system. The oscillations related to these roots, 
however, have a short period. As we have seen, in the interval 

( 7t 7Z \ ——, —1 the roots appear as a pair β and — β corresponding to 

the points of intersection R and S in Fig. 55, and β > 0. Thus we 
have β+π > π, β+2π > 2π, β+3π > 3π etc. and the corresponding 

2 
periods of oscillations satisfy the inequalities T <2,T <\,T < — etc. 

It can be seen that with one exception the periods of oscillations 
are shorter than the unit of time which we have taken as the lag Θ 
between the decision to invest and the production of investment 
goods. Such oscillations cannot manifest themselves when time is 
divided into periods shorter than Θ and therefore can be disregarded. 
Oscillations with the period T < 2 have a certain chance to mani-
fest themselves; since ß < — their period is 4/3 < T < 2. From 

the above relationship between the period of oscillations and the 
value a it follows, however, that if their period is close to 2 units 
of time then a is very small (a < 0), i.e. oscillations are strongly 
dampened; if, however, they are not dampened then their period 
is close to the lower limit 4/3 which exceeds the unit of time only 
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slightly. In consequence these oscillations are of little practical 
importance. Worth noting in practice are only the oscillations cor-

( <rr JC \ 

—y-,-yl which, as we 

have seen, have the period longer than 4 units of time. 
Thus the discussion on the characteristic equation (5.33) leads 

to the following result.1 Kalecki's model is stable only if a < 1. For 
in the case when a > 1 the oscillations which appear in the solution 
of the response equation are increasing and if there are non-oscillatory 
factors (corresponding to real roots) then they represent a limitless 
increasing trend (if a > 1) or a constant value (if a = 1). The system 
is then unstable. However, the condition that a < 1 is only a necessary 
but not a sufficient condition of stability. The real roots, if they 
exist, are then negative so that the non-oscillation factors of the 
solution disappear with time, but it may be that a > 0, i.e. it is 
possible that oscillations may have a constant or increasing ampli-
tude. Such oscillations, however, have a relatively short period of 
time, namely 4 < T < Γ0. 

The stability of Kalecki's model and the nature of oscillation 
processes which appear in it depend upon the value of the coeffi-
cients a and b appearing in the response equation of the system. 
The coefficient a expresses the sensitivity of investment decision 
to accumulation {total savings) which in certain conditions (namely 
when only the capitalists accumulate) coincides with the capitalists' 
total non-consumed profit. As we can see the necessary (but not 

1 The roots of the characteristic equation which appears in Kalecki's model 
and problems involved in solving them are treated extensively in literature on 
this subject. The most important writings are: R. Frisch and H. Holme, "The 
Characteristic Solutions of a Mixed Difference and Differential Equation", 
Econometrica, 1935; R. G. Allen, Mathematical Economics, London-New York, 
1957, pp. 254-258; N. D. Hughes, "Roots of the Transcendental Equation Asso-
ciated with a Certain Difference-Differential Equation", Journal of the London 
Mathematical Society, 1950 and R. Bellman and K. L. Cooke, Differential-
Difference Equations, New York-London, 1961, pp. 444-446. An analogue com-
puter has also been designed for solving Kalecki's model. See: O. J. Smith and 
J. M. Erdley, "An Electronic Analogue for an Economic System", Electrical 
Engineering, 1951. 
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sufficient) condition of stability is that a < 1, the magnitude of 
decisions to invest must be less than the total accumulation. The 
coefficient b expresses the sensitivity of investment decisions with 
respect to the stock of investment goods. The meaning of this coeffi-
cient is as follows. If a+b < ea~x then (for a < 1) there are two 
negative real roots, the non-oscillatory component of the solution 
of the response equation tends to zero over time, or oscillations 
are superimposed upon the decreasing trend. Then K(t) = K0e

Xt -> 0, 
i.e. the stock of capital goods shrinks and the system cannot secure 
even simple reproduction. 

This is explained by the fact that the magnitude of decisions to 
invest is less than accumulation which, when other compensating 
factors are lacking, results in less than full reproduction. To avoid 
this a+b^ea~l must hold, i.e. b > ea~l—a, which means that 
the coefficient of sensitivity of decisions to invest with respect to 
the stock of investment goods must be sufficiently great. Then the 
trend to less than full reproduction, resulting from a < 1, is coun-
teracted: a decrease in the stock of investment goods related to this 
trend results in an increase in decisions to invest and counteracts 
this trend. Thus either there is one real root (when b = ea~l—a) 
or (when b > ea~x—d) there are no real roots. In the first case there 
is (constant over time) a non-oscillatory component of the solution 
on which oscillation is superimposed; in the second case there is 
only an oscillation component of the solution and the average value 
of the oscillation process is zero. In both cases reproduction is simple 
at a certain definite level. 

As can be seen, in Kalecki's model it is impossible to have a sit-
uation in which the trend is increasing (positive real roots) without 
increasing oscillations. For an increasing trend requires that a > 1 
(i.e. the decisions to invest exceed total accumulation), but for 
a > 1 oscillations are also increasing (because then a > 0). The in-
creasing trend, i.e. the expanded reproduction of investment goods, 
is paid for by the instability of the system. The stability of the system, 
on the other hand, is paid for by simple or less than simple repro-
duction. This is, according to Kalecki's model, the basic dilemma of 
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the capitalist system: growth and instability, or stability and stag-
nation or even decline. 

On the basis of statistical data Kalecki attempted to estimate 
the values of the coefficients a and b. He found that a = 0.95 and1 

b = 0.12. It follows that a+b = 1.07 > 1, and ea~l = e0'05 = 0.95 
< 1. In consequence a+b < ea~x, i.e. the characteristic equation 
has no real roots. The complex roots oc+iß and a—iß satisfy the 

equation tgß ß. For a = 0 we determine the critical value ß0 

a—a 
and from the equation -~— = . ^ . we obtain approximately ß0 

ß Ü.95 
2π 

= 0.38 and hence T0 = -x-= 8.25. Kalecki also finds that the lag Θ 
Po 

is from one half to one year and then, if there are oscillations with 
a constant amplitude, the period of duration is from slightly over 
4 to over 8 years and oscillations of the longer amplitude are damp-
ened. On the assumption that 0=1 year oscillations with a constant 
amplitude would correspond approximately to the business cycle 
of 8 years and on the assumption that 0 = 1 / 2 the business cycle 
whose duration is about 8 years would be dampened. With the above-
mentioned properties of the coefficients a and b and of the lag Θ, 
Kalecki's model yields the process of simple reproduction accom-
panied by oscillations with a constant amplitude, or dampened in 
accordance with the empirically determined business cycle. 

1 See M. Kalecki, "A Macro-dynamic Theory of Business Cycles", Econo-
metrica, 1935, p. 339. The estimate is based on the data for the U.S.A. for the 
years 1909-1918. Kalecki also made an estimate for the U.S.A. for the years 

a 
1929-1940. Assuming that© = 1 year he obtained = 0.63 and he did not 

1 + 6 
estimate a and b separately. Assuming that b = 0.12 (as before, we would get 

a 
b = 0.7. On the assumption that Θ = 1/2 of one year he obtained — = 0.76 
which for b = 0.12 gives 0.85. The coefficient of sensitivity of decision to invest 
to total savings is then lower than for the years 1909-1918. This is understand-
able considering that the years 1929-1940 were a period of depression. See M. 
Kalecki, Teoria dynamiki gospodarczej (The Theory of Economic Dynamics), 
Warsaw, 1958, pp. 147-148. 
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As we have seen, in Kalecki's model there is no expanded repro-
duction with a simultaneous stability of the system and stable repro-
duction is simple or incomplete. This is related to the fact that in the 
response equation of the system (5.33) the adopted feed component on 
the right-hand side of equation is x(t) = 0. We can introduce on the 
right-hand side, instead, a positive supply x(t) = A(t) > 0 which 
expresses autonomous investments (i.e. independent of profitability). 
This can be related to technical progress which induces investments 
not based on the direct short-term calculation of profitability, but 
on a long-run development policy of the enterprise. They may also 
form public investments related to a long-run government policy 
(armaments, the policy of employment and of acceleration of eco-
nomic growth). Then to the solution of the type y = J^A}(0)eV 

j 

we add the supply factor y = [(D—a)eD+a+b]~1A(t). The general 
solution of the response equation of the system assumes then the 
following form: 

K{t) = Υ Kj(0)exJt+[(D-a)eD+a+b]-1A(t). 
j 

In this solution the source of expanded reproduction is the input 
component of the solution while the structural component (which 
results from "inner properties" of the system) ensures only less 
than full or at the most simple reproduction of material capital 
(unless the system is unstable and structural component expresses 
both expanded reproduction and increasing oscillations). 

The feature of this approach is that growth of a capitalist econ-
omy (expanded reproduction) appears as an exogeneous factor 
being the result of feeding the process of reproduction from "out-
side" by autonomous investments. To get expanded reproduction 
as a result of "inner properties" of capitalist reproduction rather 
than of exogeneous feeding Kalecki's model would require certain 
changes.1 

1 O. Lange in his The Theory of Reproduction and Accumulation, Oxford-
Warsaw, 1969, suggested a model related to that of Kalecki; it gives both the 
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4. THE CRITERIA OF EFFICIENCY OF REGULATION AND 
THE RELIABILITY OF SYSTEMS 

We have already discussed above (Chapter 4, Section 3) a num-
ber of problems related to efficiency or, as some say, to the "good-
ness" of regulation processes. Now, after presenting a generalized 
theory of regulation, we can deal with this problem in greater detail. 
Included in the term "efficiency" or "goodness of regulation" are 
usually two problems. One is the speed with which a given regulation 
process operates, i.e. the speed with which in a stable regulation 
system disturbances are eliminated and the system tends to the 
state of equilibrium (stationary or moving). The second is the question 
of the precision of regulation, i.e. the magnitude of deviations between 
the values of the output function in the state of equilibrium of the 
system and the target values (i.e. the error of a regulation system). 
However, recently another problem in the efficiency of regulation 
is more and more frequently mentioned. It is the problem of the 
operational reliability of a regulation system. The problem of relia-
bility of a system came to the fore in the early 1950s in connection 
with the rapid development of the technique of construction of 
various types of automatic equipment. Such equipment is usually 
very complicated and has a great number of components; sometimes 
one or a few damaged components make the efficient operation 
of the whole system impossible. In many fields technology requires 
great operational precision of complicated equipment (e.g. in remote 
control rockets or artificial satellites). This prompted the development 
of a new branch of automation, often called reliability engineering, and 
of the supporting theory.1 It turns out that the problem of reliability 
is also of great importance in the regulation and control of economic 
processes. Therefore, we shall deal with it in greater detail. 

development trend and cyclical fluctuations as a result of "inner properties" 
of the capitalist process of reproduction and lends itself to transformation into 
the model of socialist reproduction (in which there are no business cycles). 

1 An introduction to this branch of science is given by D. N. Chorafas in 
Statistical Processes and Reliability Engineering, Princeton, 1960. See also D. 
D. Ellis and F. J. Ludwig, Systems Philosophy, Englewood Cliffs, 1962. 
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As we have seen the «general solution of the response equation 
of the system has the form given in formula (5.15) in Section 2: 

y(0 = ^ l ? i (0^ , +y ( i ) 
j 

where the first component on the right-hand side is a structural 
one and the second is a feeding component of the solution. The 
system is stable if re A; < 0 for all j . The absolute values of \reXj\ 
are decisive for the speed with which the system tends to equilibrium. 

Writing as above, Xj = ttj+ißj (formula (5.19) in Section 2) 
and 

exJ = e^J^cosßjt+ismßjt), 

we interpret the structural component as the sum of oscillations. 
Each of these oscillations has an amplitude eaJf. The speed of change 
of this amplitude is 

de'J* 

and its rate is 
dt 

de'J1 

dt 

= ajeajf 

e*jt J· 

If Uj < 0, as is the case in a stable system, then ocj measures the 
rate at which oscillations are dampened. This rate increases as a,· 
decreases, i.e. as the absolute value of |o/| increases. Therefore this 
absolute value is called the coefficient of dampening. 

Decisive for the speed with which the system tends to equilibrium 
is the smallest of these coefficients because oscillations corresponding 
to it fade away most slowly. Therefore we can use as a measure 
of the speed with which the system tends to equilibrium or with 
which disturbances are eliminated: min|a/|, i.e. 

j 

min\reXj\. (5.37) 
j 

This measure of speed of operations of a regulation process 
includes also the case when all λ} are real and the process of tending 
to equilibrium is not oscillatory but monotonic. For this it is enough 
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to assume that ßj = 0 and then a,· = A,. The measure of speed of 
a regulation process is then simply: min|A/|; it expresses the rate 

j 

of a monotonic process of dampening of deviations from equilibrium. 
In the case discussed above in Section 2, when the characteristic 

equation of the response equation of the system has one or several 
positive real roots and one or several complex roots such that reXj < 0, 
i.e. dampened oscillations appear, the expression (5.37) is the measure 
of speed of the process of self-steering of the system. It expresses 
then the rate with which oscillations around development trend 
of the system fade away. 

In the state of equilibrium the general solution of the response 
equation of the system becomes equal to its feeding component, 
.e. y{t) = y(t). If y{t) is always equal to the target value z(t) we say 
that the regulation system operates with perfect precision. As a rule, 
however, it is impossible to achieve perfect precision or if it can 
be achieved it is too costly. The structure of this system may be 
such that for any selected input function x{t) it is impossible to 
obtain exactly the equality y(t) = z(t) for all values of t, and a trans-
formation of the system, so as to make it possible, would be too 
costly. Then we have to content ourselves with satisfying this equation 
approximately. Moreover, even if the structure of the system is 
"faultless", i.e. it does not produce a systematic error, the above 
equality is often not satisfied because of random fluctuations in the 
intensity of x(t) or in the operation of the system (e.g. mechanical 
vibrations) which evade human control. In such a case the feeding 
component j ( 0 is also subject to random fluctuations and, as a result, 
there arise differences y(t)—z(t) which are in the nature of a random 
variable. In this case we speak of random errors in the operation 
of the regulation system. 

As a measure of an error, both a systematic and a random one, 
in the operation of a regulation system in the period Θ we usually 
take the variance 

Θ 

°2 = ^ f \y{t)-z{t)fdt. (5.38) 
Ö 
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The reciprocal of the variance may be used as a measure of pre-
cision of the operation of the system. We denote it by 

» = -^-. (5.39) 

In this way we can compare the precision of operation of various 
regulation systems. 

Sometimes we are interested in the absolute value of the error 
rather than its relative magnitude in comparison with the target 
value (norm) z(t). Since except for simple regulation when z(t) 
= const, the value of z{t) changes in time we relate the size of the 

1 f error to the average target value, i.e. to -~- I z{t)dt. We obtain then & J 

the measure of relative error in the form known in statistics as the 
coefficient of variation.1 

v = — £ . (5.40) 

«9 / *<'>* 

The measure of precision of operation of the system is then the 
reciprocal of the coefficient of variation which we denote 

π*=-, (5.41) 
v 

We shall call it the measure of relative precision, in contradistinction 
to (5.39) which is a measure of absolute precision. 

The question arises why we take as a basis for measuring the 
operational precision of a regulation system the variance defined 
by the formula (5.38) and not, for instance, the average of the ab-
solute values of the deviations \y(t)—z(t)\ or some other function 
of these deviations. Let us note in this context that the variance 
σ2 may be factorized into two components of which one measures 

1 See e.g. S. Szulc, Metody Statystyczne (Statistical Methods), 2nd ed., 
Warsaw, 1961, p. 243; A. Weryha, Statystyka Teoretyczna (Theoretical Statis-
tics), Vol. 1, Warsaw, 1954, p. 115; O. Lange, Teoria Statystyki (The Theory 
of Statistics), Part I, Warsaw, 1952, p. 130. 
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the systematic error and another measures random errors of the 
operation of the system. 

Let us denote by ys(t) the value of the feeding component re-
sulting from the systematic structure of the system and by s(t) the 
random error of operations. Then y(t) = ys(t)+e(t) and y(t)—z{t) 
= λ(0-ζ(ί)+β(ί) . We have then [y(t)-z(t)f = \ys{t)-z{t)f 
+ [ε(0]2—2[ps(f)—z(t)]e(t). In consequence 

Θ Θ 

°2 = ^f [h(t)-z(t)]2dt+±f Ht)fdt 
0 0 

Θ 

+ ^j [Ut)-z{t)]E(t)dt. 
0 

Assuming that the random error e(t) is independent of the systematic 
error ys(t)—z(t) (or at least is not correlated with it) we state in accord 
with the known theorem of mathematical statistics that the last 
term on the right-hand side equals zero.1 Denoting the first term on 
the right-hand side by a2

s, and the second term by a\ we obtain 
σ2 = σ2

5+σ2
ΰ9 (5.42) 

i.e. the variance measuring the error of the operation of the system 
is the sum of two components of which one determines the systematic 
error and another determines the random error. Both these com-
ponents are variances. We accepted the variance as a measure of 
the average random error because of the meaning and the prop-
erties of the variance as a parameter of probability distribution 
and as a measure of error of estimation in mathematical statistics. 
As a measure of systematic error we accepted the variance for the 
sake of convenience, namely the possibility of using the formula 

1 Since the average value of the probability distribution of random errors 
equals zero (this follows from the notion of random errors, otherwise the error 
would be systematic). This term can be interpretated as the covariance of the 
random error and of the systematic error. The covariance equals zero when 
the errors are not correlated, and all the more so when they are independent 
(quantities statistically independent are uncorrelated, but not necessarily vice 
versa). 
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(5.42). As a result, the combined error, both systematic and random, 
is also measured by the variance, i.e. the expression (5.38). This 
corresponds to the procedure commonly used in statistics in the 
smoothing and extrapolation of time series.1 

We shall now deal with a particularly important aspect of the 
efficiency of operations of regulation systems, namely with the problem 
of reliability. A particular element of a system may fail, i.e. may not 
perform the transformation that normally takes place in this element. 
This may consist in zero transformation occurring instead of a planned 
transformation, i.e. the output may assume the zero value regardless 
of the value of input, or for the given value of input the value of 
output differs from the expected value by more than an expected 
margin (so-called tolerance). In the first case we say that the element 
does not operate at all and in the second that it operates badly. In 
both cases we say that the element fails. We shall assume that for 
each element of the system there is some specific probability that 
it will fail within a specified period of operation. This probability, 
which we denoted q, we call the unreliability of a given element. 
Then p = \—q is probability that within a given period of time the 
element will not fail, i.e. it is its reliability. 

The reliability of an element is then a probability; when the num-
ber of independent repetitions of the operations of an element is 
great,2 this probability, according to the law of large numbers, 
measures the relative frequency of cases in which the element does 
not fail in operation within the specified period of time. We denote 
this period of time by τ. If output y corresponding to the value of 
input x has the value y = Tx (where T is a transformation operator) 
and the reliability of the element is p then within the period of time τ 

1 See N. Wiener, Extrapolation, Interpolation and Smoothing of Statistical 
Time Series, New York, 1949, pp. 13-14. 

2 The law of large numbers operates also in certain conditions when the 
repetitions of a given event are not independent. With respect to the conditions 
under which the law of large numbers is satisfied see O. Lange, Teoria statystyki 
(Theory of Statistics), Part 2, Warsaw, 1952, pp. 139-145. The most general 
approach is described by A. Renyi, Wahrscheinlichkeitsrechnung, Berlin, 1962, 
pp. 348-350. 
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the output has the average value (mathematical expectation) py 
= pTx. Thus the reliability of an element may be presented in the 
block diagram in the form of an additional element coupled in series 
in which the transformation is proportional to operator 0 </? < 1. 
This is shown in Fig. 56. 

X T JL. P py „ 

FIG. 56 

Let us now consider a system consisting of n elements coupled 
in series. Denoting by Tl9 Tl9 ..., T„ the operators of transfor-
mations which take place in these elements and by pi9p29 .·.,/?« 
the reliability of the elements (within the specified period of time τ) 
we obtain the situation presented in Fig. 57a. We assume that the 

r, —*- p, h ·—*· Vi -*^...-^ T„ — *■ Pn\ 

FIG. 57a 

reliabilities of particular elements are independent. The joint transfor-
mation which takes place in this system is then Tnpn ... T2p2T1p1x9 

where x is the input of the system. 
Since pi9 p2, ... pn are operators of proportional transformation 

they are subject to the commutative law of multiplication and this 
transformation can be written in the form pxp2 ... pnTn ... T2Txx. 
Writing y = Tn ... T2Txx we obtain 

P1P2 ...pny=PiP2>.'PnTn... T2T&. 

This method of presentation is shown in Fig. 57b. 

iL_J^n—»JT"|-^ V" PiP2 · · · Pn = P 
py* 

FIG. 57b 
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This may be simplified by introducing joint transformations 
with operators T= T„ ... Τ2Τλ and P = pxp2 . . . / v We have then 

Py = PTx. (5.43) 

The operation of the system is written here in the way shown in 
the block diagram in Fig. 58. 

^ T WT 

FIG. 58 

The joint operator P is called the reliability of the system. It 
can be seen that 

P = PiP2...Pm, (5.44) 

i.e. the reliability of the system consisting of the elements coupled 
in series is the product of the reliabilities of its elements. Since the 
reliabilities are probabilities then 0 </>; < 1 (for i = 1, 2, 3, ..., n). 
Disregarding as trivial the marginal case when/?! = p2 = ... = pn = I, 
or pi = p2 = ... = pn = 0, i.e. when all elements operate in a com-
pletely certain way, or are completely out of operation, we find 
that the reliability of a system decreases when the number of elements 
coupled in series increases, because the value of P decreases when the 
number of factors in the product (5.44) increases. Denoting by p 
the geometrical mean of the reliabilities of the elements (0 < p < 1 
if all 0 < pi < 1) we have 

P = p\ (5.45) 

i.e. the reliability of the system decreases in geometrical progression 
as the number of elements coupled in series increases. 

This is illustrated in the table on page 151. 
As we can see, when the number of elements coupled in series 

is large the reliability of the system is small even if the reliability 
of the elements is great. If the average reliability of the element 
is 0.99, i.e. the element fails on the average with the probability 
0.01, it is enough that the system has 100 elements for reliability 
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to amount only to 0.4, i.e. that the system fails with the probability 
0.6 (i.e. in more than one half of all cases). For 1000 elements 
the system is practically incapable of operation because it does 
not fail only in 4 cases out of 100,000. Even with the average relia-
bility of the elements as high as 0.999, or the unreliability of 1 
in 1000, the system of 500 elements coupled in series has the relia-
bility of only 0.6, and for 1000 elements—only 0.4. 

Number of 
elements in 
the system 

n 

10 
100 

1000 
500 

1000 

Average 
reliability 

of the element 
P 

0.99 
0.99 
0.99 
0.999 
0.999 

Reliability 
of the system 

P 

0.9 
0.4 
0.00004 
0.6 
0.4 

To achieve a sufficiently great reliability of the system consisting 
of a large number of elements coupled in series the average relia-
bility of the elements must be very high, almost bordering on cer-
tainty. This is shown in the following table for the system with 
500 elements: 

Reliability of 
the system 

P 

0.7 
0.8 
0.9 
0.95 

Average reliability 
of the element 

P 

0.993 
0.9995 
0.9998 
0.99999 

The described decline of reliability of the system when the num-
ber of elements coupled in series increases appears not only in the 
case considered here when the reliabilities of elements are inde-
pendent. It is not affected by the relationship between the unrelia-
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bilities of particular elements. For in this case instead of the for-
mula (5.44) we have 

P = PlP2/l/P3/U · · · Pn/12 ... n-U (5.46) 

where px is the reliability of the first element, p2/i is the conditional 
reliability of the second element on the assumption that the first 
element has not failed, p3/i2 is the conditional reliability of the third 
element on the assumption that the first and second element have 
not failed etc. With the exception of a trivial case when all the ele-
ments operate with complete certainty the factors which appear 
in the product on the right-hand side of the formula (5.46) are all 
less than one and therefore P decreases as the number of the factors 
in the product increases. Thus the obtained result is general. 

The statement that in systems consisting of elements coupled 
in series the reliability of the system decreases rapidly as the number of 
elements increases, is the basic law of the theory of the operational 
reliability of systems. This law is valid in various fields. It appears 
in technology where experience shows clearly that when the number 
of elements coupled in series in a mechanical or electrical device 
increases, or a number of links in a chemical process increases, the 
reliability of the device or process rapidly decreases. It appears 
also in the functioning of living organisms and in human activities 
in which a long chain of indirect influence is used. In the latter case, 
if the chain of indirect influence is very long the reliability of ob-
taining the intended effect of operation becomes small because 
every link of influences may fail and the probability that all links 
operate reliably becomes very small. This is of great importance 
to economics and politics. 

This law appears also in logic in the case of inference which 
is not reliable. In such a case a long chain of inference is of low 
reliability, and the probability that the final conclusion drawn from 
such a chain is true is very small; such a conclusion is highly unre-
liable. This is characteristic of long chains of inference whose links 
are not checked by experience, such as all kinds of speculative theo-
retical systems either in philosophy or in other sciences, e.g. in poli-
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tics, in economics, in sociology, in cosmology, in geology, etc. This 
explains the fact of sterility of scientific theories based on purely 
speculative inference not controlled by frequent references to 
experience. 

Since many technical devices require a large, and sometimes 
a very large, number of elements coupled in series in order to achieve 
the postulated effect of their operations and since the same is true 
with respect to living organisms and to human activities, the question 
arises whether there is a way of raising the reliability of a system 
without decreasing the number of elements coupled in series. The 
idea that such a way exists is suggested by biology. For life functions 
of organisms, and particularly the functioning of the central nervous 
system of man, are characterized by a high degree of reliability even 
though there appears in them a very large number of elements coupled 
in series (e.g. neurons in a receptor-effector circuit). A high reliabi-
lity of living organisms which are very complex systems with a vast 
number of elements coupled with each other indicates that it is 
possible to construct systems with a very large number of elements 
and with a high degree of reliability of operation. The point is to 
find "the design principle" of such systems. 

Such a "design principle" has actually been found. In 1952 John 
von Neumann, one of the most prominent contemporary mathe-
maticians (recently deceased) delivered a paper on Probabilistic 
Logic and the Synthesis of Reliable Organisms from Unreliable Com-
ponents (California Institute of Technology, 1952).1 This paper, 
in which von Neumann has shown how to construct systems with 
a desired degree or reliability of operation from unreliable elements, 
has provided a basis for the contemporary theory and technique 
of reliability. It was a starting point for extensive research and stud-
ies in this field.2 

1 This paper was reprinted in: Collected Works by John von Neumann, 
Vol. 5, Oxford-London, 1963. A Russian translation was published in Avtomaty, 
Moscow, 1956. 

2 In addition to Neumann's paper the most prominent work in this field 
is: E. F. Moore and C. E. Shannon, "Reliable Circuits Using Less Reliable 
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The "design principle" for constructing from unreliable elements 
systems with any degree of reliability is simple. It consists in intro-
ducing into the system an appropriate number of reserve elements 
coupled in parallel, or what amounts to the same thing, in multi-
plying elements by parallel coupling. Parallel coupling of multiplied 
elements differs, however, from the kind of parallel coupling con-
sidered so far. In parallel coupling considered so far the values 
of output were added up; in a block diagram this is shown by the 
lines representing outputs of particular elements coinciding in the 
summation point which we have denoted by the symbol ©. Now we 
assume that the output of the system of elements coupled in parallel 
assumes the value equal to the value of output of only one of the 
components. This kind of parallel coupling is called alternative 
coupling, the output of the system of elements is determined by any 
of its components, the remaining elements do not influence output 
and are, in a sense, "inactive", being in reserve. In a block diagram 
alternative parallel coupling is presented so that the lines represent-
ing the outputs of particular elements coincide in the point denoted 
by ©, i.e. a circle with the operator of logical disjunction written 
in. This kind of point is called disjunction point and it represents 
a system in which non-linear transformation takes place, namely 
a logical operation of disjunction {A or B or C or ...). Shown in 
Fig. 59 is a block diagram of alternative parallel coupling. In this 
figure it is assumed that all elements perform the same transfor-
mation but only one of the results of transformations is transferred 
to output. The way in which this occurs may vary. For instance, 

Relays", Journal of the Franklin Institute, 1956. A Russian translation in Kiber-
neticheski Sbornik, Vol. 1, Moscow, 1960. See also F. Reza, "A Note of Relia-
bility Function", Proceedings of the 2nd International Congress of Cybernetics, 
Namur, 1960 (Russian translation in Kyberneticheski Sbornik, Vol. 5, Moscow, 
1952). A systematic exposition of the present state of knowledge on this subject 
is given by W. M. Gloushkov in Sintez Tsifrovykh Avtomatov, Moscow, 1962, 
Chapter 3, Section 3. On the subject of application of the "design principle" to 
living organisms, see W. C. Culloch, "The Reliability of Biological Systems" 
in the volume: Self-Organizing Systems, Oxford-London, 1960. See also J. Co-
wan, "Many Valued Logics and Reliable Automata" in Principles of Self-Organ-
ization, Oxford-London, 1962. 
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only one of the elements is active and performs transformation and 
the others are idle (i.e. perform zero transformation) and wait in 
reserve for an accident when the active element fails and then one 
of the reserve elements becomes active. If it also fails, another 

FIG. 59 

of the reserve elements becomes active, etc. This often happens 
in technical equipment such as machines, apparatuses, etc.; we speak 
then of free reserve. It may also happen that all or some elements 
are active but in the disjunction point the sum of value of output 
of particular elements is weakened (e.g. divided by the number 
of active elements) so that the output of the system always has the 
value equal to the value of output of one element. This would be 
a sort of "improper disjunction"; in fact in a disjunction point there 
takes place a proportional transformation of division by the number 
of active elements. The result, however, is the same as the result 
of disjunction in the proper sense of this word. This often happens 
in living organisms. With two eyes we do not see more "strongly" 
than with one eye (although the range of vision is wider), after 
the loss of one eye we see equally "strongly" as with two eyes; after 
a surgical removal of one kidney the remaining one works with the 
same intensity as two kidneys before. In technique this kind of 
situation is called utilized reserve. Partly utilized reserves are also 
distinguished. 
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Let us consider in a greater detail a system consisting of m iden-
tical elements coupled in parallel in an alternative way. In each 
element there takes place the same transformation y — Tx and 
each element has a specific reliability of operation. We denote the 
reliability of particular elements by pl9p2, ...,pm- This is illustrated 

FIG. 60 

in Fig. 60. The reliability of the /th element ispt — 1—/>,·(/ = 1 , 2 , 
..., m).The probability that all elements will fail is equal to the pro-
duct ql9 q2, ... qm which is written in the following form: 

Uqi^flV-pd (5.47) 

Since the elements of the system are coupled in parallel in an alter-
native way, the system fails only when all of its elements fail for 
it is enough that one element works normally to ensure a normal 
operation of the system. The reliability of the system is then equal 
to the probability that all elements will fail. Denoting, as before, 
the reliability of the system by P we obtain 

P= 1- JJ(l-A). (5.48) 

Disregarding a trivial case when all pt = 1 or all pt = 0 (i.e. 
a system completely certain or a system completely incapable of 
operation), we find that the reliability of the system increases as the 
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number of elements coupled in parallel in an alternative way increases. 
Denoting by q the geometric mean of unreliability of elements (0 < q 
< 1 since 0 < q{ < 0), we have 

P = l-qm. (5.49) 

The unreliability of the system decreases in geometrical progression 
as the number of elements coupled in parallel increases and the 
reliability of the system increases according to the formula (5.49). 
This result may also be generalized to cover the case when the relia-
bilities (or unreliabilities) of particular elements are not independent. 

The above-mentioned property of reliability of systems of ele-
ments coupled in parallel (in an alternative way) makes possible 
an increase in reliability of whole systems. Let us take a system 
consisting of n elements coupled in series and let us multiply the 

yth element m} times (j = 1, 2, . . . ,«) by alternative parallel coupling 
(i.e. we add mj— 1 of reserve elements to the y'th element). We obtain 
then the system shown in Fig. 61. 

Let us denote by p^ the reliability of the /th parallel elements 
in the y'th link of serial coupling. In accordance with formula (5.48) 
the joint reliability of the y'th link is 

mj 

Pj =1-Π Q-Pij). (5.50) 
i —\ 

The reliability of the whole system of links coupled in series is the 
product of the reliabilities of particular links and is, therefore 

P = PtP2...PH9 

i.e. 
n mj ρ=Π\ι-Π{ι-ρί4 ( 5 · 5 1 ) 

The formula (5.51) shows that the reliability of a system of elements 
coupled in series can be brought as close to unity, or to the complete 
certainty of operation, as desirable. This can be achieved by multi-
plying the elements in particular links of serial coupling by alter-
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native parallel coupling. It can be seen from the formula that by 
mj 

taking sufficiently large multiples of ntj the expression fj (l—py) 
J=i 

may be brought as close to zero as we wish. As a result P approaches 
unity. 

The multiples of m} can be increased without a detrimental 
effect to the reliability of the system and the reliability then increases. 
Thus we can "equate upwards" the multiples of ny by giving them 
the value of the largest of them; we denote this value by m. In con-
sequence mx — m2— ... = mn — m. We shall now define the aver-
age reliability of an element of the whole system. We do this in two 
stages using the geometric mean. Writing 

m 

ί = 1 

we define l—pj as the average unreliability and pj as the average 
reliability of the element in theyth link of serial coupling. The expres-
sion l — (l—pj)m denotes then the reliability of the 7th link of serial 
coupling. Writing 

It 

/7[i-(i-Ar] = [i-(i-^rr 

we define [1—(1—p)] as the average reliability of a particular link 
of serial coupling. Then p can be interpreted as the average relia-
bility of an element of the whole system. 

In consequence the formula (5.51) can be presented in the fol-
lowing form: 

ί = [ 1 - ( 1 - / 0 Ύ , (5-52) 
where n denotes the number of links coupled in series, m denotes 
the number of elements coupled in parallel alternatively in each 
link (m—1 is then the number of reserve elements) and p denotes 
the average reliability of an element in the whole system. We can 
determine from the formula (5.52) the number of multiples required— 
for any number of links coupled in series and for a given average 
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reliability of an element—to achieve any desired reliability of the 
system P. To achieve this we transform the formula (5.52) as follows: 

(1- />)*= l - P 1 / n . 
Hence we obtain 

m\og(l-p) = log(l~P^n) 
and 

log(l— P1/n) 
log( l -p ) 

It can clearly be seen that, for a given value of/? and n, m increases 
as the target value P increases. In the same way—for a given value 
of p and P—m increases as n increases. 

The table below shows examples of the values of P correspond-
ing to different values of m and n for p = 0.9.l 

Number of 
parallel elements 
in the link 

w = 1 
m = 2 

m= 3 

Number of links 
n= 1 

0.90 
0.99 
0.999 

n= 3 

0.73 
0.97 
0.997 

coupled in series 
n = 20 

0.12 
0.81 
0.98 

#i= 100 

0.000026 
0.35 
0.90 

It can be seen from the table that the multiplication of elements 
in particular links of serial coupling increases rapidly the reliability of 
the whole system. For the average reliability of the elements amounting 
to 0.9 (an element fails then on the average in 1/10 of all cases) 
it is enough to double an element in order to achieve in a partic-
ular link the reliability 0.99, and to triple (i.e. to add two reserve 
elements) in order to achieve the reliability 0.999, i.e. the unrelia-
bility of 1 in 1000, i.e. a situation close to certainty. The system 
which contains 20 links coupled in series achieves the reliability 
exceeding considerably the average reliability of an element, name-
ly 0.98, already after adding two reserve elements (tripling the 

1 See D. W. Chorafas, Statistical Processes and the Reliability Engineer-
ing, ed. cid., p. 342. The tables on pp. 144-145 come from this source. 
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elements coupled in parallel). A system with 100 links coupled in 
series reaches, after adding two reserve elements in each link, the 
reliability equal to average reliability of an element. It turns out 
that adding to particular links of serial coupling even a small num-
ber of reserve elements is highly profitable from the point of view 
of raising the reliability of whole system.1 

Using the formula (5.33) we can determine for a given p and n9 

the number of multiples of m needed for achieving the required 
reliability of the system P = P0. The value P0 is chosen depending 
upon the practical needs, e.g. P0 = 0.95, P0 = 0.99, P0 = 0.999. 
It expresses the degree of confidence which we require for the oper-
ation of the system. The praxeological significance of the desired 
reliability of the system P0 is similar to the praxeological significance 
of the confidence coefficient in mathematical statistics. Indeed, the 
confidence coefficient is a measure of the reliability of statistical 
inference (estimation or testing of hypotheses); it is simply the relia-
bility of a system of operations involved in a given statistical pro-
cedure. 

Under certain conditions, however, we can determine the optimal 
reliability of a system on the basis of cost calculation. The elements 
of the system, as a rule, entail cost (cost is entailed in their pro-
duction and maintenance). If the system fails this usually results 

1 Instead of multiplying particular elements we can also multiply whole 
sets consisting of a certain number of elements coupled in series. For instance 
we produce spare parts consisting of whole pieces of equipment of which a cer-
tain machine is composed such as picture tubes for TV sets, spare motors for 
airplanes, etc. Let sj denote the number of elements coupled in series in the /th 

k 

sets and k—the number of sets ( Σ SJ = ri); the number of multiples of the 

/th set we denote by mj. On the basis of reasoning similar to that outlined above 
we find that in this case the reliability of the system is 

k mj sj 

'-/7ii-/70-/7^/)l-
y = l * = 1 7 = 1 

This formula is reduced to the formula (5.51) if sj = 1 for / = 1, 2 ... k (then 
k = ri), or, if all sets contain only one element which is coupled in series with 
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in a loss which often (although not always, as for instance in the 
case of a loss of human life) can be measured in money terms. Thus 
we can compare the cost of introducing additional reserve elements 
into a system with a decrease in the expected loss related to the 
unreliability of the system. It can be calculated how far it pays to 
increase the reliability of the system and in this way its optimum can 
be determined. 

The calculation is as follows. Let us denote by Cj the cost of the 
element in the jth link of serial coupling and by s the loss in the 
case when the system fails in operation, let us call it the cost of failure. 
The probability of failure is \—P and therefore, the joint expected 
cost is 

n 

2mjCj+s(l-P). (5.54) 

The first component is the cost of all multiplied elements and the 
second is the mathematical expectation of the cost of failure. The 
object is to find the value of rrij and the corresponding value P for 
which the joint expected cost is a minimum. 

Let us suppose that we introduce in theyth link of a serial coupling 
an additional reserve element. The cost of multiplied elements in-
creases then by Cj and at the same time the reliability of the system 

n 
other elements of the system. If all sj = s = — and all mj = m and/? is the average 

reliability of an element of the system the formula assumes the form 

hence 
1 log(l-PT) m= -£-. 

log(l-/>fc) 
It turns out that for a given value of p and P, m is the smallest when k = n, i.e. 
if particular elements are multiplied rather than sets. But when k = 1, i.e. when 
the whole system coupled in series is multiplied (e.g. for a whole machine), m 
is the greatest. This is the least profitable procedure. See B. R. Levin, Teorya 
sluchainykh procesov i jeyo primenenye v radyotekhnike, Moscow, 1960, pp. 20-24. 
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increases by a certain quantity which we denote by AjP; the mathe-
matical expectation of the cost of failure changes by sAjP. The total 
change in cost is then 

Cj—sAjP. 

The minimum total expected cost occurs when the expression 
equals zero, i.e.1 

CJ = SAJP 0 ' = 1,2,..., if). (5.55) 

Then the expected saving due to a decreased cost of failure equals 
the additional cost of a reserve element. 

The multiples of Wj are integers and the above equations may not 
be satisfied for integer values of mj. Thus we take as a solution 
the integers closest to the value of ntj which satisfy the equation (5.55).2 

We determine now the increment AjP in the reliability of the 
system caused by the introduction of an additional reserve element 
into theyth link of a serial coupling. The starting point of calculation 
is formula (5.51) which we write 

p=/7[1-/7(1-^>)][1-/7(1-^)]· 
After the introduction of an additional reserve element into the 
7*th link the reliability of the system is 

m r mj +1 

ρι=Π11~Π^-ρ^]11-Π fl-*«)]' 
τφ} ι = 1 / = 1 

1 Treating P as a continuous and differentiable function of ntj this condition 
dP 

can be written as cj = s and interpreted as the equality of the marginal 
dnij 

expected saving in the cost of failure and the cost of an additional reserve element. 
Since, however, we assume that the multiples of ntj are integers, we do not apply 
the differential calculus here. 

2 This can also be expressed by taking instead of equations inequalities 
sAjP1 < cj < sAjP, where AjP1 is an increment in the reliability of a system after 
an introduction of the next subsequent reserve element. To put it in words: 
the cost of an additional reserve element is not greater than the expected saving 
in the cost of failure, but it is greater than, or equal to, the expected saving when 
a further element is introduced. 
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The difference P1—P, i.e. an increase in the reliability of the system 
is then 

mr ntj ntj + l 

Δ>Ρ = Υ]\\-ΥΙ<1-ρώ} {Π(.1-Ρώ- Π (1-/>υ)]. 
τφ} ί=1 / = ! ι + ι 

i.e. 
mr mj 

AjP = [] [l - f j (1-Λ,)] [J7 d-i'.v)]^· (5-56) 

This formula can be simplified by introducing the average relia-
bility p of the yth element and the average reliabilities of elements 
in other links. We obtain then 

AjP = J7 [ 1 - 0 - A M (1-PJTJPJ- (5.57) 

From these equations we determine the optimal values of m} 

and if the obtained value is not an integer we round it off to the 
closest one. We write the equations (5.55) in the following form: 

(l-Pj)mJ = ^^ *J——— , 

hence 

log^-- log Π [i-(i-pryr]-iogpj 
m. = l±l 

l o g ( l - A ) 
Ü = l , 2 , . . . , « ) . 

Substituting the obtained value mj (or the closest integers) in the 
formula (5.51) we obtain the optimal value of the reliability of the 
system P. 

In the equation (5.58) the factors which appear with s on the 
right-hand side of the equations are always less than one. Therefore, 
for the equations to be satisfied we must have Cj < s, or else the 
cost of an additional element would always be greater than the 
expected saving in the cost of failure. When this condition is sat-
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isfied the equations always have a solution because the right-hand 
sides are monotonically decreasing functions of my. There is always 
such a value of mj—and the only one—which satisfies the cor-
responding equation (in the range of real numbers). It can also be 
seen from the formula (5.58) that if cj increases in relation to s, m,* 
decreases, similarly as it does when/?,· increases. One thing is clear: 
the greater the cost of an additional reserve element in relation to 
the expected cost of failure, the fewer reserve elements can be intro-
duced profitably; similarly, an increase in the average reliability of 
an element decreases the number of profitable reserve elements. 
In consequence, it pays to have more reserve elements where relia-
bility is smaller and where the cost of a reserve element is lower. 

The "design principle" of the construction of highly reliable 
systems from unreliable elements discussed here, plays an important 
part not only in technology. It appears particularly in living or-
ganisms, in social processes, particularly in economic ones. The 
appearance of an "excess" of reserve elements is characteristic of 
the life of both individual elements and of species. It is well known 
how excessive the number of germ cells is in relation to new organisms 
born of them and in relation to those which survive to the child 
bearing age. Here the reliability of particular elements is very low, 
but it is compensated by a very large excess of reserve elements 
which causes that a species is a system with a high reliability of 
survival. It can be seen that the so-called extravagance of nature is 
a factor which ensures a high reliability of the survival of the species. 

In an individual organism a great number of reserve elements 
gives it a high degree of reliability of survival and activity. Such 
a reserve is the symmetry of the anatomical build of animals and 
man. We can see with one eye, breathe with one lung, live with 
one kidney or one brain lobe. The second eye, lung, kidney or brain 
lobe are reserve elements (unfortunately there is only one heart and 
this is the source of a serious unreliability of the human organism). 
It happens also that if a certain element in an organism fails its 
functions are taken over by other elements which, in principle, are 
not of a reserve nature but nevertheless form a certain potential 
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reserve. This is so, for instance, in case of a damage to certain parts 
of the brain; the functions localized in certain parts of the brain 
are taken over by other parts which turn out to be a potential re-
serve.1 

The "design principle" appears with particular clarity in an 
analysis of economic processes and in their management. A process 
of production which passes through various stages from a raw 
material, through a semi-finished product, to a final product—and 
which takes place in different production establishments—is a typical 
example of a system of elements coupled in series. These elements 
are particular establishments or their parts and the coupling is the 
cooperation between the establishments and the divisions of establish-
ments which pass on the products at particular stages of the process 
of production. A system corresponding to such a process of production 
can be presented by the block diagram shown in Fig. 57a. To each 
element (establishment or division of establisment) there corresponds 
a specific reliability and in consequence the reliability of the whole pro-
cess of production becomes very small, the smaller, the more there 
are elements coupled in series or, as we say, the longer the chain 
of cooperation. If even one link of the chain fails, disturbances 
in the process of production result; the probability of a disturbance 
is the greater, the more links there are in the chain of cooperation. 

The reliability of the process of production, however, can be 

1 This fact is often an argument for idealistic biological and philosophical 
theories. The fact that from a halved embryo of a sea urchin a whole animal 
grows up was used by Hans Driesch for concluding that the development of organ-
isms is guided by a non-material planning "entelechia" (see O. Lange, Whole 
and Parts in the Light of Cybernetics, Warsaw, 1965, p. 82). From the fact that 
in brain damages functions localized in the damaged part often continue Bergson 
concluded that the mind is independent of a material physiological base. See 
Henri Bergson, VEnergie spirituelle, Paris, 1920, 5th edition, pp. 55-58 and by 
the same author: Matiere et memoire, Paris, 1914, 11th edition, pp. 125-128. 
In fact, these phenomena are the result of certain functions being taken over 
by the other elements of the system which constitute a potential reserve. This is 
possible because nerve fibres are often parallel and usually have extensively 
ramified ends leading to several parts of the brain. See R. W. Spery, 'Orderly 
Function with Disordered Structure" in Principles of Self Organization, ed. cit. 
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raised to any desired level by the introduction of an appropriate 
number of reserve elements. Such reserve elements are stocks of 
raw materials, spare parts and a certain reserve capacity of machines, 
efficient repair workshops, stocks of finished products, etc. These 
reserves can be interpreted as elements coupled in parallel in an 
alternative way; they are "put in motion" when some element fails 
rendering the production process impossible without disturbances. 
The process of production with appropriate reserves is shown in 
the block diagram in Fig. 60. This is of great importance to the 
theory and practice of economic planning. Experience has shown 
that stretched targets in planning, i.e. planning for high production 
targets without securing appropriate reserves in the system of pro-
duction, are highly unreliable. A failure of one element (e.g. of an 
establishment) causes disturbances in the whole process of pro-
duction. This results in a breakdown in cooperation. The establish-
ment A does not supply its products to B and in consequence the 
latter cannot supply its product to establishment C which fails to 
supply the products to the establishment D, etc. The difficulties 
which appear in one link in a chain of cooperation cannot be localized 
and become disturbances in the whole process of production. To 
localize the difficulties appearing in particular links certain reserves 
in these links are required to make possible the transfer of the pro-
ducts to the next link (the maintenance of cooperation supplies) 
in spite of local difficulties. 

Another important case of the design principle discussed here 
is the management of economic processes by a chain of indirect 
influences. For instance, by raising the price of raw materials the 
product becomes more expensive and this results in a decline in the 
demand for this product, a decrease in its production, a decrease 
of the raw materials used up, a decline in its imports and savings 
in foreign exchange; or in consequence of embarking upon a large 
investment project (e.g. the construction of a production establish-
ment) in a certain locality the employment of local population 
increases, the flow of jobseekers from outside swells, money incomes 
and expenditures increase, the demand for various products rise, 
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the way of life of the population changes bringing about changes 
in culture, sociology, viewpoints, etc. 

These examples of managing the economic and social process 
by a chain of indirect influences can be regarded as the introduction 
into the system of a regulator consisting of a large number of ele-
ments coupled in series (or, what amounts to the same thing, of 
a large number of regulators coupled in series). This is illustrated 
in Fig. 62. A given process of production which is interpreted as 
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FIG. 62 

the regulated system S is influenced by the regulators R1R2... Rn 

coupled in series. Each regulator has a specific reliability /71/?2 -.-/V 
The reliability of the joint operation of the regulators is then P 
= Ρ\Ρι ···/>«· The basic regulation formula in this case assumes the 
form 

v = x, (5.60) 
y l-PSRn...R2Ri ' V 

where S is the operator of the regulated system, Rl9 R2, ..., Rn 

are the operators of the particular regulators and P = pip2 ... p„ 
is the joint reliability of the regulators. The mean value (mathe-
matical expectation) of the output of the "chain of regulators" is 
PsPn ... R2Ri. This value is determined for a certain period of time r. 

If the "chain of regulators" is long its joint reliability is small 
and in consequence the average value of its operation (output) 
is small. We say that the regulation system "works poorly", often 
fails in particular cases and in the period of time τ gives a low aver-
age result. To prevent this we have to include in the system alter-
native reserve regulators coupled in parallel. The block diagram 
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of the regulation system looks then as in Fig. 63. As a result, in 
formula (5.60) the joint reliability of regulators assumes the value 
defined by the formula (5.51) or (5.52), (if we use the average re-
liability of the regulator). This reliability can be brought as close 
to unity as desired and in this way a "strong operation" of the system 
of regulators can be secured and a situation can be created in which 
the cases of failure in regulation are rare and the average result of 
the operation of such a system (in the defined period of time τ) 
is close to SRn... R2Ri, i.e. to the result achieved when all elements 
of the regulation system operate with certainty. 

In both cases considered here, i.e. in the process of production 
with the cooperation of establishments and in the management 
of the production process by a chain of indirect influences, a high 
degree of reliability can be achieved by appropriate reserves. The 
reserves, however, are expensive because they entail a withdrawal 
of some resources from direct participation in production which 
amounts to their "freezing". This is evident in the case of a pro-
duction process. In the case of a chain of indirect influences reserve 
regulators are, as a rule, in the nature of reserve resources for activ-
ating additional economic incentives (e.g. when an increase in the 
price of raw materials is not effective we introduce bonuses for 
savings in raw materials; when a decline in the demand for the 
product does not result in a decrease in its production we reward 
the enterprise for possible losses resulting from decreased production), 
for facilitating certain kind of activities (e.g. supplies of feed for 
stimulation breeding) etc. Thus they also result in a certain cost 
to the national economy. In consequence, economic accounting is 
needed to compare the cost of additional reserves with the cost of 
failure of the system, e.g. with the loss resulting to the national 
economy from disturbances in the process of production or from 
failing to achieve the economic objectives which the chain of in-
fluences was supposed to attain. By economic accounting described 
above and by similar kinds of calculations1 we can determine an 

1 There is a well developed theory of programming under the conditions of 
uncertainty which deals with the optimalization of the reliabilities of programmes. 
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optimal reliability, either of the process of production or of the 
chain of influences, and the reserves required to attain this re-
liability. 

When it is not possible to secure the required reserves and 
often also when there is a lack of understanding of their importance 
for a reliable run of the production process (the notion of "stretch-
ed targets") other ways of increasing reliability are usually sought. 
These ways generally consist in "shortening the chains", i.e. decreasing 
the number of elements (or sets of elements) coupled in series. 

In the process of production this occurs by vertical concentration, 
i.e. by concentrating many stages of production in one establishment. 
In consequence of vertical concentration the number of establish-
ments decreases and the chain of cooperation between establishments 
is shortened. When difficulties in cooperation have their sources 
in organization or in the coordination of work between separate 
establishments (particularly if these establishments are separate 
enterprises) vertical concentration can actually increase the reliability 
of the production process. Experience shows that this leads as a rule 
to a decrease in reserve requirements in consequence of a smaller 
number of elements coupled in series. There are limits, however, 
to which the reliability of the production process can be raised 
by vertical concentration. If there were no such limits the greatest 
reliability could be achieved by combining all production establish-
ments in the country into one enterprise. It would be a purely fictitious 
operation because it would not remove the differences in the tech-
nical stages in the process of production, the need to transfer an 
unfinished product from one stage to the next, situations resulting 
from the unreliability of particular stages due to failures or other 
factors.In other words: there would remain the problem of cooper-
ation within the united establishment, between its particular divi-
sions, there would also remain organization problems (not only 
production and technical ones) in such a cooperation. A shortening 
of the chain of cooperation is then possible only within certain limits 
The exposition of this theory can be found in the book by O. Lange, Optymalne 
decyzje (Optimal Decisions), Warsaw, 1967, 2nd ed., Chapters 7, 9 and 11. 
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and therefore reserves are always needed for securing a smooth 
process of production. 

In the management of economic processes a tendency to a "short-
ening of the chain" manifests itself usually in two forms. One is 
a replacement of economic stimulation (which consists mainly in 
using incentives and creating situations conducive to certain spe-
cific types of initiative) by administrative means such as orders, 
decrees, prohibitions, regulations, etc. The object of all these is 
the substitution of more direct measures, allegedly more certain, 
for an unreliable chain of indirect influences. The other form is 
greater centralization of decisions, a transfer of decision-making 
from lower to higher levels in the organization of economic pro-
cesses. Also here the object is to act more directly and with a greater 
certainty. It is not by accident that such a "shortening of chain" 
in the management of economic processes occurs usually in periods 
of "stretched targets" and scarce reserves for ensuring their ful-
filment. Such periods usually occur during intensive industrialization 
in socialist countries in the conditions in which both for social and 
political reasons the objective is to get out as quickly as possible 
from the state of economic and social backwardness inherited from 
the past. In capitalist countries similar "shortening of chains" oc-
curs during wars in the form of so-called "war economy". 

Within certain limits such methods of "shortening of chains" 
in the management of the economic processes can increase their 
reliability and reduce the reserve requirements. As a rule, how-
ever, particularly when they are used for long time, these methods 
frequently result in a decrease and not an increase in the reliability 
of the economic processes. Administrative methods of management 
become ineffective when they are not strenghtened by appropriate 
incentives (i.e. economic measures), and they cannot replace the 
initiative needed for securing the economic processes an appropriate 
degree of flexibility. In consequence they do not achieve the in-
tended results. There arises the problem of "struggle for discipline" 
in observing administrative orders the effectiveness of which may be 
questionable. 
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A high degree of centralization of decision-making gives rise 
to its own problems which are an important subject in cyber-
netical analyses. As a rule it extends the chain of information from 
below to the agency authorized to make decisions. In the process 
of being transferred information becomes distorted and there appears 
clearly the effect of the law of decreasing reliability in consequence 
of a serial coupling of elements. The decisions on their way from 
the high authority to low levels are also subject to distortion. More-
over, the central authority has a limited capacity for processing 
information into decisions. Information is often "queueing" in 
awaiting transformation into decisions which are delayed. Added 
to this is the fact that because of a longer chain of migration of 
information from the centre to the executive echelons and back more 
time is needed for sending information and obtaining the decisions. 
It happens then that decision comes too late, when it is irrelevant 
and when the situation cannot be reversed. In such cases the eco-
nomic process becomes spontaneous. The centralization of decisions 
at a high level does not result in controlling the process but, on the 
contrary, increases its spontaneity.1 In consequence it turns out 
that also this method of the management of economic processes 
without reserves has its limits. 

The problems discussed in this book emphasize the importance 
of cybernetics for securing an efficient and reliable organization of 
economic processes and for effective and reliable management of 
these processes. This shows the importance of the general theory 
of reliability of operation of systems, and indicates also other prob-
lems (such as the flow of information, the transmittance of decision-
making authorities) which in this exposition have not been discussed. 
Cybernetics turns out to be an indispensable tool of the management 
of the national economy. Its importance is particularly great in 
a socialist economy. In capitalism the organization of economic 
processes is elemental and cannot be based on rational principles. 

1 See O. Lange, "The Role of Planning in a Socialist Economy" in O. 
Lange, Papers in Economics and Sociology, Warsaw-Oxford, 1970. 
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It has no general social objectives or means which would reconcile 
the activities of privately owned concerns with such objectives, 
if there are any. In a socialist economy, on the other hand, cyber-
netics has a great potential as a basic scientific tool for the man-
agement of economic processes. 

The importance of cybernetics is twofold. It provides an apparatus 
for precise analysis which makes the management of economic pro-
cesses effective, accurate and reliable. In addition to creating the 
framework for analysis and precise calculation cybernetics develops 
an appropriate way of thinking—let us call it cybernetic thinking— 
and of approaching and solving problems. This kind of cybernetic 
thinking has the significance independent of the concrete results 
of analyses and calculations, similar to that of the mathematical 
or statistical way of thinking. He who has learned to think in terms 
of cybernetics can—even without a detailed analysis—see the problem, 
see the essential links of the situation, the relations among elements 
and ways to the practical solutions which elude others. The ability to 
think in cybernetic terms enriches intuition necessary both in eco-
nomic research and in the practice of management of economic 
processes. 
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