Menshevising Idealism: or why the Soviet Union didn't develop the first computers

Greg Michaelson

Oxford Communist Corresponding Society

3rd December 2020

- let's start with some context
- 1946 first modern digital computers announced
 - ENIAC USA University of Pennsylvania in use
 - ACE UK National Physical Laboratory design
- 1948 many early US & UK computers running
- 1951 commercial computers

- 1951 first comparable Soviet computer running
 - MESM Sergey Lebedev
- why...?
- USSR had theoretical/technical capability
 - control theory
 - analogue computing
 - sequence control systems
- computers key to economic planning & automation

- digital computers not secret
- long history of mechanical computation
- mechanical calculators
 - 1642 Pascal France adder/Pascaline
 - 1694 Leibniz Germany multiplier
 - 1822 Babbage UK difference engine generate tables
- analogue computers
 - WWI Great Powers naval fire control
 - 1928 Vannever Bush USA differential analysers
 - 1936 Lukyanov USSR- water integrator

- proto digital computers
 - 1936 Zuse Germany Z1 patents 1937
 - 1939 Atanasoff USA ABC
 - 1944 USA ASCC/Harvard Mark 1
- secret proto digital computers
 - 1943 Colossus UK
 - used to crack German Lorenz cipher
 - not public until 1980s
 - techniques relevant to analysing streamed data

- 1945 von Neumann *Report on the EDVAC*
 - described stored program design key to digital computers
 - widely distributed
- all subsequent general purpose digital computers stored program
- why didn't USSR pick up on this?
 - anecdotally, Lebedev read about digital computers in 1948 in foreign popular magazines
- why didn't USSR prioritise acquiring US/UK designs?
 - c.f. atomic weapons 1940s

- computers are machines that execute instructions to transform data
- program sequence of instructions
- two components
 - Central Processing Unit
 - carries out instructions
 - memory holds data
 - include peripherals (e.g. mouse, keyboard, screen) & network
- instructions to
 - move data from memory to CPU
 - change data in CPU arithmetic & comparison
 - move data from CPU to memory

- usually instructions are carried out in a linear sequence
- also instructions to change the sequence depending on properties of data
 - choose between optional sequences
 - repeat a sequence until some property is satisfied
- proto digital computers instruction sequences fixed
- had to be physically changed for each program
 - ENIAC Electronic Numerical Integrator and Computer
 - functional components wired together
 - Colossus
 - instructions set on switches and jack panels

- modern digital computers store instructions in memory
 - as well as data
 - easy to change what computer does
 - computer can modify its own programs
- stored program attributed to John von Neumann
 - modified ENIAC 1946/47
- von Neumann got idea from Alan Turing 1936/7

- Turing was working on *mathematical logic*
 - theoretical foundations of mathematics
- concerned with *computability*
 - what are limits to mechanical rule following?
- NB well before digital computers
- let's now survey mathematical logic before considering its implications for philosophy

- propositional calculus
- Aristotle 384-322 BC Greece
- values: true & false
- variables over values: x y z...
- operators
 - conjunction logical and x AND y true only if both x and y true
 - disjunction logical or x OR y true if either x or y or both true
 - negation logical not NOT x true if x false
 - implication x implies y or if x then y

- expressions built up using truth values, variables and operators
- theorem expression that is true for all values of variables
- axiom basic true expression
- rule of inference
 - syllogism
 - connects premises to conclusion
 - implication

- proof establish something is a theorem
 - start with axioms as premises
 - apply rules of inference
 - until expression is conclusion
- deductive logic
- NB
 - pure calculus doesn't matter what variables represent
 - form of logic Hegel, Marx & Engels familiar with

- predicate calculus
- Augustus De Morgan 1806-1871 UK
- extends propositional calculus
- predicates over truth variables
 - properties that may be true or false P Q R...
- quantifiers
 - universal for all
 - existential there exists
- more axioms and rules of inferences
- NB still a pure calculus doesn't matter what predicates represent

- set theory
- Cantor 1845-1918 Germany
 - set is a collection of things
 - symbols or other sets
- operators
 - member some thing a member of a set
 - union join two sets no duplicates
 - intersection common elements of two sets
 - difference between two sets

- apply propositional & predicate calculus to set theory
 - predicates are properties of sets
 - quantify over sets
 - e.g. model arithmetic
- but
 - countable infinite sets
 - Engels unhappy
 - mocks Cantor's ideas in Anti-Duhring
 - paradoxes
 - Russell's
 - set of all sets that aren't members of themselves
 - is this set a member of itself?

- can logic capture all of mathematics?
- 1910-27 Russell & Whitehead Principia Mathematica UK -Cambridge
 - heroic failure
- David Hilbert 1862-1943 Germany
- Hilbert's Programme
- can we prove for mathematics
 - consistency no provable contradictions
 - completeness no unprovable theorems
 - decidability systematic way of establishing whether or not an expression is a theorem

- Kurt Gödel 1906-1978 Austria/USA
 - 1931 mathematics can't be both consistent and complete
- Alan Turing 1912-1954 UK Cambridge
 - 1936 mathematics can't be decidable
- proofs by contradiction

- Turing's distinctive approach
 - most logical models of maths require an implicit human to do the proofs
 - Turing invented a class of machines based on how humans do mathematics
- tape
 - unbounded but finite sequence of symbols
- rules
 - in current state
 - depending on current symbol
 - change symbol
 - move tape one symbol left or right
 - change state

- NB machine no implicit human
- Turing showed
 - any mathematical expression can be represented on the tape
 - Turing machines can be represented on the tape
 - can make a Universal Turing machine to execute Turing machines
- → Von Neumann's stored program

- what is the ontological status of logic?
- logicism/logical atomism e.g. Russell
 - mathematics is reducible to logic
 - truth is out there
 - Platonic realism i.e. idealism
- formalism e.g. Hilbert
 - mathematics is applying rules to symbols language game
 - no necessary meanings

- intuitionism e.g. Brouwer Netherlands
 - only accept mathematical entities that can be constructed from first principles
 - rejects actual infinities
 - rejects proof by contradiction
- led to constructivism e.g. Markov (Jnr) USSR
- let's now look at how this all played with Marxist philosophy

- mathematical logic seen as contrary to dialectical materialism
 - mechanical materialism
 - formalist
- roots in Engels on logic and mathematics
- dialectical materialism == logic + dialectics
 - pure dialectics == Hegelian idealism
 - pure logic == mechanical materialism

- 1878 Anti-Dühring
 - philosophy of nature is empirical, abstracted from reality
 - dialectics goes beyond "narrow horizon" of formal logic
- 1883 Dialectics of Nature
 - formal logic enumerates "forms of motion of thoughts"
 - dialectics derives higher forms from lower
 - formal logic is not nonsense
 - but pure maths is abstractions which becomes nonsense at extremes
- 1886 Ludwig Feuerbach and the End of Classical German Philosophy
 - all that's left of philosophy "expelled from nature and history" is theory of laws of thought –logic and dialectics

- struggle over philosophy of science in USSR after October Revolution
- 1920s mechanist tendency gained ascendency
 - down played dialectics
 - reductionist
- Abram Deborin
 - dialectical materialism is a synthesis of Hegelian dialectic and Feurbach materialism
 - anti reductionist

- 1929 mechanists discredited as revisionist
 - purge of Academy of Sciences
- 1930 New Turn
 - V. P. Mitulin accused Deborin of formalism in approach to dialectics
 - not relevant to practical needs
- Stalin coined "menshevising idealism" for Deborin
- by 1931, mechanism & MI conflated with political orientation
 - mechanism == right deviation Bukharin
 - MI== left deviation Trotsky

- made career progression difficult...
- led to Soviet focus on applicable mathematics
- subsequent Soviet mathematical logic based on intuitionism/constructivism

- international implications
- e.g. UK
- CPGB had leading scientists as members
- 1931 Second International Congress of History of Science & Technology
 - London
 - paper by Hessen on Soviet line

- David Guest 1911-1938
 - mathematician Cambridge & Southampton
 - killed in Spain
 - supported Hessen at Congress
- 1934 Machian Tendency in Modern British Philosophy
 - orthodox Soviet position
 - attacked logicists and formalists
 - promoted intuitionism as revolutionary

- 1934 collection *Aspects of Dialectical Materialism*
- two papers by communist scientists
- Hyman Levy 1889-1975
 - mathematician- Imperial College
 - friend of David Guest
 - laws of dialectics add nothing to science
 - subsequently criticised as mechanist
- J. D. Bernal 1901-1971
 - X-Ray crystallographer Cambridge & Birkbeck
 - dialectic is not applicable to experimental science

- J. B. S. Haldane 1892-1964
 - geneticist/physiologist UCL
- 1938 Marxist Philosophy and the Sciences
 - orthodox Soviet position
 - reiterated Engels' disquiet with infinite sets
 - Marxists sceptical of "more ambitious logical theories"
 - logical systems only work in highly abstract contexts
 - knew about calculating machines differential analysers
 - said may herald a "new epoch" in mathematics

- Maurice Cornforth 1909-1980
 - logician/philosopher
- 1946 Science Versus Idealism
 - orthodox Soviet critique of pure empiricism and modern logic
 - tribute to David Guest
 - helped by Haldane

- these British communists all knew each other...
- ... and had
 - close contact with USSR
 - strong links to currents in logic and mathematics
 - especially Cambridge
- none seem to have noticed Turing's papers

Conclusions

- lost opportunity for USSR
- compounded by 1940s critique of cybernetics
- e.g. 1950 Boris Agapov editor Literary Gazette
 - capitalists want to replace class conscious workers & soldiers with compliant robots
 - computers no use for planning
- but Soviet military & scientists wanted computers
- two secret design programs
 - Academy of Sciences MESM
 - Ministry of Machine-Building and Instrument Construction Strela

Conclusions

- easier after 1953 "thaw"
- mid 1960s USSR could build world class computers e.g. BESM 6
 - west worried by progress
 - CIA report suggested USSR might overtake
- too many competing projects
 - from different organisations ministries, academia, military
 - no standardisation of hardware and software
 - couldn't ramp up to meet demand
- late 1960s own designs abandoned for IBM 360 clones

Conclusions

- Turing not ideological/political
 - irony that approach was materialist in Engels' terms
 - from observation to theory to practice
- Turing's results constrain computation
 - constrains reach of logic
- Turing also argued that thought is computational
- so we might conclude that dialectics as a component of thought is constrained
- worth exploring implications for dialectical materialism
 - relationships between computation, logic and dialectics

Further reading

- Helena Sheehan, *Marxism and the Philosophy of Science: A Critical History*, Humanities Press, 1985, 1993, Verso Books, 2017.
- Paul Cockshott, Louis Mackenzie and Greg Michaelson, *Computation and its Limits*, Oxford University Press, 2012